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Small, high-speed cyclones are used in domestic vacuum cleaners to separate sub-micron sized particulates from
an air stream using no moving parts. The complex fluid flow within the cyclone is turbulent and highly-swirling,
with small sub-micron particles encountering and responding to fluid structures of a wide spatial and temporal
range. The process of particle separation in these cyclonic devices is not well-known and accurate numerical
prediction of separation efficiency remains a computationally expensive task. In addition to this, particles are
known to exchange charge through collisions, in a process known as tribocharging, which can cause smaller
particles to agglomerate into larger structures. This thesis aims to develop a computationally inexpensive
particle model able to predict the transport of particle charge which is valid in this highly-swirling flow for
small particles.

Models of particle tribocharging in the literature have only been validated for particles many orders of
magnitude larger than those of interest here. Novel experiments were performed where sub-micron particles
were aerodynamically focused to impact a metal plate using an aerosol beam. The results validated the physics of
charge transfer at these small scales, with an equilibrium level for the voltage on the plate reached which charged
analogous to a capacitor charging circuit. These measurements provided estimates of tune-able constants for a
simple capacitor-like tribocharging model from the literature.

Capturing collisions between particles in a Lagrangian reference frame is prohibitively expensive computation-
ally, therefore an Eulerian particle model was chosen which can deal with collisions efficiently. The Equilibrium
Eulerian method for computing the Eulerian particle velocity field for low Stokes number particles was validated
in an analytical Taylor-Green flow. This flow field features fluid gradients and strong streamline curvature, with
the length and velocity scales matched with the smallest turbulent scales in a representative cyclone. Strengths
and weaknesses of the model were assessed in this challenging flow field, with an Eulerian sub-model for the
transport of particle charge implemented.

A large eddy simulation of a small, high-speed cyclone was performed with high wall resolution. Flow
rates and pressure drop were matched to experimental evidence and partially resolved turbulent structures were
observed along the cyclone walls. Lagrangian particle tracking provided a separation efficiency which matched
experiment except for the smallest 0.1um particles. Particles were observed travelling in distinct streaky bands
by the walls which matched video evidence obtained experimentally. The Eulerian particle model provided an
excellent match to the Lagrangian particle result for separation efficiency, with banding of large 1um particles
by the walls able to be captured, matching both the Lagrangian particles and experiment. The transport of
charge and resulting electric field in the cyclone showed significant tribocharging occurring at the cone tip of
the cyclone and by the walls which is novel. This work is expected to inform future cyclone design to improve
the separation efficiency of small particles.
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Chapter 1

Introduction

1.1 Project Aim

The aim of this industrially-sponsored project is to create a computationally inexpensive particle model with
a charge sub-model to be able to predict the separation efficiency of a cyclone. Cyclones have been used in a
variety of industries to separate particulates from a fluid stream. These include reducing the amount of sand
and black powder in the natural gas industry [I], air filtration [2] and in the petro-chemical industry [3]. These
cyclonic separators are an attractive method for separation as they have no moving parts, are reliable and have
low operating costs [4]. Their basic principle of operation relies on the particle-laden flow entering the cyclone
being spun around and the more dense particle phase experiencing a higher centrifugal force than the carrier
fluid [B]. These particles travel towards the walls, losing momentum and allowing them to be collected by the
bin or hopper at the base [1]. This principle is known to not give the full picture of separation as particles
re-entrain back into the flow [6] and very small particles are able to bypass the main vortex and escape through
the vortex finder situated at the top [7]. The flow speed by the cone tip of these small cyclones may be high
enough for compressibility effects to be important and are thus designated “high-speed”. The full mechanism
by which cyclones separate the particulate phase from the carrier fluid is still not well understood due to the
complexity of the interactions between the strongly turbulent flow and the particles [g].

Cyclones are used as part of a complex separation system in Dyson domestic vacuum cleaners. Within
these products, the dust entering the system is first exposed to a vortex flow in a large bin and then passed
through a fine-mesh; thus capturing the larger clumps of dust and household waste. The remaining flow is then
passed through an array of small cyclones which inertially separate the larger remaining particles. Particles
which are unable to be separated by the cyclones are passed through a high-efficiency particulate air (HEPA)
filter (which European standards require an efficiency of > 0.995 for particles with diameter d, = 0.3um [9]),
after which the flow exits the device and re-enters the local atmospheric environment. Simple diagrams of these
separation stages are provided in Figure Before the use of cyclones in domestic vacuum cleaners, the dust
was passed through a bag which acted as a replaceable filter and back out to atmosphere. These bags required
frequent replacement from the user and would experience a rise in pressure drop across it as it became caked
in particulates. This increase in pressure drop results in a loss of suction at the cleaner head. Cyclonic vacuum
cleaners resulted in no need for the user to purchase bags and provided no loss of suction during use of the
device.

Improving cyclone separation efficiency helps to prolong the life of the downstream filtration media, as the
cyclones will capture more particles which decreases the amount of particulate matter reaching the filters. This
results in monetary savings from reducing the regeneration frequency of the filters and/or the overall filtration
media in the product. If less filtration media is required, the overall vacuum cleaner product can be made
both smaller and lighter; the importance of which has increased significantly with the uptake of handheld
battery-powered devices which are predicted to replace the traditional, heavier, wired products [10].
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Figure 1.1: The three main separation stages in a modern cyclonic vacuum cleaner in order from left to right:
the bin, the cyclone and the filter. Red particles symbolise those which are separated at the current stage, with
blue particles escaping the separation process. Arrows show indicative trajectories for the respectively coloured
particles.
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1.2 The Research Problem

Simple models used to predict cyclone separation efficiency neglect much of the rich physics present in the
cyclone such as the effects of turbulence on the particles, the presence of the boundary layer and collisional
interactions between particles and the cyclone walls. More complex models of this system commonly involve the
use of computational fluid dynamics (CFD) to predict the Eulerian fluid flow field and to model the turbulence.
This flow field is used to calculate the trajectories for the discrete Lagrangian particles and from these the
separation efficiency can be estimated. The accuracy of the CFD flow field is expected to correlate with the
accuracy of the particle trajectories. Computing accurate flow fields involves very fine numerical grids/meshes
and is computationally expensive. Simulation of highly-swirling flow remains a difficult challenge to correctly
model [IT].

A frame from a video showing the dust travelling through a small, high-speed cyclone experimentally is shown
in Figure [[.2] with the cyclone approximately 66mm in height. In this video provided by Dyson, the dust is
shown to move in bands of differing speeds dependent on the distance from the wall. This evidence suggests
the boundary layer and secondary fluid structures are influencing the particle trajectories, which ultimately
determine the separation efficiency. This phenomenon is not considered in simple separation efficiency models
for cyclones and a more complex analysis is required.

Figure 1.2: Still frame from a video provided by Dyson showing silica-based dust from Powder Technology Inc.
in the air flow through a small, high-speed cyclone. The dust is travelling in discrete bands by the cyclone walls
with streak-line patterns visible.

In these bands close to the wall, particles may collide with each other. If particle collisions are considered,
the expense of modelling the Lagrangian particulate phase (which is independent of the cost of computing the
Eulerian fluid phase) increases further. This prevents representative numbers of particles from being tracked in
the cyclone, for which we must resort to tracking small statistical samples of particles which may not provide
an accurate representation of the system. These particle collisions occur with each-other and with the cyclone
walls, exchanging charge during contact in a process known as tribocharging [12]. This electrical charging of
particles by frictional contact has been observed for cyclones used in vacuum cleaners [13]. The subject to this
day remains ambiguous, with the mechanism of charge transfer not fully understood [I4], disagreements in the
literature [I5] and experiments having poor repeatability [I6]. This presence of charge on the particle surface
may contribute to the formation of powder particle assemblies, in a process known as agglomeration [I7]. These
agglomerates may then be large enough to be efficiently separated by the cyclone.

The particle sizes studied for tribocharging in the literature are as small as 100um for single-particle collisions
[18], with particles smaller than this only studied as bulk powder experiments. Models of the charging process
are built on the contact between two particles and have been validated for these large d, > 100um particles.
There is a gap of several orders of magnitude in particle diameter in the literature to what is required in this
work. In addition to the charge measurements, the tribocharging models applied to larger particles have not
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been validated at these small scales of d, < 1um. Novel experiments at this size range are performed in this
work to both validate the charging physics for small particles and to provide the necessary model constants in
the tribocharging model.

To capture the charging behaviour of particles requires involving collisions. As this is too computationally
expensive, this motivates the use of an alternate framework for the Lagrangian particulate phase: an Eulerian
treatment. In this framework, information regarding individual particles is lost and instead the dispersed
particulate phase is modelled as a continuum [I9], much like the carrier fluid phase. Some form of additional
closure is required, which will aim to be simple enough such that the Eulerian method is computationally
cheap and able to capture the relevant physics. One such Eulerian particle model, the Equilibrium Eulerian
(EE) model [20], was validated in the academic case of isotropic turbulence. Applying this model to a swirl-
dominated flow has not been validated, therefore this validation is performed in this work on an analytical
Taylor-Green flow field which consists of counter-rotating eddies. The flow and particle scales in this Taylor-
Green flow are matched to the case of particles in the turbulent eddies in the cyclone to provide a useful source
of validation for the Eulerian model. This Eulerian particle phase allows the effects of collisions to be modelled
as a diffusion, with particle charge treated as a scalar which is transported by the particle flow field. This
allows predictions of the charge distribution in the cyclone to be made which can give an indication as to where
agglomeration and electrical breakdown in air may occur.
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1.3 Geometry and Scales

From the cyclone geometry and the state of the flow entering the cyclone, the scales of the problem can be
defined. These scales, which at first are expressed dimensionally, are converted to a dimensionless form. The
conclusions drawn from the work not only apply to this specific cyclone, but to any system with matching
dimensionless quantities. The cyclone in this context represents an application of the research into particle
modelling in highly-swirling flows.

1.3.1 Cyclone Geometry and Inlet Conditions

A 2D vertical slice down the centre of the cyclone is shown in Figure [1.3] with the key geometric parameters
labelled. The rectangular inlet to the cyclone, of height a; and width b, is visible in the top left of the diagram.
The vortex finder of diameter D., which protrudes into the cyclone body by a length S, is seen at the top of
the cyclone and is where the cleaned fluid leaves the separation device. The body diameter of the cyclone is
given by D, with the total height provided by H and the height of the top section denoted by h. At the base of
the cyclone is the cone tip of diameter B, which is where captured particles leave and are collected into a bin
or hopper. These key geometric lengths are provided in Table

Figure 1.3: Geometry with the coordinate origin shown by the filled black circle. The dashed lines separate out
the sections of the cyclone numbered 1 to 4. The top section (from y = H to y = H — h) is the part of the
cyclone without taper and the remaining three sections are of equal height divisions (going down in increments
of %) The positive z-axis goes out of the page, in the opposite direction of flow entering the cyclone through
the inlet.

Dimension | Dimension/D
an 0.322
b 0.115
B 0.143
D, 0.217
h 0.340
H 2.832
S 0.329

Table 1.1: Key geometric values for the cyclone (D = 23.3mm). This geometry, provided by Dyson, is repre-
sentative of cyclones found in domestic vacuum cleaners.

The dashed horizontal lines in Figure represent a splitting of the cyclone into 4 volumes: a top section
and 3 tapered conical sections. The walls in the top section have a constant radius and is where the inlet flow
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meets the swirling cyclone flow. For the tapered conical sections, the flow speeds up as the outer diameter
decreases and in section 4, the flow reverses direction. These changes in the flow at the different sections allow
analysis into how both the fluid and particle statistics vary as a function of the outer swirl radius later in this
work.

The operational volumetric flow rate entering the cyclone provided is 7.5 x 10~*m3/s [13] which for air
at standard atmospheric conditions (which will be assumed henceforth) equals a mass flow rate of 7y =
9.2 x 10~*kg/s and a bulk mean inlet speed of 4y ~ 37m/s. The pressure drop of the cyclone AP, defined as
the drop in static pressure P across the cyclone [I1], at this flow rate is AP = 5kPa.

1.3.2 Fluid Scaling

The mixing of momentum due to turbulence and the state of the boundary layer is governed by the Reynolds
number [21]

Re= Prul_ (1.1)

M vy

where ps is the fluid density, u is a characteristic velocity, [ is a characteristic length and py and vy are the
fluid dynamic and kinematic viscosities respectively. For simple pipe flows, the characteristic velocity is the
bulk flow velocity and the length is taken as the pipe diameter. The characteristic length scale of the cyclone
remains an open question; Hoekstra argued that the body diameter is most appropriate as it is the swirling flow
of the cyclone itself which is of main interest [22]. The characteristic velocity is commonly set as the bulk inlet
velocity ug, which is assumed to be the same as the outer swirl velocity of the cyclone. The cyclone Reynolds
number is shown in Eq. and for the cyclone considered is Rep = 56,000 (computed a posteriori from the
CFD results of Chapter Which is lower than other cyclones in the literature [II [2, 23, 24]. As the range of
turbulent lengths scale with the Reynolds number, the possibility of resolving most of the scales of turbulence
using large eddy simulation (LES) appears plausible and is explored in Section m

_ prugD
M

Rep (1.2)

The swirling nature of the flow can be characterised by a dimensionless constant known as the swirl number,
Sw, which is the ratio of the axial flux of angular momentum Ly to the axial flux of axial momentum L,
multiplied by the equivalent nozzle radius, which in the case of a cyclone is the vortex finder radius Dze [25]

Lo
0 (1.3)
2

Sw =

Swirlers used in combustion chambers with swirl numbers above 0.6 create recirculation zones in the flow to
promote uniform mixing of the air and fuel mixture [26]. The swirl number is location dependent in a cyclone
which makes this quantity difficult to determine. A geometric swirl number which is constant for a given cyclone
geometry has been defined as [27]

7DD,
4ah b '

Swy = (1.4)

A derivation of the geometric swirl number is provided in Appendix [A] Cyclones used in industry typically
have geometric swirl numbers of between 1.5 and 4 [3], the swirl number of the cyclone (from Eq. considered
here is Swy = 4.6 (1 d.p.) which indicates that this cyclone is highly-swirling compared to other cyclones and
swirlers in the literature.

The high swirl in the cyclone results in the formation of recirculation regions in the flow. For a straight pipe
exit, the critical swirl number for this instability is Sw ~ 0.6 [27], the same value as observed for swirlers used
in combustion chambers. Above this swirl number, as Reynolds number is increased, additional instabilities
such as vortex breakdown and the precessing vortex core (PVC) occur. The PVC is a large 3D, time-dependent
instability where the vortex core precesses about the vertical axis; the frequency of which is linearly proportional
to the volumetric flow rate [28]. The conical geometry of the cyclone is able to provide a stabilising effect on the
vortex core, however if the instability is strong enough the vortex core can attach itself to the outer cyclone walls
[29]. This can reduce the separation efficiency significantly due to the re-entrainment of particles by the walls
[I1]. This time-dependent PVC phenomenon is a major part of the cyclone flow field and is ignored in simple
cyclone separation and fluid models. This suggests the need for high-resolution CFD to accurately capture the
cyclone flow field both in space and time.
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The pressure drop for a given cyclone geometry ultimately determines the fluid flow field. This is because
a specific value of AP specifies a unique inlet mass flow rate 7h;, (or vice-versa) which sets the Reynolds
number of the flow. This relationship expressed in terms of the volumetric flow rate is approximately AP o V2,
which comes from the conversion of static pressure to dynamic pressure by the cyclone [II]. It is this pressure
conversion by the vortex core which leads to the (at first seemingly counter-intuitive) result that cyclones with
rough walls, high particle mass loadings and/or long lengths decrease the pressure drop [11].

The equations of motion of the fluid phase in the cyclone are governed by the usual Navier-Stokes equations
for fluid flows [II]. These are a set of partial differential equations (PDEs) with non-linear terms and as such,
analytical solutions only exist for the simplest of flows. Obtaining an analytical flow field for the cyclone is
not possible and either an approximate numerical solution or experimental data is sought instead. Numerically
solving the Navier-Stokes equations directly for a representative cyclone is not computationally feasible as a
consequence of the fine grids required to capture the smallest turbulent eddies in the flow. As the turbulent

3
dissipation rate is expected to scale as € ~ %7 where ug and [y are representative values for the large geometric
scales, the ratio of the largest to the smallest scales in 1D can be estimated as [30]

b o pet, (1.5)
ln

with [, denoting the Kolmogorov length scale. The Kolmogorov scales can be estimated using dimensional

analysis as [30]
3\ 1
v
I, = <f> , (1.6)
€f

v

Ty = —jj (1.7)
1

uy = (evp) ™. (1.8)

The mesh resolution required to capture the Kolmogorov scales in a direct numerical simulation (DNS) of
a representative swirling flow is prohibitively expensive. To provide rough numerical estimates for the number
of computational cells/nodes required, consider a 3D box of isotropic turbulence on a uniform grid. The ratio
of the large scales (size of the domain) to the small Kolmogorov scales is expected to scale as f—“} ~ Re%, where
the grid spacing Az is expected to be of the order of I,,. Using the Reynolds number based on the cyclone body

9
diameter and assuming a uniform mesh, the number of grid points required is expected to be =~ Re}, ~ 5 x 100
which is 4-5 orders of magnitude more than those used in the literature in Section [2.1.1

Due to the computational cost of DNS, the turbulence must be modelled instead. An accurate model is
required to capture this high swirl and anisotropic turbulence in cyclones [3I]. The most common turbulence
models in use for cyclone CFD are incompressible Reynolds-averaged Navier-Stokes (RANS) models. These
models involve a Reynolds decomposition which splits the variables in the incompressible Navier-Stokes equa-
tions into a mean component and a fluctuating component. For a variable v (x, t), the Reynolds decomposition
is [32]

Uz, t) = P(z) + ¢ (x,1), (1.9)

where 9 and w' represent the mean and fluctuating component of v respectively. The mean component is
commonly calculated as the time average which is given by [19]

t+T
() = %/t P(x, t)dt. (1.10)

This is the average of ¥ over a time interval T. If the flow is not statistically stationary, time averaging must
be replaced by ensemble averaging defined as [32]

1 N
<w($9t)> = ﬁzw(mat)a (111)

where N is the number of flow realisations which must be large enough such that the fluctuating effects are
negligible. The fluctuating part has a mean of zero for both the temporal and ensemble average. After the
Reynolds decomposition, the equations of motion for the fluid are then appropriately time or ensemble averaged
and the RANS equations are produced [32]. A consequence of this averaging process is that an additional



3 CHAPTER 1. INTRODUCTION

term appears in the momentum equation known as the Reynolds stress tensor. This involves the fluctuating
components and requires an additional model to close the set of equations. Simple eddy-viscosity closures, such
as the k-¢ model, are known to inaccurately model tangential velocities and over-predict turbulent viscosities
in swirling flows [33]. These simple models treat the effects of the turbulence as an additional viscosity, whose
value is obtained by solving one or more transport equations. Most modern published cyclone CFD uses a
Reynolds stress model (RSM) [34] which is better suited at capturing the anisotropy of the turbulence in these
complex flows [35], [36].

In RSM, transport equations are solved for the components of the Reynolds stress tensor pfugu;- and the
turbulent dissipation rate [32]. In 3D, this amounts to an additional 7 PDEs to be solved in the domain in
addition to the mean flow equations. Within the transport equations for the Reynolds stresses, additional
closures are required for terms such as the pressure-strain and turbulent diffusion [32]. The RANS equations
with RSM provide a stiffer set of equations than simple turbulence models and are known to converge slowly
[32]. Tt is also useful to stress that RSM, as with all RANS models, does not directly compute any of the
turbulent scales. These turbulent eddies are missing and Lagrangian particles tracked in such a flow will not
see any turbulent structures.

Another approach to turbulence modelling which is able to directly capture part of the turbulent scales is
LES. Here, instead of time-averaging (Eq. [1.10)) the Navier-Stokes equations, a spatial filter is applied, defined
as [19]

- 1
dat) = [ vlwtav, (112
Vv
where V' is the volume of integration. In compressible flows, densities are Favre averaged by [19]

- x,t)dV
D@, t) = Jv, p}w’“:dvt) . (1.13)
Vi

LES directly solves the Navier-Stokes equations for scales larger than the cut-off filter width and models the
flow below this filter width. The motivation for this method is based upon Kolmogorov’s hypotheses and the
turbulent cascade. The larger energy-containing eddies are directly computed, with the small eddies (which are
assumed to have a universal form) estimated using a sub-grid scale (SGS) model. When a simple eddy-viscosity
model is used to model the effects of the unresolved scales, the rate of transfer of energy to the residual motions
approximately equals the turbulent dissipation rate to give [30]

€f =~ VtSmag, (1.14)

where v; is the turbulent viscosity estimated from the SGS model and Smag is the resolved strain rate magnitude
where [30]

Smag = V/25i5Sij, (1.15)

with the strain rate tensor defined as [30]

o 1 8UZ‘ 8’U,j
Sii =3 ( 5t a) . (1.16)

Of particular interest in this work are the boundary layers of the fluid by the walls of the cyclone. From
the experimental evidence in Figure particles appear to be moving in bands close-to or in the boundary
layers. These boundary layers are expected to differ from the well-studied flat plate boundary layer due to the
curvature of the geometry and intense swirl. The majority of cyclones operate at high Reynolds numbers and
therefore have turbulent boundary layers. These are less prone to separation over curved surfaces than their
laminar counterparts [37] due to the mixing between layers. For a concave surface such as the flow inside a
cyclone, the curvature produces a favourable pressure gradient which keeps the boundary layer attached to the
wall.

Although the concave curvature has a stabilising effect on separation, it has a destabilising effect just outside
of the wall which promotes the growth of secondary flow structures. One of these features are known as Gortler
vortices and are due to the occurrence of centrifugal forces arising from disturbances in a concave boundary
layer [38]. The onset of these Gortler vortices can be predicted from a dimensionless parameter known as the

Gortler number, Gy, defined as [39)
UoOp [0
Go = ——1\/ . 1.17
o vy R ( )
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Here us is the free stream velocity, 4, = Zﬂ is related to the boundary layer thickness, R is the radius of

curvature and x is the distance from the leading edge. Gortler structures have been observed experimentally
throughout the boundary layer and extending to approximately twice the Blasius boundary layer thickness
away from the wall [40]. A crude approximation of the Gortler number for the boundary layer at the top of the
cyclone body just after the inlet can be calculated by assuming u., ~ Uy = 37m/s and by setting both R and x
equal to %. This results in an approximate Gortler number of Gy = 13. Gortler vortices are typically observed
when Gy = 8 [39] and therefore these boundary layer structures are expected to be present in the cyclone.

1.3.3 Particle Scaling and Regimes

The particulate phase is composed of many individual particles. A Reynolds number based on the particle
diameter, Re,, henceforth known as the particle Reynolds number can be defined as
_Ps lu—V|d,

Re,=H12—""17p 1.18
» y (1.18)

where V is the particle velocity. This particle Reynolds number describes the state of the flow around the
particle. The forces on the particle arising from the fluid arise from integrating both the pressure and shear
force distribution over the particle [41]. This task becomes simpler if the particles are assumed to be spherical.
Then, the diameter of the particle, d,,, completely defines the size of the particle and the mass of the particle is
given by

T

my = = o, (1.19)
where p, is the particle density. For particles sufficiently small, a point-particle approximation is made which
means the volume of the particle is considered negligible. This is only valid when d,, << L, where L is the
smallest length scale in the fluid. If Stokes flow is assumed (Re, << 1), the flow around the particle is
analytical and given by the Maxey-Riley equation [42]. This contains a variety of force-contributions; many of
which become negligible by assuming that the density ratio between the particles and the carrier fluid is large
(5—; >> 1) [43] and is discussed in more detail in Section This only remaining force from the Maxey-Riley

equation is the Stokes drag force, given by [44]
Farag = 3mpypdy (u((x = X),t) = V (1)), (1.20)

where the fluid velocity is evaluated at the point particle current location. A useful substitution is to define a
particle relaxation time as

_ Pody
18us”

Tp (1.21)
which defines an inertial time scale for the particle [45]. It can be shown to be the time constant in the relative
velocity vs time exponential decay for a particle acted on solely by drag. By normalising 7, with a representative
fluid time scale 77, we produce the Stokes number [46]
Stk = 2. (1.22)
Tf

The Stokes number is a dimensionless number characterising the ability of a particle acting under Stokes
drag to follow fluid streamlines. If Stk << 1, particles rapidly accelerate to follow fluid streamlines and act as
fluid tracers. Conversely if Stk >> 1, particles tend to ignore the fluid due to their large inertia and act as
“billiard balls”. In a turbulent flow, the fluid timescale is representative of the smallest turbulent eddies seen
by the particle (Eq. [1.7)).

When the particle diameter d, is comparable to the fluid mean free path Ay, the fluid flow around the
particles is said to be in the free molecular regime [45]. For d, >> Ay, the fluid phase behaves as a continuum
as in the usual treatment of fluid dynamics. This continuum criterion in general is characterised by the Knudsen
number [47]

A
Kn="2L, (1.23)
dp
with Kn << 1 indicating the fluid flow around the particle behaves as a continuum. For particles with length
scales comparable to the fluid mean free path, the fluid motion around the particle is no longer considered a
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continuum and the drag force is altered due to slip of the gas at the particle surface [48]. This is rectified
in the Stokes drag equation by the introduction of a Cunningham slip correction factor [49]. This is directly
incorporated into the definition of 7, as

d>C,
, = e (1.24)
184y
where C. is given by [48]
A _ 0.55dp
C.=1+ d—f <2.514 +0.8¢ ) . (1.25)
P

The Cunningham slip correction factor is shown for the particles applicable to this thesis in Figure [1.4
showing that the smallest particles have a drag force ~ 2.95 times smaller acting on them without correction.
The discrepancy is less pronounced for the larger 1um particles, however the error is around 17% and thus this
correction is necessary for all particle sizes considered here.

3.00 A

2.75 A

2.50 A

2.25 A

Ce

2.00 A

1.75 4

1.50 4

1.25 1

0.2 0.4 0.6 0.8 1.0

dp (um)

Figure 1.4: Cunningham slip correction factor for particle diameters in the range 0.1ym < d, < 1pm with an
air mean free path of 68nm [50].

The motion of the individual particles are governed by Newton’s second law, which provides a coupled set of
first order ordinary differential equations (ODEs) describing the particle trajectories. For particles acted upon
solely by Stokes drag, the equations of motion for a single particle become

AV u-V
@ _v-r (1.26)
dt Tp

dXx

v 1.27
o : (1.27)

where X is the position vector of the particle.

We have briefly discussed the effect of the fluid on the particles, however the particles may influence the fluid
and even other particles. The strength of the different levels of coupling between the phases are determined by
the volume fraction o and the mass fraction ¢. The volume fraction is defined as the volume occupied by the
particulate phase per unit volume [46] and the mass fraction is defined as the mass of the particulate phase in
a unit volume normalised by the total mass of particles and fluid in that volume [46]. These two quantities are
related for a monodisperse aerosol by the particle and fluid densities

myp apy
c= = . 1.28
Mot app + (1 —a)ps ( )

Two-way coupling, when both the fluid and particle phases influence each other, is commonly considered
important when ¢ > 1 x 1073 [51]. The presence of small particle Stokes number in this regime increases the
turbulent dissipation from an increased particulate phase surface area, with larger values of Stokes numbers
increasing the production of turbulent kinetic energy due to vortex shedding on the particles [52]. At large
volume fractions, particle-particle collisions begin to affect the behaviour of the particulate phase. A useful
graphical illustration of the different regimes adapted from Elghobashi [52] is shown in Figure
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Figure 1.5: Particle regimes as a function of volume fraction and Stokes number at Re ~ 1 x 10* adapted from
Elghobashi [52].

Experimentally, particles are seen to accumulate at the walls of a cyclone and therefore volume fractions
are expected to be higher in the near-wall region. This increases the likelihood of two particles colliding with
each other by the walls, which is characterised by the collision frequency, C15. This is defined as the number of
collisions between two particles per unit volume per unit time [45]

Cia = fning, (1.29)

where (5 is the collision frequency function and n; and ngy represent the number densities of particulate phase 1
and 2 respectively [53] (for a monodisperse aerosol n; = ne = n). The number density, or particle concentration,
is the number of particles per unit volume [47]. For a monodisperse aerosol composed of spherical particles, it
is related to the volume fraction by

«@ 6a
_ o _ bo 1.30
"V, T (1.30)

A collision frequency function may be defined for different mechanisms causing particles to collide. One such
mechanism is Brownian motion which arises from frequent collisions between the particle and fluid molecules
due to the thermal energy of the fluid [54]. The classical analysis by Einstein assumed that particles move
independently of each other, the motion of a particle in consecutive time intervals is independent and the
average energy of a particle in each coordinate axis is %kBTf [65], where kp is the Boltzmann constant. A key
result is that the mean square displacement of a particle after time ¢ is given by

X2 = 2Dumt, (1.31)

where D,y is the laminar (Brownian) diffusion coefficient. This diffusion coefficient is given by the Stokes-
Einstein relation [54]

Diam = . (1.32)

The original theory proposed by Einstein considered a dilute particle suspension, with each particle assumed
to be in an infinite fluid. Batchelor generalised this to the case of a homogeneous suspension where particles
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are close enough to each other to interact hydrodynamically [56]. The Brownian collision frequency function in
this case between two particles of differing diameters is given as [45]

2k/’BTf (dp,l + dp,2)2

rownian — ’ 1.33
/BB ownia 3Mfd ,ld . ( )
which for a monodisperse suspension yields [45]
8kBTf
rownian — . 1.34
BB ownia 3’uf ( )

This equation assumes that the diffusion coefficient is given by the Stokes-Einstein relation and remains
constant (which is not true for particle separations below Ay [45]). For particles travelling through a shear layer
in a fluid, collisions may occur due to their relative motion. For a simple 1D laminar shear (u = u(y)), the
collision frequency function is [45]

4 (dpy  dps\’ du
am — = — = —_—. 1
Bre 3( 5>t ) @ (1.35)

This equation predicts increasing collision rate for larger particles and larger velocity gradients. Particles
may collide in a turbulent flow due to their inertia from an accelerating eddy. The classical solution from
Saffman and Turner assumes that the turbulence is isotropic and that the particle Stokes numbers are low

(Stk << 1) [57]
d dyo\?>
Bearh = 1.3, /Z—f; (gl i ’;) , (1.36)

where €y is the turbulent dissipation rate. This equation is of a similar form to the laminar shear, with the
fluid velocity gradient expressed in terms of the Kolmogorov scales of turbulence. This model is derived from
dimensional analysis and assumes that collisions are occurring over length scales smaller than [,, [45].

These three models can be representative of the contribution to the total collision frequency function for
their respective physics (Brownian motion, laminar shear, turbulence). This collision frequency is pivotal in
calculating the charge exchange due to collisions in Section The relative contribution of each of these sets
of physics for particles in a cyclone may be seen as a function of particle diameter. By using both mean and
maximum values of the fluid statistics in a cyclone (calculated a posteriori from the CFD results in Chapter [5)),
the significance of each set of physics can be determined. This is shown in Figure [T.6}

From these graphs, is clear that Brownian motion has the weakest contribution towards collisions for all
but 0.1um particles colliding with similar-sized particles. Both the contribution of laminar and turbulent shear
have the same form as their respective equations have the same form. The collision frequency function for
particle-particle collisions is dominated by the turbulent eddies and/or large velocity gradients in a cyclone,
with larger particles more likely to experience collisions. The velocity gradient for the 1D laminar shear model
was replaced with the strain rate magnitude as the cyclone flow is 3D. As the cyclone flow is swirling and
turbulent, the modified laminar shear model appears to capture the contribution to collision frequency due to
small turbulent structures in the flow and from mean flow structures. The model for collision frequency due to
turbulent shear is not necessary when employed in a high-resolution LES and will therefore be excluded in this
work as the laminar shear model will be able to capture the majority of the turbulent structures in the flow.

The particulate phase challenging the cyclone is a polydisperse silica-based test dust supplied by Powder
Technology with a density of p, = 2650kg/m3. From the experimental separation efficiency data provided
by Dyson, the range of particle diameters of interest in this work is from 0.1pm < d, < 1pm which at the
smallest size represents particles which are not separated by the cyclone to the largest sized particles which are
completely removed by the cyclone. The particle mass flow rate entering the cyclone is 77, = 1.33 x 10~ %kg/s
[13].
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Figure 1.6: Collision frequency functions against collisional particle diameter (dj,2) for three representative
diameters of particles (d, 1) in a small, high-speed cyclone. The collision frequency functions were calculated

using the volume-weighted averages of time-averaged variables from the cyclone CFD in Chapter |5 Explicitly
these are vy ~ 1.53 x 107°m? /s, jif = 1.7894 x 10~°kg/ms, Ty ~ 298K, €; ~ 2190m?/s® and the mean fluid

strain rate was used in place of the laminar shear velocity gradient as Smag ~2 23570/ s.
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1.4 Fundamental Tribocharging Physics

Tribocharging, triboelectric charging and triboelectrification are the names given to the process by which charge
is exchanged by different materials from physical contact [58]. Electric charge is generated if a net imbalance of
charge remains on the surface of the materials post-contact [59]. Large amounts of charge building up creates
large voltages that can suddenly discharge, causing fire and explosions [60]. In a particle-laden flow, charge may
be exchanged when particles collide with each other, or with the walls. This can lead to particles agglomerating
into larger particles or cause particles to break-up into smaller fragments; thus affecting the separation efficiency
of devices such as a cyclone. The fundamental aspects of the charging process is provided here for the reader,
who may be unfamiliar with this subject. In addition, the influence of magnetic fields is assumed to be negligible
and thus the theory of electrostatics applies [61].

Metals are structured with positive ions located below the surface of the material, with a sea of electrons
on the surface. These electrons are not bound to any single molecule and are therefore able to flow freely and
give metals their electrical conductor properties. This means that any charge acquired on a metal surface can
flow away to earth. Insulating materials such as silica test dust on the other hand, do not possess a sea of
electrons in their structure. Therefore any charge acquired or removed on the insulator’s surface tends to stay
there. When two neutrally charged materials come into contact and exchange charge, one material acquires a
positive charge whilst the other becomes negatively charged. The resultant polarity after contact between two
frictional materials can be found by considering the position of both materials on the triboelectric series [62].
This is an empirical list of materials ordered by their tendency to acquire a positive charge after contact with
the most positively-charging materials situated at the top of the list [63].

A hypothesis for the cause of tribocharging for metal-metal surfaces was put forward by Volta as an effect
of contact, where friction aids in increasing the number of contact points [64]. As materials are not completely
smooth, friction occurs at these imperfect contact sites which is where charge may transfer. From this it can
be reasoned that faster rubbing of materials will increase the rate of charge transfer. This was extended by
Helmholtz who viewed the charge obtained post impact as originating from a double layer formed during contact
[64]. This double layer is due to the contact potential difference between the two metals, which arises from the
difference in work functions, ¢, between the two materials.

The work function of a surface is given by the difference between the energy of an electron at rest in a
vacuum and the Fermi level ¢ (electrochemical potential) of the material [65]

¢ = —€pe — OF, (1.37)

where e is the charge of an electron and ¢, is the scalar electric potential which is related to the electric field
strength E by [61]

E =-V¢.. (1.38)

The electric field strength is the force a unit positive charge would experience in the presence of an electric field.
The charge per unit volume p, is given by [61]

V-D=p,, (1.39)

where D is the electric displacement vector which is related to the permittivity of the medium €,, and the field
strength by [61]

D=¢,E. (1.40)

Combining Eqgs. [1.38] [1.39} and [1.40] yields the Poisson equation [61]

V2, (a) = — L&), (1.41)

€m

Placing two different materials next to each other will create an electric field between both material surfaces
due to this difference in work functions (also known as a double layer). This field means that there is a difference
in electrical potential between the two surfaces, similar to the two plates of a capacitor. This analogy has formed
the basis of more complete models of triboelectrification and this idea is illustrated in Figure

The charge-storing ability of the plates of a capacitor is characterised by its capacitance C, defined as the
amount of charge ) that can be stored on a material for a given voltage V.. For a parallel plate capacitor, it
can be defined as [66]

_mAd_Q
c==t =, (1.42)
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Figure 1.7: Analogous capacitor circuit model of contact between a positively charged and negatively charged
particle. The charging circuit has a perfect voltage source of V|, a resistor with resistance Ry and a capacitor
with capacitance C.

where ¢, is the permittivity of the material between the plates, A is the area of one plate and d is the distance
between the plates. The current flowing through the circuit is the time rate of change of charge given by [61]

. dQ
i=—.

dt
Using this, we may express the current (Eq. |[1.44) and voltage (Eq. [1.45)) across a capacitor by the integral and
differential equations

(1.43)

dve

) = 1.44
1 =C e ( )
%:%/Mt (1.45)

The increasing charge on a capacitor is due to the build-up of electrons on the negatively-charged plate. The
charge of an electron was first measured by Millikan in his famous oil drop experiment [67] which showed that
charge at the lowest scales is discrete and given by

Q@ = Ne, (1.46)

where N is the number of electrons and the charge of a single electron is defined to be e = 1.602176634 x 10~ °C
exactly [68]. The physics of charge transfer is explained well for metals, however for insulating materials the
problem becomes more difficult. Henry considered the potential of an insulator to be nonsensical as it varies
from point to point and is dependent on neighbouring charges [58]. He also stated that the identity of the charge
carriers are unknown except in the case of metal/metal contacts where the charge carriers are most certainly
electrons [58].

Fukada attempted to extend the theory to insulating materials by rubbing two specimens together and
measuring the charge of each at an electrode [69]. As the specimens were different shapes, the results did not
include the absolute value of the charge and instead the results were ordered into a triboelectric series for all
materials tested. This suggested that the separation of electrons between two materials is determined by free
electrons produced during contact by either an unknown abrasion process or local heating filling the electron
“traps” in the double layer. The material with more electron traps will accept more electrons and hence become
negatively charged. The electron emission by heat from frictional contact is known as thermionic emission and
the mechanism is essentially the same as photoelectric emission.

The photoelectric effect has provided evidence for the particle-like nature of light. Einstein hypothesised
that light acts as a particle during the photoelectric effect and interacts with a single electron on the surface
of the metal [70]. If the energy F of the photon is greater than the work function, then photoelectric emission
may take place [T1]. This effect is shown graphically in Figure

Thermionic electron emission therefore provides a link between tribocharging and the material work function.
This link also provides strong evidence that the charge carriers for insulators are electrons which Henry was
unable to evidence.

Early work on tribocharging showed that the macroscopic phenomena of materials charging through contact
is linked to the electron level. These electrons can transfer from one material to another during contact due
to a double-layer formed that is analogous to the plates of a capacitor and the process could be modelled as a
capacitor-resistor circuit. The factors affecting the rate of charge transfer, the limits of charge on particles and
resultant polarity have since been studied in the literature and are presented in Section [2.2.1
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Figure 1.8: Photoelectric emission of a single electron on a metal plate with work function ¢ from interacting
with a photon of energy E. The resulting kinetic energy of the particle Ex is the difference between the initial
photon energy and the work function of the metal.
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1.5 Summary and Structure of Thesis

From the geometry and operating conditions, it is clear that this is a multi-scaled problem. Lengths vary 6 orders
of magnitude, from 10~ 'm down to 10~"m. The vortex core speed is roughly expected to be twice the inlet
speed and may cause compressibility effects for the fluid. The mass flow rate of the fluid is roughly 3 orders of
magnitude greater than for the particles, of which there are at least a trillion entering the cyclone every second.
Resolving all these length scales or considering each and every particle individually is not computationally
feasible. As the particles are small, these may be considered as point particles which do not disturb the fluid
flow around them. This limits the smallest fluid scales to those of the smallest eddies present, which are suitable
candidates to be modelled, rather than directly resolved as will be shown in Section [2.1.1] For the particles,
only a representative sample will be possible for individual Lagrangian particle tracking. In this work, a model
for treating the entire particulate phase as a separate fluid in an Eulerian framework is presented. This loses
information relating to individual particle trajectories, however it is computationally efficient and the particle
mass flow rates in the model will be able to match operational conditions. The Eulerian model can also be
prescribed in a simple way by utilising the low Re, and Stk expected for the particles.

There are 3 main bodies of work in this thesis: particle charging, the Eulerian model and the cyclone flow
field. The current state of the literature into these fields are presented in Chapter[2] From this literature review,
the choice of how to computationally model the cyclone flow field can be decided and suitable models for the
particle charging and Eulerian model can be deduced. The gaps in the literature, mainly the missing charge
information for small particles and relevant validation of the Eulerian model, can be identified. From this, novel
research to extend the body of knowledge in these areas can be performed.

The first body of new work begins in Chapter [3| with particle charging experiments performed on sub-
micron particles. These experiments allow the results and key models made for larger particles in the literature
to be validated for these small particle sizes. The experiments additionally allow the estimation of key model
parameters needed in charge models to be able to compute the charge transfer from impact numerically.

The second stage of work is the validation of the Fulerian model in an analytical flow field in Chapter
The flow field features strong streamline curvature, with the scales matched to the turbulent length scales in
the cyclone. This permits an in-depth analysis of the model in a representative, simpler flow field. The model
is compared against results obtained by tracking Lagrangian particles in the same flow, with the strengths and
weaknesses of the model identified.

The final stage of work concerns the cyclone itself in Chapter 5] A CFD model of the cyclone is presented
with high wall resolution. Lagrangian particle tracking is compared against experimental evidence for separation
efficiency to justify the particle and fluid modelling assumptions. These are compared to the results of the
Eulerian model applied to the cyclone, with predictions concerning the transport of particle charge through the
cyclone.

The main results of this thesis are then outlined in the conclusion in Chapter [6] and suggestions for future
work are presented. Additional information is provided in the appendices.
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CHAPTER 1.

INTRODUCTION



Chapter 2

Literature Survey

In this chapter, the current knowledge from literature relevant to this thesis is presented. This begins with
a review of the literature surrounding the cyclone flow field from experiment and determining the separation
efficiency of a cyclone in Section Problems involving measuring the highly-swirling flow and the accuracy
of simple models are examined. From this, the state of more advanced CFD cyclone models are analysed with
strengths and weaknesses compared to experimental evidence. Current work with models of the particulate
phase in cyclones, used to better estimate separation efficiency compared to simpler models, is critiqued. This
informs the modelling choices to produce an accurate fluid flow field to track the particulate phase through the
cyclone in Chapter

The effects of charge are then considered. Models of this phenomena have been developed for larger particles
than those of interest in this work, which sets the scene for novel particle charge experiments to validate these
models at small sizes in Chapter [3]

Finally, an alternative framework for describing the particulate phase is presented; an Eulerian framework.
These Eulerian methods for particulate phases offer a computationally efficient way to model collisions which
would not be feasible in Lagrangian models. The Eulerian method is derived from the governing Lagrangian
equations such that any Eulerian model is consistent with the Lagrangian physics explored earlier. The Eulerian
model is then validated in Chapter [4 where the cyclone turbulent scales are mimicked in an analytical flow
field.
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2.1 Separation Prediction Methods

From the basic operating principle of cyclones, the swirling fluid is used to separate out particles in the flow
due to the larger centrifugal forces imparted on the particles from the carrier fluid. Knowledge of this fluid
flow field in the cyclone is needed in order to calculate these particle trajectories and to estimate separation
efficiency. The focus of the majority of the literature surrounding cyclones is on the effect of the geometry on
the performance of the cyclone [72]. The two key performance metrics are the static pressure drop across the
cyclone AP, and the separation efficiency 7 [73]. The separation efficiency is defined as [11]

nzl_M’ (2.1)

where mp oyt and m,, i, are the total mass of particles exiting and entering the cyclone respectively. Separation
efficiencies are determined experimentally through the use of a particle counter both upstream and downstream
of the cyclone [74]. Pressure drops are measured from the difference in pressures at tappings on the cyclone
inlet and outlet pipes [75].

The fluid flow in the cyclone is complex due to the high levels of 3D swirl and the presence of turbulent
structures [36]. Flow measurement techniques such as pitot-static tubes and hot-wire anemometry are intrusive
and disturb the flow pattern [I1]. The flow field has been experimentally visualised using techniques such as
particle image velocimetry (PIV) and laser Doppler anemometry (LDA). Both involve injecting small tracer
particles which have a very low Stokes number (Eq. and are able to faithfully follow fluid streamlines
into the flow. These two methods are considered non-intrusive and are assumed not to disturb the flow through
measurement.

PIV involves imaging the positions with a high speed camera [76]. Liu et al. used PIV to measure the
instantaneous cylindrical velocity components in the cylindrical, conical and cone tip regions of the cyclone
[75]. The flow was measured at Reynolds numbers between 6.5 x 10* < Rep < 1.4 x 10°, for a cyclone with a
geometric swirl number of Swy = 2.45. The time-averaged flow pattern in the cyclone was found to resemble
a Rankine vortex (discussed in Appendix , with the velocity profile found to be independent of Reynolds
number when normalised by the inlet velocity. The inner rigid body vortex velocity profile was independent of
the axial location, whilst the outer irrotational vortex had a small increase in speed moving vertically down the
axial direction. These measurements were taken in two perpendicular, vertical planes through the centre of the
cyclone. A full, 3D picture of the cyclone flow field was unable to be determined experimentally.

LDA measures the scattering of light by the tracer particles and measuring their Doppler shift to provide
the velocities at the particle locations. Hoekstra et al. used LDA to measure the fluid velocity in the conical
section of a cyclone at Rep = 1.2 x 10°, with swirl numbers of 1.79 < Sw, < 3.15 by varying the vortex
finder diameter [3]. Measurements of the velocities in the vortex core lacked resolution due to the low particle
concentrations in this region and measurements could only be taken in small volumes and not the complete
domain. The PVC was found to dominate the core region and introduced pseudo-turbulent fluctuations in the
velocity measurements. The stresses in the free-vortex region were found to be anisotropic and the velocity
profile of the boundary layer was not visible due to the low near-wall resolution.

As is usual with complex systems such as the cyclone, simplified models have been developed to roughly
estimate the performance characteristics of the system. For cyclones, the particle separation efficiency is the key
performance metric which is ultimately determined by the particle trajectories through the turbulent, highly-
swirling flow. These models commonly ignore the unsteadiness and turbulence present in the flow and idealise
the swirling fluid as a Rankine vortex (Eq. . The two most common modelling approaches towards cyclone
separation efficiency are force-balance (equilibrium-orbit) and time-of-flight models [11].

The standard, most commonly used force-balance model was derived by Barth [77]. This model considers
particles travelling on the edge of the vortex core, where the fluid velocity is greatest. For the Rankine vortex,
this would be where |r| = R. In the frame of reference of the particle, the two forces seen by the particle are a
centrifugal force pushing the particle towards the outer walls and a drag force pulling the particle towards the
centre of the cyclone. The magnitude of the centrifugal force is given by [11]

2mp‘u§’
D. ’
where u; is the fluid tangential velocity (assumed equal to the particle tangential velocity). The Stokes drag

(Eq. [1.20) pushing the particle towards the cyclone centre is provided by the radial component of the fluid
velocity u,. Equating these two forces provides the particle diameter where both forces balance as

glufDe|uT'|
dp.50,Barth = (| — 757 = (2.3)
P Pp|u%| C.

|Fcent| = (22)
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This provides a simple estimate of the cut-diameter of a cyclone dy, 50, defined as the particle diameter which
has a 50% chance of being separated [I1]. The inclusion of the Cunningham slip correction factor (Eq.
makes this equation implicit, which requires solution through iteration. The main difficulty in applying this
model is determining the tangential and radial components of the fluid velocity on the edges of the vortex core.
By using CFD, these velocity components are able to be accurately determined and a cut-size can be estimated
using Barth’s model in Chapter

Conversely, time-of-flight models compare the time taken by a particle to reach the cone tip to the time
taken to impact the wall from the inlet [TI]. This model assumes that the cyclone is cylindrical with no taper
and near to the wall, the fluid velocity is equal to the inlet velocity. The time taken for a particle to swirl down
to the cone tip is

TDN,
tbottom = P (24)

Uin

where Ny is the number of spirals down the cyclone the particle performs. For the radial motion towards the
walls from the inlet, the particle is assumed to be moving at terminal velocity and there is no radial component
to the fluid velocity. From equating forces as with Barth’s model, a representative time to impact the wall by
traversing the inlet width can be estimated as

bD

twall = =— =5~
27,Cou?’

(2.5)
where the Cunningham slip factor has been included again due to the small particle sizes. Equating the two
times provides the classic time-of-flight estimate of the cut-off diameter as

9bpi g

, 2.6
7"-]\/vsuinppcvc ( )

dp,50,Rosin =

This model is implicit with the inclusion of the Cunningham slip correction factor. The difficulty in using
this model is determining N, which is commonly estimated from experience [I1]. The assumptions of this time-
of-flight model, including the constant body diameter of the cyclone, are obviously incorrect. The estimation of
the wall impact time by using the inlet width as the characteristic length is a major inaccuracy with the model,
as is assuming the velocity profile close to the wall as a uniform inlet velocity. The assumptions made using
the force-balance approach, whilst a great simplification of reality, are not as extreme as for the time-of-flight
model and therefore Barth’s model is preferable.

Altmeyer et al. compared the predictions of various cyclone separation efficiency models, including Barth’s,
to experimental data [78]. In their work, they amalgamated several models together to attempt to use the
“best” estimate for a given flow regime. They found the cut-size was poorly predicted at low inlet velocities
(Rep < 4x10%) but improved with increased inlet velocity. The worst prediction of cut size overestimated dp.50
by approximately a factor of 3. The forms of the separation efficiency curves obtained using various models
(apart from Barth’s which only calculates a cut-size) did not faithfully match the experimental form observed.
Such simple separation efficiency models are therefore best suited as a rough initial guess for dp, 50 and not as
a definitive estimation.

Once an estimate of d,, 59 is acquired, either by a model like Barth’s (Eq. [2.3) or from experimental data, a
functional form of the separation efficiency curve can be plotted. A curve known to fit many cyclone geometries
well [11] is given by [79]

1
n(dp) = L N\MD
(%)

where M is commonly set to 6.4, however lower values of M have been found to better fit most cyclones [I1].
The functional form of the separation efficiency curve from the cyclone is plotted in Figure with the cut-off
diameter estimated by linear interpolation of the experimental results and the exponent found to be M ~ 6.3
from least-squares regression. The functional form qualitatively fits the experimental results provided by Dyson
very well, with the largest discrepancies occurring around the small 0.1um particles. For these small sizes, the
results are noisy and likely due to agglomeration of the small particles into larger structures which are able to
be separated.

(2.7)

With experimental measurements unable to provide the full picture and simple separation efficiency models
failing to provide accurate results, an approximate numerical solution is sought for instead. Finding a numerical
solution of the fluid PDEs for a complex geometry such as a cyclone is commonly done by using the Finite Volume



22 CHAPTER 2. LITERATURE SURVEY

1.0 1

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

1077 10

dp (M)

Figure 2.1: Experimental separation efficiency results for the cyclone using the fitted functional form. The R?
value of the model fit to raw experimental data is 0.988 (to 3 significant figures).

Method (FVM) [32]. This involves splitting the domain into small control volumes and solving the integral form
of the discretised PDEs over each control volume. As these equations are PDEs, boundary conditions (BCs)
are required for a solution. The cyclone walls are given the no-slip condition. The most common choice of
inlet /outlet boundary conditions are a velocity inlet and pressure outlet specification. The velocity (or mass
flow rate) at the inlet is commonly known either a priori or from experiment and the outlet is specified at zero
static pressure.

2.1.1 Turbulence Modelling

The LDA performed by Hoekstra et al. was used to assess the accuracy of turbulence models used in cyclone flow.
They compared the mean experimental tangential and axial velocity components to predictions obtained from
k—e, RNG k—e and RSM [3]. The k—e and RNG k —e¢ both predicted unrealistic velocity distributions; with the
standard k — e predicting a solid-body rotation only instead of the Rankine-like profile observed experimentally.
The RNG k — € provided a better experimental match, however it also predicted the predominantly solid-body
rotation similar to the standard model for all but the largest swirl numbers explored. RSM provided the correct
form of the velocity profile for all swirl numbers investigated, however the size of the vortex core and the
magnitude of the maximum tangential velocities did not faithfully match experiment. In spite of this, many
researchers have continued to use RSM to model the flow field in a cyclone [11 23, [36, [35] [R0L 8T, [82], [83], [84].

Although less popular, LES has been applied to the fluid flow within a cyclone [85]. In recent years, it has
begun to overtake RSM as the choice of turbulence model for cyclones. An extensive search of cyclone LES
studies from the literature are therefore explored in order to inform the CFD in Chapter [§ and in particular,
how to validate the simulation.

Shalaby et al. compared an LES with Smagorinksy SGS model with Lagrangian particle tracking to exper-
iment. The normalised tangential and axial velocity profiles provided the correct form to experiment and the
difference in pressure drop between the numerical model and experiment was around 2% [86]. This flow field
was used to track particle trajectories and estimate a separation efficiency curve, which closely resembled the
experimentally derived separation curve, with a small systematic error observed with the LES over predicting
the separation efficiency. This systematic difference was more pronounced with decreasing particle diameter.
These results were produced for a geometry where Sw, = 3.14 at Reynolds numbers of Rep ~ 7 x 10°. A
laminar inlet velocity profile was assumed, even though the inlet Reynolds number was Reg ~ 1.4 x 10°.

The flow field in the cyclone has been shown to be insensitive to the inlet velocity profile by Derksen who
performed LES with a Smagorinsky SGS model using the Lattice Boltzmann Method on the classical Stairmand
cyclone geometry at Rep = 3.3 x 10* and Swy = 6.04 [87]. Derksen argued that this insensitivity is due to the
region where the inlet flow merges with the cyclone flow. Here, the fluid rapidly forgets about the conditions in
the upstream inlet pipe. Derksen also showed that the bin/hopper at the base of the cyclone must be included
in the CFD model, otherwise the LES overestimates the intensity of the swirl in the vortex core. This study
utilised 7.7 x 10° lattice cells, the largest from other cyclone work to the author’s knowledge, however 45% of
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these cells were outside the main cyclone geometry.

Shukla et al. compared Lagrangian particle tracking in a RANS model with a RSM to an LES with a
dynamic Smagorinksy SGS model. They found the prediction of both the velocity fluctuations and separation
efficiency for small particles was poor using RSM and that LES provided good agreement with experiment [g].
They suggested that the improved accuracy for separation efficiency of small particles using LES was greatly
influenced by the more accurate capture of the velocity fluctuations.

Misiulia et al. performed LES of a small cyclone with a diameter less than half of the cyclone considered
in this work (0.41D) [88]. They used a dynamic Smagorinsky SGS model and looked at pressure drops in the
range 1Pa < AP < 25,000Pa, with the largest pressure drops requiring the finest mesh of 3.65 x 106 cells. This
is a pressure drop 4 times greater than the cyclone considered here. The time step for this largest AP case was
At =5 x 10~ 7s. The only validation performed was to compare pressure drops and flow rates to experiment.
A fitted curve of pressure drop as a function of volumetric flow rate was obtained from experiment (with an
R? value of 0.9974 indicating a very good fit) and the maximum discrepancy between the LES and experiment
was below 10.3%, however this was deemed acceptable [88]. Discrepancies of this magnitude between numerical
results and experiment have additionally been seen for pressure drop validation studies [89], although these
results were using an RSM turbulence model.

It is also of note that a DNS of a small hydrocyclone was performed by Zhu et al. for Sw, = 2.93 and
Rep =~ 500, 1000, 2000 in studies consisting of 2.6 x 106 cells [90, 01]. The Reynolds number of the inlet flow
(which is smaller than Rep) in these cases means that the inlet flow is laminar. The onset of unsteady flow was
observed at Rep =~ 1000 and the velocities in these cases were not high enough to produce an air core.

The DNS studies by Zhu et al. found vortical wall structures in their unsteady cases which they identified as
Gortler vortices [01]. From Lagrangian tracking in these flows, they found that separation efficiency improved at
higher Reynolds numbers from both a combination of higher tangential velocities and a larger number of Gortler
vortices being generated. The Gortler vortices in the cyclone were visualised from plots of vorticity and vector
plots of the fluid velocity along a 2D slice of the cyclone and were found to have the usual “mushroom-like”
structure due to the pairs of counter-rotating vortices in this laminar boundary layer.

Wang et al. studied a supersonic DNS of a concave turbulent boundary layer where the Gortler instability
contributed to the formation of large stream-wise roll structures in the boundary layer [92]. In a turbulent
boundary layer, definitively identifying these structures as Gortler vortices is impossible [92], even in a simple
geometry. The instabilities associated with the concave curvature were seen to reduce u™ compared to the
flat plate result beginning at y+ ~ 8, with the size of the structures growing larger than the boundary layer
thickness based on 99% of the free-stream velocity. The growth of structures arising from Gortler vortices has
been observed in other work to grow up to twice the boundary layer thickness [40, [03]. The response of particles
to these flow structures is discussed in Section

Experimental data obtained for the cyclone flow field in the boundary layer by the walls is difficult to obtain.
As shown by the DNS of Zhu et al., CFD provides a useful research tool for determining this flow. Studies at
representative turbulent Reynolds numbers for cyclones do not either state, nor appear to care for, the near-wall
resolution. The focus for high-fidelity work is usually on capturing the vortex core and the PVC phenomena.
By accurately capturing the vortex core, the pressure drop is able to be closely matched to experiment as the
effect of the vortex core is an order of magnitude greater than the walls on the pressure drop [I1]. The effect of
near-wall turbulent structures on particles in cyclones at high speeds remains an open topic.

In addition to the choice of turbulence model, the geometry of the connective piping to the cyclone may
affect the flow field within the cyclone. Schmidt et al. investigated the effect of the outlet pipe geometry on
the cyclone swirl velocity using a hybrid turbulence model of LES for the vortex core region with RANS by the
walls at Rep = 1 x 105 [94]. They found that short outlet pipes strongly under predicted the levels of swirl
in the cyclone compared to experiment. A sufficiently long outlet pipe prevents this feedback, even with bends
in the outlet geometry and reversed flow occurring at the outlet. Though they did not explicitly disclose the
lengths of the outlet pipes used, figures in their paper can be used to estimate lengths of the short, medium and
long outlets as ~ 0.364H, ~ 0.727H and =~ 1.455H respectively. This is a useful result to inform the cyclone
CFD geometry in Chapter

Validation of cyclone CFD in the literature commonly consists of comparing tangential velocity profiles
across a horizontal section to experimental evidence [95, [84] 96] @7, O8] @9], with some accrediting “good fits”
with discrepancies of approximately 10% [88] 100, [89, [96]. For the cyclone geometry provided by Dyson, there
is no available experimental velocity profile data for this design. The general shape of the tangential velocity
profile normalised by the inlet velocity can be compared to various differing geometries from the literature. This
checks that the profile is as expected and agrees with known trends of cyclone performance as is common in the
literature, such as both increased tangential velocities and thinner vortex cores as Swirl number is increased
[3]. As experimental separation efficiency data has been provided, this can be used as a supplementary form
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of validation, provided the computational modelling of the particulate phase through the cyclone is accurate.
This is explored in the following section.

2.1.2 Uncharged Particle Physics and Modelling

In this section, we consider the particles to be laden in a fully turbulent flow and neglect any physics relating
to charge. The forces acting on the spherical particles are examined and models of these forces from literature
are discussed. The simplifications of the particle equation of motion for the small, heavy particles considered
here are presented.

In Section [1.3.3] assuming Stokes flow is valid, the fluid forces acting on a single spherical particle are given
by the Maxey-Riley equation [42]. This includes effects of flow curvature from a non-uniform flow, following
Esteban, this can be neglected for point particles and simplifies to the Basset, Boussinesq and Oseen (BBO)
equation [43]

dVv
mPE = Fdrag + Fpressure + Fadded + FBasset + Fweight7 (28)

with Fyrag given by Eq. The pressure gradient force arises from local pressure gradients evaluated along
the trajectory and is given by

Fpressure = %divp (29)

The added mass, or virtual mass force is due to the particle displacing fluid as it accelerates as

s 5 dw

M 2.1
12°7% g (2.10)

Fadded =

where w = u — V is the relative velocity vector. The Basset force is the most complicated of these forces and
arises due to the lagging development of the boundary layer around the particle to provide

3 t 1 dw wy
FBasset = *dz./ ——dt;+ — | . 2.11
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Finally the particle weight is given as

™
Fweight = E,Opdf,g (212)

For large density ratios (Z—‘: >> 1), all of these forces apart from Stokes drag and the particle weight are
negligible from dimensional analysis in previous work by the author [I01]. The particle weight can also be
shown to be negligible in the high-speed cyclone flow by a simple comparison with drag. For a particle spinning
around the top of the cyclone (of radius R = %) at the inlet speed V; = ug, the ratio of centripetal acceleration

2
(‘%ﬁ) to gravitational acceleration |g| = 9.81 is approximately 1.175 x 10°. It should also be added that this is a
conservative estimate as particles traversing in the vortex core are expected to travel over twice as fast around
a radius = 5 times smaller.

An additional force on a small particle arises in shear flows known as the Saffman Lift force due to a difference
in velocity seen across the particle [I02]. This force has been known to accelerate particles away from walls in
thin micro-capillary tubes in aerosol beams towards the centreline [103] [104]. This was generalised to 3D flows
as [105]

0.8647mpyd2v? S,
T
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Fsaffman,i =

(uj —Vj) . (2.13)

This force is usually considered small for particles larger than a micron, however it may be significant in the
boundary layer of the cyclone where sharp velocity gradients are present. The particles of interest in this work
are also sub-micron, for which the Saffman Lift force may have an appreciable result on particle trajectories.
This effect of this force in a cyclone has been examined by Xiadong et al. who found that this force increased
the separation efficiency for small particles and reduced their residence time in the cyclone [I06]. Their work
was performed using idealised analytical flow fields for the tangential, radial and axial velocity components
with fluctuations superimposed to mimic the effect of turbulence. The differences with the inclusion of Saffman
lift were small, however the flow field used does not contain any turbulent structures which may be present
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close to the walls and are expected to influence particle trajectories. The particle diameters examined ranged
from =~ 5um to 250pum [106] which are much larger than those considered in this thesis, for which this force is
expected to be more significant as the particle acceleration due to Saffman lift is proportional to d . The results
were also not compared to any experimental evidence. The effects of the inclusion of this force for sub-micron

particles in a high-speed cyclone may be significant, thus its effect will be determined in the high resolution
CFD flow field in Chapter

From Section the ability for particles to follow fluid streamlines is governed by the Stokes number.
Using the turbulent length scales of a flow, the Stokes number determines the response of the particle to these
turbulent eddies. The distribution of particles in isotropic turbulence as a function of Stokes number has been
measured by various authors, with particles observed computationally to collect around eddies in a process
known as preferential accumulation [107, [T08| [T09]. These simulations involved a fully periodic fluid domain
discretised on a uniform mesh. A pseudospectral method was employed to simulate the isotropic turbulence and
point-particles were tracked in a Lagrangian frame of reference assuming low Re, [I10]. The fluid velocity at
the particle location is interpolated from neighbouring points [I07]. The simulations were one-way coupled, in
which the fluid affects the particles through the drag force and the effects of particles on the fluid are considered
negligible. Particle-particle interactions are also ignored [I09]. This effect is most pronounced for a Stokes
number of Stk & 1 [I10]. These particles are seen to be centrifuged out of regions of locally high vorticity and
collect in regions of locally high strain.

From Section [2.1.1] it is expected that turbulent structures such as Gortler vortices are present in the cyclone
boundary layer. The particle response to these structures is characterised by the Stokes number. In the cyclone
DNS by Zhu et al., the separation efficiency was seen to increase with increasing numbers of Gortler vortices
[91]. Large Stokes number particles were insensitive to these structures and were separated as usual. Fine
particles with small Stokes numbers can be captured by the flow and transported into the core of the Gortler
vortices. As these unsteady structures move from the wall towards the central cyclone axis, they transport
these particles away from the wall. In their DNS, which had no air core, the axial velocity by the cone tip is
directed downwards and so these particles were able to leave the cyclone into the bin. At higher Re where a
fully developed PVC exists, this argument may not be valid. The Gortler vortices would still be expected to
aid in the transport of small particles away from the walls, however this effect on their separation efficiency is
unknown.

The transport of particles from regions of high to low turbulent intensity is known as turbophoresis [TT1].
This is observed in anisotropic turbulence and results in increased wall deposition of particles. This effect is
due to particles obtaining a large fluctuating velocity component in a region of high turbulent intensity, which
allows the particle to enter a region where the turbulent intensity is not high enough to supply the particle
with sufficient momentum such that it can return to its original position [I12]. From the experimental evidence
provided in Figure the wall migration of particles in the turbulent cyclone flow is expected to contribute to
the visible particles bands.

Having discussed the physics of small, heavy particles in turbulent flows, we now discuss how these are
modelled computationally. The motion of small particles in turbulent flows is commonly modelled by assuming
Stokes drag to be the only force on the particles and for the particles to be one-way coupled. This requires
numerically integrating Eqs. and together to provide an estimate of the particle trajectory, given an
initial condition for velocity and position. A myriad of numerical methods exist to solve such a problem. In
tracking particles in isotropic turbulence, high-order schemes are in common use such as a third-order Runge-
Kutta scheme [I10, 1T3]. In particle-laden cyclone flow, many authors have not stated how they have integrated
the particle trajectories [35] [72] [, [TT4, [IT5]. The choice of time step for the integration of particle trajectories
and the number of particles needed to be tracked for statistically stationary results in a cyclone is missing from
the literature.

In tracking Lagrangian particles in a CFD flow field, the particles can only respond to turbulent structures
which are resolved in the numerical model. In RANS models all the turbulent structures are time-averaged away
and in LES only the larger scales are present in the flow. The effects of the unresolved scales on the particles is
commonly ignored [35], 80]. Simple models have been produced to mimic the effects of the unresolved scales on
the particles in a stochastic manner by adding a random contribution to the fluid velocity seen by the particle.
One such model is the discrete random walk (DRW) model [31]. For LES, time and velocity scales can be
estimated using the mixing length L, (Eq. and the resolved strain rate magnitude as

1
tp ~ —— (2.14)

Smag
NS (2.15)
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These are representative of the largest unresolved eddies in the flow. The fluctuating velocity components are
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computed by [31]

W = cVa?, (2.16)

where ¢ is a normally distributed random variable. The velocity fluctuation is assumed to be the same in all
directions. The length of time for which this fluctuating velocity component is active is given by

teddy = min (Te7 tcross) 5 (217)
where 7. is the eddy lifetime and t.,0ss is an estimate of the eddy crossing time given by

L
teross = —Tpln | 1 — <e> . (2.18)
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There are two common methods to calculate 7.: the first keeps it constant as [31]
Te = 2g, (2.19)
with the second option varying it randomly as
7. = —t; In(Z), (2:20)

where = is a uniform random number drawn between 0 and 1. This model has been applied to particles in
cyclones but validation and assessment of the accuracy of the model in this case has not been determined

[311 116].

From Figure [I.6] Brownian motion may be significant for small 0.1um particles. The effects of Brownian
motion can be computer modelled as a white noise process as [105]

2m kBTf
F rownian — L 5 2.21
s (2.21)

with ¢ representing a random number vector where ¢ ~ N(0,1) and At, is the particle time step.
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Figure 2.2: Ensemble-averaged RMS 1D particle displacements due to the Brownian motion model (Eq. [2.21)
acting on fluid tracers for 1pm and 0.1pm particles with Ty = 300K.

To check that this model provides the correct dispersive behaviour, 1 x 10° particles were tracked for 1000
time steps, where At = % and the ensemble average of the particle displacements at each time step were
compared to the solution predicted by Eq. This was performed by initialising a stationary particle at the
origin for each realisation. An acceleration due to the Brownian force (Eq. is then calculated and then
multiplied by the time step. This is added to the previous particle velocity. The new velocity is then multiplied
by the time step and added to the previous position to provide the new particle position, in a similar way to

a first-order Euler integration scheme [I17]. Figure shows this for both the largest and smallest particles
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relevant to this work and excellent agreement with the theoretical prediction from Eq. is attained. Both
the computer model and theory of Brownian motion predicts larger mean square displacements relative to the
particle diameter for smaller particles as expected.

In wall-bounded flows, an assumption for the particle-wall interaction must be made. Particles may assume
to be trapped on impact with a wall and be counted as separated or to reflect off the wall either elastically
or inelastically. Bogodage and Leung have discussed the choices in the literature and found trapped boundary
conditions for both the cyclone walls and bin over-predict the separation efficiency but this choice remains
unclear [72].

The particles are commonly tracked in a frozen fluid flow field; representing a single fluid realisation in
time. Tracking the particles with an unsteady flow field becomes significantly more expensive and is commonly
not performed. Particles are injected on the inlet plane of the CFD domain uniformly spaced [72], with some
authors found not to disclose the number of particles tracked [81].

2.1.3 Separation Prediction Methods Conclusion

The cyclone flow field is complex, 3D, turbulent, highly-swirling and difficult to measure experimentally. Various
simplified models for the cyclone cut size exist in the literature, however the equilibrium orbit model from Barth
has the most reasonable assumptions and can be used alongside a functional relationship to provide rough
estimates of separation efficiency, if accurate fluid velocities in the vortex core are known.

To more accurately determine the cyclone flow field, CFD with an appropriate turbulence model can be
employed. Simple RANS eddy-viscosity models are unable to appropriately capture the swirling flow and RSM
is the most commonly used as it is able to capture the correct form of the velocity profile for a wide range
of swirl numbers. Given a computed CFD flow field, Lagrangian particles can be tracked through the domain
to obtain more accurate estimates of separation efficiency compared to simple models and the trajectories can
provide useful insight into the separation process. For accurate particle tracking, the mean flow field along
with the instantaneous turbulent fluctuations also need to be accurate. LES provides a more realistic flow field
which includes the larger turbulent scales being directly computed compared to RSM which poorly captures
the fluctuations in the fluid velocity field.

From the large density ratio, sub-micron diameter and small particle Reynolds numbers hypothesised, Stokes
drag with Cunningham slip correction is expected to be the dominant force acting on the dilute particulate
phase. The effect of Saffman lift, which has been shown to be appreciable for sub-micron particles in shear
flows, requires further investigation. Simple stochastic models of both Brownian motion and the effects due to
the unresolved turbulent scales exist and exhibit the correct behaviour. The significance of these forces on the
separation efficiency of a small, high-speed cyclone are investigated in Chapter
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2.2 Particle Charging

The literature surrounding particle tribocharging is uncertain and conflicting [58, [I4]. Many authors report
opposite results for similar experimental set-ups and there exist different theories as to how charge is transferred
on contact. Key charge measurements from the literature are presented in Section to highlight important
phenomena present and to provide a first insight into the scales of the problem. The literature review concludes
with presenting the evolution of key models created to model tribocharging and to determine their suitability
to model particle tribocharging in small, high-speed cyclones.

2.2.1 Experimental Data

Section looked at the fundamental theory surrounding tribocharging which centres around the transfer of
electrons during contact between two materials. This chapter looks at the measurements made on tribocharging
which gives insight into the physics of charge transfer; these being the factors that affect the rate of charge
transfer, whether a maximum charge level can exist on a material surface and predicting the polarity after
contact. For particle charging in a cyclone, this information is needed for sub-micron insulating particles to
enable a suitable tribocharging model to be determined.

A study of small 0.25 to 15um diameter particles statically charging from dispersing into a cloud was
performed by Kunkel, who reported that homogeneous dusts had no net resulting charge [I18]. This means
that if this charge distribution is measured in bulk, it will be incorrectly concluded that no charge is present.
This is useful information for tribocharging experiments in Chapter[3] Kunkel also found no correlation between
size and polarity and concluded that the charge transfer from two particles occurs during separation of contact
[118]. Charge transfer by separation has a clear link with frictional charging; more aggressive friction results in
a greater charge transfer. Later work by Matsuyama et al. (in Section further highlights the difference
in charge transfer during separation, indicating that the entire process from contact to separation is complex.

Davies showed that charge density produced on a dielectric surface by contact with a metal is dependent on
the metal work function [II9]. From this he produced a triboelectric series of some insulating materials based
on their work functions measured experimentally. This list was in accordance with previous triboelectric series
and the only insulator work function measured previously was in reasonable agreement with this [I19]. This
work evidenced that electrons are the charge carriers in insulators. By being ordered into a triboelectric series
by work function, the charging characteristics of insulators could be predicted using models originally designed
for metal-metal contacts.

Lowell investigated the contact electrification of metals and found strong agreement with representing the
contact as a capacitor circuit and that the charge transferred is determined by the equalisation of Fermi levels
on contact [I120]. Lowell looked at polymer-metal charging from different contacts and predicted an equilibrium
charge dependent on the work function of the metal [I121]. This equilibrium charge is equivalent to the saturation
of charge on the plates of a capacitor in an electrical circuit. This suggests that knowledge of the equilibrium
charge, along with the speed of charging can completely define the charging process for a contact. Lowell also
found that the transfer of material on contact is not the primary mechanism for tribocharging [122]; further
evidencing the validity of electron transfer.

To understand the tribocharging behaviour of insulators, single particle impacts of a polymer on a metal
plate were performed in detail by Matsuyama et al. From these experiments, Matsuyama formally introduced
a condenser model of particle charging [123] and then extended the model to create the “charge-relaxation”
model [124] (both covered in Section , a simple model of the experiment is shown in Figure

O :
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Figure 2.3: Diagram of Matsuyama’s experiment of a single particle impacting a metal plate with relative speed
Viei and angle 6. The dashed line is normal to the metal plate.

The experiment consisted of firing particles out of a pneumatic gun, measuring the initial charge of the
particle using a Faraday cage pre-impact and then measuring the charge transferred to the metal plate during
impact using an electrometer connected to the plate. Although it was not possible to control the initial charge
of the particles, it was simple to change the angle of the plate relative to the particle. The initial charge on the
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Figure 2.4: Example data from Matsuyama’s single impact experiments [123] for Teflon particles striking an
Aluminium plate. The dashed vertical line represents the equilibrium charge (Q. ~ —110pC).

polymer particles varied from around —1000pC to 500pC for both materials considered (Teflon and Nylon-66),
the impact speed V,.; varied between 7 — 18m/s and the angle was varied between 0 — 60° [123]. The results
showed that the impact charge varied linearly to the initial charge of the particle, with the x-intercept (Q.)
indicating the equilibrium charge where no charge transfer takes place with the metal plate. This trend is shown
graphically in Figure

The impact speed and angle are related to the normal speed by
Vo = Vyer cos(6). (2.22)

Changing the normal impact speed (and therefore 6 or V,.;) has no effect on the equilibrium charge [123]. This
suggests that material properties govern the equilibrium charge rather than the conditions at contact. These
were originally performed using particles with a diameter of a few millimetres and were later repeated with
particles as small as 100um which are several orders of magnitude larger than the dust considered in this work.

Tribocharging has also been studied in pharmaceutical fields by authors such as Ghadiri who has also
collaborated with Matsuyama and repeated the impact charging experiments [125]. Pharmaceutical powders
are very fine and prone to tribocharging which can affect the quality of the end product. As these particles are so
small, only simple experiments such as shaking (Figure have been performed [126]. These experiments have
shown that the saturation/equilibrium charge is independent of shaking frequency [126] and Bi et al. showed
that particle size affects the charge build-up [I27]. These results, which are obtained for particles smaller than
the single particle experiments, also suggest that the equilibrium charge of a particle is independent of the
conditions of impact. Impact conditions only affect the speed of charging.

Figure 2.5: Powder shaking experiment diagram with arrows indicating the direction of displacement.
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The effect of humidity on tribocharging has also been examined. It has been found that high humidity
levels > 80% result in particles unable to hold their charge on the surface as they discharge to the water in the
air [I128]. Lower humidity levels allowed particles to hold a greater amount of charge and this regime change
depended on the material along with the polarity of the resultant charge [I28]. This gives an estimate of the
maximum allowable humidity level for the experiments in Chapter [3]

Alois looked at tribocharging in aerosolised oxides with diameters between around 0.1um and 40pm, covering
the range considered in this report [129]. In this work a model was proposed based on electron transfer by using
the absolute generalised relative electronegativity. This quantity is related to the electronegativity and was
permissible to be used here as the chemical composition of the contacting surfaces was known a priori. The
experimental set-up consisted of rapidly decompressing a chamber at ambient pressure into a near vacuum
through an injector tube, which the particles will collide with and subsequently tribocharge. The charge
exchanged between the injector and particles was measured by integrating the voltage between the injector and
vacuum housing over time and dividing by the resistance of the circuit. The results found that the charge/mass
ratio of particles had two regimes: a i dependence was found for particle diameters larger than 1.5um and a
negative linear trend for particles smaller than 1.5um. This regime transition sits within the range of test dusts
considered in this report and the smaller particle trend was explained by agglomeration.

The results from Alois et al. also found that results were very consistent at low humidities and varied
considerably at high humidities. This was explained by the adhered water forming bridges at the contact
points, significantly increasing the effective contact area and the conditions at the surface [129]. The effects of
humidity will be assumed to be negligible in any model considered.

The size ranges currently studied in literature for particle tribocharging are shown in Figure [2.6 There
exists a large gap in the knowledge as particles become smaller than ~ 50um. The fundamental physics needs
to be verified at the scales pertinent to this work. This requires experiments to be performed in Chapter [3]
From the literature, it is clear that single particle experiments will not be possible for the desired size range and
that experiments will have to be performed on many particles; with the underlying physics of single-particle
charging inferred from these results.

lem
Ireland glass spheres
Imm ~
Single particle experiments
Matsuyama PE spheres 100um - |-
Bulk powder experiments
[— Ghadiri Powders
10um v
1pum
— Sizes of interest in this thesis
——— Air mean free path 100mm
10nm

Figure 2.6: Diagram of different sizes considered in the most pertinent literature for this report.

This section has shown the conflicting results from different authors surrounding polarity. The construction
of a triboelectric series has been shown to be an effective way to determine the resultant polarity when two
different materials contact. There exists a maximum charge level that a particle can hold which is influenced by
humidity. Low humidity levels do not significantly change the maximum charge (saturation charge) attainable
by a particle, however high levels of humidity cause the particle to discharge to the adhered water on the surface.
Capacitor models for charge transfer on contact have also been shown to accurately capture the charging process
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for large particles, however the physics has not been verified for sub-micron particles. These findings will be
used to access the suitability of tribocharging models for small particles.

2.2.2 Aerodynamic Focusing of Sub-Micron Particles

Single particle experiments, such as the plate-impact set-up by Matsuyama et al. have provided an excellent
way of characterising the charging properties of very large particles. Controlling single particles in the range
of diameters 0.1y < d, < 1um for the same set of experiments is too difficult. Tribocharging experiments in
this size range have instead been performed on bulk powders, with little control over the conditions of particle
impact. The experiments performed by Alois et al., performed on the particle sizes of interest, provided some
level of control over the small particles by pulling them into a vacuum chamber.

Vacuums have been used by Israel and Friedlander to produce well-defined beams of sub-micron particles
known as aerosol beams. An aerosol beam is formed by expanding a high-pressure reservoir through a converging
nozzle in a low pressure chamber [I30]. The particles have more inertia than the carrier fluid and are therefore
unable to follow the fluid streamlines which results in the particles maintaining their rectilinear motion. Aerosol
beams are used to inject particles into mass spectrometers [45] and particle counting devices and are therefore
ideal for controlling the motion of small particles. The mass flow rate through the choked nozzle for a given
fluid is a function of only the nozzle area and stagnation values (Eq. - For alr (R, = 287Jkg 1K1,

= 1.4) at standard conditions (Tp = 293.15K, Py = 101235Pa) the pressure ratio P 2 needed for choked flow
is 0.528 [41], where AP is the pressure drop across the nozzle. If the back pressure is reduced further, the beam
velocity is unaffected and this can create a well-defined nozzle velocity for a beam that is not susceptible to
pressure variations. The resistance to pressure fluctuations is especially useful when using vacuum pumps and
airlines as there will always be inherent unsteadiness by the air/vacuum supplies and the choked nozzle provides
a near-constant output. Assuming isentropic flow, the choked mass flow rate is given by [131]

Py Y1\ D
S , (2.23)
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where A* is the nozzle area at the throat. The mass flow rate as a function of pressure drop is provided in

Figure
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Figure 2.7: Fluid mass flow rate as a function of pressure drop, normalised by their respective choked conditions
for air at standard conditions.

The velocity of the aerosol beam downstream was determined theoretically by assuming free molecular flow
in the stagnant low pressure chamber [I32]. Following Dahneke and Friedlander, the equation of motion in 1D
for a spherical particle decelerating under drag is [132]

av T o909
== — . 2.24
My gPrdpV"Cp (2.24)
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By defining the dimensionless parameters

VeV (2.25)
2R, Ty
Moy,
T
50 = g (2.26)
3pf P

where M, is the molecular weight of the gas, a dimensionless equation of particle motion can be derived as

dV
S =V, V.). 2.2
drs Cp (Vs) (2.27)

The drag coefficient in terms of this dimensionless velocity is given by [133]

—v2 4 2
e Vs 4Vi4+4Ve -1 2/
OD(Vs) = ﬁVS (2‘/32 + 1) + T erf(Vs) + 3{.}%7 (2'28)

where fs is a scattering coefficient with 0 < f; <1 and erf is the error function defined as [134]

2 Vs 2
erf(Vy) = —/ e dt. (2.29)
0
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This theoretical model predicts that particles will have a well-defined stop distance given by [132]

4
Tstop = g%dpms,stopa (230)

where ., st0p i the dimensionless stop distance obtained by integrating Eq. from the boundary condition
Vs(0) = 0. For monodisperse aerosol beams Dahneke and Friedlander showed agreement of the theoretical
model with experiment, with the beams exhibiting a well-defined stop distance which was proportional to the
particle diameter. For polydisperse beams, the agreement with experiment was only approximate, possibly due
to collisions between various particle sizes in the beam [132]. Finally, their results indicated that f; = 0.4 gave
the best fit to experiment.

An aerosol beam is suitable to focus sub-micron particles experimentally. This set-up is able to allow
analogous experiments to the plate-impact set-up by Matsyuama et al., with a beam of particles impacting
the plate instead of a single particle. The deformation due to impact with the plate can be modelled using a
Hertzian contact model.

2.2.3 Hertzian Contact Model

Various models for particle tribocharging have been suggested in the literature which have been based on
experimental evidence. These models all assume that the area formed when two materials come into contact is
known. A common way of modelling the contact of particles is using Hertzian theory which allows the contact
area and contact time to be computed. This theory makes the following assumptions [135]:

The surfaces of both spheres are smooth, continuous and frictionless

The contact area is small compared to the size of the bodies

Each solid can be considered to behave as an elastic half-space by the contact zone

The gap h between the undeformed surfaces can be approximated by an expression of the form h =
Az? + By?

The first assumption enables a smooth solution where energy is conserved. The second assumption means
that small strains can be assumed and therefore the linear stress-strain relations can be applied. The third
assumption means that the deformation occurs at the contact region for both bodies and the fourth assumption
requires parabolic surface profiles. An illustration of Hertzian contact is shown in Figure [2.8

The contact force between two materials is given by [136]

4Y.r3
3r

Fhertz = (231)
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2r,

Figure 2.8: Diagram of Hertzian contact between two spheres or radius r; and ry producing a contact area of
radius r,.

Parameter Value
Diameter 0.1pm
Density 2650kg/m?
Young’s modulus 7.13 x 10'°Pa
Poisson’s ratio 0.17
Relative impact velocity 3Tm/s

Table 2.1: Simulation parameters used to produce the dimensionless plot in Figure 2.9] The particle properties
are from the silica test dust introduced in Section [L.3.3l

where the reduced radius of curvature can be calculated by [135]
1 1 1
-—=—4 — (2.32)
T ™ T9

where 1 and 79 are the radii of particles 1 and 2 respectively. The contact modulus is calculated using [135]

1 1-xi, 1-x3

Yc Yl )/2 ’

where Y is the Young’s modulus, x is Poisson’s ratio and the subscripts 1 and 2 refer to particles 1 and 2
respectively. The contact radius is related to the reduced radius of curvature and penetration d by [136]

e = Vrd. (2.34)

(2.33)

This simple model allows the deformation of two objects contacting to be calculated from the radius, Young’s
modulus, Poisson ratio and impact force only. For a spherical particle impacting a flat plate, the reduced radius
of curvature is equal to the particle radius. This is attractive from the point of view of a discrete element method
(DEM) code which has been implemented to calculate contact areas. It is important to note that during the
contact process, the contact area varies. To fully resolve the contact process for sub-micron particles, very small
time steps are needed. The mean or maximum contact area during an impact is therefore more suitable to use
for a charge model; especially one that is to be used in a CFD code. The variation of non-dimensional contact
area with normalised contact time is shown in Figure with the simulation parameters given in Table
representing a 0.1um particle impacting with the cyclone wall at the inlet velocity.

To capture this contact area variation for micron-sized particles is not computationally feasible due to the
incredibly small size of time scale needed to resolve such behaviour and the large number of particles to calculate
this for. Instead, analytical expressions for the maximum contact area and contact time can be used. For two
like spherical particles impacting at a relative speed V., the maximum contact area is given by [137]

il

1 .
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Figure 2.9: Non-dimensional contact area (contact area over particle surface area) as a function of contact time
normalised with the total contact time (= 1.32 x 1071%s) from the developed code.

The contact time is given by [138]
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where I;,,; is the value of the following integral which must be evaluated numerically
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For a sphere impacting an infinite plate, the maximum contact area and contact time are [139]
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respectively.

Hertzian contact theory has been used extensively in the literature to model the collision conditions for
use in a tribocharging model for experiments using pharmaceutical powders [I40] and particles impacting a
plate [12} [139]. For pharmaceutical powders, the individual micron-scale crystals did not have spherical shapes,
however at the localised site of impact, Hertzian theory was found to still be valid as the situation resembled a
sphere impacting a large plate under a scanning electron microscope [140]. This provides confidence that the
Hertzian model can be applied to non-perfect spherical particles such as those expected to challenge a cyclone.

In applying Hertzian theory to sub-micron particles impacting a metal plate using an aerosol beam as in
the experiments performed in Chapter [, the particles will not be perfect spheres. This has been shown to not
be a problem from the work on pharmaceutical powders in the literature. However, for particles smaller than
the wavelength of light (and therefore invisible to the human eye), it may be difficult to verify whether these
particles actually impact the plate, or whether they follow the fluid streamlines around the plate and avoiding
impaction. When calculating the particles stop distance, Dahneke and Friedlander were able to observe the
impact of sub-micron particles with a collection plate in their aerosol beam experiments [I32] from Section
due to the large numbers of particles impacting and depositing on the plate visually. To ensure that impact
is occurring in the experiments in Chapter [3] the plate must be examined post-test and checked for particle
deposits.

2.2.4 Matsuyama’s Plate Model

A range of particle charge models are present in the literature. These originally modelled charge exchange
between large metal particles with small polymer particles [14I] and have since been extended to insulating
particles. In Matsuyama et al’s work on single particle impacts in Section they likened the particle-plate
charging to a capacitor charging circuit (capacitor model - Figure . The contact potential difference Vj is
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caused by the difference in work functions between the particle and plate [123] and this is equal to the voltage
across the analogous capacitor (Eq. [1.42) at equilibrium to give
¢m - ¢p %

%:7:

- c (2.40)

Here ¢,, and ¢, are the work functions of the metal plate and polymer respectively, e is the elementary charge,
Q. is the equilibrium charge and C' is the capacitance of the capacitor circuit. From the equilibrium charge
and the known work function of the metal plate, the effective work functions (from Davies’ earlier work [119])
of different polymers can be calculated. The materials can be readily ordered by work function to produce a
triboelectric series and therefore links observed charges to electron energy levels and the resultant polarity after
contact. The equilibrium charges were also found to depend on the work function of the polymer only, with no
dependence on the work function of the metal [142].

Matsuyama and Yamamoto then extended the model to include what they termed “charge relaxation” to
form a more complete model of particle tribocharging [124]. The “relaxation” refers to electric gaseous discharge
to the atmosphere and is an artefact of the separation process. For small distances (d < 0.1mm [61]) electrical
discharge can occur if the voltage between the plates exceeds 300V. During charge separation between two
particles, they physically separate and some of the charge on the particles is discharged to the surrounding air,
leaving the observed post-impact charge [124]. This process was then determined to be the main mechanism
responsible for determining the remaining charge post-impact [143].

Matsuyama et al. then extended the experiments from d, ~ 1mm to d, ~ 100um [I8]. They found their
charge relaxation model to still be appropriate, however they claim there was greater scatter in their data from
the uneven charge distribution across the surface of the particles at these smaller sizes.

The charge relaxation model gives key insight into the fundamental mechanisms at work which have been
linked to the underlying physics of electron energy levels, work function and air breakdown. The model is very
specific to the experimental set-up, however it is a stepping stone to more advanced models and therefore the
underlying theory and methods will be considered for the proposed model. It should be noted that these sizes
are still around 2-3 orders of magnitude larger than the particles considered in this work. The validity of this
model with respect to this project would need to be proved and experimental results are given in Chapter [3]

2.2.5 Ireland’s Model

Following on from Matsuyama’s work on charge relaxation, Peter M. Ireland commented on their model, ac-
knowledging that it provides a “good description” of their experiment [144]. Ireland then proceeded to focus
less on the microscopic aspects of tribocharging and more on the macroscopic side of changing contact patterns
between surfaces [I45]. From this work he looked at the simplest case of particle charging between two materials
using the well-established capacitor model [145] [146] (Figure [1.7). He related the charge transfer (current) to
the overall potential difference between the two surfaces expressed as [147]

Q _Vo—V.
dt Ry

(2.41)

where () is the charge transferred, t is time, Vj is the driving potential difference from the difference in work
functions between the two materials, V. is the potential difference associated with the charge already present
on the surfaces and Ry is the resistance of the circuit. The capacitance of the capacitor in Eq. can be
rewritten in terms of the contact area A. and the surface charge density o as [147]

oA,
= . 2.42
C=5 (2.42)
Combining Egs. 2:41] and [2:42] results in
iQ A 1
Gt RC (cg—0) = - (Acoo — Q) (2.43)

where o0 is the equilibrium charge density and 7 = RyC is the charging time constant; the same as a capacitor
circuit. This model was tested on particles travelling down a slide with their charges measured using a Faraday
cage which is significantly different to the single particle impact experiments performed by Matsuyama.

Ireland attempted to include a simplified model of Matsuyama’s charge relaxation model into his work [148],
however as the premise of the model is too simplistic this will not be looked at. The model in Eq. however,
shows a dependence of a charging time constant like Matsuyama’s model. This can be experimentally measured
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in a number of ways, both for single particles and powders, thus making this model a suitable candidate for
modelling the charge transfer from particle collisions in a cyclone.

It should be noted that the model equation (Eq. is valid for a single collision. If multiple collisions are
occurring during the charging process then each collision may be modelled using Eq. 2.43] but not the process
as a whole. If the model is applied to a situation like a beam of particles continuously charging a plate through
impaction, then the charging time constant 7 would take on a different definition and would be a function of
the particle collision frequency. Care should therefore be applied when using the model in this way.

Ireland’s capacitor model was validated using large millimetre-sized particles. This model has not been
validated for particles 3-4 orders of magnitude smaller in size for this thesis from Figure[2:6] Novel experimental
measurements are required to validate this simple charging model for small particles. Looking ahead to these
experiments in Chapter [3] it is useful to estimate the amount of charge that is expected to be carried on the
small aerosol particles which is to be measured. A rough estimate can be made from the surface charge density
for air breakdown o,q, =~ 2.5 x 107°C/m? [61] and the surface area of the insulating particles. The smallest
particles of interest are d, = 100nm which gives the maximum charge on a single particle before air breakdown
as | Qmaz| = deom(w ~ 7.85 x 10719C which is around 5 electrons per particle. Such low charge levels will not
be easily measured; many particles will be needed for any charge measurement equipment to be used. This,
along with the difficulty of controlling single 100nm particles means that single-particle experiments (such as
those performed by Matsuyama et al.) are not possible for these small particles. Experiments will therefore
involve many particles, with the single particle physics inferred from the results.

The experiments to be performed in Chapter [3] will produce the necessary model constants 7 and og for
Ireland’s charge model for sub-micron particles. To check the orders of magnitude expected for these quantities,
tribocharging data in the literature is applied to Ireland’s model. This gives rough estimates for values of the
equilibrium charge density and charging time constant for particles much larger than those considered in this
work.

In the powder shaking experiments from Section by Supuk, Seiler and Ghadiri [126], a mean value for the
saturated (equilibrium) intensive charge was found to be qgqt = 4.54 x 107°C/kg for the a-lactose monohydrate
(a-LM) particles. To estimate the charge constants, all collisions are assumed to be particle-particle, which is
a poor assumption given the presence of the walls. However, the results from their work used here are those
where the shaking vessel was pre-coated in the powder; thus particle-particle collisions are expected to dominate.
Assuming spherical particles with a mean diameter of d, = 275um [126] and a density of p, = 1768kg/m? [149)]
gives m, = 1.93x 10~%kg and a total saturation charge of Q4 = 2.70x 10713C per particle. As the equilibrium
charge was found to be independent of shaking frequency (and therefore independent of the contact conditions)
and the particles were charged by multiple chaotic impacts, the charge is assumed to be distributed uniformly
over the entire surface area of the particle. Dividing the equilibrium charge by the surface area of the sphere
gives an estimate of the equilibrium charge density on the particle surface as oy ~ 4.54 x 1076C/m?2. This
surface charge density is approximately 5 times lower than the surface charge density for air breakdown for an
isolated particle. This value of equilibrium charge density being the of the same order of magnitude as for the
isolated air-breakdown appears reasonable.

A charging time constant for the powder shaking experiment is able to be very roughly estimated. A bulk
charging time constant, which represents the speed of charging for the entire powder as a whole, can be estimated
from the charging curves as 1333,1000 and 368.1s for shaking frequencies of 10,20 and 30H z respectively. To
estimate the charging scales for a single particle impact, the collision frequency is required. The total mass
of the particles is 1g [126] giving the number of particles present as N ~ 5.2 x 10*. Each shaking cycle, it
is assumed that particles experience two collisions to give a collision frequency as C11 = 2f.N =~ 1.04 x 10,
2.08 x 105 and 3.12 x 10 for 10, 20 and 30H z respectively. The bulk time constants are then normalised by the
collision frequency to estimate the bulk charging time constant at a collision frequency of unity per second. An
additional correction is needed as the impact during charging occurs over a small fraction of that one second
which is given by the contact time from Eq. where the impact velocity is assumed to be twice the length
multiplied by the shaking frequency. The Young’s modulus and Poisson ratio are given by 3.45 x 10° Pa and 0.3
respectively [140] to give single particle charging time constants as 2.96 x 10795, 9.65 x 107 %s and 2.19 x 10719
for 10,20 and 30H z respectively. These would be expected to be equal as 7 is a constant, however increased
shaking frequency results in faster impact velocities and greater deformations and impact times as predicted
from the Hertzian model in Section 2.2.3

2.2.6 Laurentie’s Model

A more advanced triboelectric charging model was proposed by Laurentie et al. by considering the electric
field surrounding the contact point between two particles [150]. This model was utilised in an Eulerian particle
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model (covered in Section by Kolehmainen et al. as [137]

dQ dAc\ dAe (1 — @2
a He( dt ) dt 60( See B k) (2.44)

where H,(.) is the Heaviside step function (equal to zero for negative inputs and equal to unity for all non-
negative inputs), d. is a charge transfer cut-off distance and k is a unit vector pointing from particle “2” to “1”.
The rate of charge transfer is driven by the difference in work functions between the two colliding particles,
the electric field strength E at the collision site and the rate of change of the contact area. In their work,
Kolehmainen et al. considered a simplified model where contact area during the collision is independent of the
charge transfer and initial charge to give [137]

_ By —B2A¢ max
AQ= g (1 e ) : (2.45)
Q2 — Q1
Bi=¢|E k| k 2.4
1 €0 ( + 7T€0d127 ) ( 6)
By— 2, (2.47)
wdp

with the charge transfer from a single collision approximated by a truncated Taylor series expansion to provide

B
AQ = F; (1 =1+ BoAcmaw + --.) = BiAc mas- (2.48)

The maximum contact area A q is estimated using a Hertzian model. The B; term is proportional to the
difference in charge between the two particles and the electric field at the contact site. Calculating the electric
field at the point of collision is computationally involved, requiring additional PDEs to be solved for. This
extra level of detail makes the charge model inappropriate to use in a computationally “cheap” Eulerian model
suggested in Section [2.3] The methodology used by Kolehmainen et al. however, can be applied to Ireland’s
model to provide a computationally inexpensive method to estimate the charge transfer during a collision.

By making the same assumptions that Kolehmainen et al. made about contact area and additionally
assuming 7 is constant, we find the solution of Ireland’s model (Eq. [2.43)) to be

Q(t) = Ac,mawao (1 - eii) ; (249)
subject to the initial condition Q(t = 0) = 0. Performing a truncated Taylor Series expansion yields
t t
AQ = A¢ 1maz00 (1 -1+ -+ ) ~ Acmaz0o—- (2.50)
T T

We may now directly compare the linearised result of Ireland’s model to Kolehmainen et al. Both models
are proportional to the maximum contact area. The other comparison is showing how B; matches with Jof.
By taking Kolehmainen et al.’s By and assuming the electric field represents the electric field between the two
plates of a capacitor, we can relate Ireland’s capacitor model to Kolehmainen et al.’s general model. The electric
field from a capacitor is completely determined by the difference in charge between the plates () and we may
write By as

By = —<. (2.51)

This represents the charge per surface area on the particle and has the same dimensions as ooﬁ from Ireland’s
model. Ireland’s model features a time ratio which is not present in Kolehmainen et al.’s model. This is due
to the two differing approaches from the models. Ireland’s model is built upon a capacitor model where the
charge builds up to an equilibrium charge. Conversely, Kolehmainen et al.’s model is not built on capacitor-like
relations and instead the physics of charge saturation is built-in by involving the effects of electrical fields. After
applying similar assumptions, both models describe the same physics but from different approaches.

2.2.7 'Tribocharging Conclusion

Tribocharging has been shown to be a complex process involving the material properties, duration and area
of contact, humidity and initial charge present on the surfaces. Literature on the subject can be inconsistent,
which therefore necessitates further experimentation to validate the claims.
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The majority of authors agree that electron transfer is the main mechanism for charge separation. This
has strong ties to the surface properties of materials, for which electrons form the outermost layer. The energy
needed to remove an electron from a metal surface is known as the work function and this has been shown to
be able to be extended from metals to insulating materials. Ordering materials by work function provides a list
which matches the triboelectric series and therefore provides strong evidence that the physics of tribocharging
is governed by the electrons on the surface of the material.

For two contacting particles tribocharging, a variety of models are present in the literature. Many of these
models liken the contact as two plates of a capacitor in an electrical circuit. These models successfully reproduce
the general behaviour observed experimentally and follow on from the assumption that electrons are the charge
carriers. In modelling the charge transfer from sub-micron particles in a cyclone, a capacitor model has been
chosen which consists of parameters which can be experimentally verified and contains an appropriate level of
detail.

Along with a charge model, the mechanics of the particles impacting requires modelling. A popular method
which has been coupled to charging models is Hertzian analysis. This model provides the contact area and time
which can be fed directly into a tribocharging model. For the particles which challenge a small, high-speed
cyclone, the contact times would require a such a small time step to model the entire collision process which
would make modelling this computationally unfeasible. It is therefore suggested to use the maximum contact
area during the charging collision process which allows the charge transfer to be accurately captured in a larger
CFD time step.

Data for sub-micron particles charging is scarce and the capacitor models have only been validated for much
larger particle sizes, predominantly by Matsuyama. This experimental validation is performed in Chapter
which will allow Ireland’s model to be used to model the charge transfer for the Eulerian particle model in
Chapter [4]



2.3. EULERIAN PARTICLE MODELLING 39

2.3 Eulerian Particle Modelling

The equations governing the fluid in Section [2.1| are expressed in an Eulerian framework whereby the fluid
is considered a continuum and all of its properties are expressed as continuous fields. The continuity and
momentum equations for the fluid can be derived by considering the Lagrangian system of the fluid molecules
interacting and averaging over small control volumes [47]. These control volumes must be large enough to
capture enough molecules for representative statistics, but small enough such that the macroscopic changes in
the fluid properties are retained [37].

The same arguments can be applied to the particulate phase. This allows us to speak of an Eulerian particle
velocity field v(z, t), which is in some sense an average of the Lagrangian velocities of individual particles V (¢).
Information is lost concerning individual particle trajectories which may, at first, seem unacceptable. However
the aim of this work is to predict cyclone separation efficiency which does not require the exact chaotic motion
of every individual particle to be captured; only a way of tracking the local density of the particulate phase
throughout the cyclone. An Eulerian description of the particulate phase allows a computationally efficient
treatment of particle collisions relative to the expensive Lagrangian formulation. The particle concentration
field is convected by the Eulerian particle velocity field v to model the flow of the dust through the cyclone.

One common tool to help us transition towards the Eulerian set of particle equations is the concept of phase
space. This is a six dimensional space where the first three components are the usual components of space
x = (z,y,2) and the other three are the velocity components V' = (v, v,,v,) of a single particle all given
at an instant of time, ¢. These variables are assumed to be independent. If the phase space is specified for
every particle, then the state of this phase is completely defined [47]. The normalised phase space distribution
function f is denoted as f (x,V';t) which provides the number of particles at positions between x and x + d,
with velocities between V' and V 4 dV at time ¢, normalised by the number density. The normalised phase
space distribution function is a probability density and therefore has the property [47]

/ / / / / / f (., Vit) dadydzdVxdV,dV. = 1. (2.52)

In deriving Eulerian equations from Lagrangian equations, moments are taken about the phase space f. The

n'! central moment about a mean y is defined for a 1D phase space in = as [30]

M, = /:’0 (x — )" f(x)dx. (2.53)

The governing equation for the normalised phase space distribution function is given by the Williams equation
(Eq. [2.54). This equation describes the change in the distribution function due to the particle velocity field v,
external forces F' and collisions I' [I51]

of _

50 = Ve (0f) = Vv (Ff)+T. (2.54)

The V, symbol explicitly refers to the usual spatial gradient operator. In 3D Cartesian this is expressed as
—k, (2.55)

with Vy an analogous shorthand for the gradient operator acting on the velocity components

it i g (2.56)

Wt T an

The Eulerian particle velocity field v, is the expected value of the particle velocity v = (V). More formally,
the expected value of some quantity ¢ is [47]

(¥ (x,1)) =/_O; /_O; /_Z Wf (@, V;t) dVxdV,dV,. (2.57)

This has been extended for particles with electric charge in a fluid flow by Kolehmainen et al. [I37]. In their
work, they studied a monodisperse particulate phase with a single work function (defined in Section . Their
normalised phase space distribution function had an additional dimension of intensive charge q and therefore the
distribution function f(x,V,q;t) has extra complexity associated with it compared to the Williams equation.
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From integrating the Williams equation over the particle property space, Kolehmainen et al. derive Enskog’s
general equation for the change in some function ¢ as [137]

9 (O‘p/’p<w>) + 9 (Oéppp<Vi¢>)
ot Ox;

avi oy
dt oV;

= C(mpy) + appp( ) (2.58)
with the collision operator denoted by C and the particle volume fraction represented by «. Similar to deriving
the Navier-Stokes equations from the Boltzmann equation, the governing equations for the particulate phase can
be constructed from Eq. By setting ¢ to 1, v; and % the continuity, momentum and charge conservation
for the particulate phase may be formulated respectively as [137]

0 (app) N 0 (ozppvi)
ot 8:5,

=0, (2.59)
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Here primed quantities represent fluctuations from the mean. The first two terms on the right-hand side (RHS)
of the momentum equation can be combined into a stress tensor and closed assuming a Maxwellian velocity
distribution. The charge unknowns are closed by using a Hertzian contact model and assuming an uncorrelated
Maxwellian distribution for both velocity and charge.

For a particulate phase and a carrier fluid phase, Egs. and (excluding the charge term) represent
what is known as the standard two-fluid model where the two phases are coupled by the interfacial terms
[152] (which are built-in to the equations above). Deutsch and Simonin have studied such models (although
derived through Favre averaging the Navier-Stokes equations and therefore not directly through the Boltzmann
equation) and in particular closures associated with applying LES to the model [153]. This introduces a spatial

average to the already Favre averaged equations, therefore requiring the filtered small-scales of both phases to
be modelled.

Druzhinin and Elghobashi performed studies using the two-fluid model on bubble-laden turbulent flows
[154]. They simulated two flows: the first was a decaying 2D Taylor-Green flow field with one-way coupling
and the second was a DNS of decaying isotropic turbulence. The Taylor-Green flow was discretised on a fully
periodic uniform mesh with 96° computational nodes (the flow was 2D, however the solver used was 3D) at
Re = 5000. To analyse the capture of preferential accumulation, the bubbles had a Stokes number of Stk = 0.25
and the volume fraction was initialised uniformly across the domain, with the initial bubble velocity set to zero.
Numerical issues were observed in these simulations as the volume fraction gradients continuously increased
over time, which suggests that the two-fluid model would be unable to produce a steady-state solution for
this flow. For the decaying turbulence, they found the increasing bubble volume fraction along with lack of
diffusive sources can cause solver instability; again due to large particle concentration gradients. The model
was able to capture preferential accumulation in both cases. The instability over time, especially for the simple
Taylor-Green flow, is a major drawback of the two-fluid model.

The Eulerian model incorporating charge from Kolehmainen et al. were validated only numerically against
DEM simulations. The charge transfer model was validated using a fully periodic 3D box, with drag and
electrostatic forces neglected in a periodic channel with conducting walls. Although they could not compare
to experiment, they found that the model predicted higher charge build-up by the walls in agreement with the
literature [I37]. The charge results at very large volume fractions of a = 0.35 matched the DEM simulations
well. At a lower volume fraction of o = 0.15, the two results diverged. Both of these volume fractions are in the
dense limit and not representative, at least of the inlet conditions of the cyclone, where ag ~ 5 x 10~7. With
decreasing accuracy with decreasing volume fraction, it is therefore not reasonable to expect that this advanced
model would provide accurate results well within the dilute regime in the cyclone.

Another “advanced” family of Eulerian models are the method of moments. These are applied to polydisperse
particulate systems and track the moments (Eq. of the number density (Eq. . These are efficient for
tracking multiple particulate phases, however they are known to have many drawbacks [I55]. These problems
revolve around the lack of diffusion in the mathematical model, however the numerical diffusion in a finite
volume scheme radically changes the model predictions [I56]. This is very unwelcome behaviour, especially in
a challenging highly-swirling flow and these methods will not be explored further.
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The particulate phase continuity equation from the work of Kolehmainen et al. (Eq. [2.59) is a conservation
equation for the volume fraction of the particulate phase. Many authors express this mass conservation in terms
of the scalar number density n in the general transport equation given by

Oppn 0 on\
9t + oz, <,opnvZ — ppDnch) = ppShn, (2.62)

where D,, is a suitable diffusion coefficient and S,, is a source term for the number density. The volume fraction
analogous version of Eq. used by Kolehmainen et al. can be shown to be equivalent to this equation by
assuming no creation or destruction of mass from sources and negligible particle diffusion. This leaves only the
temporal and convective terms in Eq. 2.62} The number density can be related to the volume fraction by

n= %, (2.63)
N
o = ZV‘/p = ‘}/p’ (2.64)
n= % (2.65)
p

The general conservation of mass for the particulate phase for the Eulerian model presented here will be
expressed in terms of the volume fraction. For a particulate phase with constant density, the mass conservation
equation with source term S, is

da 9

<owi — Dag;i) = S,. (2.66)

In dense flows, where the volume fraction is expected to be large (from Section , the dynamics of the
particulate flow are driven by particle-particle collisions. This bears similarities to the kinetic theory of dilute
gases. In this theory, gas molecules are assumed to be monodisperse hard spheres undergoing perfectly elastic
collisions [I57]. As the gas phase is dilute, only binary collisions need to be included. These collisions transport
information quickly to their neighbours due to the large numbers of collisions and give rise to the macroscopic
fluid variables such as pressure and density. From kinetic theory, the mean free path between collisions of fluid
molecules with diameter d,, is given by [157]

V2d,

The results obtained using kinetic theory require correction by a close-packing function as the gas becomes
more dense [157]. Gidaspow has taken the results from kinetic theory and applied them to a particulate phase
[158]. Ding and Gidaspow have also included the effects of dense packing of particles by defining a correction
function go () as [159)

—1
o
= |1-— 2.
% (am) | (2.68)

where apax is the maximum permissible volume fraction which physically represents the close-packed limit.
This is incorporated into the mean free path to give the particle mean free path with dense correction [I5§]
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(2.69)

A mean free path allows determination of a diffusion coefficient due to particle-particle collisions. From
dimensional analysis, the diffusion coefficient is expected to be the product of the particle mean free path and
an average particle velocity (relative to a stationary carrier fluid) [I5§]

Deott = X (V). (2.70)

Gidaspow determines this average velocity by assuming a Maxwellian velocity distribution which results in an
analogous result to the average speed of a gas molecule from kinetic theory, but as a function of the granular
temperature. The granular temperature is related to the mean square of the particle velocity fluctuations as
% < V2 > [I58]. This granular temperature can be determined by solving a corresponding transport equation
for it and requiring a myriad of additional assumptions. These results deriving from kinetic theory assume that
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collisions are driving the physics of the particulate phase. Collisions are only expected to be relevant near to the
walls in the cyclone flow and for the majority of the flow collisions are expected to be negligible from Section
Models of granular flow are therefore not suitable for this dilute cyclone flow, however collisions at the
walls causing charge transfer necessitate the need to predict a collision frequency in these small regions. These
collisions are expected to be due to velocity gradients in the shear flow, with a collision frequency function (in
1D) given by Eq.

A suitable momentum equation for the particulate phase is required to provide the Eulerian particle velocity
for the volume fraction transport equation. Solving another coupled set of PDEs for the particle momentum
across the domain becomes computationally expensive, with any closures used required to be accurate. The
momentum equation used by Kolehmainen et al. is too complex and expensive to evaluate and simpler closures
for the particulate velocity are needed. Fortunately the particles in a cyclone are small, with low Stokes number,
low Re, and a large density ratio 2—"’ >> 1. These allow selection of algebraic models for the particulate velocity
field to replace the set of PDEs resulting in a simpler, computationally inexpensive method of solving for the
transport of the particulate phase.

The simplest method of calculating the velocity of the particulate phase is to simply set v; = u; in the
“dusty gas” model. This is acceptable for Stk — 0 when particles act as fluid tracers and has been used to
model the transport of bacteria in operating theatres [160} [I61]. The particulate phase in a cyclone is expected
to have Stokes numbers of less than unity, however the particles have enough inertia that they can accumulate
into banded structures from experimental evidence which would not be captured with this dusty gas model.
This simple model is therefore not appropriate for a cyclone.

2.3.1 Mixture Model

The mixture model by Manninen and Taivassalo represents a slightly more advanced model than the passive
scalar approach. The multiphase system (the fluid and particle phase) is represented by a homogeneous single-
phase system known as the mixture [162]. The continuity and momentum equations are then solved for the
mixture only and the velocities of each phase are calculated by a simple slip velocity formulation. A transport
equation for the volume fraction of the particulate phase is then solved. The simplest specification of the
(non-zero) relative velocity is given by

v; = U; + Tp9i- (271)

In this formulation, the particle velocity field is expected to reach terminal velocity, 7,g;, in a time period
much smaller than any characteristic time scale of the flow [I62]. This essentially is a restriction on the maximum
Stokes number of the flow; requiring that Stk << 1. In flows where gravity is negligible, this is equivalent to
the dusty gas expression and results in both phases moving at the same velocity. In the original full derivation,
a more complex expression is provided and this is the form of the mixture model which will be presented here
following Manninen and Taivassalo [162] for an incompressible carrier fluid.

The main definitions in the model are that of the mixture density

N

Pm = Zakpk, (2.72)
k=1

where the k subscript runs over all N phases considered, the mixture dynamic viscosity

N

Hm = Zakﬂka (2.73)
k=1

and the mixture (mass-weighted) velocity

N
D=1 QKPR

U, (2.74)
Pm
The continuity equation for the mixture is analogous to that of the usual fluid continuity equation
0]
—gtm £V (pmm) = 0. (2.75)

The momentum equation also corresponds to its single phase fluid counterpart, with an additional term on the
RHS
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In this model, the phase pressures are assumed to be equal and thus there is only a single relevant pressure.
The additional term on the RHS arises from the splitting of the non-linear convective term when the phases are
summed together. This term is written in terms of a drift velocity, which is the velocity of phase k relative to
the mixture velocity. Referring to a two-phase system of a fluid and particulate phase, the drift velocity of the
particulate phase can be expressed in terms of the relative velocities between the phases and the particle mass
fraction as

Varp = (1 — ) w. (2.77)

The above set of equations are derived with no major additional assumptions to the full two-fluid model. An
algebraic formulation for the relative velocity is required, for which Eq. provides a very simple prescription.
A more complex formulation, assuming Stokes drag is valid and spherical particles, specifies the relative velocity
as

Pp — Pm ov, Pp — Pm Dv,,
Pp » <g (v Jv ot ) Pp » <g Dt > (2.78)

It is this algebraic specification of the relative velocity which means that the model is only valid for Stk << 1
for Stokes drag. A local equilibrium is assumed in this formulation, with only first-order terms from the transfer
of momentum between phases retained and local particle velocity derivatives approximated as the mixture
counterpart ((v-V)v & (v, - V) v,). A transport equation for the volume fraction of the particulate phase
(Eq. is then solved for. The mixture model involves the solution of no additional PDEs compared to the
dusty gas approach and is able to capture two-way coupling between a fluid and particulate phase. The mixture
model also allows a slip velocity to exist between the two phases depending on the prescription for the relative
velocity. Both models are limited to low Stokes numbers and assume that the particle Reynolds number is low
and the density ratio between the particles and the fluid is large for Stokes drag to be the only significant force.

The mixture model, with the addition of a lift force in the relative velocity specification, has been used in a
dense flow within a cyclone with height 12H relative to the cyclone of interest described in Table by Aketi
et al. [I63]. This was performed with an RSM turbulence model on a grid size of 2 x 10° cells and inlet particle
volume fractions of o = 0.35,0.45 and 0.6 were examined; around 6 orders of magnitude larger than those of
interest here. They did not state their wall boundary condition for the volume fraction transport equations
and it assumed that they used a reflect boundary condition as they discuss values of volume fraction on the
wall. The cyclone had an inlet velocity of 0.04ug, therefore the cyclone is expected to be much slower than
the cyclone of interest in Chapter [I They validated their work by comparing the diameter of the vortex core
to experiment, which is not sufficient validation for the fluid. There was no comparison of pressure drop, flow
velocities or separation efficiencies to experiment, however they did validate the mean mixture density at the
wall with experiment which closely matched. Given that there is no special wall treatment with the model, this
gives a useful indication that the near-wall region is accurate and requires no additional numerical attention.

Grady et al. used RSM with a mixture model in a hydrocyclone of a similar size to the cyclone of interest
at a smaller inlet velocity 0.54ug [164]. The inlet Reynolds number was ~ 10000 and Sw, = 8.4, both closely
matching the cyclone of interest. They performed no validation of their fluid results, apart from comparison of
the tangential velocity profiles with a Rankine vortex (discussed in Appendix. They found the mixture model
to under predict the separation efficiency by up to ~ 20% compared to experiment, with particle diameters
ranging from d, = 0.49um to d, = 48.3um (the lower limit within the range of interest).

The simulations of the mixture model in the literature have been performed in hydrocylones where the
carrier fluid is water. In these flows the density ratio between the particle and fluid is near unity and additional
forces in the Maxey-Riley equation should have been considered. Despite this, predicted separation efficiencies
for a similar geometry, Reg and Swy to the cyclone of interest have been reasonable. Particle concentrations in
the near-wall region using this model have also matched well to experiment.

2.3.2 Equilibrium Eulerian Model

The Equilibrium Euler (EE) method by Ferry and Balachandar proposes an algebraic formulation for the
particle velocity field based on the velocity gradients of the fluid and particle response time for low Stokes
numbers Stk < 1 [20]. For small enough 7, the Eulerian particle velocity field is expected to reach a unique
equilibrium field which is independent of the initial conditions of the particle. This method, like the slip velocity
of the mixture model, avoids solving additional PDEs for the particle momenta. However, the inclusion of the
fluid velocity gradients in the model allows particles to accumulate in areas of local strain [I65].

The derivation of the EE method builds upon the result by Maxey for the dimensionless Lagrangian equation
of motion for small particles at low Re, << 1 with a large density ratio (5—"; >> 1) in isotropic turbulence [44],
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for which the dimensional equation reads

¥ - Tl,, (w(X (1), 1) - V() +g. (2.79)

In the original work by Maxey, the dimensionless Eulerian particle velocity field is reduced to a first-order
approximation in Stokes number

ou*
ot*

v (", t") = u(x",t") + W — Stk ( +u*-Vu+W- Vu*) + O(Stk?), (2.80)
with W = 71,9 and quantities non-dimensionalised by fluid turbulent scales denoted with *. Ferry and Bal-

achandar take the dimensional form of Eq. and impose a further restriction with the removal of all terms
of O(77) and above [20]

Du 9
v=u—"T, (Dt —g) +O(7). (2.81)
Eq. provides the unknown Eulerian particle velocity field from the known fluid velocity field and its
derivatives (excluding the gravity term). For a steady, uniform flow (%"ti =0), v; = u; + 7pg; and the method

reduces to the simple mixture model velocity formulation. As 7, — 0, v; = u; and the passive scalar model
limit is reached. Eq. and the low Stokes number relative velocity formulation in the mixture model in
Eq. 27§ are analogous, with the mixture model formulation expressing this relative velocity in terms of the
mixture velocity with a density correction. The main difference between these two methods is that in the
mixture model, the mixture itself is solved for whereas in this approach the fluid is solved for and the particle
velocity field is provided by this algebraic relation. The derivation of the EE method is based on the Lagrangian
particle equation of motion and reduced to first order in Stk and 7, whereas the mixture model relative velocity
derivation was more ad-hoc and was derived from the Eulerian mixture momentum equation. The EE method
would appear to have better physical grounding and is preferable to the mixture model.

The EE method assumes that the particle velocity field reaches a unique equilibrium velocity field. Ferry
and Balachandar show that the equilibrium velocity is unique if all the eigenvalues of the particle velocity field
strain rate tensor S;; are greater than —% [20]. This uniqueness condition can be expressed mathematically as
the most negative eigenvalue \,, found by the solution to the characteristic equation

det (s;; - Asaij) =0, (2.82)
satisfies
1
As > ——. (2.83)
Tp

Ferry et al. later modified the EE method in an attempt to extend the method to larger particles in what is
termed the Modified Equilibrium Eulerian (MEE) method [166]. They praised the original method’s ability to
faithfully capture the turbophoresis of particles in wall-bounded flows, however the stream-wise particle velocity

component predictions for larger particles is less successful. Instead of retaining all terms of O (7‘5)7 a heuristic

“correction” is employed as [166]
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This MEE velocity retains the turbophoretic migration and preferential accumulation from the original EE

method and the error is still O (7’5). This heuristic modification comes at a computational price; a matrix

inverse is now required at each point in the domain. Furthermore, the matrix to invert can be close to singular,
which produces unphysical velocities and occurs in regions of intense compressive strain [I66]. It is therefore
expected that use of this heuristic addition in a highly-swirling, high speed flow will cause many numerical
issues. Ferry et al. describe a numerical procedure in the appendix to their paper which produces a smooth

velocity field which they describe as numerically stable (guaranteeing that det (I + T (VU)T) > 0.207) by

interpolating between the EE and MEE methods [I67]. However, from brute-forcing with random numbers, it
has shown that this claim is false with evidence provided in Appendix [C]
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The governing transport equation for the volume fraction of the particulate phase (Eq. [2.66) combined with
the Equilibrium Euler method (Eq. [2.81)) for calculating the particle velocity provides

Oa 0 Ou; Oa
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By moving the 7, term to the RHS as a source term, the LHS becomes the familiar transport equation for a
passive scalar convected by the carrier fluid.
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This form of the particle volume fraction transport equation is valid for unsteady, incompressible flows where
the particulate phase is monodisperse and constant density. The governing physics of Eq. becomes clear

when it is non-dimensionalised using the Kolmogorov scales as follows: a = apa™, u; = uyuj, = [z,
* l * * * :
t=mytt = -t Dy = DoDg, and 7, = 7p 07, to yield
oa* 0 1 oa* o0 ou’
*uif — —D* Stkt* r—La* 2.87
ot* + ox} (a i Pe, aa;q) gy (u] &T}‘a > ’ (2.87)
where Pe, = ug" and Stk = 7‘_”“ are Péclet and Stokes numbers based on the smallest turbulent scales

respectively. The ‘Péclet number characterises the strength of convection to diffusion for the particulate phase;
for no diffusion Pey — oco. The strength of the source term on the RHS of Eq. [2.87] is governed by the Stokes
number and the strength of both velocity and volume fraction gradients. This source term becomes large as
the inertia of the particles increases, however for low Stokes numbers the source term is expected to be small.
Treating this inertial term as a source allows finer control in a finite volume solver over this term and may help
prevent instabilities which occur as the validity of the EE method is challenged.

Shotorban and Balachandar have applied the EE model in an LES of statistically isotropic turbulence [168].
In this work, they proposed a model for the effect of the unresolved SGS scales on the particulate phase. Starting
with filtering (Eq. [1.12)) the EE velocity field (Eq. [2.81) to provide

du;  Ou
0; = U; i— — Gi 2.88
0 = Uy ( 5 + uj oz, g> (2.88)
R o1, /8\% N

The non-linear term here is rewritten in terms of a subgrid-scale stress tensor

Tij = 1@ — ﬂi’&j, (290)
to provide
[“)uz 3uz R 8Tij

0; = U; — U i . 2.91
v <at+“ﬂa g+axj) (291)

Only 7;; requires modelling. As both the energy contained in the SGS and 7, is small, Shotorban and
Balachandar argued the subgrid-scale term is negligible [168]. The final filtered equation for the particle velocity

field is
~ aﬂz ~ aaz A

Performing the same filtering operation on the transport equation for the volume fraction (Eq. [2.66]) with
Brownian diffusion and no source terms yields
0 n 0
ot 6l‘i

(w Diam gj) = 0. (2.93)

The non-linear filtered term is written in terms of a new vector h;, analogous to the subgrid-scale stress tensor

av; = h; + a;. (2.94)
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Substitution yields

o0& 0] 0a
v v0; — Digm—=— +h; | =0. 2.
ot + ox; (OL’U ! ox; + ) 0 ( 95)
Replacing the filtered Eulerian particle velocity field with the EE model and moving the 7, term to the RHS
yields
o0& 0 0k 0 o,
— VUi — Digm—=—+hi | =7p=— | 4;=—¢a | . 2.96
(‘% + &rz (OZU ! &rz + > » 8{E2 (U] 8(Ej 04) ( )

Everything is in terms of filtered quantities apart from h; which requires modelling. Shotorban and Bal-
achandar model this term in an analogous way to the deviatoric part of the SGS stress tensor in the dynamic
Smagorinsky model as [168]

T = —2(CsA)* 850451, (2.97)
where A is the filter width, C; is determined dynamically and a u superscript indicates that this involves the
fluid velocity spatial derivatives. The SGS stress tensor can be approximated as the deviatoric part from the
same assumption about the small energy contained in the SGS. Shotorban and Balachandar model g; as

(CSA)QS’%Q ad
hi=——¢, R (2.98)

where a v superscript indicates that this involves the Eulerian particle velocity spatial derivatives and the
turbulent Schmidt number Se¢; and Cs are determined dynamically [I68]. An important feature of the form
of Eq. is that it resembles a diffusive flux in the volume fraction transport equation. This will have the
effect of spreading out the volume fraction where this term is large, which are regions of large strain and volume
fraction gradients. The turbulent diffusion coefficient arising from the unresolved SGS scales is

CsA)? S
D, = (;%9 (2.99)

The EE method has been used to specify the slip velocity by Icardi et al. to track the particle number density
in an LES fluid flow field. In their work, they used a Direct Quadrature Method of Moments (DQMOM) to
track the particle size distribution. This was performed for a simple channel flow at Stokes numbers from 0.2
to 5, with the larger Stokes numbers appearing to invalidate the EE model. They reason that the model is still
acceptable at these larger Stokes numbers as the Kolmogorov scales are not directly computed and so the flow
field contains larger eddies of longer time scales than these Kolmogorov scales which allows them to relax the
Stk < 1 condition [I55]. They included the effects of the SGS using an approximate deconvolutional method
(ADM). This method attempts to reconstruct the unresolved scales from the filtering function [I69]. The results
were compared to Lagrangian particle DNS data. They found that the slip velocity between the particles and
the fluid was negligible in the mean stream-wise profile. The ADM was found to provide accurate wall-normal
velocity fluctuation and if the effects of the SGS were ignored these fluctuations were not in agreement with the
DNS data. They reported numerical instabilities at Stk = 5 and were unable to obtain a numerical solution
with the ADM. For Stk < 1, good agreement with Lagrangian DNS data was observed. Fine wall resolution
was also found to be important to approximate the high concentration gradients near the wall, which enabled
to model to capture the physical phenomenon of turbophoresis from Section [2.1.2

The ADM used in the work by Icardi et al. requires repeated use of the filter function to estimate the
effects of the unresolved scales. If an LES has an implicit filtering operation (performed by the mesh), ADM is
unable to be used in this scenario. ADM also requires specifying the “order” of the approximation, for which
the optimal value is unknown.

2.3.3 Eulerian Particle Modelling Conclusion

There exist a variety of families of Eulerian methods to model the particulate phase. When used in a LES of a
complex geometry, the more advanced models such as the full two-fluid Eulerian model are too computationally
expensive. Method of moments is a better compromise and can handle polydisperse flow efficiently, however the
interactions between different particulate sizes is a big unknown and cannot safely be employed here. Solving a
transport equation for the volume fraction is computationally cheap if an algebraic relation is used to determine
the particulate velocity field. This then allows that for a given CFD flow field, only one additional transport
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equation needs to be solved to track the particulate phase. Additional transport equations will be required for
both charge and electric potential.

A range of simple algebraic models to determine the particle velocity field were explored. Setting v; = u;
neglects much of the rich physics of preferential accumulation and particle inertia effects which are expected to
be important in a turbulent, highly-swirling flow. The EE method captures the local accumulation of particles
in the flow and has been shown to provide good agreement with Lagrangian DNS in both isotropic turbulence
and a channel flow. This model is therefore most appropriate to use to calculate the Eulerian particle velocity
field which is used to transport the particle volume fraction.

Going from these basic flows to a cyclone is a large jump in complexity. The model has been shown to
fail even in a channel flow if Stk becomes large and the model has not been tested against swirl or other flow
features which may present numerical issues. This Eulerian model is implemented and tested in an analytical
flow in Chapter [d] which features strong streamline curvature and large velocity gradients. These novel tests
are performed at scales matching those of the expected Kolmogorov scales in the cyclone which are provided
from the single-phase CFD results in Chapter [f]
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2.4 Conclusion

The multidisciplinary nature of this work has required three distinct literature reviews for cyclones, particle
tribocharging and Eulerian particulate modelling. From these surveys, the current state of knowledge relevant
to the thesis has been determined and gaps in the understanding identified. These gaps and unknowns are to
be investigated in the following chapters which aim to bring new understanding and further the field of research
for particles in high-speed cyclones with charge transfer.

From the cyclone literature review in Section LES has been identified as the most suitable method of
accurately modelling the cyclone flow field computationally. This resolves many of the larger turbulent scales
directly which the small Stokes number particles are expected to readily respond to. High near-wall resolution
and in-depth particle trajectory integration studies are lacking in the literature for cyclones and therefore this
is investigated in Chapter

Section identified the lack of information and validation of charging models for sub-micron particles,
with high-quality single-particle charging experiments having only been performed on particles 4-5 orders of
magnitude larger. The main difficulty in extending these experiments to smaller particles sizes arises from
controlling individual sub-micron particles. An aerosol beam has been identified as an appropriate method of
focusing these small particles to perform analogous experiments to the single particle impacts from literature.
These results, along with a Hertzian contact model for impact conditions will permit the use of a simple
capacitor-like tribocharging model which can be validated from the experiments in Chapter

To model charge transfer from individual particle collisions for representative number densities is not compu-
tationally feasible and thus an Eulerian framework for the particle phase is more appropriate than the common
Lagrangian approach. Section detailed computationally efficient algebraic models for solving the particle
momenta without resorting to PDEs. These models assumed low Stokes number as particles are expected to
quickly reach an equilibrium with the carrier fluid such as the EE model. It is unknown whether this model
can be used accurately in a complex, highly-swirling cyclone flow as only simple validation such as isotropic
turbulence and a channel flow have been performed. An additional validation study using a flow field with
strong streamline curvature which has been used to stress-test other Eulerian models is performed in Chapter

2]



Chapter 3

Particle Charging Experiments

From Section experiments are needed in order to validate the charging characteristics of small, sub-micron
sized particles. This is information which is missing in the literature. Additionally, the experiments provide
the necessary adjustable model constants for Ireland’s tribocharging model (Section used in CFD. To
accurately control these small particles an aerosol beam is created, which is made to impact a metal plate.

This chapter begins with introducing the experimental set-up of the aerosol beam along with the equipment
used to both control the rig and collect the required measurements. Two set-ups are provided: one for character-
ising the aerosol and the other for capturing the required tribocharging data to validate Ireland’s model. Aerosol
characterisation is performed to ensure both the size distribution and charge state of the aerosol is constant
during testing. This also yields the characteristic size of the particulate phase in the main experiments.

After characterisation, the main experiments are performed by impacting the beam with a metal plate and
measuring the voltage build-up on the plate. This is compared to the analytical solution to Ireland’s charge
model to assess validity. From these results, estimates for the model constants oy and 7 are made which are to
be used in the charge model implemented in a computer code in Section

49
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3.1 Experimental Set-Up

Aerosol beams, introduced in Section allows particles to be focused aerodynamically into a well-defined
beam. The controlled beam of particles is used to force small particles to impact a metal plate to measure
charge transfer, in an analogous set-up to the experiments performed by Matsuyama et al. for single particles.
A simplified sketch of an aerosol beam is shown in Figure The particle-laden fluid is accelerated through a
choked converging nozzle and collides with a metal plate.

O

O
Oooo — -0 -O
OO

Figure 3.1: Aerosol beam of particles impacting a metal plate. The red arrow indicates the direction of the flow
of particles, with the thin orange rectangle representing the metal plate.

The amount of charge transferred by impact with the plate is not known, however it is expected to be
dependent on the collision rate, initial charge on the particles, impact velocity and the difference in work
functions between the plate and the particles. The charging characteristics of small aerosol particles can be
validated against their larger counterparts, with the experimental results be used to provide the unknown
constants in Ireland’s tribocharging model (Eq. . This equation predicts a charge saturation curve which
can be seen by monitoring the build-up of charge on the metal plate. For a single particle charging, the charge
saturation curve provides 7 as the time taken to reach 1 — é of the saturation value and oy by the saturation
charge (A.00). For a beam of particles colliding, the saturation charge is unchanged, however the time constant
from the charge-saturation curve is now also a function of both collision frequency and the impact time. By
correcting for these, the particle charging time constant can be estimated.

3.1.1 Materials and Measuring Equipment

The air used in the experiments originates either from atmosphere, or from an = 8bar airline. From whichever
source the air originates, the fluid is passed through some form of filtration. This is to, for the atmosphere as
an example, remove the ever-present particulates suspended in the room. All filters from atmosphere are HEPA
filters from TSI. Filtration when using airlines is provided by an array of Festo filters and regulators.

TSI flow meters are used to measure mass flow rates. These have a range between 0 — 300//min with an
accuracy of 2% or 0.05slpm, whichever is greater (slpm represents standard litres per minute which is the
volumetric flow rate for a fluid at the manufacturer’s defined standard conditions). They measure pressures
between 0.50 — 1.99bar to an accuracy of +1kPa; due to the vacuum downstream of the nozzle, these flow
meters cannot be used accurately there unless air is bled in through atmosphere.

For measuring the pressure drop across the nozzle, a Druck digital pressure indicator (DPI) is used with a
measurement range of 0 — 100kPa and an accuracy of 0.1% (full-scale). Airline pressures were measured using
a Druck DPI with a range of 7bar and an accuracy of 0.05% (full-scale).

For drawing air through the system, two pieces of equipment are used. The first is a Norgren vacuum pump
which uses the airline to create vacuums up to 87kPa below atmosphere. The second is housed within the
particle counting equipment to create choked flow across the equipment’s internal aerosol beam.

The aerosol for experimental testing was created by atomising a solution containing the desired aerosol and
then removing moisture from the result. The atomisation was performed using a TSI constant output atomiser
which is able to atomise aerosols up to a diameter of d, = 2um. The pressurised air used for atomisation was
filtered through a Festo regulator array. The atomised aerosol containing both the particles of interest and
water droplets is then passed through a TSI diffusion dryer. This consists of a central mesh surrounded by silica
desiccant which absorbs the water droplets. The desiccant was freshly prepared before testing by heating in an
oven. The desiccant had indicating solution present which enabled its freshness to be examined visually.

The aerosol used was analytical reagent grade Sodium Chloride (salt) from Fischer Chemical, which has a
purity of > 99.5%. Salt was used instead of silica-based test dust due to its chemical purity, with dust being
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Figure 3.2: Typical phase diagram of Sodium Chloride and water adapted from Badawy [170].

composed of many different substances. This means that the results using salt will be more repeatable than
the dust comprising of a mixture of substances. This was created by mixing a solution of salt with distilled
water from The Distilled Water Company using a magnetic stirrer for 2 hours. The composition of the salt
solution was 26.6% salt by weight which is at the eutectic point (at standard temperature) as shown in Figure
for standard atmospheric temperature. The salt solution is therefore saturated and expected to produce the
maximum number of salt particles when atomised.

The size distribution of the dried salt aerosol was measured using a scanning mobility particle sizer (SMPS)
from TSI. This consists of three pieces of equipment: a classifier, a differential mobility analyser (DMA) and a
condensation particle counter (CPC). The classifier samples the aerosol by passing the flow through an impactor,
which removes particles above a certain diameter via inertial impaction with the impactor plate. The sample is
then passed through a radioactive Krypton-85 source to neutralise the aerosol, with the neutralised aerosol then
ionised to produce a known charge state. The DMA consists of a long vertical pipe where the aerosol enters
from the top. A uniform electric field is set-up which causes the charged particles to migrate across the DMA.
The balance of the electrical force on the particle versus the drag of the flow moving down the DMA causes
particles to follow different trajectories based on their electrical mobility. A small exit slit at the bottom of
the DMA therefore allows only a small band of electrical mobilities to pass through it. The electrical mobility
required to leave the DMA (and therefore the particle diameter) can be adjusted through altering the potential
difference across the DMA. This allows the SMPS to sweep through a range of voltages and therefore particle
diameters to pass to the particle counting equipment.

The CPC allows the concentration of the aerosol to be measured. If connected as part of the SMPS it can
be used to determine the concentration of a specific size of particle. If connected as a stand-alone unit, it can
be used to measure the concentration of an aerosol sample. The aerosol enters the CPC and is passed into a
supersaturated butanol chamber. The sample then passes to a cooler chamber which causes the butan-1-ol to
condense onto the particles which act as nucleation sites. This causes the particles to grow in size, such that
they are able to measured optically. The sample is then passed through an aerosol beam and across a laser
pointed at a photodetector. When a single particle passes through the laser, a drop in current is observed at
the photodetector and a particle is counted. A maximum particle concentration of 5 x 10*p/cc can be measured
this way. For increased particle concentration, particle coincidence becomes prevalent and this single-particle
count breaks down. To counter this, the equipment shifts operation to measure the scattering of the laser
light by additional photodetectors situated perpendicular to both the flow and the laser. Particle concentration
measurements become less accurate during this mode, however the maximum concentration able to be measured
is increased to 1 x 107p/cc. More detail on the theory of operation for the SMPS is provided in Appendix @

The charge state of the salt aerosol was controlled by using a TOPAS neutraliser. This passed the aerosol
into mixing chambers where a large potential difference causes a stream of ions to impact the particles. This
can be used to neutralise the particles or to control the charge levels on the particles by adjusting the ionisation
voltage. The ionisation chambers require an input pressure of > 0.5bar to aid in mixing the particles. This
pressure is adjusted manually, with high pressures used post-experiment to clean the ionisation heads of any
particle deposits. This gives rise to a source of human error in returning the pressure back to 0.5bar for every
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experiment. The effect of this varying ionisation chamber pressure is discussed in Section [3.3.1]

To measure the charge carried by the aerosol, a PALAS Charme electrometer was used. This equipment
uses a filter in a Faraday cage which charge particle collect on. The particles are discharged through high
1G2 resistance and this drop in voltage provides the discharging current. The electrometer can measure up to
22500 f A with an accuracy of 0.1fA.

To measure the voltage build-up on the metal plate, a JCI Static Monitor was used. This can measure up to
2kV with an accuracy of £1V. This is then placed in a JCI Electrostatic Voltmeter which is a shielded enclosure
which allows the static monitor to provide the measured voltage from the plate when directly connected. For
larger voltages, the range can be extended to 20kV with the accuracy changing to £10V.
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3.2 Methodology

The particle charging experiments are built up gradually by performing smaller experiments. These smaller
experiments perform necessary checks that the equipment is working as expected and what is being measured
is real. Common to all these experiments is the production of the salt aerosol (aerosol generation) shown as a
block diagram in Figure [3.3

— ~ 8bar,| Pressure Regula- 1.8bar , —
4)-—)| Diff D
i tion and Filtration Atomiser 4 Tneion Tryer IQ—)

2.42slpm 42slpm

Figure 3.3: Block diagram of the aerosol generation section of the experimental rig. The 1.8bar static pressure
used to operate the atomiser is measured using a DRUCK DPI.

The black connecting arrows represent conductive tubing connecting each piece of equipment. Metal tubing
adaptors on the equipment have been connected to a common ground; preventing the build-up of charge on the
pipe walls or connectors. The entire rig shown in Figure is hereafter referred to as the aerosol generation
section of the rig.

3.2.1 Characterisation

The aerosol itself is first characterised. The shape of the size distribution for the salt is unknown and so is the
charge state. To measure the size distribution, the aerosol is atomised, dried by the diffusion dryer, diluted
as to not over-range the CPC and then simultaneously measured using the SMPS and electrometer. A block
diagram is shown in Figure |3.4]
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Figure 3.4: Block diagram of the experimental rig set-up used to measure the size distribution and net charge
of the aerosol.

The SMPS and electrometer have different sampling flow rates. The concentrations measured by the CPC
as part of the SMPS will be the same as the concentration seen by the electrometer, however the number of
particles reaching the electrometer will differ from the SMPS due to the difference in flow rates. The ratio of
flow rates between the electrometer and SMPS, Ry, is

V
Ry = et (3.1)
Vsmps
This flow rate ratio allows the charge and concentration measurements made by the different pieces of
equipment to be combined to determine the state of the aerosol upstream. The flow rates used for the initial
characterisation is provided in Table

The SMPS takes time to scan through different voltages and therefore different particle sizes. The longer the
scan time, the more particles are sampled and therefore the distribution calculated becomes more representative.
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Vi Va Vs Vi Vsmprs | Veieet
5.8slpm | 8.42slpm | 5.12slpm | 3.3slpm | 0.3slpm | 3slpm

Table 3.1: Flow rates used in Figure for characterising the size distribution and net charge of the aerosol.

However, the pressure drop across the impactor in the classifier increased over time as the salt clogged the
impactor. Although longer scan times would collect better statistics, the concentrations for the last scans will
be reduced as the impactor clogs. The effect of the scan time on the distribution was investigated to find the
smallest scan time which would provide an accurate representation of the size distribution, before the clogging
becomes significant. This scan time was found to be 90s, with a 30s purge to remove remaining particles in the
system.

The shape and concentrations of the size distribution remained repeatable throughout testing. The SMPS
provided a constant monitor during the experiments that the aerosol output was constant.

3.2.2 Beam Measurements

The design of the aerosol beam was influenced by the beam created by Israel and Friedlander [130]. An
engineering drawing of the beam used in these experiments is provided in Appendix The inclusion of a
skimmer was not found to improve the vacuum downstream of the beam and was repurposed as a pressure
tapping for all experimental results shown here. The flow rate was observed to choke at the critical pressure
ratio of Ap—f = 0.528. The theoretical choked flow rate from the isentropic flow relations (Eq. gives
3.00 x 10~5kg/s, the choked mass flow rate from experiment was 2.94 x 10~°kg/s, yielding a 2% difference. The
experimentally observed choked mass flow rate is lower than the theoretical prediction due to the presence of a
thin boundary layer in the nozzle which has the effect of slightly reducing the apparent nozzle diameter. This
reduced nozzle diameter reduced the choked mass flow rate from Eq.

The aerosol beam was inserted into the experimental rig after both the electrometer and SMPS to allow
both the size distribution and charge state to be known before the beam impacts the metal plate. The JCI
Static Monitor was electrically connected to the metal plate inside the beam.
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Figure 3.5: Block diagram of the experimental rig set-up used for the aerosol beam. The dashed line represents
an electrical connection between the plate and the JCI Static Monitor.



3.3. AEROSOL CHARACTERISATION 55

3.3 Aerosol Characterisation

The results of the initial aerosol characterisation experiments and the monitoring of the size distribution during
the plate experiments are given here.

3.3.1 Size Distribution

The size distribution of the salt aerosol showed a good qualitative fit with a log-normal distribution, whose
probability density function is given by [I71]

1 _ (ndp—lndp,g))>
d)= —— ¢ 20mea? 3.2
) = G (3:2)

where d, 4 is the geometric mean diameter and o is the geometric standard deviation (GSD) defined respectively
as

Ind, ; = / Ind, f(dp)ddy, (33)
0
1n0'g = / (hldp - lndp,g)Qf(dp)ddP' (3.4)
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Figure 3.6: Aerosol size distribution recorded over two minute intervals during an experiment. These results
were taken from an experiment using a —6kV ionisation voltage with a brass plate at an angle of 5. The mean
total concentration was 1.5 x 1012p/m3.

Figure [3.6] shows the size distribution during testing as measured by the SMPS. The distribution is seen to
remain fairly steady during testing with the modal diameter remaining approximately constant. This allows a
representative particle diameter to be defined to represent the distribution. The area under the graph provides
the concentration of the aerosol sampled by the SMPS. The concentration varied between tests due to the
difficulty in repeating the same pressure at the ionisation chamber for the neutraliser. This allowed the effects
of concentration on the plate saturation voltage and aerosol charge state to be quantified. The mean d), ; from
all aerosol beam tests was d,, ; = 107.5nm which will be used to estimate the contact area with the metal plate
using the Hertzian contact model.

Background counts were taken with the aerosol generation section removed and replaced with a HEPA
filter. Up to a maximum of 4 particles were measured in a 90 second window after 3 repeats. The aerosol
generation section was replaced and only the distilled water was atomised; no salt was added to the solution.
The size distribution was noisy and repeated 5 times. The mean total concentration from impurities in the
water and diffusion dryer was ~ 2.4 x 107p/m?. This is 5 orders of magnitude smaller than nominal mean
total concentration measurements from the aerosol beam tests (such as Figure and any background noise
is insignificant.
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Figure 3.7: Mean aerosol size distribution recorded over various scan times; each with a 30 second purge.
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Figure 3.8: Aerosol current measured by the electrometer during an experiment. These results were taken from
an test using a +6kV ionisation voltage with a copper plate at an angle of 0.

The effect of scan time on the resulting shape of the distribution was investigated. The SMPS was directly
connected to the aerosol generation section of the rig which ran with scan times from 30 seconds up to 180
seconds. Each scan time was repeated three times and averaged. The results are shown in Figure It is
clear that a 30s scan time does not recover the shape of the distribution and that at least a one minute scan
time must be used. A scan time of 120 seconds (with a 30s purge) was used for all aerosol beam tests as it
accurately recovers the shape of the distribution and the low scan time enables multiple scans to be made during
the experiments.

3.3.2 Charge State

The charge carried by the salt particles after the neutraliser is measured by the electrometer from Figure [3.4
A typical current measurement during an aerosol beam experiment is shown in Figure 3.8 The background
noise measured from the electrometer when no salt was atomised was < 1fA. The start and end times of the
aerosol atomisation are clear from the current readings. When the distilled water was atomised with no salt,
the current reading was indistinguishable from the natural background noise. These checks give confidence that
the salt particles both dominate the size and charge distribution by several orders of magnitude and effects of
contamination are negligible.
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As the both the net aerosol current and concentration are measured simultaneously, they can be combined
to provide the mean charge per particle using the flow rate ratio in Eq. The number of particles per second
(collision rate) entering the SMPS is given by

NSMPS = nVSMPSa (3'5)

where n is the number density (concentration) measured by the SMPS. The number of particles per second
entering the electrometer can be calculated by

Nelect - NSMPSRf- (36)
The mean charge per particle is given by
A Ielect
Qp=———", (3.7)
P Nelect

with I.ect representing the current measured by the electrometer. This can be normalised by the charge of an
electron, e, to provide the mean number of electrons per particle

N, =% (3.8)
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3.4 Experimental Results

With the salt aerosol shown to have a steady net charge and size distribution, the aerosol beam can be created
and made to impact a metal plate as shown in Figure [3.5] The size distribution is continually monitored
immediately upstream of the beam along with the charge state before impact with the plate. Assuming all
particles impact the plate, the collision frequency and mean charge per particle which exchange charge with the
plate are known.

The charge build-up on the metal plate is measured by a build-up of voltage on the plate. Figure shows
a typical voltage saturation curve from the experiments. The form of the voltage saturation is an excellent
match to Ireland’s capacitor model (Eq. , with the charge @ replaced with C'V, (Eq. |1.42) to produce the

governing differential equation as

ch 1 ACO'O
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Figure 3.9: Plate voltage saturation curve normalised by the saturation voltage and total charging time con-
stant. The dashed theory line indicates the result expected using Ireland’s model and the solid line shows the
experimental result. This was taken from one repeat of an experiment using a —6kV ionisation voltage with a
brass plate at an angle of 7. The R? value of the experimental fit to theory is 0.997 (to 3 significant figures).

The sudden troughs present in the experimental data in Figure [3.9] are likely from salt which has adhered
to the plate breaking away and removing some charge with it. This would be more likely to occur over time as
more salt is allowed to build up on the metal plate. This reasoning is supported by Figure [3.9] which shows no
sudden drops in normalised voltage until after ¢t = 270¢.

In Eq. the charging time constant is 74,; which does not represent the time constant associated with a
single particle impact. This is due to the many collision events occurring at the plate, for which this bulk result
is measured. Extraction of a representative single particle charging time constant is explored in Section [3.4.1

3.4.1 Charging Time Constant

When the aerosol source is removed at the end of the experiments, the voltage on the plate decays back to zero.
This is due to the charge leaving the plate through leakage paths. These have been minimised by using insulating
materials, however these precautions were not enough to prevent charge leakage from the plate surface. The
leakage voltage had the form of an exponential decay. This is shown in Figure

Including the effects of the leakage current provides the actual governing equation for the charge on the
plate as

dV, 1 1
C=—— (Vi — Vo) + =V, (3.10)
dt Thulk Ti
~—~—

Charging Leakage
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Figure 3.10: Plate voltage saturation curve normalised by the saturation voltage and total charging time constant
over an entire test. The decay of voltage on the plate when the aerosol source is removed begins at ~ 37.;.
This was taken from one repeat of an experiment using a +6kV ionisation voltage with a brass plate at an angle
of 0.

where 7; is the leakage time constant. Here there is a competition between the plate tribocharging due to the
aerosol beam acting to increase the plate voltage and leakage paths reducing the voltage on the plate surface.
This results in a reduced measured voltage saturation on the metal plate, seen as the point where the two
opposing mechanisms balance each other. The solution for the plate voltage charge curve, given the initial
condition V.(t = 0) = 0 yields

Ve(t) = ACUO) (1 e (e t) . (3.11)

C (1 __ Tbulk
Ti

The effects of the leakage voltage can be removed by estimating 7; from the voltage decay curve at the end
of each experiment. The actual “charging” bulk time constant 7,1k is related to the measured (total) voltage
charging time constant 7;,; and the leaking time constant 7; by

T Ttot

Toulk = (3 12)

T + Ttot

This bulk charging constant varied between tests as shown in Figure [3.11

This bulk time constant is expected to be a function of collision frequency, contact time and the true,
single-particle collision time constant 7. The collision frequency from each experiment is calculated from

N = n‘./(;hokcd. (313)

The functional dependence of the bulk particle time constant and collision frequency is hypothesised to be a
power law. A curve fit to the experimental results are shown in Figure [3.12

The single particle collision time constant 7 can be calculated from this power law when the collision
frequency is equal to unity. This gives the estimated single particle collision charging time constant as 7 = 1091s,
however this assumes constant particle contact with the plate. In reality, contact occurs for a fraction of a second
and can be estimated using Hertzian contact theory from Section This requires the particle impact velocity
with the plate. Solving Eq. 2:27] with fs; = 0.4 as found from Dahneke and Friedlander gives a theoretical upper
bound for the particle speed, assuming that particles remained in the beam. A lower bound can also be
determined by assuming that the particles were able to sufficiently decelerate due to drag and only impacted
the plate with the mean convectional velocity in the vacuum chamber, given by the volumetric flow rate divided
by the cross sectional area. The contact time calculated from both of these limits is shown in Figure [3.13

In a worst-case scenario, the contact time differs by a factor of around 4. Around the predicted beam
velocity, the curve in Figure [3.13]is almost flat and small discrepancies between the theoretical impact velocity
and reality are not expected to greatly affect the contact time. In order to provide some reassurance that the
beam was impacting the plate at appreciable velocity, photographs were taken of the plate after a test and the
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Figure 3.11: Bulk charging time constant after leakage correction for all 128 tests.
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Figure 3.12: Bulk charging time constant as a function of collision frequency. The constants were determined
by least-squares using the Levenberg-Marquardt algorithm. The fitted constants are a = 1091 and b = —0.2160
to 4 significant figures.
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Figure 3.13: Contact time between a particle and a plate as a function of impact velocity predicted using
Hertzian theory.

deposits of salt along the edges of the plate are clearly visible in Figure [3.14] suggesting that particles impacted
the plate at high velocity along the centreline of the beam.

The true single particle charging time constant can therefore be calculated as 7 = 1091 - tT ~ 1.426 x 10~ 7s.
Compared to the time constants estimated from the powder shaking experiments in Section [2:2.5 the salt
particles charged 2-3 orders of magnitude slower than the a-LM particles, which were 2-3 orders of magnitude
greater in size than the salt. Thus the estimates made here appear reasonable.

3.4.2 Equilibrium Charge Density

With the time constant known from Section [B.4.1] and the contact area able to be calculated from the Hertzian
contact model in Chapter[2] only one unknown remains in Ireland’s charge model; the equilibrium charge density
0. This is the charge per unit area on the surface of the particle when it has reached saturation. This can
be calculated knowing the charge state of the particles pre-impact (Eq. with the plate and the saturation
voltage of the plate.

The charge state of the aerosol was altered in the ionisation chambers of the neutraliser and was measured
by the electrometer. The effect of the neutraliser ionisation voltage on the mean charge particle normalised by
the charge of an electron (Eq. is shown in Figure Tonisation voltage did not effectively charge the salt
particles until the ionisation voltage reached +4kV, with positive voltages charging the particles positively and
vice versa. The number of elementary charges on particles from exposure to the 8kV ionisation heads showed a
large spread, with large negative ionisation voltages causing the particles to lose their additional surface charge.
It is not known what caused these phenomena and possible suggestions are lack of adequate mixing in the
ionisation chamber for the positive cases and corona discharge for the negative cases.

No dependence of initial aerosol charge per particle was found with the plate saturation voltage as shown
in Figure [3:16] This result suggests that the double layer formed during the collision of small particles was
dominated by the difference in work functions, not of the contribution to the electric field from the initial
charge on the particle. From Laurentie’s model used by Kolehmainen et al. in Eq. this would be
equivalent to ignoring the E - k term; reducing the model to a similar form to that of Matsuyama et al. (Eq.
. The insignificance of the contribution of the electric field from excess charge on the particle may be due
to the very low levels of charge present on the particle (a few electrons).

In addition, the angle of the plate also showed no relationship to the saturation voltage from Figure [3.17]
The plate angle effectively controls the normal velocity component of the particle impact with the plate, which
is expected to decrease the contact area with increasing plate angle from Hertzian theory. This effect was not
observed. This is likely due again to the very low charge levels on the particles. Charge is discrete and not
continuous at these small scales and each particle has a very limited number of charges which is can exchange
with the plate. The clumps of results with similar V,,; values at the same plate angle are results with similar
collision frequencies.
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Figure 3.14: Salt build-up on the edges of the plate after testing.

It was found that the collision frequency (Figure showed a correlation to the saturation voltage of
the plate, with the magnitude of the plate voltage increasing with collision rate. The reason for this is that at
higher collision frequencies, more charge is being exchanged with the plate to counteract the leakage current
(discussed in Section, thereby allowing a greater amount of charge to be held on the plate at equilibrium.

The material of the plate did not affect the saturation voltage. This was unexpected as the two different
materials used (copper and brass) have different work functions and should reach different surface equilibrium
charges. This may be caused by the very small amount of charge on the particles and the small currents to the
plates (when the salt is not ionised, the mean net number of electrons per particle is &~ 0.1 which must mean that
only around 1 in 10 particles have an additional electron on the surface). Electron transfer becomes probabilistic
at these scales, with the observed currents and voltages due to the large (= 107) collisions occurring per second.
When dealing with these small particles and charge levels, a simpler approach seems more appropriate whereby
each particle will exchange, at most, one electron with the plate. This net gain/loss of one electron divided
by the surface area of the particle can provide an estimate of the equilibrium charge density of the small salt
particles as 0o ~ 4.413 x 1075C/m?2. This estimate is ~ 5.6 times smaller than the limiting value given for air
breakdown in Section and is therefore physical. This experimental value obtained is very similar to the
equilibrium charge density estimated from the a-LM (og ~ 4.54 x 107C/m?) from Section and provides
confidence in the results obtained here.
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Figure 3.15: Mean number of additional electrons on the particle surface for a range of ionisation voltages over

all 128 tests.
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Figure 3.16: Mean number of additional electrons per particle against plate saturation voltage over all 128 tests.
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3.5 Conclusion

An aerosol beam has been used to provide a stable, controllable stream of salt particles to impact a metal plate.
These experiments were performed using a range of particle concentrations, charge states, plate angles and two
different plate materials. These have been performed using particles sizes far smaller than those used to do
similar charge experiments in the literature and represent novel work. The macroscopic variables such as the
voltage build-up on the metal plate have matched models and measurements in the literature for particles with
sizes orders of magnitude larger than those studied here. Due to the probabilistic nature at low charge levels,
conditions at impact including the charge state, surface material and impaction angle had no measurable effect
on either the speed or total amount of charge transfer.

These measurements and conclusions have allowed the determination of the remaining two unknowns from
Ireland’s charge model, the charging time constant 7 and the equilibrium charge density og. The effect of
collision frequency on the macroscopic charging time constant has also been modelled which will aid in applying
the model in an Eulerian framework for a cyclone in Chapter [5]from the model’s original Lagrangian formulation.
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Chapter 4

Particle Eulerian Model Validation

The Equilibrium Eulerian (EE) model introduced in Section is to be used to convect an Eulerian particle
phase through a cyclone. This model assumes that Stk < 1 and provides a computationally efficient way
of computing the particle velocity field without the need to solve additional PDEs. The EE model has been
validated for use with low Stokes number particles in statistically isotropic turbulence, however not for a complex
flow field such as a cyclone.

To bridge the gap in the model validation, a challenging analytical flow field is presented which contains the
prominent physics present in the cyclone fluid flow from Section [2.1] The fluid and particle scales are matched
to the results from the cyclone CFD and Lagrangian particle tracking in Chapter [5| The analytical flow field is
representative of the cyclone and allows a deeper understanding and validation of the model to be performed
before applying it to the complex, 3D cyclone.

This chapter begins with introducing the analytical fluid flow field, with an analysis performed of the EE
particle velocity field as a function of Stokes number. A finite volume Eulerian particle model implementation is
discussed in Section with a fully hand-coded model presented. The Eulerian model behaviour in this flow
is discussed for different discretisations and Stk and in particular how the model can be broken or invalidated.
Lagrangian particle tracking is performed as a benchmark for comparison with the Eulerian results, which allows
both the accuracy to be assessed and any numerical issues to be characterised. This new thorough understanding
of the model behaviour informs the implementation for the cyclone flow in the final body of work.

67
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4.1 Taylor-Green Vortex

Before the EE method is used to convect a particulate phase in the cyclone, the model is validated on a simpler
test flow not seen from literature. The test flow is analytical and ensures the model is implemented correctly.
It also provides numerical insight including behaviour at singularities and testing the range of validity. The
steady Taylor-Green vortex is an analytical solution of the Navier-Stokes equations [I72], describing a periodic,
incompressible flow consisting of counter-rotating vortices. Owing to the analytical nature, this flow field has
been used in the validation and accuracy of CFD codes [I73]. In 2D, the steady fluid velocity field can be
expressed as

P ( cos(az) sin(ay) ) ’ 1)

—sin(ax) cos(ay)

where wqg 1S the maximum flow velocity (the amplitude) in the domain and a is a constant which determines
the frequency of the vortices. The flow has a period of 27’7, with the diameter of an eddy given as half the period

= -~ (4.2)

8 . The Taylor-Green vortex features
fluid gradients and strong streamline curvature, which provide a useful benchmark for validation for the cyclone
CFD in Chapter 5] This is the same flow field used by Druzhinin and Elghobashi in their two-fluid model from
Section [2.3] which posed numerical issues. The Taylor-Green flow field therefore presents a difficult challenge

numerically for this Eulerian model.

A vector plot of the flow field is provided in Figure centred at © =
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Figure 4.1: Taylor-Green Vortex flow. Black arrows represent the direction of the local fluid velocity vector,
with the background colour representing the local flow speed. The fluid velocity is normalised by umaqg and the
domain is normalised by the period to provide a unit square domain.

An eddy time scale can be defined as

e T (4.3)

Umag Umag@®

The fluid time scale enables a particle Stokes number (Eq. to be defined using the particle relaxation time
(Eq. . As the fluid flow field is analytical and differentiable everywhere, the particle EE velocity field is
also analytical. The EE particle velocity field for the steady Taylor-Green vortex with no gravity can be derived
from substituting Eq. [I.1] and its spatial derivatives into Eq. 2.81] to produce

—— co§(ax) sin(ay) + %rpumaga si1?(2aa:) . (4.4)
— sin(ax) cos(ay) + 5TpUmaga sin(2ay)

The EE particle velocity field approaches the fluid velocity as 7, — 0. In the limit of large 7,, the particle

velocity field is dominated by the doubled frequency terms. The two limiting cases balance when 7, pq1 = #{M,
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Figure 4.2: EE Taylor-Green flow field for Stokes numbers of 0.15tkpq;, Stkpe and 10Stky,;. Black arrows
represent the direction of the local particle velocity vector, with the background colour representing the local
particle speed normalised by the maximum particle speed in the domain.

giving a Stokes number of Stkp, = % Around this balanced Stokes number, the particle velocity field changes
shape as shown in Figure[£.2] As Stokes number increases, the velocity vector rotates and produces a flow field
which no longer consists of counter-rotating vortices. The centre of the fluid eddy at (z,y) = (0,0) now is a
source with velocity vectors diverging away from the centre. Where fluid vortices cancelled each other out at

(x,y) = (%, %) where n and m are integers, these become sinks with the velocity vectors pointed

directly at the centres.

The double frequency dominated particle flow field in Figure Fl:Zl is unphysical and occurs when 7, becomes
too large. The upper limit for 7, which provides a unique EE solution, is found from Egs. and For
the Taylor-Green flow, the particle velocity field strain rate tensor is

gv _ [ ~Umaga sin(ax) sin(ay) + Tpup,,,0° cos(2ax) . . 0 C(45)

i 0 Umagasin(az) sin(ay) + Tpud,, 0 cos(2ay)

The upper limit for 7, where the flow field has a unique Equilibrium Euler method particle velocity can be
determined for this Taylor-Green vortex by solving the characteristic equation

P Tpufnaga2 (cos(2az) + cos(2ay)) As — ufmga2 sin?(ax) sin? (ay)+
4 4

a®sin(az) sin(ay) (cos(2az) — cos(2ay)) + 2 upq,a” cos(2az) cos(2ay) = 0. (4.6)

3
TPU’ p ““mag

mag

2a ’

where n and m are integers as before. From the symmetry of the flow field we can focus on just one region
which will be (z,y) = (%, %) for which n = m = 1. The characteristic equation simplifies to a quadratic
equation for Ag

The regions of greatest compressive strain for the Taylor-Green flow field occur periodically at (z,y) = (

A2+ ZTpufmgaQ)\s - uimga2 + 7'3ufmga4 =0. (4.7

The characteristic equation has solution

As = —7'],ufnaga2 £ Umaga, (4.8)
for which the most negative eigenvalue is A\; = —Tpufnaga2 — Umaga. From Eq. , a unique EE flow field

must satisfy

T+ Ty — — < 0. (4.9)
This equation has roots

(4.10)

7(2n—1) w(2m—1)

2a

)



70 CHAPTER 4. PARTICLE EULERIAN MODEL VALIDATION

The particle relaxation time is strictly positive, therefore we take the positive solution to provide the uniqueness
criterion for the flow field as

V5 —1

QUmaga

(4.11)

Tp,mazx <

If umaga = 1, the uniqueness criterion yields the negative reciprocal of the golden ratio @ Eq. provides
a validity limit for 7, for a Taylor-Green flow field with specific Uy,q4 and a. The validity limit for Stokes number
is

Tp7maa: — \/5 -1
Ty o

Sthmas = (4.12)

This uniqueness criterion informs us that of the particle flow fields presented in Figure only the lowest
Stokes number flow field is a valid solution. As Stknee < Stkpq, EE particle velocity fields which introduce new
flow structures seen in Figure will not be considered as they formally do not meet the uniqueness criterion.

For comparison, the MEE particle velocity in Eq. [2:84) can be calculated in the Taylor-Green flow. From
Section [2:3.2] this velocity field specification is expected to produce anomalously large values of velocity due to
the large compressive strain as Stk increases. The MEE velocity in a 2D Taylor-Green flow is

S < cos(az) sin(ay) )

— sin(ax) cos(ay)

n 1 — TpUumagasin(ax) sin(ay)  —TplUmqga cos(azx) cos(ay) - 3TpUZ, g0 8in(2a2) (4.13)
TpUmag® cos(azx) cos(ay) 1+ Tpumagasin(az) sin(ay) 3 TPl asin(2ay) | '

The MEE particle velocity fields are plotted in Figure for the same choice of Stk as shown in Figure
For the low Stokes number case of Stk = 0.1Stky,;, the flow field appears physical. However for the two larger
Stokes numbers, the particle velocity blows up in specific regions where the matrix to be inverted is_expected
to be close to singular. The absolute value of the determinant of I + 7, (VU)T is provided in Figure which
shows that the matrix is close to singular along the almost diagonal lines for Stk = 2?0' The large velocities
observed in Figure [£.3] can be seen to lie on these diagonal lines in Figure [£.4] at the same Stokes number. At
the intermediate Stokes number of Stk = %, the points of anomalously large velocity are situated closer to the
regions of maximum compressive strain.

To further investigate the cause of the vanishing determinants along the diagonal lines in the Taylor-Green
flow, the inverse in Eq. is evaluated analytically from the determinant and adjugate matrix to provide the
MEE particle velocity field in the Taylor-Green flow as

S ( cos(az) sin(ay) )

— sin(ax) cos(ay)

4.14
sin(2ax) + Tpumaga (sin(ax) sin(ay) sin(2ax) + cos(ax) cos(ay) sin(2ay) (4.14)
sin(2ay) — Tpumaga (cos(ax) cos(ay) sin(2ax) + sin(az) sin(ay) sin(2ay)) |’
2
TpUimag@
v = . 4.15
2+ 72u2,,,0° (cos(2ax) + cos(2ay)) (4.15)

Numerical issues in the MEE method occur in the Taylor-Green flow when the denominator of ¥ approaches
zero. Setting the denominator equal to zero gives

cos(2azx) + cos(2ay) = — (4.16)

The RHS of Eq. is always negative and the most negative value able to be reached by the LHS is —2.
These minima first occur at the regions of greatest compressive strain as Stokes number is increased. To prevent
division by zero in these regions, we require

(4.17)

Tp < .
Umag®

Using the definition of the fluid time scale from Eq. [£:3] provides the Stokes number limit for the MEE method
in the Taylor-Green flow as

1
Stk < —. (4.18)
m
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Figure 4.3: MEE Taylor-Green flow field for Stokes numbers of 0.1S5tkpq;, Stkpe and 10Stky,;. Black arrows
represent the direction of the local particle velocity vector, with the background colour representing the local
particle speed normalised by the maximum particle speed in the domain.
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Figure 4.4: logo(|det(I + 7, (Vu)")|) for the Taylor-Green flow field at a Stokes number of 10Stkyq;.
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This value is exactly half of the balanced Stokes number for the EE method and agrees with the anomalously
large velocity values observed for Stokes numbers larger than this in Figure This value is larger than the
validity limit for the EE method, however at Stk = %, the EE method still provides a “reasonable” velocity
field as it is less than the balanced Stokes number. However the MEE velocity is undefined at problem spots
at this Stokes number. The denominator of ¥ may also lie close to zero at regions surrounding these spots and
also produce spuriously large values for the Eulerian particle velocity. As Stk is increased above %, the regions
where the denominator of ¥ equals zero moves away from the areas of maximum compressive strain. This
explains the movement of the large values of velocity observed in Figure as the Stokes number is increased.
In more complicated flows from CFD, the matrix inverse will have to be attained numerically and the procedure
is likely to fail at these moderate Stokes numbers. The MEE method is therefore limited to very small Stokes
number and is not suitable for flows such as the cyclone presented in this work which may have Stokes numbers
approaching unity.
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4.2 FEulerian Model Implementation

The Eulerian particle model for the Taylor-Green flow is now implemented into a computer code. The Eulerian
model is also later implemented into the CFD software ANSYS FLUENT for use in the cyclone in Chapter
A hand-coded implementation allows greater flexibility in checking for errors as all program variables are able
to be accessed, unlike when using the proprietary, closed-source software.

The governing equations of the Eulerian model are presented and discretised using the finite-volume method
to produce a linear system of equations to be solved for the volume fraction of the particulate phase in Sec-
tion This is applied to the Taylor-Green flow, with the determination and implementation of diffusion
coefficients for the volume fraction discussed in Section [£.2.2]

4.2.1 Finite Volume Discretisation

We begin discussing the motivation behind the choice of discretisation and solution method for the Eulerian
model, before listing off the discretisation equations. The unsteady transport equation for the volume fraction
of a particulate phase convected by the EE particle velocity with diffusion is given by Eq. which is a PDE.
There is no analytical solution to this, so an approximate numerical solution is sought instead. A common
numerical method for solving such a transport equation is the finite volume method (FVM). In the FVM, the
solution domain is discretised into a mesh of non-overlapping control volumes called cells and the conservative
form of the equation is solved on each computational cell [32]. A key advantage to this method is that it exhibits
global conservative properties, no matter how coarse the mesh is [174].

The FVM requires that the PDE be cast into a linear system of equations of the form aa = b, where a
is the matrix of coefficients, « is an array holding the volume fraction at each cell centroid and b is an array
containing the explicit source term for each cell. Each individual linear equation arises from the discretisation
and linearisation of the governing equation for each computational cell.

In discretising the domain into cells, the solution variables are stored at the cell centroids. These cell
centroid values are an approximation of the mean value over the cell to second-order spatial accuracy [32]. The
convection/diffusion volume integral is cast into a surface integral across the cell from the divergence theorem.
These volume and surface integrals in the PDE require approximation to obtain algebraic equations for each
cell.

The surface integrals can be expressed as a sum of integrals over each planar face of the cell. In evaluating the
integral on a face, the distribution of the integrand along the face is unknown. The distribution is replaced with
a mean value across the face and the integral remains exact. The face centroid value is used as a second-order
accurate approximation to the mean value on the face, in an analogous fashion to the cell centroid values. The
value of the solution at the face centroid is unknown as the solution variables are stored at the cell centroids.
Interpolation formulae are used to estimate the face centroid values from the neighbouring cell centroid values.

A simple, first-order accurate method of interpolating the face centroid values is by using upwind differencing.
This approximates the value of the variable at the face as the cell centroid value of the cell upwind of the face
[I74]. A major drawback of this method is that it exhibits false-diffusion where flow is oblique to the face. This
results in gradients becoming smeared-out and can require fine grids to reduce the relative strength of this. A
second-order method for interpolating the face value is by central differencing (linear interpolation) between
the two neighbouring cells. This method does not suffer from false-diffusion like the upwind scheme, however it
can produce unbounded oscillatory solutions. This instability arises when the local Péclet number of the cell is
greater than 2 [I74]. For convection-dominated problems, central differencing cannot be used and the upwind
scheme is preferred as it provides bounded, realistic results independent of Péclet number.

Additional cell neighbours can be included in the interpolation formulae. This increases the size of the
computational molecule but requires more computational effort. One such method is the second-order upwind
scheme, which can be used to provide a more accurate prescription for the face value than first-order upwind.
This involves a Taylor-series expansion about the cell centroid, in which calculating the gradient involves
neighbouring cells. Another scheme known as QUICK provides a weighted average of the second-order upwind
and central differencing schemes [I75]. Both of these higher-order methods can produce unbounded solutions
and are unlikely to work in this set-up due to the lack of diffusion (large Péclet numbers) without some form of
limiter.

For the volume integrals, the integration is evaluated as the product of the mean value of the integrand with
the cell volume [32]. The mean value of the integrand is approximated with the cell centroid value which is
second-order accurate.

For unsteady problems, the time derivatives must be discretised. This can be done explicitly in terms of the
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current solution values or implicitly using future solution values. Explicit time stepping schemes require small
time steps for stability. This is determined in a 1D situation by the Courant number defined as [32]

uAt

num — A - 4.1
C AL (4.19)

Temporal stability is determined by the Courant-Friedrichs-Lewy (CFL) condition which for stability states
Chum < 1. This strict requirement is not required for implicit time stepping which allows larger time steps to
be taken whilst remaining stable. To avoid having to satisfy the CFL condition, implicit time stepping will be
used. First and second-order time schemes can be used, with the second-order scheme requiring the solution
values at the previous 2 time steps be kept in computer memory.

Finally, the source terms require discretisation. This requires linearisation of the source term S and the
volume fraction « is placed into the form S = S; + S,a, where S, and S, are the explicit and implicit parts of
the source term respectively. The explicit term is placed directly into the b source term array in the discretisation
equation whereas the implicit term is moved onto the main diagonal of the matrix of coefficients; thus increasing
the number of terms on the diagonal and increasing the stability of the system.

Having discussed the method of discretisation, the equations are now presented. The unsteady transport
equation for the volume fraction of a particulate phase convected by the EE particle velocity is given by Eq.
2.86] which expressed in conservative form with no diffusive sources reads

7dv+/(9 (au;) dV = /a ( (Dul—gi)a> dv. (4.20)

Here the transport equation is integrated over a volume V. The dimensions of each term are volumetric flow
rate multiplied by the dimensionless scalar particle volume fraction, which from Section is a conservation
equation for particle mass within the volume. The convection volume integral can be recast into a surface
integral by using the divergence theorem [I76]

/(v-u) v = /(u~n) dA. (4.21)

In Eq. A is the area of the surface and n represents the normal to the area pointing out of the volume.
It is also convenient to combine the area and unit normal into a single vector A; = An;. Applying the divergence
theorem to the convection term yields

8a 0 Du;

From the discretisation process, the matrix of coefficients is sparse, with the non-zero entries lying on and
around the main diagonal. It is memory inefficient to store the entire sparse matrix, therefore only the main
diagonals are stored as individual arrays in computer memory. The discretisation equation can be written as
[1°r4]

apap = anp0ny + ba, (4.23)
nb

where the P subscript indicates the current cell for which the equation is for (the main diagonal), nb represents
the neighbours to cell P and b, are any explicit sources. The dimensions of Egs. and must match. The
a coefficients must have dimensions of the fluid volumetric flow rate; thus Eq. is a discretised conservation
equation.

We now discretise Eq. [£:22] for each cell, such that it can be placed into the form of Eq. [f.23] Starting with
the convection term, the surface integral over the computational cell becomes a discrete sum over the cell faces
F

/auidAi = Z/A (ou;dA;) - (4.24)

The surface integral is approximated using the second-order accurate midpoint rule as [32]

Z/A (wdAi)p Y (i Ai) g (4.25)
F

F
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Figure 4.5: Compass notation of a computational cell in 2D centred at P with indices (¢,j) with its four
neighbouring cells. Cell centred values are denoted in uppercase, with face-centred values denoted with lowercase
letters. Red arrows indicate the direction of the unit normal on each face.

where the face centroid values are used to approximate the mean value across the face. The convective term
can be rewritten as

Z (au;iA;)p = Z Vrar, (4.26)
F P

with the volumetric flow rate and volume fraction matching the dimensions to the discretisation equation. Con-
sider a 2D, uniform mesh aligned to the Cartesian coordinate system. The stencil surrounding the computational
cell P is shown in Figure

The volumetric flow rate at the face can be provided analytically in the Taylor-Green flow. In non-analytical
flows, the volumetric flow rate at the face can be estimated by linearly interpolating between the adjacent cell
centroids (central differencing). For face e, this can be written as [32]

Ver Vel +Vp(1-I) = (u) L + () p (1 — L)) - A, (4.27)

with the interpolation factor defined as

7, = [ze—zel (425)
lze — zp|
The volume fraction can be upwinded on face e to give
, ifV.>0
T , (4.29)
ap, otherwise.

The discretisation equation coefficients for convection, using first-order upwinding for the volume fraction
and central differencing for the volumetric flux for a cell P, located at grid points (i, j) is

iy = max(—V,), (4.30)
ayi 't = max(V,), (4.31)
a%) = max(-V4,), (4.32)
a? T = max(V;,), (4.33)

where the superscripts indicate the grid point which the coefficient applies to. The i and j indices reference the
cell index along the positive x and y directions respectively. For the east face of cell P, the mass flow through
the face provides ap for cell P and ay for the cell east of P. Similarly for the north face, the volumetric flow
through the face provides ay for cell P and ag for the cell south of P. After looping over all the cells, the central
coefficient for each cell is given by

6 = a4 a4 a4l (1.31)
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As mentioned at the start of this section, first-order upwind is overly diffusive and will smear-out sharp gradients
in the volume fraction. A higher-order face interpolation method such as central differencing will fail with this
model due to the Péclet number tending towards infinity from the lack of diffusion. Use of higher-order face
interpolation schemes, such as second-order upwind, may be possible to use in this work from the addition of
flux-limiters to ensure the scheme is total variation diminishing (TVD) [I77]. A second-order upwind scheme
can be written as [I78]

ae =ap+ (Va)p - (x5 —zp), (4.35)

where the discretisation of the gradient operator is discussed later in this section. The consequences of using
these schemes is discussed in Section .3l

The source term is linearised and placed into the form S, = S. 4+ Spc, with the implicit term moved onto
ap if and only if S, < 0. The explicit term remains on the RHS to provide

Z Anp — Sp ap = Z AnpQnp + Se. (4.36)
nb

nb

To linearise the source term and place it into the above form, the source term volume integral is approximated
by the cell centroid values multiplied by the cell volume

0 Du;
S & . <Tp <Dli‘ - gi) a) AVp. (4.37)
! P

The term inside the divergence operator can be simplified. From the definition of the EE velocity (Eq. [2.81))
we have

Du;
Tp ( Dt:f - gi> =u; —v; = —w;, (4.38)

where w; is the relative velocity vector between the EE particle velocity and the fluid velocity. Substitution

into Eq. yields

0

i

We now present an explicit formulation for the source term. The terms inside the derivative of the source
term are saved as separate variables for each coordinate direction.

Se = —wya, (4.40)
Sy = —wya, (4.41)
S, = —w,« (4.42)

to provide the complete source term

9S8, 08, 08,
= - AVp. 4.4
Sa <8x+3y+8z)P Vp (4.43)

The gradients themselves require approximation. A common method for discretising the gradient operators
is by a modified version of the divergence theorem, which for a scalar i reads

/ VodV = / YndA. (4.44)

The gradient of ¢ at cell P is discretised by the weighted sum of the neighbouring cells
1
\Y = — A 4.45
(V) p Avpzf:wf I3 (4.45)

with the face values requiring interpolation. These face values can be simply estimated by linear interpolation,
giving rise to the Green-Gauss Cell-Based gradient scheme. The discretised gradients for a 2D mesh aligned
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with the coordinate system become

- 1
(88S ) ~ W (SweneAe + SwwnwAw)
z ) p 1P (4.46)
~ r‘/P (Swp ((1 — Ie) neAe + (1 — Iw) nwAw) + SxEIeneAe + S;cWIwnwAw) )
6Sy) 1
Y ~—— (9 nnnAn +S SnsAs
( oy )p AV Y ! ) (4.47)
1
~ TVP (Syp ((1 — L) n, A, + (1 —1,) nsAS) + Sy Innn Ay + SySISTLSAs) )
08, 1
< 0z ) ~AVe (S:neAr + SzmpAy)
P (4.48)
1
~— (SZP ((1 —I)n A+ (1—1p) nbAb) + S Iimy Ay + SZBIbnbAb) :
AVp

This provides the complete source term as

Sa = Ozp ((1 - Ie) neAe + (1 - Iw) nwAw) + SmEIeneAe + SmWIwnwAw
+ Sy, ((1 —I)n, A, + (1 —1I) nSAS) + Sy InnnAn + SyglsnsAs
+ S0 (1= L) ne Ay + (1 — L) npAp) + Sop Iy Ay + Sop Iynp Ay, (4.49)

The linearised source term now needs to be put into the form S = S + S,a. The discretised version of the
explicit source term (Eq. [4.49) for the Taylor-Green flow on the uniform mesh becomes

A A
Sy =5, = 3 (S — Saow + Syy — Sys) = 3 ((wxa)w — (we0)  + (wyar) g — (wyoz)N> , (4.50)
with S, = 0.

For an implicit treatment of the source term, we use the product rule for differentiation on Eq. to
provide

Oa ow;
=— — L) AVp. 4.51
So (wl oz, + a&'zi )P Vp (4.51)

The second term on the RHS is a linear function of volume fraction, making an implicit source term treatment
possible. The implicit and explicit parts of the source term become

) ow;
S, = min (— (3$i>p ,0) AVp (4.52)

S, = —wia—aAVp + max —%, 0) AVpap, (4.53)

with the gradients discretised using the Green-Gauss Cell-Based scheme. The implicit implementation of the
source term for the Taylor-Green flow on the uniform mesh becomes

A
Sp = min (2 (Wepy — Wayy + Wy — Wy) 7O) , (4.54)
A A
502—5 (wg (ap — aw) + wy (an — ag)) + max -5 (Wap — Wayy + Wyy — wys),0 ) ap. (4.55)

Finally for the implicit temporal discretisation, the volume fraction is evaluated at the future time step [32].

For a backward Euler scheme
foJe AV il n

where At is the time step and the superscripts n and n + 1 represent the value evaluated at the current
and future time step respectively. The full discretisation equation for the unsteady volume fraction transport
equation becomes

AV AV
n — ) =S, |antt = a4 == "+ S, 4.57
%;a b+<At>P p | ap %;a by -+ At Pap—i— , ( )
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which provides

AV
ap = Zanb + (At ) =5 |, (4.58)
nb P
AV
= —_— n 4.
ba (At)PaP+SC’ (4.59)

with the neighbour coefficients specified from Egs. to for a 2D flow. For 3D flow, the top T and
bottom B cell neighbours are also considered for cell P as

ab?* = max(~V;,0), (4.60)
aP R = max(V;,0). (4.61)

The linear system is solved in Python code using the point by point Gauss-Seidel method. In the point by
point Gauss-Seidel method, each cell is visited in order and the solution variable is calculated by [174]

. G g pig
a%] . an a’nbanb + b (4 62)
Pnew — %) ’ '
ap

with au,, continuously updated to hold the most up-to-date information. Numerical difficulties may arise from
the explicit source term and the solution may require relaxing. A relaxation factor &q¢jar With 0 < &rejar < 1
to limit the change in the solution at P from the previous solution ap g as

afﬁj = grelama;{new + (1 - frelam) a?{old’ (463)
Convergence is judged using the scaled residual defined as

AnbOnp + b — apa
Rscalcd: Ecell8|2nb nbTnb r P|7 (464)

Zcells'a'PaP‘

where the numerator is the absolute residual [I74] which is then normalised.

4.2.2 Computational Set-up

The scales of the Taylor-Green simulation are chosen to be representative of the Kolmogorov scales seen by
particles in the swirling cyclone flow in Chapter The eddy length [ and velocity u;mqg scales are based on
the cell volume weighted average of the Kolmogorov scales from the cyclone CFD in Chapter |5l From these,
the flow parameter a can be calculated using Eq. The particle density is set to p, = 2650kg/m? in line
with Section and 7, is determined by the choice of Stk. Finally, 7, provides the particle diameter from
Eq. @, where py is given by the dynamic viscosity of air at standard conditions. The particle diameters are
checked, such that the worst-case maximum Re, seen by a particle is < 0.1 to ensure Stokes drag is valid and
to ensure d, << [ for the point-particle approximation. The simulation conditions are described in Table

Quantity Value
a ~ 35521m =T
Umag ~ 0.29283ms!
o 5x 1077
T 300K
oy 1.7894 x 10~ 5kgm~ts™!
=L ~5.94 x 10755

Table 4.1: Simulation conditions for the 2D Taylor-Green flow. The final row represents the RHS of the
uniqueness criterion (Eq. [4.11]).

The Stokes numbers tested are those representative along Lagrangian particle trajectories, calculated a
posteriori from Chapter [5| Values of Stk =1 x 1073 and Stk = 1 x 10~2 are used to represent the ensemble-
averaged Stokes number for the 0.1um and 1lum particles respectively. A stress-test of Stk = 0.1 is used to
analyse how the model may break as the small Stokes number assumption becomes invalidated. This stress-test
also allows methods of stabilising the volume fraction solution to be assessed. The parameters used for each
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Stk d, (m) T, (8) Rep max
1x1073 [ ~1.92x 1077 | ~3.0x 1077 | ~ 0.0047
1x1072 | 6.06x1077 | #3.0x107% | =0.015
1x1071 | ~#1.92x107% | 3.0x107° | ~0.047

Table 4.2: Particulate phase parameters for the 2D Taylor-Green flow.

Initialise fluid and par-
ticle velocity fields

’ Begin iteration loop ‘

!

Calculate implicit
and explicit parts
of the source term

!

’ Update a,,; coefficients ‘

!

’ Update a,, coefficient ‘

!

’ Solve linear system ‘

|

Convergence
criteria met?

)

End iteration loop }

Figure 4.6: Solution process diagram for the steady particle volume fraction for a frozen fluid flow field.

particle phase are shown in Table From 7, it is clear that only the Stokes numbers of 1 x 1073 and 1 x 1072
will give a valid EE velocity field from the criterion in Table with the Stk = 0.1 having a larger time scale
than the validity limit which is expected to present numerical difficulties.

A set of uniform square meshes were employed, with the coarsest and finest consisting of 4% and 10242 cells
respectively. The domain is fully periodic from (z,y) = (—I,—!) to (z,y) = (I,1) and no special treatment
at the boundaries is necessary. The particle volume fraction was initialised with a uniform distribution of aq
everywhere to mimic the uniform random initial conditions for the Lagrangian particles to be tracked in Section
M4 The fluid volumetric flow rates at the cell face centroids is exact for the Taylor-Green flow from Eq.
and no interpolation is required.

We now look to find the steady-state solution for the volume fraction given an initial uniform distribution
using first-order upwinding for the convective term. The order for the solver process is shown in Figure [4.6]
Both the analytical fluid and EE velocity are calculated at the cell centroids in the domain (which also provides
w at every cell). As these values are constant, the discretisation coefficients ag, aw, an, ag and ap are constant
when using the explicit source term; whereas S, and S, vary between iterations for the implicit treatment.
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4.3 Eulerian Model Numerical Tests

The transport equation for volume fraction is solved numerically in the 2D Taylor-Green flow using the FVM
discretisation from Section for a variety of mesh sizes and Stokes numbers. In this section, a mesh indepen-
dence study is performed by monitoring the shape of the volume fraction distribution. Eulerian particle velocity
and volume fraction plots will be provided later for the comparison with Lagrangian results in Section

The volume fraction distribution is two dimensional, therefore to aid in quantifying the shape of the dis-
tribution, information relating to the first four moments (Eq. of the radial distribution of the volume
fraction are presented. These are the mean radial position, standard deviation, skewness and kurtosis. The
radial component 7 is given by the polar transformation r = /22 + y2 and therefore the centre coincides with
the Cartesian origin at (z,y) = (0,0) which is the centre of Figure The mean radial position is expressed
in terms of the first raw moment and discretised by

ffooo ra(r)dr ZZI\; Zjvzl rhd obd
7 a(r)dr PR Z;\le s

where N is the number of grid points in each coordinate direction. The remaining central moments are discretised
the same way. The standard deviation is the square root of the second central moment

{r) =

(4.65)

standard deviation = 1/ M. (4.66)

This provides the average radial distance from the mean. The skewness and kurtosis represent the lack of
symmetry and tail extremity [I80] of the distribution respectively as [134]

M-
skewness = —‘;, (4.67)
M3
M,
kurtosis = ﬁ; (4.68)

A benchmark set-up with Stk = 1 x 1073 on a 1282 grid with no diffusion is used to check whether both
the explicit and implicit implementations of the source term converge to the same solution. Both methods
required a different number of iterations to reach convergence (5962 and 6076 for the explicit and implicit
formulations respectively), which was judged to be when the normalised residual (Eq. is less than 1 x 1014,
Additionally, the moments of the radial volume fraction distribution were monitored over each iteration to check
that stationary values were reached. Figure[4.7]shows these values for both source term implementations, which
converged in an almost identical manner. Both source term implementations converge to the same solution and
a convergence criterion of 1 x 1077 indicates a converged solution. This will be selected as the convergence
criterion in all subsequent results. As both implementations of the source term provide the same solution, only
the implicit formulation results will be shown in the following studies due to its increased solver stability.

A mesh independence study is now performed. Grids ranging from 42 to 10242 were considered in this
study, for the 3 Stokes numbers from Table For Stk = 0.1, numerical instability and negative volume
fractions necessitated the use of a relaxation factor for the Gauss-Seidel solver (Eq. [4.63). On all grids finer
than 42, relaxation was not enough to prevent negative values of volume fraction from occurring in the domain.
An explicit source term formulation also created negative volume fractions on fine grids for the middle-ground
Stk =1 x 1072 which is not shown in Figure The mean and central moments as a function of mesh size are
shown in Figure with the single Stk = 0.1 result not included. The skewness of the volume fraction radial
distribution is the only statistic which reaches a mesh-independent value for either choice of Stokes number.

A mesh-independent result cannot be obtained as the finer the mesh, the greater the build-up of volume
fraction in regions of greatest compressive strain, with no mechanism present to prevent this continuous build-
up. As the mesh becomes finer, larger volume fraction gradients are present which increase the strength of the
source term and decrease the numerical stability of the system. As Stk is increased, the numerical stability of
the system decreases due to the increasing strength of the source term. Considering the changes in the EE flow
field from Figure [4.2] the increase in Stk causes the regions of maximum compressive strain to become sinks
in the particle velocity field. This enhances the entrainment of volume fraction to these regions and creates
larger gradients at these problem spots. As Stk is increased, this accumulation of volume fraction at these sinks
becomes ever-stronger.

The use of second-order upwind as a higher-order face interpolation scheme caused the solution to diverge
over iteration, even for a low Stokes number of Stk = 1 x 1073 and a relaxation factor of 0.1, as expected
from Section The use of a flux limiter in tandem with the higher-order scheme was proposed to keep the
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Figure 4.7: Normalised moments of the radial volume fraction distribution and residual for both source term
implementations on a 1282 uniform grid with no diffusion for Stk =1 x 1073,
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Figure 4.8: Normalised moments of the radial volume fraction distribution for both source term implementations
on a variety of uniform grids with no diffusion for Stk = 1 x 1072, The convergence criterion for the normalised
residual was < 1 x 1077.
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solution bounded to decrease the likelihood of solver divergence whilst providing a higher-order estimate of the
volume fraction at the cell faces. Two flux limiters were investigated in this work: MINMOD and SUPERBEE.
The SUPERBEE flux limiter has good step resolution when faced with steep gradients however it tends to
distort smooth solution profiles [I77]. The MINMOD flux limiter is known to perform better in smooth profiles
however it does so by being overly-diffusive [I77].

The flux limiters were found to stabilise the solution and prevent the volume fraction from diverging to
infinity. The unacceptable cost of this is the continuous reduction in total volume fraction in the domain
over iteration. This results in convergence being obtained when there is zero particle volume fraction in the
domain. This occurs because although the flux between two adjacent cells is limited (thereby reducing the
amount of volume fraction convected), the source term is unaffected by this limiter which results in a net loss of
volume fraction in cells where the flux is limited. The use of flux limiters to allow the use of higher-order face
interpolation schemes will not converge to a physical solution and first-order upwind will have to be retained
for the volume fraction transport equation in this work.

A steady-state solution for the volume fraction which is mesh independent could not be found for the
examined Stokes numbers due to missing physics in the model. For every Stk, as the mesh is refined, the
volume fraction increases without bound at the regions of greatest compressive strain. Lagrangian particles are
now to be tracked in the same flow, mimicking the same Stk and Re, as for this Eulerian study. The results
using both the Eulerian and Lagrangian particle framework are then compared in Section with the issues
encountered with the Eulerian method discussed in terms of the Lagrangian steady-state results.

4.3.1 Diffusion Coeflicients and Discretisation

The transport of particle volume fraction using the EE specification of the particle velocity field in the Taylor-
Green flow failed at a Stokes number of 0.1. Physically, the diffusive behaviour of particle interactions such
as from collisions, was neglected. Numerically, the absence of diffusion in the transport equation caused the
source-dominated system to destabilise at this Stokes number. The effect of including some of the neglected
physics relevant to the specific numerical scales tested via diffusion coefficients in the Taylor-Green flow is now
explored.

For the diffusion coefficients for the volume fraction, the laminar (Brownian) diffusion coefficient (Eq. [1.32)
is constant, as Ty is constant, throughout the domain in the Taylor-Green flow. The remaining diffusion
coefficients can be normalised by this benchmark value to assess the relative strength of each source of particle
diffusion.

When a turbulence model is employed for a computed flow field such as an LES, the diffusion of particles due
to the unresolved scales can be modelled using a diffusion coefficient. A simpler prescription of the turbulent
diffusion coefficient for LES (Eq. , which avoids dynamically determining C, can be obtained if the classical
Smagorinsky model is used instead where both Sc¢; =~ 1 and Cs ~ 0.1 are constant. In this 2D Taylor-Green
flow, the turbulent diffusion can be tested by treating the flow field as a filtered LES flow field. There are no
walls and L = C;Ax where Ax is the grid spacing and our assumed filter width. Like the Smagorinsky constant,
the turbulent Schmidt number has no universal value; varying between 0.2 and 1.3 for RANS simulations of
a wide range of flows [I81]. In this model it will be assumed that Sec; = 1. The particle velocity strain rate
magnitude can be calculated analytically from the strain rate tensor of the particle velocity (Eq. [4.5). The
square of the particle strain rate magnitude is given by

2
(Sﬁmg) = élu?mga2 sin?(ax) sin®(ay) + QTgufnaga4 (cosz(an) + cos? (Qay))

+ 4Tpuimga3 sin(ax) sin(ay) (cos(2ay) — cos(2ax)) . (4.69)

As 7, — 0, the particle strain rate magnitude approaches the fluid strain rate magnitude as expected
(Stmag = 2umagasin(ar)sin(ay)). The turbulent particle diffusion coefficient in Eq. is proportional to the
square of the filter width and the particle strain rate magnitude (Eq. Which is a complicated function of 7,),
whereas the Brownian diffusion coefficient in Eq. is inversely proportional to the particle diameter. The
turbulent diffusion coefficient is also a function of position, with the maximum and minimum values occurring
in regions of greatest and smallest strain. The ratio of turbulent to laminar diffusion in the Taylor-Green flow
provides the relative strengths of each type of particle diffusion caused by the carrier fluid. The distribution
of this ratio for both the maximum and minimum regions against Stokes number is shown in Figure This
diffusion ratio is inversely proportional to the grid size squared; the effects of finer or coarser meshes can be
found by applying this scaling law to the results in Figure [£.9] At points of least strain, the turbulent diffusion
coefficient is directly proportional to Stokes number. This occurs as the only non-zero term of the strain rate
magnitude, the second term in Eq. m yields Y . = 2Tpu2 a?. For regions of greatest strain, only the first

mag ~ mag
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Figure 4.9: Particle diffusion coefficient ratio in the Taylor-Green flow as a function of Stokes number. The grid
size is 1282 and the fluid temperature is assumed to be Ty = 300K. The maximum values indicate the value of
the diffusion coefficients evaluated at any of the regions of maximum compressive strain i.e. (z,y) = (%, 2%)
and the minimum values at regions of minimum compressive strain i.e. (z,y) = (0,0).

and third terms of Eq. [4.69| are non-zero, yielding S;,,, = 2\/ U2,000° + TRUS . 0% At Tegions of maximum

strain at small Stk, the strain rate magnitude is dominated by the first term yielding Sy,,, ~ 2umaga. As
Stk > 0.1, the strength of the second term begins to rival the first term, eventually overpowering it causing for

large Stk, the strain rate magnitude to approach the same value as for regions of minimum strain.

From the diffusion ratio, it is clear that the strength of Brownian diffusion is weak compared to that of
unresolved turbulent scales for large Stokes numbers except in regions with negligible velocity gradients at very
low Stk. Looking ahead to the cyclone CFD in Chapter |5 the turbulent diffusion coefficient will be stronger in
regions where the mesh is coarse such as the bin, helping to stabilise the solution in this region by increasing
the size of the terms on ap. In regions of very high strain such as the cone tip, the turbulent diffusion will be
very large compared to Brownian diffusion alone. This extra stability may be necessary as the source term will
become large in these regions and the constraint on Stk for the EE model may be invalidated.

The final source of particle diffusion considered is due to particle-particle collisions. From both the experi-
mental evidence in Figure and knowledge of the vortex core, this diffusion coefficient is expected to only be
significant near to walls and by the cone tip of a cyclone due to the accumulation of particles and large velocity
gradients in these regions. From Eq. the collisional diffusion coefficient is expected to be proportional
to the particle mean free path (provided by Eq. and a representative velocity difference. This particle
velocity difference across the cell can be estimated as the cell centroid value of the particle velocity strain rate
magnitude multiplied by the cube root of the cell volume to provide

\/i A%dp v

Deon = Ap <|V| >= 12 ago Smag' (4.70)

One caveat to this diffusion coefficient is that the volume fraction cannot be zero in the domain. This is
not expected to be a problem in the Taylor-Green flow, however this will be a problem in the cyclone. The
relative strength of this diffusion coeflicient compared to the turbulent diffusion is shown for a range of Stk in
Figure .10} The expression in Eq. [£.70] yields an over-powering diffusion coefficient which is many orders of
magnitude stronger than turbulent diffusion. In this dilute flow, this is not expected to be true.

The break-down of the collisional diffusion coefficient at zero volume fraction also highlights that as the
particulate phase becomes more dilute, the collisional diffusion coefficient becomes larger. This is due to
the increase of the particle mean free path with decreasing volume fraction (Eq. . Gidaspow presented
arguments that the highest mean free path that a particle can achieve is equal to the diameter of its containing
vessel [I58]. For this work in determining the collisional length scale in a computational cell, the upper limit
should be the cube root of the cell volume to provide the particle mean free path as

Ap = min (ﬂd?’ Aé> . (4.71)

12 ago’
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Figure 4.10: Particle diffusion coefficient ratio in the Taylor-Green flow as a function of Stokes number. The
grid size is 128% and o = ap = 5 x 1077 everywhere. The maximum values indicate the value of the diffusion
coefficients evaluated at any of the regions of maximum compressive strain i.e. (z,y) = (%, 2%) and the
minimum values at regions of minimum compressive strain i.e. (z,y) = (0,0).

If the particle mean free path estimated from kinetic theory is greater than the grid-spacing, the collisional
diffusion coefficient becomes proportional to the turbulent diffusion coefficient (differing by a factor of C?).
Despite this, they are representing two very different sets of physics. The turbulent diffusion coefficient is
modelling the effects of the unresolved scales from an LES on the particle volume fraction, whereas the collisional
diffusion coefficient is modelling the effects of particle-particle collisions due to the presence of shear.

The lack of a mesh-independent solution and the failure of a solution at larger Stokes numbers due to
numerical instability in Section [4.3] presents a problem with the Eulerian method. So far the effects of diffusion,
which are known to increase the stability of the solution, have been ignored. For the diffusion term, the
discretisation equation for the uniform 2D stencil is

> <Dag;Ai)f = A <(Da‘22‘)e — (Dagj>w + <Dag(;>n - (Da‘;z)) . (4.72)

f

The diffusion coefficient D, represents any diffusional contributions to the particle volume fraction. To
calculate the volume fraction spatial derivatives, central differencing is employed using the cell centroid values
on each side of the face. For face e

Oa A
A <Dax> ~ 2 Do (ag — ap) = AaD, (o — ). (4.73)

with the diffusion coeflicient on the face able to be estimated using linear interpolation between the neighbouring
cell centroids if it is not constant (for both the turbulent and collisional diffusion coefficients). For these two
diffusion coefficients in the Taylor-Green flow, only the volume fraction at the cell face requires estimation
using linear interpolation as the particle strain rate magnitude is given analytically from Eq. The terms
multiplying the « terms in Eq. have dimensions of fluid volumetric flow rate and therefore provide the
coefficients for the discretisation matrix due to diffusion. Combining upwind convection and central differencing
for diffusion leads to the discretisation coefficients

% = max(~V,,0) + AzD,, (4.74)
ayit = max(V,,0) + AzD,, (4.75)
a%) = max(—V,,,0) + AzD,, (4.76)
a? T = max(V;,0) + AzD,,. (4.77)

The central coefficient ap is again the sum of the neighbouring coefficients.

The mesh independence study is repeated with the inclusion of diffusion. Brownian diffusion alone, which
was expected to be weak from Figure has a negligible influence on the results. By pretending the flow is
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Figure 4.11: Normalised moments of the radial volume fraction distribution for both source term implementa-
tions on a variety of uniform grids with turbulent diffusion for Stk = 1 x 10~!. The convergence criterion for
the normalised residual was < 1 x 1077.

an LES and including the effects of an SGS diffusion (Eq. , the transport equation becomes solvable at a
larger Stokes number of Stk = 0.1. For the 5122 grid and finer, the volume fraction becomes so small in many
cells that floating point underflow occurs and negative volume fractions are produced. This occurred for both
source term implementations and small relaxation factors could not prevent this. To prevent this non-physical
behaviour, the source term is set to zero in cell P if ap < 5% (a value incredibly small). This allowed a
solution to be found on the 5122 grid, however numerical difficulties were still encountered for the finest 10242
grid, with the moments shown in Figure [1.11]

The turbulent diffusion is included in the original Stk = 1 x 1072 set-up to check whether this aids in
providing a mesh independent solution. No reduction in the relaxation factor was required and no limits on
the volume fraction for the source term were imposed. The moments are shown in Figure which follow
the same trend as for the no-diffusion case, however the mean radial position shows a smaller range of values
compared to the no-diffusion case due to the smearing effect of diffusion.

From Section the effect of collisional diffusion in the Taylor-Green flow will be the same as turbulent
diffusion. In every simulation performed in this section, the volume fraction was observed to accumulate in
regions of maximum compressive strain. This echoes the phenomenon of the preferential accumulation of
particles observed in isotropic turbulence introduced in Section 2.1.2] with Ferry and Balachandar observing an
ever-increasing strength of the phenomenon with Stk using the EE method [I66]. This provides extra insight
into why the method encounters numerical difficulties at higher Stk.

Mass conservation was checked by calculating the ratio of the mean value of « in the domain and comparing
that to ap in Figure A ratio of unity indicates perfect conservation of volume fraction (and therefore
of particle mass). For the lower Stokes numbers of 1 x 1073, particle mass was conserved well for all grids
considered, with the worst mass conservation occurring on the finest grid (2.3% discrepancy for the no diffusion
case). At larger Stokes numbers, mass conservation becomes considerably worse in the Taylor-Green flow. This
loss of conservativeness is due to the source term. On the finest grids, the sharper volume fraction gradients
present in the problem regions are able to produce more volume fraction, causing the total mass in the system
to increase. The total mass in the system stabilised to the values shown in Figure [£.13]and were not continually
increasing/decreasing with iteration, even for the larger Stokes numbers and lack of diffusion.
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Figure 4.12: Normalised moments of the radial volume fraction distribution for both the explicit and implicit
source term on a variety of uniform grids with turbulent diffusion for Stk = 1 x 1073, The convergence criterion
for the normalised residual was < 1 x 1077,
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Figure 4.13: Ratio of the mean value of « in the domain to «g for various Stokes numbers and diffusion
coefficients as a function of mesh size.
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4.3.2 FEulerian Model Numerical Tests Conclusion

The Taylor-Green flow has been shown to be a challenging flow for the EE Eulerian model. Convergence of the
steady-state solution has been judged from the scaled residuals and normalised central moments of the radial
volume fraction distribution. A variety of discretisations have been investigated including the treatment of the
source term (explicit vs implicit), the use of higher-order and TVD convection schemes along with the effects
of diffusion coeflicients representing different physical phenomena.

A mesh-independent solution is not able to be reached in this flow field as the finer the mesh, the greater
amount of volume fraction at cells located at the regions of maximum compressive strain. The comparison with
the Lagrangian particle result in Section [4.5] provides closure to this issue.

An implicit formulation for the source term has provided superior stability during iteration whilst converg-
ing at a comparable rate to the simple explicit formulation. This added stability by increasing the diagonal
dominance of the linear system is especially welcome in the case of zero diffusive sources and is the chosen
formulation to be used in the cyclone model in Chapter [f]

Higher-order convection schemes will fail for this model in this flow field. The use of flux limiters to provide a
TVD scheme increase the stability of the solver as expected, however these continuously remove volume fraction
from the domain and provide an unphysical solution. First-order upwind for the face interpolation is therefore
used in the cyclone Eulerian model. The smearing out of large gradients due to this will be minimised if the
mesh is sufficiently refined.

The inclusion of Brownian diffusion is negligible as expected. Tests of the turbulent diffusion coefficient by
assuming the fluid velocity represents an LES filtered flow field extended the use of the model to higher Stokes
numbers which is welcome behaviour for implementation into the cyclone LES model in Chapter [5| especially
in cells near to the cyclone cone tip where the largest strain rates are expected.

The discretisation of the Eulerian model in a 2D Taylor-Green flow has been presented and the stability of
the method for various grid sizes, Stokes numbers and choices of diffusion coefficient assessed. The accuracy of
the model will be compared to the analogous results using Lagrangian particles in the same flow field.
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4.4 Lagrangian Particle Tracking

Having completed the Eulerian particle model simulations in the Taylor-Green flow, Lagrangian particle refer-
ence data will now be obtained in order to further assess and validate the Eulerian model. This Lagrangian
particle tracking will additionally be used to inform the particle cyclone work in Chapter [5| Both the scales of
the particles and flow field, along with the initial conditions of the particles are such that a direct comparison
between the Lagrangian and FEulerian results will be able to be made in Section 4.5

4.4.1 Particle Numerical Study

Before the Lagrangian particles can be tracked in either the Taylor-Green or cyclone flow in Section the
time-step dependence and accuracy of the numerical integration scheme must first be known. These numerical
studies can be performed by using the Taylor-Green flow field defined in Section to mimic the motion of
small particles in the turbulent eddies of the cyclone.

The particle acceleration is provided by Stokes drag only, without any additional stochastic forces. These
have been removed in this numerical study as the stochastic nature of the force will create noisy results. This
allows the effect of the choice of numerics on the drag force to be directly correlated, with the governing particle
ODEs given by Egs. and These are numerically integrated in time using an embedded Runge-Kutta
scheme from Cash and Karp [182]. This embedded scheme provides a family of Runge-Kutta methods of order
up to 5, involving 6 function evaluations. The formulae for the stages are given in Egs. to

kl = f (tna Zn) (478)
1 1

ky=f <tn + 2 AL Z, + At <5k1>> (4.79)
3 At

ks = f <tn + 1AL Zn +  (3k + 9k2)) (4.80)
3 3 9 6

11 5 70 35

7 1631 175 575 44275 253

ko =1 <t" +galZn + Al <55296k1 T 51272 13520 T 10592 T 2006 5)) (4.83)

The n subscript denotes the value at the current time step. The function, f, in the stages is given by

f,Z)= (nip ZFfjid (t,Z)> ) (4.84)

where Z is a state vector holding the particle position and velocity. The fifth-order scheme provides the particle
position and velocity after a single time step as

(5t"order)
(5”h’order) _ XnJrl o Xn ﬁ @ % 512
Zn “\Van = v, ) T gzsh t gk T agae T ke ) (4.85)

Due to the embedded nature of the scheme, a fourth-order solution can be obtained without performing addi-
tional function evaluations as

(4t"order)
thorder) [ Xpi1 X 2825 18575 13525 277 1
Zy(, = (ot = (") +At k k k ks + ke ). (4.86

(Vn+1> (w) + (27648 1+ 183817 T 552067 + Tazag o T ke ) (486)

The implementation and order of these two integration schemes can be validated against the analytical

solution of a particle, initially at rest, falling due to gravity through a still fluid. The equation of motion of the
particle in 1D acted on by Stokes drag and gravity is % = g — LV with initial conditions V(¢ = 0) = 0m/s
p

and X (t = 0) = Om. The analytical solutions of the particle velocity and position are V (t) = 7,9 (1 — 67%)

t

and X (t) = 1,9 <t —Tp (1 — e_fi>) respectively. The terminal velocity of the particle in this case is given by
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Figure 4.14: Normalised integration error from the embedded Runge-Kutta schemes plotted on a log-log graph
for both velocity and position. The gradient of each scheme was calculated using ordinary least-squares regres-
sion.

tlim [V(t)] = 7,g. Particles are integrated using time steps in the range 1 > f—: > 0.05 up to % = 10. The
— 00

error from numerically integrating the particle equation of motion using the two schemes for varying time steps
is shown in Figure

The error of each scheme is provided by the gradient on a log-log plot and is in rough agreement with
the order of the scheme. In addition to this, the embedded Runge-Kutta scheme can be used with adaptive
time-stepping. The estimated error of each integration step, computed as

(Sth’order) (4thorder)

error = HZn —Zn , (4.87)

is compared to a pre-defined tolerance (tol). If the error exceeds the tolerance, the integration is repeated
using a smaller time step until the error is below the tolerance. If the estimate of the error is greater than the
tolerance, the time step is increased for the subsequent time step. This allows smaller time steps to be taken
in regions where a particle is rapidly accelerating and smaller steps when particle accelerations are small. This
adaptive time stepping may save on computational expense by factors of 10 or 100 [I79] and will be used for
the cyclone Lagrangian particle tracking in Chapter o} The time step is recalculated whenever a particle enters
a new computational cell as

AVs

At, = ———.
T ul V]

(4.88)

This provides an estimate for the time taken for a particle to traverse the cell. The time step is also adjusted
to ensure that a particle is only travels a maximum of one cell per time step. As the Taylor-Green flow field
is simple in comparison with the cyclone, the Runge-Kutta scheme of order 5 with a fixed time step will be
used in this study. To find a suitable time step for the integration of the particle equations of motion, a single
particle was tracked in a Taylor-Green eddy. The particle was initialised at the location X = (0,0.45]) which
places it close to the top of the central eddy. The particle was tracked for a single fluid timescale 7; for a range
of time steps with the final position recorded. The norm of the difference in the final position vector to the
finest time step (At, = 18%) was used as an estimate of the error. The error normalised by the eddy diameter
as a function of time step is shown in Figure [L.15

Stokes numbers of 0.01 and 0.1 were used as these are representative of an average and worst-case scenario
for the largest particles in the cyclone respectively, as is shown later in Section [5.2] The normalised error is
proportional to the normalised time step size, with a smaller normalised error for the Stk = 0.01 particles due
to the smaller time step used. A time step of At, = % is chosen to ensure accuracy for the integration (< 1%
normalised error in position per fluid timescale) whilst balancing computational cost. It is also of note that
using excessively small time steps may exacerbate the error from the numerical integration due to the large

number of integration steps required. The chosen time step avoids this issue.

The particles are now to be injected into the Taylor-Green flow and tracked in time to provide a source of
validation for the Eulerian model. Particles are initialised into the domain with their positions drawn from a
uniform random distribution. For the positions X ~ U(—I,l) and the velocities are set to zero. Particles are
not initialised with the local fluid conditions to ensure the particles are initially uncorrelated with the fluid
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Figure 4.15: Position error normalised by the eddy diameter for a range of time steps with a Stokes numbers of
Stk =1x10"% and Stk =1 x 107*.

(this is revisited later). The fluid domain is the same Taylor-Green flow from Section To assess whether
the particle distribution has reached a statistically stable state, quantities relating to the central moments (Eq.
of the radial distribution are calculated at each time step. The mean and central moments of the radial
particle distribution are given by [134]

_ Zf\il r
(r) = N (4.89)
=X (0 - )"
M, = < : (4.90)
(4.91)

respectively, where r(?) is the radial position of particle i, n is the order of the central moment and N is the
total number of particles.

Figure shows the statistics of the particle radial distribution over time for 10, 100 and 1000 particles
with Stk = 1 x 1072. Each central moment converges to the same value apart from the skewness, which has
a value of =~ —0.5 for 10 particles and a value of &~ —1 for greater numbers of particles. The central moments
level-off after ~ 220007, and the line is flat. This is because at this time, all the particles have been centrifuged
out of the eddies and have collected in the regions of greatest compressive strain (identified as (z,y) = (g—g, %)
from Section and is in qualitative agreement with the Eulerian model prediction of particles collecting in
these locations. With only 10 particles (which were introduced randomly), an uneven number of particles have

collected in these spots; hence why the skewness differs for this low particle number.

The particle study in the Taylor-Green flow is repeated, however the particles are initialised with random
velocities as V ~ U (—umag,umag). This second, completely different initialisation is used to check that the
final particle statistics are independent of this initial condition. The results are shown in Figure The same
statistically stationary results were achieved as the different initial velocity condition. The results are therefore
independent of the initial particle conditions.

The study was repeated using particles with a larger Stokes number of Stk = 0.1 and random velocity
initialisation shown in Figure The moments of the radial distribution reached a stationary state at
~ 3007,; almost 100 times quicker than the Stk = 0.01 particles. As these particles required fewer time steps
to reach a converged result, a larger particle number of 10000 was also considered. The statistics of the radial
distribution of the Stk = 0.1 particles matched the results for the Stk = 0.01 particles. A larger Stokes number
resulted in the statistically stationary state being reached in less dimensionless time. The stationary state was
approached in a smoother fashion for the Stk = 0.01 particles, which were slowly centrifuged out. The more
inertial Stk = 0.1 particles featured more chaotic trajectories towards an equilibrium state.

As the particle number is increased, the statistical measures reached a converged value, independent of the
initial conditions or Stokes number. In all cases, this state is reached once particles have collected in the regions
of greatest compressive strain between the eddies. From the symmetry of the flow field it is expected that equal
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Figure 4.16: Statistics of the particle radial distribution in the Taylor-Green flow for various particle numbers

with Stk = 0.01.
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Figure 4.17: Statistics of the particle radial distribution in the Taylor-Green flow for various particle numbers
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Figure 4.18: Statistics of the particle radial distribution in the Taylor-Green flow for various particle numbers
with Stk = 0.1. The mean and standard deviation are normalised by the eddy diameter. Particle were initialised

with random velocities.

T
: <r> M3 M3 My
Quantity 7 i > 2% Mi
Value g 0 Undefined | Undefined
Limiting value as N — oo ? 0 0 0

Table 4.3: Statistics of the particle radial distribution in the Taylor-Green flow for particles sat at the locations
of maximum compressive strain. The values from both direct substitution and the limit as N — oo are provided.

numbers of particles should accumulate in each of the 4 spots (each located at 7 = g) This leads to an

analytical solution for the particle statistics, which are expected to be reached as N — oo, including a standard
deviation of zero (as there is no spread in the radial positions). This also leads to the normalised higher-order
moments being undefined due to division by powers of the standard deviation. These statistics are tabulated
in Table

The Lagrangian ticle statistics from Figures [4.16] and are seen to converge towards the analytical

solution from Table (the normalised mean particle radial position, for example, tends towards g ~ 0.7).
The standard deviation tends towards zero (as the particles all lie at a constant radial position once they have
collected at the spots). The normalised higher-order moments are therefore undefined, however they can be seen
to approach the limiting value of zero. The error in the mean radial value for all particle numbers is vanishingly
small < 1.7 x 107, The eventual collection of all particles into these well-defined spots explains the numerical
difficulties encountered in the Eulerian model at these points; all the particles (and therefore volume fraction)
is entrained towards these infinitesimal points. Further discussion of the similarities and differences of the
Lagrangian with the Eulerian results is presented in the following section.
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4.5 Eulerian Model Comparison with Lagrangian Results

The Eulerian particle model has been shown to be unable to produce a mesh-independent solution, even at a
low Stokes number in Section [4.3] This was due to finer meshes allowing larger volume fractions to occur in
regions of greatest compressive strain without bound. In the Lagrangian counterpart, particles were observed to
accumulate in these same spots becoming trapped in Section [£:4] As more Lagrangian particles are introduced
into the simulation, the larger number densities/volume fractions would build-up in these same spots without
bound. This phenomena makes it clear why the Eulerian method failed in this regard; the scenario is unphysical
in both senses as particle-particle collisions would prevent an infinite build-up in these spots with the maximum
volume fraction given by the close-packed limit. Both the Eulerian and Lagrangian models omitted this set
of physics and exhibited this same collection of particles in regions of greatest compressive strain. The effect
of particle-particle collisions on the volume fraction is continued to be omitted from the model due to the
dilute (low volume fraction) particle regime expected in the cyclone in Chapter [5] with this Taylor-Green flow
providing a more difficult numerical challenge as there is no outlet for particles to escape to. This build-up in
the problem regions is shown in Figure
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Figure 4.19: Volume fraction distribution normalised by o in the Taylor-Green flow at Stk = 1 x 102 with
no diffusion and an implicit source term for a mesh size of 1282 on the left and 10242 on the right.

Another feature of the predicted Eulerian volume fraction distribution are both horizontal and vertical
“lines” joining the problem spots which are visible in Figure These lines lie on the edge of the central
vortex. Lagrangian particles near the eddy centres are centrifuged out and their trajectories begin to resemble
the line structure of the volume fraction distribution. One such particle trajectory is provided in Figure [£:20]
showing the box-like path traced out with rounded vertices. These box trajectories continue until the particle
becomes trapped in one of the corners forever. These box trajectories will occur around each eddy an therefore
match up with the lines predicted in the Eulerian model.

From the Lagrangian results, it was reasoned that there exists analytical solutions to the mean, standard
deviation, skewness and kurtosis of the radial particle distribution given by Table[4.3] The Eulerian results from
Section [I.3] can be compared to these analytical solutions. The mean radial position predicted by the Eulerian
model was around twice as large as the analytical solution, however as the mesh is refined the mean radial
position decreases. The standard deviation becomes larger as the grid is refined for the Eulerian model, when
it should be tending to zero. This is due to increasing volume fraction concentrations in the “lines” joining
the problem spots. The skewness of the Eulerian model tended to zero, indicating that the volume fraction
distribution is symmetric as expected. This moment, along with the kurtosis is undefined in the analytical
solution as the standard deviation is zero. The raw third and fourth central moments would be zero in the
analytical form and thus the Eulerian model is tending towards the correct Lagrangian solution. For the fourth
moment in the Eulerian model, the values obtained were very large as this moment is sensitive to extreme values
on the tails of the distribution. As the grid is refined, this moment reduces and is expected to tend towards the
analytical solution.

The Eulerian model can additionally be compared to the Lagrangian model for an unsteady solution. The
centrifuge of the particles (or volume fraction for the Eulerian case) away from vortex centres over time can be
compared by studying the central moments of the radial volume fraction distribution as a function of time. The
Lagrangian case from Section [{.4] requires no additional set-up as particles were already tracked through time
and space. For the Eulerian counterpart, the backward Euler scheme results in the discretisation of the volume
fraction transport equation in each cell to be given by Eqs. [£.57] [£.58] and .59 In-line with the Lagrangian
results, the Stokes number is set to Stk = 1 x 1072 and a grid-size of 1282 cells is used for the Eulerian case.
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Figure 4.20: Trajectory of a Stk = 1 x 10~3 particle initialised stationary at (x,y) = (0.45l,0.45]) and tracked
for % =1 x 10°. The background is coloured by the fluid speed, identical to Figure

The Lagrangian time step used was Atp = 2 and for comparison the Eulerian model is run using the same

10
time step. This results in a maximum Courant number (Eq. [4.19)) in the domain as Cpym = uig‘—ft ~6.4x1072

which is expected to provide a stable solution during time stepping. No diffusion models are present and the
Eulerian model is run for tmya.x = 300007, matching the Lagrangian case. The Eulerian results are compared
against the moments obtained using the highest number of particles from Section (1000).
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Figure 4.21: Statistics of the particle radial distribution in the Taylor-Green flow for both the unsteady Eulerian
and Lagrangian particle models for Stk = 1 x 1072 as a function of time. The mean and standard deviation
are normalised by eddy diameter. Particles were initialised as stationary in the Lagrangian case.

Figure [£:21] shows the moments of the radial distribution for both the Lagrangian and unsteady Eulerian
cases over time. The moments of the Eulerian model converge to the same values as for the steady-state solution.
Reasonable agreement is observed for the first 3 moments, whereas the kurtosis has a large discrepancy due to
the strong influence of extreme values on this statistic. The percentage error of the Eulerian model compared
to the Lagrangian particles is approximately 6% for the normalised mean, with the percentage errors of the
higher-order moments being undefined due to division by zero. This is a small discrepancy considering the
simplicity of the EE model which is being applied in challenging strong streamline curvature.

Both models approach statistically stationary values over time, with the Eulerian model reaching a statisti-
cally stationary state around 10 times faster than for the Lagrangian model. This is expected, as the Eulerian
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model assumes that the particle velocity field has reached an equilibrium (the EE model). Having fewer time
steps to reach the final state compared to Lagrangian particle tracking is a beneficial characteristic of the Eu-
lerian model, especially when utilised in an unsteady flow field as this will result in a computationally cheaper
model to run. The moments displayed in Figure also converge to a statistically stationary state in a much
smoother fashion in the Eulerian case compared to the Lagrangian set-up.

The Eulerian model predicted the same regions of volume fraction build-up as with the Lagrangian particles.
The volume fraction distribution was more smeared-out. Part of this was due to the choice of discretisation
of the convective term using first-order upwinding producing false diffusion. This false diffusion is so called as
the leading order error term in the Taylor series expansion of the scalar volume fraction about the cell centroid
resembles a diffusive flux [32]. Calculating the Taylor series expansion for the east face from Figure gives

Az (O«
.= or (e 10 ( Az ) : 4.92
o =ap+ 2 (ax>P+ (As?) (4.92)
where Az is the grid spacing in the x-direction. If the local flow is going east, the first term on the RHS
represents the upwind scheme, with leading order error term % (‘3—3) . This false diffusion error can be
P

reduced by further refining the mesh however, from the earlier discussion, the volume fraction will tend towards
infinity at the singularities. Reduction in false-diffusion from finer meshes also aided in reducing the kurtosis
of the radial volume fraction distribution for the Eulerian model.

The particle velocity is known at each location along the Lagrangian particle trajectory. The accuracy of the
EE velocity, evaluated at each position along the trajectory can be quantified. Two measures for the accuracy
will be considered: the first is the difference in speeds between the methods normalised by %mag given by

|V(X7t) — Vee (X)|

Umag

Normalised speed error = (4.93)

The second is the angle between the two velocity vectors which can be calculated by the well-known dot product
formula

(4.94)

V(X,1) - vee (X
Normalised angle error = arccos (X, ) - e (X)
|V (th)H'Uee (X)|

The particle trajectories considered in this study are initialised stationary at (z,y) = (0.45[,0.45]) as in
Figure however they are tracked for a single “orbit” of the fluid eddy. Stokes numbers of Stk =1 x 1073,
Stk = 1 x 1072 and Stk = 1 x 107! are tested to quantify the effect of Stokes number on the different
specifications of the velocity error.
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Figure 4.22: Particle speed error along a single orbit trajectory for Stk = 1 x 1073, Stk = 1 x 1072 and
Stk =1 x 107! from left to right respectively.

The normalised particle speed error is shown in Figure All errors show 4 distinct peaks for all Stokes
numbers, with the peaks becoming more defined with increasing Stokes numbers. The graphs of the speed error
are symmetrical about half of the orbit. The speed error for Stk = 1 x 1073 and Stk = 1 x 1072 show very
little difference in terms of shape and peak error values. The Stk = 1 x 10! speed error, along with the spikier
peaks, exhibits larger peak error values as expected. The speed error for the Stk = 1 x 10~! particle lies close
to zero for most of the trajectory and is smaller on average than the two lower Stokes numbers. This result
goes against what we would expect for a larger Stokes number. To explain both this result and the structure of
the 4 peaks in the speed error, we look at the orbital trajectories of each Stokes number.

The trajectories in Figure [4.23| each show the particle centrifuged away from the centre of the eddy, with
the strength of this centrifuge increasing with Stokes number. The rounded corners of the “box” trajectory
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Figure 4.23: Particle trajectory along a single orbit for Stk = 1 x 1073, Stk =1 x 1072 and Stk = 1 x 107!
from left to right respectively. Red dots indicate the spatial locations where the peak speed errors occur. The
background is coloured by the fluid speed, identical to Figure
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Figure 4.24: Particle velocity angle error along a single orbit trajectory for Stk = 1x 1073, Stk =1 x 1072 and
Stk =1 x 107! from left to right respectively.

becomes less round and sharper with increasing Stk. The peaks in the speed error are shown by the red dots on
the figure, which lie near the regions of maximum compressive strain. At Stk = 0.1, the locations of maximum
speed error lie very close to these regions, with 3 of the 4 peaks occurring at the top left problem region. This
is because the particle slightly overshoots the central eddy and enters a neighbouring eddy, it is then flung out
that eddy and returns to the central starting vortex.

The particle velocity angle error is shown in Figure [£.:24] The angle error along the trajectory has a
completely different form to the speed error, with peaks and troughs in the two varieties of errors not occurring
at the same points. This error is particularly more chaotic for the larger Stokes number trajectory due to the
less-smooth path taken around the eddy. The angle error is large for all Stokes numbers as the EE method
assumes the particle velocity field is independent of the particle history; a Lagrangian particle may reach a
particular location in the flow from a variety of different paths and therefore angles of approach. This is a
deficit in the EE method for the particle velocity, especially in strong streamline curvature. The end result of
the particle centrifuged out of the eddy into regions of high compressive strain is captured in the Eulerian model,
however the statistics of the EE velocity along the particle trajectory are not representative of the Lagrangian
results, especially the angle of the velocity vector. This error grows for increasing Stokes number.



4.6. COMPARISON WITH THE MIXTURE MODEL 97

4.6 Comparison with The Mixture Model

The EE method has been compared to Lagrangian particle results in the Taylor-Green flow and found to
capture the accumulation of particles on the edges of the vortices. The other computationally-cheap candidate
Eulerian method is the mixture model from Section [2.3.1] The specification of the relative velocity has a
similar form between the EE method (Eq. and the mixture model (Eq. [2.78)), however the governing
transport equations are now in terms of the mixture. This comparison is performed to assess the advantages
and disadvantages of these two Eulerian particle methods in a flow with strong streamline curvature.

For the mixture model, the mixture velocity is specified as the steady Taylor-Green velocity. The mixture
momentum and particle volume fraction equations (Eqgs. and respectively) are expressed in steady
conservative form and solved in a coupled manner using the FVM on the same grid and flow field as for the
EE tests. These PDEs are solved separately, with the SIMPLE method (briefly described below) used for the
velocity-pressure coupling, for the same range of Stokes numbers tested from Table Gradients are again
discretised using the Green-Gauss cell-based method in Eq. and first-order upwinding (Eq. is used
for convective terms. The discretisations used for the mixture model match those used for the EE method in
this flow.

The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) allows a pressure field to be determined
which guarantees that the mixture velocity field will satisfy the continuity equation [I74]. Although the mixture
velocity field is specified in this 2D Taylor-Green flow, using this method allows a pressure field to be obtained
as well. This “solving” of the mixture velocity field is a necessary work-around to apply this method in ANSYS
FLUENT, with the Taylor-Green flow field imposed as the mixture velocity solution after every iteration.

The mixture model is now applied in the Taylor-Green flow. A grid refinement study for Stk = 1 x 1073
for the central moments of the radial volume fraction distribution is provided in Figure Poor convergence
of the model was observed, with relaxation factors of 0.1 required for all transport equations for the finer grid
sizes. The normalised residual for continuity levelled-out at O (107*) for grid sizes greater than 1282 and all
simulations were required to achieve a normalised residual for the volume fraction less than 1 x 10~%. This is
compared to the EE result using an implicit source term and no diffusion, representing a like-for-like comparison
for the physics. Both methods yield almost identical results for mesh sizes smaller than 642 with the standard
deviation, skewness and kurtosis both following the same trends for all mesh sizes considered. As the mesh
is refined, the normalised mean radial location of the particle volume fraction appears to converge to =~ 0.765
for the mixture model. The true value obtained from the Lagrangian particle tracking in Section f.4.1] was
g ~ 0.707; a percentage error of 8.2%. The percentage error from the EE method on the finest mesh is 5.7%.
The expected value for the normalised standard deviation is zero from Table with the EE method yielding
standard deviations lower (and therefore closer to the expected result) than the mixture model for all mesh sizes.
This suggests that the EE method is more accurate than the mixture model in a flow with strong streamline
curvature at low Stokes number.
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Figure 4.25: Normalised moments of the radial volume fraction distribution for the mixture model and EE
method on a variety of uniform grids with no diffusion for Stk =1 x 1073.

At the larger Stokes number of Stk = 1 x 1072, almost identical trends in the moments of the radial volume



98 CHAPTER 4. PARTICLE EULERIAN MODEL VALIDATION

0.20
0.76
0.15 4
0.75 4
~ £~ 0.10 4
0.74 4
0.05
0.73 1

<r>

T T T 0.00 1 ZZ-:::VV T T
10! 107 10° 10! 10? 103
N N
01 —
-s04 /
e £l 1077 1
—100
1024 4
/ —— Mixture Model

—150 4 / EE 1021 4

10t 102 103 10t 102 103

N N

Figure 4.26: Normalised moments of the radial volume fraction distribution for the mixture model and EE
method on a variety of uniform grids with no diffusion for Stk =1 x 1072.
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Figure 4.27: Normalised moments of the radial volume fraction distribution for the mixture model and EE
method on a variety of uniform grids with no diffusion for Stk =1 x 10~!.

fraction distribution in Figure[4.26] The only notable difference is in the normalised mean radial location, which
at this higher Stk decreases in accordance with the EE method between grid sizes of 162 and 642. The two
methods begin to diverge at a grid size of 642, with the mixture model converging again to <I= & 0.765 whilst
the EE method decreases. On finer grids at the two presented Stokes numbers, the EE method has provided
the best match to the Lagrangian particles.

Finally the normalised moments for the mixture model are shown for the Stk = 1 x 10™! case against the
single result attainable with the EE method and the available results for the turbulent diffusion cases in Figure
The finest mesh size for the mixture model (1024?) did not reach the convergence criterion for the volume
fraction and the last point on the graphs are most likely incorrect. At this larger Stokes number, the mixture
model was able to converge to a solution for all but the finest mesh size, with the turbulent diffusion EE set-up
breaking on a coarser mesh. The normalised mean radial position now matches the form of the EE model
prediction at lower Stokes numbers and resembles the same form predicted by the turbulent diffusion case of
the EE method. These results suggest that the mixture model performs better than the EE method at larger
Stokes numbers.

This section of work has found that at low Stokes number (Stk < 0.1), the EE method with no diffusion
provides a more accurate match to Lagrangian particles for the volume fraction distribution than the mixture
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model. At a larger Stokes number of Stk = 0.1, the EE method fails to converge without diffusion whereas
the mixture model is able to converge, except on a very fine grid. The EE method also features a very useful
advantage over the mixture model; given a solved fluid velocity field, the EE method can be run directly using
this flow field by the solution of only the volume fraction transport equation. If a mixture model is to be used,
the mixture velocity is required to be solved for, which is not the fluid velocity. Due to the coupling between
the transport equations in the mixture model, they should be solved simultaneously. This greatly increases
the memory requirements and along with the need to solve for the mixture, makes the mixture model more
computationally expensive than the EE method. The capture of preferential accumulation and turbophoresis,
along with the relatively small computational cost makes the EE method the most suitable Eulerian model for
a dilute low Stokes number particulate phase in a small, high-speed cyclone.
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4.7 Charge Model Implementation

With the discretisation of the volume fraction transport equation shown using the EE velocity, the transport of
charge by the particulate phase is now of focus. This is to be computed after a converged solution is reached
for the particle volume fraction. Although there is no validation data to compare against, reasonable checks
can be made on the model such as identifying if a steady state solution for charge can be reached and if the
method is stable.

In the Eulerian model of Kolehmainen et al. from Section they presented a transport equation for the
charge in Eq. The LHS are the usual temporal and convection terms in a standard transport equation.
The first term on the RHS represents the change in charge due to collisions and the second term represents the
correlation between charge and velocity fluctuations. In their work, Kolehmainen et al. limited their attention
to systems where these fluctuations were essentially uncorrelated [I37]. Following their work and using the
specific charge ¢ = %7 the unsteady transport equation simplifies to

0(eppt) 9 (appavi)

= oe = Cla) (4.95)

As the particulate phase has a constant particle density, this can be cancelled everywhere

9(aq)  Ofagqu) _ 1

The change in charge due to collisions is equal to the charge transferred from a single collision, multiplied by
the collision frequency

C(q) = AQCh1. (4.97)

The collision frequency can be estimated from the extension of the laminar shear formulation in Eq. to 3D
(by using the particle strain rate magnitude instead of a 1D flow velocity gradient) as

An2d3
Ci = Ly

3 mag*

(4.98)

The number density can be calculated using the volume fraction and particle diameter from Eq. Using
Ireland’s charge model, the charge transferred from a single collision is given by Eq. 2:49] Together, these yield
the charge contribution due to collisions as

47’},2d3A max0| te
(= Ao (Y (190
The transport equation becomes
, An2d3 Ac. max0l te
0(aq) | O(aqui) _ AndpAe, max0 (1 _ e—?) s (4.100)
ot 6$1 3pp g

If the particle velocity field is given by the EE velocity (Eq. [2.81)), the same splitting of the convective term as
for the volume fraction transport equation can be made to yield

0 (aq) n 0 (aqu;) _ An2d3 Ac, max00 ( tc) o

l—e 7)8° — 2 (awq), 4.101
5t o, T e mas = 5 (aw;q) (4.101)

where w; is the relative velocity between the particles and the fluid. This form of the charge transport equation
is valid for unsteady, incompressible fluid flow. We are only interested in the steady state solution, which
expressed in conservative integral form would be

An2d3 Ac. max0o te o
) L pT e v _ )
/aquZdAl / 3, (1 e ) SinagdV / oz, (qw;q) dV. (4.102)

For the FVM discretisation, the convective term surface integral is approximated using the second-order
accurate midpoint rule as [32]

/aquidAi = Z/ (aquidA;) p ~ Z (aquiAi)p = Z (uidi) p rqr. (4.103)
7 Ja

F F
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The bracket (u;A;)y is given analytically on the face from the EE velocity, the volume fraction on the face
ap is estimated using linear interpolation (Eq. |4.27) and the specific charge on the face gp is calculated using
first-order upwinding The neighbour coefficients for a 2D uniform mesh are therefore

atl = max(—%f/;), (4.104)
agt = max(wve), (4.105)
ayl = max(—aP_FTaNVn), (4.106)
af T = max(aP—’—TaNVn). (4.107)

The volume integrals for the source term are discretised for cell P as

An2d3 Ac, max00 : 0
— e (1—e 7 ) Sy dV—/ iq) dV
/ 3pp ( € ) mag 81’1 (Oé’LU Q)

4n2d3Ac max00 ¢ 9
~ | P77 AT _ e v o 4
N( 30p (1 ¢ ) mag 5o (aw;q) PAV. (4.108)

?

The first term (collisions) is always positive and will be treated as an explicit source in the FVM. The product
rule can be used on the second term on the RHS to give both an explicit and implicit source term component
as with the volume fraction transport equation yielding

Sp = min (— ai_ (aw;)p, 0) AV (4.109)
aq a 4’I/L2d?)z4c7 max90 _te v
S, = — <awiaxi)P AV + max ( oz, (ow;)p , 0) qpAV + < ngpi (1 —e T ) Smag i AV.
(4.110)

The source term due to collisions is not a non-linear source term (unlike the splitting from the EE velocity)
and should be better-behaved. In the collisional source term, values are needed for the average contact area A.,
the equilibrium charge density og, the charging time constant 7 and the contact time t.. Both A, and ¢, can
be calculated from Hertzian contact theory (Egs. and respectively), with o¢ and 7 provided from the
results from the aerosol beam experiments in Chapter

From the charge distribution, the electric potential ¢, can be determined from Eq. The charge density
is found by multiplying the specific charge by the total mass of particles in the cell and then dividing by the
cell volume

_qNm,  qnAVm,

PrVpq
Pe = "AV AV anep v, Prd ( )

This is a steady diffusion-source equation which can expressed in conservative form in a Cartesian coordinate
system as

9%e g4, — —/qu‘/. (4.112)

5‘xi €Em

The source term is always-negative and constant in each cell to give a fully explicit FVM discretised source for
cell P as

S, =0, (4.113)
S, =

_ (quA‘/)P. (4.114)

€m

The neighbour coefficients due to diffusion in a 2D, uniform mesh are simply

a = Az, (4.115)
ag™ = A, (4.116)
ayl = A, (4.117)
ad ™ = Az (4.118)
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When the electric potential has been solved for using the FVM, the electric field can be calculated using Eq.
This can be estimated using second-order central differencing for the gradients on a uniform mesh as

i L (it — it
B~ 5as (aszj“ o) (4119)

4.7.1 Charge Model Results

A brief examination of the charge model applied to the Taylor-Green flow is made. Mesh independent results
could not be obtained for the volume fraction, apart from the skewness of the radial volume fraction distribution.
This reached an effectively stationary state for all Stokes numbers considered on a 1282 grid and will be the
only grid size employed here. The initial condition for charge is ¢ = 0 everywhere, representing an initially
uncharged aerosol. The effect of Stokes number on the charge distribution, the electric potential and the electric
field strength will be examined. The volume fraction results are taken from the diffusion-free cases, with an
implicit source term.
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Figure 4.28: Particle binary collision frequency (s~1) in the Taylor-Green flow for Stk = 1 x 1073 and Stk =
1 x 102 on the left and right respectively.

The collision frequency for both Stk = 1 x 1072 and Stk = 1 x 1072 in Figure show that the binary
particle collisions are most significant in the particle collection spots, due to the large accumulation of both
volume fraction and large strain rates in these regions. The source term in the charge transport Eq. is
proportional to this collision frequency and predicts that these are the sites of largest charge creation. At first,
it may seem incorrect that the collision frequency is lower for a higher Stokes number as the relative velocities
would be larger at Stk = 1 x 1072 compared to Stk = 1 x 1073. However, as the particle diameter of the
Stk =1 x 10~2 particles is ~ 3.16 times larger than the Stk = 1 x 10~2 particles, this means that the number
densities in the domain are lower for the same volume fraction. Expressing the collision frequency (Eq.
in terms of « yields

4n2d3 48«

2
— P Qv _ v
On = —5 L8y = 55 & i (4.120)

The dependence of the collision frequency on the inverse of the particle diameter cubed is the cause of the
decrease in collision frequency. From the collision frequency with increasing Stokes number, we expect greater
levels of particle tribocharging for the lower Stokes number case in the Eulerian model for these same initial
conditions. The distribution of the collision frequency around the areas of maximum compressive strain also
differs between the two considered Stokes numbers. The shape of the distribution of collision frequency for
Stk =1 x 1072 is dominated by the particle strain rate magnitude (square root of Eq. , which for low 7,
tends towards the fluid strain rate magnitude of Syaq = 2Umqgasin(ax)sin(ay). For the larger Stokes number
case, the “sharpness” of the volume fraction distribution which has been centrifuged away from eddy centres
has an appreciable effect on the shape of the collision frequency distribution, with the fluid eddy positions seen
in this distribution.

The particle specific charge distribution in Figure [f.29| has the same form as the volume fraction distribution
from Figure [{.19] The specific charge levels are low, with the largest value in the domain providing a single
particle charge of =~ 1.21 x 10726C for Stk = 1 x 10~3; around 8 orders of magnitude smaller than an electron.
These values assume the particles share the same tribocharging constants as the salt found from experiment in
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Figure 4.29: Particle specific charge (C/kg) in the Taylor-Green flow for Stk = 1 x 1072 and Stk = 1 x 1072
on the left and right respectively.
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Figure 4.30: Electric potential normalised by the breakdown voltage for air in the Taylor-Green flow for Stk =
1 x 1073 and Stk =1 x 102 on the left and right respectively.

Chapter [3] which exchanged very little charge with the metal plate in those experiments. This is reflected here,
with a dilute suspension of particles colliding at low impact velocities producing very little charge.

The resulting electric potential from this charge (Figure is also very small compared to the breakdown
voltage for air. The shape of the distribution for both Stokes number are similar, with the particle collection
zones acting as low electric potential wells. As the electric field strength is the negative gradient of this electric
potential, the electric field strength is expected to point away from these low potential wells towards areas of
high electric potential.

The electric field strength from the scalar electric potential is provided in Figure [£:31] The electric field
as expected points away from the areas of high charge towards the regions of lowest charge and provides the
electrostatic force acting on particles per unit positive charge. As expected, the shape of the electrical field
strength in the domain has a similar form for both Stokes numbers, with maxima occurring along diagonal lines
relative to the coordinate system. These maxima lie closer to the particle collection spots with increasing Stokes
number, due to the sharper gradients in these regions. The distribution of the collision frequency, specific charge,
electric potential and electric field strength all make physical sense and provide confidence that the model is
implemented correctly.
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Figure 4.31: Electric field strength normalised by the breakdown field strength for air in the Taylor-Green flow
for Stk = 1 x 1073 and Stk = 1 x 1072 on the left and right respectively. The local electric field strength
vector is shown by the arrows with the colour indicating the magnitude of the normalised field strength at that
location.
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4.8 Conclusion

A 2D Taylor-Green fluid flow has been used to challenge and test the Eulerian particle model using the EE
velocity specification. This flow features strong streamline curvature and large gradients and the eddy scales
have been set to be characteristic of the Kolmogorov scales present in the cyclone. A validity criterion for
7p and Stk were identified, with the change in the particle velocity field noted for increasing Stk. The FVM
discretisation was presented, with results from a bespoke code and an implementation into a proprietary software
matching. A choice of discretisation options for the source term, along with various diffusion coefficients were
presented.

As volume fraction was found to accumulate in problem spots indefinitely with increasing mesh resolution,
a mesh-independent solution could not be obtained for the Eulerian model. This is due to unrealistic physics
of the set-up here, where particle collisions would prevent an ever-increasing concentration. The accuracy of
the integration of Lagrangian particle trajectories were assessed which also provided a source of validation for
the Eulerian model. Lagrangian particles were also found to accumulate in the same problem regions as the
Eulerian model predicted.

Despite the difficulties regarding the singularities, convecting the volume fraction using the EE velocity
produces a solution which captures the accumulation of particles in regions of large strain and the dispersion
of particles from regions of high vorticity. This statistics of the particle volume fraction using the EE method
better match the Lagrangian particle results than the mixture model for Stk < 0.1. The fluid can be directly
solved for in the EE method, whereas in the mixture model the fluid velocity is determined by algebraic relations
from the mixture velocity. Additionally, given a converged fluid flow field, the EE method is computationally
cheaper than the mixture model. If singularities arise in a flow field, limits can be imposed to prevent the
source term causing unphysical solutions and an implicit source term formulation can be used to increase solver
stability, along with upwinding the volume fraction at the faces of the computational cells. These difficulties
experienced in the model have not been assessed in this way in the literature and solutions have been obtained
to both identify and deal with numerical issues. In addition to this, both the charge distribution and electric
potential in the domain can be solved for. This can then yield the electrical field strength which can be used to
predict where air breakdown is expected to occur in the domain. This work provides a solid foundation with
which to apply this model to the cyclone flow in Chapter
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Chapter 5

Cyclone CFD Study

In this chapter, a LES cyclone CFD model is presented with the resolution quantified. This is compared to
other cyclone work in the literature and provides the carrier flow field for the particulate phase. The near-wall
regions are examined closely for evidence of secondary structures which may influence particle trajectories.

Lagrangian particles are tracked through this cyclone flow field. The statistics of the particles along their
trajectories are analysed and a separation efficiency is estimated and compared to experimental evidence. The
number of particles and integration settings needed for accurate results are explored. These statistics, such as
Re, and Stk both along trajectories and across the CFD domain, are used to inform the conditions of the flow
seen by the particles for the Eulerian model.

Finally, the Eulerian model using the EE method is applied to the cyclone. The effect of the boundary
conditions and diffusion coefficients on the volume fraction distribution and separation efficiency are discussed.
The predicted separation efficiency is compared to the Lagrangian particle result to assess the accuracy and
suitability of this model in a complex, highly-swirling flow. This section of work concludes with predictions of
the transport of charge through the cyclone and the resulting electric fields from these charged particles.

107



108 CHAPTER 5. CYCLONE CFD STUDY

5.1 Single-Phase Cyclone CFD

The CFD is performed using ANSYS Fluent which is a finite volume solver (the basics of which are provided in
Section . In the FVM, the solution domain must be discretised into a mesh of non-overlapping cells which
each provide an equation in the form of Eq. [f.23] This cyclone mesh is block-structured, such that the matrix
of coeflicients has a regular structure and is easier to solve [32]. The mesh is also refined in areas where large
velocity gradients are expected for increased resolution of these regions.

An unsteady LES is performed using the mesh, with the experimental pressure drop of the cyclone used as
a boundary condition. The resolution of the simulation is discussed, with the form of the tangential velocity
profile compared to other cyclones as commonly performed in the literature from Section [2.1.1] Evidence for
vortical structures near to the walls is explored to explain the banding seen in the experimental evidence from

Figure [[.2]

5.1.1 Mesh Sizing

Figure 5.1: Outer surface of the entire cyclone mesh used for CFD. The inlet is aligned along the z-axis, with
the outlet pipe aligned along the y-axis.

Figure shows the mesh outline of the entire geometry. The model features a long inlet pipe which joins
the cyclone tangentially at the top. This is to ensure the flow at the entry to the cyclone is not constrained by
an inlet boundary condition and allows the flow to naturally develop into a swirling motion in the cyclone. At
the base of the cyclone is a cylindrical bin, made large as to not disturb the flow from the cone tip. Finally
the geometry features a long, straight outlet pipe extending 1.5H above the cyclone. This length was informed
following the results by Schmidt et al. [94] from Section who found that the swirl velocities in the cyclone
were undisturbed by outlets of length ~ 1.5H. This also enables a fixed pressure outlet boundary condition to
be used without affecting the flow within the cyclone itself [29].

In sizing the mesh for LES, the state of the inlet flow is used to estimate the number of cells needed to
adequately resolve the boundary layer. This will be defined in terms of viscous wall scales in the inlet pipe,
which from Section [2.1] are a function of Reynolds number. For the Reynolds number for the inlet flow, a
characteristic length is required. For a rectangular duct, a hydraulic diameter can be defined as [183]

Qahb
" ey

: 1
o (5.1)

At the cyclone inlet, dg = 3.96mm. The Reynolds number of the inlet pipe flow using the hydraulic diameter is
Re;,, = 9770, indicating that the flow in the inlet pipe is turbulent. Following Pope [30], by assuming a smooth
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Figure 5.3: 2D slice of the mesh at the bottom of the cyclone with the bin.

pipe wall, Prandtl’s friction law is defined as

1
NiT, = 2.0log,o(v/frRein) — 0.8. (5.2)

Solving this implicit equation for the friction factor f; yields f; ~ 0.0031. The friction velocity at the wall

u, can be calculated using this and the bulk mean flow as u, = wg %f ~ 2.32m/s. The viscous wall length

scale 6, ~ 6.5 x 10~%m provides the distance y of the first cell by the wall required to have a dimensionless wall
distance of y* = + = % =1 [45]. We therefore expect to be resolving down to the viscous sublayer of the
boundary layer.

This then provided a useful estimate for which to size the cells starting from the wall, with an expansion
ratio of 1.2. The mesh consists of ~ 9 million computational cells, which is higher than those from previous
cyclone studies [7, 18], including the DNS by Zhu et al. of a hydrocyclone at Rep < 2000. A 2D section of
the mesh at the top of the cyclone is shown in Figure [5.2] There is a highly refined region along the central
spine of the cyclone to ensure the strong fluid velocity gradients in this region are resolved [29] and to capture
the vortex breakdown instability predicted from Section The mesh is also refined by the walls to capture
the boundary layer structures predicted seen by Zhu et al. in Section [2.1.1

The mesh at the base of the cyclone including the bin is shown in Figure[5.3] The mesh in the bin is coarse
with a high detail region extending from the vortex core to capture any swirling flow spilling over the cone tip
into the bin.
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5.1.2 Solver Numerics

The equations of motion for the fluid are solved using the finite-volume method introduced in Chapter @l The
full set of equations for the LES are supplied in Appendix [F] In this section the differences in discretisation
compared to the Taylor-Green flow are highlighted.

Gradients in flow variables are calculated similarly to the method used for the Taylor-Green flow (Eq.
by using the modified divergence theorem (Eq. . Instead of estimating the face centroid values using linear
interpolation between cell centroids, the average of the nodal values on the face are used. The nodal values
are computed by a weighted average of the cell centroid values surrounding the nodes to give the Green-Gauss
Node based gradient method, which is second-order accurate in space.

A bounded central differencing discretisation for convective-diffusive fluxes was used which ensures stability
when using LES. This is based on the normalised variable diagram [I85] to blend between pure central differ-
encing (Eq. which is only stable if the local Péclet number is less than 2 [I74] and a second-order upwind
scheme given by Eq. The gradient operator is discretised using the Green-Gauss Node-Based method.
Both pure central differencing and second-order upwinding can result in unphysical oscillations in the solution.
In the bounded central differencing method, if the solution attained is not bounded, the face value is computed
using first-order upwinding (Eq. . The diffusion terms are central differenced.

Temporal derivatives were discretised using a bounded second order implicit method which, analogous to
the bounded central differencing scheme, blends between a second order and a first order implicit scheme. The
fluid time step had to be small enough in order to capture the PVC behaviour of the cyclone and the resolved
turbulent scales. An estimate of the Kolmogorov time scale (Eq. at the inlet pipe was used to inform the
selection of the time step. Following Pope [30], the largest turbulent scales can be estimated as [y ~ éd H, with

3
the dissipation rate scaling as €5 ~ 1;—(;’ to provide a time scale of the smallest eddies as 7, =~ 4.4 x 1077s. As
these scales are not expected to be resolved by the LES, the time step can be slightly above this estimate and
was set to At =5 x 107 7s.

The LES was run with pressure-velocity coupling, where the momentum and pressure equations are solved
together. This fully implicit approach increases the stability of the system and enables faster convergence.
Pressure was calculated using the pressure staggering option (PRESTO!), where the pressure is solved on a
staggered grid which provides the face centroid pressures without interpolation. This also provides a more
accurate prescription for the wall pressure gradient in the presence of curvature than the standard Rhie and
Chow scheme [I86], which can result in velocity vectors pointing into or out of walls.

The system of equations are solved using an algebraic multigrid method. This involves solving the linear
system on coarser meshes to increase the rate of convergence. This reduction in computational effort is achieved
as the solution information propagates through the domain one cell at a time. For large meshes this makes
the solution of the linear system prohibitively expensive. By solving on a coarser mesh, information from the
boundaries is able to propagate through the domain faster; thus requiring less computational expense to solve
the linear system. For solving the scalar volume fraction and charge equations in Section the point-by-point
Gauss-Seidel method (Eq. is used. For the coupled LES fluid equations, an incomplete lower-upper (ILU)
method is used [187].

At the inlet, the total gauge pressure is set to 0kPa. The walls are stationary, apply the no slip condition
and have zero heat flux across them. For the fluid, C, = 1006.43Jkg 'K ~!, the thermal conductivity =
0.0242Wm~1K =1, the molecular weight = 28.966kg/kmol and p; = 1.7894 x 10~°kgm~1's~1. The operating
pressure was set to 101325Pa. A fluctuating velocity algorithm was used on the inlet face to provide a more
realistic turbulent flow state entering the domain after an initial run without this fluctuating velocity algorithm.
A spectral synthesizer is used which produces a divergence free velocity field [I88], given the turbulent intensity
and hydraulic diameter.

The area-averaged fluid quantities on the inlet face of the CFD model are used to calculate the Reynolds
number in order to estimate the turbulent intensity. The inlet Reynolds number, based on the hydraulic diameter
is Regace =~ 3328. It should be noted that this is not the Reynolds number of the flow entering the cyclone from
Section [2.1.1] This is the Reynolds number of the fluid on the inlet face of the domain at the start of the inlet
pipe. The turbulent intensity was estimated by using two empirical correlations for fully-developed turbulent
pipe flow. The first is given by [I89]

1
I, = 0.16Re;, 5. (5.3)
The second empirical correlation is [I89)
I, = 0.227Re; ", (5.4)
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which provides I = 5.8% and Iy = 10%. A middle-ground of I = 7% was used for the turbulent intensity with
a hydraulic diameter of approximately 8.1mm.

The outlet total gauge pressure is —bkPa, in line with the experimentally validated pressure drop of AP =
5kPa. An average-pressure specification, which would promote solver convergence, was not used as this would
over-constrain the swirling flow at the outlet. The current boundary condition allowed reversed flow at the
outlet face which is to be expected with highly-swirling flow at the boundary and is therefore a more realistic
boundary condition. This reversed flow phenomenon was also seen in the work by Schmidt et al. who concluded
that this would not affect the swirl velocities in the cyclone given a sufficiently long outlet pipe [94]. The inlet
and outlet temperatures were specified as 300K .

The convergence criteria for the mass and velocity component scaled residuals (Eq. was set to 1x107°
with energy set to 1 x 107° for every time step (where mass was the last variable to reach this criteria and the
velocity components residual reached in the order of 1 x 107?). The static pressure in the outlet pipe, the mass
flow rate at the inlet and the mass flow rate at the outlet were continually monitored during the numerical time
stepping of the solution to aid in determining when a statistically stationary state had been reached for the flow
field.

5.1.3 Fluid Results

To assess the spatial resolution of the LES, the local grid scale can be compared to the smallest eddies in the
flow given by Eq. The ratio of the Kolmogorov length scale, 7, to the local grid scale, A, for the different
cyclone sections (defined in Figure is provided in Figure Due to the volume of each computational cell
varying, the count on each histogram in this thesis has been weighted with the cell volume to make the results
independent of the mesh. As most of the eddies are within an order of magnitude of the local grid scale, the
LES is modelling only the very smallest eddies in the flow and therefore has high spatial resolution. Starting
from the top of the cyclone, the majority of the Kolmogorov length scales decrease in size as we move vertically
down the cyclone, with an increase near the cone tip. This is due to the majority of the cells capturing the
“eye” of the vortex core by the cone tip, where the fluid velocity is small. On the edges of the vortex core, the
flow is travelling at the fastest speed in the domain. This is seen as the peak around IZ" =~ 0.1 for the middle

two sections.
. r2.5
0.0
L |
r0
. o

10-1 10°
Normalised Kolmogorov length scale
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Figure 5.4: Histogram of the Kolmogorov length scale divided by the local grid scale A. Most of the cells in
the domain are within an order of magnitude of the size of the dissipative eddies in the flow. The histograms
represent the sections 1 to 4, defined in Figure from top to bottom respectively.

The Kolmogorov timescale, 7,, normalised with the fluid time step, At, for each of the 4 sections of the
cyclone is shown in Figure[5.5] From this figure, the time step for the CFD is smaller than any of the Kolmogorov
eddy timescales and the inlet scaling performed in Section provided an underestimate for the smallest
turbulent time scales. The temporal resolution of the simulation is therefore comparable to a resolved DNS.

Also evident from Figure is a structure to the distribution in each section. At the top of the cyclone,
there is a large spread in the 7, distribution. This wide range of time scales are due to the influence of multiple
flows in this region including the inlet flow, the outer vortex flow, a permanent vortical structure where the
inlet pipe joins the cyclone and the core within the vortex finder. Moving vertically down the cyclone to section

2, the distribution begins to become unimodal. The peak at around Z.It ~ 102 becomes more prominent in the
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Figure 5.5: Kolmogorov timescale distribution normalised with the time step for each of the four sections of the
cyclone. The histograms represent the sections 1 to 4 from top to bottom respectively.

Section 1 2 3 4
o | 86.8% | 89.3% | 97.6% | 99.4%
G

Table 5.1: Cell volume weighted average of the turbulent kinetic energy ratio for each cyclone section.

unimodal distribution in section 3. These dominant turbulent time scales are related to the high-speed vortex
core. Finally by the cone tip, the distribution is unimodal, with a well-defined peak at a smaller time scale than
the rest of the cyclone. This where the outer swirling flow reverses direction, forming the vortex core. This
suggests that the cone tip features the strongest turbulence in the cyclone as both the turbulent time scales are
smallest and the length scales are larger in the cyclone at this region.

A common method of determining the resolution of an LES is by looking at the ratio of the resolved to the
total turbulent kinetic energy; with a well-resolved LES having 80% of the turbulent kinetic energy resolved.
The resolved turbulent kinetic energy is given by the resolved fluctuations as [30]

_ 1—
k= Uil (5.5)

i
An estimate of the unresolved turbulent kinetic energy can be obtained assuming a sharp spectral filter as [30]

2
_ erLs\ 3
ksas ~ 2.25 (”) , (5.6)

s

where the mean turbulent dissipation rate € is estimated from the time average of Eq. and the mixing
length Ls from Eq. The filtering is implicit in this LES and does not have a sharp cut-off in wavenumber
space as with a sharp spectral filter, however it provides a useful estimate for the unresolved energy. The cell
volume weighted average of the turbulent kinetic energy ratio in the cyclone is 89.2%, indicating that the LES is
well-resolved. The energy ratio PDF for each cyclone section is presented in Figure [5.6] with the average energy
ratios for the sections given in Table The cone tip is very well resolved, with over 99% of the turbulent
kinetic energy directly computed. This is in agreement with the resolution of the length and time scales in
this region and means that the flow field seen by particles in Section is accurate and will produce realistic
trajectories. The turbulent kinetic energy ratio decreases moving vertically up the cyclone as the mesh becomes
less dense, with the worst resolution observed on the edges of the vortex core by the vortex finder in Figure
The energy ratio by the walls indicates high wall resolution as expected from the mesh scaling using the inlet
scales in Section [B.1.21

The normalised tangential velocity profile of the main cyclone flow compared to data in the literature is
shown in Figure Though the cyclone dimensions vary an order of magnitude between cases (D = 0.0223m
for the present cyclone and D = 0.4m for Shalaby’s cyclone), the general shape of the tangential velocity slice
across the cyclone share a common form. Sharp velocity gradients are seen by the walls as the fluid reaches the
outer vortex velocity and then increases until it reaches its peak at the edges of the vortex core. Within the eye
of the vortex core the velocity drops off steeply to zero at the centre of the vortex.

Due to the wildly varying geometries (the results in Figure are not similar cyclones scaled), swirl numbers
and operating Reynolds numbers, the velocity profiles would never be expected to match perfectly. Due to the
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Figure 5.6: SGS energy ratio distribution for each of the four sections of the cyclone. The histograms represent

the sections 1 to 4 from top to bottom respectively.
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Figure 5.7: SGS energy ratio distribution along the centre of the cyclone on the x-z plane.
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Figure 5.8: Cyclone tangential fluid velocity normalised by the bulk inlet velocity against local cyclone radius.
The results of this study are shown compared to the laser doppler anemometry results from Hoekstra for the
Stairmand high efficiency cyclone [22] and the “fine” LES model from Shalaby et al. [86]. The geometry of
each cyclone varies greatly, with Reynolds numbers and swirl numbers of Re ~ 34000, 27000 and 700000 and
Swg ~ 4.6,6.0 and 3.1 for the current work, Hoekstra’s data and Shalaby’s data respectively.

lack of like-for-like geometry in the literature and caveats to measuring the flow field experimentally (Section
, validation of the flow field is difficult. The experimentally-measured mass flow rate (provided by Dyson)
at this pressure drop matched the CFD result to < 1% providing confidence in the results. The tangential
flow field also has the expected form compared to other geometries in the literature and flow variables were
monitored to assess when a statistically-stationary state was reached, after which the model was run further
to collect time-averaged data. The level of validation performed here is also consistent with that performed in
many cyclone CFD studies in the literature as discussed in Section The separation efficiencies predicted
in Section [5.2.1] are also used as an additional form of validation as an accurate flow field is required to match
experimental separation efficiencies.

The current cyclone model shows high dimensionless tangential velocities like the Stairmand high efficiency
cyclone and the mean velocity profile shows a symmetrical shape as expected. Large numbers of data points in
Figure are observed for the current study, especially by the walls (for which LDA data is limited as discussed
in Section and the vortex core, showing the excellent resolution of the current study.

Figure [5.8 shows that the peaks of the tangential velocity distribution is a strong function of the geometric
swirl number. Larger values of Sw, results in higher dimensionless tangential velocities. The normalised
velocity distribution appears to be independent of the cyclone Reynolds number for the high Re turbulent cases
considered and the boundary layer by the walls is thin which is also expected from the high Reynolds numbers.

From the experimental evidence in Figure |[1.2] particles were seen accumulating in long-lived structures in
the boundary layer of a cyclone. The CFD performed allows an in-depth look at the structure of these boundary
layers. The resolution of the near-wall region can be assessed by looking at the y* distribution at the first cell
from the wall. From Figure the boundary layer is well resolved in the wall-normal direction with y* < 1
for most of the walls. The maximum 3T value of the first cell from the wall in the cyclone is y™ = 4.00.

The velocity distribution of the boundary layer can give an indication as to its structure. The mean velocity
can be normalised with the skin friction velocity u, = , /;—1; [45]. This can then be plotted against y* for the

4 sections of the cyclone and the inlet pipe. The mean velocity is normalised with the skin friction velocity to
give ut [45]. It can also be compared to a flat plate covering the viscous sublayer (u™ = y* for y* < 5 [30])
and the log-law region given by [30]

1
ut = P In(y*) + B, (5.7)

where k is the Von Karman constant and Bg = 5.2 from experiment [30]. The normalised inlet pipe boundary
layer velocity profile in Figure closely resembles that of a flat plate as expected, thus providing evidence
that the LES is providing accurate results at the walls.

The normalised boundary layer velocity profile in each of the cyclone sections differs from the inlet pipe.
The first 2 sections closely match their velocity profiles until far from the wall with the flow speeding up as we
move vertically down the cyclone. The concave geometry of the cyclone walls is seen to cause the boundary
layer to grow slower than the flat plate result and reduces the extent of the log-law region in agreement with
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Figure 5.9: Wall yT distribution of the cyclone.
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Figure 5.10: Time-averaged u™ distribution against normalised local wall distance. This is shown for the inlet
pipe and the 4 cyclone sections. Also shown is a flat plate solution for comparison.
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Figure 5.11: Iso-contour of the Q-criterion with Q. = 1 x 107572, coloured by the mean local fluid speed
normalised with the mean cyclone inlet velocity. The vortex core is clearly identified by the long solid structure
through the centre of the cyclone. Smaller streaky structures are observed predominantly at the top section of
the cyclone, with longer banded structures appearing along the conical section.

previous work [190]. A thinner boundary layer may decrease the likelihood of particles becoming trapped by
the wall as only particles with trajectories taking them very close to the wall will be able to enter the boundary
layer.

Possible boundary layer structures are visualised by iso-contours of the Q-criterion [I91]. The Q-criterion
allows a method of finding vortical fluid structures where the vorticity magnitude exceeds the strain rate
magnitude of the filtered flow field [192]

Q. = % (Qfmg - Sfmg) > 0. (5.8)

An iso-contour of Q-criterion is provided in Figure and shows many vortical structures situated close to
the walls, most notably at the top of the cyclone. A band of these vortical structures can also be seen spiralling
down the conical section of the cyclone which qualitatively match the bands of particles seen in the experimental
evidence in Figure[I.2] Also visible from the iso-contour are vortical structures at the very top of the cyclone by
the wall which spiral in towards the vortex finder. The vortices are situated where the lip-leakage phenomena
occurs, providing evidence that these vortical structures may contribute to this particle-escape mechanism.

The distribution of the dimensionless distance from the wall of the small structures are shown in Figure
5.12l The y* values indicate that these structures lie mainly within the boundary layers of the cyclone and
these structures are likely to be partially-resolved Gortler vortices. As discussed in Section definitively
identifying these structures as Gortler vortices is not possible, however the velocity profile in Figure [5.10] shows
a similar reduction in u™ for y > 8 as seen by Wang et al. compared to the flat plate result. The resolution is
described as partial as the wall-normal direction of the boundary layer is well-resolved as evidenced by Figure
however the inflation-layer boundary cells are elongated parallel to the wall. This causes the cell volume to
be large compared to the wall-normal distance and therefore the LES filter width increases. The full structure
of these vortices are not able to be directly computed in this LES, but indicative structures are present from the
high wall-normal resolution. Lagrangian particles will see these partially-resolved boundary layer structures,
however they will not see any of the unresolved scales.
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Figure 5.12: Normalised wall distance distribution of the vortical wall structures in Figure [5.11] excluding the

vortex core.
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5.2 Lagrangian Particle Tracking

With the resolution and structure of fluid flow field analysed, Lagrangian particles are now tracked in this frozen
flow field in Fluent. The numerical schemes used to integrate the equations of motion of the particles are the
same that were used for the Taylor-Green flow in Chapter [d] The integration tolerance and the number of
particles necessary to track in the cyclone are first explored in Section [5.2.1] With no analytical solution for
a particle trajectory to compare to, the estimated separation efficiency is instead used to validate the particle
study by comparison with experimental results. This is performed for a variety of forces acting on the particle
from Section with the effects of the inclusion of the forces on separation efficiency explored.

With the computational separation efficiency in agreement with experiment, statistics such as Stk and Re,
along particle trajectories are presented. This allows the validity of Stokes drag and the EE model to be assessed
as a function of particle diameter in a cyclone. The particle trajectories show how particles translate through
the boundary layers, in particular whether they enter and are able to leave or become trapped by the wall. This
interaction between the particles and the boundary layer is linked to the Stokes and Reynolds numbers and the
impact on separation efficiency is assessed.

Finally, the Lagrangian particle tracking study in the cyclone provides a comparison for the results of the
EE model. Through careful choice of ensemble and volume averaging, “Eulerian” statistics can be created for
this Lagrangian phase to provide a direct comparison to the results of the Eulerian model used in the following
section.

5.2.1 Computational Set-Up and Separation Efficiency

The Lagrangian particles are initialised on the inlet face of the domain with the same velocity as the carrier
fluid. The particles are evenly spaced in the x and y directions on the inlet plane with no two particles occupying
the same position. As the inlet (which sits on the plane z = —0.045m) is rectangular, more particles are placed
along the x-direction IV, than the y-direction N, as the inlet is wider than it is tall. Figure shows a typical
arrangement of particles on the inlet plane with N = 40. If the horizontal particle spacing between particles is
denoted by Az, the spacing between particles adjacent to the wall and the wall itself is A; 2 and likewise for
the y-direction.

1.0 A
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0.6
k]
NS [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
>
0.4
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
0.2
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
0.0 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2
X
Yinlet

Figure 5.13: Typical particle injection arrangement on the inlet plane. Here 8 particles are uniformly spaced in
the horizontal x-direction and 5 in the vertical y-direction.

The particle equations of motion (Egs. and are integrated in time using the Runge-Kutta scheme
outlined in section The number of particles tracked and the tolerance of the Runge-Kutta scheme needed
for statistically stationary results are unknown. The smallest particles (0.1um) will require the most computa-
tional effort as they have the smallest 7, requiring smaller time steps than the larger particles to resolve their
motion to the same tolerance. If the 0.1um particle statistics are stationary, the statistics of the larger particle
sizes are also expected to be stationary.

Due to the highly chaotic flow pattern in the cyclone, particle positions and velocities are not suitable
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Figure 5.14: Particle trajectory of a 0.1um particle integrated using the Runge-Kutta scheme with a tolerance
of 1 x 10716 coloured by residence time. The particle is acted on by Stokes drag only.

candidates for judging a statistically stationary state. The bulk particle statistic of separation efficiency is a
more suitable measure, with the overall picture of whether particles are separated used, instead of the fates
of individual particle tracks. The separation efficiency is measured for a range of integration tolerances and
particle numbers. To ensure repeatable results which are not affected by stochastic forces, these numerical
studies are performed with only Stokes drag with Cunningham slip assumed to act on the particles.

An additional problem with calculating particle trajectories in the cyclone arises from particles becoming
trapped; either by slowly crawling through the boundary layers or by rotating around the cyclone endlessly (a
key phenomenon which is not considered in the simple time-of-flight model in Section. These particles may
never leave the cyclone and require excessive computational resources to continue tracking. Particles will be
assumed to be trapped when they collide with the cyclone walls which physically represents them adhering to
the cyclone walls. These particles are assumed to be separated as they will not leave through the vortex finder,
a big assumption which is analysed later. For the particles stuck in endless loops, the integration should be
stopped after some elapsed time with any remaining particles assumed to separated (as they are not leaving
the cyclone). This assumption will overestimate the separation efficiency as there is no guarantee of separation
from this, the same applies to the trap boundary condition at the wall. To determine this cut-off time, a range
of trajectories were studied where a particle escaped through the vortex finder. One such trajectory, which
performed many core rotations is shown in Figure [5.14]

The escape trajectory shown in Figure took a greater amount of time to leave than most escape
trajectories, most of which entered the cyclone and immediately left through the vortex finder. This trajectory
is representative of a worst-case scenario for the duration of time needed to separate a particle and the cut-off
time selection is based on this result. The cut-off time is set t0 t,ez = 5.055 x 107 2s. Particles still in the
domain after this time are assumed to be separated. For comparison, the time taken for a particle to impact a
wall based on the time-of-flight model (Eq. is tweu = 9.2 x 1025, almost twice as long as the cut-off time
considered here. This cut-off time is revisited to check that the results are independent of this choice.

The separation efficiency of the cyclone is given by

N,
n=1- esc’ (59)

where N, is the number of particles escaping out of the vortex finder. For stationary separation efficiency
statistics, a certain tolerance and number of particles are required. It is not known from any of the literature
in Section whether these two factors are independent. An initial estimate for the tolerance used is 1 x 108
and the number of particles varied. When a suitable number of particles are found, the tolerance will then be
varied to find a suitable value. These suitable values will be ones which recover the separation efficiency result
for higher particle numbers (or lower tolerances) with less computational effort. For the initial estimate for
tolerance, the separation efficiency as a function of number of particles is shown in Figure [5.15)
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Figure 5.15: Separation efficiency as a function of number of particles tracked for a tolerance of 1 x 1078, The
dashed red line represents the value of separation efficiency obtained using the largest number of particles in
this study (64000).
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Figure 5.16: Separation efficiency as a function of integrator tolerance for 4000 particles.

A suitable number of particles, for which the separation efficiency varies by less than 1% from estimates
using greater numbers of particles, is NV = 4000. We now keep this value of N and adjust the tolerance to check
if the initial estimate was satisfactory. Figure shows no statically stationary solution for the separation
efficiency for the tolerances examined, where the range of the data is 0.015. As the results were within 2%
of each other, the separation efficiency is independent of the tolerance for the range of values examined. The
largest tolerance tested of 1 x 107 is used along with N = 4000 for all future particle tracking.

A separation efficiency graph may now be created and compared to experimental evidence provided by
Dyson. The separation efficiency is calculated using a range of additional forces on the particles to quantify the
effects of the individual force contributions to the accuracy of the separation efficiency. These forces, introduced
in Section include the Brownian force (Eq. , Saffman Lift and the DRW model to capture the effects
of the unresolved turbulent scales on the particles. For the DRW model, both methods presented of estimating
the eddy lifetime from Section [5.2.1] are examined, with the constant 7. given by Eq. and the random
prescription given by Eq. 2:20] For these force combinations, Cunningham slip has been incorporated into the
particle relaxation time (Eq. @, a separate case of just Stokes drag with no Cunningham slip correction of
7, (Eq. @ is also examined. The separation efficiencies from different combinations of these forces are shown

in Figure [5.17
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Figure 5.17: Separation efficiencies for a range of forces compared to experiment. Every force combination is
inclusive of Cunningham slip except for the “No Slip” results.

The experimental results have been fitted to the functional form given by Eq. in Section The results
show that the 0.1um particles are unlikely to be separated at all, with perfect separation predicted for the larger
1um particles. The separation efficiency increases with particle diameter as expected and provides an excellent
reference to compare the computational results to.

The different force combinations all provide similar results, with the effects of additional forces on separation
efficiency becoming more prominent with decreasing particle size. The only exception is the exclusion of Cun-
ningham slip, which shifts the separation efficiency curve to the right and grossly under-predicts the separation
efficiency of the majority of particle diameters considered. The inclusion of a Cunningham slip correction factor
for the particle motion is therefore needed for sub-micron particles in this highly-swirling flow, henceforth only
results including Cunningham slip are discussed.

The separation efficiencies for particles d,, > 0.4um match the experimental result of approximately perfect
separation. Particles smaller than this follow the correct experimental trend, however the sharpness of the
experimental drop-off of 7 is not faithfully captured. The beginning of the dip in the separation efficiency
is well-matched and the cut-off diameter predicted from CFD closely matches experiment. This is the most
important aspect to capture as dpso effectively characterises the separation performance of a cyclone at a given
pressure drop from Section The Lagrangian particle tracking over-predicts the separation efficiency of the
smallest 0.1um particles. These particles are expected to have the lowest Stokes numbers and readily respond
to the smallest scales of turbulence in the flow which are not directly resolved in the LES. Modelling the effects
of the unresolved scales with the DRW model produced a negligible effect on the separation efficiency, as did
including the effects of both Brownian motion and the Saffman Lift force. Discrepancies between the CFD
results and experiment also arise due to the missing physics in the computational model. These include particle
collisions and electrostatic interactions which may cause small colliding particles to agglomerate into larger
structures which are able to be separated.

The Lagrangian particle tracking has assumed a monodisperse particulate phase, whereas the experimental
results were obtained by using a polydisperse particulate phase. The polydisperse case will feature collisions
between different particle sizes and therefore particles of dissimilar diameters may affect each other. Particles
of similar diameter (and therefore alike in Stokes number) will follow closely-matching trajectories. The biggest
deviations in particle trajectories compared to monodisperse modelling is expected to be due to the interaction
of large particles with much smaller particles. As will be shown in Section[5.2.2] the largest particles are trapped
in the boundary layers of the cyclone and do not reside in the main flow. The smallest particles are overall not
caught in the boundary layer, with the ones that are being separated. The collisional interactions between the
large and small particles are expected to only be significant in the boundary layer and these interactions would
not be expected to influence the separation efficiency of either size class as both are being separated.

The discrepancy between the computational and experimental results for the 0.1um particles has been argued
to be from missing physics in the model. This is the particle size for which the particle number independence
tests were performed. In light of these results, this numerical validation is repeated for a particle size which is
expected to be governed by the covered physics from the computational model, however shows a deviance from
the experimental result. The particle number independence study is therefore repeated using 0.3um particles,
with the results shown in Figure [5.18|

As for the 0.1um particles, using N = 4000 for the 0.3um particles differs from the N = 64000 result
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Figure 5.18: Separation efficiency of 0.3um as a function of number of particles tracked for a tolerance of
1 x 1072, The dashed red line represents the value of separation efficiency obtained using the largest number
of particles in this study (64000).

by ~ 1% and the use of N = 4000 is justified. Although the separation efficiency is independent of the
number of particles, it does not converge to the experimental value of n300nm ~ 0.89. This could be due to
the inclusion of the trapped wall boundary condition, which was included due to physical reasoning and the
save in computational effort. The impact of this boundary condition on the separation efficiency of 0.3um is
investigated. In tandem with this, the effect of the particle initialisation position on the inlet face on separation
efficiency is investigated. The inlet injection face in Figure [5.13|is split into halves: a top, bottom, left and
right half. For each of these 4 halves, 4000 particles are injected evenly spaced as before, with the separation
efficiency calculated and compared to the result using the entire face.

The results using both the trapped and the perfectly elastic wall reflection boundary condition for different
inlet injection locations are shown in Figure[5.19] These separation efficiencies are relative to the result obtained
by using the entire inlet plane. Particles injected from the bottom half of the inlet plane are have > 6% higher
separation efficiencies than the full inlet face reference. Particles injected from the top half of the inlet plane
resulted in the lowest estimation of the separation efficiency. This may be due, in part, to the particles being
closer to the top wall of the cyclone where there exists a lip-leakage flow. Particles closer to the top wall are
more likely to be entrained by this flow feature which results in them bypassing the main vortex flow and exiting
out of the vortex finder. The differences in separation efficiency from injecting particles in the left or right half
of the inlet plane is less pronounced, with both results deviating from the reference by ~ 1.8%. This further
evidences the lip-leakage hypothesis. The same trends are evident for the reflect as for the trapped boundary
condition, with particles injected from the bottom half of the plane more likely to be separated than particles
at the top. The separation efficiency predicted using the reflect boundary condition is &~ 20% lower than the
trapped boundary condition. The trapped boundary condition provides a better fit to the experimental result
(n = 0.89) which evidences the physical reasoning of particles adhering to the walls on impact. These results
provide useful information for the choice of wall boundary condition for the particulate phase in the Eulerian
model in Section

The final numerical independence check to be made is determining the cut-off time and this is checked for
the 0.3um particles. The characteristic wall-impact time from the time-of-flight model (Eq. for these 0.3um
particles t,q = 0.02s is used to normalise the cut-off time in Figure The cut-off time includes the time
taken for a particle to traverse the long inlet pipe which is not considered in the time-of-flight model. This time
to traverse the inlet pipe is & t,,q;;, which explains why very low separation efficiencies are predicted for t,,4,
values below this. The results show that the time-of-flight estimate for the time taken for a particle to hit the
wall from entering the cyclone is a good estimate for the cut-off time, however it is a slight underestimate. The
initial estimate for the cut-off time provided results which were independent of t,,,; and this aspect had no
issues.

The Lagrangian particles have been tracked in a “frozen” instantaneous fluid flow field. At a different moment
in time, the resolved unsteady motions may be vastly different and provide a different result for the separation
efficiency. The 0.3um particles are tracked in the same result-independent set-up using the instantaneous fluid



5.2. LAGRANGIAN PARTICLE TRACKING 123

Trap Wall BC Reflect Wall BC
0.06 - 0.06 -
0.04 A 0.04 A
0.02 A 0.02 -
<
|
« 0.00 A 0.00 A
g .
<
—0.02 A —0.02 A
—0.04 1 —0.04 4
—0.06 A —0.06 A
Left Right Bottom Top Left Right Bottom Top

Figure 5.19: Separation efficiency of 0.3um particles at different injection locations relative to the full inlet plane
result. For each injection 4000 particles with a tolerance of 1 x 10~ were tracked for both a trap and reflect wall
boundary condition. The separation efficiency using the full inlet plane to inject particles was approximately
0.74 and 0.5 for the trap and reflect boundary conditions respectively.
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Figure 5.20: Separation efficiency of 0.3um as a function of t,,4, using 4000 particles with a tolerance of 1 x 1075
with a trap wall boundary condition. The dashed red line represents the value of separation efficiency obtained
using the largest value of cut-off time considered in this study.
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Figure 5.21: Separation efficiency of 0.3um for different flow realisations in time. Also shown is the experimental
value, an ensemble average of the different realisations and the result using the time-averaged flow field as
horizontal lines.

flow field from earlier periods in time. Figure shows a large variance in the estimated separation efficiency
for different realisations of the flow field, with a spread of almost 50% for this particle diameter. This indicates
that these particles readily respond to the resolved unsteady structures in the turbulent flow and that these
structures affect the separation efficiency. An ensemble average of these realisations also shows a large deviation
from the experimental value. The turbulent structures can be averaged out if instead the particles are tracked
in the time-averaged flow field. This is a flow field which would never in reality be seen by the particles and
is expected to provide a less accurate result. The separation efficiency estimated using the mean flow field is
< 0.5% from the experimental value, which contradicts the reasoning above.

A range of particle diameters were tracked using the time-averaged flow field to see if the separation efficiency
provided a better fit to experiment than the instantaneous flow field. Figure shows this comparison and
it is immediately clear that the 0.3um result using the mean flow field was a chance occurrence as the rest of
the results diverged from the experimental result. The slope of the separation efficiency graph using the mean
flow is flatter than the instantaneous result, with the separation efficiency of small 0.1um particles grossly over-
predicted and the separation efficiency of large particles dropping-off near 1um. This occurred due to larger of
numbers of particles exceeding t,,,4, instead of impacting the wall in the time-averaged flow field which resulted
in them being counted as not separated. This suggests unsteady structures contribute to the wall-deposition of
particles and aid in increasing the separation efficiency.

Finally, the ensemble-averaged results are examined for all considered particle sizes in Figure The form
of the ensemble-averaged separation efficiency follows the general experimental form, however the graph is much
flatter than the experimental result as has been seen with all other results. Around dp, 50, the spread in separation
efficiency results is greatest, with both the largest and smallest particles showing smaller absolute spread over
different fluid realisations. The diameters of greatest spread in 1 occurring around dp, 59, where centrifugal and
drag forces are expected to match from Bath’s model, suggests that this force balance is continuously changing
during cyclone operation. The PVC behaviour of the cyclone is likely the cause for the spread in this region as
the position of the vortex core from the instantaneous flow field is in a different position for each fluid realisation.

A final check was made to ensure that the ensemble-averaged results had reached a statistically stationary
value. Figure shows the rolling ensemble-averaged separation efficiency over each realisation for every
particle diameter. The separation efficiencies after 10 realisations show converged statistics, providing a measure
of reliability to the results shown in Figure [5.23]

As has been shown, estimating the cyclone separation efficiency is difficult. Simple separation models such as
the time-of-flight model from Section 2.1]are far removed from reality and raise questions as to how a single value
for the number of spirals, Ny, can be reliable. The force-balance approach by Barth can be used to estimate
dp, 50 for this cyclone as the velocities in the vortex core are known. From the CFD results, the mean tangential
and radial speed on the edge of the vortex core are |u;| ~ 55.44m/s and |u,| = 1.41m/s respectively, which from
Eq. provide an estimate of the cut-off diameter as 0.375um without Cunningham slip and 2.99um with
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Figure 5.22: Separation efficiency using the instantaneous and time-averaged flow field compared to the exper-

imental fit.

Figure 5.23: Separation efficiency ensemble-average compared to the experimental fit, with error bars indicating
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Figure 5.24: Separation efficiency ensemble-averages for each particle diameter as a function of number of fluid
realisations.

Cunningham slip. Comparing this to the experimental cut-off diameter of 2.18um shows reasonable agreement
with the inclusion of Cunningham slip (as is expected from the separation efficiency results). This suggests
that the balance of centrifugal forces to drag is an important factor in determining d, 50, which has been well-
captured from the CFD results. However, the simple separation models offer no method of determining the
exponent m in the functional form of the separation efficiency, which determines the gradient. Lagrangian
particle tracking has closely matched the experimental dj, 59, however the matching the steepness of the 7 curve
to experiment is much more difficult.
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5.2.2 Particle Statistics

In using the Stokes drag law, we have assumed that the particle Reynolds number is much smaller than unity.
This can now be verified post-assumption. The particle Reynolds number, along with the Stokes number in the
cyclone, will change as a function of both time and position. The local strain rate seen by the particles also
provides useful information for the diffusion coefficients for the Eulerian model from Chapter [l To determine
these, we track these quantities along particle trajectories through the cyclone. All analysis in this section is
performed using the separation efficiency independent parameters obtained in Section for particles acted
on by Stokes drag with Cunningham slip correction.

We can now check a posteriori the assumption of Re, << 1 for the valid use of Stokes drag on the particles.
This can be monitored along every point of the trajectory. As these trajectories differ wildly, the statistics
along each trajectory also vary greatly. Key statistics over the entire trajectory for both the largest and
smallest particles are provided in Table For Re,, the maximum value obtained over all particles at any
point in the trajectory is pushing validity of Stokes drag, however from the ensemble average and minimum
value, this is an extreme value and thus Stokes drag is valid. This validates its use as the force considered in
the Equilibrium Eulerian model from Section [2.3] for the cyclone. The Stokes numbers of larger particles are
generally higher than the smaller particles as expected, with Stk < 1 satisfied along each point of the trajectory.
This important result, along with the evidence that Re, << 1, validates the use of the EE model in the cyclone.

dp Rep max Rep min < Re, > Stkmaz Sthoin < Stk >
1um 1.62 4.20x 1077 | 248 x 1072 [ 948 x 1071 [ 1.08 x 107 | 1.05 x 1072
0.1pm | 1.24 x 1071 | 1.02x 1078 | 557 x 107* | 2.29 x 1072 | 1.40 x 1077 | 1.36 x 1073

Table 5.2: Key statistics gathered along particle trajectories.

From the experimental evidence from Figure[1.2] particles are expected to be translating through the bound-
ary layers of the cyclone close to the walls. Examining the ensemble averaged particle trajectory for each di-
ameter does not provide useful information, again due to the wildly differing trajectories. Instead the focus is
on a single trajectory for a given diameter, with useful information extracted from these individual tracks. The
trajectory of focus is initialised in the centre of the inlet pipe, away from the influence of the inlet walls. This is
examined for both the largest and smallest particle diameters considered in this work. The trajectories of these
particles, plotted on each coordinate plate is provided in Figure [5.25] Both particle sizes traverse the inlet pipe
in the same manner, with the trajectories diverging as soon as the particles reach the entrance to the cyclone.
The larger 1um particle is thrown out towards the wall centrifugally due to its inertia and translates around
the cyclone close to the wall before impacting the wall towards the cone tip. The smaller 0.1um particle has
a much more chaotic journey, making many more rotations in the outer vortex flow and reaching the cone tip
where it reverses direction and travels up the vortex core. The particle then travels up the vortex core near to
the vortex finder where it continues to make many core rotations for a long period of time. This residence time
of the particle then exceeds t¢,,4, and its trajectory is ended.
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Figure 5.25: Particle trajectories of a 1um and a 0.1pum particle initialised in the centre of the inlet plane.
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Figure 5.26: Particle y* along trajectories of a 1um and a 0.1um particle initialised in the centre of the inlet
plane.

From the experimental evidence and the trajectory plots, it appears that the particles and in particular the
large particles, are moving through the boundary layer. From the individual trajectories, the particle position
in the boundary layer as it moves through the cyclone can be seen in Figure The 1um particle enters the
boundary layer almost immediately after entering the cyclone and then dips into and out of the boundary layer
a few times. After this, the particle becomes trapped in the boundary layer for the remainder of its trajectory.
Once trapped inside the boundary layer, a cyclical pattern is observed with y* quickly increasing towards the
log-law region of the boundary layer (30 < y* < 70) and then swiftly dropping down the viscous sublayer
(y* = 5). This suggests that small scale motions present in the boundary layer outside the viscous sublayer
are transporting these large particles both away and towards the wall, with the final boundary layer structure
encountered causing a wall impact. For the trajectory of the small 0.1um particle, the particle is considered
to only enter the boundary layer on entry to the cyclone where y* = 17. The small particle then translates
through the log-law region as it travels down the cyclone until it reaches the cone tip at ﬁ =~ 0.4, where it is
forced out of the boundary layer and spends the remainder of its time in the vortex core.

The results for the y* values along the particle trajectory provide strong evidence that particles are moving
by the cyclone walls in different layers of the boundary layer dependent on their inertia, with larger particles
occupying the regions of the boundary layer closest to the wall. These different size classes of particles therefore
see differing local fluid conditions, with large particles bouncing between the laminar viscous sublayer and the
inertial log-law region away from the wall and small particles only able to see outer log-law structures. The
high boundary layer resolution of the flow field in Section [5.1]is justified in this highly-swirling flow as particles
both see and respond to these structures as a function of diameter.

Looking ahead to the Eulerian particle model, the relative strength of diffusion due to turbulence versus
Brownian motion can be calculated along the particle trajectory. The diffusion coefficient due to turbulence
used by Balachandar is given by Eq. with the particle strain rate magnitude approximated by the fluid
strain rate magnitude at the particle location. The turbulent Schmidt number is assumed to be unity and the
fluid static temperature is also evaluated along the trajectory. The ratio -2 turb_ along the two trajectories is
shown in Figure[5.27] The diffusion coefficient due to the unresolved turbulent scales is predicted to 5 —8 orders
of magnitude stronger than Brownian motion, with the diffusion ratio an order of magnitude stronger for the
larger 1pm particles than the 0.1pm particles.

The diffusion coefficient ratio can also be calculated at each cell centroid to examine the strength of diffusion
across the domain. Figure [5.28] shows contour plots of this ratio for 0.1um and 1pm particles. The diffusion
is large by the cyclone walls due to high strain rates and in the bin due to a coarser mesh which increases the
subgrid length scale Lg. This is welcome behaviour for the Eulerian model in the bin as skewed cells here will
introduce instabilities into the resulting set of linear equations and a larger diffusion coefficient increases the
size of ap and helps to counteract this effect.

As the Stokes number for a given particle is completely dependent on the local fluid turbulent time scales, an
Eulerian Stokes number field can be estimated from the CFD flow field by dividing 7, by the local Kolmogorov
time scale. Contour plots of the Stokes number field are shown in Figure [5.29] These contour plots give an
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Figure 5.27: % along trajectories of a 1um and a 0.1um particle initialised in the centre of the inlet plane.
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Figure 5.28: Diffusion ratio across the central x-y plane of the cyclone for d, = 0.1um on the left and d, = 1pm
on the right.
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Figure 5.29: Eulerian Stokes number field across the central x-y plane of the cyclone for d,, = 0.1um on the left

and d, = 1pum on the right.

indication as to where the most difficulty will be faced for the EE model, as a larger Stokes number results in a
larger source term. For the 0.1um particles, the maximum Stokes number is 2.4 x 10~2 which is expected to not
pose a challenge numerically. However for the 1um particles, the maximum Stokes number in the contour plot
is 0.96 which does not satisfy Stk << 1. These large values occur in the vortex core and by the cone tip, where
the flow velocities and velocity gradients are largest. Looking ahead to the Eulerian model, these problematic
regions may limit the maximum valid particle diameters which can be used with the EE model in the cyclone,
unless special numerical treatment is employed at these locations. The large diffusion coefficients from the
unresolved turbulent scales at these regions may be able to stabilise the Eulerian model at these locations.
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5.3 Eulerian Particle Cyclone Model

The particulate phase is now tracked in the cyclone in an Eulerian framework. This allows representative
particle volume fractions to be tracked in the cyclone with reasonable estimates of collision frequency and
therefore charge transfer is able to be calculated. The model consists of the transport equation for particle
volume fraction, the charge density and the electric potential. The Eulerian particle velocity field, which
is required for the convection term in both the volume fraction and charge density transport equations, is
provided by the Equilibrium Eulerian velocity.

The computational set-up, which builds upon the model set-up in the Taylor-Green flow from Chapter [ is
provided in Section The primary differences between the cyclone set-up and the Taylor-Green flow is that
the cyclone is a 3D, compressible LES flow field on a non-uniform mesh with walls. The boundary conditions for
the volume fraction, charge density and electric potential are discussed, along with sub-models for the diffusion
coefficient for the particle volume fraction.

The results of both the particle velocity field and volume fraction are presented in Section These are
compared to the Lagrangian particle tracking from Section [5.2] and additionally to experimental evidence for
the volume fraction. A separation efficiency graph can be produced from the Eulerian model and the build-up
of particles by the cyclone walls can be quantitatively analysed, with an assessment made of the accuracy of
the Eulerian model in small, high-speed cyclones.

Having convected the particle volume fraction through the cyclone, both the charge density and the resulting
electric potential and field strength due to the particles predicted from the Eulerian model, are shown. This
provides details as to where particle charge is expected to build-up in the cyclone, data which is completely
missing in the literature. Due to the lack of validation data for this, checks are performed to ensure that the
results are physically reasonable.

Finally concluding remarks are made in Section [5.4] These include design suggestions for cyclones which
can utilise the areas of particle and charge build-up to further increase the separation efficiency of the system.

5.3.1 Discretisation and Computational Set-Up

The transport equation for the volume fraction with EE velocity (Eq. must be filtered in the LES model
which yields Eq. Only the steady-state solution is sought and the temporal derivative can be removed.
As the model is applied to a compressible carrier fluid, the fluid density is included in each term otherwise
the model would not be conservative. The dimensions of each element in the matrix of coefficients (Eq.
therefore have dimensions of mass flow rate. The governing steady transport equation for the particle volume
fraction for the compressible cyclone LES using the EE model becomes

YA s 04 _ o (. . 04,
/ (Pfuza - praB:vi) dA; = / o, (prpuJ oz, 04) av, (5.10)

where the diffusion coefficient D represents the combination of all forms of diffusion presented in Chapter [4
From the LES filtering process, this diffusion coefficient at the very least should include the effects of the
unresolved LES scales from Eq. The effect of excluding this source of diffusion on the volume fraction will
also be analysed. As with the Taylor-Green flow, the diffusion term is central differenced.

The source term is can be discretised as both an explicit and implicit formulation outlined in Section [4.2.1
The source term in this compressible flow for cell P is now

9
So = — (pfwia)P AVp. (5.11)
axi
For the explicit formulation, the terms inside the derivative of the source term are saved as separate variables
as

Sy = — P&, (5.12)
Sy = — i, (5.13)
S, = —ps.a, (5.14)

to provide the complete explicit source term

[0S, S,  88S.
S. = ( T 5t o2 >PAVP, (5.15)
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The derivatives are evaluated again using a modified version of the divergence theorem, however the nodal
values are used instead of the face values for higher accuracy. These nodal values are constructed from linear in-
terpolation between neighbouring cell centroids. For the implicit formulation, the product rule for differentiation
is applied to the source term yielding

S, = min < (apfwi> ,0) AVp, (5.17)
83?2‘ P

__ da 07 i
Sc = pfwlaixlAVP + max ( axi

,0) AVpap. (5.18)

For the convection term, the flux on the faces is not analytical as in the Taylor-Green flow and linear
interpolation is used from the neighbouring cell centroids. The value of the volume fraction on the face is first-
order upwinded for stability. As was seen with the Taylor-Green flow in Section[£.5] this is expected to smear-out
sharp volume fraction gradients in the solution, however it will aid in preventing unphysical oscillations and
negative values in the volume fraction.

For convecting an Eulerian particle phase representing the larger 1um particles, the Stokes number is ex-
pected to be &~ 1 in many places in the domain from Figure [5.29] This is pushing the validity of the EE model
and may result in a non-physical particle velocity field, as observed in the Taylor-Green flow in Section
This source term strength is governed by the Stokes number in Eq. and both fluid and volume fraction
gradients which may cause instabilities in the solution. Relaxation factors will be used as required to prevent
the source term from destabilising the solution.

Boundary conditions are required for « at the domain inlet, outlet and cyclone walls. From the experimental
inlet mass flow rate of the particles from Section the inlet volume fraction is ag ~ 5 x 10~7 which is used
as a Dirichlet boundary condition. As the outlet pipe is long, the volume fraction distribution is expected to
be fully-developed and a Neumann boundary condition of zero gradient normal to the outlet face is specified.
From the separation efficiency results in Section [5.2.1] it was found that a wall-trap boundary condition yielded
the most accurate results for the Lagrangian particles. This is equivalent to an absorbing wall which translates
to a Dirichlet boundary condition of & = 0. Both the trap and reflect wall boundary condition for the volume
fraction will be examined.

For computational cells in the cyclone bin, the source term can be removed. This is done for a number of
reasons: the first is that when Lagrangian particles entered in the bin in Section they were removed from
the simulation. The second is that it saves computational effort in computing source terms in a region which
is not of interest and is not expected to affect the distribution in the cyclone. The third is that large skewed
cells may promote solver divergence in this region and switching off the source term here avoids that. This
switching-off of the source term is preferable to simply setting @ = 0 in the bin as the latter may introduce a
very sharp a gradient near the cone tip. This would cause the source term to become even larger in this region
which is anticipated to be numerically challenging and is therefore avoided.

Convergence of the solution can be monitored using both the normalised residual and the area-averaged
value of « on the outlet face. The area-averaged value of the volume fraction on the outlet face (aoy:) allows
monitoring for when a stationary separation efficiency is reached, which can be calculated as

Aoyt
=1- == 5.19
n ) ( )

A range of particle diameters matching those used in the Lagrangian particle tracking are used. The diameter
then provides the particle relaxation time (with Cunningham slip correction) using Eq. The simulations
are performed using the current instantaneous filtered flow field in the cyclone.

When a converged solution is obtained for the volume fraction, the charge transport equation may be solved
in the domain. The charge transport equation (Eq. [4.101f), when applied to a compressible flow in conservative,
steady form is

48p 042AC, maxT0 _te )
/pfaqvidAi = / prWQdf, (1 —e T ) SiagdV-. (5.20)

The dimensions of each term are now [Q] [T]fl. This equation now requires filtering and Favre-averaging the
fluid density (Eq. [1.13) to yield

— 48~ A max _tc
/ﬁfaqvidAi = /% (1 —e T ) S ag02dV. (5.21)
p P
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Starting with the convection term, the same assumption that charge and velocity are independent from
Chapter [f] can be made. Additionally, charge and volume fraction are assumed to be independent to provide

/ praquidA; — / pricusd A, (5.22)

The non-linear filtered term is split and modelled in the same manner by Shotorban and Balachandar as in
Section 2:3] to yield

o o 0 [ (CsA)?S8., 04
/pchwidAi :/PfqoévidAi*/am (pquctgax» dv. (5.23)

The filtered EE particle velocity can be split as done in Eq. to give

. o 0 (. (CB)’ S, 04 o (. du
/pfqowidAi 7/pfqauidAi7/6xi (pquctaxi dV+/87xi pf'rpuja—xjaq dv. (5.24)

—

For the collisional source term in Eq. the filtered term S? a2 can be written in terms of a subgrid-

mag

scale stress tensor 7; = S’;,’wng - S;’;;az. The volume fraction is expected to be in the dilute regime and
therefore it will be assumed that this SGS stress tensor is negligible to yield the full filtered transport for charge
as

o (C.A)? Sy dé 0 du;
500 dA; — ~ A mag _ ~ » NN
/pfqom%d ! / 8%1 <pfq SCt 8(1/'1 v / 8;162 PsTptly 8xj a v
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The first two source terms on the RHS are both non-linear and can be split using the product rule to
provide an implicit source term formulation in the FVM. The final source term on the RHS is an always-
positive, constant source term for a given cell and will be dealt with explicitly. The source term components
for cell P are

(privicy) o) AVp, (5.26)
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The boundary condition at the inlet can be ¢ = 0, indicating uncharged aerosol entering the cyclone (or net

neutral). At the outlet, it is assumed to be fully developed gjﬁ = 0. The walls can either be earthed §uq; =0

or perfectly insulating %n = 0 and both choices are to be investigated.

The electric potential Poisson equation (Eq. is

g‘fzj dA; = — / %de, (5.28)
which provides the explicit source as
Sp =0, (5.29)
Se = <p’ﬂzj) AVp, (5.30)
€m /) p

from which the electric field can be obtained as the gradient of the potential from Eq.

The equations implemented into Fluent for the Eulerian particle model are provided in Table [5.3| in the
order in which they are solved.
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Name Equation Number
Particle Volume Fraction Transport 5.10
Particle Charge Transport 5.25
Electric Potential 5.28
Electric Field 1.38

Table 5.3: Eulerian particle partial differential equations implemented into Fluent.

5.3.2 Uncharged Results

In this section, the focus is on information regarding the Eulerian particle velocity and volume fraction fields,
with electrostatic quantities covered in the following section. From the solution to the volume fraction transport
equation, the separation efficiency can be calculated and compared to both the Lagrangian particle simulations
and experimental evidence. This is examined for a variety of additional models of the physics, which are
provided by the relevant diffusion coefficients. The steady EE particle velocity field is examined for the range
of particle diameters pertinent to this work, with the relative velocity between the particulate phase and fluid
examined. The volume fraction distribution as a function of wall distance is analysed, information which is
difficult to obtain from Lagrangian particle tracking due to the limited numbers of particles. Evidence of the
particle “streaky bands” seen experimentally from Chapter [I]is also presented.

The accuracy of the various choices for the diffusion coefficient and the wall boundary condition for the
volume fraction is characterised by comparing the resulting separation efficiency to both experiment and the
Lagrangian particles result as shown in Figure for d, = 0.1um. This particle size, being the smallest of
interest, is expected to be the most stable to solve due to the small 7, with the Eulerian particle velocities
being the most accurate. Both types of wall boundary condition over-predict the experimental result by at
least =~ 10% and the Lagrangian particle result by at least 4%. A completely non-physical result of n =~ 1 was
observed for the turbulent diffusion coefficient with the trap wall boundary condition. This occurred as the
particle volume fraction was readily diffused towards the walls where it was removed from the domain. This
informs us that this combination of diffusion coefficient with the wall boundary condition is not appropriate to
accurately determine the separation efficiency.

) “
) II
0.6

0.4

Experiment
Lagrangian Trap
Eulerian Trap
Eulerian Reflect

0.2

0.0~

Figure 5.30: Separation efficiency of d,, = 0.1um from experiment, Lagrangian particle tracking and the various
diffusion and wall boundary conditions. Hatching is only used for the Eulerian cases, indicating which diffusion
model was present.

Also demonstrated from Figure[5.30]is the negligible effect of Brownian diffusion compared to the no diffusion
cases. The separation efficiencies differed from the diffusion-free cases by 0.18% and 0.05% for the trap and
reflect boundary condition respectively. This mirrors what was observed for the Lagrangian particles in Section
and provides some confidence that the physics for the Lagrangian particles is being replicated in the
Eulerian model. Additionally, Brownian diffusion is expected to be at its strongest for these small particles. It
is therefore safe to assume that the effects of Brownian diffusion will be negligible for all particle sizes considered
in this project.
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Figure 5.31: Relative velocity magnitude PDFs in the 4 cyclone sections from top to bottom normalised by the
inlet speed for d, = 0.1um. The EE and Lagrangian particle results are shown on the left and right respectively.

The separation efficiencies predicted for the no diffusion cases are very similar, with the trap wall boundary
condition separation efficiency 0.13% lower than the reflect case. For these small 0.1um particles, which are
expected to not be separated well by the cyclone, the choice of wall boundary condition has very little effect
on the separation efficiency. As the particles become more inertial with increasing d, and Stk, this choice
may have a significant impact as larger particles are expected to travel closer to the cyclone walls from Section
Lastly, the reflect wall BC with turbulent diffusion provided an excellent match to the Lagrangian particle
solution, with a difference of 2%. Whilst including the effects of the unresolved scales on the Lagrangian particles
in Section had a negligible effect on the separation efficiency, for the Eulerian model it has improved the
accuracy as would be expected. An additional benefit to this turbulent diffusion is the increase of terms on the
central coefficient ap and therefore an increase in numerical stability, which may be required as the particle
sizes increase and the EE model is pushed further.

The relative velocity probability density function in the cyclone is examined. This is presented for the
d, = 0.1pm particle phase in Figure m The |w;| value in each cell is weighted by the volume fraction,
weighted by the cell volume. This double weighting is performed by first multiplying the volume fraction by
the volume in each cell, which provides the volume occupied by the particles in each cell (directly proportional
to the number of particles in that cell). The |w;| values in each cell are then weighted by this total particle
volume in the cell.

For these tiny particles, the relative speed between the particles and the fluid is small as expected. The
distribution of relative speeds becomes wider travelling vertically down the cyclone towards the cone tip, where
larger extreme values of relative velocity are expected. The maximum value of relative speed normalised by the
inlet velocity in the entire cyclone is 0.26 and 10.2 for the d, = 0.1um and d, = 1pm particles respectively. The
extreme relative speeds for the largest particle sizes are unphysical, indicating that the EE model is invalidated
in that region (in the cone tip). This is expected to destabilise the solution to the volume fraction transport
equation for large particles as the source term is a function of the gradient of the relative velocity.

The relative velocity predicted by the EE method is compared to the Lagrangian particles result evaluated
at their end positions. This is checked using the end locations from the time integration of the particles used in
Section to provide the Lagrangian statistics. It was found that the statistics were noisy using only N = 4000
particles and instead N = 4 x 10° particles have been tracked using the same integration settings as from Section
(-2 to provide cleaner results.

The relative velocity magnitude for the 0.1um particles in Figure shows both the Eulerian and La-
grangian models predicted that the majority of particles have vanishing normalised relative velocities. This
was to be expected due to the low Stokes numbers of these particles. The EE method predicts larger relative
velocities than was seen for the Lagrangian particles at the end of their integration. This large discrepancy
occurs as the Lagrangian particles of this size range are either trapped in the boundary layers (and moving
slowly with the fluid) or are caught traversing endlessly in the vortex core. The particles in the vortex core are
seen as the large peaks at higher relative speeds near to the top of the cyclone.

The relative velocity magnitude for the larger 1um particles in Figure shows both the Eulerian and
Lagrangian models predicted that the majority of particles have vanishing normalised relative velocities as
for the 0.1um case. The results are noisy for the Lagrangian particles by the cone tip due to the very few
numbers of particles able to reach this location. Both the Eulerian and Lagrangian models show a heavily
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Figure 5.32: Relative velocity magnitude PDF's in the 4 cyclone sections from top to bottom normalised by the
inlet speed for d, = 1um. The EE and Lagrangian particle results are shown on the left and right respectively.
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Figure 5.33: Volume fraction distribution of d, = 0.1um from the various diffusion and wall boundary con-

ditions along a horizontal line at the top of the cyclone. The line passes from (z,y,z) = (O,H — g, f%) to

(0, H— %, %) The vertical dashed lines represent the location of the vortex finder walls.

right-skewed relative speed distribution, however as with the 0.1um particles the EE method predicts much
larger relative velocities. This is especially true close to the cone tip, where the relative velocity is comparable
to the inlet velocity. This further evidences the scale of the numerical instabilities of the model in this region,
which necessitates both relaxation factors in the solution and large diffusion coefficients for convergence.

From the d, = 0.1pm results, 1D slices of the volume fraction distribution across the cyclone can be
examined. This allows predictions of the most probable particle locations to be compared for the various wall
boundary conditions and diffusion coefficients. This distribution at the top of the cyclone parallel to the inlet
flow is provided in Figure [5.33] From the turbulent diffusion result with a trap wall boundary condition, most
of the volume fraction has already diffused towards the walls and been absorbed by this half-turn around the
cyclone. Inside the vortex finder, it is evident that no particle volume fraction was able to leave the cyclone
through the exit pipe which in accordance with the prediction for separation efficiency in Figure [5.30} This
combination of the trap wall BC with turbulent diffusion is expected to continue to provide unphysical results
and is therefore not explored further.

As with the separation efficiency in Figure the Brownian diffusion provided a negligible difference to
using no diffusion for the 1D volume fraction distribution. On Figure[5.33] both of these lines completely overlap.
Brownian diffusion has been shown to provide a negligible effect on the particle volume fraction and will also
be ignored in further studies. For cases with no diffusion, the wall boundary condition had a negligible effect
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Figure 5.34: Volume fraction distribution of d, = 0.1um from the various diffusion and wall boundary conditions

along a horizontal line at the cone tip of the cyclone. The line passes from (x,y, z) = (O, 0, —%) to (O, 0, %)

on the particle volume fraction for these 0.1um particles. The volume fraction peaks close to the walls (both of
the outer cyclone walls and the inner and outer walls of the vortex finder), with peak values around 25% larger
than the inlet volume fraction. In the centre of the vortex core, the volume fraction along this 1D slice reaches
a minimum value of ~ 20% of the inlet value. This provides evidence that the particles leaving the cyclone
are travelling along the edge of the vortex core, where the velocities and velocity gradients are largest. This
qualitatively matches the escape trajectory of a Lagrangian particle in Figure|5.14| and thus the Eulerian model
is capturing the physics of Lagrangian particles even in the outlet pipe. This is also suggestive of numerical
issues in these regions for larger particles using the EE model. The reflect wall BC with turbulent diffusion,
which provided the most accurate separation efficiency in Figure is a smoothed version of its no diffusion
counterpart. Both the maximum and minimum values with this combination are less extreme, however it shares
the same general form as for the no diffusion case. This additional diffusion, as was seen with the Taylor-Green
flow in Chapter [4] smears out the volume fraction distribution and will provide increased numerical stability.
This is expected to be important to provide a converged solution for the larger particle sizes.

The main location identified which is expected to present the greatest numerical difficulties is the cone tip of
the cyclone. A 1D horizontal slice of the volume fraction along this region is shown in Figure Again, the
Brownian diffusion result and the no diffusion result overlap for the reflect wall BC, however for the trap wall
BC, the Brownian diffusion result overlaps the turbulent diffusion. The trap wall boundary condition with both
no and turbulent diffusion informs us that a negligible amount of volume fraction was able to reach the cone tip
and must have been absorbed by the walls towards the top of the cyclone. For this wall BC, Brownian diffusion
was able to diffuse volume fraction away from the walls which prevented it being absorbed and thus was able to
convect to the bottom of the cyclone. Although of a similar form, the trap and reflect wall boundary condition
for Brownian and no diffusion respectively provided different results in this region, unlike at the top of the
cyclone. The reflect wall BC predicts a peak volume fraction 19% higher than the Brownian trap case, which
is the expected trend as the trap wall BC would remove more volume fraction in the domain before reaching
the cone tip. Turbulent diffusion for the reflect wall BC reduced the extremity of the peaks and smoothed the
distribution as with the top of the cyclone. The volume fraction peak values by the cone tip walls are large
compared to the inlet value. The large values, along with large gradients for volume fraction (and the fluid
velocity in this region) creates a powerful source term by the cone tip as expected. The presence of turbulent
diffusion, which smears out the gradients, can reduce the size of the source term in this region and increase the
stability of the linear system, especially when larger-sized particles are used.

The Eulerian model is now run for the same range of particle diameters considered for the Lagrangian
particle tracking. The separation efficiencies calculated from each of the runs is provided in Figure [5.35] where
the experimental and Lagrangian particle tracking result with a trap wall boundary condition are additionally
presented. A well-converged result is unable to be obtained for d, > 2.5um and d, > 2.75um with a trap and
reflect boundary condition with no diffusion respectively, even with a relaxation factor of 0.1. This numerical
issue occurs at a smaller particle diameter for the trap BC as this causes larger volume fraction gradients at
the walls (where o = 0) and creates very strong source terms in these regions. The reflect boundary condition
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Figure 5.35: Separation efficiency plots for the Eulerian model runs compared with both the experimental
functional form and Lagrangian particle tracking results.

provides some additional stability as the volume fraction gradient on the wall is smaller and thus the source
term is also smaller. Both choices of wall boundary condition for the zero diffusion cases yielded similar results,
with the maximum difference in separation efficiency being 0.5%.

The separation efficiencies predicted by the Eulerian model with a reflect wall BC and turbulent diffusion
shown in Figure [5.35] are an excellent match to the Lagrangian particle result across all considered particle
diameters. The effects of the unresolved turbulent scales on the particles, which was found to be negligible
for the Lagrangian particles, reduced the predicted separation efficiency for the Eulerian model. As with the
Lagrangian result, the steepness of the separation efficiency graph is flatter than the experimental result, however
dp,50 was able to be accurately obtained. This provides evidence that this Eulerian model is suitable for use
in small, high-speed cyclones. The inclusion of the diffusion term increased the stability of the model at larger
particle diameters as expected and allowed the entire range of particle diameters of interest to reach a converged
solution.

The excellent match between the Lagrangian and Eulerian models provides strong evidence that the Eulerian
model is capturing the same physics as the Lagrangian model. Both exhibit a discrepancy to the experimental
result with the separation efficiency graph being less steep in the computational results compared to experiment.
The experiments, as discussed in Section [5.2.1] were performed using a polydisperse particulate phase whereas
both the Lagrangian and Eulerian models are assuming a monodisperse particulate phase. This was explained
to only be of significance in the boundary layers. In reality, the presence of large particles traversing through
the boundary layer may act to “mop-up” smaller particles and agglomerate into larger structures which are
easily separated. This would cause a larger fraction of particles which are able to enter the boundary layer
to be separated; thus providing a sharper gradient in the separation efficiency graph. Such phenomena is not
easily captured numerically due to the complex coupling between particles sizes and would not be feasible in
a computationally inexpensive model such as the one examined here. This missing physics provides a possible
explanation to the separation efficiency curve flatness in the computational results compared to the experiment.

The reflect boundary condition for the volume fraction allows a non-zero value for the volume fraction on
the walls itself. A contour plot of & on the cyclone walls is shown in Figure for the turbulent diffusion
case for d, = 1lum. A streaky pattern of volume fraction is observed along the walls similar to the experimental
evidence in Figure [I.2] These streaks are not present for the 0.1um results which suggests that the particle
bands seen experimentally are of the larger particles.

As with the Lagrangian particles, we now check where in the boundary layer the Eulerian model predicts
that the particle phase is travelling through. This comparison is provided in Figures and with the
Lagrangian particle data provided by the end positions of 4 x 10° particles. For the both particle sizes, the
Lagrangian results show particles situated closer to the wall compared to the Eulerian model. This is due to
the lowest y+ value permitted in the Eulerian method being determined by the y+ value of the centroid of the
first cell by the wall. Therefore the distribution at y* < 1 cannot be adequately compared between the models.
The two models at both particle sizes predict the significant accumulation of particles in the boundary layer,
especially close to the wall in the viscous sub-layer y* < 5.
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Figure 5.36: Volume fraction distribution along the cyclone walls for d,, = 1um with a reflect wall boundary
condition and turbulent diffusion. The volume fraction is clipped to the provided range.
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Figure 5.37: PDF of y* vs volume fraction of the 0.1pm particles for N = 4 x 10° Lagrangian particles on the
left with the Eulerian reflect wall BC and turbulent diffusion results on the right. Each row shows the PDF in
a different cyclone section from the top travelling vertically down towards the cone tip.



140 CHAPTER 5. CYCLONE CFD STUDY

1.0 10 | 0.5
M- 0 r 0.0
H ‘||| r0.2 0.5
0.0

| 0.5

o
©
L

o
o
L

I
IS
L

Probability density function

0.2 1
2.5 F0.1
0.0 l Il"‘."'“‘ . -6 . L 0.0
1073 10! 10! 1072 10° 10?

Figure 5.38: PDF of yT vs volume fraction of the 1um particles for N = 4 x 10° Lagrangian particles on the
left with the Eulerian reflect wall BC and turbulent diffusion results on the right. Each row shows the PDF in
a different cyclone section from the top travelling vertically down towards the cone tip.

The Eulerian model for the particle volume fraction, specifying the particle velocity field by the EE method,
with a reflect boundary condition at the walls and turbulent diffusion has provided an excellent match to the
Lagrangian particle result for predicting separation efficiency. The method is stable for all particle diameters of
interest and is able to convect representative volume fractions through the domain. Key physics of the particles
becoming trapped in the boundary layers is also captured. The collision frequency is thus able to be estimated
in a computationally inexpensive manner and predictions for the transport of particle charge and the resulting
electric field in the cyclone are able to made in the following section.
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5.3.3 Charge Discussion

The transport of particle charge and the resulting electric field in the cyclone is now analysed. The charge
distribution is assumed to be fully developed at the outlet, providing (%) = 0. Finally the walls are
*/n

assumed to be perfectly insulating, yielding (%) = 0 at the walls. As with the volume fraction transport

equation, the source terms are “switched-off” in the bin for numerical stability. In this section, only the charge
results for both the smallest and largest particle sizes are investigated with turbulent diffusion, providing lower
and upper bounds in the results for the intermediate particle diameters. A convergence criterion of < 1 x 10~
is used for all transport equations as informed by the Taylor-Green results in Chapter [, with the area-averaged
value of the solution variables on the outlet monitored to ensure a stationary state is reached.

We begin with a net neutral aerosol entering the cyclone, giving the inlet boundary condition for charge
as ¢ = 0. These neutrally charged particles exchanged very little charge from collisions for both particle
diameters, with the distribution of the specific charge normalised by the maximum value in the domain shown
in Figure [5.39, Both particle diameters exhibit increased levels of charge travelling vertically down the cyclone
as expected. As the particles were initially uncharged, the levels of specific charge seen are completely due
to particle-particle collisions in the model. The large increase of charge in the cone tip region evidences the
increased likelihood of collisions in this region. The peak at zero charge for the 1um distribution at the cone
tip is due to the influence of cells in the centre of the vortex core, where no particles (volume fraction) entered
and therefore no charge could be transported to this region.
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Figure 5.39: Specific charge distribution across the 4 cyclone section for d, = 0.1pum on the left and d,, = 1wm on
the right, normalised by the maximum specific charge in each respective domain. The inlet boundary condition
for charge is ¢ = 0.
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The charge distribution along the walls from a “birds-eye” view are shown for d, = 0.1um in Figure
A stream of relatively highly-charged particles can be seen travelling along the top of the cyclone walls from
the inlet, bypassing the outer vortex flow and moving towards the vortex finder. This is the well-known lip-
leakage phenomena and the current study predicts that this creates relatively large levels of charge due to
particle-particle collisions. This lip-leakage of charge was not observed for the larger d, = lum particles;
further evidencing that this physics is only present for small particles which are not expected to be separated.
Smaller lip-leakage “currents” are observed spiralling towards the vortex finder at the top of the cyclone bringing
particles radially inwards and creating charge along the walls. Additionally, a stripy pattern of charge is observed
travelling up the outlet pipe due to the helical particle bands centrifuging particles towards the wall, matching
the pathline of the Lagrangian particle trajectory from Figure [5.14] The observed build-up of charge on the
walls mirrors the results from the Eulerian model of Kolehmainen et al. in Section 2.3

The resulting electric potential from the particle charge distribution is then solved for. The walls are assumed
to be grounded, giving the wall boundary condition as ¢,, = 0. At the inlet, the electric potential is set to
zero and at the outlet the electric potential is assumed to be fully-developed. Due to the low charge levels,
the electric potential is also very small. The gradient of the electric potential gives the electric field strength,
with the distribution in each section of the cyclone provided in Figure The electric field of the d, = 1um
particles is around 2 orders of magnitude stronger than the d, = 0.1um particles and the distribution of the
electric field in the cyclone is different for both diameters. For the larger 1um particles, the electric field
strength is dominated by the cone tip region, where the distribution is skewed to the right. For the smaller
0.1um particles, the electric field in the top section due to particle-particle collisions is weakest. In the top of
the conical section of the cyclone, the electric field strength is greatest. This is due to the particles which have
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Figure 5.40: Specific charge distribution along the cyclone walls for d, = 0.1pm with a reflect wall boundary
condition and turbulent diffusion normalised by the maximum value in the domain.
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Figure 5.41: Electric field strength magnitude across the 4 cyclone section for d, = 0.1pm on the left and
d, = 1pm on the right, normalised by the limit for electrical breakdown.

been charged in other sections of the cyclone traversing up through the vortex core to escape the cyclone. At
the cone tip, a right-skewed distribution for the electric field strength is observed as for the larger particles.

The transport equations for both charge and electric potential in the cyclone are solved again for two
different inlet boundary conditions for the specific charge. Instead of neutral, the particles entering the cyclone
are assumed to already be charged, with one boundary condition assuming (), = le and the other @, = 2e
matching the charge state of the aerosol after the neutraliser from the experiments performed in Chapter|3] The
charge levels observed for these boundary conditions were many orders of magnitude greater than the uncharged
inlet BC, with the results of both charged boundary conditions having identical forms and the magnitudes scaled
up by a factor of 2 for the @, = 2e BC relative to @, = le. Only the results for @, = 2e will be presented.

Figure shows the specific charge distributions in the cyclone at the high charge inlet BC. Both the small
and larger particle diameters show an almost identical charge distribution, with the larger d, = 1um particles
exhibiting a peak around zero in the lower sections of the cyclone in the vortex core where these larger particles
could not enter. In these highly charged inlet cases, particle collisions are seen to reduce the charge magnitudes
of the particles for the given triboelectric constants obtained from experiment and is why in these cases the
charge distribution in the cone tip region is the lowest. This exchange of charge to produce more neutral and
stable particles is suggestive that agglomeration would physically be occurring in the cyclone cone tip.

The electric field strength distribution for the highly-charged inlet cases in Figure[5.43|shows that the electric
field strength is 2-3 orders of magnitude from the air breakdown voltage Ej ~ 3 x 10°V/m [61]. For particles
with charging properties of salt at this highly-charged inlet state, air breakdown is not expected to occur. This is
suggestive that for higher-charging, larger volume fraction cases, the model would predict electrical breakdown
in the cyclone. The electric field strengths for both particle diameters are scaled-up versions of the neutral inlet
cases in Figure [5.41] It was also observed that the electric field strength vector is pointed directly towards the
cyclone walls, therefore electrostatic forces acting on the particles act in the wall-normal direction and can both
aid or inhibit the separation of charged particles.
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Figure 5.42: Specific charge distribution across the 4 cyclone section for d, = 0.1ym on the left and d, = 1um
on the right, normalised by the inlet specific charge boundary condition. The inlet boundary condition for
specific charge is §o = 0.032974C/kyg.
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Figure 5.43: Electric field strength magnitude across the 4 cyclone section for d, = 0.1um on the left and
d, = 1pm on the right, normalised by the limit for electrical breakdown for the highly-charged inlet boundary
condition.
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This Eulerian charge model has yielded sensible results in terms of the build-up of charge and resulting
electric fields in the cyclone. The model presented here was formulated to be computationally inexpensive and
thus has simplified reality. One such exclusion of physics is the polarity of the charged particles. This model
has assumed that particles will charge positively through tribocharging and that particles will never obtain a
negative charge. This was informed by the salt particles charging positively in the tribocharging experiments in
Chapter [3] In reality, the particulate phase will contain negatively charged particles and a net neutral aerosol
will have a mix of the two. To more accurately account for the negative particles, an additional charge transport
equation could be implemented, with the summation of the two Eulerian fields used as the input for the electric
potential Poisson equation. In order to prevent the two from cancelling-out, different tribocharging constants
could be used for both polarities (the salt was found to more-readily charge positive from the neutraliser in
Chapter [3)). This would double the computational effort required after solving for the volume fraction and
would represent a more expensive computational model.

Another consequence of assuming all-positive particles is that the electric field will always point away from
regions of charge. If the particles were negatively charged, the field would point in the opposite direction. In
spite of this deficiency, the net absolute charge would be the same and so the areas of net charge build-up
presented here are still relevant and can inform where charge and electric breakdown are likely to occur within
the domain.

Additionally, the tribocharging constants have been derived from collisions between sub-micron salt particles
and a metal plate. For particle-particle collisions, these constants would be expected to differ somewhat.
Obtaining such experimental data was not possible from the set-up in Chapter [8] With this additional data,
a distinction could be made in the computational model between particle-wall and particle-particle charging.
In the current simulations, the walls are modelled as grounded for electric potential. Determining a boundary
condition on the walls which is consistent for both the charge and electric potential transport equations is
predicted to be very difficult and beyond the scope of this work.

The last piece of missing charge physics in the model not yet discussed is the coupling between the volume
fraction and the charge. In reality, a large build-up of positive charge in an area will repel more positive charge
from entering the same area. This means that the build-up of charge in the boundary layers by the cyclone
walls may act to repel additional charged particles from entering the boundary layer and being separated. This
situation is made even more complex if the charge of each individual particle size is considered. Clearly such
complex coupling makes the model intractable for solution. For the monodisperse case in a standard two-fluid
model, this coupling could be relatively easily be implemented by the addition of electrostatic repulsion source
terms in the Eulerian particle velocity momentum equations. In this work, there are no PDE’s for the particle
momenta and instead it is specified algebraically using the EE method. There is no clear approach with the
addition of this electrostatic force into the EE velocity field and therefore this is not possible to be implemented
here. This coupling requires solving the more computationally-involved two-fluid equations and is not explored
in this work.

The results of the charge model implementation has provided suggestive results on both the charge distribu-
tion and the resulting electric field in the cyclone. For neutrally-charged particles entering the cyclone, charge
is produced through collisions, especially in the cone tip region for all particle diameters considered. Charge is
seen to travel along insulating walls and for small particles, this charge is transported by the lip-leakage flow
towards the vortex finder. The resulting electric field is strongest by the cone tip as expected for the larger
particles, however for the smallest particles the electric field is strongest near the vortex finder due to a com-
bination of the lip-leakage flow and the transport of charge up the vortex core. Collisions from highly-charged
particles entering the cyclone reduced the magnitude of charge present. This charging model assumed that the
particulate phase had the same charging properties as small salt particles from experiments in Chapter [3] For
silica-based test dust, charge levels are expected to be much larger and air breakdown is highly possible.
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5.4 Conclusion

A compressible LES of a cyclone was presented with spatial and temporal resolution comparable to a direct
numerical simulation, with flow rates matching experiment. The flow field is complex, 3D and highly-swirling
and turbulent structures in the boundary layer were partially observed. An in-depth study on accurately
computing the separation efficiency using Lagrangian particles was performed, with an excellent match to
experiment observed for larger particles and for d, 50. The separation efficiencies of the smallest particles were
over-predicted due to missing physics including agglomeration. The Lagrangian particle tracking also provided
useful statistics of Re, and Stk along the particle trajectory, showing that both of these dimensionless quantities
are small in this flow.

These statistics validated the use of a computationally efficient method of computing the Eulerian particle
velocity field using the EE method. Solving for the volume fraction transport equation allowed estimation of
a separation efficiency, which was an excellent match to the Lagrangian particle result for reflecting walls and
including the effects of the filtered scales. The Eulerian results exhibited the same physics as observed for the
Lagrangian particles: particle accumulation at the walls in the boundary layer and at the cone tip. Streaky bands
of volume fraction were seen along the cyclone walls for the larger particles, matching experimental evidence
from Chapter [I} This has provided strong evidence that this method is applicable to this highly-swirling flow
and that the volume fraction distribution in the cyclone is accurate.

This was then used in speculative simulations of the charge and electric field in the cyclone. These results
are only suggestive due to the lack of validation and/or data available for these quantities in a cyclone. However
the charge model from literature was validated at these size ranges from experiments in Chapter [3 the Eulerian
model was both tested and validated in strong streamline curvature in Chapter 4] and matched the Lagrangian
separation efficiency in this chapter. Therefore there is good reason to examine the results. Collisions were
seen to dominate at the cone tip as expected, with neutrally-charged particles charging the most in this region
of the cyclone. The charge for small particles was seen to mimic the lip-leakage phenomenon and flow along
the top of the cyclone wall towards the vortex finder. The charge and electric field strengths were very small
for neutrally charged particles as the charging constants used were that of salt. Using silica-based powders is
expected to produce much more charge than is observed for salt. Having charged particles enter the cyclone
(with charge levels matching that from the neutraliser from experiments) resulted in much stronger electric
fields in the cyclone, with the vector field pointed towards the walls. The electric field strength results for the
salt were approximately 1% of the breakdown field strength for air. This suggests that corona discharge to air
is likely at higher volume fractions and for more charge-prone particles.
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Chapter 6

Conclusion

In this study, the relevant physics and methods of computationally modelling the multiphase system of a swirling,
high-speed flow applied to a small cyclone has been investigated. Experimental evidence provided by the project
sponsor appeared to show particles moving in streaky bands along the walls of the cyclone. This suggested that
turbulent structures in the near-wall region were entraining particles into these bands, in which these dense
clustering of particles are expected to exchange charge through collisions. An inexpensive computational model
which is able to capture these physics was sought in the literature, which would enable predictions of both
separation efficiency and charge in the cyclone.

From the literature, LES was found to be the most appropriate method to model the fluid flow in order to
both capture the vortex core precession to match the experimental pressure drop and to attempt to resolve the
near-wall structures which would be seen by the particles. The commonly-used RANS turbulence models used
for cyclones in the literature will average-out these small-scale structures, for which the particles are expected
to interact with due to their low Stokes numbers.

A simple model by Ireland for tribocharging enabled the charge transfer to be predicted from a binary particle
collision by suitable choice of tune-able model constants. This model, along with many other tribocharging
models present in the literature were validated for large &~ 1mm particles; 3 — 4 orders of magnitude larger than
the particles seen by the cyclone of interest. This gap in the literature required experiments to be performed in
order to both validate the model at these small scales and to estimate the tune-able model constants.

For low mass loadings, one-way coupling between the particle and the fluid was assumed. This allowed
Lagrangian particles to be accurately tracked individually through the flow field which enabled estimates of
separation efficiency to be made. As the volume fraction is expected to become moderate near the walls and
cone tip, particle-particle collisions are expected to be significant in these regions. Capturing these collisions in
a Lagrangian framework is not computationally feasible and so Eulerian particle models were explored. From
these, the Equilibrium Eulerian model was selected as it does not require the solution of any additional PDEs
for the particle momenta and is able to capture both preferential accumulation and turbophoresis for low Stokes
number particles. This model was validated for use in isotropic turbulence but not for a highly-swirling flow.
This necessitated validation to be performed of the model, which additionally provided useful testing for the
Eulerian model.

The tribocharging experiments required fine control over sub-micron particles. Controlling individual par-
ticles of this size is difficult and so the combined effect of many particles had to be used instead. To maintain
control over the particulate phase, an aerosol beam was used to aerodynamically focus particles. These were
collided with a metal plate in experiments analogous to single particle experiments performed in the literature
for much larger particles. The saturation of voltage on the plate due to particle-impact matched the litera-
ture for larger particles, with an exponential capacitor-like charging of the plate observed. This provided the
validation required of the model at these small sizes along with the necessary constants for the charge model.

To validate the Eulerian model, an analytical flow field was used which featured strong streamline curvature
and gradients in the flow to stress-test the model. A 2D Taylor-Green flow was used, with the eddy length and
velocity scales indicative of the Kolmogorov scales of turbulence in the cyclone. The full discretisation of the
volume fraction transport equation was shown for this flow, with methods of stabilising the solution explored.
This centred around the decomposition of the particle velocity field using the definition of the Equilibrium
Eulerian velocity into the sum of the fluid and relative velocity terms to split the convective term. This enabled
the volume fraction to be convected by a divergence-free flow field, with the relative velocity providing a non-
linear source term. Lagrangian particle tracking was performed in this flow to provide a reference with which
to compare the Eulerian results to inform the choice of numerical integration scheme for use in the cyclone.
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The Eulerian model was found to predict the preferential accumulation of particles as expected, with numerical
issues observed as the Stokes number increased. These issues were identified as a direct result of neglecting the
influence of collisions on the particles which would predict ever-increasing particle build-up as both Stk and
the fineness of the grid increases. Diffusion coefficients were found to increase the stability of the system and
extended the model to larger Stokes numbers.

An LES of a cyclone was performed with excellent spatial resolution and a temporal resolution comparable
to a direct numerical simulation. The walls were well-resolved in the wall-normal direction, however the filter
width is large in these regions due to the high aspect ratio cells in the inflation layers. The experimental
pressure drop used as the boundary condition provided the correct mass flow rate observed from experiment
and the tangential velocity profile matches the correct Rankine vortex-like form seen in the literature. The
boundary layer normalised velocity profile was in good agreement with flat-plate theory, with the boundary
layers along the concave walls being much thinner and stable. Streaky structures were observed in this concave
boundary layer via the Q-criterion qualitatively matching the particle bands observed from experiment and thus
suggesting that these near-wall structures are the cause of these particle bands.

Lagrangian particle tracking in the cyclone provided a good match to experimental evidence for the sep-
aration efficiency, especially for the match of dp50. The computational results over predicted the separation
efficiency of particles < 0.2um which is expected to be due to missing physics of agglomeration at this size range.
This additionally resulted in the gradient of the predicted separation curve being less steep than experiment.
The statistics along particle trajectories provided the Stokes numbers which were used to test the Eulerian
model in the Taylor-Green flow in order to make the validation representative. The particle position in the
boundary layer along the trajectory was also examined, with larger particles found to sit deeper in the boundary
layer due to larger centrifugal forces acting on them. Larger particles were found to become trapped in the
boundary layers, whilst small particles possessed the ability to enter the boundary layer and leave shortly after.
This entrapment is suggestive that the particle bands seen experimentally are caused by the larger particles in
the flow.

The Eulerian model for a range of wall boundary conditions and diffusion coefficients was applied to the
cyclone. A reflect wall boundary condition, along with including the effects of the unresolved SGS, provided an
excellent match to the Lagrangian particle result for separation efficiency. The particle volume fraction along
the walls featured a streaky pattern matching the experimental particle bands for the largest particles, with
this pattern not clearly observed for the small particles. This was in further agreement with the Lagrangian
results. Novel predictions for the charge, electric potential and electric field strength in the cyclone were made
using the Eulerian particle model, with charge shown to accumulate by the cyclone walls and especially by the
cone tip.
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6.1 Suggestions For Future Work

The Modified Equilibrium Eulerian method, which was not utilised due to numerical instability of the model
in regions of large compressive strain, may be able to provide a more accurate particle velocity field. This
would also save the computational expense of solving PDEs for the particle momentum at the cost of a small
matrix inversion at all points in the flow. Ferry et al discussed simply replacing any extreme values of particle
velocity with a “reasonable” value, however this would result in a non-smooth velocity field which is problematic
when derivatives of this flow field are taken for the transport equation [I66]. Their suggested numerical fix has
been shown to not work and thus future work could examine how to ensure the matrix inversion produces
“reasonable” particle velocities whilst keeping the particle velocity field smooth.

The EE method has been used to track a monodisperse particulate phase in this work. The model could be
extended to polydisperse systems using the method of moments. Particle collisions at a certain particle diameter
can provide a source term for the creation of a larger diameter phase and thus effects of agglomeration can be
included. This would be expected to cause small particles to agglomerate into larger particles which would
result in increased separation efficiency, thus providing a better match to experiment for very small particles.

The aerosol beam provided a method of controlling sub-micron particles and aerodynamically focusing them
onto a metal plate. The experimental set-up could be adapted to allow two aerosol beams to collide, with the
pre and post-impact net charges measured on the aerosol. All collisions could be assumed to be particle-particle
which would provide tribocharging data not present in the literature for these small particle sizes.

The Eulerian model presented in this work has assumed one-way coupling with the fluid influencing the
particulate phase due to low mass fractions. The additional coupling between the resulting electric field on the
transport of charged particles has been neglected. Including this coupling and retaining an algebraic relation for
the particle momenta is unlikely to be feasible. If this coupling is expected to be significant, the computational
saving associated with the EE method must be abandoned and the full two-fluid model used instead, with the
electrostatic force from the electric field acting on the charged particles accounted for as a source term in the
transport equations for the particle momentum.
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Appendix A

Geometric Swirl Number Derivation

The swirl number is given by Eq. repeated here as
-~ L,D./2

To aid in the derivation of a simpler geometric swirl number, a relevant diagram is provided in Figure

Sw

It is assumed that u; ~ ug and the effects of viscosity are negligible. The flow is also considered incompress-
ible. The input flux of angular momentum leaving the cyclone is

DS

Lo = 1itin (pfuv7r8€> . (A1)

The input flux of linear momentum entering the cyclone is
Lz = mm (pr()ahb) . (AQ)

Substitution into the definition of swirl number yields
,, TD?

Sw=—-—¢. A3
v ug 4apb (A-3)

The velocities can be eliminated from conservation arguments. Angular velocity within the cyclone must be
conserved giving

ur D = uy D, (A4)
Using u; = ug and rearranging for Z—O provides
U _ D
Uuo B De

Up —>

D

Figure A.1: 2D section of the cyclone geometry on the x-z plane with labelled representative velocities. The
black central dot indicates the location of the origin of the coordinate system. The outer swirl velocity is denoted
by us, with the swirl velocity of the vortex core within the vortex finder given by wu,,.
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Substitution of this velocity ratio into Eq. finally yields the equation for the geometric swirl number (Eq.
1.4)

7DD
= °. A.
Sw, Tarh (A.5)




Appendix B

Rankine Vortex

The fluid flow in a cyclone is commonly simplified to an analytical vortex flow to aid in analysis. The standard
comparison flow is that of a Rankine vortex [IT], with tangential velocity given by

wn(r) = {Cér,A if |r| <.R (B.1)
Vi otherwise.

Here r is the radial vector from the origin (with # representing its unit vector), R is the radius at which point

the flow changes character and C, is a constant related to the circulation of the vortex and determines its

strength. The tangential velocity profile for |r| < R represents a rigid body rotation of the fluid in this region,

with the velocity profile outside this region given by an irrotational vortex [I1]. The tangential velocity profiles

for these vortices are provided in Figure

Away from the core of a “real” vortex (r| > R), viscosity effects from the fluid are negligible and the
irrotational, potential flow solution is seen. This is inversely proportional to the radius and so the velocity
decreases with increasing radial distance. As the radius decreases, the flow speeds up until a maximum value is
reached where |r| = R. For|r| < R, viscosity effects become prominent and the angular momentum is dissipated
in the “eye”. If the effects of viscosity were ignored, the vortex would have a singularity at the origin which is
unphysical.

The Rankine vortex represents an idealisation of the main cyclone flow, with the outer vortex flow given by
an irrotational vortex and a solid body rotation modelling the viscosity effects within the vortex core. Being
idealised, the Rankine vortex neglects the transfer of angular momentum between different radial layers due
to both viscosity and from small turbulent structures [II]. Cyclones are also wall-bounded flows and as r
approaches the local cyclone radius, viscosity at the wall dominates and a boundary layer is present. These
additional phenomena will distort this ideal Rankine vortex which may cause wildly different particle trajectories
in this flow, thus missing important physics required for predicting cyclone separation efficiency. A more complex
CFD model is required to acquire the flow field in the cyclone accurately.
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Figure B.1: Dimensionless tangential velocity profile for the rigid body, irrotational and Rankine vortices, each
with common R and C. The radial distance is normalised with the cut-off radius R.
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Appendix C

MEE Matrix Inversion: Proof by
Contradiction

The matrix to be inverted in the MEE method is
(I +7, (vu)T) . (C.1)
Following Ferry et al., an interpolation factor (y, where 0 < (y <1 is introduced as [166]
(I + (57 (Vu)T) . (C.2)

To find a value for (; to ensure invertibility, they require the second Cj» and third Cj3 matrix invariants of
A= (Vu)" given as

Ciy = Q22 Q23 + ass asi + aip a2 7 (C3)
azz2 433 aiz ai ag1  G22
Cig = det (A) 5 (C4)
where the lowercase a represents the elements of the matrix A. They then define a new variable 0; as
0 =7 (8max (0,~Ci2)” + 8 max (0, ~C;»)°) (C.5)
which determines the interpolation factor as
1, ifoy <1
=<0, if0r > 2 (C.6)
1cos(nty) otherwise.

2

Ferry et al. claim that this procedure guarantees that det (I + (1 (Vu)T) > 0.207 [I66]. To prove that
this is incorrect by contradiction we assume that this claim is true and look at a case where 7, is unity and
(Vu)" is given by

—0.8848029868419878  —0.11105094208205613  —0.02248538330710992
(Vu)T = A= —-0.05733074797076698  —0.9320998847607228  —0.037804483047788606 | . (C.7)
—0.20238846705879077 —0.016504552412230145 —0.13944578061155377

The invariants of this matrix are

Ciz = 1.0665428393943164, (C.8)
Ciz = —0.11019368317321844, (C.9)

providing
0f ~ 0.678. (C.10)
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From Eq. as 0y < 1, the interpolation factor produced would be unity and no interpolation is required
from the MEE result. The matrix to invert is therefore

0.11519701315801223  —0.11105094208205613  —0.02248538330710992
(I+Tp (Vu)T): —0.05733074797076698  0.06790011523927719  —0.037804483047788606 | . (C.11)
—0.20238846705879077 —0.016504552412230145 0.8605542193884462

The determinant of this matrix is ~ 5.04 x 10~7. This is a contradiction to the original assumption and thus this
method does not guarantee that det (I +(rmp (Vu)T> > 0.207. This matrix along with many others disproving

the claim were found from a brute-force search using 1 x 10° matrices with elements drawn from a uniform
random distribution between 0 and 1, of which over 99% of these random matrices invalidated the claim made
by Ferry et al.



Appendix D

Scanning Mobility Particle Sizer
Theory of Operation

The Scanning Mobility Particle Sizer (SMPS) is used to measure the size distribution of an aerosol sample.
The SMPS consists of three pieces of equipment: a TSI Electrostatic Classifier, a long Differential Mobility
Analyser (DMA) and a Condensation Particle counter (CPC). The aerosol stream enters the classifier and is
passed through an impactor. This removes larger particles by inertial impaction. The aerosol then enters a
Krypton-85 neutraliser which produces a known charge state on the aerosol. The charged aerosol enters the
DMA, where the particles are separated by electrical mobility. Particles of a selected electrical mobility then
enter the CPC to be counted optically.

At the front of the classifier is an impactor, which removes particles larger than a known aerodynamic
diameter in order to remove their contribution to multiply-charged aerosols by inertial impaction [193]. The
cut diameter of the impactor, dj 50, is the aerodynamic diameter for which the impactor has an efficiency of
50%. This cut diameter is calculated by considering the Stokes number of a cut-sized particle passing through
the impactor

Sthso = 250, (D.1)
Tf
with

de?; 50Cc

Tp’50 = 187T (D.Z)
D,

= —— D.3
Tf 2u” ) ( )

where D,, is the impactor nozzle diameter and wu,, is the velocity through the impactor nozzle. Rearrangement

. 2
and substitution of the fluid volumetric flow rate Vy = % yields

9w Stk D3
dpso = o | o mo0l P (D.4)
4ppCCVf

where Stksg = 0.23 and the nozzle diameter D,, = 4.57 x 10~*m. The Cunningham slip correction factor is
defined in Eq. the volumetric flow rate through the impactor was Vf = 0.3lpm and the particles were salt
with a density of 2170kgm 3. The equation for the cut-off diameter is implicit due to the Cunningham slip
term and for the experiments detailed in Chapter [3| the cut-off diameter of the impactor was dj 50 = 459nm.

After the impactor, the aerosol is passed through a Krypton-85 radioactive source which undergoes beta
decay to create a well-defined charged distribution on the aerosol. This distribution is given by Fuchs’ diffusion
theory [55] and is modelled for particles under a micron from the model by Wiedensohler et al. [194]. This
calculates the fraction f, of particles with IV elementary charges as

5 a;(N)(In d’L '
fp(N):loz"*" ( )< (=38 9)> : (D.5)
This equation is valid for the size ranges Inm < dp, < 1um for N = —1,0,1 and 20nm < d, < 1pum for
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APPENDIX D. SCANNING MOBILITY PARTICLE SIZER THEORY OF OPERATION
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Figure D.1: DMA principle of operation. Three positively charged particles of different diameters (and therefore
different mobilities) migrate through the DMA with different trajectories as shown by the dashed line. One
particle has the correct electrical mobility to leave through the thin slit to be counted downstream.
N —

2,2. For particles carrying 3 or more charges, the derivation by Gunn and Woessner is used [195]
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where 7= is the ion mobility ratio. The electrical mobility of a particle Z,, is defined as

neC,

P 37T,dep.

(D.7)
The aerosol, with known charge state, is then injected into the top of the DMA and travels down the DMA
due to the sheath flow. An electric field is set-up along the DMA which causes the charged particles to migrate

horizontally due to the electrostatic force. Particles of a narrow range of electrical mobilities are able to leave
through a thin slit by the base of the DMA to flow further downstream. Figure illustrates the working
principle of the DMA.

The set electrical mobility Z; on the DMA is given by

Z* Vsh Q

P 2V, L nrl’

(D.8)
where Vy;, = 3lpm is the sheath flow rate, L = 0.44369m is the length between the inlet and the exit slit,

r1 = 0.00937m is the inner radius of the annular space, 72 = 0.01961m is the outer radius of the annular space
and V, is the average voltage of the inner collector rods. This voltage is swept through a range of values during

a scan to allow the CPC to measure the concentration of particles with various electrical mobility. This voltage
sweep as a function of time is given by

t—t

£
‘/vc ma tscan—tf
Ve(t) = Veuy ( V " > ) (D.9)

where V. ;¢ is the starting voltage, Ve maz is the end voltage, ¢; is the time particles need to pass through the

DMA and tgca, = 90s is the scan time. Particles with a known electrical mobility exiting the DMA then travel
to the CPC to be counted. The CPC consists of an aerosol beam which fires particles perpendicular to a laser
pointed at a photodetector. When a particle passes through the laser beam, a drop in voltage is observed at
the photodetector and a particle is counted. At higher particle concentrations, two particles may pass through
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the laser at the same time (coincidence). A coincidence correction is used to extend the range of concentrations
which can be counted in this manner. The manufacturer’s maximum stated error for this method of counting
is 5%.

For concentrations larger than 5 x 10%p/cc, single particle counting is not possible due to coincidence and
instead the light scattered by the particles from the laser beam is measured to determine the concentration. The
scattered light is focused by lenses, which are perpendicular to both the laser and the aerosol beam, onto another
photodetector which determines concentration through calibration. This method of determining concentration
is less accurate than single particle counting (maximum error of 10%) and was not used during the experiments
performed.

The CPC is connected to the DMA by conductive tubing. The transport time for the particles through
this tubing, along with the internal response time of the detector is the delay time ¢4. Particles k¢ (t) counted
during a scan by the CPC at time ¢ will have an electrical mobility corresponding to ¢ — t4

ke (t) = ke(Z(t — ta)). (D.10)

The classifier records the number of counted particles in time intervals of At = 0.02s whilst the DMA
voltage raises exponentially during a scan. All further calculations are made in 192 size bins j. These are either
geometrically or logarithmically distributed between 1nm and 1um. The particle counts are first mapped from
time intervals ¢ into size bins j by

At; € At;
K.j= ijAit (D.11)

K3

The raw particle counts k. ; for the size bins j are used to calculate the particle number concentration dn; in
each size bin at the inlet of the SMPS (assuming all particles were singly charged)

dn.; = kc’j ®q Z(lewJ) - Z(dup,])
’ ‘/sensortbin,j fl,jndet,jpj AZ(dm,]) ’

(D.12)

where Viensor is the volumetric flow rate through the sensor of the CPC (m3/s), thin,; is the sampling time
interval during which a size bin j can receive particles during a scan (s), ®4 is the eventual dilution due to
DMA bypass flow, fi ; is the fraction of singly charged particles for the midpoint diameter d,, ; of each size bin
J, dm,; is the midpoint diameter of each size bin j (m), nges,; is the detection efficiency of the particle detector
for each size bin j, P; is the penetration of particles with size d,, ; to correct for diffusion losses.

The data inversion assumes that all particles leaving the DMA and counted by the CPC are singly charged.
There will be particles with more than one charge in the monodisperse flow (especially larger ones) to be
counted. A correction is needed to eliminate this error, known as the multiple charge correction (MCC). The
requirement for this correction to be valid is that the largest bin containing particles may only contain singly
charged particles. This is true either if the size distribution does not contain particles larger than the upper
boundary of the selected SMPS measurement range, or if the impactor removes such larger particles. Starting
from the topmost size bin j, the multiple charge correction for up to 6 charges is given by

1 6
dnvicoy =dn;— 3 Z;—ldn (D.13)
i=j—11=2 P11

The measured size distribution under-represents small particles due to diffusion losses in transit. These
losses are characterised in terms of penetration P through a tube
Nout

P = . (D.14)

Nin

Diffusion losses through a tube at fixed volumetric flow rate and laminar flow is not a function of tubing
diameter as the additional distance the particles must travel to the walls in a wider tube is offset by a longer
residence time. The Reynolds number of the flow through the conductive tubing is Re ~ 90 suggesting the flow
is laminar. Circular tube penetrations are given by Gormley and Kennedy [196].
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Appendix F

LES Governing Equations

The compressible, spatially-filtered Navier-Stokes equations are given by [197]

Ops | 9(pyiy)

=0 F.1
Opsai  0(priity) _ 0P L 0fy 0 (pyimti; — prisi;) )
ot du; Ox;  Ox; Ox; ’ :
0psE, O ('Of f“Eg) I O 075
8t + a[L’] = 87{[,‘] (Eguz Egui + PUZ P'U/L qh,l) + 8Tj, (F?))
. (oa; oa; 2. Ow
Y1 ) F.4
Tz_] N’f (axj axl 3 J ax ) ( )
. ke OTy
T3 F.5
Wi == 5.C, Om; (F.5)
P = psRTy, (F.6)
ey = Cny, 7
Eg = ét Uk2Uk (FS)

In these equations, 7;; is the deviatoric stress tensor, E, is the total energy, g, is the heat flux, d;; is
the Kronecker delta, k; is the thermal conductivity, C, is the specific heat at constant pressure, T is the
temperature, C,, is the specific heat at constant volume and e is the internal energy. Variables with a~ and a”
represent Favre-averaged and spatially filtered quantities (Eq. respectively.

The unresolved or sub-grid scales (SGS) of the LES require modelling. As the larger scales are resolved
in the LES, only the small scales are expected to modelled. From Kolmogorov’s hypotheses, these eddies are
isotropic and have a universal form. The SGS models are based on these hypotheses, leading to relatively
simple eddy-viscosity models. Here we present the wall-adapting local eddy-viscosity (WALE) model. The
WALE subgrid model is based on the Boussinesq hypothesis [30] (Eq. and provides the correct wall
asymptotic behaviour for wall bounded flows such as a cyclone. The WALE model also returns zero turbulent
viscosity for laminar zones in the domain and at the wall, and accounts for the contribution of regions where
vorticity is more dominant than strain; making the model more appropriate than other “sub-grid” models such
as Smagorinsky-Lilly [T98]. The modelled term is

- du;  du,; 2 _ dug
—0 / /. = 0 71’ J — — 75 .. F.g
Pru;uy Ht (dmj + dl‘z> 3,ut dry ij ( )
The mixing length is calculated by
Ly = min (kd, C,A), (F.10)

where the Von Karman constant x = 0.41 [I99], d is the distance to the nearest wall, the local grid scale A = V'3
[200] where V is the volume of the computational cell and the WALE constant C,, has been set to 0.325 for its
suitability for a large range of flows [201]. The turbulent viscosity in the WALE model [198] is modelled as Eq.
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(gd,gd.) :

ijig

5 5 (F.11)
(g”gw)2(g%g%)4

with the second bracket in the denominator of Eq. given by [198]

fu = prL;

A 1 /a6~ Ao A 2 [ aoa -

d gd __ 242 202 202

855 = 2 (8287 +0202) + £ (8202) + 2, (F.12)

where
.1 (da; day
Q== — - F.1
J 2 (dxj d.’lﬁz) ’ ( 3>

5% = $i;Sij, (F.14)
0% = O, (F.15)

j = Sikgkaleli~ (F.16)



References

[1]

W. Mazyan, A. Ahmadi, J. Brinkerhoff, H. Ahmed, M. Hoorfar, Enhancement of cyclone solid particle
separation performance based on geometrical modification: Numerical analysis, Separation and Purifi-
cation Technology 191 (Supplement C) (2018) 276 — 285. doi:https://doi.org/10.1016/j.seppur.
2017.09.040.

URL http://www.sciencedirect.com/science/article/pii/S1383586617312212

F. Parvaz, S. H. Hosseini, G. Ahmadi, K. Elsayed, Impacts of the vortex finder eccentricity on the flow
pattern and performance of a gas cyclone, Separation and Purification Technology 187 (Supplement C)
(2017) 1 — 13. doi:https://doi.org/10.1016/j.seppur.2017.06.046.

URL http://www.sciencedirect.com/science/article/pii/S1383586617313692

A. Hoekstra, J. Derksen, H. V. D. Akker, An experimental and numerical study of turbulent swirling flow
in gas cyclones, Chemical Engineering Science 54 (13) (1999) 2055 — 2065. doi:https://doi.org/10.
1016/S0009-2509(98) 00373-X.

URL http://www.sciencedirect.com/science/article/pii/S000925099800373X

X. Sun, S. Kim, S. D. Yang, H. S. Kim, J. Y. Yoon, Multi-objective optimization of a stairmand cyclone
separator using response surface methodology and computational fluid dynamics, Powder Technology 320
(2017) 51 — 65. doi:https://doi.org/10.1016/j.powtec.2017.06.065.

URL http://www.sciencedirect.com/science/article/pii/S0032591017305338

M. Narasimha, M. Brennan, P. N. Holtham, A review of cfd modelling for performance predictions of
hydrocyclone, Engineering Applications of Computational Fluid Mechanics 1 (2) (2007) 109-125. arXiv:
https://doi.org/10.1080/19942060.2007.11015186, |doi:10.1080/19942060.2007.11015186.

URL https://doi.org/10.1080/19942060.2007.11015186

C. Cortés, A. Gil, Modelling the gas and particle flow inside cyclone separators, Progress in Energy and
Combustion Science 33 (5) (2007) 409 — 452. |doi:http://dx.doi.org/10.1016/j.pecs.2007.02.001.
URL http://www.sciencedirect.com/science/article/pii/S036012850700010X

A.-N. Huang, K. Ito, T. Fukasawa, H. Yoshida, H.-P. Kuo, K. Fukui, |Classification performance analysis
of a novel cyclone with a slit on the conical part by cfd simulation, Separation and Purification Technology
190 (Supplement C) (2018) 25 — 32. doi:https://doi.org/10.1016/j.seppur.2017.08.047.

URL http://www.sciencedirect.com/science/article/pii/S1383586617310018

S. K. Shukla, P. Shukla, P. Ghosh, The effect of modelling of velocity fluctuations on prediction of
collection efficiency of cyclone separators, Applied Mathematical Modelling 37 (8) (2013) 5774 — 5789.
doi:https://doi.org/10.1016/j.apm.2012.11.019.

URL http://www.sciencedirect.com/science/article/pii/S0307904X12007354

BS EN 1822-1:2009, High efficiency air filters (epa, hepa and ulpa), Tech. rep., European Committee for
Standardization, Avenue Marnix 17, B-1000 Brussels (10 2009).

P. Wadhwani, P. Saha, Household vacuum cleaners market size by product (cordless/stick, upright, can-
ister, central, drum, wet/dry, robotic), by sales channel (offline, online), industry analysis report, regional
outlook, growth potential, competitive market share & forecast, 2020 — 2026, Tech. rep., Global Market
Insights (02 2020).

A. Hoffmann, L. Stein, Gas cyclones and swirl tubes: Principles, design and operation, Springer Berlin
Heidelberg, 2008.

P. M. Ireland, Impact tribocharging of soft elastic spheres, Powder Technology 348 (2019) 70 — 79. |doi:
https://doi.org/10.1016/j.powtec.2019.03.019.
URL http://www.sciencedirect.com/science/article/pii/S003259101930186X

165


http://www.sciencedirect.com/science/article/pii/S1383586617312212
http://www.sciencedirect.com/science/article/pii/S1383586617312212
https://doi.org/https://doi.org/10.1016/j.seppur.2017.09.040
https://doi.org/https://doi.org/10.1016/j.seppur.2017.09.040
http://www.sciencedirect.com/science/article/pii/S1383586617312212
http://www.sciencedirect.com/science/article/pii/S1383586617313692
http://www.sciencedirect.com/science/article/pii/S1383586617313692
https://doi.org/https://doi.org/10.1016/j.seppur.2017.06.046
http://www.sciencedirect.com/science/article/pii/S1383586617313692
http://www.sciencedirect.com/science/article/pii/S000925099800373X
http://www.sciencedirect.com/science/article/pii/S000925099800373X
https://doi.org/https://doi.org/10.1016/S0009-2509(98)00373-X
https://doi.org/https://doi.org/10.1016/S0009-2509(98)00373-X
http://www.sciencedirect.com/science/article/pii/S000925099800373X
http://www.sciencedirect.com/science/article/pii/S0032591017305338
http://www.sciencedirect.com/science/article/pii/S0032591017305338
https://doi.org/https://doi.org/10.1016/j.powtec.2017.06.065
http://www.sciencedirect.com/science/article/pii/S0032591017305338
https://doi.org/10.1080/19942060.2007.11015186
https://doi.org/10.1080/19942060.2007.11015186
http://arxiv.org/abs/https://doi.org/10.1080/19942060.2007.11015186
http://arxiv.org/abs/https://doi.org/10.1080/19942060.2007.11015186
https://doi.org/10.1080/19942060.2007.11015186
https://doi.org/10.1080/19942060.2007.11015186
http://www.sciencedirect.com/science/article/pii/S036012850700010X
https://doi.org/http://dx.doi.org/10.1016/j.pecs.2007.02.001
http://www.sciencedirect.com/science/article/pii/S036012850700010X
http://www.sciencedirect.com/science/article/pii/S1383586617310018
http://www.sciencedirect.com/science/article/pii/S1383586617310018
https://doi.org/https://doi.org/10.1016/j.seppur.2017.08.047
http://www.sciencedirect.com/science/article/pii/S1383586617310018
http://www.sciencedirect.com/science/article/pii/S0307904X12007354
http://www.sciencedirect.com/science/article/pii/S0307904X12007354
https://doi.org/https://doi.org/10.1016/j.apm.2012.11.019
http://www.sciencedirect.com/science/article/pii/S0307904X12007354
http://www.sciencedirect.com/science/article/pii/S003259101930186X
https://doi.org/https://doi.org/10.1016/j.powtec.2019.03.019
https://doi.org/https://doi.org/10.1016/j.powtec.2019.03.019
http://www.sciencedirect.com/science/article/pii/S003259101930186X

166

[13]

[14]

[25]
[26]

[29]

REFERENCES

J. S. Shrimpton, A review of the physics, model methods and computational prediction tools relevant to
separation of particles in the range 1 > d > 0.1um using cyclone technology, Tech. rep., University of
Southampton (11 2015).

S. Naik, R. Mukherjee, B. Chaudhuri, Triboelectrification: A review of experimental and mechanistic
modelling approaches with a special focus on pharmaceutical powders, International Journal of Pharma-
ceutics 510 (1) (2016) 375 — 385. doi:https://doi.org/10.1016/j.ijpharm.2016.06.031.

URL http://www.sciencedirect.com/science/article/pii/S0378517316305075

G. A. Cottrell, J. Lowell, A. C. Rose-Innes, |Charge transfer in metal-polymer contacts and the validity
of ”contact charge spectroscopy”, Journal of Applied Physics 50 (1) (1979) 374-376. arXiv:https:
//doi.org/10.1063/1.325673, |doi:10.1063/1.325673,

URL https://doi.org/10.1063/1.325673

M. G. Rowland, Electrostatic properties of particles for inhalation, Ph.D. thesis, Department of Pharmacy
and Pharmacology, University of Bath (2014).

F. Podczeck, Particle-particle Adhesion in Pharmaceutical Powder Handling, 1st Edition, Imperial College
Press, 1998.

T. Matsuyama, M. Ogu, H. Yamamoto, J. C. Marijnissen, B. Scarlett, Impact charging experiments with
single particles of hundred micrometer size, Powder Technology 135-136 (2003) 14-22. |doi:10.1016/
50032-5910(03)00154-2,

S. J. Scott, A pdf based method for modelling polysized particle laden turbulent flows without size class
discretisation, Ph.D. thesis, Department of Mechanical Engineering, Imperial College London (2006).

J. Ferry, S. Balachandar, |A fast eulerian method for disperse two-phase flow, International Journal of
Multiphase Flow 27 (7) (2001) 1199 — 1226. |doi:https://doi.org/10.1016/S0301-9322(00)00069-0.
URL http://www.sciencedirect.com/science/article/pii/S0301932200000690

I. G. Currie, Fundamental mechanics of fluids, New York : McGraw-Hill, 1974.
URL http://search.ebscohost.com/login.aspx?direct=true&db=cat02326a&AN=usl.59628&site=
eds-1live

A. Hoekstra, Gas flow field and collection efficiency of cyclone separators, Ph.D. thesis, Delft University
of Technology (12 2000).

K. Chu, J. Chen, B. Wang, A. Yu, A. Vince, G. Barnett, P. Barnett, Understand solids loading effects in
a dense medium cyclone: Effect of particle size by a cfd-dem method, Powder Technology 320 (2017) 594
~ 609. doi:https://doi.org/10.1016/j.powtec.2017.07.032

URL http://www.sciencedirect.com/science/article/pii/S0032591017305697

B. Pei, L. Yang, K. Dong, Y. Jiang, X. Du, B. Wang, The effect of cross-shaped vortex finder on the
performance of cyclone separator, Powder Technology 313 (2017) 135 — 144. |doi:https://doi.org/10.
1016/ . powtec.2017.02.066.

URL http://www.sciencedirect.com/science/article/pii/S003259101730205X

A. Gupta, D. Lilley, N. Syred, Swirl Flows, Abacus Press, 1984.

M. O. Vigueras-Zuniga, C. A. Ramirez-Ruiz, A. L. Herrera-May, M. E. Tejeda-del Cueto, Numerical and
experimental analysis of the effect of a swirler with a high swirl number in a biogas combustor, Energies
14 (10) (2021). doi:10.3390/en14102768.

URL https://www.mdpi.com/1996-1073/14/10/2768

P. A. Yazdabadi, A. J. Griffiths, N. Syred, |Characterization of the pvc phenomena in the exhaust of a
cyclone dust separator, Experiments in Fluids 17 (1) (1994) 84-95. |doi:10.1007/BF02412807.
URL http://dx.doi.org/10.1007/BF02412807

W. Peng, A. Hoffmann, H. Dries, M. Regelink, L. Stein, Experimental study of the vortex end in centrifugal
separators: The nature of the vortex end, Chemical Engineering Science 60 (24) (2005) 6919 — 6928.
doi:http://dx.doi.org/10.1016/j.ces.2005.06.009.

URL http://www.sciencedirect.com/science/article/pii/S0009250905005427

T. A. Grimble, A. Agarwal, M. P. Juniper, Local linear stability analysis of cyclone separators, Journal
of Fluid Mechanics 816 (2017) 507-538. doi:10.1017/jfm.2017.89.


http://www.sciencedirect.com/science/article/pii/S0378517316305075
http://www.sciencedirect.com/science/article/pii/S0378517316305075
https://doi.org/https://doi.org/10.1016/j.ijpharm.2016.06.031
http://www.sciencedirect.com/science/article/pii/S0378517316305075
https://doi.org/10.1063/1.325673
https://doi.org/10.1063/1.325673
http://arxiv.org/abs/https://doi.org/10.1063/1.325673
http://arxiv.org/abs/https://doi.org/10.1063/1.325673
https://doi.org/10.1063/1.325673
https://doi.org/10.1063/1.325673
https://doi.org/10.1016/S0032-5910(03)00154-2
https://doi.org/10.1016/S0032-5910(03)00154-2
http://www.sciencedirect.com/science/article/pii/S0301932200000690
https://doi.org/https://doi.org/10.1016/S0301-9322(00)00069-0
http://www.sciencedirect.com/science/article/pii/S0301932200000690
http://search.ebscohost.com/login.aspx?direct=true&db=cat02326a&AN=usl.59628&site=eds-live
http://search.ebscohost.com/login.aspx?direct=true&db=cat02326a&AN=usl.59628&site=eds-live
http://search.ebscohost.com/login.aspx?direct=true&db=cat02326a&AN=usl.59628&site=eds-live
http://www.sciencedirect.com/science/article/pii/S0032591017305697
http://www.sciencedirect.com/science/article/pii/S0032591017305697
https://doi.org/https://doi.org/10.1016/j.powtec.2017.07.032
http://www.sciencedirect.com/science/article/pii/S0032591017305697
http://www.sciencedirect.com/science/article/pii/S003259101730205X
http://www.sciencedirect.com/science/article/pii/S003259101730205X
https://doi.org/https://doi.org/10.1016/j.powtec.2017.02.066
https://doi.org/https://doi.org/10.1016/j.powtec.2017.02.066
http://www.sciencedirect.com/science/article/pii/S003259101730205X
https://www.mdpi.com/1996-1073/14/10/2768
https://www.mdpi.com/1996-1073/14/10/2768
https://doi.org/10.3390/en14102768
https://www.mdpi.com/1996-1073/14/10/2768
http://dx.doi.org/10.1007/BF02412807
http://dx.doi.org/10.1007/BF02412807
https://doi.org/10.1007/BF02412807
http://dx.doi.org/10.1007/BF02412807
http://www.sciencedirect.com/science/article/pii/S0009250905005427
http://www.sciencedirect.com/science/article/pii/S0009250905005427
https://doi.org/http://dx.doi.org/10.1016/j.ces.2005.06.009
http://www.sciencedirect.com/science/article/pii/S0009250905005427
https://doi.org/10.1017/jfm.2017.89

REFERENCES 167

[30]
[31]

[32]

[33]

[34]

[36]

S. B. Pope, Turbulent Flows, Cambridge University Press, 2000.

Y. Zhang, P. Cai, F. Jiang, K. Dong, Y. Jiang, B. Wang, Understanding the separation of particles in a
hydrocyclone by force analysis, Powder Technology (2017) —doi:https://doi.org/10.1016/j.powtec.
2017.09.031.

URL http://www.sciencedirect.com/science/article/pii/S0032591017307623

J. H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer-Verlag Berlin Heidelberg
New York, 2002.

F. Boysan, W. Ayers, J. Swithenbank, A fundamental mathematical modelling approach to cyclone design,
TRANS INST CHEM ENG 60 (1982) 222-230.

M. Wasilewski, L. S. Brar, |[Effect of the inlet duct angle on the performance of cyclone separators, Separa-
tion and Purification Technology 213 (2019) 19 — 33. doi:https://doi.org/10.1016/j.seppur.2018.
12.023.

URL http://www.sciencedirect.com/science/article/pii/S1383586618333549

K. Chu, B. Wang, D. Xu, Y. Chen, A. Yu, Cfd—dem simulation of the gas—solid flow in a cyclone separator,
Chemical Engineering Science 66 (5) (2011) 834 — 847. |doi:https://doi.org/10.1016/j.ces.2010.11.
026l

URL http://www.sciencedirect.com/science/article/pii/S0009250910006883

K. Elsayed, C. Lacor, The effect of cyclone inlet dimensions on the flow pattern and performancel, Applied
Mathematical Modelling 35 (4) (2011) 1952 — 1968. doi:https://doi.org/10.1016/j.apm.2010.11.
007.

URL http://www.sciencedirect.com/science/article/pii/S0307904X10004178

J. S. Shrimpton, An Introduction to Engineering Thermofluids, 1st Edition, Pnume Publishing, 2013.

J. Floryan, |On the gortler instability of boundary layers, Progress in Aerospace Sciences 28 (3) (1991)
235 — 271. doi:https://doi.org/10.1016/0376-0421(91)90006-P.
URL http://www.sciencedirect.com/science/article/pii/037604219190006P

A. Ducoin, M. Shadloo, S. Roy, Direct numerical simulation of flow instabilities over savonius style wind
turbine blades, Renewable Energy 105 (Supplement C) (2017) 374 — 385. |doi:https://doi.org/10.
1016/j.renene.2016.12.072.

URL http://www.sciencedirect.com/science/article/pii/S0960148116311326

S. Winoto, H. Mitsudharmadi, D. Shah, Visualizing gortler vortices, Journal of Visualization 8 (2005)
315-322. doi:10.1007/BF03181550.

J. D. Anderson, Fundamentals of aerodynamics, 5th Edition, McGraw Hill, 2011.

M. R. Maxey, J. J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, The Physics of
Fluids 26 (4) (1983) 883-889. arXiv:https://aip.scitation.org/doi/pdf/10.1063/1.864230, |doi:
10.1063/1.864230.

URL https://aip.scitation.org/doi/abs/10.1063/1.864230

L. B. Esteban, Dynamics of Non-Spherical Particles in Turbulence, Springer, Cham, 2020. doi:https:
//doi.org/10.1007/978-3-030-28136-6.

M. R. Maxey, the gravitational settling of aerosol particles in homogeneous turbulence and random flow
fields, Journal of Fluid Mechanics 174 (1987) 441-465. doi:10.1017/50022112087000193.

S. K. Friedlander, Smoke, Dust, and Haze, 2nd Edition, Oxford University Press, 2000.
C. T. Crowe, Multiphase Flow Handbook, CRC Press, 2006.
T. I. Gombosi, Gaskinetic theory, Cambridge University Press, 1994.

C. N. Davies, Definitive equations for the fluid resistance of spheres, Proceedings of the Physical Society
57 (4) (1945) 259-270. |doi:10.1088/0959-5309/57/4/301.
URL https://doi.org/10.1088%2F0959-5309%2F577%2F472F301

E. Cunningham, On the velocity of steady fall of spherical particles through fluid medium, Proc. R. Soc,
Lond A 83 (1910) 357 — 365. |doi:https://doi.org/10.1098/rspa.1910.0024.


http://www.sciencedirect.com/science/article/pii/S0032591017307623
http://www.sciencedirect.com/science/article/pii/S0032591017307623
https://doi.org/https://doi.org/10.1016/j.powtec.2017.09.031
https://doi.org/https://doi.org/10.1016/j.powtec.2017.09.031
http://www.sciencedirect.com/science/article/pii/S0032591017307623
http://www.sciencedirect.com/science/article/pii/S1383586618333549
https://doi.org/https://doi.org/10.1016/j.seppur.2018.12.023
https://doi.org/https://doi.org/10.1016/j.seppur.2018.12.023
http://www.sciencedirect.com/science/article/pii/S1383586618333549
http://www.sciencedirect.com/science/article/pii/S0009250910006883
https://doi.org/https://doi.org/10.1016/j.ces.2010.11.026
https://doi.org/https://doi.org/10.1016/j.ces.2010.11.026
http://www.sciencedirect.com/science/article/pii/S0009250910006883
http://www.sciencedirect.com/science/article/pii/S0307904X10004178
https://doi.org/https://doi.org/10.1016/j.apm.2010.11.007
https://doi.org/https://doi.org/10.1016/j.apm.2010.11.007
http://www.sciencedirect.com/science/article/pii/S0307904X10004178
http://www.sciencedirect.com/science/article/pii/037604219190006P
https://doi.org/https://doi.org/10.1016/0376-0421(91)90006-P
http://www.sciencedirect.com/science/article/pii/037604219190006P
http://www.sciencedirect.com/science/article/pii/S0960148116311326
http://www.sciencedirect.com/science/article/pii/S0960148116311326
https://doi.org/https://doi.org/10.1016/j.renene.2016.12.072
https://doi.org/https://doi.org/10.1016/j.renene.2016.12.072
http://www.sciencedirect.com/science/article/pii/S0960148116311326
https://doi.org/10.1007/BF03181550
https://aip.scitation.org/doi/abs/10.1063/1.864230
http://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1063/1.864230
https://doi.org/10.1063/1.864230
https://doi.org/10.1063/1.864230
https://aip.scitation.org/doi/abs/10.1063/1.864230
https://doi.org/https://doi.org/10.1007/978-3-030-28136-6
https://doi.org/https://doi.org/10.1007/978-3-030-28136-6
https://doi.org/10.1017/50022112087000193
https://doi.org/10.1088%2F0959-5309%2F57%2F4%2F301
https://doi.org/10.1088/0959-5309/57/4/301
https://doi.org/10.1088%2F0959-5309%2F57%2F4%2F301
https://doi.org/https://doi.org/10.1098/rspa.1910.0024

168

[50]

[51]

[64]

REFERENCES

S. Jennings, The mean free path in air, Journal of Aerosol Science 19 (2) (1988) 159 — 166. doi:https:
//doi.org/10.1016/0021-8502(88)90219-4.
URL http://www.sciencedirect.com/science/article/pii/0021850288902194

S. Balachandar, J. K. Eaton, [Turbulent dispersed multiphase flow, Annual Review of Fluid Mechan-
ics 42 (1) (2010) 111-133. |arXiv:https://doi.org/10.1146/annurev.fluid.010908.165243, |doi:
10.1146/annurev.fluid.010908.165243.

URL https://doi.org/10.1146/annurev.fluid.010908.165243

S. Elghobashi, On predicting particle-laden turbulent flows, Applied Scientific Research 52 (1994) 309 —
329. doi:https://doi.org/10.1007/BF00936835.

L. 1. Zaichik, V. M. Alipchenkov, Pair dispersion and preferential concentration of particles in isotropic
turbulence, Physics of Fluids 15 (6) (2003) 1776-1787. |arXiv:https://aip.scitation.org/doi/pdf/
10.1063/1.1569485, doi:10.1063/1.1569485.

URL https://aip.scitation.org/doi/abs/10.1063/1.1569485

A. Einstein, Investigations on the theory of the brownian movement, Ann. der Physik (1905).
URL http://www.physik.fu-berlin.de/~{}kleinert/files/eins_brownian.pdf

N. Fuchs, The mechanics of aerosols, by N. A. Fuchs. Translated from the Russian by R. E. Daisley and
Marina Fuchs. Translation edited by C. N. Davies., Pergamon Press: Oxford, 1964.

G. K. Batchelor, Brownian diffusion of particles with hydrodynamic interaction, Journal of Fluid Mechan-
ics 74 (1) (1976) 1-29. doi:10.1017/80022112076001663.

P. G. Saffman, J. S. Turner, On the collision of drops in turbulent clouds, Journal of Fluid Mechanics
1 (1) (1956) 16-30. |doi:10.1017/80022112056000020.

P. S. H. Henry, [Survey of generation and dissipation of static electricity, British Journal of Applied Physics
4 (S2) (1953) S6.
URL http://stacks.iop.org/0508-3443/4/i=52/a=302

W. R. Harper, Contact and frictional electrification, Oxford University Press, 1967.

Z. Gu, W. Wei, Electrification of Particulates in Industrial and Natural Multiphase Flows, 1st Edition,
Springer Nature, 2017.

J. M. Crowley, Fundamentals of Applied Electrostatics, Laplacian Press, 1999.

J. C. Wilcke, Disputatio physica experimentalis, de electricitatibus contrariis, Thesis, University of Ros-
tock (1757).

L. McCarty, G. Whitesides, Electrostatic charging due to separation of ions at interfaces: Contact
electrification of ionic electrets, Angewandte Chemie International Edition 47 (12) (2008) 2188-2207.
doi:10.1002/anie.200701812.

URL http://dx.doi.org/10.1002/anie.200701812

W. R. Harper, The volta effect as a cause of static electrification, Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences 205 (1080) (1951) 83-103. |doi:10.1098/
rspa.1951.0019.

URL http://rspa.royalsocietypublishing.org/content/205/1080/83

C. Kittel, Introduction to Solid State Physics, 7th Edition, Wiley India Pvt. Limited, 2007.
J.-S. Chang, A. J. Kelly, J. M. Crowley, Handbook of Electrostatic Processes, Marcel Dekker, Inc., 1995.

M. Springford, Electron : a centenary volume, Cambridge ; New York : Cambridge University Press,
1997.

BIPM, Le Systeme international d’unités / The International System of Units (‘The SI Brochure’), ninth
Edition, Bureau international des poids et mesures, 2019.
URL http://www.bipm.org/en/si/si_brochure/

E. Fukada, J. F. Fowler, Triboelectricity and electron traps in insulating materials: Some correlations,
Nature 181 (1958) 693—694. |[doi:10.1038/181693b0.


http://www.sciencedirect.com/science/article/pii/0021850288902194
https://doi.org/https://doi.org/10.1016/0021-8502(88)90219-4
https://doi.org/https://doi.org/10.1016/0021-8502(88)90219-4
http://www.sciencedirect.com/science/article/pii/0021850288902194
https://doi.org/10.1146/annurev.fluid.010908.165243
http://arxiv.org/abs/https://doi.org/10.1146/annurev.fluid.010908.165243
https://doi.org/10.1146/annurev.fluid.010908.165243
https://doi.org/10.1146/annurev.fluid.010908.165243
https://doi.org/10.1146/annurev.fluid.010908.165243
https://doi.org/https://doi.org/10.1007/BF00936835
https://aip.scitation.org/doi/abs/10.1063/1.1569485
https://aip.scitation.org/doi/abs/10.1063/1.1569485
http://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1063/1.1569485
http://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1063/1.1569485
https://doi.org/10.1063/1.1569485
https://aip.scitation.org/doi/abs/10.1063/1.1569485
http://www.physik.fu-berlin.de/~{}kleinert/files/eins_brownian.pdf
http://www.physik.fu-berlin.de/~{}kleinert/files/eins_brownian.pdf
https://doi.org/10.1017/S0022112076001663
https://doi.org/10.1017/S0022112056000020
http://stacks.iop.org/0508-3443/4/i=S2/a=302
http://stacks.iop.org/0508-3443/4/i=S2/a=302
http://dx.doi.org/10.1002/anie.200701812
http://dx.doi.org/10.1002/anie.200701812
https://doi.org/10.1002/anie.200701812
http://dx.doi.org/10.1002/anie.200701812
http://rspa.royalsocietypublishing.org/content/205/1080/83
https://doi.org/10.1098/rspa.1951.0019
https://doi.org/10.1098/rspa.1951.0019
http://rspa.royalsocietypublishing.org/content/205/1080/83
http://www.bipm.org/en/si/si_brochure/
http://www.bipm.org/en/si/si_brochure/
https://doi.org/10.1038/181693b0

REFERENCES 169

[70]

[81]

[82]

A. Einstein, Uber einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesicht-
spunkt, Annalen der Physik 322 (6) (1905) 132-148. arXiv:https://onlinelibrary.wiley.com/doi/
pdf/10.1002/andp.19053220607, doi:10.1002/andp.19053220607.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19053220607

M. L. Burns, Modern Physics for Science and Engineering, 1st Edition, Physics Curriculum & Instructtion
Inc., 2012.

S. G. Bogodage, A. Y. Leung, Cfd simulation of cyclone separators to reduce air pollution, Powder
Technology 286 (2015) 488 — 506. |doi:https://doi.org/10.1016/j.powtec.2015.08.023|
URL http://www.sciencedirect.com/science/article/pii/S0032591015300231

O. L. Sgrott, D. Noriler, V. R. Wiggers, H. F. Meier, |Cyclone optimization by complex method and cfd
simulation, Powder Technology 277 (2015) 11-21. doi:https://doi.org/10.1016/j.powtec.2015.02.
039.

URL https://www.sciencedirect.com/science/article/pii/S0032591015001606

C. Haig, A. Hursthouse, S. Mcllwain, D. Sykes, The effect of particle agglomeration and attrition on
the separation efficiency of a stairmand cyclone, Powder Technology 258 (2014) 110 — 124. doi:https:
//doi.org/10.1016/j.powtec.2014.03.008.

URL http://www.sciencedirect.com/science/article/pii/S0032591014002083

Z. Liu, Y. Zheng, L. Jia, J. Jiao, Q. Zhang, |Stereoscopic piv studies on the swirling flow structure in a
gas cyclone, Chemical Engineering Science 61 (13) (2006) 42524261, the John Bridgwater Symposium:
“Shaping the Future of Chemical Engineering”. doi:https://doi.org/10.1016/j.ces.2006.01.024,
URL https://www.sciencedirect.com/science/article/pii/S0009250906000601

M. Raffel, C. E. Willert, S. T. Wereley, J. Kompenhans, Particle Image Velocimetry, 2nd Edition, Springer-
Verlag Berlin Heidelberg, 2007.

W. Barth, Berechnung und auslegung von zyklonabscheidern auf grund neuerer untersuchungen, bund
der ingenieure fiir wasserwirtschaft, Abfallwirtschaft und Kulkurbau 8 (1956) 1-9.

S. Altmeyer, V. Mathieu, S. Jullemier, P. Contal, N. Midoux, S. Rode, J.-P. Leclerc, |Comparison
of different models of cyclone prediction performance for various operating conditions using a gen-
eral software, Chemical Engineering and Processing: Process Intensification 43 (4) (2004) 511-522.
doi:https://doi.org/10.1016/S0255-2701(03)00079-5.

URL https://www.sciencedirect.com/science/article/pii/S0255270103000795

J. Dirgo, D. Leith, [Cyclone collection efficiency: Comparison of experimental results with theoretical
predictions, Aerosol Science and Technology 4 (4) (1985) 401-415. arXiv:https://doi.org/10.1080/
02786828508959066), |[doi:10.1080/02786828508959066.

URL https://doi.org/10.1080/02786828508959066

K. Chu, J. Chen, A. Yu, |Applicability of a coarse-grained cfd—dem model on dense medium cyclone,
Minerals Engineering 90 (2016) 43 — 54, computational Modelling. doi:https://doi.org/10.1016/j.
mineng.2016.01.020.

URL http://www.sciencedirect.com/science/article/pii/S0892687516300188

J. Gimbun, T. Chuah, T. S. Choong, A. Fakhru’l-Razi, Prediction of the effects of cone tip diameter on
the cyclone performancel, Journal of Aerosol Science 36 (8) (2005) 1056 — 1065. doi:https://doi.org/
10.1016/j. jaerosci.2004.10.014,

URL http://www.sciencedirect.com/science/article/pii/S0021850204003842

F. Parvaz, S. H. Hosseini, K. Elsayed, G. Ahmadi, Numerical investigation of effects of inner cone on
flow field, performance and erosion rate of cyclone separators, Separation and Purification Technology
201 (2018) 223 — 237. doi:https://doi.org/10.1016/j.seppur.2018.03.001.

URL http://www.sciencedirect.com/science/article/pii/S1383586617335591

D. Winfield, M. Cross, N. Croft, D. Paddison, I. Craig, |Performance comparison of a single and triple
tangential inlet gas separation cyclone: A cfd study, Powder Technology 235 (2013) 520-531. doi:https:
//doi.org/10.1016/7 .powtec.2012.10.026.

URL https://www.sciencedirect.com/science/article/pii/S0032591012007036


https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19053220607
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19053220607
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19053220607
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19053220607
https://doi.org/10.1002/andp.19053220607
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19053220607
http://www.sciencedirect.com/science/article/pii/S0032591015300231
https://doi.org/https://doi.org/10.1016/j.powtec.2015.08.023
http://www.sciencedirect.com/science/article/pii/S0032591015300231
https://www.sciencedirect.com/science/article/pii/S0032591015001606
https://www.sciencedirect.com/science/article/pii/S0032591015001606
https://doi.org/https://doi.org/10.1016/j.powtec.2015.02.039
https://doi.org/https://doi.org/10.1016/j.powtec.2015.02.039
https://www.sciencedirect.com/science/article/pii/S0032591015001606
http://www.sciencedirect.com/science/article/pii/S0032591014002083
http://www.sciencedirect.com/science/article/pii/S0032591014002083
https://doi.org/https://doi.org/10.1016/j.powtec.2014.03.008
https://doi.org/https://doi.org/10.1016/j.powtec.2014.03.008
http://www.sciencedirect.com/science/article/pii/S0032591014002083
https://www.sciencedirect.com/science/article/pii/S0009250906000601
https://www.sciencedirect.com/science/article/pii/S0009250906000601
https://doi.org/https://doi.org/10.1016/j.ces.2006.01.024
https://www.sciencedirect.com/science/article/pii/S0009250906000601
https://www.sciencedirect.com/science/article/pii/S0255270103000795
https://www.sciencedirect.com/science/article/pii/S0255270103000795
https://www.sciencedirect.com/science/article/pii/S0255270103000795
https://doi.org/https://doi.org/10.1016/S0255-2701(03)00079-5
https://www.sciencedirect.com/science/article/pii/S0255270103000795
https://doi.org/10.1080/02786828508959066
https://doi.org/10.1080/02786828508959066
http://arxiv.org/abs/https://doi.org/10.1080/02786828508959066
http://arxiv.org/abs/https://doi.org/10.1080/02786828508959066
https://doi.org/10.1080/02786828508959066
https://doi.org/10.1080/02786828508959066
http://www.sciencedirect.com/science/article/pii/S0892687516300188
https://doi.org/https://doi.org/10.1016/j.mineng.2016.01.020
https://doi.org/https://doi.org/10.1016/j.mineng.2016.01.020
http://www.sciencedirect.com/science/article/pii/S0892687516300188
http://www.sciencedirect.com/science/article/pii/S0021850204003842
http://www.sciencedirect.com/science/article/pii/S0021850204003842
https://doi.org/https://doi.org/10.1016/j.jaerosci.2004.10.014
https://doi.org/https://doi.org/10.1016/j.jaerosci.2004.10.014
http://www.sciencedirect.com/science/article/pii/S0021850204003842
http://www.sciencedirect.com/science/article/pii/S1383586617335591
http://www.sciencedirect.com/science/article/pii/S1383586617335591
https://doi.org/https://doi.org/10.1016/j.seppur.2018.03.001
http://www.sciencedirect.com/science/article/pii/S1383586617335591
https://www.sciencedirect.com/science/article/pii/S0032591012007036
https://www.sciencedirect.com/science/article/pii/S0032591012007036
https://doi.org/https://doi.org/10.1016/j.powtec.2012.10.026
https://doi.org/https://doi.org/10.1016/j.powtec.2012.10.026
https://www.sciencedirect.com/science/article/pii/S0032591012007036

170

[84]

[86]

[88]

[96]

REFERENCES

Q. Wei, G. Sun, C. Gao, Numerical analysis of axial gas flow in cyclone separators with different vortex
finder diameters and inlet dimensions, Powder Technology 369 (2020) 321-333. |doi:https://doi.org/
10.1016/j .powtec.2020.05.038.

URL https://www.sciencedirect.com/science/article/pii/S0032591020304010

F. J. de Souza, R. de Vasconcelos Salvo, D. A. de Moro Martins, Large eddy simulation of the gas—particle
flow in cyclone separators, Separation and Purification Technology 94 (2012) 61 — 70, cO2 Capture and
Storage. doi:https://doi.org/10.1016/j.seppur.2012.04.006.

URL http://www.sciencedirect.com/science/article/pii/S1383586612002171

H. Shalaby, K. Wozniak, G. Wozniak, Numerical calculation of particle-laden cyclone separator flow using
les, Engineering Applications of Computational Fluid Mechanics 2 (4) (2008) 382-392. arXiv:http:
//dx.doi.org/10.1080/19942060.2008.11015238, doi:10.1080/19942060.2008.11015238.

URL http://dx.doi.org/10.1080/19942060.2008.11015238

J. J. Derksen, Separation performance predictions of a stairmand high-efficiency cyclone, AIChE Journal
49 (6) (2003) 1359-1371. arXiv:https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.
690490603, |[doi:https://doi.org/10.1002/aic.690490603.

URL https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690490603

D. Misiulia, G. Lidén, S. Antonyuk, Evolution of turbulent swirling flow in a small-scale cyclone with
increasing flow rate: A les study, Flow, Turbulence and Combustion 107 (2021) 575-608. doi:10.1007/
s10494-021-00253-2.

URL https://doi.org/10.1007/s10494-021-00253-2

H. Safikhani, P. Mehrabian, Numerical study of flow field in new cyclone separators, Advanced Powder
Technology 27 (2) (2016) 379-387. doi:https://doi.org/10.1016/j.apt.2016.01.011/
URL https://www.sciencedirect.com/science/article/pii/S0921883116000133

G. Zhu, J.-L. Liow, A. Neely, Computational study of flow in a micro-sized hydrocyclone, 17th Australasian
Fluid Mechanics Conference, Auckland, New Zealand (2010) 1 — 4.

G. Zhu, J.-L. Liow, A. Neely, |Computational study of the flow characteristics and separation efficiency in
a mini-hydrocyclone, Chemical Engineering Research and Design 90 (12) (2012) 2135 — 2147. |doi:https:
//doi.org/10.1016/j.cherd.2012.05.020.

URL http://www.sciencedirect.com/science/article/pii/S0263876212002432

Q.-C. Wang, Z.-G. Wang, M.-B. Sun, R. Yang, Y.-X. Zhao, Z. Hu, The amplification of large-scale motion
in a supersonic concave turbulent boundary layer and its impact on the mean and statistical properties,
Journal of Fluid Mechanics 863 (2019) 454-493. |doi:10.1017/jfm.2018.1004.

M. Sun, N. D. Sandham, Z. Hu, Turbulence structures and statistics of a supersonic turbulent boundary
layer subjected to concave surface curvature, Journal of Fluid Mechanics 865 (2019) 60-99. |doi:10.1017/
jfm.2019.19.

S. Schmidt, H. M Blackburn, M. Rudman, Impact of outlet boundary conditions on the flow properties
within a cyclone, 5th Australasian Fluid Mechanics Conference (12 2004).

D. Misiulia, S. Antonyuk, A. G. Andersson, T. S. Lundstréom, Effects of deswirler position and its centre
body shape as well as vortex finder extension downstream on cyclone performance, Powder Technology
336 (2018) 45 — 56. doi:https://doi.org/10.1016/j.powtec.2018.05.034.

URL http://www.sciencedirect.com/science/article/pii/S0032591018303991

L. S. Brar, K. Elsayed, Analysis and optimization of cyclone separators with eccentric vortex finders using
large eddy simulation and artificial neural network, Separation and Purification Technology 207 (2018)
269-283. doi:https://doi.org/10.1016/j.seppur.2018.06.013|

URL https://www.sciencedirect.com/science/article/pii/S1383586618302934

R. Shastri, L. Singh Brar, K. Elsayed, Multi-objective optimization of cyclone separators using mathemat-
ical modelling and large-eddy simulation for a fixed total height condition, Separation and Purification
Technology 291 (2022) 120968. |doi:https://doi.org/10.1016/j.seppur.2022.120968.

URL https://www.sciencedirect.com/science/article/pii/S1383586622005251

Z.-W. Gao, Z.-X. Liu, Y.-D. Wei, C.-X. Li, S.-H. Wang, X.-Y. Qi, W. Huang, Numerical analysis on the
influence of vortex motion in a reverse stairmand cyclone separator by using les model, Petroleum Science
(2021). doi:https://doi.org/10.1016/j.petsci.2021.11.009.

URL https://www.sciencedirect.com/science/article/pii/S1995822621001436


https://www.sciencedirect.com/science/article/pii/S0032591020304010
https://www.sciencedirect.com/science/article/pii/S0032591020304010
https://doi.org/https://doi.org/10.1016/j.powtec.2020.05.038
https://doi.org/https://doi.org/10.1016/j.powtec.2020.05.038
https://www.sciencedirect.com/science/article/pii/S0032591020304010
http://www.sciencedirect.com/science/article/pii/S1383586612002171
http://www.sciencedirect.com/science/article/pii/S1383586612002171
https://doi.org/https://doi.org/10.1016/j.seppur.2012.04.006
http://www.sciencedirect.com/science/article/pii/S1383586612002171
http://dx.doi.org/10.1080/19942060.2008.11015238
http://dx.doi.org/10.1080/19942060.2008.11015238
http://arxiv.org/abs/http://dx.doi.org/10.1080/19942060.2008.11015238
http://arxiv.org/abs/http://dx.doi.org/10.1080/19942060.2008.11015238
https://doi.org/10.1080/19942060.2008.11015238
http://dx.doi.org/10.1080/19942060.2008.11015238
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690490603
http://arxiv.org/abs/https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690490603
http://arxiv.org/abs/https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690490603
https://doi.org/https://doi.org/10.1002/aic.690490603
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690490603
https://doi.org/10.1007/s10494-021-00253-2
https://doi.org/10.1007/s10494-021-00253-2
https://doi.org/10.1007/s10494-021-00253-2
https://doi.org/10.1007/s10494-021-00253-2
https://doi.org/10.1007/s10494-021-00253-2
https://www.sciencedirect.com/science/article/pii/S0921883116000133
https://doi.org/https://doi.org/10.1016/j.apt.2016.01.011
https://www.sciencedirect.com/science/article/pii/S0921883116000133
http://www.sciencedirect.com/science/article/pii/S0263876212002432
http://www.sciencedirect.com/science/article/pii/S0263876212002432
https://doi.org/https://doi.org/10.1016/j.cherd.2012.05.020
https://doi.org/https://doi.org/10.1016/j.cherd.2012.05.020
http://www.sciencedirect.com/science/article/pii/S0263876212002432
https://doi.org/10.1017/jfm.2018.1004
https://doi.org/10.1017/jfm.2019.19
https://doi.org/10.1017/jfm.2019.19
http://www.sciencedirect.com/science/article/pii/S0032591018303991
http://www.sciencedirect.com/science/article/pii/S0032591018303991
https://doi.org/https://doi.org/10.1016/j.powtec.2018.05.034
http://www.sciencedirect.com/science/article/pii/S0032591018303991
https://www.sciencedirect.com/science/article/pii/S1383586618302934
https://www.sciencedirect.com/science/article/pii/S1383586618302934
https://doi.org/https://doi.org/10.1016/j.seppur.2018.06.013
https://www.sciencedirect.com/science/article/pii/S1383586618302934
https://www.sciencedirect.com/science/article/pii/S1383586622005251
https://www.sciencedirect.com/science/article/pii/S1383586622005251
https://doi.org/https://doi.org/10.1016/j.seppur.2022.120968
https://www.sciencedirect.com/science/article/pii/S1383586622005251
https://www.sciencedirect.com/science/article/pii/S1995822621001436
https://www.sciencedirect.com/science/article/pii/S1995822621001436
https://doi.org/https://doi.org/10.1016/j.petsci.2021.11.009
https://www.sciencedirect.com/science/article/pii/S1995822621001436

REFERENCES 171

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

S. Pandey, L. S. Brar, Large-eddy simulations of cyclone separator based on the lattice-boltzmann method,
ATP Conference Proceedings 2341 (1) (2021) 030020. |arXiv:https://aip.scitation.org/doi/pdf/10.
1063/5.0050107, /doi:10.1063/5.0050107.

URL https://aip.scitation.org/doi/abs/10.1063/5.0050107

O. R. Nassaj, D. Toghraie, M. Afrand, Effects of multi inlet guide channels on the performance of a
cyclone separator, Powder Technology 356 (2019) 353-372. doi:https://doi.org/10.1016/j.powtec.
2019.08.038l

URL https://www.sciencedirect.com/science/article/pii/S0032591019306382

D. Powell, Evaluation of particle models for small, high-speed cyclones, Master’s thesis, Faculty of Engi-
neering and the Environment, University of Southampton (2017).

P. G. Saffman, The lift on a small sphere in a slow shear flow, Journal of Fluid Mechanics 22 (2) (1965)
385-400. doi:10.1017/50022112065000824.

I. Akhatov, J. Hoey, O. Swenson, D. Schulz, Aerosol focusing in micro-capillaries: Theory and experiment),
Journal of Aerosol Science 39 (8) (2008) 691-709. |doi:https://doi.org/10.1016/j.jaerosci.2008.
04.004.

URL https://www.sciencedirect.com/science/article/pii/S0021850208000773

I. Akhatov, J. Hoey, O. Swenson, D. Schulz, Aerosol flow through a long micro-capillary: Collimated
aerosol beam, Microfluidics and Nanofluidics 5 (2007) 215-224. |doi:10.1007/510404-007-0239-3.

A. Li, G. Ahmadi, Dispersion and deposition of spherical particles from point sources in a turbulent
channel flow, Aerosol Science and Technology 16 (4) (1992) 209-226. |arXiv:https://doi.org/10.1080/
02786829208959550, doi:10.1080/02786829208959550.

URL https://doi.org/10.1080/02786829208959550

L. Xiaodong, Y. Jianhua, C. Yuchun, N. Mingjiang, C. Kefa, Numerical simulation of the effects of turbu-
lence intensity and boundary layer on separation efficiency in a cyclone separator, Chemical Engineering
Journal 95 (1) (2003) 235 — 240. doi:https://doi.org/10.1016/S1385-8947(03)00109-8.

URL http://www.sciencedirect.com/science/article/pii/S1385894703001098

T. Wittemeier, J. S. Shrimpton, |Explanation of differences in experimental and computational results for
the preferential concentration of inertial particles, Computers & Fluids 173 (2018) 37-41. doi:https:
//doi.org/10.1016/7 .compfluid.2018.03.078.

URL https://www.sciencedirect.com/science/article/pii/S0045793018301828

J. Eaton, J. Fessler, Preferential concentration of particles by turbulence, International Journal of Multi-
phase Flow 20 (1994) 169-209. doi:https://doi.org/10.1016/0301-9322(94)90072-8.
URL https://www.sciencedirect.com/science/article/pii/0301932294900728

K. D. Squires, J. K. Eaton, Preferential concentration of particles by turbulence, Physics of Fluids A:
Fluid Dynamics 3 (5) (1991) 1169-1178. arXiv:https://doi.org/10.1063/1.858045, doi:10.1063/1.
858045

URL https://doi.org/10.1063/1.858045

S. J. Scott, A. Karnik, J. Shrimpton, On the quantification of preferential accumulation, International
Journal of Heat and Fluid Flow 30 (2009) 789-795. doi:10.1016/j.1ijheatfluidflow.2009.02.002.

M. Caporaloni, F. Tampieri, F. Trombetti, O. Vittori, Transfer of particles in nonisotropic air turbulence,
Journal of Atmospheric Sciences 32 (1975) 565-568. doi:https://doi.org/10.1175/1520-0469(1975)
032<0565: TOPINA>2.0.C0O; 2.

J. YOUNG, A. LEEMING, A theory of particle deposition in turbulent pipe flow, Journal of Fluid
Mechanics 340 (1997) 129-159. |doi:10.1017/50022112097005284.

J. Bec, H. Homann, S. S. Ray, |Gravity-driven enhancement of heavy particle clustering in turbulent flow,
Physical Review Letters 112 (18) (May 2014). doi:10.1103/physrevlett.112.184501.
URL http://dx.doi.org/10.1103/PhysRevLett.112.184501

M. Wasilewski, L. S. Brar, Optimization of the geometry of cyclone separators used in clinker burning
process: A case study, Powder Technology 313 (2017) 293-302. doi:https://doi.org/10.1016/j.
powtec.2017.03.025.

URL https://www.sciencedirect.com/science/article/pii/S0032591017302310


https://aip.scitation.org/doi/abs/10.1063/5.0050107
http://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1063/5.0050107
http://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1063/5.0050107
https://doi.org/10.1063/5.0050107
https://aip.scitation.org/doi/abs/10.1063/5.0050107
https://www.sciencedirect.com/science/article/pii/S0032591019306382
https://www.sciencedirect.com/science/article/pii/S0032591019306382
https://doi.org/https://doi.org/10.1016/j.powtec.2019.08.038
https://doi.org/https://doi.org/10.1016/j.powtec.2019.08.038
https://www.sciencedirect.com/science/article/pii/S0032591019306382
https://doi.org/10.1017/S0022112065000824
https://www.sciencedirect.com/science/article/pii/S0021850208000773
https://doi.org/https://doi.org/10.1016/j.jaerosci.2008.04.004
https://doi.org/https://doi.org/10.1016/j.jaerosci.2008.04.004
https://www.sciencedirect.com/science/article/pii/S0021850208000773
https://doi.org/10.1007/s10404-007-0239-3
https://doi.org/10.1080/02786829208959550
https://doi.org/10.1080/02786829208959550
http://arxiv.org/abs/https://doi.org/10.1080/02786829208959550
http://arxiv.org/abs/https://doi.org/10.1080/02786829208959550
https://doi.org/10.1080/02786829208959550
https://doi.org/10.1080/02786829208959550
http://www.sciencedirect.com/science/article/pii/S1385894703001098
http://www.sciencedirect.com/science/article/pii/S1385894703001098
https://doi.org/https://doi.org/10.1016/S1385-8947(03)00109-8
http://www.sciencedirect.com/science/article/pii/S1385894703001098
https://www.sciencedirect.com/science/article/pii/S0045793018301828
https://www.sciencedirect.com/science/article/pii/S0045793018301828
https://doi.org/https://doi.org/10.1016/j.compfluid.2018.03.078
https://doi.org/https://doi.org/10.1016/j.compfluid.2018.03.078
https://www.sciencedirect.com/science/article/pii/S0045793018301828
https://www.sciencedirect.com/science/article/pii/0301932294900728
https://doi.org/https://doi.org/10.1016/0301-9322(94)90072-8
https://www.sciencedirect.com/science/article/pii/0301932294900728
https://doi.org/10.1063/1.858045
http://arxiv.org/abs/https://doi.org/10.1063/1.858045
https://doi.org/10.1063/1.858045
https://doi.org/10.1063/1.858045
https://doi.org/10.1063/1.858045
https://doi.org/10.1016/j.ijheatfluidflow.2009.02.002
https://doi.org/https://doi.org/10.1175/1520-0469(1975)032<0565:TOPINA>2.0.CO;2
https://doi.org/https://doi.org/10.1175/1520-0469(1975)032<0565:TOPINA>2.0.CO;2
https://doi.org/10.1017/S0022112097005284
http://dx.doi.org/10.1103/PhysRevLett.112.184501
https://doi.org/10.1103/physrevlett.112.184501
http://dx.doi.org/10.1103/PhysRevLett.112.184501
https://www.sciencedirect.com/science/article/pii/S0032591017302310
https://www.sciencedirect.com/science/article/pii/S0032591017302310
https://doi.org/https://doi.org/10.1016/j.powtec.2017.03.025
https://doi.org/https://doi.org/10.1016/j.powtec.2017.03.025
https://www.sciencedirect.com/science/article/pii/S0032591017302310

172

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

REFERENCES

J. Wei, H. Zhang, Y. Wang, Z. Wen, B. Yao, J. Dong, The gas-solid flow characteristics of cyclones,
Powder Technology 308 (2017) 178-192. doi:https://doi.org/10.1016/j.powtec.2016.11.044.
URL https://www.sciencedirect.com/science/article/pii/S0032591016308361

S.-Y. Noh, J.-E. Heo, S.-H. Woo, S.-J. Kim, M.-H. Ock, Y.-J. Kim, S.-J. Yook, Performance improvement
of a cyclone separator using multiple subsidiary cyclones, Powder Technology 338 (2018) 145 — 152.
doi:https://doi.org/10.1016/j.powtec.2018.07.015.

URL http://www.sciencedirect.com/science/article/pii/S0032591018305072

E. W. Cheney, D. R. Kincaid, Numerical Mathematics and Computing, 6th Edition, Brooks/Cole Pub-
lishing Co., USA, 2007.

W. B. Kunkel, The static electrification of dust particles on dispersion into a cloud, Journal of Applied
Physics 21 (8) (1950) 820-832. doi:10.1063/1.1699765.

D. K. Davies, Charge generation on dielectric surfaces, Journal of Physics D: Applied Physics 2 (11)
(1969) 1533.
URL http://stacks.iop.org/0022-3727/2/i=11/a=307

J. Lowell, Contact electrification of metals, Journal of Physics D: Applied Physics 8 (1) (1975) 53.
URL http://stacks.iop.org/0022-3727/8/i=1/a=013

J. Lowell, The electrification of polymers by metals, Journal of Physics D: Applied Physics 9 (11) (1976)
1571.
URL http://stacks.iop.org/0022-3727/9/i=11/a=006

J. Lowell, The role of material transfer in contact electrification, Journal of Physics D: Applied Physics
10 (17) (1977) L233.
URL http://stacks.iop.org/0022-3727/10/i=17/a=001

T. Matsuyama, H. Yamamoto, Charge transfer between a single polymer particle and metal plate by
impact, J. Soc. Powder Technology, Japan 24 (1987) 765-770.

T. Matsuyama, H. Yamamoto, Characterizing the electrostatic charging of polymer particles by impact
charging experiments, Advanced Powder Technology 6 (1995) 211-220. doi:10.1016/S0921-8831(08)
60529-4|

H. Watanabe, M. Ghadiri, T. Matsuyama, Y. L. Ding, K. G. Pitt, H. Maruyama, S. Matsusaka, H. Masuda,
Triboelectrification of pharmaceutical powders by particle impact, International Journal of Pharmaceutics
334 (2007) 149-155. |doi:10.1016/j.1ijpharm.2006.11.005.

E. Supuk, C. Seiler, M. Ghadiri, Analysis of a simple test device for tribo-electric charging of bulk powders,
Particle & Particle Systems Characterization 26 (1-2) (2009) 7-16. |doi:10.1002/ppsc.200800015|
URL http://dx.doi.org/10.1002/ppsc.200800015

J. Wu, H. T. Bi, Addition of fines for the reduction of powder charging in particle mixers, Advanced
Powder Technology 22 (3) (2011) 332 — 335. doi:https://doi.org/10.1016/j.apt.2010.04.009.
URL http://www.sciencedirect.com/science/article/pii/S0921883110000762

A. Schella, S. Herminghaus, M. Schroter, Influence of humidity on tribo-electric charging and segregation
in shaken granular media, Soft Matter 13 (2017) 394-401. |doi:10.1039/C6SM02041K.
URL http://dx.doi.org/10.1039/C6SM02041K

S. Alois, J. Merrison, J. J. Iversen, J. Sesterhenn, Quantifying the contact electrification of aerosolized in-
sulating particles, Powder Technology 332 (2018) 106 — 113. |doi:https://doi.org/10.1016/j.powtec.
2018.03.059.

URL http://www.sciencedirect.com/science/article/pii/S0032591018302523

G. W. Israel, S. Friedlander, High-speed beams of small particles, Journal of Colloid and Interface Science
24 (3) (1967) 330 — 337. [doi :https://doi.org/10.1016/0021-9797 (67)90258-5,
URL http://www.sciencedirect.com/science/article/pii/0021979767902585

I. Currie, Fundamental Mechanics of Fluids, Third Edition, Dekker Mechanical Engineering, Taylor &
Francis, 2002.

B. Dahneke, S. Friedlander, |Velocity characteristics of beams of spherical polystyrene particles, Journal
of Aerosol Science 1 (4) (1970) 325 — 339. doi:https://doi.org/10.1016/0021-8502(70)90006-6.
URL http://www.sciencedirect.com/science/article/pii/0021850270900066


https://www.sciencedirect.com/science/article/pii/S0032591016308361
https://doi.org/https://doi.org/10.1016/j.powtec.2016.11.044
https://www.sciencedirect.com/science/article/pii/S0032591016308361
http://www.sciencedirect.com/science/article/pii/S0032591018305072
http://www.sciencedirect.com/science/article/pii/S0032591018305072
https://doi.org/https://doi.org/10.1016/j.powtec.2018.07.015
http://www.sciencedirect.com/science/article/pii/S0032591018305072
https://doi.org/10.1063/1.1699765
http://stacks.iop.org/0022-3727/2/i=11/a=307
http://stacks.iop.org/0022-3727/2/i=11/a=307
http://stacks.iop.org/0022-3727/8/i=1/a=013
http://stacks.iop.org/0022-3727/8/i=1/a=013
http://stacks.iop.org/0022-3727/9/i=11/a=006
http://stacks.iop.org/0022-3727/9/i=11/a=006
http://stacks.iop.org/0022-3727/10/i=17/a=001
http://stacks.iop.org/0022-3727/10/i=17/a=001
https://doi.org/10.1016/S0921-8831(08)60529-4
https://doi.org/10.1016/S0921-8831(08)60529-4
https://doi.org/10.1016/j.ijpharm.2006.11.005
http://dx.doi.org/10.1002/ppsc.200800015
https://doi.org/10.1002/ppsc.200800015
http://dx.doi.org/10.1002/ppsc.200800015
http://www.sciencedirect.com/science/article/pii/S0921883110000762
https://doi.org/https://doi.org/10.1016/j.apt.2010.04.009
http://www.sciencedirect.com/science/article/pii/S0921883110000762
http://dx.doi.org/10.1039/C6SM02041K
http://dx.doi.org/10.1039/C6SM02041K
https://doi.org/10.1039/C6SM02041K
http://dx.doi.org/10.1039/C6SM02041K
http://www.sciencedirect.com/science/article/pii/S0032591018302523
http://www.sciencedirect.com/science/article/pii/S0032591018302523
https://doi.org/https://doi.org/10.1016/j.powtec.2018.03.059
https://doi.org/https://doi.org/10.1016/j.powtec.2018.03.059
http://www.sciencedirect.com/science/article/pii/S0032591018302523
http://www.sciencedirect.com/science/article/pii/0021979767902585
https://doi.org/https://doi.org/10.1016/0021-9797(67)90258-5
http://www.sciencedirect.com/science/article/pii/0021979767902585
http://www.sciencedirect.com/science/article/pii/0021850270900066
https://doi.org/https://doi.org/10.1016/0021-8502(70)90006-6
http://www.sciencedirect.com/science/article/pii/0021850270900066

REFERENCES 173

[133]

[134]

[135]

[136]

[137]

[138]
[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147)

[148]

[149]

[150]

[151]

S. A. Schaaf, P. L. Chambre, Flow of Rarefied Gases, Princeton University Press, 1958.
URL http://www. jstor.org/stable/j.cttim32248

D. Zwillinger, S. Kokoska, CRC Standard Probability and Statistics Tables and Formulae, Chapman &
Hall/CRC, 2000.

B. Bhushan, Modern Tribology Handbook, The mechanics and materials science series, CRC Press, 2001.
URL https://books.google.co.uk/books?id=i109UAAAAMAAJ

H. Hertz, Uber die berithrung fester elastischer korper. (on the contact of elastic solids), J. reine und
an-gewandte Mathematik 92 (1882) 156-171.

J. Kolehmainen, A. Ozel, S. Sundaresan, Eulerian modelling of gas—solid flows with triboelectric charging,
Journal of Fluid Mechanics 848 (2018) 340-369. |doi:10.1017/jfm.2018.361.

S. Timoshenko, J. Goodier, Theory of Elasticity, 2nd Edition, Mcgraw-Hill Book Company Inc, 1951.

S. Matsusaka, M. Ghadiri, H. Masuda, Electrification of an elastic sphere by repeated impacts on a metal
plate, Journal of Physics D: Applied Physics 33 (18) (2000) 2311.
URL http://stacks.iop.org/0022-3727/33/i=18/a=316

M. Perkins, S. J. Ebbens, S. Hayes, C. J. Roberts, C. E. Madden, S. Y. Luk, N. Patel, Elastic modulus
measurements from individual lactose particles using atomic force microscopy, International Journal of
Pharmaceutics 332 (1) (2007) 168-175. doi:https://doi.org/10.1016/j.1ijpharm.2006.09.032.
URL https://www.sciencedirect.com/science/article/pii/S037851730600785X

S. K. Ahuja, A collision model of charge exchange between metal and polymer spheres, Journal of Physics
D: Applied Physics 9 (9) (1976) 1305.
URL http://stacks.iop.org/0022-3727/9/i=9/a=007

T. Matsusyama, H. Yamamoto, Impact charging of particulate materials, Chemical Engineering Science
61 (2006) 2230-2238. |doi:10.1016/j.ces.2005.05.003.

T. Matsuyama, H. Yamamoto, |Charge relaxation process dominates contact charging of a particle in
atmospheric conditions, Journal of Physics D: Applied Physics 28 (12) (1995) 2418.
URL http://stacks.iop.org/0022-3727/28/1=12/a=005

P. M. Treland, |Some comments on contact charge relaxation, Applied Physics Letters 91 (9) (2007) 091501.
arXiv:https://doi.org/10.1063/1.2776021) doi:10.1063/1.2776021.
URL https://doi.org/10.1063/1.2776021

P. M. Ireland, The role of changing contact in sliding triboelectrification, Journal of Physics D: Applied
Physics 41 (2) (2008) 025305.
URL http://stacks.iop.org/0022-3727/41/i=2/2=025305

P. M. Treland, |Contact charge accumulation and separation discharge, Journal of Electrostatics 67 (2)
(2009) 462 — 467, 11th International Conference on Electrostatics. doi:https://doi.org/10.1016/j.
elstat.2009.01.014.

URL http://www.sciencedirect.com/science/article/pii/S0304388609000503

P. M. Ireland, Triboelectrification of particulate flows on surfaces: Part i — experiments, Powder Tech-
nology 198 (2) (2010) 189 — 198. doi:https://doi.org/10.1016/j.powtec.2009.11.017.
URL http://www.sciencedirect.com/science/article/pii/S0032591009006172

P. M. Ireland, Triboelectrification of particulate flows on surfaces: Part ii — mechanisms and models,
Powder Technology 198 (2010) 199-210. doi:10.1016/j.powtec.2009.11.008.

ChemBK, alpha-lactose monohydrate, [Online; accessed 15/06/21] (2015).
URL https://www.chembk.com/en/chem/alpha-Lactose/20monohydrate

J. Laurentie, P. Traoré, L. Dascalescu, Discrete element modelling of triboelectric charging of insulating
materials in vibrated granular beds, Journal of Electrostatics 71 (6) (2013) 951 — 957. doi:https:
//doi.org/10.1016/j.elstat.2013.08.001.

URL http://www.sciencedirect.com/science/article/pii/S0304388613001034

F. A. Williams, Spray combustion and atomization, The Physics of Fluids 1 (6) (1958) 541-545. arXiv:
https://aip.scitation.org/doi/pdf/10.1063/1.1724379, doi:10.1063/1.1724379.
URL https://aip.scitation.org/doi/abs/10.1063/1.1724379


http://www.jstor.org/stable/j.ctt1m32248
http://www.jstor.org/stable/j.ctt1m32248
https://books.google.co.uk/books?id=io9UAAAAMAAJ
https://books.google.co.uk/books?id=io9UAAAAMAAJ
https://doi.org/10.1017/jfm.2018.361
http://stacks.iop.org/0022-3727/33/i=18/a=316
http://stacks.iop.org/0022-3727/33/i=18/a=316
http://stacks.iop.org/0022-3727/33/i=18/a=316
https://www.sciencedirect.com/science/article/pii/S037851730600785X
https://www.sciencedirect.com/science/article/pii/S037851730600785X
https://doi.org/https://doi.org/10.1016/j.ijpharm.2006.09.032
https://www.sciencedirect.com/science/article/pii/S037851730600785X
http://stacks.iop.org/0022-3727/9/i=9/a=007
http://stacks.iop.org/0022-3727/9/i=9/a=007
https://doi.org/10.1016/j.ces.2005.05.003
http://stacks.iop.org/0022-3727/28/i=12/a=005
http://stacks.iop.org/0022-3727/28/i=12/a=005
http://stacks.iop.org/0022-3727/28/i=12/a=005
https://doi.org/10.1063/1.2776021
http://arxiv.org/abs/https://doi.org/10.1063/1.2776021
https://doi.org/10.1063/1.2776021
https://doi.org/10.1063/1.2776021
http://stacks.iop.org/0022-3727/41/i=2/a=025305
http://stacks.iop.org/0022-3727/41/i=2/a=025305
http://www.sciencedirect.com/science/article/pii/S0304388609000503
https://doi.org/https://doi.org/10.1016/j.elstat.2009.01.014
https://doi.org/https://doi.org/10.1016/j.elstat.2009.01.014
http://www.sciencedirect.com/science/article/pii/S0304388609000503
http://www.sciencedirect.com/science/article/pii/S0032591009006172
https://doi.org/https://doi.org/10.1016/j.powtec.2009.11.017
http://www.sciencedirect.com/science/article/pii/S0032591009006172
https://doi.org/10.1016/j.powtec.2009.11.008
https://www.chembk.com/en/chem/alpha-Lactose%20monohydrate
https://www.chembk.com/en/chem/alpha-Lactose%20monohydrate
http://www.sciencedirect.com/science/article/pii/S0304388613001034
http://www.sciencedirect.com/science/article/pii/S0304388613001034
https://doi.org/https://doi.org/10.1016/j.elstat.2013.08.001
https://doi.org/https://doi.org/10.1016/j.elstat.2013.08.001
http://www.sciencedirect.com/science/article/pii/S0304388613001034
https://aip.scitation.org/doi/abs/10.1063/1.1724379
http://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1063/1.1724379
http://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1063/1.1724379
https://doi.org/10.1063/1.1724379
https://aip.scitation.org/doi/abs/10.1063/1.1724379

174

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

REFERENCES

O. Simonin, Second-moment prediction of dispersed phase turbulence in particle-laden flows, in: 8th
Symposium on Turbulent Shear Flows, Volume 1, Vol. 1, 1991, pp. 741 — 746.

E. Deutsch, O. Simonin, Large eddy simulation applied to the modelling of particulate transport coeffi-
cients in turbulent two-phase flows, Proc. 8th Symp. Turbulent Shear Flows 1 (1991) 10-1.

O. Druzhinin, S. Elghobashi, Direct numerical simulations of bubble-laden turbulent flows using two-fluid
formulation, Physics of Fluids 10 (1998) 685-697. doi:10.1063/1.869594.

M. Icardi, D. Marchisio, C. Narayanan, R. Fox, Equilibrium-eulerian les model for turbulent poly-dispersed
particle-laden flow, International Journal of Nonlinear Sciences and Numerical Simulation 14 (2013) 139-
158. |[doi:10.1515/ijnsns-2012-0086.

L. Mazzei, D. L. Marchisio, P. Lettieri, Direct quadrature method of moments for the mixing of in-
ert polydisperse fluidized powders and the role of numerical diffusion, Industrial & Engineering Chem-
istry Research 49 (11) (2010) 5141-5152. |arXiv:https://doi.org/10.1021/1e901116y, |[doi:10.1021/
1ie901116y.

URL https://doi.org/10.1021/1e901116y

S. Chapman, T. Cowling, D. Burnett, C. Cercignani, [The Mathematical Theory of Non-uniform Gases:
An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases|, 3rd Edition,
Cambridge Mathematical Library, Cambridge University Press, 1990.

URL https://books.google.co.uk/books?id=y2Yyy798WzIC

D. Gidaspow, Multiphase flow and fluidization: Continuum and kinetic theory descriptions, Academic
Press, New York, 1994.

J. Ding, D. Gidaspow, |A bubbling fluidization model using kinetic theory of granular flow, AIChE Jour-
nal 36 (4) (1990) 523-538. larXiv:https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.
690360404, |doi:https://doi.org/10.1002/aic.690360404.

URL https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690360404

M. Loomans, W. van Houdt, A. Lemaire, J. Hensen, [Performance assessment of an operating theatre
design using cfd simulation and tracer gas measurements, Indoor and Built Environment 17 (4) (2008)
299-312. arXiv:https://doi.org/10.1177/1420326X08094948) doi:10.1177/1420326X08094948.
URL https://doi.org/10.1177/1420326X08094948

C. Beauchéne, N. Laudinet, F. Choukri, J.-L. Rousset, S. Benhamadouche, J. Larbre, M. Chaouat, M. Ben-
bunan, M. Mimoun, J.-P. Lajonchére, V. Bergeron, F. Derouin, Accumulation and transport of microbial-
size particles in a pressure protected model burn unit: Cfd simulations and experimental evidence, BMC
infectious diseases 11 (2011) 58. |doi:10.1186/1471-2334-11-58.

M. Manninen, V. Taivassalo, S. Kallio, On the mixture model for multiphase flow, in: VT'T Publications,
Vol. 288, 1996, p. 67.

V. A. Aketi, T. Vakamalla, M. Narasimha, G. Sreedhar, R. Shivakumar, RajanKumar, |Computa-
tional fluid dynamic study on the effect of near gravity material on dense medium cyclone treating
coal using discrete phase model and algebraic slip mixture multiphase model, The Journal of Compu-
tational Multiphase Flows 9 (2) (2017) 58-70. |arXiv:https://doi.org/10.1177/1757482X16677755,
doi:10.1177/1757482X16677755.

URL https://doi.org/10.1177/1757482X16677755

S. Grady, G. Wesson, M. Abdullah, E. Kalu, Prediction of 10-mm hydrocyclone separation efficiency using
computational fluid dynamics, Filtration & Separation 40 (9) (2003) 41-46. doi:https://doi.org/10.
1016/50015-1882(03)00930-3.

URL https://www.sciencedirect.com/science/article/pii/S0015188203009303

J. Ferry, S. Balachandar, Equilibrium expansion for the eulerian velocity of small particles, Pow-
der Technology 125 (2) (2002) 131 — 139, the fourth international conference on multiphase Flow.
doi:https://doi.org/10.1016/50032-5910(01)00499-5.

URL http://www.sciencedirect.com/science/article/pii/S0032591001004995

J. Ferry, S. L. Rani, S. Balachandar, A locally implicit improvement of the equilibrium eulerian method,
International Journal of Multiphase Flow 29 (6) (2003) 869 — 891. doi:https://doi.org/10.1016/
50301-9322(03)00064-8.

URL http://www.sciencedirect.com/science/article/pii/S0301932203000648


https://doi.org/10.1063/1.869594
https://doi.org/10.1515/ijnsns-2012-0086
https://doi.org/10.1021/ie901116y
https://doi.org/10.1021/ie901116y
http://arxiv.org/abs/https://doi.org/10.1021/ie901116y
https://doi.org/10.1021/ie901116y
https://doi.org/10.1021/ie901116y
https://doi.org/10.1021/ie901116y
https://books.google.co.uk/books?id=y2Yyy798WzIC
https://books.google.co.uk/books?id=y2Yyy798WzIC
https://books.google.co.uk/books?id=y2Yyy798WzIC
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690360404
http://arxiv.org/abs/https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690360404
http://arxiv.org/abs/https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690360404
https://doi.org/https://doi.org/10.1002/aic.690360404
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690360404
https://doi.org/10.1177/1420326X08094948
https://doi.org/10.1177/1420326X08094948
http://arxiv.org/abs/https://doi.org/10.1177/1420326X08094948
https://doi.org/10.1177/1420326X08094948
https://doi.org/10.1177/1420326X08094948
https://doi.org/10.1186/1471-2334-11-58
https://doi.org/10.1177/1757482X16677755
https://doi.org/10.1177/1757482X16677755
https://doi.org/10.1177/1757482X16677755
http://arxiv.org/abs/https://doi.org/10.1177/1757482X16677755
https://doi.org/10.1177/1757482X16677755
https://doi.org/10.1177/1757482X16677755
https://www.sciencedirect.com/science/article/pii/S0015188203009303
https://www.sciencedirect.com/science/article/pii/S0015188203009303
https://doi.org/https://doi.org/10.1016/S0015-1882(03)00930-3
https://doi.org/https://doi.org/10.1016/S0015-1882(03)00930-3
https://www.sciencedirect.com/science/article/pii/S0015188203009303
http://www.sciencedirect.com/science/article/pii/S0032591001004995
https://doi.org/https://doi.org/10.1016/S0032-5910(01)00499-5
http://www.sciencedirect.com/science/article/pii/S0032591001004995
http://www.sciencedirect.com/science/article/pii/S0301932203000648
https://doi.org/https://doi.org/10.1016/S0301-9322(03)00064-8
https://doi.org/https://doi.org/10.1016/S0301-9322(03)00064-8
http://www.sciencedirect.com/science/article/pii/S0301932203000648

REFERENCES 175

[167]

[168]

[169]

[170]

[171]
[172]

[173]

[174]

[175]

[176]

[177]

[17]

[179]

[180]

[181]

[182]

[183]

S. L. Rani, S. Balachandar, Evaluation of the equilibrium eulerian approach for the evolution of particle
concentration in isotropic turbulence, International Journal of Multiphase Flow 29 (12) (2003) 1793 —
1816. doi:https://doi.org/10.1016/j.ijmultiphaseflow.2003.09.005.

URL http://www.sciencedirect.com/science/article/pii/S0301932203001721

B. Shotorban, S. Balachandar, A eulerian model for large-eddy simulation of concentration of particles
with small stokes numbers, Physics of Fluids 19 (11 2007). doi:10.1063/1.2804956.

S. Stolz, N. A. Adams, L. Kleiser, An approximate deconvolution model for large-eddy simulation with
application to incompressible wall-bounded flows, Physics of Fluids 13 (4) (2001) 997-1015. arXiv:https:
//doi.org/10.1063/1.1350896| |doi:10.1063/1.1350896!.

URL https://doi.org/10.1063/1.1350896

S. Badawy, Laboratory freezing desalination of seawater, Desalination and water treatment 57 (2015)
11040-11047. doi:10.1080/19443994.2015.1041163.

W. H. Finlay, The Mechanics of Inhaled Pharmaceutical Aerosols, 1st Edition, Academic Press, 2001.

G. I. Taylor, A. E. Green, Mechanism of the production of small eddies from large ones, Pro-
ceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences 158 (895)
(1937) 499-521. arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1937.0036,
doi:10.1098/rspa.1937.0036.

URL https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1937.0036

J. DeBonis, [Solutions of the taylor-green vortex problem using high-resolution explicit finite difference
methods, in: 51st ATAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace
Exposition, 2013, pp. 1 — 20. arXiv:https://arc.aiaa.org/doi/pdf/10.2514/6.2013-382, |[doi:10.
2514/6.2013-382.

URL https://arc.aiaa.org/doi/abs/10.2514/6.2013-382

S. V. Patankar, Numerical heat transfer and fluid flow, Series on Computational Methods in Mechanics
and Thermal Science, Hemisphere Publishing Corporation (CRC Press, Taylor & Francis Group), 1980.
URL http://www.crcpress.com/product/isbn/9780891165224

B. Leonard, |A stable and accurate convective modelling procedure based on quadratic upstream inter-
polation, Computer Methods in Applied Mechanics and Engineering 19 (1) (1979) 59-98. doi:https:
//doi.org/10.1016/0045-7825(79)90034-3.

URL https://www.sciencedirect.com/science/article/pii/0045782579900343

K. Stewartson, Vectors, tensors, and the basic equations of fluid mechanics.rutherford aris. prentice-hall,
london. 1962. 286 pp. illustrated. 42s., The Journal of the Royal Aeronautical Society 67 (632) (1963)
532-532. doi:10.1017/S0001924000062679.

H. Jasak, Error analysis and estimation for the finite volume method with applications to fluid flows,
Ph.D. thesis, Department of Mechanical Engineering, Imperial College London (1996).

T. BARTH, D. JESPERSEN, The design and application of upwind schemes on unstructured meshes, in:
27th Aerospace Sciences Meeting, 1989, pp. 1-12. larXiv:https://arc.aiaa.org/doi/pdf/10.2514/6.
1989-366, doi:10.2514/6.1989-366.

URL https://arc.aiaa.org/doi/abs/10.2514/6.1989-366

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes 3rd Edition: The Art
of Scientific Computing, 3rd Edition, Cambridge University Press, New York, NY, USA, 2007.

P. H. Westfall, Kurtosis as peakedness, 1905-2014. r.i.p., The American Statistician 68 (3) (2014) 191-195.
arXiv:https://doi.org/10.1080/00031305.2014.917055, doi:10.1080/00031305.2014.917055,
URL https://doi.org/10.1080/00031305.2014.917055

Y. Tominaga, T. Stathopoulos, Turbulent schmidt numbers for cfd analysis with various types of flowfield,
Atmospheric Environment 41 (37) (2007) 8091 — 8099. |doi:https://doi.org/10.1016/j.atmosenv.
2007.06.054.

URL http://www.sciencedirect.com/science/article/pii/S1352231007006036

J. Cash, A. Karp, A variable order runge—kutta method for value problems with rapidly varying right-
hand sides, ACM Trans. Math. Softw. 16 (1990) 201-222. doi:10.1145/79505.79507.

F. Holland, Fluid flow for chemical engineers, Edward Arnold, 1973.


http://www.sciencedirect.com/science/article/pii/S0301932203001721
http://www.sciencedirect.com/science/article/pii/S0301932203001721
https://doi.org/https://doi.org/10.1016/j.ijmultiphaseflow.2003.09.005
http://www.sciencedirect.com/science/article/pii/S0301932203001721
https://doi.org/10.1063/1.2804956
https://doi.org/10.1063/1.1350896
https://doi.org/10.1063/1.1350896
http://arxiv.org/abs/https://doi.org/10.1063/1.1350896
http://arxiv.org/abs/https://doi.org/10.1063/1.1350896
https://doi.org/10.1063/1.1350896
https://doi.org/10.1063/1.1350896
https://doi.org/10.1080/19443994.2015.1041163
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1937.0036
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1937.0036
https://doi.org/10.1098/rspa.1937.0036
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1937.0036
https://arc.aiaa.org/doi/abs/10.2514/6.2013-382
https://arc.aiaa.org/doi/abs/10.2514/6.2013-382
http://arxiv.org/abs/https://arc.aiaa.org/doi/pdf/10.2514/6.2013-382
https://doi.org/10.2514/6.2013-382
https://doi.org/10.2514/6.2013-382
https://arc.aiaa.org/doi/abs/10.2514/6.2013-382
http://www.crcpress.com/product/isbn/9780891165224
http://www.crcpress.com/product/isbn/9780891165224
https://www.sciencedirect.com/science/article/pii/0045782579900343
https://www.sciencedirect.com/science/article/pii/0045782579900343
https://doi.org/https://doi.org/10.1016/0045-7825(79)90034-3
https://doi.org/https://doi.org/10.1016/0045-7825(79)90034-3
https://www.sciencedirect.com/science/article/pii/0045782579900343
https://doi.org/10.1017/S0001924000062679
https://arc.aiaa.org/doi/abs/10.2514/6.1989-366
http://arxiv.org/abs/https://arc.aiaa.org/doi/pdf/10.2514/6.1989-366
http://arxiv.org/abs/https://arc.aiaa.org/doi/pdf/10.2514/6.1989-366
https://doi.org/10.2514/6.1989-366
https://arc.aiaa.org/doi/abs/10.2514/6.1989-366
https://doi.org/10.1080/00031305.2014.917055
http://arxiv.org/abs/https://doi.org/10.1080/00031305.2014.917055
https://doi.org/10.1080/00031305.2014.917055
https://doi.org/10.1080/00031305.2014.917055
http://www.sciencedirect.com/science/article/pii/S1352231007006036
https://doi.org/https://doi.org/10.1016/j.atmosenv.2007.06.054
https://doi.org/https://doi.org/10.1016/j.atmosenv.2007.06.054
http://www.sciencedirect.com/science/article/pii/S1352231007006036
https://doi.org/10.1145/79505.79507

176

[184]

[185]

[186]

[187]

[188]

[189)]

[190]

191]

[192]

193]

[194]

[195]

[196]

[197]

[198]

[199]

REFERENCES

B. Cui, C. Zhang, D. Wei, S. Lu, Y. Feng, |[Effects of feed size distribution on separation performance
of hydrocyclones with different vortex finder diameters, Powder Technology 322 (2017) 114 — 123. doi:
https://doi.org/10.1016/j.powtec.2017.09.010.

URL http://www.sciencedirect.com/science/article/pii/S0032591017307453

B. Leonard, The ultimate conservative difference scheme applied to unsteady one-dimensional advection,
Computer Methods in Applied Mechanics and Engineering 88 (1) (1991) 17 — 74. doi:https://doi.org/
10.1016/0045-7825(91)90232-U.

URL http://www.sciencedirect.com/science/article/pii/004578259190232U

C. M. Rhie, W. L. Chow, |Numerical study of the turbulent flow past an airfoil with trailing edge separation,
ATAA Journal 21 (11) (1983) 1525-1532. arXiv:https://doi.org/10.2514/3.8284, doi:10.2514/3.
8284.

URL https://doi.org/10.2514/3.8284

T. Chan, H. Van, H. Van der Vorst, Approximate and Incomplete Factorizations. In: Keyes D.E., Sameh
A., Venkatakrishnan V. (eds) Parallel Numerical Algorithms, Springer, Dordrecht, 1970. |doi:https:
//doi.org/10.1007/978-94-011-5412-3_6l

A. Smirnov, S. Shi, I. Celik, Random flow generation technique for large eddy simula-
tions and particle-dynamics modelling, Journal of Fluids Engineering 123 (2) (2001) 359-
371. |arXiv:https://asmedigitalcollection.asme.org/fluidsengineering/article-pdf/123/2/
359/5591369/359\_1.pdf, doi:10.1115/1.1369598.

URL https://doi.org/10.1115/1.1369598

F. Russo, N. Basse, Scaling of turbulence intensity for low-speed flow in smooth pipes, Flow Measurement
and Instrumentation 52 (10 2016). doi:10.1016/j.flowmeasinst.2016.09.012.

M. Gibson, C. Verriopoulos, N. Vlachos, Turbulent boundary layer on a mildly curved convex surface.,
Experiments in Fluids 2 (1984) 17-24. |doi:10.1007/BF00266314.

J. Hunt, A. Wray, P. Moin, Eddies, streams, and convergence zones in turbulent flows, Studying Turbulence
Using Numerical Simulation Databases -1 (1988) 193-208.

G. Haller, An objective definition of a vortex, Journal of Fluid Mechanics 525 (2005) 1-26. |doi:10.1017/
S50022112004002526.

W. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, New York:
John Wiley & Sons, 1982.

A. Wiedensohler, E. Liitkemeier, M. Feldpausch, C. Helsper, [Investigation of the bipolar charge dis-
tribution at various gas conditions, Journal of Aerosol Science 17 (3) (1986) 413 — 416. doi:https:
//doi.org/10.1016/0021-8502(86)90118-7.

URL http://www.sciencedirect.com/science/article/pii/0021850286901187

R. Gunn, R. Woessner, Measurements of the systematic electrification of aerosols, Journal of Colloid
Science 11 (3) (1956) 254 — 259. doi:https://doi.org/10.1016/0095-8522(56)90050-2.
URL http://www.sciencedirect.com/science/article/pii/0095852256900502

P. G. Gormley, M. Kennedy, Diffusion from a stream flowing through a cylindrical tube, Proceedings of
the Royal Irish Academy. Section A: Mathematical and Physical Sciences 52 (1949) 163-169.
URL http://www. jstor.org/stable/20488498

B. W. Green, F. Zhang, Idealized large-eddy simulations of a tropical cyclone-like boundary layer (2015).
arXiv:http://dx.doi.org/10.1175/JAS-D-14-0244.1| doi:10.1175/JAS-D-14-0244.1.
URL http://dx.doi.org/10.1175/JAS-D-14-0244.1

F. Nicoud, F. Ducros, Subgrid-scale stress modelling based on the square of the velocity gradient tensor),
Flow, Turbulence and Combustion 62 (3) (1999) 183-200. |doi:10.1023/A:1009995426001.
URL https://doi.org/10.1023/A:1009995426001

M. Weickert, G. Teike, O. Schmidt, M. Sommerfeld, Investigation of the les wale turbulence model within
the lattice boltzmann framework, Computers & Mathematics with Applications 59 (7) (2010) 2200 —
2214, mesoscopic Methods in Engineering and Science. |[doi:https://doi.org/10.1016/j.camwa.2009.
08.060.

URL http://www.sciencedirect.com/science/article/pii/S089812210900652X


http://www.sciencedirect.com/science/article/pii/S0032591017307453
http://www.sciencedirect.com/science/article/pii/S0032591017307453
https://doi.org/https://doi.org/10.1016/j.powtec.2017.09.010
https://doi.org/https://doi.org/10.1016/j.powtec.2017.09.010
http://www.sciencedirect.com/science/article/pii/S0032591017307453
http://www.sciencedirect.com/science/article/pii/004578259190232U
https://doi.org/https://doi.org/10.1016/0045-7825(91)90232-U
https://doi.org/https://doi.org/10.1016/0045-7825(91)90232-U
http://www.sciencedirect.com/science/article/pii/004578259190232U
https://doi.org/10.2514/3.8284
http://arxiv.org/abs/https://doi.org/10.2514/3.8284
https://doi.org/10.2514/3.8284
https://doi.org/10.2514/3.8284
https://doi.org/10.2514/3.8284
https://doi.org/https://doi.org/10.1007/978-94-011-5412-3_6
https://doi.org/https://doi.org/10.1007/978-94-011-5412-3_6
https://doi.org/10.1115/1.1369598
https://doi.org/10.1115/1.1369598
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/fluidsengineering/article-pdf/123/2/359/5591369/359_1.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/fluidsengineering/article-pdf/123/2/359/5591369/359_1.pdf
https://doi.org/10.1115/1.1369598
https://doi.org/10.1115/1.1369598
https://doi.org/10.1016/j.flowmeasinst.2016.09.012
https://doi.org/10.1007/BF00266314
https://doi.org/10.1017/S0022112004002526
https://doi.org/10.1017/S0022112004002526
http://www.sciencedirect.com/science/article/pii/0021850286901187
http://www.sciencedirect.com/science/article/pii/0021850286901187
https://doi.org/https://doi.org/10.1016/0021-8502(86)90118-7
https://doi.org/https://doi.org/10.1016/0021-8502(86)90118-7
http://www.sciencedirect.com/science/article/pii/0021850286901187
http://www.sciencedirect.com/science/article/pii/0095852256900502
https://doi.org/https://doi.org/10.1016/0095-8522(56)90050-2
http://www.sciencedirect.com/science/article/pii/0095852256900502
http://www.jstor.org/stable/20488498
http://www.jstor.org/stable/20488498
http://dx.doi.org/10.1175/JAS-D-14-0244.1
http://arxiv.org/abs/http://dx.doi.org/10.1175/JAS-D-14-0244.1
https://doi.org/10.1175/JAS-D-14-0244.1
http://dx.doi.org/10.1175/JAS-D-14-0244.1
https://doi.org/10.1023/A:1009995426001
https://doi.org/10.1023/A:1009995426001
https://doi.org/10.1023/A:1009995426001
http://www.sciencedirect.com/science/article/pii/S089812210900652X
http://www.sciencedirect.com/science/article/pii/S089812210900652X
https://doi.org/https://doi.org/10.1016/j.camwa.2009.08.060
https://doi.org/https://doi.org/10.1016/j.camwa.2009.08.060
http://www.sciencedirect.com/science/article/pii/S089812210900652X

REFERENCES 177

200]

[201]

R. K. Moghadam, K. Javadi, F. Kiani, |Assessment of the les-wale and zonal-des turbulence models in
simulation of the flow structures around the finite circular cylinder., Journal of Applied Fluid Mechanics
9 (2) (2016) 909 — 923.

URL http://search.ebscohost.com/login.aspx?direct=true&db=i1ih&AN=113635692&site=
eds-live

D. Mylonas, S. Turkmen, M. Khorasanchi, Numerical study of asymmetric keel hydrodynamic performance
through advanced cfd, in: Third International Conference On Innovation In High Performance Sailing
Yachts, 2013, pp. 1 — 12.

URL https://strathprints.strath.ac.uk/47155/


http://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=113635692&site=eds-live
http://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=113635692&site=eds-live
http://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=113635692&site=eds-live
http://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=113635692&site=eds-live
https://strathprints.strath.ac.uk/47155/
https://strathprints.strath.ac.uk/47155/
https://strathprints.strath.ac.uk/47155/

178 REFERENCES



	Declaration of Authorship
	Acknowledgements
	Nomenclature
	Introduction
	Project Aim
	The Research Problem
	Geometry and Scales
	Cyclone Geometry and Inlet Conditions
	Fluid Scaling
	Particle Scaling and Regimes

	Fundamental Tribocharging Physics
	Summary and Structure of Thesis

	Literature Survey
	Separation Prediction Methods
	Turbulence Modelling
	Uncharged Particle Physics and Modelling
	Separation Prediction Methods Conclusion

	Particle Charging
	Experimental Data
	Aerodynamic Focusing of Sub-Micron Particles
	Hertzian Contact Model
	Matsuyama's Plate Model
	Ireland's Model
	Laurentie's Model
	Tribocharging Conclusion

	Eulerian Particle Modelling
	Mixture Model
	Equilibrium Eulerian Model
	Eulerian Particle Modelling Conclusion

	Conclusion

	Particle Charging Experiments
	Experimental Set-Up
	Materials and Measuring Equipment

	Methodology
	Characterisation
	Beam Measurements

	Aerosol Characterisation
	Size Distribution
	Charge State

	Experimental Results
	Charging Time Constant
	Equilibrium Charge Density

	Conclusion

	Particle Eulerian Model Validation
	Taylor-Green Vortex
	Eulerian Model Implementation
	Finite Volume Discretisation
	Computational Set-up

	Eulerian Model Numerical Tests
	Diffusion Coefficients and Discretisation
	Eulerian Model Numerical Tests Conclusion

	Lagrangian Particle Tracking
	Particle Numerical Study

	Eulerian Model Comparison with Lagrangian Results
	Comparison with The Mixture Model
	Charge Model Implementation
	Charge Model Results

	Conclusion

	Cyclone CFD Study
	Single-Phase Cyclone CFD
	Mesh Sizing
	Solver Numerics
	Fluid Results

	Lagrangian Particle Tracking
	Computational Set-Up and Separation Efficiency
	Particle Statistics

	Eulerian Particle Cyclone Model
	Discretisation and Computational Set-Up
	Uncharged Results
	Charge Discussion

	Conclusion

	Conclusion
	Suggestions For Future Work

	Appendices
	Geometric Swirl Number Derivation
	Rankine Vortex
	MEE Matrix Inversion: Proof by Contradiction
	Scanning Mobility Particle Sizer Theory of Operation
	Aerosol Beam Drawing
	LES Governing Equations
	References

