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The interactions between plant roots and soil are an area of active research,
particularly in terms of water and nutrient uptake. Since non-invasive, in vivo
studies are required, tomographic imaging appears an obvious method to use,
but no one imaging modality is well suited to capture the complete system. X-
ray imaging gives clear insight into soil structure and composition. However,
water is very weakly attenuating to X-rays, and biological matter also displays
poor contrast. Neutron imaging presents a complementary view where water
and biological matter are better distinguished, but the soil minerals are imaged
with inferior contrast and resolution in comparison to equivalent X-rays scans.
This work aims to develop robust methods for complementary X-ray /neutron
tomographic imaging of plant root samples. These should lead to new insight
into water and nutrient transport in soil. The primary challenges of this project
are: to develop experiments that will meet the requirements of both imaging
modalities and the biological requirements of the plant samples and to develop
ways to register a pair of reconstructed volume images of samples that have
been produced at entirely separate facilities.

This work investigates the use of fiducial markers for point-based registration

concerning the material, number and distribution of markers to address the
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registration challenge, first with simulation and then experimentally with plant
samples imaged using neutrons and X-rays. The neutron scans were collected
at the IMAT instrument at ISIS Neutron and Muon Source and the X-ray
scans both at X-ray Imaging Centre at the University of Southampton and
the 112 beamline at Diamond Light Source. A marker segmentation algorithm
designed to automate the registration process is presented and evaluated, as
are methods for combining the registered data from the two modalities to
optimise the technique and facilitate segmentation, quantification and further

analysis.
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1.1. Introduction

The human race depends upon plants to provide the vast majority of its food,
either directly or indirectly. As the earth’s population increases, a correspond-
ing growth in crop yield is required. Current estimates state that crop pro-
duction will need to double by 2050 to keep pace with projected population
growth |[Tilman et al., 2011|, a target that current trends are insufficient to
meet |[Ray et al., 2013]. Climate change will make this all the more difficult,
mainly through reduced water availability and the drive to reduce fertiliser
usage [Atkinson et al., 2019].

The green revolution is the name given to a period in the mid-twentieth
century when several scientific advancements, including the introduction of
fertilisers and genetic modification, led to a tremendous gain in crop yields
in a relatively short period [Bishopp and Lynch, 2015]. The green revolution
was primarily centred on manipulating the portion of the plant that is visible
above the ground, and roots were largely overlooked. However, the root system
is central to plant functions such as water and nutrient uptake, anchorage
and interaction with symbiotic organisms, so it has been recognised that root
growth and development could be an area that is not yet fully exploited to
maximise crop yield [Herder et al., 2010]. It has been suggested that the
deployment of crops with more efficient water and nutrient uptake due to
improved root traits could lead to a second green revolution and help to address
the worldwide challenge of food security [Lynch, 2007].

Non-invasive, in vivo studies of plant roots present a challenge traditionally
addressed through rhizoboxes (containers that force 2D growth conformation
with transparent windows for observation) or transparent, artificial growth me-
dia. Although widely used, these methods generally result in root systems that
vary considerably from those grown in natural soil conditions [Kuijken et al.,

2015|. X-ray computed tomography is the primary method for 3D imaging
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of root systems grown in soil but is not without limitations [Mairhofer et al.,
2011|. While X-rays show the soil structure well, they are not an ideal tool for
imaging water distribution in particular since there is very little contrast be-
tween the water, plant roots and any other biological soil constituents. None
of these hydrogen-rich constituents is imaged clearly, and as a result, it is
difficult to differentiate between them in the image data produced.

Neutron imaging offers a solution as many imaging techniques are simi-
lar, but the mechanisms by which neutrons interact with matter are very
different. Hence different elements, in particular a number of light elements
such as hydrogen, provide strong contrast in a neutron image [Kaestner et al.,
2017]. Many experiments have shown neutron imaging to be well suited to
showing water dynamics, where X-ray imaging would have struggled [Menon
et al., 2007, Matsushima et al., 2009, Moradi et al., 2011, Warren et al., 2013,
Zarebanadkouki et al., 2013, Totzke et al., 2017]. Neutron imaging has its
limitations too. It is slower, less readily available and produces images of
lower resolution when compared to equivalent X-ray techniques. Just as X-ray
imaging cannot provide a good representation of all the materials in a plant
sample, neutron imaging does not show the soil minerals and structure well.

The value of multi-modal methods that image samples using both X-ray
and neutron techniques has been identified and begun to be exploited in crop
science [Kim et al., 2013, Kaestner et al., 2016, Mawodza et al., 2021] and more
widely [Mannes et al., 2015, Ziesche et al., 2020]. Although the requirements
and challenges of such multi-modal studies are well understood, many of these
experiments rely on methodologies and data processing schemes specific to the
instrument or experiment. There is currently no common framework of tools

and best practices for correlative X-ray and neutron imaging.

1.2. Aims and objectives

This work aims to develop multi-modal methods that combine X-ray and neu-
tron imaging techniques to provide a more complete scan of a root-soil system.
These methods would allow better observation and study of water and nutri-
ent uptake and mucilage production within plant samples. The two main
challenges in achieving this are image acquisition and image analysis. First,
a sample must be prepared and imaged to meet the requirements of both

the X-ray and neutron imaging instruments and the biological needs of the
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plant. Second, image processing techniques must be developed to allow the
two scans of a sample to be registered and combined accurately in a way that
facilitates further analysis. The methods developed in this work are designed
to be generalised beyond studies of plants to provide a framework and tool-set
for correlative X-ray and neutron imaging more widely.

The first phase of this work is to develop general methods for collecting and
registering complementary datasets. We built upon this during the second
phase of the work, using methods for combining and enhancing multi-modal
datasets. These techniques were tested using an investigation into water fluxes
within soils.

Chapter 3 presents a study of fiducial markers as a method for registration.
Simulations were conducted to observe the impact of the number and place-
ment of fiducial markers on registration accuracy, and the principles shown
by the simulations were then tested in practice. Chapter 4 builds upon this
by considering the material used for fiducial markers and presents and evalu-
ates a marker segmentation routine designed to allow automated registration
of correlative datasets. Chapter 5 concerns subsequent processing of these
correlative datasets after registration to allow the potential of complementary
modalities to be maximised and facilitate segmentation, quantification and

further analysis.
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2.1. X-ray and neutron imaging

Tomography, and transmission imaging more generally, depends on the fact
that a beam of penetrating radiation will be attenuated when travelling through
matter. The radiation intensity exponentially decreases as it passes through
matter due to the loss of particles by absorption and scattering, and the at-
tenuation can be mapped across an area to produce an image. While the
mechanisms for absorption and scattering and some of the nomenclature used
to describe these properties are different between X-rays and neutrons, the

principles of beam attenuation are common to both X-ray and neutron beams.

The Lambert-Beer law gives the total attenuation of a monochromatic beam
through a homogeneous object (eq. 2.1), where [ is the attenuated beam in-
tensity, Iy is the incident beam intensity, u is the linear attenuation coefficient
and x is the path length through the object. The attenuation coefficient is the
sum of the attenuation coefficients for each mechanism of attenuation. This
equation is based on the assumptions that all scattered radiation is removed
from the beam, that the attenuation coefficient does not vary with x and that
the incident beam contains radiation at a single energy level so that the energy

dependence of the attenuation coefficient can be ignored.

I= I()e_l“C (21)

2.1.1. X-ray attenuation mechanisms

Typically the attenuation mechanism that applies to a given photon is depen-
dent on its energy relative to the binding energy of the electron with which it

interacts.
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2.1.1.1. Photoelectric absorption

If a photon interacts with an inner shell electron and the photon’s energy is
greater or equal to that of the electron binding energy, then the X-ray may
be absorbed due to the photoelectric effect, as shown in figure 2.1. In this
case, the photon gives up all its energy, and the excited electron is ejected
from the atom with kinetic energy equal to the difference between the incident
photon energy and the electron binding energy. An electron fills the gap left
by the ejected electron from an outer shell with less binding energy, producing
a characteristic X-ray with energy equal to the difference in binding energy
between the two shells [Seibert and Boone, 2005].

For photoelectric absorption to take place, the energy of the incident photon
must be at least as great as the electron binding energy. This results in a sud-
den jump in the mass attenuation of an element where the energy equals the
K-shell electron binding energy, and photoelectric absorption becomes possi-
ble. This is known as a K-edge. Similarly, other edges can be seen at the
other electron shell binding energies. Figure 2.2 shows the mass attenuation

coefficient of germanium as an example of this.

2.1.1.2. Rayleigh scattering

If a photon’s energy is significantly less than the binding energy of the electron
it interacts with, then the photon may be scattered with no loss of energy.
This scattering occurs by the electron absorbing the photon and immediately
returning to its original energy level by emitting a photon of equal energy in
a slightly different direction [Seibert and Boone, 2005]. This process is also

known as coherent or elastic scattering, and is illustrated in figure 2.3.

2.1.1.3. Compton scattering

If the energy of a photon is much higher than an electron’s binding energy,
then Compton (inelastic) scattering may occur. Figure 2.3 shows how, when
energy is absorbed from the photon by the electron, both the electron and a

scattered, lower energy photon are emitted [Seibert and Boone, 2005].

2.1.1.4. Pair production

For photons with very high energies (>1.022 MeV) it is possible for the photon

energy to be converted into mass through pair production. A positron and
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Characteristic X-Ray

Incident X-Ray

Q Photoelectron

Figure 2.1.: Photoelectric absorption of an incident X-ray photon. The inci-
dent electron transfers its energy to the photoelectron, ejecting
it with kinetic energy equal to the difference in energy between
the incident photon and the electron binding energy. An elec-
tron from the outer shell moves to fill the vacancy in the K shell
and the difference in binding energies is consequently released as
a characteristic X-ray.
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Figure 2.2.: The mass attenuation and mass energy-absorption coefficients
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of germanium as a function of photon energy. The K-edge
can be seen at 1.11 x 1072 keV. The L-edges occur between
1.216 x 1073 keV and 1.414 x 1073 keV. Reproduced from NIST X-
Ray Mass Attenuation Coefficients Database [Hubbell and Seltzer,
2004].
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Rayleigh scattering
Es=Ei

Incident X-Ray

Incident X-Ray

Compton scattering
Es < Ei

Figure 2.3.: Rayleigh and Compton scattering diagram. The top case shows
Rayleigh scattering where the photon is absorbed by the electron
and another photon is emitted with equal energy but also with a
slight change in direction. The lower case shows Compton scat-
tering where the absorbed photon provides enough energy to free
an electron and only the remainder of the energy is transferred to
the scattered photon.
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Figure 2.4.: How the types of photon interaction vary with photon energy and
atomic number. Based on figure from Podgorsak et al. [2005].

electron pair are ejected. Eventually, the electron will lose its energy and the
positron will collide with an electron producing two photons of 511 keV.

In a typical imaging configuration, the photoelectric effect dominates at low
energies until Compton scattering takes over at a higher energy that is material
dependent. Pair production is only significant for significantly higher energies
and materials with a high atomic number. The precise energies where these
mechanisms occur are material dependent [Seibert and Boone, 2005|. Figure
2.4 shows how the dominant interaction type varies with photon energy and

atomic number.

2.1.2. X-ray imaging systems
2.1.2.1. X-ray sources

Lab-based imaging systems commonly use X-ray tube sources to produce the

necessary beam by accelerating electrons and colliding them with a target to
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Relative intensity
of X-rays
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Figure 2.5.: A typical bremsstrahlung and characteristic radiation spectrum
for a tube source. The maximum photon energy is 150 keV which
shows that the tube voltage must be 150 kV. A steep decline in
intensity can be seen below about 40 keV as the X-rays produced at
these low energies are quickly absorbed. Characteristic radiation
peaks can be seen in the 50-80 keV range. Based on figure from
[PhysicsOpenLab, 2017].
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generate Bremsstrahlung radiation |[Reed, 2005].

In X-ray radiography, the power of a source is given as a kVp value. kVp
stands for kilovolts peak and is the tube voltage between the anode and cath-
ode. The electron volt (eV) is the unit that describes the energy of the particles.
As electrons are accelerated across the tube, they gain the same energy as the
tube potential, so kVp = keV. As electrons collide with the target, they slow
down, and some of their kinetic energy is converted to X-rays. The electrons
interact with the nuclei within the target, so the energy lost (and emitted X-
ray energy) is dependent on how close the electron is to the nucleus with which
it interacts. If an electron hits a nucleus directly, all its energy is transferred,
so the X-ray produced will have energy equal to the tube potential. However,
it is more likely that the electron will pass near the nucleus, and a lower pro-
portion of its energy will be transferred. A continuous spectrum of energy
is produced. A higher proportion of lower energy X-rays is produced, partly
because electrons are less likely to hit nuclei than to pass by at a distance
and partly because electrons can interact more than once but lose energy with
each interaction. The output spectrum diminishes at particularly low energies.
This is because low energy X-rays are more easily attenuated and hence do not
travel very far through matter [Reed, 2005|. Typically the mean keV will be
about a third of the kVp, but this is dependent on the target material and can
be increased using filters that remove lower energy photons from the beam.
Figure 2.5 shows a typical output spectrum from a tube source. Provided the
tube potential is high enough, characteristic radiation can be produced by a
similar mechanism to the photoelectric absorption described above. In this
case, however, it is an incident electron rather than a photon that frees an

electron from the atom.

In a synchrotron-based system, electrons are accelerated until they are close
to the speed of light travelling around a storage ring. As the beam’s path is
bent, the electrons lose energy in the form of electromagnetic radiation. This
radiation is highly collimated and has a brightness many orders of magnitude
higher than a tube source could produce [Kinney and Nichols, 1992]. The
high flux produced allows for far more subtle variations in absorptivity to be
detected. In addition to this, synchrotron radiation can be tuned to a narrow
energy band using a monochromator which removes artefacts associated with

energy dependent absorption (2.2.2) [Landis and Keane, 2010].
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2.1.2.2. X-ray detectors

Initially, X-ray detectors could not measure incident X-rays directly but by
measuring their interaction products. Early detectors took advantage of the
ability of X-ray radiation to ionize gasses. An array of high pressure xenon
chambers with alternating anodes and cathodes between the chambers will pro-
duce a current when incident X-rays release electrons from the xenon atoms
[Buzug, 2008|. The low probability of photoelectric absorption can be im-
proved by increasing the pressure and the height of the chambers.

Modern detectors either use direct semiconductor systems or indirect scin-
tillator based systems. Direct detectors use photoconductive materials such
as silicon doped with lithium to capture incident X-ray photons and convert
them to electron hole pairs via the photoelectric effect. A bias voltage draws
the electrons and holes to the corresponding electrodes, generating a current
proportional to the intensity of the incident radiation [Chotas et al., 1999].

An indirect detector consists of a scintillator and a photon detector. The
scintillator converts incident X-rays to light that the photon detector can then
measure. The choice of scintillator material is critical since it determines
both the quantum efficiency and the time constant of the conversion process.
To provide a fast fluorescence decay and a high quantum efficiency, ceramic
materials made of rare earth oxides such as gadolinium oxysulphide (Gd20O2S)
are used [Buzug, 2008|.

An anti-scatter collimator grid is often added to the detector to remove
scattered X-ray quanta from the detected beam since these would reduce the
image contrast. This comes at a cost however to the detector fill factor and
the spatial resolution [Carlton and Adler, 2012].

Direct or indirect flat panel detectors can be produced to take advantage of
semiconductor production techniques by forming a matrix of detector elements
on a single substrate. This results in a detector with a high fill factor, good

dynamic range and a linear response [Buzug, 2008|.

2.1.3. Neutron attenuation mechanisms

The extent to which neutrons interact with nuclei of a given isotope is ex-
pressed as a cross-section.
Microscopic cross-sections are defined as the likelihood of a particular inter-

action between an incident neutron and a target nucleus but can be thought
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of as the effective target area a nucleus presents to an incident neutron. The
standard unit for the microscopic cross-section (o) is the barn, which equals
10728 m?.

A macroscopic cross-section (X) can be derived from the microscopic cross-
section and the material density (n) in nuclei per m? by equation 2.2 [Anderson
et al., 2009|.

Y =no (2.2)

The three primary interactions in neutron imaging are elastic (o.) and in-
elastic (0;) scattering and absorption through radioactive capture (o.). Gener-
ally, a neutron scattering reaction occurs when a target nucleus emits a single
neutron after a neutron - nucleus interaction but in an elastic scattering reac-
tion there is no net energy transfer into the nucleus. In an inelastic scattering
reaction some energy from the incident neutron is absorbed to the recoiling
nucleus and the nucleus remains in an excited state. In a radiative capture
reaction, the incident neutron is absorbed and one or more gamma rays are
emitted [Anderson et al., 2009].

The total cross-section is calculated as the sum of the cross-sections for each

type of interaction (eq. 2.3).

0=0c+0;+ 0. (2.3)

Using the total macroscopic cross-section, neutron transmission can be cal-
culated through a sample of depth x using the Lambert-Beer law (eq. 2.1)

with the total macroscopic cross-section as the linear attenuation coefficient.

2.1.4. Neutron imaging systems
2.1.4.1. Neutron sources

The neutron beam required for an imaging instrument is typically produced
either by a reactor source or an accelerator based source. Fach source type will
offer different beam characteristics and facilities generally design instruments
that will take advantage of the particular properties of their source. Nuclear
reactors produce neutrons through the fission process where a nuclear fuel such

as uranium-235 is split into a pair of smaller nuclei and two more neutrons. In a
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typical research reactor, one neutron will be used to continue the chain reaction
and one is available for external use. More modern research reactors such as
FRM-II in Munich [Neuhaus and Petry, 2007] use very compact reactor cores
with very high enrichment which allows for high neutron flux to be available
to the surrounding instruments. It became apparent in the 1990s that further
increasing the power of research reactors to generate higher flux for instruments
would be prohibitively expensive and that future development of higher-flux

sources would use accelerators [Lawler, 1998].

Accelerator based sources can produce neutrons either by accelerating elec-
trons and using the Bremsstrahlung photo-neutron reaction or by using the
spallation process where protons hit a solid target to generate neutrons. Elec-
tron accelerators are comparatively inexpensive to construct, however the large
amount of heat produced with each neutron severely limits the performance ca-
pabilities [Anderson et al., 2009]. Consequently, spallation sources that make
use of higher powered proton accelerators are more common. High energy
protons can create large numbers of “spalled” neutrons from a collision with
heavy nuclei. For example, a 1 GeV proton is capable of producing approxi-
mately 25 neutrons from a lead target, with heat deposition in the target of
about half of the proton beam power [Anderson et al., 2009]. This results in
an order of magnitude less heat to be dissipated when compared to a fission
reaction producing equivalent flux. Most accelerator-based neutron sources
are pulsed. This allows far higher instantaneous power and neutron flux since
the target can cool between pulses given a sufficiently low duty cycle. Further-
more, short-pulse spallation sources allow time-of-flight (TOF) measurements
to take place. In the TOF method, the speed of a neutron is measured by
timing its flight from the source to the detector. This information can be used

to calculate the energy spectrum of the neutrons.

Both accelerators and reactors produce neutrons with higher energy levels
than imaging applications can use effectively. Moderators are used to slow neu-
trons from energies in the MeV range to one electron-volt or lower. Reactors
use moderators that reduce the neutron energy through inelastic scattering.
This requires a material containing light elements, such as HoO or D2O (heavy
water). The moderator may be surrounded by “reflector” materials that will
scatter some fast neutrons back into the moderator. The moderators for an
accelerator based source typically vary more as there are more parameters that

can be varied to optimise the source for particular applications [Anderson et al.,
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2009]. Neutrons need to undergo a number of scattering events before they
reach thermal equilibrium. To maintain the short pulse needed for TOF tech-
niques the moderator needs to be kept small. This means that there will be
some under-moderated neutrons in the beam so most pulsed neutron sources
position the moderators tangentially to the target to minimise the flux of high
energy neutrons and gammas entering the moderator. The moderated beam
will therefore consist of two components: the thermal equilibrium component
and the under-moderated epithermal component. The thermal component has
a Maxwell distribution of energies around the moderator temperature and the
epithermal component is inversely proportional to the energy of the neutrons
which have escaped the moderator before thermalisation |Ikeda and Carpen-
ter, 1985]. The thermal component will increase the pulse width with a long
decay but this can be reduced at the expense of thermal flux by cooling the
moderator to a lower temperature. The pulse width can be further decreased
by decoupling the moderator. A decoupled moderator is surrounded by an
absorbing material, such as cadmium, except on the side where the beam
emerges. This prevents neutrons entering the moderator from the reflector
rather than directly from the target since these neutrons would have taken a
longer path and would therefore increase the pulse width. This does of course

reduce the flux as more neutrons are being removed from the beam.

2.1.4.2. Neutron imaging detectors

Neutron detection relies on the interaction between a neutron’s interaction
with an atomic nuclei. If neutrons have sufficient energy then they may ionise
surrounding material however it is often lower energy neutrons that are of in-
terest for imaging. These must be detected through neutron capture reactions,
which release energy as charged particles or gamma rays. The most common
converters used are helium-3 and lithium-6 since they have large neutron ab-
sorption cross sections and only emit charged particles. Helium-3 detectors
have modest resolution but very low sensitivity to gamma rays. They are
typically used in neutron scattering instruments. Lithium-6 is a very efficient
scintillation converter and is often used in thermal neutron scintillators [van
Eijk et al., 2004].

Some neutron detectors operate in an integration mode, where the individual
neutron events are not distinguished. This can produce a high frame rate

with gating but is not suitable where the time dependence of the signal is
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an important parameter, for example in TOF methods. Detectors that allow
counting rather than integration of neutron events overcome this limitation
and also facilitate binning of measurements. As a result of this, most neutron
instruments use counting detectors [Anderson et al., 2009].

A typical white beam detector setup uses a scintillator screen and a cooled
CCD-camera which is placed perpendicular to the beam with a 45° mirror and
a lens system to focus the light produced by the scintillator onto the camera’s
CCD. This keeps the camera out of the neutron path to avoid radiation dam-
age, at the expense of light collection efficiency. The camera acts as integrating
detector so it is not suitable as a detector for a TOF system. To produce a
counting scintillation detector, a photomultiplier is used to detect the light at
each pixel location. Avalanche photodiodes are a possible alternative but they
produce more noise and are more expensive to produce [Anderson et al., 2009].

Another approach to neutron detection is to use a solid-state semiconductor
system. If charged particles produced by a neutron capture event enter a biased
semiconductor device then a pulse will be generated. The device can then be
connected to fast readout counting electronics. This type of system could
present a number of advantages including small size, low power consumption
and a high data rate. Glass microchannel plates (MCPs) accelerate electrons
through microscopic channels to amplify electronic signals. By doping the
glass channels with an appropriate neutron converter, the device can act as
a neutron detector. These offer very high performance as counting neutron
detectors with excellent spatial and time resolution making them an ideal
choice for TOF applications [Anderson et al., 2009].

2.2. Tomographic imaging techniques

Computed tomography is a technique that expands transmission imaging to
3D by combining information from a series of 2D radiographs recorded as
the sample rotates about a single axis relative to the source and detector.
In systems where rotating the sample is impractical, such as medical scans,
this is achieved by rotating the source and detector around the sample. The
reconstructed 3D volume is represented as a stack of slices, each representing
a plane perpendicular to the axis of rotation.

First, projection images are collected by taking a radiograph at each angle as

the sample rotates through either 180° or 360°. Generally, it can be assumed
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that the attenuation of a beam through a sample along a given path will
be the same in either direction, hence a 180° rotation is sufficient. When
this assumption is not true, for example, if the sample scatters the beam
and multiple scattering interactions bring radiation in and out of a path at
different points, a 360° rotation will generally give a better image as it is
less susceptible to artefacts. The addition of artefact correction processing
can reduce the difference in performance between the 180° and 360° scans
[Apostolopoulos et al., 2008]. To meet Nyquist sampling requirements and
avoid undersampling artefacts the number of projections collected needs to be
at least equal to the with of the detector in pixels multiplied by 27. Where
the sample doesn’t fill the width of the detector number can be reduced by
replacing the width of the detector with the maximum width of the sample
in pixels. This is particularly useful with in neutron imaging where the scan
times are particularly long and with samples that are significantly taller than

they are wide.

Once collected, the projection data must be converted into slices using a
reconstruction algorithm. A range of reconstruction algorithms exist, but the
most common is filtered back projection (FBP), where a discretised version
of the inverse Radon transform is used to reconstruct the volume analytically.
The attenuation measured by each pixel in the detector is assumed to be
constant over the entire ray path through the sample. By summing all the
paths with appropriate rotations corresponding to the projection angles, a 2D
image is formulated from the 1D line integrals. However, this image will be
blurred until a ramp filter is applied to remove low frequencies |[Hsieh et al.,
2009].

Iterative algorithms are more computationally intensive but aim to improve
on filtered back-projection, in particular by reducing noise and streak artefacts.
They fall broadly into two categories: algebraic and statistical methods |Geyer
et al., 2015]. The development of these has been primarily driven by medical
imaging, where the aim is to achieve sufficient image quality while minimising
the patient’s dose. Reconstruction methods that can better handle the noise
and other artefacts associated with shorter scan times support this aim and
have been studied as long as CT has been in use. Despite pre-dating FBP, it is
only as the availability of computational power has grown that these iterative
methods have become viable and gained widespread use, taking over from the
computationally simpler FBP [Willemink and Noél, 2019].
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Iterative reconstruction algorithms use both projection and back-projection
steps to reconstruct the sample then evaluating its projections to minimise the
error between the projections collected and the projections that would be ex-
pected given the reconstructed data. In algebraic methods such as ART (alge-
braic reconstruction technique) [Gordon et al., 1970] and SIRT (simultaneous
iterative reconstruction technique) |Gilbert, 1972], this is done by forming a
system of linear equations to be solved |Penczek, 2010|. Statistical methods
such as maximum likelihood methods assign weights to the data based on the
statistical uncertainty (noise) and often seek to model the physical system to

give better results in the forward projection step [Geyer et al., 2015].

2.2.1. Time-lapse CT and golden ratio acquisition

Time-lapse imaging aims to scan dynamic processes, either with radiography
or tomography, by taking a series of scans of a sample as it changes. Depending
on the speed of the process, there can be challenges in obtaining good quality
tomographies of dynamic processes because reconstruction methods generally
assume that a sample is invariant while all the projections are being scanned
for a single tomography. As a result, artefacts can occur as a sample moves
if the dynamic process is not sufficiently slow compared to the rate at which
scans are completed |Kaestner et al., 2016]. Increasing the acquisition rate
can help reduce artefacts. However, this is at the cost of increased noise and
reduced resolution. Neutron imaging particularly struggles with time-series
imaging as the acquisition times are so much longer. A sample that could be
scanned in under a minute at an X-ray synchrotron beamline would likely take
between four and eight hours to collect an equivalent neutron scan, depending
on the particular beamline parameters and desired image quality.

One technique that can help overcome these limitations is to change the
acquisition sequence for the projections to one that will have a time averag-
ing effect during reconstruction. A range of acquisition schemes have been
proposed and evaluated [Mueller et al., 1997, Guan et al., 1998|, but the most
common alternative to sequential acquisition is to generate angular increments
between projections by the golden ratio. Golden ratio acquisition is a flexible
approach since it provides an infinite series of angles that can be stopped at
any point, and it outperforms other acquisition schemes such as random access
or prime number decomposition [Kohler, 2004]. Using this acquisition scheme

the step size between each projection is defined as the scan arc (360° or 180°)
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multiplied by the golden ratio ¢, giving an angle of approximately 222.5° for a
360° scan. Figure 2.6 shows the first four and the first seventeen projections to
be collected to illustrate the way that the sequence produced by this scheme

produces an infinite sequence of angles.

V5 —1
2

¢ = ~ 0.618

A scan that does not have enough projections will suffer from sampling
artefacts. Using this method, however, a scan can be continued indefinitely.
The number of projections for each volume (and therefore the time interval)
can be selected after the acquisition to create a balance between avoiding
motion artefacts while maximising time resolution and minimising artefacts
due to under-sampling. In this case, iterative reconstruction techniques may
be preferred to FBP since they are less sensitive to under-sampling artefacts

and allow the use of additional regularisation |[Kaestner et al., 2016].

2.2.2. Artefacts

A range of artefacts can be produced in a tomographic imaging system where
physical effects cause the image produced to deviate from the sample it is
meant to capture. These artefacts are detrimental to image quality and can
reduce the accuracy of subsequent measurements taken from the reconstructed
volume. In the following section, the common artefacts that occur in scans

produced for this project are discussed.

2.2.2.1. Ring artefacts

A faulty or non-linear pixel in the detector can lead to a consistent dark
or bright spot in the radiographs. When reconstructed, this will produce a
ring in the affected slice. Ring artefacts can often be reduced or removed
using image processing either before or after reconstruction takes place, often
by identifying and removing consistent lines from the sinograms [Boin and
Haibel, 2006]. Other solutions include sample shuttling, where the sample is
moved slightly within the beam to ensure that the faulty detector pixel does

not maintain a constant position relative to the centre of rotation.
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Figure 2.6.: A diagram showing how golden angle based aquisition progres-
sively fills the scan arc with an infinite series of projections. The
top figure shows the first four angles in the sequence and the bot-
tom figure shows the first seventeen.
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2.2.2.2. Beam hardening

Beam hardening occurs when a polychromatic beam passes through a highly
attenuating sample, and some of the lower energy components of the beam are
lost. This results in a beam of lower overall intensity but higher average energy
leading to two visual artefacts. Firstly, highly attenuating objects appear more
strongly attenuating at their boundaries and less attenuating in their centres.
Secondly, that dark streaks can appear between highly attenuating objects.
Filtering the beam as it leaves the source removes lower energy components
before the beam reaches the sample. This filtering reduces beam hardening
but also the flux, which can harm the signal to noise ratio. The absence
of low energy particles can be detrimental to contrast in weakly attenuating
materials. A range of software methods can also be applied to the scan data
to reduce beam hardening artefacts. These fall broadly into the categories
of linearisation methods and iterative methods [Zhao and Li, 2015]. Another
approach used for beam hardening correction is dual-energy CT. In this case,
the sample is scanned twice with different beam energies, and this information
simulates a monochromatic scan, which would be free from beam hardening
[Boas and Fleischmann, 2012].

2.2.2.3. Scatter

Scattering artefacts occur where a photon or neutron has a scattering interac-
tion with the sample. Instead of passing through the sample or being absorbed,
the photon or neutron changes direction and energy. This can result in it arriv-
ing at a different pixel in the detector. This can manifest as reduced contrast
in the data or streaks, similar to those seen with beam hardening. This can be
addressed either by seeking to prevent scattered radiation from arriving at the
detector or by using software methods to correct for the effects of scattering
[Schorner, 2012]. In the first case, the amount of scattered radiation reaching
the detector can be reduced by increasing the sample to detector distance.
This improvement comes at the cost of both resolution and signal to noise
ratio, however. Another common approach is to place an anti-scatter grid in
front of the detector. This grid prevents off-axis radiation from entering each
pixel of the detector [Kyriakou and Kalender, 2007]. Software approaches aim
to avoid the reduced contrast and signal to noise ratios introduced by the

physical mitigation techniques and instead adjust the data to account for the
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scatter |Zhao et al., 2016]. Some methods use additional measurements taken
with a beam stop array to measure the scatter so that it can be removed [Ning
et al., 2004], while others work purely with the uncorrected image [Zhao et al.,
2016|.

2.2.2.4. Noise

The detection of X-rays or neutrons is a stochastic process, and therefore
susceptible to Poisson noise due to statistical error if the detector count is low.
Whether achieved by increased beam intensity or scan time, a higher count will
improve the signal-to-noise ratio but may not be viable. FBP reconstruction
assumes accurate projection data and fails to take the noise into account.
Iterative reconstruction methods use statistical models to account for the noise

and therefore give better results with noisy data [Boas and Fleischmann, 2012].

2.2.2.5. Starvation

If part of a sample is too highly attenuating for the beam to penetrate, very
little radiation reaches the detector. Depending on the sample geometry, this
may be particular to a subset of angles. The results of this low count at the
detector will be particularly noisy projections |Barrett and Keat, 2004]. Once
reconstructed, this manifests as streaks through the paths of high attenuation.
As a consequence of noise in the image, starvation artefacts are more severe
when FBP is used for reconstruction. However, these artefacts can be reduced
substantially with additional data processing [Mori et al., 2013, Chang et al.,
2014].

2.2.2.6. Undersampling

If the number of projections used for tomography is too low, then this can lead
to aliasing. Typically, this occurs because a larger angular interval is chosen
to minimise the scan time or the sample’s dose [Barrett and Keat, 2004]. As
in the case of noise, this is a problem that FBP is particularly susceptible to,

and iterative methods can provide significant improvements.

2.2.3. Multi-modal imaging

Multi-modal imaging seeks to overcome the weaknesses of an imaging modality

by using a second modality to provide complementary information. Kaestner
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et al. suggest two cases where bimodal imaging is desirable. In the first case,
the sample is static, but some features are difficult to identify due to the low
contrast between the materials — the second case concerns samples with a
dynamic component. One modality can identify the static structure while the

other captures the displacements [Kaestner et al., 2016].

The samples considered in this work combine both these cases as there is
little variation in X-ray attenuation between the water, roots and organic soil
content, but there is also interest in the transport and uptake of water through

the soil and roots, which calls for dynamic studies.

The NEUTRA and ICON instruments at the Paul Scherrer Institut, Switzer-
land, are the first neutron imaging beamlines to install X-ray imaging equip-
ment, allowing complementary X-ray and neutron images to be produced in
situ. without the sample being moved and delays being introduced between
acquisitions using different modalities |[Kaestner et al., 2016]. At NEUTRA,
the X-ray source can be placed in the line of the neutron beam to give a
nearly identical geometry. The same detector can be used for both modalities
with a change of scintillator screen. This configuration removes the need for
registration since the alignment of the two systems is similar [Mannes et al.,
2015]. ICON uses a different arrangement where the X-ray beam crosses the
neutron beam at an angle that can be set between 80° and 135° to minimise
cross talk and shadowing of either modality [Kaestner et al., 2017]. This ar-
rangement is designed to allow simultaneous acquisition of both modalities to
ensure the best possible match between data if the sample can change. In this
case, registration of the two modalities is required, and the data produced so
far suggest that registration cannot be based on common local features. The
available calibration data of the configuration and the common sample posi-
tion between the two modalities means that an accurate initial guess can be
used, so global optimisation strategies have resulted in successful registration
[Kaestner et al., 2017].

The bi-modal nature of these two instruments means that combined X-ray
and neutron imaging is now a standard option at PSI. The combined instal-
lations mean that issues related to the sample being moved between facilities
or time passing between the X-ray and neutron scans are entirely avoided.
Furthermore, registration is either avoided or simplified. The research output
of this facility shows the value of this instrument configuration. Similar in-

strument designs have subsequently been developed at NIST [LaManna et al.,
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2017] and ILL |Tengattini et al., 2020]. These instruments follow a similar pat-
tern of adding an X-ray tube source and detector to an imaging beamline at
a reactor or spallation source and optimising beam geometry, detector choice
and shielding to ensure minimum crosstalk and similar beam geometries for

pixel-wise comparison.

This work evaluates how facilities can achieve similar results by gathering bi-
modal data in separate instruments. Such methods would enable a wide range
of experiments at a more extensive range of facilities that cannot produce
similar bi-modal instrument configurations due to space or cost restrictions
and allow further performance enhancements such as those achieved by using

synchrotron X-ray imaging techniques rather than tube-based sources.

Prototype systems are also being developed to achieve bimodal X-ray and
neutron imaging with low energy electron accelerators rather than research
reactor or spallation neutron sources [Yu et al., 2021]. As discussed in section
2.1.4.1, electron accelerator sources are comparatively inexpensive to construct
but are limited in their performance by the heat produced with each neutron
due to the photo-neutron reaction. They do, however, produce both X-rays
and neutrons from a single source that can be distinguished by a single detector
using time-of-flight techniques which makes them suitable for bimodal imaging
[Yu et al., 2021].

Magnetic resonance imaging (MRI) is another three-dimensional imaging
technique that could be used in conjunction with X-ray or neutron imaging.
Unlike X-ray and neutron imaging, it does not rely on the attenuation of a
penetrating beam but instead applies pulsed magnetic field gradients to the
sample and measures the nuclear spin density in a target region [Carlson,
2006]. In particular, this technique is sensitive to hydrogen (at least in liquid
and gaseous forms), although other nuclei with unpaired nuclear spins can also
be investigated [Carlson, 2006].

MRI is useful for studying plant hydraulics on different length scales within
intact plants [Van As, 2006]. Ferromagnetic and paramagnetic materials in the
soil result in a poor signal to noise ratio for MRI and mean that the technique
is generally limited to carefully selected growth media such as glass beads or
pretreated sand [Moradi et al., 2011]. This means that the experimental design
constraints for MRI require the samples to be prepared in a way that is further
from the natural growth methods of the plants being studied, rendering the

technique less attractive for studies focussing on roots and soil.
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Another modality that could be considered but has been ruled out of this
project’s scope is positron emission tomography (PET). Garbout et al. show
that PET can be used in conjunction with X-ray computed tomography to
visualise and quantify the uptake of carbon. The X-ray data showed the soil
and root structure, and the PET scanner was used to observe carbon uptake,
detecting the radioisotope 'C [Garbout et al., 2012|. In general, the contrast
between materials is somewhat similar using X-ray imaging and PET, so it
is best suited to cases where X-rays observe the static structure and PET

captures the displacements of a dynamic component.

2.3. Root and soil imaging

While the study of roots and soil motivates this project, it is also true that the
main body of this work is focused on developing techniques to better study
plants and soil rather than a direct study into them. With that in mind, a
summary of the necessary background is presented here, followed by an account
of the increasingly sophisticated experiments designed to study plants and soil

through X-ray and neutron imaging.

2.3.1. Soil

Water content and the rate of water movement in soils is dependent on soil
type and structure [Taiz and Zeiger, 2002|. Soils can be categorised by prop-
erties such as soil chemistry and organic content. However, soils are primarily
categorised by their particle size when considering the hydraulic properties,
as shown in table 2.1. In heavily watered soil, the water percolates down by
gravity through the spaces between particles, displacing or trapping air in the
soil. Water may fill the entire channel or act as a film, adhering to the surface
of soil particles. Sandy soils have large spaces or channels between particles,
whereas clay soils typically have much smaller channels. As a result, water
drains quickly through sandy soils, remaining only at the particle surfaces or
interstices between particles. In clay soils, the smaller channels do not al-
low the water to drain so freely, although clay particles may aggregate into
‘crumbs’ with the aid of organic matter, which helps improve soil aeration and
infiltration of water.

The moisture-holding capacity of soils is called the field capacity and is

defined as the water content of the soil after it has been saturated and excess
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Table 2.1.: Soil types as defined by particle diameter, reproduced from |Taiz
and Zeiger, 2002].

] Soil | Particle diameter (um) | Surface arca per gram (m?g™') |
Coarse sand 2000 - 200 <1-10
Fine sand 200 - 20 <1-10
Silt 20 -2 10 - 100
Clay <2 100 - 1000

water has been allowed to drain away. Clay with a high humus content has a
high field capacity and might retain 40% water by volume. In contrast, sandy
soils typically retain 3% water by volume.

Water potential (1), the relative tendency of water to move from one area
to another, is the sum of osmotic potential (1,), hydrostatic potential (1) and
gravitational potential (1)4). In soil or plant cells, the gravitational potential
is typically so negligible that it is not included. Osmotic potential is generally
very low in soils except when the soil contains a substantial concentration of
salts. For wet soils, the hydrostatic potential is close to zero. As the soil
dries out, however, it decreases to give a significant negative pressure. This
is a result of the cohesive and adhesive forces in water that produce capillary

action.

In general, water predominantly moves through soils by a bulk flow driven by
a pressure gradient, although some water movement is contributed by diffusion
of water vapour [Taiz and Zeiger, 2002]. As plants absorb water from the soil,
they deplete the soil of water near the surface of the roots. This depletion
reduces hydrostatic pressure in the water near the root surface and establishes
a pressure gradient in the soil. Water moves through the interconnected pore

spaces by bulk flow down the pressure gradient towards the root surfaces.

The rate of water flow in soils is dependent on two factors: the size of the
pressure gradient in the soil and the hydraulic conductivity of the soil. Soil
hydraulic conductivity measures the ease with which water moves through
the soil and varies with soil type and water content. As the soil’s water con-
tent (and hence the water potential) decreases, air moves into the vacated
soil channels restricting water to the channel’s edges, reducing the hydraulic
conductivity. In arid soils, the water potential may fall below the permanent
wilting point. The permanent wilting point is defined where the potential is so

low that the plants cannot regain the necessary internal hydrostatic pressure
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to maintain necessary physiological processes, even if all the water loss ceases.
Therefore the water potential of the soil is less than or equal to the osmotic
potential of the plant. As a result, the permanent wilting point is not a unique

property of the soil but depends on any plants present.

2.3.2. Roots

Close contact with a high surface area is required for a root to absorb water
from the soil. The growth of root hairs into the soil maximises this area. Root
hairs are extensions of the root epidermal cells (the outermost layer of cells)
that grow in the region of maturation and significantly increase the surface
area of the root. Root hairs make up more than 60% of the surface area of
some roots. Figure 2.7 illustrates the external structure of a root.

Roots grow through cell division in the apical meristem or region of cell
division at the tip of the root. The root cap protects this area. The cells
that make up the root cap detach from the root as it grows and are thought
to modify the surrounding soil conditions to help the plant further [Graham
et al., 2006]. Above the region of cell division is the region of elongation.
Here the cells grow, particularly in the vertical direction, and begin to develop
specialisations. The zone of maturation contains developed cells with their
different roles.

Water enters the root most readily in these young regions, particularly the
root hair zone. More mature regions of the root may have a protective hy-
drophobic layer of tissue called an exodermis or hypodermis that prevents
water from entering [Taiz and Zeiger, 2002].

The close contact between soil and root surface is easily broken when the
soil is disturbed. As a result, newly transported seedlings and plants require
protection from water loss for a few days after transportation. Soon, new
growth re-establishes soil-root contact, and the plant can better withstand
water stress.

The root cap secrets a gel called mucilage or mucigel, which surrounds the
root tip. This mucilage lubricates the root, helping it to move through the soil.
It also helps control the rhizosphere (the immediate environment surrounding
a root) by preventing the roots from drying, protecting the root from toxic
substances and enhancing the absorption of water and minerals [Kutschera-
Mitter et al., 1998, Graham et al., 2006].
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Figure 2.7.: The external structure of a root.
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2.3.3. Plant root and soil imaging
2.3.3.1. X-ray

The development of high-resolution synchrotron imaging has allowed detailed
and accurate modelling of roots at ever-decreasing scales. In 2013, Keyes et al.
demonstrated that individual root hairs could be seen and used for image-based
modelling [Keyes et al., 2013|. Following this, the application of time-resolved
imaging allowed Keyes to observe the growth of a root over a day with one
hour time steps. Digital volume correlation could observe the full-field soil
deformation to give more information [Keyes et al., 2016]. In this work, Keyes
also observed that X-ray imaging might not suit all potential applications and
called for similar investigations using neutron imaging in conjunction with
X-rays.

Koebernick et al. imaged two genotypes of Barley (with and without roots
hairs) and was able to observe differences in the rhizosphere pore structures
[Koebernick et al., 2017]. Helliwell et al. investigated the interactions between
soil texture, bulk density and plant species and their impact on root growth and
soil densification using X-ray CT [Helliwell et al., 2019]. Each of these studies
shows the use of X-ray tomography to study soil and root structure. In studies
that use X-rays as the sole imaging modality but seek to investigate hydraulic
properties, however, it remains common to use other methods in conjunction
with imaging that depend on the destructive extraction of roots; as in Rabbi
et al.’s investigation into the way plant roots redesign the rhizosphere to alter
its structure and consequently its water dynamics [Rabbi et al., 2018].

Li and Tang’s investigation probed the ability of high-resolution synchrotron
X-ray imaging to segment water from unsaturated, compacted soil samples [Li
and Tang, 2019]. They showed that they could achieve good water character-
isation with glass beads or natural sand by using contrast media to enhance
the air-water contrast (fig. 2.8). Using clay, however, aggregates formed, and
in this case, it remains impossible to observe the thin water films and bridges

between particles.

2.3.3.2. Neutron

In 2007, Menon et al. demonstrated that neutron radiography could be used
to study plant roots. To ensure that the samples were thin enough to allow

neutron penetration, the plants were grown in rhizoboxes. Some of the plants
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Figure 2.8.: An example slice from [Li and Tang, 2019| showing the contrast
between sand, air and water in a high-resolution synchrotron im-
age.

were grown in sand, while others were grown in soil. Menon observed that the
plants grew better in the soil, but the sand offered better contrast with the
roots for imaging. It was also shown that a reduction in root growth could be
observed where the soil was contaminated by boron and zinc [Menon et al.,
2007].

Although there is evidence to show that water can be identified in some
X-ray images [Li and Tang, 2019], the requirements this adds to the experi-
mental design are stringent and not typically compatible with scanning a root
system in situ. Water has a far greater attenuation coefficient for neutrons
which allows for better image contrast. Matsushima et al. took advantage of
this to demonstrate that water flow velocity can be estimated in plants using
cold neutron imaging. A radiograph was produced every minute to track the
progress of water through the plant. Pulses of D2O provided contrast with the
water since they allow better neutron penetration. As a result of the changes
in attenuation, the pulses could be traced, and their velocity estimated [Mat-
sushima et al., 2009].

Neutron tomography offers a three-dimensional visualisation of a sample and
can be used to show soil water content around root systems. This technique
was used by Moradi to show an increase in water content towards root surfaces

and therefore suggest that roots may modify the hydraulic properties of soil
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to improve uptake in dry conditions. This work demonstrated the advantages
of tomography over radiography for the study of roots and soil, claiming to
set new benchmarks for spatial resolution and quantification of water content
distribution [Moradi et al., 2011|. Slices from one of the scans are shown in
figure 2.9.

Subsequent experiments show that neutron imaging and its ability to map
water are well suited to the study of water transport within plants and soil.
For example, Defraeye et al. attempted to use neutron imaging to produce
quantitative water measurements of leaf water flow and transpiration in real-
time. It was shown that differences in water content and distribution could
be quantified, but dehydrated scans would be needed to give absolute mea-
surements as the dry leaf matter contribution could not be corrected without
them [Defraeye et al., 2014].

Zarebanadkouki et al. applied similar methods to quantify the flux of water
within roots by tracing pulses of DO through the soil and separate roots. The
development of new methods for these experiments led to new information
about the root behaviour, for example, that water uptake is not uniform along
aroot |Zarebanadkouki et al., 2013|, and informed more accurate mathematical

models of water transport within root systems |Zarebanadkouki et al., 2014].

Initially, this type of dynamic experiment was only conducted using neu-
tron radiography as tomography was considered too slow [Warren et al., 2013].
The techniques were subsequently expanded into 3D as high-speed neutron to-
mography techniques were developed, offering a temporal resolution of three
minutes. This increased speed came primarily through the use of on-the-fly
tomography, which, while well established for X-rays, had not been utilised in
neutron tomography beyond exploratory trials [Dierick et al., 2005| due to its
high flux requirements and low spatial resolution. Zarebanadkouki et al. dis-
covered that this technique offered sufficient accuracy to quantify the changes
of DO across the root tissue and concluded that fast neutron tomography
was a critical technique that would allow studies to uncover more information
to better model water transport properties across root tissue [Zarebanadkouki
et al., 2015].

Totzke et al. subsequently managed to reduce neutron tomography acquisi-
tion times to 10 s, demonstrating that the resulting motion blur and reductions
to contrast and signal to noise ratio do not produce a sufficient decrease in

image quality to prevent the roots being segmented and pulses of deuterated
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Figure 2.9.: A tomogram of a 12 day old chickpea plant grown in a cylinder of
sandy soil and presented in [Moradi et al., 2011]. Sub-figures b, ¢
and d show slices at depths of 4, 6 and 8 cm respectively.
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160 s

Figure 2.10.: Time resolved neutron tomography of a lupin root system after
the injection of 4 ml of deuterated water (D20O) from the bottom.
Reproduced from |Totzke et al., 2017].

water being traced through the system [Totzke et al., 2017]. The accelerated
acquisition time is achieved by reducing the exposure time per projection as
the sample is continuously rotated. Several experimental factors were consid-
ered to ensure the best possible image quality while maintaining this speed.
Perhaps most significantly, this experiment was conducted at the CONRAD-2
beamline of the BER II research reactor |[Kardjilov et al., 2016, which has a
neutron flux at the sample position approximately two orders of magnitude
greater than that achieved at PSI in [Zarebanadkouki et al., 2015|. Further-
more, the neutron flux was enhanced by adjusting the pinhole to allow for a
high flux neutron beam, even at the cost of resolution. In addition to this,
pixel binning was applied to the data to enhance the signal to noise ratio,
again at the cost of resolution. Throughout the work, the trade-offs between
speed/high flux and resolution were fine-tuned to ensure the resolution was
sufficient to capture the features of interest to the study and no more. This
work demonstrates the experimental capabilities to allow water dynamics to

be imaged in time-resolved 3D at a far higher temporal resolution (fig. 2.10).
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2.3.3.3. Correlative

Despite the progress being made in crop science with both X-ray and neutron
imaging, there has not yet been a significant uptake of correlative methods.
Where multi-modal imaging with X-rays and neutrons was discussed in section
2.2.3, some of the studies cited did investigate this area with roots or soil as an
explicit application, but these can essentially be considered proof-of-concept
experiments where the main focus of the work is on the new technique rather
than on the crop science results. A recent investigation by Mawodza et al.
shows that interest in these methods remains high, but the complexities as-
sociated with multi-modal imaging can lead investigators to conduct separate
X-ray and neutron imaging experiments within a study rather than attempt-
ing to correlate them [Mawodza et al., 2021]. This illustrates the need for a
greater understanding of the benefits and challenges of multi-modal imaging
and standard methodologies and tools to simplify the design of these experi-

ments.
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3. Distribution of fiducial markers
to optimise the registration of
multi-modal CT data

3.1. Introduction

Image registration is the process of putting two images of the same thing into
spatial alignment. In general, this could mean combining images taken at
different times or from different viewpoints, but in multi-modal analysis, this
means integrating images of the same sample from different sources. Regis-
tration techniques aim to compensate for differences in machine factors such
as resolution and orientation, image factors such as translation, rotation or
scaling and object factors if the sample can change between images |Cosman,
2012].

Typical image registration frameworks consist of a method for extracting
information to be matched between the reference and target images, a class of
transformations capable of aligning the images, a search strategy for selecting
transformations to test and a similarity metric to determine the accuracy of a
given transformation.

To align CT volume data, we require a class of transforms that allows ro-
tation, scaling, and transformation while preserving the shapes - the lines,
angles, and relative distances - present in the data. A rigid body transform
will strictly preserve the shape but will not allow scaling. An affine transform
is more general and will allow all the fundamental transformations we require
(translation, rotation and scale); however, it also allows shear, which can dis-
tort shapes in the data. In our case, therefore, we shall ensure that there is
no shear component included in the transform.

The affine transformation can be represented as a matrix multiplication of
a point represented by a vector. Each transform, such as scale or rotate,

can be represented as a matrix, and matrix multiplication can combine these
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individual steps to give an overall affine transformation. This representation
requires all the transforms to be linear. Translation, however, is not a linear
transform. To overcome this, we must define the problem using homogeneous
coordinates, which add one to the dimensions of the matrix [House and Keyser,
2016]. The following matrices represent the fundamental affine transformations
in 3D:

01 0 A 0
Translate : Y Scale - Sy
0 00 1 0 0 1
1 hxy hxz 0
h 1 hy O
Shear : yr yz

hzx hzy 1 0

0o 0 0 1
Rotation about x axis : 0 costy —sinf, 0
0 sinf, cosf, O
0 0 0 1
cosy 0 —sinf, 0
0 1 0 0

Rotation about y azis :

sinf, 0 cosf, O
0 0 0 1
cosf, —sinf, 0 0
Rotation about z axis : sinf, «cosf. 0 0
0 0 10
0 0 0 1

Having settled upon a class of transforms to be used, the question of how to

extract information from the target and reference volumes must be addressed.
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The similarity metric should, in turn, be easily derived from this. Although
some cases of combined X-ray and neutron imaging have successfully used
mutual information in the sample to achieve registration [Kim et al., 2015,
in general, it has been shown that, due to the complementary nature of the
modalities, there is no guarantee that there will be similar local features in
corresponding datasets (particularly with multiphase images) and it is, there-
fore, difficult to find a good registration solution based on common features
within a sample [Kaestner et al., 2017]. To overcome this difficulty, fiducial
markers can be attached to a sample to aid in registration. A fiducial marker
is an object placed within an image to provide guaranteed mutual informa-
tion and therefore be used as a point of reference. To register volumes using
fiducial markers, at least three fiducial points must be selected in both the
reference and target images so that the registration parameters can be found
and a suitable transform applied.

Inevitably, there will be error in the registration process. The majority of the
existing literature examining this has been produced by the medical imaging
community where the primary registration challenge is to compare subsequent
scans of the same patient and look for changes. Maurer et al. defined three
types of error that can occur when using fiducial points for registration [Maurer
et al., 1997]:

e Fiducial localisation error (FLE): the average error in locating the posi-
tion of the fiducial points (Fig. 3.1A).

e Fiducial registration error (FRE): the root mean square (RMS) error

between corresponding fiducial points after registration (Fig. 3.1B).

e Target registration error (TRE): the error between corresponding points

other than the fiducial points after registration (Fig. 3.1C).
Fitzpatrick and West built on these definitions by providing expressions for
the expected FRE and TRE errors in terms of the expected FLE and the set

of fiducial points used, where N is the number of points (Egs. 3.1 and 3.2)
[Fitzpatrick et al., 1998].

B {FRE?} ~ (1 - %)E {FLE?} (3.1)
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Figure 3.1.: Diagrams showing the three types of registration errors: fiducial
localisation error (FLE), fiducial registration error (FRE) and tar-
get registration error (TRE). Based on Figure 1 of [West et al.,

2001].
2 3 52
E{TREQ(T)} ~ E{FNLE}(H;ZS%) (3.2)
k=1
TREy(r) = —— (14 % i i (3.3)
N -2 3= f;

From this expression, Wang and Song derive an equation (Eq. 3.3) to relate
TRE to a particular distribution of markers independently of FLE or FRE.
This is achieved by using Eq. 3.1 to substitute FRE for FLE before setting
FRE to 1. They propose a deterministic optimisation method for determining
the quantity and layout of markers to minimise TRE at a point of interest r
[Wang and Song, 2009|. The distance from r to each axis is denoted as dj, ,
where k = (1, 2, 3) and f, is the RMS distance of all fiducial points to the kth

coordinate axis.

3.2. Simulation

To determine the best configuration of fiducial markers before imaging the
samples, a simulation was carried out based on the method presented by Wang
and Song [Wang and Song, 2009]. The method was adapted to the case where
the sample is cylindrical, and the registration is to be optimised over the whole
volume of the sample rather than at a single point of interest.

TRE(r) is a dimensionless quantity that relates the expectation value of
TRE to that of FRE at a point, r, for a given set of markers M. Potential

marker locations were given by a grid of points on the surface of the cylinder
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Figure 3.2.: Potential marker locations for the simulation to test.

and these are shown in figure 3.2. By evaluating TRE),(r) for a set of points
evenly distributed throughout the volume and taking the RMS value, an esti-
mate of the TRE); value is calculated for the whole volume. This means that
TRE); gives a measure of how well two volumes can be registered with a set
of markers M independently of the FLE and FRE. The set of points used is
illustrated in figure 3.3.

Markers are added to the simulation one by one, minimising the TRE s
each time until the desired number of markers is reached. Each time a marker
is to be added, the T RE); value is calculated for each of the available marker
positions in addition to the existing markers from previous steps. The marker
at the position which gives the lowest TRFE); is added to the set. Once the
desired number of markers is reached, the marker with the highest contribution
is repositioned to reduce TRFE);. This step is repeated until the repositioned

marker still gives the largest contribution to TRFE});.

The simulation requires the first two points to be provided so that the
algorithm can begin to run with the third marker. To ensure that the initial
positions of these first two markers do not affect the result, all possible unique
combinations (excluding rotationally symmetric equivalents) are tested. The

code listing can be seen in section A.1.

The simulation was run for N = 4,...,16, where N is the number of fiducial
markers, to establish how many fiducial points should be used and how they

should be distributed about the sample. Figure 3.4 shows how the value of
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througout the volume and give an estimate of TRFE),.
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Figure 3.4.: The change in target registration error as the number of fiducial
points is increased.
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TRE), falls as the number of fiducial markers is increased. The significance
of each marker to the accuracy of the registration (Cfim) also falls quickly
as N is increased, as shown in figure 3.5. This was calculated by taking the
RMS average of the change in T RE; when each marker is removed from M.
This trend confirms that for a larger number of markers, each marker is less
significant, so less error is introduced if a marker cannot be accurately located

or used for the registration.

Figure 3.6 shows the optimal distributions found by the simulation for N =
10,16. A number of trends can be observed from the distributions of markers
for different values of N and applied to the general distribution of fiducial

markers around a cylinder.

The first clear pattern is that the markers are distributed evenly between
the very top and the very bottom of the sample — maximising the distance
between the markers and the centre of the volume. This is a simple principle
to apply when attaching markers to the sample and also has practical benefits
for the imaging process because it means that the markers can be placed higher
and lower than the soil in the sample tube. This means that areas of photon

or neutron starvation, that could produce artefacts in the reconstructed data
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due to the markers, can be located away from the region of interest as the soil

sample will not fill the very top and bottom of the sample tube.

Another clear pattern is that the markers are placed on a 180° arc at the
top and another corresponding arc at the bottom rather than, say, alternating
between the top and bottom of the cylinder. The markers are also evenly dis-
tributed around the cylinder, ensuring that the centroid of the fiducial points

is close to the centre of the sample.

Following these results from the optimisation algorithm, some distributions
were chosen to explore these patterns further. By evaluating distributions
with an even - but alternating - distribution of markers between the top and
bottom, it was found that this generates very similar results. When compared
to arcs at the top and bottom, with the same positions in X and Y, the results
were equal to 2 significant figures. The minor variations at greater precision
did not conclusively show either arrangement to be consistently better than
the other for all values of N. It seems reasonable that the simulation gives
arcs because it begins optimising with a small number of markers and adds
optimised markers iteratively up to the required total rather than starting with

N markers and attempting to redistribute them all.

The optimal arrangements found by the simulation were compared to ran-
dom arrangements to see how significant the differences were. One million
five hundred thousand unique, random arrangements were evaluated for each
value of N. Figure 3.7 shows the minimum, mean and maximum values from
these tests as well as the optimal values (as seen in Figure 3.4). Figure 3.7a
shows that a poor arrangement can increase the error by as much as an order
of magnitude when very few markers are used. With higher numbers of mark-
ers, it becomes clear that the variation between good and bad arrangements
becomes insignificant. Figure 3.7b shows the same data in the range where
N varies between 12 and 16. It can be seen that the optimal solutions found
by the simulation are better than any of the values found in the 1.5 million
random arrangements but not by a significant amount. On average, a ran-
dom distribution of N 4+ 1 markers will give better results than the optimal
distribution of N markers.

Equation 3.2 states that the expectation of target registration error squared
will be proportional to the expectation of the FRE, the number of markers
and the distribution of the markers. The simulation results show that with
only four markers, the TRE can be reduced to half of the FRE and that it
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3.3. Materials and methods

can be reduced to less than a tenth of the FRE by using more than twelve
points. Using a high number of markers makes a clear improvement to the
result and also allows for the potential loss of a point without seeing a large

drop in accuracy.

3.3. Materials and methods

3.3.1. X-ray and neutron imaging equipment
3.3.1.1. IMAT

This project is a pathfinder application for the new IMAT instrument at ISIS
Neutron and Muon Source. IMAT is a combined cold neutron imaging and
diffraction instrument designed to take advantage of the second ISIS target
station to provide neutron radiography, neutron tomography, time-of-flight
neutron imaging and spatially resolved diffraction scans [Kockelmann et al.,
2013]. Construction of the imaging portion of the instrument was completed
in 2016, and since then, IMAT has been running its imaging configuration,
with the diffration system due to be completed in 2022 [Burca et al., 2018|.
Figure 3.8 shows a high-level schematic of the instrument.

ISIS TS-2 is a short-pulse source that operates at 40 kW and delivers pulses
at arate of 10 Hz. IMAT uses a cold (18 K), coupled liquid hydrogen moderator
to slow the neutrons. A straight super-mirror neutron guide transports the
neutrons from the target to the experimental area. Three choppers are placed
within the guide to filter the beam. A TO chopper removes fast neutrons and
gamma radiation, then a pair of double-disk choppers define the wavelength
band to ensure there is no frame overlap between successive neutron pulses.
At the end of the guide is a pinhole selector that allows the aperture diameter
(D) to be varied between five values to define different L/D ratios where L
(the distance from the aperture to the sample) is 10 m [Burca et al., 2013|.
This results in a total flight path of 56 m to the sample. Between the aperture
and the sample, the beam travels through a 9 m evacuated flight tube and is
shaped by five sets of jaws [Kockelmann et al., 2015|. The sample position has
a combined translation and partial rotation system that is rated for up to 1.5
tonnes with a tomography stage for full rotation mounted on top.

IMAT has three detectors that can be changed depending on the application.
An MCP camera with a 28 x 28 mm? field of view and a 55 pm pixel size that
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Figure 3.8.: A high-level IMAT imaging system schematic.

is used for TOF measurements [Tremsin et al., 2013]. An optical camera box
with a field of view varying between 50 x 50 mmZand 200 x 200 mm? with a
Zyla sCMOS 4.2 Plus camera which acts as an integrating detector with a
range of scintillators [Finocchiaro et al., 2013|. The final detector is an active
pixel sensor using the PImMS-2 CMOS with a 27.7 x 27.7mm? field of view
and a 70 pm pixel size which can also be used for TOF applications [Pooley
et al., 2017]. In this work, the optical camera was used exclusively except for

a few test scans.

3.3.1.2. p-VIS HMX

The p-VIS X-ray imaging centre at the University of Southampton is a dedi-
cated centre for X-ray Computed Tomography with a suite of seven scanning
systems. Their modified Nikon/X-Tek HMX (225 kVp) |u-VIS, 2018] was used
to produce the X-ray data for this experiment. This is a customised, general-
purpose X-ray CT and radiographic inspection system. It can take samples
up to 300 mm in height, although this is reduced to approximately 150 mm
if the robotic sample exchanger is used. The 225 kVp X-ray source can be
configured for high resolution or high flux by using different anodes and uses
a PerkinElmer PE1621 flat panel detector to capture the image. The detector
is made up of a 2000 x 2000 matrix of amorphous silicon pixels with discrete

gadolinium oxysulphide scintillators [PerkinElmer, 2008].

3.3.2. Cadmium imaging and registration experiment

A set of samples were imaged using both X-ray and neutron tomography and

then registered to test the proposed registration scheme and demonstrate the
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complementarity of the two modalities for further studies.

Cadmium was proposed as a suitable material for fiducial markers because
it has a large attenuation coefficient for both neutrons and X-rays, allowing
easy segmentation in either modality. An initial X-ray scan, to confirm the
suitability of the sample tube and markers, showed that the cadmium produced
significant artefacts, primarily due to beam hardening and scattering. It was
decided that the artefacts could be reduced to a satisfactory level provided the
marker size was minimised and there were sufficient variations in the height
of the markers to avoid streaking between two markers in a slice. Smaller
cadmium pieces were cut with a maximum thickness of 1 mm, and a new

sample tube was scanned to ensure these changes were sufficient.

Once the sample tube and marker configuration were shown to be suitable
for imaging, a set of plants were grown and imaged using both IMAT and the
HMX to produce a set of complementary volumes that could be used to develop
and test registration techniques. Twenty lupin seeds were placed in wet paper
towels to germinate. After six days, eight seeds that had begun to sprout were
selected and transferred to the sample tubes. This experiment introduced new
sample tubes made from boron-free quartz with an inner diameter of 14 mm
and a wall thickness of 1.5 mm. Each tube had a single fibreglass wick to draw
water for the plant. The wick was surrounded by 1 tsp of sand with particle
sizes between 1.18 and 0.6 mm. Soil sieved to the same particle size range
was then used to fill the tube, covering the seed around 20 mm from the top.
The soil used in this experiment was a sand-textured eutric cambisol collected
from a surface plot at Abergwyngregyn, North Wales (53014'N, 4001’W).

Each sample had a different quantity or arrangement of fiducial markers,
as listed in Table 3.1. Figure 3.9 shows a diagram of three of these marker
arrangements. Four of the sample tubes are then shown in figure 3.10. These
marker distributions were selected to allow the simulation results to be com-
pared to measured data. The samples were left to grow for 5 days before the
scans began. The neutron scans were conducted first over two days, and the
X-ray scans were collected over the following two days.

The neutron scans were conducted using the optical camera with a 135 mm
lens, and this gave a field of view of 60 x 60 mm. A 60 wm ZnS/LiF scintillator
with a surface area of 90 x 90 mm was used. The beam was shaped using
the 40 mm pinhole, and the jaws were set from 40 mm to 70 mm to match

the beam profile to the field of view as closely as can be achieved without
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Table 3.1.: The fiducial marker arrangements.

FRE measurements and

TRE)values for each of the sample tubes that were scanned, as
well as their products which are taken as an indicator of TRE. A
representative selection of these are illustrated by a diagram in fig-
ure 3.9 and a photo of some of the prepared sample tubes is shown

in figure 3.10.

Sample Fiducial arrangement FRE TREy) TRE (FRE x
TREy)

1 5 markers in a vertical line 2.66 0.33 0.89

3 6 markers in arcs at the top and 6.49 0.25 1.62
bottom of the FoV

4 8 markers in arcs at the top and 2.03 0.17 0.34
bottom of the FoV

5 10 markers in arcs at the top and 11.02 0.13 1.38
bottom of the FoV

7 9 markers in arcs at the top, 4.33 0.14 0.62

middle and bottom of the FoV
8 9 markers in arcs at the top, 2.85 0.14 0.41

middle and bottom of the FoV

Figure 3.9.: Diagram illustrating the intended marker layouts for samples 1, 5

and 7.
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Figure 3.10.: Four quartz sample tubes with cadmium fiducial markers at-
tached by aluminium tape. The green and white tape marks
the bottom of the 60 mm IMAT field of view to aid in sample
alignment. From left to right, the marker configurations are 1,
3,5, 7.

introducing artefacts. The samples were positioned 15 mm from the detector,
and 964 projections were taken with an exposure time of 30 s per projection.
The projections were reconstructed with a voxel size of 31 wm, using the
filtered back-projection algorithm in Octopus Reconstruction versions 8.9.3.4
and 8.9.4.2 [Dierick et al., 2004]. The X-ray scans were conducted in the HMX
at 80 kVp and 87 pA. A total of 1571 projections were taken with four frames
and a 500 ms exposure time. The projections were reconstructed using Nikon
CT Pro 3D version 2.2.5386.22184 giving a voxel size of 19 pm.

Once the scans were reconstructed, registration was attempted by segment-
ing the cadmium pieces and taking their centres as fiducial points, before
finding and applying the affine transform to best match these points. The cad-
mium centres were located using a threshold segmentation in conjunction with
Fiji’s 3D Objects Counter |Schindelin et al., 2012]. An affine transform can
be determined to match the two point sets. This is achieved by removing the
translation and scaling differences by finding the difference between the cen-
troids of the two points sets and the root-mean-square deviations of the points

from their respective centroids. The rotation component is then determined
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Figure 3.11.: A slice and partial volume render from the neutron scan of sample
7.

using Horn’s algorithm [Horn, 1987]. This gives a closed-form least-squares
solution using unit quarternions to represent rotation. The unit quarternion
representing the best rotation can be found as the eigenvector associated with
the most positive eigenvalue of a symmetric 4 x 4 matrix composed from the
point sets. After the transform was applied, the volumes were then cropped to
matching dimensions. In order not to discard the higher resolution data in the
X-ray scan, the neutron scan was considered the target volume. As a result,
it was scaled up and re-sampled at a higher resolution than IMAT could have

achieved to match the resolution of the X-ray data.

3.4. Results

Figures 3.11 and 3.12 show example slices and volumes from the reconstructed
data collected using neutron and X-ray imaging, respectively.

Following the registration process, the fiducial markers were then re-segmented
in each modality and the new positions compared to give the FRE for each
sample. This is assumed to be a reasonable indicator of registration accuracy
in the case of an affine transform. The FRE values are shown in Table 3.1.
The mean FRE of sample 5 was so much higher than that of the other sam-
ples due to one marker, which was misaligned by 18.5 voxels. The mean FRE

without taking that marker into account is only 4.5, which is far closer to the
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Figure 3.12.: A slice and partial volume render from the X-ray scan of sample
8.

typical FRE values produced by the other samples. This error was introduced
as a result of a large FLE for this marker in the X-ray data due to an artefact.
Figure 3.13 shows how the threshold segmentation detects an area far greater
than that of the cadmium piece due to the artefacts surrounding it. This in-
crease in the volume of the segmented marker pulls the measured centre away
from the true value, and perhaps more importantly, away from the position

found in the complementary modality to which it is to be matched.

Figure 3.14 shows a slice from sample 8 after registration. In addition to
the combined data, each modality is shown separately. The side by side and
overlaid comparison clearly shows the differences in contrast and signal to noise
ratio between the two modalities but also the accuracy of the registration —
particularly when observing the aluminium tape around the outside of the
tube. This image also allows the complementarity to be seen clearly. Not
only does the neutron data show the plant root with greater contrast than the
X-ray data but it shows some of the soil particles that appear in the X-ray
data while omitting others. This means that the combined data can be used
to infer information about the different materials making up soil particles that

could not be distinguished using X-rays alone.
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Figure 3.13.: Sample 5 had the worst registration accuracy despite having the
most fiducial markers. This figure shows how an artefact prevents
accurate segmentation (segmentation shown in red) of a cadmium
piece, creating a large FLE for the corresponding fiducial marker.

3.5. Discussion and conclusions

The data collected in this experiment demonstrates the suitability of X-ray and
neutron tomography for multi-modal studies, particularly of plant-soil systems.
It has been shown that fiducial markers used in conjunction with a registration
algorithm allow the data from the two modalities to be registered accurately,
overcoming a lack of clear mutual information in the sample. It has also been
demonstrated that more information can be taken by combining techniques
than could be collected from either technique in isolation. The general target
for “sufficient registration accuracy” is to be registered well enough for voxel-
wise comparisons. This requires the volumes to be registered to the nearest
voxel. This corresponds to a TRE value less than or equal to 0.5 which was
achieved for a third of the samples in this experiment.

There is no correlation in these results between the FRE of the samples and
the number and distribution of fiducial markers used. For example, sample 1
has the second-lowest FRE but had the worst set of fiducial markers because it
had the fewest markers, and their arrangement was close to co-linear. Sample
5 had the greatest number of markers and therefore had the best set of fiducial
points, but it showed the worst FRE of all the samples. The product of the
FRE and TRE)s values (Table 3.1) gives an estimate for the TRE for each
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Figure 3.14.: A slice from sample 8 with the X-ray data on the left and in red
and the neutron data on the right and in green. This slice shows
the match of a fiducial marker, the accuracy of the registration
and the complementarity of the modalities.
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sample. The variation in FRE is far more significant in this calculation than
that of T RE)s, which shows that accurately imaging and locating the markers
is more important to the overall registration accuracy than having the markers
ideally distributed. As was suggested in the previous section, the registration
of some samples could be improved by deliberately ignoring markers with high
FLE from the registration process as the error they introduce exceeds the
benefit of having an additional marker.

The higher FRE of sample 5 indicates that artefacts in the scans which affect
the segmentation of the fiducial markers are the most significant source of error
in registration (fig. 3.13). Cadmium’s high attenuation introduces artefacts,
and these have been shown to reduce the registration accuracy such that the
effect of marker arrangement could not be tested in detail. This suggests that
although it can be used as a fiducial marker material, it is not ideal. A material
that would attenuate both X-rays and neutrons less would result in reduced
artefacts, leading to better scan data and more accurate registration because
large FLE values as a result of image artefacts are the primary contributor to
FRE in the registered data.

In response to these results, further studies were planned to test the suit-
ability of other materials, such as borosilicate as fiducial markers. Movement
and other changes in the samples can be observed in the registered results due
to the time and travel between the two scans of each sample. In particular,
the seedlings begin to droop, and the top layers of soil can move considerably
between the two scans. This is addressed in subsequent studies by booking
equipment to conduct both scans at the same site with minimal delays be-
tween them. Furthermore, these studies integrate synchrotron X-ray imaging
which will improve the resolution of the data and allow more complex imaging

techniques to be introduced.
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4. Borosilicate as a fiducial marker
material and a sphere fitting

algorithm for fiducial localisation

4.1. Introduction

The previous chapter showed that fiducial markers could be used to facilitate
the registration of multi-modal CT datasets. Investigations were carried out
to measure how the quantity and distribution of markers could affect the reg-
istration accuracy. Although registration was completed for six pairs of CT
image data and principles for determining the distribution of markers were de-
termined, it became apparent that the marker localisation could be a far more
significant source of registration error, particularly given an unsuitable marker
material; in this case cadmium. Cadmium was initially selected because it was
highly attenuating to both X-rays and neutrons, which should allow for easy
segmentation using a threshold as it would be the most highly attenuating
substance in the sample. In practice, it was found that the cadmium pieces
were so highly attenuating that significant artefacts were introduced, masking
the shape of the cadmium pieces and so contributing significant fiducial local-
isation error (FLE) to the registration. Furthermore, cadmium is highly toxic
and so machining it to produce small pieces was ruled out as prohibitively
complex or expensive to do safely.

With this in mind, a more thorough investigation of potential marker mate-
rials was completed, and borosilicate markers were chosen to be used for the
next experiment. This experiment was conducted using the 112 beamline at
Diamond Light Source for high-energy X-ray imaging to complement the neu-
tron imaging data collected at IMAT (as in the previous experiment). 112 gave
some significant advantages over the HMX used in the previous experiment,
particularly much faster scan times and being on the same site as IMAT so

that samples did not have to travel significant distances between scans. Re-
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ducing the delay between the scans helps to minimise changes in the samples
due to plant growth or water uptake. The reduced travel also minimises the
exposure of the samples to shaking, which could alter the distribution and
packing of the sand or soil particles. While the decrease in attenuation com-
pared to cadmium did successfully remove the negative impact of cadmium on
image quality, it presented a more challenging segmentation task for fiducial
localisation as the markers no longer stand out as the most highly attenuating
material in the samples. As a result, new image processing routines had to be

developed for the registration to be completed.

4.2. Materials and methods

4.2.1. Materials survey

A range of materials was initially considered as alternatives to cadmium for
producing fiducial markers. The main properties to evaluate are the atten-
uation of both neutrons and X-rays at relevant energies, the strength of the
attenuation and the mechanism of attenuation (absorption being preferable to
scattering). High attenuation remained a desirable property, although not so
high as cadmium to avoid artefacts. Other factors considered were the material
cost, hazards of handling the materials and the ease of obtaining or producing
suitable quantities and shapes for markers.

Table 4.1 lists transmission values calculated for a range of elements and
compounds considered when evaluating marker material options. For this
simulation, the neutron wavelength was taken to be 2.6 A since this is close to
the peak flux wavelength of IMAT. For the X-ray values, 0.07 MeV is used as an
approximation to the effective energy of the I12 beamline, although the precise
value would depend on the particular filters used. The transmission values
are calculated as the proportion of the incident beam that passes through the
sample without being absorbed or scattered. The simulation uses the formulas
given in 2.1 with X-ray mass absorption coefficients from the NIST standard
reference database [Hubbell and Seltzer, 2004] and neutron scattering data
from the Periodictable python package [Kienzie, 2020].

Boron and cadmium stand out clearly in the table as the strongest neutron
attenuators with absorption approximately thirty times greater than the next
most attenuating (cobalt) and no transmission expected. This simulation as-

sumes a single energy level close to the peak. The energy spectrum produced
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Table 4.1.:

4.2. Materials and methods

Neutron and X-ray transmission values for a range of materials
that were considered for markers. All the transmission values were
based on a 1 mm path length. Only transmission is calculated
for borosilicate because it is a mixture not a single element or
compound.

Material ~ Neutron Neutron Neutron X-ray mass X-ray
absorption scattering transmis-  attenuation  transmis-
sion sion
Li 4.723 0.063 0.620 0.140 0.986
B 144.571 0.683 0.000 0.153 0.985
Al 0.020 0.091 0.989 0.240 0.976
Si 0.012 0.108 0.988 0.272 0.973
Sc 1.592 0.941 0.776 0.534 0.948
Fe 0.314 0.987 0.878 0.900 0.914
Co 4.890 0.509 0.483 0.978 0.907
Cd 168.866 0.301 0.000 4.363 0.646
Silica 0.007 0.282 0.972 0.222 0.978
(SiO2)
Boric 42.789 0.447 0.013 0.171 0.983
Oxide
(B203)
Ruby 0.016 0.366 0.963 0.211 0.979
(Al2O3)
Borosilicate - - 0.569 - 0.979
(SiOQZ 80%,
B503: 13%,
NagO: 4%,
AlgOgZ 3%)
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by IMAT means that there will be some transmission through both boron and
cadmium (as the previous chapter shows) due to the higher energy neutrons
in the beam. Lithium provides moderate neutron absorption with very low
scattering but has very high X-ray transmission and so would not be suitable
except in combination with a stronger X-ray absorber. Aluminium and silicon
both show relatively high transmission in both modalities, which is why they
were considered for sample containers. Iron can quickly be ruled out as its
neutron scattering cross-section is larger than its neutron absorption cross-
section. This leaves scandium and cobalt the best options from the elements
considered as they show significant, but not problematically large, attenua-
tion of both X-rays and neutrons. These both show high neutron activation
- cobalt in particular with its decay to nickel with a half-life of 5.27 years,
making them less attractive options. The compounds considered include boric
oxide, which tempers the high neutron absorption of boron, although not to
the degree required, and ruby, which was ruled out quickly since it is primarily

a scatterer of neutrons rather than an absorber.

Boron-free quartz had been used for the sample tubes in the previous exper-
iment and so had been shown to appear in both modalities. In the X-ray data,
the sample tubes were well resolved, and so quartz would serve well as mark-
ers, provided that the segmentation process could be adapted to distinguish
shapes as there would be no difference in attenuation compared to the sample
tube. The sample tubes attenuated the neutron beam much less, however,
so additional attenuation would be desirable. Borosilicate is inexpensive and
readily available in various forms, including spheres with a 1 mm diameter.
The addition of small amounts of boron would result in more highly atten-
uating markers that could be easily distinguished in the neutron modality.
As mentioned above, the neutron absorption cross-section for boron is high
enough to prevent transmission by itself, but as a dopant in a borosilicate
marker, this is reduced to a useful 56.8%. This should ensure a sufficient drop
in attenuation to avoid neutron starvation artefacts. Having a known spherical
shape and size allows for the shape-based approaches to segmentation required
for the X-ray modality in particular and also allows artefacts that might occur

to be easily removed, which should lower the FLE.
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Table 4.2.: The detector properties for each imaging camera and optics module
at 112 in EH1. For EH2, the field of view for M1 and M2 are
extended to 46 x 20 and 20 x 20, respectively [Connolley et al.,

2020].
Camera PCO.edge MIRO 310M
Optical Magnification Resolution FoV Resolution FoV
Module (um/pizel) (mm) (um/pizel) (mm)
M1 0.346 18.53 x 18.53 46 x 12 38.10 x 38.10 46 x 12
M2 0.82 7.91 x 7.91 20 x 12 16.26 x 16.26 20 x 12
M3 2 3.24 x 3.24 8.0x7.0 6.67 x 6.67 8.5x5.3
M4 5 1.3 x 1.3 3.3%2.8 2.67 x 2.67 3.4%x2.1
4.2.2. 112

In this experiment, the neutron data were collected at IMAT (3.3.1.1) and the
high-energy X-ray data were collected at Diamond Light Source (DLS), using
the 112-JEEP (Joint Engineering, Environmental and Processing) beamline.
112 was built on a short straight section of the Diamond storage ring and
opened for user experiments in 2009. 112 is a high energy X-ray beamline for
imaging, diffraction and scattering, offering two in-line experimental hutches
that can receive either a polychromatic or monochromatic X-ray beam that
operates at energies of 53-150 keV. 112 uses a 4.2T superconducting wiggler
source with 21 full-field periods of 48 mm. The first experimental hutch (EH1)
is 51 m from the source and has a maximum beam size of 50 mm (horizontal)
by 15 mm (vertical). The second experimental hutch (EH2) is 94 m from
the source and allows for a maximum beam size of 94 mm (h) by 28 mm (v)
[Drakopoulos et al., 2015]. This means that EH2 is well suited to large samples

or experiments with large apparatus.

A variety of detectors are available at 112 to suit a variety of imaging and
diffraction experiments. 112 has developed a modular detector system for
imaging that allows the choice of scintillators, one of four custom optics mod-
ules and either a PCO.edge or MIRO 310M camera. Typically the PCO.edge
is used when high resolution is desirable and the MIRO 310M when high-speed
imaging is more important. The four optical modules give different options

for the trade-off between resolution and field of view, shown in table 4.2.
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Table 4.3.: Sample conditions. The particle size classifications are given in
Table 4.3b.

(a)

’ Sample ‘ Plant ‘ Material ‘ Particle size ‘ Water ‘ Injection ‘

1 L N H>O
2 Sand o Y D50
3 Small N H,0
4 N Y DO
5 Laree N H,O
6 '8 % D,0
7 N H>O
3 Small N D,0
9
10
11 Soil Large
12
13 Y Y DO
14
15
16 Small
17

(b) Particle sizes

’ ‘ Small ‘ Large

Soil < 0.6mm 0.6 —1.8mm
Sand | 0.3 —0.6mm | 0.6 — 1.18 mm

4.2.3. Borosilicate trials

Seventeen samples were prepared for this experiment with a variety of condi-
tions as given in the following table (4.3). Each sample was first scanned using
I12 at DLS and was then scanned with IMAT at ISIS over the following five
days.

For this experiment, lupin seedlings were grown. These were initially placed
on moist paper towels eighteen days ahead of the experiment to begin germi-
nation and were transferred to sample tubes filled with soil a week later. The
soil was sourced and prepared as described in 3.3.2.

The sample tubes were cylinders made from boron-free quartz, open at both

ends so that water could be drawn up through custom-made bases. The inner
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Figure 4.1.: A demonstration of the intended marker distribution. The mark-
ers are located in arcs near the top and bottom of the sample
with minor variations in their height to ensure that they do not
contribute attenuation in the same slices.

diameter was 14 mm, and the wall thickness was 1.5 mm. The height of
each tube was 100 mm. A number of fiducial markers were attached to these
samples in loose arcs near the top and bottom of each tube as shown in figure
4.1. Variation in the height of these markers was included to avoid multiple
markers contributing attenuation to a single slice as this would increase the
likelihood of artefacts in the reconstructed data.

Borosilicate spheres with a 1 mm diameter were used as markers for this
experiment and were attached to the outside of the tubes using aluminium
tape. The markers positions were not precisely aligned and the number of
markers varied between samples with an average of 9.4 markers per sample

(see table 4.5 for the number of markers on each sample). The beads used
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Figure 4.2.: A sample positioned in front of the detector at 112.

had a £10% size variation, and all calculations were made with the following
assumptions of composition: 80% SiOz, 10% B2O3 and density: 8 g/cm3.

The scans at 112 were conducted in EH1 with the PCO.edge camera and M2
optics giving a voxel size of 7.91 x 7.91 um and a field of view of 20 x 12 mm.
A 0.004 s exposure was used, and 1800 projections were produced from a 180°
scan with a 0.1° step size. In order to get the best possible data from 112’s
field of view and resolution capabilities, each sample was scanned using five
vertical steps. Each different height step had sufficient overlap to recombine
the data after reconstruction to create a complete tomogram of the sample.

All of the 112 data was reconstructed at the beamline during the experiment
using the in-house Savu reconstruction pipeline [Atwood et al., 2015].

Each sample was scanned multiple times at IMAT. First, a tomography was
taken. Then following this, a syringe pump was used to inject 0.25 ml of HoO
or D30 (depending on the sample) into the sample at a rate of 0.05 ml/min.
Once the injection was complete, a series of 720 radiographs were collected with
a 10 second exposure to observe the fluid spreading from the injection point
through the rest of the sample. After this series of images was recorded, the
flow rate of the injected fluid had dropped sufficiently for a second tomography
to be taken of the sample.
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Figure 4.3.: The experimental setup at IMAT. Two samples are placed in front
of the detector on the multi-axial rotation stage.

Each tomography at IMAT was conducted over 360° with a step size of
0.6909°, giving 521 projections. IMAT was configured to use the 40 mm pin-
hole for the first four samples to be scanned (9, 11, 14 and 17 in table 4.3),
but this was changed to 60 mm to give increased exposure for the remaining
samples. The pixel size for these scans was 56.7 x 56.7 um. There was a 22 mm
sample — detector distance for each scan, and a pair of samples were scanned

side by side using the multi-axial rotation stage.

The multi-axial rotation stage is a new piece of apparatus that was first
tested at IMAT during the preliminary tests for this experiment (Experiment
RB1810843). It allows up to three samples to be placed in the beam simul-
taneously and each turned on its own, independent axis. This increases the
instrument’s throughput significantly and therefore helps to overcome one of
the limitations of neutron imaging: the comparatively long scan times. The
stage is, of course, only useful for samples that require less than half of the
width of the field of view, but the tall thin samples of this experiment meet

this requirement comfortably.

While it would be possible to fit three samples into the maximum field of

view given the 50 mm spacing between the centres of the axis, there are a
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couple of trade-offs associated with this which led to the decision only to use
two axes. Firstly, the change in the field of view width requirement would lead
to a substantially reduced resolution. Secondly, the IMAT beam profile shows
that the neutron flux is greatest at the centre of the beam and reduces with
distance from that point [Minniti et al., 2018]. This means that the central
sample would receive the neutrons required for the desired image quality more
quickly than the two samples closer to the sides. Either longer scan times would
be required for these to receive a greater dose, or lower image quality would
have to be accepted. Given these limitations, it was decided that scanning
two samples at a time with each remaining close to the centre of the beam
and receiving a similar dose to each other in a shorter time was the preferred
option. This results in each sample receiving slightly lower flux than a sample
in the centre of the beam, but this can be offset with a small increase in
exposure time. This increase in the scan time is negligible compared to the

time saved by scanning two samples simultaneously.

The IMAT data from this experiment was reconstructed using Octopus as in
the previous experiment. Initially, there were problems as a set of reconstruc-
tion parameters could not be found to reconstruct the whole volume accurately.
Figure 4.4 illustrates the problem with a slice from Small Soil 5. Sub-figure
(a) shows how 205 is not the correct centre of rotation for the slice due to
the evident doubling that is visible at the inner edge of the sample tube and
aluminium tape running around the outside of the sample. The image steadily
improves through sub-figures (b) and (c) as the centre of rotation is changed
first to 207, then to 209. The marker, however, clearly becomes less well re-
solved, splitting into two separate overlapping images. This type of problem
where different parts of a slice were best reconstructed with different centres
of rotation was found in a range of slices in a number of the datasets. Gen-
erally, if the centre of rotation drifted over the range of slices in a stack, this
would indicate a tilt of the rotation axis relative to the detector. Octopus has
CoR and tilt correction implemented to address this case. However, a change
of the centre of rotation between areas within a single slice is not commonly

encountered, so further investigation was required.

There did not appear to be any sample movement of the course of the scan,
but when the radiographs at 0° and 360° were compared, it was found that
they did not match. It was discovered by taking the difference between the
first radiograph at 0° and the last 20 radiographs of the rotation that the
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(a) CoR: 205

(b) CoR: 207

Figure 4.4.
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(c¢) CoR: 209

Figure 4.4.: Attempts to reconstruct a slice from Small Soil 5 with three differ-

92

ent centre of rotation values. In (a), where the centre of rotation is
205, the marker at the top of the sample is well resolved - besides
the artefacts - however, the tape around the outside of the tube
and the inner radius of the sample tube are not. Once the centre
of rotation has reached 209 in (c), the inner edge of the tube is
reconstructed well with precise edges, but the marker is not and
has split into two.



4.3. Image processing

sample consistently reached 360° a few projections earlier than expected and
over-rotated. The error in the rotation varied from scan to scan, with the
error ranging from negligible to 3.9%, which can result in 360° scans being
taken over 370°. Since the IMAT log data only recorded the nominal values
rather than the true values, the rotation angles for each sample had to be
estimated through analysis of the data and these estimated values fed back
into the reconstruction algorithm.

Table 4.4 shows the number of projections early each sample reached 360°
along with the corresponding angular step size and total rotation. From this
data, we see that while neither axis was perfect, Rotation stage C was far more
accurate than rotation stage B. It is notable that there is not any consistency in
the error between the pre- and post-injection scans of each sample which shows
that the inconsistencies occurred without human handling of the samples or
rotation stage.

Once the rotation values were calculated from the number of projections
it took for the sample to reach 360°, this information could be fed back into
the reconstruction algorithm. This immediately solved the problem shown
in figure 4.4 and led to consistently improved reconstructions. Figure 4.5
shows the slice from figure 4.4 reconstructed with the new parameters. This
solution assumes that the error introduced by the rotation stage is introduced
consistently throughout the scan and is not introduced in a few large steps.
It would be very difficult to confirm this by looking at the data, but the
improvements seen with the approach described suggest that the assumption

is valid.

4.3. Image processing

The reconstructed data from 112 was rescaled to best use the dynamic range
before the data type was converted from 32 bit real to 8 bit int. This reduced
the scale of the data by a factor of four, making it far more practical to work
with in all subsequent steps. As mentioned above, the samples were scanned
in vertical steps, meaning that five partial scans of each sample required con-
catenation. While this task is commonly performed by hand, it is a repetitive
and time-consuming process, and therefore it makes sense to automate the
process when working with a large amount of data. Subsection 4.3.1 presents
the algorithm used for this task. Once the 112 data had been rescaled and
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Table 4.4.: The over-rotation measured for each neutron scan. The samples

(a) Rotation stage B

are split based on whether they were scanned on rotation stage B
(4.4a) or rotation stage C (4.4b) of the multi-axial rotation stage.

Sample Pre-injection Post-injection
Extra Step Size Total Extra Step Size Total
Projections Rotation Projections Rotation

Large 12 0.706° 368.471° 9 0.702° 366.316°
dry sand

Large 11 0.705° 367.750° 13 0.707° 369.194°
wet sand

Large 11 0.705° 367.750° 12 0.706° 368.471°
dry soil

Large 12 0.706° 368.471° 6 0.698° 364.186°
wet soil

Large 9 0.702° 366.316° 11 0.705° 367.750°

soil 2

Large 11 0.705° 367.750° 10 0.703° 367.031°

soil 4

Small 14 0.709° 369.921° 11 0.705° 367.750°

soil 2

Small 11 0.705° 367.750° 11 0.705° 367.750°

soil 3

Small 10 0.703° 367.031° 12 0.706° 368.471°

soil 5
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(b) Rotation stage C

Sample Pre-injection Post-injection
Extra Step Size Total Extra Step Size Total
Projections Rotation  Projections Rotation

Small 2 0.692° 361.385° 2 0.692° 361.385°
dry sand

Small 1 0.691° 360.691° 3 0.694° 362.081°
wet sand

Small 1 0.691° 360.691° 2 0.692° 361.385°
dry soil

Small 2 0.692° 361.385° 2 0.692° 361.385°
wet soil

Large 3 0.694° 362.081° 2 0.692° 361.385°

soil 1

Large 2 0.692° 361.385° 3 0.694° 362.081°

soil 3

Large 1 0.691° 360.691° 2 0.692° 361.385°

soil 5

Small 0 0.690° 360.000° 1 0.691° 360.691°

soil 4

95



4. Borosilicate markers and a sphere fitting algorithm for fiducial localisation

Figure 4.5.: The slice from Small Soil 5 shown in figure 4.4, this time recon-
structed assuming a total rotation of 367.031°. The whole sample
appears to be correctly reconstructed with the new parameters.

concatenated, with the excess data from overlapping regions removed, its to-
tal size was reduced to approximately 1 TB making the volumes far easier to

use in subsequent steps.

Registration of the X-ray and neutron data depends on the accurate seg-
mentation of the fiducial markers in each modality. Using a threshold-based
segmentation method as in the previous experiment (3.3.2) was not an option
with the borosilicate markers since they do not stand out as the most highly
attenuating objects in the data. This experiment used 161 markers compared
to the 47 used in the cadmium marker experiment, and the larger datasets
produced at 112 were also too big to be analysed by the 3D object counter
built into Fiji. These factors mean that precisely locating each of the markers
by hand would not be a time-efficient option. An algorithm was written to find
the markers in an automated, scalable, and repeatable way by finding spheres
within volume data. The design and implementation of this tool are given in
subsection 4.3.2. Once the markers had been located, registration could be

completed using the same method given in 3.3.2.
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4.3.1. Stack concatenation

The algorithm used to automate stack concatenation consists of the following

steps:
1. Find and remove the overlapping region
2. Calibrate the levels to correct differences in brightness and contrast.
3. Concatenate the calibrated datasets

The algorithm is written with the assumption that the rotational axes of the
volumes are aligned correctly and share a common orientation so that the vol-
umes only need to be adjusted by translation in one dimension. The algorithm
is applied recursively to concatenate more than two stacks, adding a different
dataset to the previously concatenated data with each iteration.

To remove the overlapping region, the algorithm takes the last 20% of one
stack and a user-specified proportion of the other. It then examines these
regions to find the pair of slices that most closely match. The closeness of a
match is evaluated by taking the difference between a pair of slices and return-
ing the standard deviation of the result. Using the standard deviation rather
than the difference allows the match between two slices to be evaluated with-
out absolute grey levels becoming a dominant factor rather than the relative
differences. Tests were also conducted with an edge detector applied after the
difference was taken to see if this would enhance the results further, but this
did not improve the performance of the algorithm.

This method for evaluating the closeness of a match between a pair of slices
is used repeatedly to find a matching pair of slices. First, every fifth slice in
the final portion of one stack is compared to a fixed slice in the second stack.
The slices that most closely match from this step are passed as initial values
to a minimisation function that keeps the slice in the second stack fixed. This
gives the offset between a slice in one stack and the corresponding slice in
the other. Finally, this information is passed to another optimisation function
that takes the offset and looks for the best match without keeping one dataset
fixed to a single slice. The output of this process is the pair of slices in the
overlapping regions of the two datasets that most closely match.

Once this is established, the overlapping portions of the stacks are cropped to
these points so that the stacks can be concatenated. There may be differences

in the grey levels of the two volumes, though, so calibration is carried out
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using the matching slices that have been identified before the concatenation is
applied.

The calibration of the levels between the datasets is conducted upon a set
of representative sample areas within the slices from each dataset that is to
become adjacent. Random sample areas of 10 pixels by 10 pixels are evaluated
in each of the slices. If the range of grey levels is greater than 0 and the
standard deviation is below 20 for each of the slices, then the region is added
to the list of sample areas to use for the calibration. Once twenty such regions
have been selected, a line of best fit is found for the twenty ordered pairs of
grey levels, giving a gradient and an intercept to relate the two slices. The
intercept is added to the levels of the slice to be calibrated, and then the levels
are multiplied by the gradient resulting in a calibrated pair of datasets.

The full stack concatenation code is included in appendix A.2.

4.3.2. Sphere fitting

The current literature for 3D object recognition show that progress is being
made in the use of machine learning and computer vision. This has been driven
in part by medical imaging [Kawakami et al., 2020] but also other applications
such as baggage scanning at airports [Yang et al., 2021]. Unfortunately for
this work, these methods depend on training convolutional neural networks
with large amounts of data (of the order of 10,000 scans) which is well beyond
the scope of this work. More generalised approaches that do not require large
quantities of previous scan data but instead are based on the indentification
of primitive shapes such as spheres appear to have been neglected in favour of
these powerful but data hungry techniques. One helpful approach that can be
taken from this research however is the method of considering 3D data at scale
by considering 2D slices along each axis and then recombining that analysis
as in the slice-and-fuse strategy presented by Yang et al. [Yang et al., 2021].
With this in mind, a custom sphere fitting algorithm was produced that
would take advantage of more mature 2D shape recognition techniques and
extend them to 3D without invoking the additional overhead and requirements
of machine learning approaches. The algorithm is based upon the fact that
any cross-section of a sphere is always a circle, regardless of the orientation,
as shown in figure 4.6. A table listing the centres and radii of circles found
within the volume can be produced by looking through 2D slice data along

each axis. Spherical objects will appear as lists of circles in successive slices
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Figure 4.6.: The cross-section of a sphere is always circular, regardless of ori-
entation.

with a common centre point and a radius that increases then decreases with a
maximum at the third component of the sphere’s centre point. This pattern
should be observable in each axis, with the common values for the centre of

the sphere being given by the circle centres and the maximum radius.

In practice, data is never free of noise and errors, so an algorithm’s imple-
mentation must be resilient to inaccurate or missing data. In this case, that
could mean that circles are not found in every slice that contains markers or
that circles are found with incorrect centres or radii. To overcome this, once
the circle centres are found using the Hough circle transform (implemented in
OpenCV [Bradski, 2000]), the list is then passed to the DBSCAN clustering
algorithm, which is part of the Scikit-learn package for machine learning in
Python [Pedregosa et al., 2011]. The DBSCAN algorithm looks for areas of
high density which in this case means circles with centres that are close to-
gether. By looking for local clusters of circles, the circles corresponding to
specific markers can be identified and averaged to estimate the centre coordi-
nates of the marker. Provided that a cluster contains circles along all axes,
the value for the centre of the sphere in each axis is calculated without using
the circles that are in a plane perpendicular to the axis. This prevents the
calculated centre point from being skewed if the circles found in a particular

axis for a given marker are not evenly distributed along that axis.
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Figure 4.7.: The images show the results of the Hough transform applied to
the same slice before (left) and after (right) the application of a
median filter with a kernel size of 7. Each circle found by the
transform is marked with a red centre and a green circumference.

The different modalities each have different scales and resolutions. As a re-
sult of this, parameters for both the Hough circle transform and the DBSCAN
clustering algorithms require tuning for each modality. To get the best per-
formance from the Hough circle transform, it is important to ensure that the
sensitivity is high enough not to miss any markers. This leads to several false
positives, but these can be reduced substantially by applying a median filter
to smooth the image. Figure 4.7 shows the Hough transform applied to a slice
from an X-ray dataset before and after a median filter is applied. Both iden-
tify the marker and some false positives, but it is clear that the filter reduces
the number of extra circles. Furthermore, all the remaining circles are within
the sample tube. Many of these extra circles are filtered out by the DBSCAN
algorithm as it looks for clusters of circles that are close to each other.

The algorithm can still lead to false positives if other objects are found in
the data that are approximately circular in at least one axis and have a similar
radius to the markers. In this experiment, the sand particles, in particular,
were commonly identified as false positives. To remove the majority of these,
markers were filtered based on their distance from the centre of the sample.
Any spheres found within the inner radius of the sample tube were discarded,
and the remainder were kept. After this step, the number of false positives

remaining was typically below ten per scan, and so they were removed by
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Figure 4.8.: Slices from the X-ray (left) and neutron (pre-injection) (right)
scans of sample LargeSoil3 showing one of the fiducial markers.
The marker is easily distinguishable in each modality, primarily
by shape in the X-ray image but also by the strength of attenuation
in the neutron modality due to the boron dopant. It can be seen
that the types of artefact present around the markers in figures
3.11, 3.12, 3.13 and 3.14 have been eliminated.

hand. See A.3 for the full code listing.

4.4. Results

In this experiment, borosilicate fiducial markers were used with the aim of
reducing artefacts to enable more accurate registration compared to the results
presented in Chapter 3. Figure 4.8 shows example slices from the sample
LargeSoil3, which contain one of the markers and demonstrate that the use of
borosilicate has been successful in this regard as the markers are very clearly
distinguished and the kind of artefacts seen around the markers in figures 3.11,
3.12, 3.13 and 3.14 are significantly reduced. Some scattering artefacts are still
present in the neutron modality , especially when multiple markers appear in
a slice (see figure 4.11). These no longer distort the shape of the markers to
the detriment of the segmentation, however, with one exception discussed in
section 4.5.

While it is known that the X-ray scans will have better image quality than

the neutron data, both in terms of resolution and signal to noise ratio, it is
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helpful to quantify this for these particular datasets. The X-ray scans con-
sistently have a point spread function (PSF_v) of 3 voxels when measured
between the sample tube and air. The PSF v varies more between scans and
even slices with the neutron data but is typically in the range of 20 to 25

voxels.

With no clear difference in attenuation between the markers and the sample
tube in the X-ray scans, this experiment called for new methods of segmenting
the markers. Given the increased number of markers and the importance of
repeatability, an automated system for marker segmentation was developed, as
described in section 4.3.2. The markers were found twice using this new tool:
once to inform the registration and then a second time after the registration
had been applied to evaluate the accuracy of the registration. As the registra-
tion process included changes to the scale of the image and re-sampling, the
sphere fitting algorithm needed to be re-tuned to look for a different range of

radii before being applied to the registered data sets.

The accuracy of this new tool introduces a new source for error in the
marker-based registration, so its performance must be considered. The algo-
rithm did not find all of the markers placed on the samples. One of the reasons
for this was poor sample alignment during a small number of the scans as not
all of the markers were kept within the field of view at 112 where the field of
view was not much bigger than the sample radius with the markers included.
Figure 4.9 shows an example case of this where a marker has not been kept

within the field of view, rendering it useless.

There were limitations of the algorithm, however, which led to further mark-
ers not being identified accurately. These are discussed thoroughly in section
4.5. Table 4.5 shows the number of markers that were attached to each sample
as well as the number found and used in registration and found after registra-
tion to evaluate the registration accuracy. It is worth noting that markers the
algorithm missed before registration were found by hand and added to ensure
the best possible registration. The number of markers found after registration
does exclusively count those found by the automated system. In both cases,
any markers found in one or two scans of a sample but not all three were
discarded from all subsequent steps, be that registration or further analysis,

and are not counted in table 4.5.

The FLE values found for each sample are presented in table 4.6. The FLE

value is taken as the RMS difference between the centres of corresponding
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Figure 4.9.: An example slice from the X-ray scan of sample LargeSoil4 shows
markers that have not been kept within the field of view and can-
not accurately be located and used in registration or subsequent
analysis.
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Table 4.5.: The number of fiducial markers attached to each sample compared
to the number of markers found both before and after registration
by the sphere fitting algorithm. Any markers found in some but
not all of the X-ray, pre-injection neutron and post-injection neu-
tron scans were discounted from the last two columns as it is only
markers found in all modalities that can contribute to the analysis
shown subsequently.

Sample Number Number of markers Number of Markers
of used in registration found after registration
Mark-
ers

Large dry sand 7 6 6
Large wet sand 8 6 6
Large dry soil 8 4 4
Large wet soil 10 8 7
Small dry sand 6 ) )
Small wet sand 9 8 4
Small dry soil 9 9 7
Small wet soil 10 7 4
Large soil 1 10 7 6
Large soil 2 10 8 8
Large soil 3 11 10 10
Large soil 4 10 8 2
Large soil 5 10 7 7
Small soil 2 11 7 6
Small soil 3 12 9 10
Small soil 4 11 11 5
Small soil 5 9 8 4

Total 161 128 101
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Table 4.6.: The FLE of each sample based on the two neutron scans. The final
three columns show the FLE components along each axis. (All
values in voxels.)

Sample FLE FLE (X) FLE(Y) FLE (%)
Large dry sand 19.2 8.3 9.4 0.5
Large wet sand 21.3 9.3 9.1 0.5
Large dry soil 14.8 5.7 7.0 0.6
Large wet soil 35.8 12.1 15.4 0.7
Small dry sand 3.4 1.4 1.8 0.7
Small wet sand 6.8 3.2 2.3 0.3
Small dry soil 5.5 2.3 2.2 0.3
Small wet soil 4.9 1.8 1.8 0.7

Large soil 1 24 0.6 0.6 0.9
Large soil 2 6.5 2.2 2.7 0.5
Large soil 3 9.5 3.9 3.1 0.4
Large soil 4 29.1 10.7 10.8 0.4
Large soil 5 3.3 1.4 1.1 0.3
Small soil 2 29.5 11.6 10.1 0.6
Small soil 3 39.2 14.0 13.7 0.6
Small soil 4 11.0 3.1 4.8 0.5
Small soil 5 16.0 7.1 6.8 1.1

markers in the two neutron scans. The three subsequent columns give the
components of the FLE along each axis. Since the X-ray data was not used in
the calculation of FLE, markers that were successfully located in both neutron
scans but not in the X-ray data were not discarded at this stage. This data
cannot be directly compared to the FRE values without conversion since they
are given in voxels, not absolute distance, and the data were rescaled as part
of the registration process.

Table 4.7 shows the FRE found for each sample between each pair of scans.
Each column compares a different pair of registered scans: first the two neutron
scans, then each neutron scan to the X-ray scan. The FRE is calculated as

the RMS difference between corresponding markers in the two scans after
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Table 4.7.: The FRE values found between each scan for each sample. (All
values in pm.)

Sample FRE (N FRE (ND) FRE (NW)
diff)
Large dry sand 995 306 961
Large wet sand 395 339 251
Large dry soil 775 491 595
Large wet soil 1012 391 935
Small dry sand 545 536 96
Small wet sand 240 247 64
Small dry soil 465 429 123
Small wet soil 335 374 99
Large soil 1 408 417 172
Large soil 2 416 332 186
Large soil 3 421 351 214
Large soil 4 247 74 222
Large soil 5 297 291 105
Small soil 2 558 280 481
Small soil 3 708 474 522
Small soil 4 329 350 169
Small soil 5 481 433 165

registration is complete. The post-registration voxel sizes have been used to

convert these values from voxels to absolute distance values.

4.5. Discussion

This experiment introduced a new algorithm for the segmentation of spherical
objects to be used as fiducial markers in the registration of complementary
datasets of different modalities. This algorithm was generally successful in
finding the markers placed on the samples for this experiment, but there were
some that it could not locate successfully in all three scans (X-ray, neutron pre-

injection, neutron post-injection). One hundred and sixty-one markers were
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attached to the samples in total, yet due to poor sample alignment, not all of
these were kept within the field of view. Figure 4.9 showed an example of this.
When the markers were being located the first time to be used to inform the
registration, markers that were missed by the automated system were added by
hand where possible. In total, this led to 128 markers being used and 33 that
could not be seen in all the scans being ignored. When the registration was
complete, the algorithm was run again, without any markers being added by
hand. This time 101 markers were found, a success rate of 78.9%. It is worth
noting that this is very heavily dependent on some parameters that must be
tuned. These include the strength of the filtering applied to the datasets, the
minimum and maximum radii of the circles, the sensitivity parameters of the
Hough circle transform and the EPS and count parameters of the DBSCAN

clustering algorithm.

Image artefacts due to poor beam transmission through the markers were
not an obstacle to marker localisation in this experiment, as they were in the
previous chapter when cadmium markers were used. Figure 4.10 shows the
one identified case where artefacts do prevent markers from being identified.
Two markers were placed side by side on the sample. In the X-ray image, this
presents no problem, but due to the scattering in the neutron modality, the

clustering algorithm could not separate the markers into two separate clusters.

Large Soil 4 stands out as a particularly poor result in table 4.5 with only
two markers found in all modalities by the algorithm. This occurred because
of poor image quality, particularly in the top half of the neutron scans. It is
suspected that the sample may not have been fitted securely enough and so
moved slightly over the course of the scan.

As described above, the FLE values in table 4.6 are calculated by taking the
RMS value of the differences between the positions of corresponding markers
in the two neutron scans before registration. This is valid if it can be assumed
that the markers are in the same place in both scans, which is to say, no regis-
tration is required between these two scans. This should be a valid assumption
because they are subsequent scans of the same sample in the same instrument,
with no human intervention between the two. The difference should therefore
be indicative of the accuracy with which the markers were found.

A component of this error may be due to inaccuracy of the multi-axial
rotation stage as discussed in 4.2.3. If this were the case, it would lead to a

rotation of the sample between the two scans. This would affect the position
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Figure 4.10.: Two markers placed side by side on a sample. While the two
markers are easily distinguished in the X-ray image (left), the
scattering artefacts make it difficult for them to be separated
by the DBSCAN algorithm in the neutron data (right). Conse-
quently, these two markers were found by hand for the registra-
tion but discarded when the algorithm was rerun for analysis of
the registration.

of the markers in the XY plane but not in the Z direction. If this were the
dominant factor in the FLE values, therefore, it is to be expected that the
FLE would consistently have a significantly smaller component in the vertical

direction.

The data in table 4.6 supports the idea that this type of error may be present.
The FLE (Z) values are consistently far lower than the other two components
and show less variance. The X and Y components vary over a wide range and
appear to be directly proportional. All these are factors to support the idea
that there may be rotation between the two scans and a visual inspection of
the datasets confirms this, as shown in figure 4.11, where the difference in the

marker positions is best explained by a rotation of the sample.

Given that inconsistent, unintended rotation of the sample appears to be
the dominant factor contributing to the large X and Y components of the FLE,
it is assumed that the Z FLE component is a better indication of the accuracy
of the sphere fitting algorithm for the segmentation of the markers. Except
for SmallSoil5, these values are all less than one voxel which indicates that

the markers are found to a good degree of accuracy. The unintended rotations
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Table 4.8.: Axial average components of FRE for each pair of scans. (All values
in voxels.)

X Y Z

N diff 12.2 105 5.7
ND 141 13.1 184
NW 59 6.5 17.7

between neutron scans, although detrimental to the calculation of FLE, should
all be removed by the registration step, meaning that this error term is not
carried forward to the FRE or subsequent analysis.

Potential errors in the stack concatenation step of the processing could be
another factor that contributes to inaccurate registration. However, these,
while technically contributing to FLE, would not be seen until the FRE is
evaluated because they only apply to the X-ray scans, and these could not be
used in the evaluation of FLE. If errors were to be introduced by the stack
concatenation algorithm, it is reasonable to suppose that these would primarily
be in the vertical direction as the underlying assumption of the concatenation
algorithm is that the scans are aligned in the XY plane, and adjustments are
only made in the Z direction. This error would show itself through a higher
FRE component in the Z direction where either neutron scan was compared
to the equivalent X-ray scan than when the neutron scans were compared
to each other. Table 4.8 shows the average component of FRE along each
axis between each pair of scans. Like the FLE in table 4.6, the Z component
of the FRE between the two neutron scans is far lower than the X and Y
components, indicating that the primary error, in this case, is likely to be in
the rotation or translation of the sample in the XY plane. For the FRE data
where each neutron scan is compared to the X-ray scan, the Z component
is the largest component of error, particularly with the post-injection scan,
which has a comparatively low error in the XY plane. This suggests that
there is a greater error in the localisation of the markers in the Z plane of
the X-ray modality. Small errors in the stack concatenation process provide
a very plausible explanation for this, although it cannot fully account for the
difference in the XY plane between each neutron scan and the X-ray scan.

Figure 4.12 shows the FRE between the two neutron modalities plotted

against the FLE. If the two neutron scans were being directly registered to
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4. Borosilicate markers and a sphere fitting algorithm for fiducial localisation

Figure 4.11.: Two nominally matching slices from different scans of sample
SmallSeil3 overlaid. The pre-injection scan is coloured red, and
the post-injection scan is cyan. The difference in the marker
positions between the two scans suggests that the sample has
been rotated around a point close to the centre of the sample.
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Figure 4.12.: FRE between the two neutron scans plotted against the FLE.

each other, the FLE and FRE should be directly proportional. In this case,
however, the neutron scans are both registered to the X-ray scan, and the FLE
of the X-ray scan is not considered, so other sources of error will be present
and unaccounted for. This explains why, although the FLE and FRE appear

to show some correlation, the coefficient of determination is low (0.264).

Figure 4.13 gives a graphical representation of the data in table 4.7. This
allows the typical FRE values and the relationships between the scans to be
seen more easily. The average FRE (the average distance between registered
markers across all samples and modalities) is 394 pm. LargeDrySand and
LargeWetSoil are the two samples with the greatest registration errors. For
both of these samples, the FRE between the dry (pre-injection) neutron scan
and the X-ray scan are close to the average values, but the two FRE values
that include the wet (post-injection) neutron scan are far higher. This implies
that there are errors in the marker localisation of these samples in the wet
neutron scan in particular since the error between the other two scans is so
much lower. These two scans skew the average FRE value, and it is interesting
to note that the average without these two scans included is far closer to the

median FRE value of 351 pm.

In more than three-quarters of the samples, the FRE is greatest between the
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FRE between each pair of scans
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Figure 4.13.: The FRE between each pair of scans.

two neutron scans. This suggests that the evaluation of the marker positions
is more precise in the X-ray modality. This is unsurprising due to its superior
resolution and signal-to-noise ratio. Interestingly, the average FRE between
the wet neutron scan and the X-ray scan is approximately 45 um lower than
that of the dry neutron and X-ray scans, even with the poor results from
LargeDrySand and LargeWetSoil. This suggests that the markers were found
more accurately in the second neutron scan of each sample after fluid had
been injected into the sample. Although some samples had H2O injected and
others D50, the fluid used does not appear to correlate to which samples were
more accurately registered either before or after the fluid was injected. All
the samples that had better registration before the injection were scanned on
rotation stage B, although not all samples scanned on rotation stage B were
more accurately registered before the injection. Although the correlation is
observed, it is not clear how the rotation stage could have any impact on the

relative accuracy of marker segmentation between two successive scans.

Overall, the registration accuracy appears to be independent of the different
sample parameters (sand or soil, particle size, HoO or DO injection). This
is to be expected, provided that the sample does not produce artefacts that

extend beyond the outer radius of the sample tube.
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Figure 4.14.: Average FRE across all scans for each number of markers used
in the registration.

It was shown in section 3.2 that in the ideal case, the registration accuracy
should improve as the number of fiducial markers increases. One of the con-
clusions of Chapter 3 was that poor marker localisation could overcome this as
the addition of inaccurately located markers decreases registration accuracy.
Figure 4.14 shows the relationship between the number of markers used in
registration (the number of markers found post-registration to evaluate FRE
was different for many samples) and the average FRE between each pair of
scans for a sample.

It can be seen that the inverse proportionality between the number of mark-
ers is not the dominant factor in the relationship between the FRE and the
number of markers, and this suggests that the accuracy with which markers
can be located in a scan remains the largest source of error in the registration
process.

In the experiment with cadmium markers in Chapter 3, the FRE varied
between 2.03 and 11.02 voxels. The voxel size after registration was 19 um,
so the FRE can be expressed as between 38.6 um and 209.4 um. This is
substantially better than the median FRE value of this experiment (351 pum).
The registration accuracy of this experiment is substantially lower, despite

the significant reduction in artefacts brought about by the use of borosilicate
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markers. Steps have been added to the image processing pipeline, and it is
likely that the combined influence of these has contributed to the substantial
increase in registration error. Firstly, the automated stack concatenation step
applied to the X-ray scans may have introduced errors in the scan data before
any registration steps are undertaken, immediately moving markers away from
their true position. The higher contribution of FRE from the Z-axis in all
cases that include X-ray data would appear to indicate this type of error is
present. Secondly, the new algorithm for locating markers may have lower
accuracy than the methods used in the previous experiment, which involved

more human judgement.

To narrow down the potential sources of error further, the method for lo-
cating markers described in section 3.3.2 was applied to the neutron data for
LargeWetSoil. Once a threshold value had been found to isolate the markers,
the 3D Objects Counter was used to determine the centre of each marker. The
neutron markers found with this method typically agreed to within 2.5 voxels
of the positions found by the sphere fitting, and the most significant compo-
nent of this was generally in the vertical direction. The few markers that did
not agree to within 2.5 voxels showed lower sphericity and hence could not be
located by the sphere fitting method. Unfortunately, this marker segmentation
method could not be applied to the X-ray data since the borosilicate did not
show a sufficient difference in contrast to the sample tube for a threshold to
segment the markers. Also, the file size is more than twenty-eight times larger
than the neutron data, and even with significant cropping, this could not be
made to fit within the limit of the 3D Objects Counter.

These new marker positions were used to calculate a new set of transforms
to register the two neutron scans to the X-ray data. When the new positions
of the markers were calculated using these new transforms, the FRE between
the two datasets fell to approximately 20% of its previous value. Furthermore,
the FRE for the post-injection scan fell from 17.2 voxels to 6.3 voxels, bringing
it to a similar value to that of the pre-injection FRE. These calculations show
that the sphere fitting algorithm does produce small errors in the locations of
the markers it finds and that when these erroneous values are used to inform
the registration transformations, they can be scaled up to have a significant

impact on the registration accuracy.
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4.6. Conclusions and future work

Borosilicate offers clear advantages over cadmium as a fiducial marker mate-
rial, primarily because it does not produce the significant artefacts seen in
both X-ray and neutron scans of cadmium, but also because it is more readily
available, can be obtained in a useful form and is far less hazardous to work
with. The minor difference in attenuation between the boron-free quartz used
for sample tubes and the borosilicate markers meant that new algorithms had
to be developed to allow markers to be found and used to inform registration
parameters. A new sphere fitting algorithm was developed and used to com-
plete the registration for a collection of seventeen samples. The algorithm was
partially successful but was shown to have limitations, in particular lower ac-
curacy with markers of lower sphericity. These errors led to a notable decrease
in the accuracy of the registration despite the improvements in the quality of
the scans.

There are a variety of options that could be considered to improve upon
this registration performance in future experiments. One option would be to
reconsider the marker material used to find a material that could be adequately
segmented using a threshold-based method. However, the list of potential
candidates is short and would likely be expensive, have lower availability, and
require work to shape into suitable markers. Another alternative is to work
on improving the segmentation algorithm to ensure more accurate results.
While it may be difficult to improve the algorithm significantly while remaining
independent of the sample, there is scope for interesting algorithms that use
additional information, for example, by finding the outer edge of the sample
tube and using that to mask both the tube and its contents. Another potential
solution is to do a preliminary scan of a collection of borosilicate markers
before they are attached to any sample. This scan could be used to measure
the sphericity of each bead and therefore allow beads that are less likely to be
located accurately to be identified and removed from the experiment at the

sample preparation stage.
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5. Correlative X-ray and neutron
imaging for water segmentation

and quantification

5.1. Introduction

This chapter is concerned with the analysis opportunities afforded by the data
gathered for the previous chapter. In particular, the benefits associated with
the use of complementary neutron and X-ray data for crop science. As in the
previous chapters, the methods discussed here are presented with recognition
of their applicability towards a broader range of applications.

The work presented in this chapter aims to consider how best to segment
and quantify the water concentration within the samples given the three scans
collected from each sample. Using a syringe pump to inject known quantities
of water into the sample at a controlled rate opened many possibilities for
measuring water dynamics and led to the collection of pre- and post-injection
tomograms. Using the difference between these two scans makes segmentation
of the injected fluid simple in theory but only works if beam hardening can be
ignored or corrected. A method to correct beam hardening introduced by the
injected fluid by considering the difference between the two scans is presented
in section 5.3.2.

The X-ray data can be used to achieve accurate soil segmentation at a
higher resolution than that of the neutron data, so a method is proposed to
utilise this information as a mask to enhance the reconstruction of the neutron
difference images further. Section 5.3.3 discusses the influence of this X-ray
based mask when applied to the reconstructed and registered neutron data.
In section 5.3.4, however, this process is adapted to use the mask to enhance
the neutron data through iterative masked reconstruction. The simulation
presented shows that this method should give better results, and a significant

difference is observed in the experimental data.
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5.2. Equipment and methodology

5.2.1. Preliminary tests

During the planning phase for the experiment that produced the data for this
chapter and the previous one, five days of IMAT beam-time were allocated for
preliminary tests of the new equipment and techniques proposed (Experiment
RB1810843). These tests included the first trial of the multi-axial rotation
stage, discussed in the previous chapter (4.2.3), a syringe pump and a golden
angle acquisition scheme. These additions allow more advanced techniques to
be introduced at IMAT, facilitating new experiments.

Since a previous experiment (RB1830047) allowed a large amount of data
to be collected primarily to develop registration techniques and correlative
methods with X-rays, the focus of this trial was to gather data that would
fully demonstrate IMAT’s ability to quantify gradients of fluid distribution
within porous media.

All the samples used in this experiment were prepared in boron-free quartz
tubes of height 100 mm, inner diameter 14 mm, and outer diameter 17 mm.
Cadmium markers were attached to the samples as in chapter 3 to ensure
the samples were equivalent to those used in other experiments, although no
registration was applied to this trial data. (The borosilicate markers discussed
in Chapter 4 were not introduced until after this trial data was collected.)
This experiment used two sand fractions: Sand B was made up of particles
with diameters between 1.18 mm and 0.6 mm. Sand D contained particles with
diameters between 300 pm and 150 pum. Two gels were used in this experiment
and were produced by dissolving sodium alginate in water. Gel A contained
1 g/ml, and Gel B contained 2 g/ml.

The beamline was configured for L/D = 166.7 (where L, pinhole sample
distance, was 10 m and D, pinhole diameter, was 60 mm). The CMOS detector
was used with an 85 mm lens and an 80 pm ZnS/6LiF scintillator, giving a
120 x 120 mm field of view and a pixel size of 56 um. The CMOS detector is
based on an Andor camera used with an exposure time of 30 seconds. All the
tomography measurements taken during this experiment used an angle step
size of 0.6923° giving 521 projections unless otherwise specified. Two samples
were imaged at a time using the multi-axial tomography stage since three
samples would require a reduction in resolution and could produce artefacts

due to the inhomogeneity of the beam.
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This experiment introduced the use of a syringe pump at IMAT for the first
time. The pump allowed accurate fluxes of fluids such as water, deuterated
water and more viscous gels into samples with precise control of the volume
and rate of delivery and the fluid injection location. The syringe pump used in
these experiments was an SP210cZ from WPI. It was connected to the IBEX
control system used at ISIS to allow it to be controlled through the IMAT
instrument dashboard and scripts. Thin tubes connected the syringes in the

pump to the needles inserted into the samples.

The first measurements taken were tomograms of two dry sand samples. One
sample contained Sand B, the other contained Sand D and a needle connected
to a syringe in the syringe pump. Following this acquisition, 1 ml of water was
poured onto the sample containing Sand B, and 0.1 ml was injected into the
sample containing Sand D and the tomography was then repeated. Following
this, the process was repeated with a further 2 ml added to Sand B and a
further 0.1 ml injected into Sand D before a final tomography of these samples.
These results demonstrated that water could easily be identified within the
images produced and exposed flaws in the experimental method that could be

addressed before taking further measurements.

One observation from these first results was that water that is being added
to a sample should be added very slowly to avoid unnatural disturbances to the
soil structure, such as lifting portions of the sand on pockets of water. Another
problem that was quickly identified and fixed was the need for a fixture that
minimised the movement of the syringe needle during tomography to avoid

any sample disturbance during rotation.

The following configuration used a tube of Sand B and a tube of soil, each
wetted to a 10% water content by mass. Three tomographies were conducted
with these samples. Between each tomography, 0.05 ml of deuterated water
was injected to demonstrate the contrast that allows deuterated water to be
seen within a wet sample and subsequently used to determine a flux. This test
was unsuccessful because the needles were not attached to the tubes carry-
ing the deuterated water sufficiently well and the fluid leaked before reaching
the samples. It was also observed that the samples contained a large amount
of water and therefore produced considerable scattering that could result in
significant beam attenuation and prevent the deuterated water from being im-
aged accurately if the concentration was too high. A real-time radiography

experiment was conducted to investigate these problems further. Two tubes
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Figure 5.1.: A series of radiographs showing the progressive injection of 1 ml of
water into the soil at a rate of 0.05 ml/min. From left to right these
images show the sample at the beginning of the injection, then
after 8, 12 and 20 minutes respectively (to the nearest minute).

of dry soil were injected with 1 ml of water and deuterated water, respectively,
at a rate of 0.05 ml per minute. Radiographs were taken every 30 seconds
and showed the progression of the fluid into the samples. A significant differ-
ence in contrast between water and deuterated water was observed, and the
improvements made to the syringe needle configuration were shown to work.
Figure 5.1 presents radiographs that show the water filling the soil over time.

Following this, a series of three pairs of tomographies was attempted again.
One sample contained initially dry soil that received two 0.25 ml injections
of water between the tomographies. The other sample was kept from the
previous radiography experiment and was injected with deuterated water. This
sample initially contained 1 ml of water and also received two 0.25 ml injections
between tomographies. Figure 5.2 shows the difference between corresponding
radiographs from the initial tomography and the second tomography. The
injected water and deuterated water can be seen as well as the movement
of the water displaced by deuterated water. Following these tomographies,
the remaining fluid in the syringes was injected into the samples as real-time
radiography took place.

Finally, a set of tomographies was acquired, with gels A and B injected

instead of water. They were injected first into dry soil samples using the same
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Figure 5.2.: The difference between two radiographs showing the change in
water and deuterated water between the two acquisitions. The
left sample shows water injected into dry soil, and the right shows
deuterated water injected into a wet soil sample, displacing water
further down the tube. The dark regions show the water, and the
light represent the deuterated water.
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three tomography sequence. A 20 minute pause was placed before the second
and third tomographies to allow the injected gels to diffuse and settle before
imaging to reduce motion artefacts as they sink through the soil. As before,
the tomography was followed by real-time radiograph series observing injection

of the remaining contents of the syringes.

The gel imaging was then repeated with soil samples that had received 1 ml
injections of water 24 hours earlier to wet the soil. It was observed that in the
previous gel experiment, the fluid had continued to move throughout each scan,
so further changes in technique were introduced to reduce motion artefacts by
minimising the scan duration. The exposure time for each projection was
reduced from 30 seconds to 10 seconds, cutting the scan time by nearly 3
hours. In addition to this, the projection acquisition order was changed to use
golden ratio decomposition (2.2.1). This meant that the sample was turned
further between each projection, lengthening the scan time slightly but causing
a reduction in motion artefacts after reconstruction since the projections are
collected out of order, and the position of moving objects in the sample can
be averaged. It also allows the number of projections used to reconstruct the
tomogram to be determined at the reconstruction stage. This means that the
trade-off between signal to noise ratio and motion artefacts can be evaluated
after the experiment is complete to find the optimum balance between image

quality and temporal resolution.

At the end of the experiment, the final sample was left in place for some
tomography speed tests. First, a sequential acquisition scan of 521 projections
with 1 second exposure was collected, followed by a golden angle decomposition
scan with 360 projections each using a 5 second exposure to inform further any
future experiments that might prioritise high-speed tomography over the signal
to noise ratio, either for temporal resolution or sample throughput. The impact
of the golden angle acquisition sequence on the scan time can be calculated by
subtracting the total exposure time by the total scan time and dividing by the
number of projections collected. The data from this experiment shows that,
on average, 5.74 seconds were added to the collection time of each projection
in addition to the exposure time in the sequential scan. In the golden angle
scan, an average of 14.98 seconds was required per projection in addition to the
exposure time. This significant time increase is best explained by the greater
sample rotation required but may also have contributing factors in the IMAT

control system configuration.
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The significance of this difference to the overall scan time is inversely pro-
portional to the exposure time. The difference between the two acquisition
schemes shows that the golden angle scan will always take longer for a given
number of projections and exposure time. This difference will be greater for
scans with lower exposure times, which are more likely where temporal res-
olution is critical and golden angle acquisition is considered. If the desired
number of projections is known, a golden angle scan will take longer and must
offset this disadvantage with the time averaging of projections. Depending
on the speed of the dynamic process being scanned, this may or may not be
worthwhile. The significant advantage of golden angle scans is the flexibility
afforded when the ideal number of projections is unknown. Provided that
sufficient projections are collected, the temporal resolution can be improved
upon at the reconstruction stage by discarding projections from the start or
end of the scan until the impact on the reconstructed image quality is deemed
too great. This could result in a shorter scan and better time resolution than
a sequential scan where the number of projections is fixed in advance.

For experiments where several scans are taken of similar samples, the best
approach could be to begin with a golden angle scan to determine a suitable
number of projections and then revert to sequential acquisition with that num-
ber of projections. This approach allows the optimum number of projections
to be used and minimises the overall scan time by sacrificing the option for
time averaging over the projections of each scan.

The significant time costs associated with collecting each projection (by ei-
ther acquisition scheme) mean that to get the best ratio of total exposure time
to total scan time, it is optimal to use fewer projections of greater duration.
Attempting to reconstruct from too few projections leads to undersampling
artefacts (2.2.2), limiting this trade-off. Iterative reconstruction methods give
better results with undersampled data than FBP, so it would be interesting to
do a comparative study into whether the image quality attainable in a given
scan duration can be improved by using fewer projections but a longer overall

exposure time.

5.2.2. Experimental methods

The full experimental details for the collection of the data discussed in the rest
of this chapter are given in 4.2.3, but a summary of the samples and scans will

be given here. Each neutron scan consisted of a tomography, followed by either
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water or deuterated water injection, followed by time series radiography and
then a second tomography. Samples were prepared with sand and soil, and
each of these materials had samples prepared with larger and smaller particle
sizes (table 4.3b). Pairs of samples were prepared with each of these four
growth media but without a seedling. One of each pair was initially scanned
dry and then received an injection of water, and the others were prepared wet
and were injected with deuterated water. Ten plant samples were prepared,
five in each type of soil. These were kept wet during preparation to ensure
plant growth and so were injected with deuterated water. For the complete
sample list, see table 4.3. The work discussed here begins after all the data
from these scans had been reconstructed and registered using the methods

described in section 4.3.

5.3. Segmentation and quantification of water in soil

and sand

5.3.1. Time series neutron radiography

The scan duration of a neutron tomography is far too high to capture the move-
ment of injected fluids within a sample. The movement of the fluid through
the sample would instead lead to motion artefacts if a tomogram were imme-
diately collected. After each injection, a series of radiographs were collected
instead. Using radiography rather than tomography improves the time resolu-
tion by two orders of magnitude at the expense of volumetric data. For each
sample, 720 images were collected with a 10 second exposure time. The total
time between the injection and the acquisition of the second tomogram was
around 2.5 hours for each sample.

Figure 5.3 shows the first and last radiographs taken of LargeSoild after
the deuterated water was injected. The first radiograph shows a bright region
within the soil where the deuterated water has just been injected. Over the
course of the scans, this area fades away to more closely match the surround-
ing area as the injected fluid diffuses through the sample. A slight reduction
in the neutron attenuation of the surrounding area can be seen in the final
radiograph, where the deuterated water has displaced the more strongly at-
tenuating water from the sample. The difference image also shows that the

seedling has drooped further over the scan duration.
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The leaves of
the seedling have sagged.

Deuterated water
injection site

The injected fluid
has dispersed.

Increasing the attenuation at the
injection site and decreasing it
in the surrounding area.

~ Region of higher
water density

14 mm

Figure 5.3.: The first and last radiographs taken of LargeSoil4 after deuterated
water was injected into the sample.
(a) The radiograph taken immediately after the injection of
deuterated water.
(b) The final radiograph, taken 2 hours and 24 minutes after the
injection.
(c) The difference between the first and last radiographs.
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5. Correlative imaging for water segmentation and quantification

Using these techniques, a great deal of information can be gained, such as
the rate that the fluid diffuses into the sand or soil and the depth it reaches
in a given time. Accurate quantification, however, remains difficult in only
two dimensions. The clearest solution to this is to use time resolved neu-
tron tomography as discussed in section 2.3.3.2, but other techniques such as
comparison to X-ray tomography data could provide interesting avenues for
further analysis and research without placing such stringent requirements on

the imaging capabilities of the neutron instrument.

5.3.2. Beam hardening correction

To further improve the image data analysis, beam hardening correction factors
for the water in the neutron scan can be calculated from the projection data.
The injected fluid can be isolated by taking the difference between the corre-
sponding pre- and post-injection radiographs of a sample. Assuming that, on
average, the water is mixed evenly within the soil or sand, the known geometry
of the sample tube can be used to calculate the path lengths through the slice
at different points. Without beam hardening effects, the neutron attenuation
should be linear with path length. If there is noticeable beam hardening, the
attenuation increase should diminish as the path length increases.

Figure 5.4 shows an image produced from the normalised projection data for
LargeDrySoil to allow for this analysis. The difference has been taken between
the pre- and post-injection radiographs leaving just the injected water. The
projections were then summed and cropped to a region of interest that shows
only the water. The path length can be calculated as a function of the horizon-
tal position since the inner diameter of the sample is known. This allows the
graph in figure 5.5 to be plotted, which shows the maximum attenuation as a
function of path length. The attenuation stays low for values with a short path
length then rises as the path length increases. While the path length is below
4 mm, other elements contribute to the attenuation, but above this point, the
relationship between path length and attenuation appears linear. The linear-
ity indicates that the injected water causes no significant beam hardening in
this dataset.

Figure 5.6 shows the same analysis applied to a different sample: SmallWet-
Sand. In this case, the results do not show the predictable linear increase of
attenuation with path length, but neither do they appear to show the curve ex-

pected in the case of beam hardening. Instead, this sample serves to illustrate
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5.3. Segmentation and quantification of water in soil and sand

Figure 5.4.: The ROI from the summed difference projections for the sample
LargeDrySoil.
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Sample attenuation as a function of path length

300

250

200

1501

Attenuation

100

0 | | | | | | ]
0 2 4 6 8 10 12 14
Path length (mm)

Figure 5.5.: The attenuation from figure 5.4 plotted against path length.
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5.3. Segmentation and quantification of water in soil and sand

Sample attenuation as a function of path length
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Figure 5.6.: Neutron attenuation through the fluid in the SmallWetSand sam-
ple as a function of path length.

how this method can fail when the fluid is unevenly distributed throughout
the sample. There are peaks and troughs in the curve and a more significant
difference between the two data points at any given path length. This mis-
match shows that the image data does not have a vertical line of symmetry at

the centre of rotation.

5.3.3. Independent processing of complementary modalities

By comparing the neutron tomograms collected before and after the injection
of a known quantity of fluid into a sample, not only can the fluid and its dis-
tribution be observed but also quantified. The addition of the complementary
X-ray data not only introduces new information but improves the accuracy of
measurements taken from the neutron data.

This will be demonstrated first with the LargeWetSand sample because the
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5. Correlative imaging for water segmentation and quantification

large sand is well resolved in the neutron data as well as the X-ray, and the
registration error of the wet sample is less than half that of the dry equivalent.
Figure 5.7 shows a representative slice from the sample. 5.7a shows the slice
from the initial tomogram, and 5.7b contains the same slice after the injection
of deuterated water has taken place. From this comparison, it can be seen
that the two slices are generally well-matched; the registration has aligned the
sample well between the two images, and the same sand particles can be seen
in the same position in each image. The clear difference that can be seen is the
addition of material filling the pore spaces between sand grains towards the top
of the sample in 5.7b. Despite nominally being a wet sample where deuterated
water is to be injected where water is already present, there does not appear to
be any water in the pre-injection image. The fact that the injected deuterated
water appears as a brighter (and therefore more highly attenuating) material
in the post-injection scan confirms that it has replaced air rather than water.
This is no surprise since the large channels between grains give the sand a
very low field capacity, and it is to be expected that over 95% of the water (by
volume) would drain away through the sand. Another feature of note is the
bright particles that can be seen in both scans, most notably in the bottom
left of the sample. These indicate that a small proportion of the sand grains is
composed of materials far more highly attenuating to neutrons than the rest

of the grains.

Figure 5.8 shows the absolute difference between the pre- and post-injection
version of slice 4402 shown in figure 5.7. This removes all the information
that is common to both images leaving only the differences and therefore
displaying them more clearly. The injected fluid remains and is shown with
greater contrast by the reduced visibility of the sand and sample tube. The
edges of both the sample tube and the sand grains remain faintly visible,
although not in the perpendicular direction, which indicates a very slight error

in registration.

In some slices, imaging differences are exposed by this, for example, in slice
8027, which is shown in figure 5.9. In this slice, there is less fluid to be seen
in the post-injection scan, but the slice does show one of the fiducial markers
and also shows how some of the sand grains are more strongly attenuating to
neutrons, and so appear far brighter than the others. Figure 5.10 shows the
difference between the pre- and post-injection scans and, as in the previously

shown slice, most of the sand and the sample tube are removed from the image.
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5.3. Segmentation and quantification of water in soil and sand

a) Pre-injection b) Post-injection
(a) j j

Figure 5.7.: Slice 4402 from the sample LargeWetSand.

Faint arcs can still be seen on some parts of the sample tube edge that show a
similar misalignment in the registration step, but interestingly there appears to
be greater variation in the marker and the bright sand grains between the two
images. It is to be expected that the materials in the sample that attenuate
most highly have the highest grey level and so show greater range when the
difference is taken. It is interesting that the more strongly attenuating grains
of sand remain in the difference image but also gain bright and dark lines on
their lower edge. This does not appear to be a product of beam hardening
or similar artefact mechanisms since there are no noticeable cupping or streak
artefacts around these grains. Similarly, the fiducial marker has a bright glow
at the edge, which partially corresponds to the observable misalignment but
also suggests that there is a small discrepancy between the two scans. This
may be a result of different artefacts in the two scans, as some streaking is
visible, particularly in the post-injection slice where the injected deuterated
water has increased the attenuation of the sample.

In the X-ray scan, the sand is shown at a far higher resolution, but the
water (where present) is not shown. Figure 5.11 shows the X-ray data for slice
4402 of LargeWetSand, which corresponds to the neutron data in figures 5.7
and 5.8. Figure 5.11a shows the original data after registration, but further
processing is then applied to prepare it for subsequent analysis. First, the

slice is binarised using a threshold then the binary image is cleaned using
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5. Correlative imaging for water segmentation and quantification

Figure 5.8.: The absolute difference between the pre- and post-injection images
of slice 4402.
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5.3. Segmentation and quantification of water in soil and sand

a) Pre-injection b) Post-injection
(a) j j

Figure 5.9.: Slice 8027 from the sample LargeWetSand.

erosion and dilation steps to remove small spots and holes from the image.
At this point, further analysis could be conducted on the X-ray data to learn
more about the sand or soil, and the X-ray data can be used to enhance and
therefore improve the analysis of the neutron data.

In the first case, this X-ray data could be used to measure a number of
properties of the growth media, including particle sizes, channel widths be-
tween particles or the particle-to-air ratio. This could be achieved by making
a circular selection just inside the inner ring of the sample to remove all data
apart from the growth medium and applying a separation algorithm to ensure
adjacent grains are not counted as one before particle analysis tools can be
applied to the data.

The simplest way to combine the X-ray data with its corresponding neutron
data is to use the binarised volume as a mask. This enhances the contrast
further and offers some correction for the neutron imaging limitations. The
difference image of slice 4402 from figure 5.8 is shown again in figure 5.12.
First in its original form and then with the binary X-ray image overlaid as
a mask. The mask is generally very well matched to the grains visible in
the neutron data and does a good job of removing most of the material that
is not the injected fluid in the pore spaces. Seeing the binarised X-ray and
neutron data combined draws attention to the noise that is present in the

neutron data. There are some discrepancies in the shapes of the grains between
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5. Correlative imaging for water segmentation and quantification

Figure 5.10.: Taking the difference between the pre- and post-injection images
for slice 8027 of LargeWetSand. The contrast of this figure has
been artificially enhanced. The original can be viewed as figure
B.1.
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5.3. Segmentation and quantification of water in soil and sand

(a) X-ray data for slice 4402 (b) The binarised slice

Figure 5.11.: X-ray data for slice 4402 of LargeWetSand. b5.11a shows the
data after registration. It is converted to a binary image using a
threshold to produce 5.11b, which can then be utilised for further
analysis.

the two modalities. The close match of the sample tube between the two
modalities suggests that this is not a sign of poor registration, and therefore
two possibilities remain. Either some of the grains have shifted as the sample
has been transferred between the two beamlines, or the neutron image is not
only less precise but also less accurate in resolving the edges of the grains. This
is plausible because even the deuterated water scatters neutrons, although
to a lesser extent than ordinary water, and so there will be some imaging
artefacts causing higher attenuation of the fluid to spread into the grains in

the reconstructed image.

Figure 5.13 shows the addition of a similar mask to slice 8027 of the sample.
This gives a similar result but particularly illustrates how the mask can remove
the more highly attenuating grains within the sand that would otherwise show
up with the fluid in the neutron difference image and impact the accuracy of
subsequent measurements taken from the volume data.

The impact of small registration errors has been shown in the preceding
figures. These errors have not been sufficient to impede the analysis discussed
so far, though they could certainly affect the quantitative measurements yet

to be taken. Some of the samples were registered with far greater errors (as
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5. Correlative imaging for water segmentation and quantification

(a) Without the X-ray mask

(b) With the X-ray mask

Figure 5.12.: The difference (before and after the injection of deuterated water)
image of slice 4402 shown before (a) and after (b) a mask is
applied.
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5.3. Segmentation and quantification of water in soil and sand

(a) Without the X-ray mask

(b) With the X-ray mask

Figure 5.13.: The difference (before and after the injection of deuterated water)
image of slice 8027 shown before (a) and after (b) a mask is
applied. The contrast of this figure has been artificially enhanced.
The original can be viewed as figure B.2. 137



5. Correlative imaging for water segmentation and quantification

(a) A slice taken from above the sand showing
the misalignment of two fiducial markers,(b) A slice showing the poor alignment of the
the syringe needle and the sample tube. X-ray mask to the neutron data.

Figure 5.14.: A demonstration of the impact of poor registration. These slices
were taken from sample LargeDrySand where the fiducial reg-
istration error between the post-injection neutron scan and the
other scans was approximately 1 mm.

shown in figure 4.13), and these do prevent any meaningful results from being
drawn from the analysis presented. Figure 5.14 illustrates this with slices from
LargeDrySand, which along with LargeWetSoil, showed some of the greatest
fiducial registration errors in this experiment. This illustrates the need for
consistently accurate methods of registration. The pragmatic solution in this
instance is to redo the registration of the samples by hand if the registration
error exceeds a given threshold that would mark them as useless for further

analysis otherwise.

In the case of the LargeWetSand sample shown in the examples so far, the
sand grains can be identified in the neutron data as well as the X-ray data.
This doesn’t hold true in the samples more generally. Figure 5.15 shows the
pre- and post-injection versions of slice 1851 from the sample SmallSoil4. This
sample contains a seedling grown in soil and the smaller particle size of the
growth medium combined with the substantially higher water content. As
a result, it is far harder to make out the soil grains in the neutron data.
That being said, the increase in water concentration between the scans can be

seen by eye and even in the scan taken after the injection, the inside of the
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5.3. Segmentation and quantification of water in soil and sand

a) Pre-injection b) Post-injection
(a) j j

Figure 5.15.: Slice 1851 from the sample SmallSoil4.

sample tube does not appear as a homogeneous region solely dominated by
the attenuation of water. The difference between the two images is shown in
figure 5.16. The sample shows an even scattering of dark spots throughout the
sample that were not visible in either scan alone. This would appear to be the
soil particles showing as a lack of change between the two scans. The addition
of an X-ray mask in figure 5.17 shows that the soil particles observed in the
X-ray data are far larger than the dark spots seen in figure 5.16. It is likely
that neutron scattering from the water, and to a lesser extent the deuterated
water, in the sample is causing the soil particles to appear far smaller than
they otherwise would, blurring the neutron information. This is supported
by the difference that can be seen between the blurred edge at the inner wall
of the sample tube in figure 5.16, which appears far sharper when the X-ray
mask is added to the neutron data.

It can also be seen with this sample that the sample tube is removed far more
effectively in the differential image than in the examples from the LargeWet-

Sand sample, primarily due to the more accurate registration of this sample.

5.3.4. Joint processing of complementary modalities

We propose an alternative approach to combining X-ray and neutron data for

analysis to use both modalities to inform the reconstruction of the neutron
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5. Correlative imaging for water segmentation and quantification

Figure 5.16.: The difference between slice 1851 of the pre- and post-injection
neutron scans of SmallSoil4. The contrast of this figure has been
artificially enhanced. The original can be viewed as figure B.3.
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5.3. Segmentation and quantification of water in soil and sand

Figure 5.17.: The difference between the pre- and post-injection scans of slice
1851 from SmallSoil4 with an X-ray mask overlaid. The contrast
of this figure has been artificially enhanced. The original can be
viewed as figure B.4.
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5. Correlative imaging for water segmentation and quantification

projection data. For this method, a model-based iterative reconstruction algo-
rithm was applied to neutron data with the addition of a mask produced from
the corresponding X-ray data. This new method uses the difference between
the pre- and post-injection neutron scans to isolate the injected fluid content
and reconstruct it with greater precision through the addition of the mask.
Figure 5.18 shows the complete processing pipeline from data collection to the

analysis presented here.

To reconstruct the neutron data using additional information from the cor-
responding X-ray data presupposes that the two modalities are well aligned.
The methods developed so far all assume registration is applied to the vol-
ume data after reconstruction rather than the projection data. In order to
use the registration tools already developed and avoid having to register the
projection data, a slice from the reconstructed data is used as the input to
the registration algorithm. An iterative reconstruction algorithm operates by
alternately back-projecting then forward-projecting the data between the re-
constructed image and the projection images [Willemink and Noél, 2019]. By
inputting data that has already been reconstructed and registered and remov-
ing the back-projection step from the first iteration, new requirements for the
registration can be avoided. The X-ray mask can also be entered in the recon-
structed image space and ensures that the locations not selected by the mask

will have a fixed value of 0 throughout the iterative reconstruction process.

Since there is no trusted benchmark data to evaluate this method against,
its impact was first tested through simulation and then applied to real data.
A simulated slice was created with wet and dry versions to represent the pre-
and post-injection scans and a corresponding binarised mask, such as could
be created from X-ray data (fig 5.19). So that the simulated neutron slice
reflects the lower image quality of neutron data compared to X-ray data, the
simulated neutron slice is scaled down by a factor of ten then returned to its
original dimensions before Poisson noise is applied. By forward projecting,
these slices can be converted to sinograms in preparation for the subsequent

reconstruction tests.

A benchmark result is produced from the simulated scan data by recon-
structing the pre- and post-injection data and then taking the difference be-
tween the reconstructed results applying the mask afterwards to isolate the
injected water content. The new algorithm is then implemented by recon-

structing the difference between the pre- and post-injection scans with the
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Sample
Inject fluid
A 4 A 4
o Collect neutron projections Collect neutron projections
Collect X-ray projections L S
(pre-injection) (post-injection)
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Figure 5.18.: The multi-modal data processing approach applied to this data
set. The processing from sample to registered tomograms is cov-
ered in section 4.3. This chapter presents all subsequent process-
ing from that step.
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5. Correlative imaging for water segmentation and quantification

Figure 5.19.: The simulated slice: wet, dry and binarised

mask applied at each step of the iterative reconstruction. Figure 5.20 shows
the resulting slices produced by each of these approaches.

To compare the quality of these results, they are subtracted from the original
simulated slice (at full resolution), which gives an error map. Figure 5.21
shows the error maps produced by each method. The benchmark result shows
rings around each marker, resulting in a far higher error than that of the new
algorithm being evaluated. Taking the norm of the error maps makes this a
quantitative result. The error in the benchmark test is found to be 13.6 and
in the new method, 7.8. The simulation data suggests that the new method
gives more precise results for accurate reconstruction and segmentation of the
injected fluid, so the method was subsequently tested with real data. The full
code for the simulation is included in A.4.

For comparability with the previous section, this method will be demon-
strated with slice 4402 from the sample LargeWetSand. Figure 5.7 shows the
neutron data that was used as an input to the reconstruction algorithm, and
figure 5.11b shows the mask. As in the case of the simulation, the reconstruc-
tion was completed using the 2D CUDA implementation of the SIRT algorithm
|Gilbert, 1972] from the ASTRA Toolbox [Van Aarle et al., 2016].

Figure 5.22 shows both the pre- and post-injection images for slice 4402
after reconstruction with 150 iterations of the SIRT algorithm and the X-ray
mask. The noise in the neutron data is significantly reduced by using an
iterative reconstruction algorithm, and the mask ensures that only the pore
spaces between sand grains are shown in the reconstructed data. The difference
between these two images can be taken (figure 5.23), which shows the injected

fluid as in figure 5.12b.

Including the mask in the reconstruction using our new method rather than

144



5.3. Segmentation and quantification of water in soil and sand

Figure 5.20.: The reconstructed slices after masking. The left image shows the

benchmark result where the simulated pre- and post-injection
data was reconstructed separately, and the mask applied to the
difference between the reconstructions. The right image shows
the new method where the difference data was reconstructed with
iterative masking.

Figure 5.21.: The error maps of the reconstructed slices after masking. The left

image shows the benchmark result where the simulated pre- and
post-injection data was reconstructed separately, and the mask
applied to the difference between the reconstructions. The right
image shows the error produced with the new method where the
difference data was reconstructed with iterative masking. The
contrast of this figure has been artificially enhanced. The original
can be viewed as figure B.5.
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(a) Pre-injection (b) Post-injection

Figure 5.22.: Slice 4402 from the sample LargeWetSand reconstructed used the
SIRT algorithm with an X-ray mask. The contrast of this figure
has been artificially enhanced. The original can be viewed as
figure B.6.

applying it afterwards makes a subtle but significant difference. Figure 5.24
shows how the regions of injected fluid appear brighter towards the centre
when the mask is not applied until afterwards. In figure 5.23, by comparison,
the regions of injected fluid appear more consistent in grey level with brighter
edges at the boundaries of the grains. There is also less glow around the mask
from the more highly attenuating grains when the mask is applied during
reconstruction.

The simulation conducted shows that this novel method of iteratively recon-
structing registered data using a mask improves the quality of the neutron data
by taking advantage of the higher quality X-ray data. Although this claim is
harder to verify in experimental data, the simulation provides strong evidence
of the value of this method and the experimental data shows that it has some

impact, despite the accuracy of this change being difficult to validate.

5.3.5. Quantification

After applying the techniques described above, one of the most common appli-
cations would be to analyse the injected fluid, particularly by quantification.

Using the difference between the pre- and post-injection scans makes this very
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Figure 5.23.: The absolute difference between the pre- and post-injection im-
ages of slice 4402 when reconstructed using the SIRT algorithm
with an X-ray mask. The contrast of this figure has been artifi-
cially enhanced. The original can be viewed as figure B.7.
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Figure 5.24.: The absolute difference between the pre- and post-injection im-
ages of slice 4402 when reconstructed using the SIRT algorithm
with the X-ray mask applied afterwards. The contrast of this
figure has been artificially enhanced. The original can be viewed
as figure B.8.
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simple, and the iterative masked reconstruction method from section 5.3.4
increases the accuracy of the analysis techniques beyond what they would
otherwise be.

This section continues to use the LargeWetSand sample to demonstrate the
process. The sample received a 0.25 ml injection of D20, and this is what is
isolated by taking the difference between the pre- and post-injection scans and
applying a soil mask based on the X-ray data. All data outside the sample tube
can be removed since this information is not helpful to our analysis. By using
the histogram analysis tools in Fiji, the number of pixels at each grey level
and the total attenuation (sum of all grey levels) can be obtained. If we accept
the assumptions that: all 0.25 ml of injected DO is within the field of view,
all the attenuation in the data is from the injected D5O, and the attenuation
in a voxel is directly proportional to the amount of D2O it contains, we can
infer that the total attenuation of the data corresponds to the full quantity of
injected fluid. From this, the volume of fluid in an individual voxel at a given
grey level can be calculated using equation 5.1, where the volume of fluid in
a voxel V,, is equal to the product of the total volume, V7, and the grey level,
G, divided by the total attenuation, Arp.

(5.1)

Given a pair of calibration values from this formula, a calibration can be
interpolated and applied to the data. Figure 5.25 shows a calibration bar
added to slice 4724 to illustrate this result.

5.4. Conclusions and future work

This chapter has proposed a new method to evaluate how the data collected
in the experiments of the preceding chapter can be processed for subsequent
analysis, in particular, a technique that can be applied to take the best advan-
tage of having multi-modal data and multiple neutron scans to get the best
possible results. These techniques also demonstrated the importance of good
registration, as minor errors in registration often introduced significant errors
when these techniques were being tested.

The introduction of a syringe pump at IMAT allows a variety of new exper-

iments to be planned. This work provided the first trial data with the pump
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Figure 5.25.: A calibrated slice (4724) with a calibration bar to show the re-
lationship between the amount of fluid in a voxel (in pico-litres)
and the grey level.
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and demonstrated subsequent processing tools to show the injection of the
fluid and its diffusion through a series of radiographs collected over a suitable
period. In particular, the power of having pre- and post-injection scans that
can be compared to segment a known quantity of fluid from the data easily
has been demonstrated. The effectiveness of golden angle acquisition for max-
imising image quality within limited scan time was evaluated and was found
to help determine optimal scan parameters for a given sample but less efficient
in a batch of scans after the scan parameters have been chosen. In particular,

it is useful when the flow rate of fluid within the sample is unknown.

Having scans with and without the injected fluid makes various processing
techniques possible since the segmentation can be completed so quickly and
accurately by taking the difference between the scan data. The possibility of
taking advantage of this to correct for beam hardening in the injected water
was considered. Tests showed that this was only viable when there was high
enough saturation of the soil for water to be distributed throughout the sample
and where this was the case, little evidence of beam hardening was found. This

technique could be helpful to scans with different sample parameters.

Steps were also taken to use the X-ray data to improve the neutron data,
introducing it either during or after reconstruction as a mask. The larger sand
grains were visible in both modalities, which made them ideal samples for ini-
tially testing these processing routines before applying them to the samples
with smaller sand or soil that could not be visually verified so easily. The
addition of a mask after registration imposed the grain boundaries from the
X-ray data onto the neutron data and was shown to help remove the particles
allowing better segmentation of the fluid in the pore spaces. The introduc-
tion of iterative reconstruction methods resulted in a neutron tomogram with

substantially lower noise.

The iterative reconstruction algorithm was introduced because it offered a
method for including the X-ray mask data during the reconstruction of the neu-
tron data rather than applying it to the reconstructed volume. This method
led to more accurate results: when the mask was applied after reconstruction,
the attenuation due to fluid in the pores between the sand grains was highest
at the centre of the pores. When the mask was used during reconstruction, the
attenuation appeared more evenly distributed within the pores but was high-
est at the grain boundaries. These results were seen both in experimental and

simulated data, and the improved fit with the “true data” that can be known
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in the simulation gives confidence in the improved accuracy of this method.
The next steps to develop this processing pipeline would be to attempt
a more thorough segmentation and quantification routine with appropriate
calibration to determine how accurately quantities of fluid can be measured
within a sample. More accurate estimates of water concentration could, in

turn, allow more accurate beam hardening correction if necessary.
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This work has aimed to develop multi-modal methods that can combine X-
ray and neutron imaging techniques to scan complex samples that cannot
fully be resolved using either technique alone. In particular, root-soil systems,
including the water dynamics within. The work was focused, therefore, on

developing suitable strategies for image acquisition and image analysis.

Chapter 3 presented initial simulations designed to evaluate the impact of
the quantity and distribution of fiducial markers on registration accuracy and
then a set of initial trial scans. Strategies for marker distribution were de-
termined from the simulation results. The use of simulation to optimise the
placement of fiducial markers rather than evalute the placment of markers has
not been observed in the literature however the findings of this simulation did
match well to commonly accepted best practice. The impact of these opti-
misations on registration accuracy was not seen in practice as the dominant
source of registration error was the accurate localisation of the markers. The
need for a more suitable fiducial marker material was the most important from
a list of lessons to apply to subsequent experiments.

Chapter 4 contains the follow-up experiment that built on the previous
results of Chapter 3. Borosilicate was selected as a suitable material for fiducial
markers, and a new set of scans were conducted. A large amount of data was
generated in this study, making manual processing and registration of the
data prohibitively time-consuming. Software tools were therefore developed
to (partially) automate the process. In particular a stack concatenation tool
and a sphere fitting tool to automatically locate the fiducial markers. The
accuracy of these tools and the subsequent registration was then evaluated.
The sphere fitting algorithm was shown to be partially successful but with
limitations that led to a noticeable decrease in registration accuracy in some
instances. This presents an opportunity for future work to build upon it and
find ways to ensure that accurate registration of scans does not require lengthy

and repetitive manual processing to complete but create an automated tool
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6. Final conclusions and future work

that eliminates human error and is scalable for experiments with large numbers

of samples to scan.

Chapter 5 assumes the successful collection and registration of correlative X-
ray and neutron scans of a sample and discusses subsequent processing strate-
gies. In particular, a processing scheme is proposed to take advantage of a
syringe pump. This work was the first to introduce a syringe pump at IMAT,
and many future experiments could take advantage of this equipment. The
collection of neutron scans before and after the injection of a known quantity
of fluid meant that the fluid could easily be isolated in the reconstructed data
by taking the difference between the two scans. This dual scanning for easy
segmentation enables new approaches to beam hardening correction and sim-
plifies the calibration required for quantification. In addition to this, the use
of higher resolution X-ray data to improve the quality of the complementary
neutron data was explored. Iterative reconstruction of the neutron data us-
ing a mask produced from the X-ray data improves the image quality of the
neutron data. This was first demonstrated with simulated data, and similar

improvements were seen using actual scan data.

This project has demonstrated many of the complexities involved in regis-
tration of complementary CT data produced in different instruments, and the
further difficulties in automating the process. In the context of scientific re-
search, such as this project is primarily concerned with, every experiment may
be different and experiments are often conducted with low numbers of samples
or just a single sample. In theses cases, manual registration can be completed
and the results of chapters 3 and 4 indicate that this is likely to give a more
accurate result as the imperfections of human error are outweighed by the
limitations of the automated methods presented in this work. In industrial or
medical contexts, larger sets of samples and greater uniformity between scans
is to be expected and so in these environments automation of the registration

process remains important.

One avenue for further development of automated registration algorithms
would be to use machine learning tools either identify markers. There is plenty
of work in two dimensional image classification to build upon and the applica-
tion of machine learning to CT data is already being explored for some medical
applications. One of the key requirements for these methods is a large library
of training data which does not currently exist for correlative X-ray and neu-

tron CT data and would not be easy to produce. Simulated datasets could
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provide a solution, particularly as a supplement to experimental data, but
these are difficult to produce with both the accuracy and variability required
to properly train an algorithm.

If further work is to be done into registration of complementary CT datasets,
it is key that beamlines come up with standardised approaches for applying
fiducial points to samples so that a library of datasets can be built up to
use for the development of general registration algorithms. This will simplify
both experimental design and subsequent data processing, even if that involves
manual rather than automated registration. The work presented in chapters
3 and 4 gives a suitable framework for the use of borosilicate fiducial markers
that could be used in this capacity.

In the discussion of multi-modal imaging in section 2.2.3, it was noted that
there is an increasing trend towards dedicated neutron and X-ray imaging in-
struments where both modalities can be scanned without having to transfer
the sample between scanners. Such an approach has a range of benefits in-
cluding minimum or no delay between scans for time sensitive samples and
processes, no physical disturbance to the sample between scans and either the
simplification or avoidance of registration. This work has sought to develop
techniques and tools to ensure comparable results can be achieved without
using a combined beamline and it has been shown that sub-voxel registra-
tion accuracy can be achieved allowing useful comparison of data collected at
separate facilities. It is however clear that this can be produced more quickly,
easily and reliably by using a dedicated multi-modal beamline and this is likely
to remain the case until a reliable tool for at least semi-automated sub-voxel
accurate registration can be presented. There remain some advantages to us-
ing separate instruments, in particular where specific beamline capabilities are
desirable for a given experiment such as monochromatic X-ray imaging which
is usually only available at a synchrotron beamline.

The conclusions learned throughout this work and the tools developed in it
can inform the experimental design and image processing routines for future
experiments that will rely on correlative neutron and X-ray imaging. While in-
dividual experiments often have unique requirements, this work offers a frame-
work and toolset that can support the design of subsequent investigations and

maximise their potential.
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A. Code Listings

A.1. Marker simulation

A.1.1. fidtest.py

import numpy as np

from csvReader import writeResultstoCSV , readResultsfromCSV

from fidlib import genPoints, initFidGen, worker, TREmR, Cfim,
getAverageTREmR

def findbestfidforallN ():
for n in range(Nmin, Nmax+1, 1):
N =n
fiducials = pool.map(worker, ((seeds, x, N, fidpoints,
testpoints)
for x in range(seeds.shape[0])))
TREmRnlist = list (map(TREmRIlister, fiducials))

if plotting:
plt.plotrange (TREmRnlist, N)

print ("N = %d" % N)
maxIn = TREmRnlist.index (max( TREmRnlist) )
print (TREmRnlist [maxIn|)

poorresults.append(fiducials [maxIn].T)
minIn = TREmRnlist. index (min( TREmRnlist) )

print (TREmRnlist [ minIn])
results .append(fiducials [minIn].T)

def TREmRIlister(x):
return TREmR(x, testpoints)

def AverageTREmRIister (x):
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return getAverageTREmR (x, fidpoints, testpoints)

if name — " main

n.
tubeheight = 80

radius = 15

rings = 4

anglestep = 10
heightstep = 10

global N
Nmin = 4
Nmax = 16

plotting = 1
quicktest = 0
readonly =1
stats = 0

# Set plotting to true to produce graphs
# Set quicktest to true to significantly reduce N,
# precision and computational time.

# Set readonly to skip simulation and use csv data

if plotting:
import plotting as plt

if quicktest:
anglestep = 36
heightstep = 20
Nmin = 4

Nmax = 5

if (plotting or stats or not readonly):
fidpoints , testpoints = genPoints(radius, tubeheight,
rings ,
anglestep , heightstep)
if plotting:
plt.plot (fidpoints , radius, tubeheight)
plt.plot (testpoints, radius, tubeheight)

if not readonly:

import multiprocessing as mp

nCore = mp.cpu_count ()
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A.1. Marker simulation

pool = mp.Pool(nCore)

results = []

poorresults = []
seeds = initFidGen(fidpoints, tubeheight, heightstep)

findbestfidforallN ()

writeResultstoCSV (results, ’'results.csv’)
writeResultstoCSV (poorresults , ’poorresults.csv’)
csvResults = []
poorcsvResults = |[]
cfimRMS = []
csvResults = readResultsfromCSV (csvResults, ’'results.csv’,

Nmin, Nmax)

poorcsvResults = readResultsfromCSV (poorcsvResults, ’

poorresults.csv’,
Nmin, Nmax)
if plotting:
for x in range(0, NmaxNmin+1, 1):
plt.plotfid (csvResults[x]|, radius, tubeheight, x+Nmin,

1)
plt.plotfid (poorcsvResults [x], radius, tubeheight, xt
Nmin, 0)

cfimList = np.zeros(x+4)
for i in range(x+4):

cfimList [x] = Cfim (i, csvResults[x], testpoints)
cfimRMS . append (np. sqrt (np.mean(np.square (cfimList))))

TREmRIist = list (map( TREmRIister, csvResults))

plt . plotMinAvgTRE (Nmin, Nmax, TREmRIist)
plt . plotAvgMarkerContr (Nmin, Nmax, cfimRMS)
print (TREmRIist )

if stats:
if not plotting:
TREmRIist = list (map(TREmRIister, csvResults))
print (TREmRIist )
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Nset = np.arange (Nmin, Nmax+1)
AvgTREmRIist = list (map(AverageTREmRIister, Nset))
print (AvgTREmRIist)

A.1.2. fidlib.py

import numpy as np

from numpy import linalg as la

tiny = 0.000001

def findCentroid (fiducials):

centroid = np.divide (np.sum(fiducials , axis=1), fiducials.
shape[1])
return centroid.reshape(centroid.shape[0], —1)

def findInertiaMatrix (fiducials):
a = np.zeros (shape=(3, 3))

a0, 0] = np.sum(np.square(fiducials[[1, 2], :]))

al[l, 1] = np.sum(np.square(fiducials[[0, 2], :]))

a2, 2] = np.sum(np.square(fiducials[[0, 1], :]))

a0, 1] = a[l, 0] = —np.sum(np.prod(fiducials[[0, 1], :], axis
=0))

al[0, 2] = a[2, 0] = —np.sum(np.prod(fiducials[[0, 2], :], axis
~0))

al[l, 2] = a2, 1] = —np.sum(np.prod(fiducials[[1, 2], :], axis
~0))

return a

def perpDist(a, b, c):
ab = np.repeat (np.subtract(a, b.T), c.shape[0], axis=0)
cb = np. tile (np.subtract(c, b), (a.shape[0], 1))
cross = np.cross(ab, cb)
top = la.norm(cross, axis=1)

return np.divide (top, la.norm(cb))

def TREm(r, fiducials):
# not optimised for wuse with TREmR!!!
r = np.reshape(np.asarray(r), (1, 3))
centroid = findCentroid (fiducials)
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A.1. Marker simulation

inertiaMatrix = findInertiaMatrix (fiducials)

eigval , axes = la.eig(inertiaMatrix)

f = perpDist(fiducials , centroid, (centroid + axes))**2
d
f = np.mean(np.reshape(f, (=1, 3)), axis=0)

df = np.divide(d, f)

TREm = (1 + np.sum(df)/3) / (fiducials.shape[l]—2)
return TREm

perpDist (r.T, centroid, (centroid + axes))**2

def TREmR(fiducials , testpoints):
centroid = findCentroid(fiducials)

inertiaMatrix = findInertiaMatrix (fiducials)
eigval , axes = la.eig(inertiaMatrix)
pointCs = centroid + axes

f = perpDist(fiducials.T, centroid, pointCs)**2
f = np.mean(np.reshape(f, (—1, 3)), axis=0)
dvals = perpDist(testpoints, centroid, pointCs)*x2
drm = np.mean(np.reshape(dvals, (—1, 3)), axis=0)
if (np.count nonzero(f) < 3):
f[f = 0] = tiny
df = np.divide (drm, f)
return (1 + np.sum(df)/3) / (fiducials.shape[l]—2)

def Cfim(i, fiducials, testpoints):
ifid = np.delete(fiducials, i, axis=1)
return (TREmR(ifid , testpoints) — TREmR(fiducials , testpoints)
)

def Ccpm(p, fiducials, testpoints):
for x in np.arange (0, fiducials.shape[l]):
if (np.all(p = fiducials[:, x])):
return —5
pfid = np.column_ stack ((fiducials , p))
return (TREmR(fiducials, testpoints) — TREmR(pfid, testpoints)
)

def initCcpm(p, fiducials, testpoints):
for x in np.arange (0, fiducials.shape[l]):
if (np.all(p = fiducials[:, x])):

return —5
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pfid np.column _stack ((fiducials , p))
return (TREmR(pfid, testpoints))

def initFidGen (fidpoints , tubeheight, heightstep):

size

fidpoints .shape|[0]
x = tubeheight//heightstep + 1
y = fidpoints [0:x]

repeats = np.arange(size —1, size —(x+1), —1)
i = np.repeat(y, repeats, axis=0)
j = np.array ([[0, 0, O]])
for x in repeats:
j = np.concatenate ((j, fidpoints[size—x:size]), axis=0)
j = np.delete(j, 0, axis=0)
seeds = np.concatenate ((i, j), axis=1)

return np.reshape(seeds, (—1, 3, 2), order="F’)

def optFid(fiducials, N, fidpoints, testpoints):
# Add the best possible fiducial points up to N points
while (fiducials.shape[l] < N):
if (fiducials.shape[l] = 2):
potentialFid = np.apply along axis(initCcpm, 1,
fidpoints ,
fiducials ,
testpoints)
else:
potentialFid = np.apply along axis(Ccpm, 1, fidpoints,
fiducials ,
testpoints)
fiducials = np.column stack((fiducials ,
fidpoints [np.argmax (
potentialFid)]))

evalFid = np.zeros(N)
prevMin = —1
while (1) :
for i in range(fiducials.shape[l]):
evalFid[i] = Cfim (i, fiducials, testpoints)
fiducials = np.delete(fiducials , np.argmin(evalFid), 1)
potentialFid = np.apply along axis(Ccpm, 1, fidpoints,
fiducials , testpoints)
fiducials = np.column_stack ((fiducials ,

fidpoints [np.argmax(
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def

def

A.1. Marker simulation

potentialFid)]))

if np.argmin(evalFid) = prevMin:
break
prevMin np.argmin (evalFid)

return fiducials

genPoints (radius, tubeheight, rings, anglestep, heightstep):
# arange(start, end, stepsize)

angle = np.arange (0, 360, anglestep) * (np.pi/180)

height = np.linspace (0, tubeheight, tubeheight//heightstep+1)

radpoints = np.stack ((radius*np.cos(angle), radius*np.sin(
angle)), axis=1)
fidpoints = np.column _ stack ((np.repeat(radpoints, height.size
axis=0),

np.tile (height , angle.size)))

testRadii = np.linspace (0, radius, rings)
testAngles = 360/testRadii[1:]
testpoints = np.column_ stack ((np.repeat(np.array ([[0., 0.]]),
height . size , axis=0), height))
for x in range(rings—1):
angle = np.arange(0, 360, testAngles[x]) * (np.pi/180)
angles = np.stack ((np.cos(angle), np.sin(angle)), axis=1)
testpointsXflat = testRadii[x+1] % angles
testpointsX = np.column_ stack((np.repeat(testpointsXflat ,
height . size , axis=0),
np. tile (height , angle.size))
)
testpoints = np.concatenate ((testpoints , testpointsX),
axis=0)

return fidpoints, testpoints

worker (arg) :
seeds, i, N, fidpoints, testpoints = arg

return optFid(seeds[i, :, :], N, fidpoints, testpoints)

getAverageTREmR (N, fidpoints, testpoints):

TREmRIist = []
for i in range(500000):
good = False # Test to ensure points are mnot co—linear
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while not good:

fidset = np.random.choice(len(fidpoints), N, replace=
False)

if not (np.any(np.all(fidpoints|[fidset] = fidpoints]|
fidset |[0, :],

axis=0)[0:2])):
good = True
TREmRIist . append (TREmR( fidpoints [fidset |.T, testpoints))
print (min( TREmRIist) )
print (max(TREmRIist ) )
return np.mean( TREmRIist)

A.2. Stack concatenation

from ij import IJ, ImagePlus, ImageStack

from ij.plugin import ImageCalculator, Concatenator

from

.

j import WindowManager as WM

from ij.measure import Measurements, Minimizer, UserFunction,

CurveFitter

from ij.gui import GenericDialog

import random

import datetime

initParams = []

def

def
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printTime () :
now = datetime.datetime.now ()

print (now)

stackSelectionDialog () :
if (WM. getImageCount () < 2):
print ("There should be two image stacks to concatenate.\
Please open both and try again.")
exit ()
gd = GenericDialog(’Select stacks to concatenate’)
imageTitles = [WM. getImage (id).getTitle () for id in WM
getIDList () ]
gd.addChoice ("Lower volume", imageTitles, imageTitles[0])
gd.addChoice ("Upper volume", imageTitles, imageTitles[1])
gd.showDialog ()
if gd.wasCanceled () :



def

def

print ("User canceled the dialog!")

return
titlel = gd.getNextChoice ()
title2 = gd.getNextChoice ()
impl = WM. getImage(titlel)
imp2 = WM. getImage (title2)

return impl, imp2

meanDiff (u, v):

if ((u< 1) or (v<1)):
return float (’'Inf’)

if ((v > 1990) or (u > 1990)):
return float (’'Inf’)

a = volumel. getProcessor (u)

b = volume2. getProcessor(v)
impl = ImagePlus()
imp2 = ImagePlus ()
impl.setProcessor (a)
(b

)

imp2.setProcessor

A.2. Stack concatenation

imp3 = ImageCalculator () .run("Subtract create", impl, imp2)

sumabs = sum([abs(i) for i in imp3.getProcessor().getPixels ()

1)

return sumabs

meanDiffsort (x):

return meanDiff (x, initvol2)

class funcl (UserFunction):

def userFunction (self, params, x):

return meanDiff (int (params[0]), int(initParams/[1]))

class func2 (UserFunction):

f1 =

f2

def userFunction (self, params, x):

return meanDiff (int (params[0]), int(params[1]))

funcl ()
func2 ()
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def findJoin(voll, vol2):
print ("Looking for matching slice...")
printTime ()
stacksize = voll.getSize ()
initParaml = [int(stacksize*0.6) ]
initvol2 = 200
initDiff = float(’Inf’)
step = 10

print ("Searching for local minima")
printTime ()

for i in range(int(stacksize % 0.6), stacksize, step):

meanDiffi = meanDiff (i, initvol2)
if meanDiffi < initDiff:
if (i — step = initParaml[—1]) or (i = initParaml
[-1]):
initParaml[—1] = i
else:

initParaml .append (i)
initDiff = meanDiffi

if len(initParaml) > 3:

initParaml = initParaml|—3:]

mltest = float(’Inf’)
mltestresult = []

print ("Optimizing for a fixed slice")
printTime ()
for i in initParaml:
global initParams
initParams = [i, initvol2]
ml = Minimizer ()
ml.setFunction (f1, 1)
ml.setExtraArrayElements (1)
ml.setParamResolutions ([1.0])
mlstatus = ml.minimize (initParams, [10])
mlresult = ml.getParams ()

mlvalue = ml.getFunctionValue ()
if mlvalue < mltest:

mltest = mlvalue

mltestresult = mlresult
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def

A.2. Stack concatenation

print ("Optimizing with 2 free slices.")
printTime ()
m2initParams = [mltestresult[0], initvol2]

m2 = Minimizer ()

m2. setFunction (f2, 2)

m2.setParamResolutions ([1.0, 1.0])

m2status = m2. minimize (m2initParams, [10, 10])

print ("Corresponding slices found")
printTime ()

m2results = m2.getParams ()

vollend = int(m2results [0])

print ("Voll end: {}".format(vollend))
vol2start = int(m2results|[1])

print ("Vol2 start: {}".format(vol2start))

return vollend, vol2start

reduceSubStacks (impl, imp2):
voll = impl.getImageStack ()
vol2 = imp2.getImageStack ()
vollend, vol2start = findJoin(voll, vol2)
print ("Removing overlap")
printTime ()
IJ .run(impl, "Slice Remover",
"first={} last={} increment=1".format(vollend + 1, voll
.getSize()))
IJ .run(imp2, "Slice Remover",

"first=1 last={} increment=1".format(vol2start — 1))

calibrateLevels (impS1, impS2):

print ("Starting slice calibration")
printTime ()

voll = impS1.getImageStack ()

vol2 = impS2.getImageStack ()

impl = voll.getProcessor(voll.getSize())
imp2 = vol2.getProcessor (1)

regions = 0

rangeMeans = 0
vollMeans = []
vol2Means = []
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stdDev = max(impl.getStats () .stdDev, imp2.getStats().stdDev)

print (stdDev)

print ("Searching for sample areas")
printTime ()
while (regions < 20) or (rangeMeans < stdDev * 3):
x = random.randint (0, voll.getWidth () —10)
y = random.randint (0, voll.getHeight ()—10)
impl.setRoi(x, y, 20, 20)
imp2.setRoi(x, y, 20, 20)
statsl = impl. getStatistics ()
stats2 = imp2.getStatistics ()
vollRange = statsl .max — statsl.min
vol2Range = stats2 .max — stats2.min
if ((vollRange < 30) and (vol2Range < 30) and
(vollRange != 0) and (vol2Range != 0)):

regions = regions + 1
vollMean = statsl.mean
vol2Mean = stats2.mean

vollMeans . append (vollMean)
vol2Means . append (vol2Mean)
allmeans = vollMeans + vol2Means

rangeMeans = max(allmeans) — min(allmeans)

print ("Determining and applying correction for selected areas"

)
printTime ()

fitter = CurveFitter (vollMeans, vol2Means)
fitter .doFit (0)

params

fitter .getParams ()

print ("params (c, m): ({}, {})".format(params[0], params[1]))
I1J .run(impS1, "Add...", "value={} , stack".format(params[0]))
I1J .run (impS1, "Multiply ... ", "value={} , stack".format (params

(1))

impl, imp2 = stackSelectionDialog ()

volumel = impl.getImageStack ()

volume2 = imp2.getImageStack ()

print ("Suitable stacks have been selected")

reduceSubStacks (impl, imp2)

calibrateLevels (impl, imp2)

impl.setTitle ("Corrected levels™)

print ("Levels corrected: starting calibrated concatenation")

printTime ()
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result = Concatenator().concatenate (impl, imp2, 1)
result.setTitle ("Complete")

result .show ()

print ("Script complete")

printTime ()

A.3. Sphere fitting
A.3.1. test.py

import os

import csv

import numpy as np

from Volume import Volume

from SphereBuilder import SphereBuilder

from CircleHunter import CircleHunter

# import matplotlib.pyplot as plt
# from mpl_ toolkits.mplot3d import Azes3D

# sample tube inner_rad = 880—900
# X marker_rad = 60-80

sphereBuilder = SphereBuilder ()

circleHunter = CircleHunter ()

xPath = "../I12Data/"

ndPath = "../RB1920729/Tomodry/"

nwPath = "../RB1920729 /Tomo0.25/"

postPath = "../RegisteredVolumes/"

postFPath = "../ RegisteredVolumes /FILTERED/"
xCPath = "CircleData/PreRegistration /Xray/"
ndCPath = "CircleData/PreRegistration/NeutronDry/"
nwCPath = "CircleData/PreRegistration /NeutronWet /"
postCPath = "CircleData/Registered /"

postxCPath = "CircleData/Registered /Xray/"
postndCPath = "CircleData/Registered /NeutronDry /"
postnwCPath = "CircleData/Registered /NeutronWet /"

def findCirclesInFolder (path, modality):
for file in os.listdir (path):

A.3. Sphere fitting
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if file.endswith(".raw"):

if len(file.split(" ")) = 3:
[name, mod, dims] = file.split(" ")
name = name + " " 4+ mod

elif len(file.split(" ")) = 2:
[name, dims| = file.split(" ")

dims = dims.split (".")[0]

dims = dims.split ("x")

dims = list (map(int, dims))

print (name, file, dims)

) not in os.listdir (postCPath):
data = Volume(name, path + file, dims, modality)
data. circles = CircleHunter (). findCircles (data)

data.saveCircleData ()
del data

if (name + ".csv"

def findMarkersInFolder (path):
for file in os.listdir (path):
if file.endswith(".csv") and (file.count("Markers") =— 0):
data = openCircleData (path + file)
print(file)

samples = 10

if file in ("SmallSoild NW.csv", "LargeSoil2 ND.csv"):
samples = 6
if file in ("SmallSoil2 NW.csv", "SmallWetSoil ND.csv"

)

"SmallDrySoil ND.csv"):

samples = 2
if file in ("SmallDrySoil NW.csv", "SmallDrySand NW.
csv",

"SmallSoil4 ND.csv", "SmallSoil2 ND.csv"):
samples = 1
if file in ("LargeDrySand NW.csv"):
samples = 100

if " X.csv" in file:

samples = 70

if file in ("SmallWetSand X.csv", "SmallSoil5 X.csv",
"SmallSoil3 X .csv", "LargeWetSand X.csv",
"LargeDrySand X.csv",
"LargeSoill X.csv", "SmallDrySand X.csv"):
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samples = 50

if file in ("LargeSoil2 X.csv", "LargeSoil3 X.csv",
"LargeDrySoil X.csv", "SmallDrySoil X.csv"
):
samples = 5
if file in ("LargeSoil4 X.csv", "SmallSoil2 X.csv"):

samples = 30

if file in ("LargeDrySoil ND.csv", "LargeDrySand ND.

n

csv'",
"LargeDrySand X.csv", "LargeWetSoil X.csv"
"LargeSoil5 X.csv", "SmallSoil3 X.csv",
"LargeWetSand X.csv", "SmallDrySand X.csv"
)
markers = sphereBuilder. clusterPoints (data,

samples, 60)
elif file in ("LargeSoil2 X.csv", "LargeSoil3 X.csv",

"LargeDrySoil X.csv", "SmallDrySoil X.
csv"):
markers = sphereBuilder. clusterPoints (data,

samples, 70)
else:
markers = sphereBuilder. clusterPoints (data,

samples)

with open("ranges.csv") as csvfile:

allRanges = np.asarray (list (csv.reader(csvfile)))

indices = np.where(allRanges =— file.split(".")
[0])

ranges = np.ndarray. flatten (

allRanges|[indices [0], 1:5]).astype(np.

int)
rA = markers|np.logical and ((markers|[:, —1] > ranges
[0]),
(markers|[:, —1] < ranges
(1)1
rB = markers[np.logical and ((markers[:, —1] > ranges
(21,
(markers|[:, —1] < ranges

(3D))1
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markers = np.vstack ((rA, rB))

print (markers)

if file in ("SmallSoil3 NW.csv", "SmallSoil2 NW.csv",

if

if

if

if

if

"LargeSoils5  NW.csv",

I

"LargeSoil2 NW .csv",

)

"LargeDrySand ND. csv
"SmallSoil2_ ND.csv",
"LargeSoil2 ND.csv",
"LargeDrySoil _ND.csv

n
I

"SmallSoil4_X.csv",

"LargeDrySand X.csv",

I

"LargeDrySoil X .csv",

"LargeSoil2_ X .csv",
"LargeSoil4d X .csv",
"SmallDrySoil X .csv"

"LargeWetSand NW.csv"
"LargeDrySand NW.csv"
", "SmallSoil3 ND.csv"

"LargeSoil5_ ND.csv",
"LargeSoill ND.csv",
", "SmallWetSoil X.csv

"SmallSoil3 X .csv",
"LargeWetSoil X.csv"

"LargeSoill X .csv",
"LargeSoil3 X .csv",
"SmallDrySand X.csv",
, "SmallSoil2 X .csv"):

markers = sphereBuilder. filterInnerPoints (markers)
file =— "SmallSo0il2 ND.csv":

markers = np.delete (markers, 6, 0)
print (markers)

file — "LargeWetSand ND.csv":
markers = np.delete (markers, 5, 0)
print (markers)

file — "LargeSoill ND.csv":

markers = np.delete (markers, 11, 0)
markers = np.delete (markers, 4, 0)
markers = np.delete (markers, 1, 0)
print (markers)

file — "LargeDrySoil ND.csv":
markers = np.delete (markers, 3, 0)
print (markers)

file — "LargeDrySand ND.csv":
markers = np.delete (markers, 12, 0)
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markers = np.delete (markers,

markers = np.delete (markers,

markers = np.delete

( 1

( 9, 0
markers = np.delete (markers, 8, 0

(markers, 6, 0

( 4, 0

markers = np.delete (markers,

print (markers)

if file — "SmallWetSoil X.csv":
markers = np.delete (markers,
markers = np.delete (markers,

markers = np.delete

( 1
( 9
markers = np.delete (markers, 5,
(markers, 4
( 2

markers = np.delete (markers,

print (markers)

if file — "SmallWetSand_ X.csv":
markers = np.delete (markers, 4, 0)

print (markers)

if file = "SmallSoil5 X .csv":
markers = sphereBuilder. filterInnerPoints (markers,
550)
markers = np.delete (markers, 37,
markers = np.delete (markers, 36,

markers = np.delete (markers, 35,

markers = np.delete (markers, 33,
markers = np.delete (markers, 32,
markers = np.delete (markers, 30,
markers = np.delete (markers, 29,
markers = np.delete (markers, 28,
markers = np.delete (markers, 27,
markers = np.delete (markers, 26,
markers = np.delete (markers, 24,
markers = np.delete (markers, 23,
markers = np.delete (markers, 22,
markers = np.delete (markers, 21,
markers = np.delete (markers, 20,

markers = np.delete (markers, 18,

markers = np.delete (markers, 17,
markers = np.delete (markers, 16,
markers = np.delete (markers, 15,

markers = np.delete

(
(
(
(
(
(
(
(
(
(
markers = np.delete (markers, 25,
(
(
(
(
(
(
(
(
(
(markers, 14,
(

O O O O O O O O O O o o o o o o o o o o oo
— O O O v v v v N O S N N

markers = np.delete (markers, 13,
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markers
markers
markers
markers
markers
markers
markers
markers
markers
markers
markers

markers

= np.
= np.
= np.
= np.
= np.
= np.
= np.
= np.
= np.
= np.
= np.
= np.

delete (markers
delete
delete
delete

delete

markers
markers
markers
markers
delete (markers
delete
delete
delete
delete
delete

markers
markers
markers
markers

markers

(
(
(
(
(
delete (markers
(
(
(
(
(
(

print (markers)

if file — "SmallSoil4 X .csv":
markers = np. delete (markers
markers = np.delete (markers
markers = np.delete (markers
markers = np. delete (markers
markers = np.delete (markers
markers = np.delete (markers
markers = np.delete (markers
markers = np.delete (markers
markers = np. delete (markers
markers = np.delete (markers
markers = np.delete (markers
markers = np.delete (markers

print (markers)

if file — "LargeDrySand X.csv":

markers

markers

= np.
= np.

delete (markers

delete (markers

print (markers)

if file — "LargeWetSoil X.csv":
markers = np.delete (markers
markers = np. delete (markers
markers = np.delete (markers
markers = np. delete (markers
markers = np.delete (markers
markers = np.delete (markers
markers = np. delete (markers
markers = np.delete (markers
markers = np. delete (markers

12, 0)
11, 0)
10, 0)
9, 0)
8, 0)
7, 0)
6, 0)
5, 0)
4, 0)
3, 0)
2, 0)
1, 0)
17, 0)
16, 0)
15, 0)
14, 0)
12, 0)
11, 0)
10, 0)
97 )
8, 0)
7, )
6, )
4, 0)
, 0)
1, 0)
27, 0)
25, 0)
24, 0)
23, 0)
22, 0)
21, 0)
20, 0)
18, 0)
17, 0)
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markers = np.delete (markers, 16,

markers = np.delete (markers, 14,
markers = np.delete (markers, 13,
markers = np.delete (markers, 12,
markers = np.delete (markers, 11,
markers = np. delete
markers = np.delete (markers, 9,
markers = np.delete (markers, 8,
markers = np.delete (markers,
markers = np.delete

markers ,

0

0

7, 0

markers, 5, 0
markers = np. delete 4, 0
3, 0

e e e e e e e e N N

0
0
0
0
0
markers, 10, 0
)
)
)
)
)
)

markers = np.delete (markers,

print (markers)

if file — "LargeSoill X.csv":
markers = np.delete (markers, 14,

)
markers = np.delete (markers, 13, 0)
markers = np.delete (markers, 12, 0)
markers = np.delete (markers, 11, 0)
markers = np.delete )

markers, 9,

0

0

0

0

markers, 10, 0
markers = np.delete )
)

)

)

e N e e N N

0
markers = np.delete (markers, 8, 0
markers = np.delete (markers, 5, 0
markers = np.delete (markers, 0, 0

print (markers)

if file =— "LargeSoil2 X.csv":
markers = np.delete (markers, 9, 0)
markers = np.delete (markers, 7, 0)
markers = np.delete (markers, 4, 0)

print (markers)

if file — "LargeSoil3 X.csv":
markers = np.delete (markers, 3, 0)
markers = np.delete (markers, 2, 0)
markers = np.delete (markers, 0, 0)

print (markers)

if file — "LargeSoil4_X.csv":
markers = np.delete (markers, 24,
markers = np.delete (markers, 22,

markers = np.delete (markers, 21,

o O O O O
— — — — —

(
(

markers = np.delete (markers, 20,
(

markers = np.delete (markers, 19,
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markers = np.delete (markers

markers = np.delete (markers
markers = np.delete (markers
markers = np.delete (markers
markers = np.delete (markers
markers = np.delete (markers
markers = np.delete (markers
markers = np.delete (markers
markers = np.delete (markers
markers = np.delete (markers

(

(

(

(

(
markers = np. delete (markers

(

(

(

(

(

(markers

markers = np.delete

print (markers)

if file — "LargeSoil5 X.csv":
markers = np. delete (markers

markers = np.delete (markers
markers = np.delete (markers
markers = np. delete (markers
markers = np.delete (markers
markers = np.delete (markers
markers = np.delete (markers
markers = np.delete (markers
markers = np. delete (markers

print (markers)

if file = "LargeDrySoil X.csv":
markers = np.delete (markers
markers = np. delete (markers
markers = np.delete (markers

print (markers)

if file — "SmallDrySoil X.csv":

markers = np. delete (markers
markers = np.delete (markers

print (markers)

if file = "SmallSoil2 X .csv":
markers = np. delete (markers
markers = np.delete (markers
markers = np.delete (markers
markers = np. delete (markers
markers = np.delete (markers
markers = np. delete (markers

13, 0)
12, 0)
11, 0)
10, 0)
9, 0)
6, 0)
5, 0)
4, 0)
3, 0)
, 0)
, 0)
, 0)
2, 0)
1, 0)
6, 0)
5, 0)
4, 0)
3, 0)
2, 0)
1, 0)
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print (markers)

np.savetxt ((path + file.split(".")[0] + "Markers.csv")

)

markers, delimiter=",")

def openCircleData (filename):

if

with open(filename) as csvfile:
return np.asarray (list (csv.reader(csvfile))).astype(np.

single)

__hame = main__

# SmallSoill has a different size of marker and so requires
dedicated radii

testData = Volume("SmallSoill", ndPath +

"SmallSoill 1024x102422048.raw",

[1024, 1024, 2048], "nd")
testData.minRadius = 35
testData . mazxRadius = 60
testData. circles = circleHunter. findCircles (testData)
testData . saveCircleData ()

testData = Volume("SmallSoill", nwPath +
"SmallSoill 1024x102422048.raw”,
[1024, 1024, 2048], "nw")
testData.minRadius = 35
testData.mazRadius = 60
testData. circles = circleHunter. findCircles (testData )
testData . saveCircleData ()

testData = Volume("SmallSoill", xzPath +
"SmallSoill 2560256029265 .raw”,
[2560, 2560, 9265], "z")
testData.minRadius = 180
testData.mazRadius = 350
testData. circles = circleHunter. findCircles (testData )
testData.saveCircleData ()
# testData.markerLocations = sphereBuilder. clusterPoints (
testData. circles)
# testData . display
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’ 00

# findCirclesInFolder (zPath, "z")

# findCirclesInFolder (ndPath, "nd")
# findCirclesInFolder (nwPath, "nw")
# findCirclesInFolder (postPath, "r")
# findCirclesInFolder (postFPath, "r")

20

data = openCircleData (ndCPath + "LargeSoil3.csv")

markers = sphereBuilder. clusterPoints (data)

fig = plt. figure()
ax = fig.add_ subplot (111, projection='3d’)

datar = data[:, 0]
datay data [:, 1]
dataz = data[:, 2]

az. scatter (dataz , datay, dataz, s=2)

az.scatter (markers[:, 0], markers[:, 1], markers[:, 2], s=50,
c="red’)

plt.show ()

PR

# findMarkersInFolder (zCPath)

# findMarkersInFolder (ndCPath)

# findMarkersInFolder (nwCPath)

# findMarkersInFolder (postCPath)
findMarkersInFolder (postxCPath)

# findMarkersInFolder (postndCPath)
# findMarkersInFolder (postnwCPath)

A.3.2. Volume.py

import cv2
import csv
import numpy as np

from math import sqrt

class Volume:
def _ init _ (self , name, file, shape, modality):
self .name = name

self .shape = shape
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self . file = file
self . modality = modality

self.axis = 2
self.slice = 0
if self.modality =— "x":

self.imageScale = 0.3
self . markerRadius = 65
self .minRadius = 40
self . maxRadius = 70

if (self.modality = "nd") or (self.modality = "nw"):
self .imageScale = 0.7
self . markerRadius = 10
self . minRadius = 6
self . maxRadius = 12

n

if self.modality = "r":
self.imageScale = 0.3
self . markerRadius = 45
self . minRadius = 20

self . maxRadius = 40
self . markerLocations = np.empty ((0, 3))

openMarkerRanges (self):
with open("ranges.csv") as csvfile:
allRanges = np.asarray(list (csv.reader(csvfile)))

indices = np.where(allRanges =— self .name)

row = np.ndarray.flatten (allRanges[indices[0], 1:5]).

astype(np.int)

self .ranges = row

openData(self):

fd = open(self.file, "rb")

size = np.prod(self.shape, dtype=np.int64)

f = np.fromfile (fd, dtype=np.uint8, count=size)
data = f.reshape(self.shape, order="F’)
self.data = np.swapaxes(data, 0, 1)

saveCircleData(self):
nen.

if self.modality — "x
path = "CircleData /Xray/"
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def

def

def

180

if self.modality = "nd":
path = "CircleData/NeutronDry /"
if self.modality = "nw":
path = "CircleData/NeutronWet /"
if self.modality = "r":
path = "CircleData/Registered /"
np.savetxt ((path + self.name + ".csv"), self.circles,
delimiter=",")

openCircleData(self , filename):
with open(filename) as csvfile:
self.circles = np.asarray (list (

csv.reader (csvfile))).astype(np.single

)

display (self):

cv2.namedWindow ( self . name)

cv2.createTrackbar (’Slice’, self.name, 0,
max(self.shape) — 1, self.scroll)
cv2.createTrackbar (’Axis’, self.name, 0, 2, self.scroll)

self .updateDisplay (self.getAxisSlice(self.axis, self.slice
))

cv2.waitKey (0)

cv2.destroyAllWindows ()

updateDisplay (self , image):
cimage = cv2.cvtColor (image, cv2.COLOR_GRAY2BGR)

for circle in self.circles:
if (circle[—1] = self.axis) and (circle[—2] = self.
slice):
cv2.circle (cimage, (int(circle[0]), int(circle[1])
)
int (circle [2]), (0, 255, 0), 2)
cv2.circle (cimage, (int(circle[0]), int(circle[1])
)
2

, (0, 0, 255), 3)
for marker in self.markerLocations:
if self.axis — 0:
cv2.circle (cimage, (int(marker[0]), int(marker[2])
)
5, (255, 0, 0), 5)
if ((marker[1] — self.slice) < self.markerRadius <
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(marker [1] + self.slice)):
rad = sqrt ((self.markerRadius*%2)
— ((marker[l] —self.slice)x%2))
cv2.circle (cimage, (int(marker[0]), int(marker
2])),
int(rad), (255, 0, 0), 5)
if self.axis =— 1:
cv2.circle (cimage, (int(marker[1]), int(marker[2])
)
5, (255, 0, 0), 5)
if ((marker[0] — self.slice) < self.markerRadius <
(marker [0] + self.slice)):
rad = sqrt ((self.markerRadius*%2)
— ((marker[0] —self.slice)xx2))
cv2.circle (cimage, (int(marker[1]), int(marker
21)),
int(rad), (255, 0, 0), 5)
if self.axis — 2:
cv2.circle (cimage, (int(marker[0]), int(marker|[1])
)
5, (255, 0, 0), 5)
if ((marker[2] — self.slice) < self.markerRadius <
(marker [2] + self.slice)):
rad = sqrt ((self.markerRadius*%2)
— ((marker[2] —self.slice)*%2))
cv2.circle (cimage, (int(marker[0]), int(marker

[11)) .
int (rad), (255, 0, 0), 5)

cimage = cv2.resize (cimage, (int(cimage.shape[l]*self.
imageScale) ,
int (cimage.shape[0]* self.imageScale)),
interpolation=cv2.INTER AREA)

cv2.imshow(self .name, cimage)

def getAxisSlice(self, axis, slice):
if (axis = 0):

image = self.data[slice, :, :]

image = np.transpose (image)
elif (axis = 1):

image = self.data[:, slice, :]

image = np.transpose (image)
else:

image = self.data[:, :, slice]

181



A. Code Listings

return image

def scroll(self, dropResult):
self.slice = cv2.getTrackbarPos(’Slice’, self.name)
self.axis = cv2.getTrackbarPos(’Axis’, self.name)

self .updateDisplay (self.getAxisSlice(self.axis, self.slice

)

A.3.3. SphereBuilder.py

import numpy as np

from sklearn.cluster import DBSCAN
class SphereBuilder:

def clusterPoints(self, data, samples, eps=40):
clusters = DBSCAN(eps=eps, min_ samples=samples). fit (data

[:, 0:3])
labels = clusters.labels
nM = len(set(labels)) — (1 if —1 in labels else 0)
print (nM)

markers = np.empty ((0, 3))
for i in range(nM):

mCluster = data[np.where(labels = 1i)]
cForX = mCluster [np.where(mCluster[:, 4] != 1)]
if cForX.size — O:
markerX = np.average (mCluster[:, 0])
else:
markerX = np.average(cForX[:, 0])
cForY = mCluster [np.where(mCluster[:, 4] != 0)]
if cForY.size = 0:
markerY = np.average (mCluster[:, 1])
else:
markerY = np.average (cForY|[:, 1])
cForZ = mCluster [np.where(mCluster [:, 4] != 2)]
if cForZ.size 0:
markerZ = np.average(mCluster[:, 2])
else:
markerZ = np.average (cForZ[:, 2])
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markers = np.vstack ([ markers, [markerX, markerY,
markerZ|])

markers = markers [markers[:, —1].argsort ()]
# markers = markers. astype (int)
# markers = self. filterInnerPoints (markers)

return markers

clusterPointsOldMethod (self , data):

dataToClusterA = np.squeeze (data[np.where(data[:, 4] = 0)
, 0:3:2])

dataToClusterB = np.squeeze (data[np.where(data[:, 4] = 1)
, 1:3])

dataToClusterC = np.squeeze (data[np.where(data[:, 4] =— 2)
L 0:2))

dbA = DBSCAN(eps=12.5, min_ samples=4). fit (dataToClusterA)
labelsA = dbA.labels

nA = len(set(labelsA)) — (1 if —1 in labelsA else 0)

dbB = DBSCAN(eps=12.5, min_ samples=4). fit (dataToClusterB)
labelsB = dbB.labels _

nB = len(set(labelsB)) — (1 if —1 in labelsB else 0)

dbC = DBSCAN(eps=12.5, min samples=4). fit (dataToClusterC)
labelsC = dbC.labels

nC =

len(set(labelsC)) — (1 if —1 in labelsC else 0)

markersA = np.empty ((0, 3))

markersB = np.empty ((0, 3))

markersC = np.empty ((0, 3))

for

for

for

i in range(nA):

markersA = np.vstack ([markersA, np.append(np.average (
dataToClusterA [np. where(labelsA — i)], axis=0),
np.where (labelsA =— 1) [0]. size)])

i in range(nB):

markersB = np. vstack ([ markersB, np.append(np.average(
dataToClusterB [np. where(labelsB = i)], axis=0),
np.where(labelsB = 1) [0]. size)])

i in range(nC):

markersC = np. vstack ([markersC, np.append(np.average (
dataToClusterC [np. where(labelsC — i)], axis=0),
np.where (labelsC = 1) [0]. size)])
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def

def

print ("Plane Markers:")

np.set printoptions (suppress=True)
# print (markersA )

# print (markersB)

# print (markersC)

markers = np.empty ((0, 3))

for row in markersA:

bIndex = self.closestMatch(row|[1l], markersB[:, 1])
cIndex = self.closestMatch (row[0], markersC][:, 0])
if np.abs(row|[0] — markersC[cIndex, 0]) < 4:

if np.abs(row|[1] — markersB[bIndex, 1]) < 4:

if np.abs(markersB[bIndex, 0] — markersC|
cIndex, 1]) < 4:

x = np.average ([row[0], markersC|[cIndex,
o1,
weights=[row [2], markersC]|
cIndex, 2]])
y = np.average ([ markersB[bIndex, 0],

markersC [cIndex, 1]],
weights=[markersB [bIndex ,
2],
markersC [ cIndex ,
211)
z = np.average ([row[1], markersB[bIndex,
],
weights=[row [2], markersB |
bIndex, 2]])
marker = [x, y, z]

markers = np.vstack ([markers, marker])

markers = markers. astype (int)

# markers self.filterInnerPoints (markers)
print (markers)

return markers

closestMatch (self , value, array):
abs diff = np.abs(array — value)

return abs diff.argmin ()

filterInnerPoints (self , markers, dist=397):

averageCentre = np.mean(markers[:, [0, 1]], axis=0)

distances

np.linalg .norm(markers[:, [0, 1]] —
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averageCentre , axis=1)
while np.amin(distances) < dist:

# print(distances)

fewerMarkers = np.delete (markers, np.argmin(distances)
, 0)

fAverageCentre = np.mean(fewerMarkers|[:, [0, 1]], axis
:0)

distances = np.linalg.norm(fewerMarkers[:, [0, 1]]

— fAverageCentre, axis=1)
markers = fewerMarkers
print ("removed a false positive:")
print (markers)

return markers

A.3.4. CircleHunter.py

import numpy as np

import cv2

from multiprocessing import Process, Queue

class CircleHunter:

def

def

__init  (self):

self.sliceQueue = Queue()

self.circleQueue = Queue()

self .resultQueue = Queue()

self .nCircleHunters = 1

findCirclesInSlice (self , axis, slice, image, modality,

minCRadius, maxCRadius):

if modality — "x":
circles = c¢v2.HoughCircles (image, cv2.HOUGH GRADIENT,
1, 20,
paraml=50, param2=50,
minRadius=minCRadius,
maxRadius=maxCRadius)
if (modality = "nd") or (modality = "nw"):
circles = cv2.HoughCircles (image, cv2.HOUGH GRADIENT,
1, 20,

paraml=50, param2=20,
minRadius=minCRadius,

maxRadius=maxCRadius)
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def

def

if modality =— "r":
circles = cv2.HoughCircles (image, cv2.HOUGH GRADIENT,
1, 20,
paraml =80, param2=25,
minRadius=minCRadius,

maxRadius=maxCRadius)

if circles is None:
pass
else:

return circles

addCirclesToList (self , axis, slice, circles):
if circles is None:

pass
else:

for sublist in circles:

for circle in sublist:

if not (circle = [0., 0., 0.]).all():
row = np.append(circle , np.array ([slice,
axis]))
self.circles = np.append(self.circles, |
row]|, axis=0)

findCircles (self , volume):

self.circles = np.empty((0, 5))

procs = |[]

for i in range(self.nCircleHunters):
p = Process(target=self.circleFinder main,
args=(self.sliceQueue, self.circleQueue,
volume . modality , volume.minRadius,
volume . maxRadius)
)
procs.append (p)
p.start ()
p = Process(target=self.circleLister main ,
args=(self.circleQueue, self.resultQueue))

procs.append(p)
p.start ()

volume . openMarkerRanges ()

volume . openData ()
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for a in range(3):
for b in range(volume.shape[a]):

# print(a, b, (time.time()—startTime))

if (a!l= 2):
slice = volume.getAxisSlice(a, b)
self .sliceQueue.put([a, b, slice])

elif b in range(volume.ranges|[0], volume.ranges
[1])
slice = volume. getAxisSlice(a, b)
self.sliceQueue.put([a, b, slice])

elif b in range(volume.ranges|[2], volume.ranges
13])
slice = volume. getAxisSlice(a, b)
self .sliceQueue.put ([a, b, slice])

for i in range(self.nCircleHunters):
self.sliceQueue.put(’STOP’)

self.circles = self.resultQueue.get ()
self.circleQueue.put(’STOP’)
for p in procs:

p.join ()
return self.circles

def circleFinder main(self , inQueue, outQueue, modality,

minRadius, maxRadius):

for [axis, slice, image]| in iter (inQueue.get, ’STOP’):
print (inQueue. gsize () )
circles = self.findCirclesInSlice (axis, slice, image,
modality ,

minRadius, maxRadius
)
if circles is None:
pass
else:
for sublist in circles:
for circle in sublist:
if not (circle = [0., 0., 0.]).all():
row = np.append(circle , np.array (|
slice , axis]))
outQueue.put ([row])
outQueue. put ("FINISHED ’)
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def circleLister main (self , inQueue, outQueue):
print("circle listener started")
circles = np.empty ((0, 5))

i=20
for row in iter (inQueue.get, 'STOP’):
if row = ’FINISHED:
i=1i+4+1
if i = self.nCircleHunters:
inQueue. put (’STOP )
else:

print (row)
row = np.squeeze (np.asarray (row).astype(float).
astype(int))

row[[3, 2]] = row([[2, 3]]
if row[4] = O:
row[[1, 2]] = row][[2, 1]]
if row[4] = 1:
row|[[0, 1, 2]] = row[[2, 0, 1]]

print (row)
circles = np.append(circles , [row], axis=0)
outQueue.put(circles)

print("circle listener finished")

A.4. Masked reconstruction simulation

% Simulation of iterative masked recon
% Setup scan params and geometry
detector size = 2000;

detector pixel size = 1;

n_projections = 522;

angles = linspace2 (0, deg2rad(360), n_projections);

minx = —detector size /2;

maxx = detector size/2;

miny = —detector size /2;

maxy = detector size/2;

vol geom = astra_ create vol geom(detector size, detector size,

minx, maxx, miny, maxy);
proj geom = astra_ create proj geom(’parallel’, detector pixel size
, detector size, angles);
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A.4. Masked reconstruction simulation

% Import simuation slice and mask

sliceWet = imread (’M:\ Data3\CTData\tjc3gl13\ AstraRecon\Simulation
NW.png ") ;

sliceWet = im2double(sliceWet);

sliceDry = imread (’M:\ Data3\CTData\tjc3gl13\ AstraRecon\ Simulation
ND.png’) ;

sliceDry = im2double(sliceDry);

% Downsample

sliceWetLowRes = imresize (sliceWet, 0.05);
sliceWetLowRes = imresize (sliceWetLowRes, [2000 2000]);
sliceDryLowRes = imresize (sliceDry, 0.05);

(

sliceDryLowRes = imresize (sliceDryLowRes, [2000 2000]);

% Add noise

scale = 1el0;
sliceWetNoisy = scale * imnoise (sliceWetLowRes/scale, ’poisson’);
sliceDryNoisy = scale * imnoise(sliceDryLowRes/scale, ’poisson’);

sliceDiff = sliceWetNoisy — sliceDryNoisy;

mask = imread (’M:\ Data3\CTData\tjc3g13\ AstraRecon\ Simulation\
SampleSimMask .png’) ;

mask = imcomplement (im2double (mask) ) ;

mask id = astra_mex data2d(’create’, '—vol’, vol geom, mask);

% Create projection data from this

[projNeutronWet id, projectionsNW | = astra create sino cuda(
sliceWetNoisy , proj geom, vol geom);

[projNeutronDry id, projectionsD] = astra_create sino cuda(
sliceDryNoisy , proj geom, vol geom);

[projNeutronDiff id, projectionsW] = astra_create sino_cuda(
sliceDiff , proj geom, vol geom);

% Display a single projection image

% figure , imshow(squeeze(projections (:,:,1)) ,[])

%9% Reconstruct without mask %%
% Reconstruct NeutronWet

% Create a data object for the reconstruction

recNW _id = astra_mex_data2d(’create’, ’—vol’, vol geom);

% Set up the parameters for a reconstruction algorithm using the
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GPU
cfg = astra_struct (’SIRT _CUDA’) ;
cfg.ReconstructionDatald = recNW_id;
cfg.ProjectionDatald = projNeutronWet id;
% cfg.option.ReconstructionMaskld = mask id;
cfg.option.MinConstraint = 0;
cfg.option.MaxConstraint = 255;

% Create the algorithm object from the configuration structure

)

algNW _id = astra_mex algorithm (’create’, cfg);

% Run 150 iterations of the algorithm
astra_mex algorithm (’iterate ’, algNW id, 150);

% Get the result
rec(NW = astra mex_data2d(’get’, recNW _id);

% Reconstruct Neutron Dry
% Create a data object for the reconstruction

recND _id = astra_mex _data2d(’create’, ’—vol’, vol geom);

% Set up the parameters for a reconstruction algorithm using the
GPU

cfg = astra_struct (’SIRT_CUDA’) ;

cfg.ReconstructionDatald = recND _id;

cfg.ProjectionDatald = projNeutronDry id;

%cfg.option.ReconstructionMaskId = mask id;

cfg.option.MinConstraint = 0;

cfg.option.MaxConstraint = 255;

% Create the algorithm object from the configuration structure

algND id = astra_mex_algorithm (’create’, cfg);

% Run 150 iterations of the algorithm
astra_mex algorithm (’iterate ’, algND id, 150);

% Get the result
recND = astra_mex data2d(’get’, recND id);

9%7% Reconstruct with mask — water seperately %%

% Create a data object for the reconstruction

recWaterMasked id = astra_mex data2d(’create’, '—vol’, vol geom);

% Set up the parameters for a reconstruction algorithm using the
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GPU

A.4. Masked reconstruction simulation

cfgM = astra_struct (’SIRT CUDA’) ;

cfgM . ReconstructionDatald =

recWaterMasked id;

cfgM . ProjectionDatald = projNeutronDiff id;
cfgM.option. ReconstructionMaskId = mask id;

cfgM.option. MinConstraint = 0;

cfgM.option. MaxConstraint = 255;

% Create the algorithm object from the configuration structure

algWM id = astra mex algorithm (’create’, cfgM);

% Run 150 iterations of the algorithm

astra_mex_algorithm (’iterate

% Get the result

7, algWM _id, 150);

recWM = astra_mex data2d(’get’, recWaterMasked id);

% Show results post rec mask and iterative mask

recDiff = recNW — recND;
recDiff (" mask) = 0;

figure , imshow (recDiff, []);
figure , imshow (recWM, []) ;

error = abs(sliceWet — recDiff);

error (Tmask) = 0;

errorM = abs(sliceWet — recWM) ;

errorM (" mask) = 0;

figure , imshow (error ,[]) ;

figure , imshow (errorM ,[]) ;

norm(error)

norm (errorM)

% Clean up. Note that GPU memory is tied up in the algorithm

object ,

% and main RAM in the data objects.
astra_mex _algorithm (’delete 7, algNW _id);
astra_mex _algorithm (’delete ’, algND id);
astra_mex_algorithm (’delete ’, algWM id);
astra_mex_data2d (’delete ’, recNW _id);
astra_mex_data2d(’delete’, recND id);

astra_mex data2d(’delete ’, recWaterMasked id);
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astra_mex_data2d (’delete ’, projNeutronDiff id);
astra_mex_data2d(’delete’, projNeutronWet id);
astra_mex_data2d (’delete ’, projNeutronDry id);
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B. Original figures

Some of the figures in Chapter 5 have had their contrast stretched so that they

are easier to see in this thesis. The original versions of the images are included

here.
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B. Original figures

Figure B.1.: Taking the difference between the pre- and post-injection images
for slice 8027 of LargeWetSand.
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(a) Without the X-ray mask

(b) With the X-ray mask

Figure B.2.: The difference (before and after the injection of deuterated wa-
ter) image of slice 8027 shown before (a) and after (b) a mask is
applied.
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B. Original figures

Figure B.3.: The difference between slice 1851 of the pre- and post-injection
neutron scans of SmallSoil4.
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Figure B.4.: The difference between the pre- and post-injection scans of slice
1851 from SmallSoil4 with an X-ray mask overlaid.
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B. Original figures

Figure B.5.: The error maps of the reconstructed slices after masking. The left
image shows the benchmark result where the simulated pre- and
post-injection data was reconstructed separately, and the mask
applied to the difference between the reconstructions. The right
image shows the error produced with the new method where the
difference data was reconstructed with iterative masking.

(a) Pre-injection (b) Post-injection

Figure B.6.: Slice 4402 from the sample LargeWetSand reconstructed used the
SIRT algorithm with an X-ray mask.

198



Figure B.7.: The absolute difference between the pre- and post-injection im-
ages of slice 4402 when reconstructed using the SIRT algorithm
with an X-ray mask.
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B. Original figures

Figure B.8.: The absolute difference between the pre- and post-injection im-
ages of slice 4402 when reconstructed using the SIRT algorithm
with the X-ray mask applied afterwards.
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