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Quantum computers have the potential of providing unprecedented computational
power for solving problems that are known to be difficult for classical computers, in-
cluding integer factoring, database searching, molecular simulation and combinatorial
optimization. At the time of writing, the largest real-world quantum computers are
only handling 100–200 noisy qubits, which are also known as “noisy intermediate-scale
quantum computers”.

Quantum error mitigation (QEM) constitutes a class of promising techniques, which
are capable of reducing the computational error caused by the decoherence-induced
impairments in the qubits. However, this is achieved at the cost of an undesired compu-
tational overhead termed as the sampling overhead. In this thesis, we aim for striking
a beneficial and flexible computational accuracy vs. sampling overhead trade-off, for
both circuit-level and algorithm-level QEM. We commence by presenting an overview
of existing QEM techniques, highlighting their main sources of computational over-
head and their requirements concerning the prior knowledge about the computational
task or the noise model.

Specifically, for channel-inversion based QEM, we present a comprehensive sampling
overhead analysis, and propose “quantum channel precoders” that reduce the sam-
pling overhead. We show that Pauli channels have the lowest sampling overhead in a
large class of practical quantum channels, and that the depolarizing channels have the
lowest sampling overhead among Pauli channels. Furthermore, we conceive a bene-
ficial amalgam of channel-inversion based QEM and quantum error-correction codes
(QECCs).

Regarding the specific implementation strategy of channel-inversion based QEM, we
analyze the error scaling versus sampling overhead tradeoff of the Monte Carlo based
channel inversion, which drastically reduces the complexity of candidate circuit gen-
eration, at the cost of a moderate accuracy degradation. In particular, we show that
the computational error of the Monte Carlo based channel inversion is on the order of
O(

√
NG), where NG is the number of gates. This is similar to that of the exact channel
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inversion. By contrast, the computational error is on the order of O(NG) when no QEM
is applied. However, the candidate circuit generation complexity of the Monte Carlo
based strategy is exponentially lower than that of the exact channel inversion, imply-
ing that the Monte Carlo based channel inversion strategy has a favorable accuracy vs.
overhead trade-off.

Next, we design symmetry-based QEM methods having high sample-efficiency. In gen-
eral, the intrinsic symmetry conditions regarding the computational tasks may be ex-
ploited for the mitigation of the computational error using the method of symmetry
verification. However, it is limited to state symmetries, hence it has a restricted scope
of application. We extend the symmetry verification method to circuit symmetries by
proposing the technique of spatio-temporal stabilizers. Specifically, as a natural gen-
eralization of the conventional stabilizers, spatio-temporal stabilizers are capable of
detecting whether a quantum circuit commutes with certain operators. This enables
us to mitigate the errors violating the commutativity conditions. We then discuss the
detailed design strategy of the spatio-temporal stabilizer method for mitigating the er-
rors of practical quantum algorithms, including the quantum Fourier transform and
the quantum approximate optimization algorithm.

Regarding a specific kind of symmetry conditions, namely the permutation symmetry
across different activations of quantum circuits, we propose the method of permutation
filtering, inspired by the philosophy of finite impulse response (FIR) filters of classical
signal processing theory. Remarkably, the existing virtual distillation method may be
viewed as a special case of permutation filters. We show that the proposed design of
these filters converges to the global optimum, and that the error reduction performance
of the optimal filter is particularly good for narrowband noises, corresponding to the
scenario of deep quantum circuits.

Concerning the spectral leakage issue of the quantum phase estimation algorithm, we
propose an algorithm-level error mitigation method, namely the dual-frequency estima-
tor. This is potentially useful in the context of noisy intermediate-scale quantum com-
puting, since the maximum achievable recording length N is ultimately restricted by
the coherence time, hence we have to rely on multiple samples when a high phase
estimation accuracy is required. In particular, we show that when the number of sam-
ples is sufficiently large, the dual-frequency estimator outperforms the cosine window,
which is shown to be optimal for single-sample estimation. Furthermore, we also show
that the dual-frequency estimator achieves the Cramér-Rao bound when the number
of samples is large. This implies that the dual-frequency estimator has a beneficial ac-
curacy vs. sampling overhead trade-off in the asymptotic regime.
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and the covariance matrix of their arguments, respectively. The function I{·}
takes the value of one when its argument is a true expression, and takes the value
of zero otherwise.

• The notation 1/x represents the element-wise reciprocal of vector x.

• The sign function sgn(x) is defined as

sgn(x) =





1, x > 0;
0, x = 0;
−1, x < 0.

• The Bachmann-Landau notations [6] used in this thesis are given as follows:

a(n) = O(b(n)) lim supn→∞ a(n)(b(n))−1 < ∞
a(n) = o(b(n)) lim infn→∞ a(n)(b(n))−1 = 0
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Chapter 1

Introduction

1.1 Background and Motivations

On October 23rd, 2019, a group of scientists from Google declared for the first time
“quantum supremacy”: quantum computers can carry out certain tasks substantially
faster than their best classical counterparts — supercomputers [7]. Specifically, Google’s
quantum computer Sycamore completed a task termed as Boson sampling [8] in 200
seconds, while a state-of-the-art classical supercomputer, IBM Summit, would take
from 2.5 days (according to IBM [9]) to 10000 years (according to Google [7]).

Rather than a sudden and unexpected leap in computational power, quantum supremacy
is enabled by the diligent and constant effort of the entire quantum computing commu-
nity, spanning across a time period as long as 37 years. Indeed, the idea of quantum
computation dates back to Feynman’s seminal speech in 1982 [10], in which he sug-
gested to build computers relying on quantum mechanics for the efficient simulation
of quantum mechanical systems. Feynman’s proposal was then condensed to a prac-
tical quantum algorithm, termed as Hamiltonian simulation [11], and also inspired a
diverse range of other quantum algorithms providing speedup for applications far be-
yond the physics community [12–20]. Impressively, some quantum algorithms have
shown to be capable of providing exponential speedup compared to the best classical
algorithms [11, 12, 16].

The seemingly mysterious quantum speedup originates from the unique properties of
quantum mechanics. Perhaps the most well-known metaphor illustrating these pecu-
liar properties is the thought experiment of “Schrödinger’s cat” [21]. In this treatise,
we will save this poor cat from the miserable state of being simultaneously dead and
alive, by presenting a more zoophilist-friendly example. Specifically, let us consider a
coin in a black box. Classically, the coin either has its head or its tail side up, although
we might not know which is true before we open the box. However, a “quantum coin”
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could stay in a coherent superposition of the “head state” and the “tail state” simulta-
neously. But once we open the box, the superposition is destroyed and we observe one
of the two outcomes, where the probability of observing each outcome is determined
by the way that the superposition is created. The action of “opening the box” is often
referred to as “observation” or “measurement”. Let us now extend this example one
step further, by considering a “box collection” containing N such black boxes. Classical
box collections would be in a specific state out of 2N possible states, while quantum box
collections could be in the superposition of all 2N states. If we could properly manip-
ulate the superposition state to create a desired outcome probability distribution, the
quantum box collection works effectively as a quantum computer, in a way as if there
were 2N classical computers working in parallel. From this simple example, we see that
quantum mechanical systems have the potential of providing exponential speedup due
to the superposition-induced massive parallelization.

Although the achievement of quantum supremacy resulted in enormous excitement in
the quantum computing society, it does not imply that ubiquitous quantum speedup
is around the corner. In fact, the computational task of Boson sampling [8] chosen to
demonstrate quantum supremacy in Google’s experiment has limited applications be-
yond the realms of computational complexity theory. Why quantum speedup has not
been demonstrated on more popular and practical tasks? The short answer is: quan-
tum computers produce errors. Moreover, the errors are difficult to correct, hence will
accumulate as the computer executes its consecutive tasks, until the overall error rate
becomes unacceptable at some stage. In particular, quantum computers suffer from
the notorious quantum decoherence effects, which impose a perturbation on each and
every quantum operation carried out by a “quantum gate”. Intuitively, the deleteri-
ous effect of decoherence may be viewed as exposing the quantum state to perpetual
observation by the environment. As a quantum computer executes its program, the
decoherence effect would gradually turn it into a classical computer, in the sense that it
could only be in a single definitive state at a given time instance with high probability,
instead of being in a superposition state. Ultimately, given a desired computational
accuracy, decoherence sets a limit on the maximum duration of computation, termed
as “coherence time” [22].

In principle, noisy quantum gates do not necessarily prevent quantum computation
from being sufficiently accurate. A classical result, namely the threshold theorem [23],
states that quantum computation may be carried out in the presence of decoherence
with the help of quantum error correction codes (QECCs) [24–27], given that the error
rate of each quantum gate is below a certain threshold. Generally speaking, QECCs
protect a logical quantum bit (qubit) by mapping it to a larger set of physical qubits. The
redundancy of the physical qubits ensures that errors perturbing a small fraction of the
qubits can be detected and corrected with the help of some ancillary qubits (ancillas).
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FIGURE 1.1: Illustration of the iterations in hybrid quantum-classical algorithms.

Moreover, the error-correction capability can be further enhanced by concatenating sev-
eral QECCs, albeit naturally, at the expense of higher qubit overhead [28–30].

However, compared to the idealized quantum computing models considered in the
threshold theorem, practical noisy intermediate-scale quantum computers may not be
capable of supporting fully fault-tolerant operations, due to their limited number of
qubits. Consequently, they may not be able to execute algorithms that require relatively
long processing time, such as Shor’s factorization algorithm [12] and Grover’s quantum
search algorithm [13]. Fortunately, there is evidence that algorithms tailored for noisy
intermediate-scale quantum computers may yield superior performance compared to
those of classical computers [31, 32]. Most of these algorithms belong to the category
of hybrid quantum-classical algorithms, which exploit the power of classical computa-
tion to compensate for the short coherence time of quantum processors. As portrayed
in Fig. 1.1, a typical hybrid quantum-classical algorithm would be performed in an it-
erative fashion. Due to the deep-rooted connections between the optimization problem
and the variational method, hybrid quantum-classical algorithms are also referred to
as “variational quantum algorithms” in the literature. The quantum circuit, which will
be referred to as the function-evaluation circuit in this treatise, is designed to evaluate
an objective function, given a set of input parameters [33]. The value of the objective
function is then utilized in a classical optimizer, which computes an adjusted set of pa-
rameters for the next iteration. In general, the design of the function-evaluation circuit
determines the application of the algorithm. Popular designs include the alternating
operator circuit used in the quantum approximate optimization algorithm [32], and
the “unitary coupled-cluster ansatz” circuit applied in the computation of molecular
energy based on variational eigensolver [34].

Although the quantum circuits in hybrid quantum-classical algorithms have limited
depth, their decoherence may still inflict non-negligible computational errors [35, 36].
This necessitates the design of low-qubit-overhead techniques for protecting quantum
gates. As a design alternative to QECCs, the quantum error mitigation (QEM) philos-
ophy has been proposed recently, which may correct the computational result without
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using a large number of ancillas [37–39]. The employment of quantum error mitiga-
tion (QEM) may facilitate error-resilient hybrid quantum-classical computation based
on near-term quantum computers. In this treatise, we will introduce the design phi-
losophy of QEM and its application to error-resilient quantum computation, followed
by proposing novel QEM techniques aiming for striking a more favorable and flexible
accuracy vs. overhead trade-off.

1.2 A Brief Overview of Error-Resilient
Quantum Computation

1.2.1 Fault-Tolerant Quantum Computation

The research of error-resilient quantum computation has the ultimate goal of conceiv-
ing fault-tolerant quantum computing schemes. Broadly speaking, a quantum com-
puter is said to be fault-tolerant, if its computational error rate does not degrade with
time. The pursuit of fault-tolerance started from the investigation of quantum error
correction codes (QECCs), which are designed for correcting local errors in quantum
information processing systems.1 The first QECC was invented by Shor [40], which en-
codes a single “logical qubit” into nine “physical qubits”, and it is capable of protecting
the physical qubits against any single-qubit error.

X X

X

control qubit

target qubit

FIGURE 1.2: Illustration of the error proliferation phenomenon in a two-qubit quan-
tum gate.

From the perspective of classical coding theory, Shor’s code is not good enough in
terms of its efficiency, since it only has a coding rate of 1/9. Indeed, later investigations
following this line of reasoning have arrived at QECCs having higher coding rates,
including Steane’s 7-qubit code [41] and Laflamme’s 5-qubit code [42] having coding
rates of 1/7 and 1/5, respectively. Laflamme’s 5-qubit code is also referred to as the
“perfect code”, since it achieves certain upper bounds of the quantum coding rate,

1By saying “local errors”, we mean the error patterns that involve only a small portion of the entire
information processing system.
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given a required minimum distance (in this case, 3 in order to correct a single-qubit
error) [43].

To elaborate a little further, the minimum distance of a quantum code is defined as the
minimum weight of the Pauli operator E , so that for any pair of legitimate codewords
|i⟩ and |j⟩, we have [24]

⟨i| E |j⟩ = CEI{i = j}, (1.1)

where CE is a coefficient depending only on the operator E (but not on the codeword
indices |i⟩ and |j⟩). The weight of an operator E is defined as the number of qubits that
E acts upon nontrivially (i.e. its action is not as if an identity gate) [24]. In other words,
if a quantum code has a minimum distance of d, we see that any logical operation that
turns a legitimate codeword into another would have a weight of at least d. Since the
error operator E is a Pauli operator, one may employ the maximum likelihood decod-
ing strategy, which applies another Pauli operator R to the perturbed state E |j⟩, so
that |i⟩ = RE |j⟩ is the nearest legitimate codeword to E |j⟩. Apparently, the maximum
likelihood strategy will yield the correct state when the minimum distance of the quan-
tum code satisfies d ⩾ 2t + 1, where t is the weight of the error operator. This may be
interpreted by stating that a quantum code a having minimum distance of d = 2t + 1
is capable of correcting t errors. Naturally, one would expect a “good code” to have a
high coding rate, while exhibiting a reasonable minimum distance for ensuring a high
error correction capability.

However, the coding rate is not the only performance metric in the context of fault-
tolerant quantum computation, and arguably not even the most important one. One
of the main reasons is that computational systems suffer from the error proliferation
phenomenon, which constitutes a major distinction from communication systems. To
elaborate, let us consider the simple example portrayed in Fig. 1.2. The two-qubit gate
shown in Fig. 1.2 is known as the CNOT gate, which flips the state of the target qubit,
conditioned on the state of the control qubit. Observe that a pre-existing X-error (also
known as a bit-flip error) entering the CNOT gate would perturb both qubits at the
output of the CNOT gate. In general, all multi-qubit gates would induce error prolif-
eration, hence the overall error rate would increase exponentially with the execution
time of the quantum circuit. In light of this, error proliferation has to be circumvented
in order for any QECC to be practically useful.

A simple but effective method of preventing error proliferation is to use transversal
gates [44,45]. Consider a quantum register consisting of m distinct and non-interlacing
coded blocks of qubits. A (noise-free) transversal gate is a unitary operator, whose
action is nontrivial upon at most a single qubit in each coded block. For example, as
portrayed in Fig. 1.3, we may encode the control qubit and the target qubit of a CNOT
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…

…

…

Code block 1

(control qubit)

Code block 2

(target qubit)

FIGURE 1.3: Illustration of the transversal implementation of a CNOT gate relying on
two blocks of QECCs.

gate into two distinct set of physical qubits2, which ensures that any single pre-existing
error would only affect a single qubit in each code block at the output of the CNOT
gate. To elaborate a little further, note that the code block 1 in (1.3) encodes all the
control qubits, while the code block 2 encodes all the target qubits. Therefore, a single
pre-existing error entering the CNOT gates would result in two errors at the output
of the CNOT gates, but they fall into different code blocks, hence are correctable by
the QECCs. However, whether a certain coded quantum gate can be implemented
in the transversal manner depends on the specific code construction. The celebrated
Eastin-Knill theorem [46] shows that no QECC can support a universal set of coded
quantum gates. This motivates the search for specific QECCs that support transversal
implementations of the largest set of quantum gates.

When error proliferation can be prevented, fault-tolerant quantum computation be-
comes possible, given that a sufficiently strong QECC is applied. This idea has been
proved and termed as the quantum threshold theorem [23], formally stated as follows:

Theorem 1.1 (Quantum Threshold Theorem). Using a QECC having the minimum dis-
tance of d, the logical error probability pL can be upper bounded as follows [47]:

pL ≤ dβ exp(−αd), (1.2)

where α and β are constants determined both by the specific code construction, as well as by
the physical error probability3, and the decoding algorithm. Specifically, if the physical error
probability is lower than a fault-tolerance threshold pT, the parameter α is positive.

2When a block of n qubits are encoded into a code space of dimensionality 2m, we say that the code
space is constituted by m logical qubits, while the original n qubits are referred to as physical qubits.

3The physical error probability of a coded quantum gate refers to the maximum probability that a
certain component fails (the maximum failure probability among all components), for example, a single
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Intuitively, the quantum threshold theorem indicates that once error proliferation is
prevented, the error probability may be reduced exponentially as the code’s mini-
mum distance d increases, provided that the physical error rate is lower than the fault-
tolerance threshold. By contrast, the additional number of errors induced by the addi-
tional circuitry implementing QECCs having larger d increases at most polynomially.
Thus fault-tolerance is achievable, provided that a QECC having a sufficiently large d is
applied. Furthermore, the fault-tolerance threshold pT should also be sufficiently high
for the code to be practical.

In practice, the polynomially increasing factor dβ of (1.2) might still be relatively high,
forcing us to choose an extremely large d to achieve the desired level of error reduction,
which may be intractable in terms of computational resources. To reduce dβ, a common
practice is to reduce the weight of the error-checking operations, which determines the
number of additional gates required by the QECC [47]. Since these additional gates
may themselves be perturbed by decoherence, a lower weight of check operators im-
plies a smaller dβ.

Let us now briefly summarize the main criteria of “good QECCs” in terms of fault-
tolerance:

1. Support a large set of quantum gates to be implemented transversally to suppress
error proliferation;

2. Have a high fault-tolerance threshold pT;

3. Have a small weight of error-checking operations, ensuring that dβ is small;

4. The minimum distance d increases fast with the code length N.

Finding a QECC satisfying all these criteria simultaneously is no doubt challenging.
Fortunately, there has been a class of practical QECCs satisfying all expect the last cri-
terion, namely the family of quantum topological codes [49, 50]. These codes typically
have a lattice-like structure, as demonstrated in Fig. 1.4. Specifically, in surface codes,
the triangles in Fig. 1.4a represent the so-called Z-stabilizers detecting the bit-flip errors
within their neighbouring qubits (represented by circles), while the squares in Fig. 1.4a
represent the X -stabilizers detecting the phase-flip errors within their neighbouring
qubits [51]. In colour codes, the squares in Fig. 1.4b represent both Z-stabilizers and
X -stabilizers, since colour codes are so-called “self-dual” codes [51]. Observe that each
error-checking operation4 only involves a small number of qubits, corresponding to

gate fails, which is a component of a transversally implemented logical gate consisting of n such gates [48,
Sec. 10.6.1].

4The error-checking operations in Fig. 1.4 are also known as stabilizer checks [52]. Correspondingly,
these codes are termed as quantum stabilizer codes [24, 52], which will be discussed in more detail in
Section 3.2. There exist other constructions of quantum topological codes, including subsystem codes
[53, 54] and Floquet codes [55, 56], whose error-checking operations may have even smaller weights.
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(a) Surface codes (b) Colour codes

FIGURE 1.4: Illustration of quantum topological codes. Circles represent physical
qubits, while rectangles and triangles represent the check operations associated with

their adjacent physical qubits.

small weights. Due to the small weights of error-checking operations, and an effi-
cient decoding algorithm known as minimum-weight perfect matching [57], the fault-
tolerance thresholds of quantum topological codes are typically as high as around 1%
under practical error models [58]. Furthermore, the surface codes [49] shown on the
left hand side support the transversal implementation of Pauli gates and the CNOT
gate, while the colour codes shown on the right hand side support the transversal im-
plementation of all Clifford gates [59].

FIGURE 1.5: The qubit layout of IBM’s 27-qubit superconducting quantum computer
“IBM Montreal” [60]. The circles represent the qubits, while the line segments be-

tween them represent the possible qubit interactions.

In addition to the aforementioned merits, the lattice-like structure of quantum topolog-
ical codes also makes them particularly suitable for physical realizations. To elaborate,
the state-of-the-art architecture of quantum computers can only support the so-called
“nearest neighbour” interactions between qubits [61]. Consequently, any multi-qubit
gate involving spatially distant qubits has to be compiled into a sophisticated set of
nearest-neighbour gates. Hence they become impractical for the implementation of
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QECCs, due to the extra errors induced by the additional circuitry. By contrast, the
lattice-like structure of quantum topological codes fit nicely into the nearest neighbour
architectures. For example, as portrayed in Fig. 1.5, one of IBM’s most recent quantum
computers, “IBM Montreal”, has a clear lattice-like qubit layout [60]. The numbered
circles in Fig. 1.5 represent the qubits, while the line segments between them represent
the possible qubit interactions that may be exploited to build two-qubit gates. Observe
that the qubit layout in Fig. 1.5 is similar to that of the surface codes shown in Fig. 1.4a,
although the lattice in Fig. 1.5 is still not sufficiently large to support a full block of the
surface code. Nevertheless, since the number of qubits in quantum computers grows
fast, we may expect that larger lattices that are capable of implementing quantum topo-
logical codes would be available in the near future.

1.2.2 Hybrid Quantum-Classical Computation and
Quantum Error Mitigation

Although quantum topological codes have various beneficial characteristics as dis-
cussed in Section 1.2.1, they still may not be applicable to state-of-the-art noisy intermediate-
scale quantum (NISQ) computers, which have limited numbers of qubits and physical
error rates being potentially lower than the typical fault-tolerance thresholds of quan-
tum topological codes [31]. Consequently, fault-tolerant quantum computation is not
readily achievable at the time of writing.

In 2014, Peruzzo et al. [34] proposed a technique of sharing computational tasks be-
tween a classical computer and a quantum processor having a small number of qubits.
This is later termed as the “variational quantum eigensolver (VQE)”, which inspired
a flourishing area of research, namely hybrid quantum-classical computation. As ele-
gantly summarized in a later contribution by McClean et al. [62], the fundamental phi-
losophy of hybrid quantum-classical computation is to formulate the computational
task in a form that can be solved through iterations between the classical computer
and the quantum processor. Specifically, the quantum processor typically contains
a parametric circuit, which aims for evaluating a certain function, while the classi-
cal computer is responsible of determining the values of the parameters controlling
the quantum circuit. By decomposing a large-scale computational task into iterations
between smaller tasks, the function evaluation subroutine may fit nicely into NISQ
devices. In particular, this small-scale subroutine might then be completed within
the coherence time of the quantum processor, hence circumvents the requirement of
full fault-tolerance. A timeline portraying the major milestones of hybrid quantum-
classical computation and the associated error-resilience improvement techniques is
shown in Fig. 1.6, and detailed as follows:
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2014

2021

VQE [34]. The first variational quantum algorithm designed for computing
the molecular energy required in computational chemistry problems.

QAOA [32]. A variational quantum algorithm that aims for solving combi-
natorial optimization problems.

McClean et al. [62] proposed the general theoretical framework of variational
quantum algorithms, with an emphasis on computational chemistry applica-
tions.

2016
Zero-Noise Extrapolation-Based QEM and Channel Inversion-Based
QEM [37]. The first QEM methods designed for mitigating the computa-
tional errors of variational quantum algorithms.

2017

Symmetry Verification [36]. A symmetry-based QEM method that mitigates
computational errors relying on the intrinsic symmetries of quantum cir-
cuits.

2018

McClean et al. discovered that the gradient computed by random parametric
circuits vanishes as the circuit size increases. This “barren plateau” phe-
nomenon highlights the importance of parametric circuit design in hybrid
quantum-classical computation.

Endo et al. [63] proposed to use zero-noise extrapolation-based QEM to miti-
gate the algorithmic errors in quantum simulation.

2019

Song et al. [39] demonstrated the channel inversion-based QEM method us-
ing experiments on a superconducting quantum computer.

Clifford Data Regression [64]. A learning-based QEM method aiming for
mitigating the errors in general quantum circuits, relying on a model trained
on Clifford circuits simulated on classical computers.

2020
Xiong et al. [1] presented a comprehensive sampling overhead analysis of
channel inversion-based QEM.

Virtual Distillation [65, 66]. A symmetry-based QEM method relying on
the permutation symmetry across different copies of a quantum circuit. Re-
markably, its accuracy vs. overhead trade-off may be manipulated flexibly
by changing the number of copies.

FIGURE 1.6: Timeline of major milestones of hybrid quantum-classical computation,
as well as the associated error-resilience improvement techniques. Bold fonts represent

the name of the technique or the essential contribution of the research work.

• VQE. Early investigations concerning hybrid quantum-classical computation fo-
cus on the applications in the area of computational chemistry [67], partially due
to the fact that computational chemistry problems are typically formulated as
variational optimization problems, which admit a natural iterative form. More
specifically, such problems often assume the following generic form

min
θ

⟨ψ(θ)| H |ψ(θ)⟩ , (1.3)

where |ψ(θ)⟩ denotes the quantum state produced by the parametric quantum
circuit, H encodes the optimization problem, and the parameter θ is determined
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by the classical computer, possibly using gradient-based methods [68] or gradient-
free methods [69]. Due to the deep-rooted connection between hybrid quantum-
classical algorithms and variational optimization, these algorithms are also termed
as “variational quantum algorithms (VQAs)”.

• QAOA. Interestingly, the popular quantum approximate optimization algorithm
(quantum approximate optimization algorithm (QAOA)) of [32] was also pro-
posed at a similar time as Peruzzo’s seminal contribution, which was later recog-
nized as a VQA, since it also obeys the form of (1.3). Furthermore, since QAOA
aims for solving a wider range of problems than those of computational chem-
istry, namely combinatorial optimization problems, it soon received enormous
attention from researchers in diverse areas [33, 70–73]. Remarkably, it has been
applied to wireless communication-related problems as well, such as channel de-
coding [71].

• QEM. Even though VQAs require relatively short execution time, error control
techniques are still indispensable for high-accuracy computation. In 2017, Temme
et al. [37] proposed a pair of techniques for mitigating the error of VQAs, termed
as quantum error mitigation (QEM), which are referred to at the time of writing
as “zero-noise extrapolation” and “channel inversion” (or “probabilistic error
cancellation”), respectively [74]. QEM is particularly suitable for VQAs executed
on NISQ computers, since they typically require much less qubit overhead (some-
times no qubit overhead [37]) than QECCs. In particular, the error reduction per-
formance of QEM has been demonstrated by Song et al. [39] using experiments
on superconducting quantum devices.

Due to its practical importance, QEM soon became an active area of research,
encompassing four distinct types of techniques. Specifically, in addition to the
zero-noise extrapolation and channel inversion techniques proposed in Temme’s
original contribution [37], symmetry-based QEM and learning-based QEM have
been proposed in [36] and [64], respectively. Naturally, all these techniques have
their own advantages and drawbacks, and may also be applied jointly for en-
hancing the overall error mitigation performance [65]. We will present a detailed
introduction to these techniques in Chapter 3.

• QEM for algorithm-level errors. A somewhat surprising fact is that, apart from
decoherence-induced errors, QEM may also be applied to mitigate algorithmic
errors. For example, Endo et al. [63] proposed to use zero-noise extrapolation-
based QEM to mitigate the computational errors inflicted by the Trotter approx-
imation [75] in quantum simulation. This makes QEM a unique error-resilience
improvement technique capable of mitigating both circuit-level and algorithm-
level errors. By contrast, it is still unclear whether QECCs may be applied to
correct algorithm-level errors.
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• The sampling overhead of QEM. However, the low qubit-overhead of QEM
methods does not come without a price. In fact, they have a different type of com-
putational overhead, namely the sampling overhead [1, 37, 38]. Specifically, QEM
methods typically rely on repeated activations of the quantum circuit, whose
outcomes (termed as “samples” [38]) are then exploited for error mitigation in
the post-processing stage. By contrast, in fault-tolerant computation facilitated
by QECCs, the errors may be corrected within a single circuit execution, hence
would not incur any sampling overhead, since we can locate the errors explicitly
using the check operations.

Mathematically speaking, the sampling overhead is related to the variance-escalation
phenomenon caused by the non-unitary operations of QEM methods [38]. Briefly,
as the depth of a quantum circuit increases, the variance of the computational re-
sults increases exponentially, hence the sampling overhead required for achiev-
ing a desired accuracy also grows dramatically. Ultimately, the benefits of QEM
would be eroded by its sampling overhead, since the overall computational time
becomes unacceptably long. Therefore, it is of significant practical value to ex-
plore how the sampling overhead required is influenced by various factors, such
as the channel quality as well as the circuit size, and then develop techniques that
strike a beneficial accuracy vs. sampling overhead trade-off for specific applica-
tions.

1.3 Novel Contributions

Against the aforementioned background, in this thesis, we aim for improving the per-
formance of both circuit-level and algorithm-level QEM, in terms of their accuracy vs.
sampling overhead trade-off. To this end, we commence by the analysis of the sam-
pling overhead of channel inversion based QEM (CI-QEM). In this context, our main
contributions [1] are as follows:

• We introduce the design philosophy of channel-inversion quantum error mitiga-
tion (CI-QEM), emphasizing its applications in hybrid quantum-classical compu-
tation (also known as variational quantum algorithms). Moreover, we quantify
its sampling overhead, while providing insights into the variance-boosting phe-
nomenon of CI-QEM. Specifically, we introduce the notion of sampling overhead
factor (SOF) as a characteristic of quantum channels and the “basis operations”
used in CI-QEM.

• We prove that Pauli channels have the lowest SOF among all non-coherent chan-
nels, and show that depolarizing channels have the lowest SOF among Pauli
channels. This is in stark contrast to QECCs, for which the main computational
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overhead — the qubit overhead — achieves its maximum for depolarizing chan-
nels. Furthermore, we provide upper and lower bounds on the SOF of Pauli
channels, showing that the SOFs of all Pauli channels are almost the same, when
their average fidelity is close to 1.

• We additionally conceive a sophisticated amalgam of CI-QEM and quantum codes,
including QECCs and quantum error detection codes (QEDCs), aiming for reduc-
ing the overall SOF. For QECCs, we show that there exist critical quantum circuit
sizes, beyond which their amalgamation with CI-QEM is preferable to using pure
CI-QEM. For QEDCs, we show that when the logical quantum gates are imple-
mented transversally across physical qubits, using QEDCs alone is more favor-
able than using QEDC-CI-QEM, in terms of SOF. We also show that the QEDCs-
CI-QEM scheme may still be useful for certain non-transversal quantum gate im-
plementations.

Regarding the practical implementation of CI-QEM, we consider a Monte Carlo-based
method. Compared to the idealistic exact channel inversion, the Monte Carlo-based
channel inversion has a dramatically reduced pre-processing overhead, albeit this is
achieved at the cost of a faster computational error escalation with respect to the circuit
size. In this context, our main contributions [3] are:

• The Monte Carlo-based channel inversion method results in a less beneficial error
scaling behaviour, but might exhibit a beneficial accuracy vs. overhead trade-
off, since it reduces the pre-processing overhead. In order to better understand
this trade-off, we propose bounds for the computational error scaling both in the
absence of QEM and in the presence of Monte Carlo-based CI-QEM. Specifically,
we show that in the absence of QEM, the error magnitude scales linearly with
the number of gates NG, as well as with the gate error probability ϵ, when we
have ϵNG ≪ 1. By contrast, we show that in the presence of Monte Carlo-based
CI-QEM, the root mean squared error (RMSE) is upper bounded by the square
root of NG as well as ϵ, when ϵNG ≪ 1. This implies that when we use the
same number of samples as the ideal CI-QEM (based on exact channel inversion),
Monte Carlo-based CI-QEM can still provide a quadratic error reduction upon
increasing NG, compared to the case of no QEM.

• We provide an intuitive geometric interpretation of the proposed error scaling
laws by visualizing the decoherence-induced impairments on the Bloch sphere as
the quantum circuit continues its operation.

• We illustrate the analytical results using various numerical examples. Specifi-
cally, we consider a practical application, namely multi-user detection in wireless
communication systems using the quantum approximate optimization algorithm
(QAOA), and show that our analytical results do apply.
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Apart from CI-QEM, symmetry-based QEM is another class of circuit-level error miti-
gation techniques, which bears some resemblance in spirit to QEDCs. Recently, a new
class of symmetry-based QEM methods, namely virtual distillation (virtual distilla-
tion (VD)) [65], has been proposed, which exploits the permutation symmetry of quan-
tum states. Inspired by the philosophy of filter design techniques in classical signal
processing theory, we propose the concept of “permutation filters”, which incorporates
the original VD as a special case. Specifically, our main contributions [2] are:

• We show that permutation filters would in general strike a more beneficial ac-
curacy vs. sampling overhead trade-off than that of the original VD. We detail
the general permutation filter design framework, including the functional form
of the filters and the performance metric to be optimized.

• We propose an algorithm for optimal permutation filter design. In particular,
we show that the local optimum of the optimization problem is unique, hence
the globally optimal solution is attainable by the proposed algorithm. Further-
more, we show that permutation filters are particularly efficient in combating
narrowband noise. Specifically, they are capable of providing an error-reduction
improvement over permutation-based QEM methods, which scales polynomi-
ally with the noise bandwidth. We also show that the noise bandwidth decreases
exponentially with the depth of the quantum circuit. This suggests that the pro-
posed permutation filters can be used for supporting the employment of quan-
tum circuits having an increased depth without degrading their fidelity.

• We quantify the error mitigation performance of permutation filters using a prac-
tical example, namely that of solving the multi-user detection problem in wireless
communication systems relying on the quantum approximate optimization algo-
rithm (QAOA). In particular, we show that the performance of permutation filters
does not depend on the expected number of errors, which is a substantial benefit
over the original VD.

From a broader perspective, the VD method may be viewed as exploiting the spa-
tial consistency among different circuit activations. A natural question that arises is
whether we could generalize the idea to the time domain, provided that some temporal
consistency of the circuit may be verified. This motivates us to generalize the conven-
tional state-oriented symmetry verification to circuit-oriented symmetry verification.
In this context, our main contributions [5] are:

• A related topic, namely the superposition of causal orders [76–78], which can be
physically realized using the quantum switch of [79], has been investigated from
the perspective of quantum communication. For quantum circuits consisting of
mutually commuting gates, we propose to use the original form of the quantum
switch to verify the gate commutativity.
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• For quantum circuits commuting with known operators, especially Pauli opera-
tors, we propose a modified quantum switch based method termed as the “spatio-
temporal stabilizer (spatio-temporal stabilizer (STS))”, which may be used for
detecting and mitigating errors violating the commutativity condition. In con-
trast to conventional stabilizer-based symmetry verification, STSs do not depend
on the specific quantum state, hence they are more generally applicable.

• We discuss the practical issues of implementing the STS method, including the
simultaneous observability of STSs and their accuracy vs. overhead trade-off. We
also provide quantum circuit designs that strike flexible accuracy vs. overhead
trade-offs.

• We demonstrate the benefits of the STS method by applying it to practical quan-
tum algorithms, including the quantum Fourier transform (quantum Fourier trans-
form (QFT)) and the QAOA, where the conventional stabilizer checks are not ap-
plicable.

As for algorithm-level quantum error mitigation, we focus our attention on quan-
tum phase estimation, which is a crucial subroutine in various practical quantum al-
gorithms. Specifically, quantum phase estimation suffers from the issue of spectral
leakage, which ultimately limits its computational accuracy. Aiming for mitigating the
spectral leakage, our main contributions [4] are:

• We derive the Cramér-Rao bound (Cramér-Rao bound (CRB)) of the quantum
phase estimation problem, which sheds light upon the asymptotic multiple-sample
performance of practical estimators.

• We propose a dual-frequency estimator that asymptotically attains the CRB upon
increasing the number of samples. We term this as the asymptotic regime.

• Using numerical simulations, we demonstrate that when the number of samples
is sufficiently large, the proposed dual-frequency estimator outperforms the co-
sine window-based solution, which is known to exhibit the optimal accuracy in
single-sample estimation.

1.4 Thesis Organization

The rest of this thesis is summarized in Fig. 1.7, and organized as follows:

• In Chapter 2, we present some preliminary knowledge about quantum informa-
tion and quantum computation, which will be used extensively throughout the
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FIGURE 1.7: The structure of the thesis. Blue boxes represent the chapters of the thesis,
while grey boxes represent related existing techniques in the literature.

thesis. We commence with a philosophical discussion on the fundamental units
of both classical and quantum information in Section 2.1, with an emphasis on the
view that quantum states are physical realities, instead of merely abstract infor-
mation carriers. Then, in Section 2.2, we introduce the mathematical descriptions
of pure states and the associated unitary operations from a geometrical perspec-
tive. This is followed by our discussions on mixed states in Section 2.3 and the cor-
responding general quantum operations in Section 2.4. Finally, in Section 2.5, we
introduce a number of fundamental quantum algorithms that provide speedup
over their classical counterparts, as well as hybrid quantum-classical algorithms
tailored for noisy intermediate-scale quantum computers.

• In Chapter 3, we present an overview of quantum error mitigation. We com-
mence with a discussion on the common error sources in quantum computation
in Section 3.1. Then, in Section 3.2, we introduce quantum error correction codes
and quantum error detection codes, which are the most extensively studied error-
control techniques in the literature in addition to QEM. For circuit-level error
sources, we introduce circuit-level QEM methods in Section 3.3, including chan-
nel inversion based QEM in Section 3.3.1, symmetry-based QEM in Section 3.3.2,
zero-noise extrapolation based QEM in Section 3.3.3, and learning-based QEM in
Section 3.3.4. For algorithm-level error sources, we introduce the corresponding
algorithmic QEM methods in Section 3.4.

• In Chapter 4, we present a comprehensive analysis of the computational resources
required by channel inversion based QEM, by providing rigorous upper and
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lower bounds on its sampling overhead, concerning both coded and uncoded
systems. Specifically, we introduce the quality metrics of quantum channels in
Section 4.1, which are applied throughout this chapter. Then, we analyze the
sampling overhead of uncoded and coded quantum gates in Section 4.2 and Sec-
tion 4.3, respectively. This is followed by our numerical results quantifying the
sampling overhead as a function of channel quality and other system parameters
in Section 4.4.

• In Chapter 5, we consider a practical implementation of channel inversion based
QEM relying on Monte Carlo sampling, and analyze its accuracy vs. sampling
overhead trade-off. We first outline the system model in Section 5.1, followed by
a comparison between the idealized exact channel inversion and Monte Carlo-
based inversion in Section 5.2. Then, we analyze the error scaling behaviour of
the Monte Carlo based CI-QEM in Section 5.3, and discuss the intuitions under-
lying these analytical results in Section 5.4. We continue by quantifying the accu-
racy vs. sampling overhead trade-off of both exact channel inversion and Monte
Carlo based inversion in Section 5.5, using numerical examples including low-
complexity single-qubit circuits and practical circuits for QAOA-aided multi-user
detection.

• In Chapter 6, we conceive the permutation filtering method as a generalized ver-
sion of virtual distillation (VD), which is a state-of-the-art symmetry-based QEM
method. Specifically, we commence with a mathematical formulation of permu-
tation symmetries and VD in Section 6.1. We then propose the general design
framework of permutation filters in Section 6.2, including the functional form
of permutation filters and a globally optimal design algorithm, followed by the
analysis of their error reduction capability in Section 6.3. We quantify the perfor-
mance of permutation filters using concrete examples in Section 6.4, where once
again, we consider the QAOA-aided multi-user detection problem.

• In Chapter 7, we conceive circuit-oriented symmetry-based QEM methods. We
first clarify the difference between state symmetries and circuit symmetries in Sec-
tion 7.1, emphasizing that circuit symmetries may be more widely applicable than
state symmetries. For the verification of gate commutativity, we propose to use
quantum switches in Section 7.2. For circuits commuting with known unitaries,
we propose the spatio-temporal stabilizer (STS) method in Section 7.3, includ-
ing its general formulation in Section 7.3.1, its circuit implementation in Section
7.3.2, its unique simultaneous observability property in Section 7.3.3, and the ac-
curacy vs. overhead trade-off in Section 7.3.4. We then continue by applying the
STS method to QFT and QAOA circuits in Section 7.4, with a detailed discussion
about the specific implementation strategies. The error mitigation performance
of both quantum switches and STSs is quantified in Section 7.5.
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• In Chapter 8, we conceive an algorithm-level error mitigation method for quan-
tum phase estimation relying on a dual-frequency estimator. We first introduce
the quantum phase estimation algorithm and the associated spectral leakage prob-
lem in Section 8.1, followed by its rigorous mathematical formulation and existing
solutions in Section 8.2. Then, we present the CRB analysis of the quantum phase
estimation problem in Section 8.3, which sheds light on the asymptotic perfor-
mance of multi-sample estimators. Based on this analysis, we propose the novel
dual-frequency estimator concept in Section 8.4, and quantify its estimation accu-
racy vs. sampling overhead trade-off in Section 8.5.

• In Chapter 9, we summarize our results, accompanied by a list of future research
topics distilled from the previous chapters.
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Chapter 2

Preliminaries

2.1 Classical vs. Quantum Information: An Ontological Per-
spective

Why are there beings at all instead of nothing? — Martin Heidegger

The bit is the most fundamental unit of information. But what do we really mean when
we say “a bit”, especially when we consider its practical representations in the physical
world? Depending on the context, it might actually refer to one of the following two
interpretations:

1. A logical variable taking one of two possible values (as implied by the name of
“binary digit”);

2. A unit of the amount of information, as proposed in Shannon’s landmark treatise
[80].

The former interpretation (referred to later as “interpretation 1”) is the one typically
used in information processing and computation. In such applications, there exists
some physical entity that has two possible states, which serves as the physical repre-
sentation of the bit. By contrast, the latter (referred to later as “interpretation 2”) is a
rather abstract concept due to its independence of any physical substance, which finds
its application in information compression and communication tasks.

The difference between the two interpretations is related to the problem, whether an
object constitutes a part of the physical reality, or it is merely a piece of (incomplete)
knowledge about physical entities. Philosophically speaking, interpretation 1 is the
“ontic interpretation”, while interpretation 2 is the “epistemic interpretation” [81]. This
idea has been formalized in [82], where a state is said to be ontic, if there exists an injec-
tive mapping from the space of physical reality to the space of states, and is epistemic
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otherwise. To elaborate further, let us consider a simple example. Assume that we have
a pair of biased coins, each has the probability of p of being a head, where p satisfies
−p log2 p − (1 − p) log2(1 − p) = 1/2. The coins, being two-level “systems”, may be
viewed as a pair of ontic bits. However, the amount of information contained in this
pair of coins is only one bit, which is equal to that of a single coin having equal proba-
bilities of being head or tail. Therefore, “being head or tail” is an ontic state of the coin
system, while the amount of information is only epistemic, since the same amount of
information may correspond to substantially different physical entities.

In quantum information theory concerning information systems governed by quantum
mechanics, the quantum bit, or in short, the qubit, may be viewed as the counterpart
of the classical bit [48, Sec. 1.2]. By definition, a qubit is the space of the quantum
state of a two-level quantum system [48, Sec. 1.2]. However, due to the peculiarity of
quantum mechanics, a qubit differs from a classical bit in the sense that it may reside
in a “superposition” of the two possible states. Moreover, whenever we wish to get
access to the information stored in the qubit, we have to conduct a measurement, whose
outcome is random.

The randomness of quantum measurements has led to a long-standing debate, which
dates back to Einstein’s famous EPR paradox [83]: whether a quantum state is an ontic
state of the physical reality, or it is merely an epistemic state? This problem is particu-
larly relevant to quantum information, as quantum states would be unreliable carriers
of information if they are epistemic, since a single physical entity may be recognized
as different quantum states, hence incur ambiguities in information processing tasks.
Recently, this problem has been partially resolved in [84], which shows that quantum
states are indeed ontic under some mild assumptions. Notably, this result is also re-
lated to the celebrated Bell’s theorem [85], which states that locality and realism cannot
be satisfied simultaneously for theories that are consistent with quantum mechanics.

Now that we acknowledged that qubits may be viewed as a generalization of classical
bits under the ontic interpretation, a natural question that arises is whether a general-
ization in the sense of “the amount of quantum information” is possible. It turns out
that, such a generalization is not yet known at the time of writing, to the best of the au-
thor’s knowledge. Consequently, the qubit cannot be viewed as a unit of information.
Rather, it is the mathematical abstraction of the basic physical entity exploited in infor-
mation processing tasks that rely on (or benefit from) the laws of quantum mechanics.
For example, we may conceive efficient algorithms relying on qubits by exploiting their
unique characteristics, but we cannot say “this message contains 100 qubits of informa-
tion”.

To conclude, qubits are essentially physical entities (or their mathematical abstractions)
rather than entities of pure information. In the rest of this thesis, whenever we refer
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to qubits, we mean either the physical realizations of qubits, or their mathematical
models, which will be clear from the context.

2.2 Pure States, Unitary Operations, and the Bloch Sphere

As discussed in Section 2.1, the basic carrier of information in quantum mechanical
information processing systems is a qubit, namely a two-level quantum system. Ideally,
the state of a qubit can be characterized by a vector in a two-dimensional Hilbert space
as

|ψ⟩ = α |0⟩+ β |1⟩ , (2.1)

where α and β are complex numbers satisfying the normalization property of |α|2 +
|β|2 = 1. Quantum states taking the form of (2.1) are also referred to as pure states.
Under the conventional computational basis [48, Sec. 1.2], the basis vectors |0⟩ and |1⟩
can be expressed as

|0⟩ = [1, 0]T, |1⟩ = [0, 1]T.

According to the Schrödinger equation representing the evolution of closed quantum
systems [86], an ideal operation acting on a quantum state can be modeled as a unitary
transformation. In the case of a qubit, the unitary transformation may be represented
by a 2× 2 unitary matrix. For example, the widely-used bit-flip gate (also known as the
X-gate) satisfies the following conditions

X |0⟩ = |1⟩ , X |1⟩ = |0⟩ . (2.2)

Therefore, under the computational basis, the X-gate may be represented in the follow-
ing matrix form

SX =

[
0 1
1 0

]
, (2.3)

which is a 2 × 2 unitary matrix.

In order to acquire the information stored in a quantum state, one may perform a mea-
surement of the state. The measurement outcome depends on the basis on which the
measurement is performed, and it is essentially probabilistic [86]. For example, when
measured on the computational basis, the measurement outcome of a qubit state given
by (2.1) can be either 0 or 1, with probability |α|2 and |β|2, respectively. In light of this,
we see that states taking the following form

|ψ(θ)⟩ = eȷθ(α |0⟩+ β |1⟩), (2.4)

having identical α and β (thus differ only by θ), cannot be distinguished from one an-
other using measurement. In fact, the only way of characterizing a quantum state is
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FIGURE 2.1: The Bloch sphere representing the space of all single-qubit pure states.

through measurement, and hence the states in (2.4) are regarded as mutually equiva-
lent. Following a similar line of reasoning, the global phase in an ideal (unitary) quan-
tum operation is also irrelevant, implying that

G̃(θ) = eȷθG, GGH = GHG = I, (2.5)

are regarded as mutually equivalent. Mathematically, this means that the ensemble of
all ideal single-qubit quantum operations, denoted by G(1), is characterized by

G(1) = U(2)/U(1) = SU(2), (2.6)

where U(n) denotes the unitary group of dimension n × n, SU(n) denotes the special
unitary group of dimension n × n, and C = A/B means that group C is the quotient
group of groups A and B [87]. Then equation (2.6) leads to the celebrated geometric in-
terpretation of single-qubit quantum states — the Bloch sphere, as shown in Fig. 2.1. To
elaborate, the ideal single-qubit quantum operations can be described using the special
orthogonal group SO(3), which corresponds to three-dimensional rotations, due to the
SU(2)–SO(3) homomorphism [87]. Since the three-dimensional vectors that the rota-
tions act upon constitute the unit sphere, it can also be shown that pure quantum states
lie on the unit sphere, again termed as the Bloch sphere in the literature [48, Sec. 1.2].
Using the Bloch sphere, the widely-used X-, Y- and Z-gates given by

SX =

[
0 1
1 0

]
, SY =

[
0 −i
i 0

]
, SZ =

[
1 0
0 −1

]
, (2.7)
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can now be interpreted as π rotations around the X, Y and Z axes of the Bloch sphere,
respectively. Furthermore, the basis states |0⟩ and |1⟩ correspond to the North Pole and
the South Pole of the Bloch sphere, respectively. The general single-qubit states can be
obtained by rotating the vectors corresponding to the basis states, hence correspond to
the points on the surface of the Bloch sphere.

In general, a pure state of an n-qubit system resides in a 2n-dimensional vector space.
For example, under the computational basis, a two-qubit state |00⟩ can be written as
follows

|00⟩ = |0⟩ ⊗ |0⟩
= [0, 0, 0, 1]T.

(2.8)

All two-qubit pure states can thus be represented as the linear combinations of four
basis states |00⟩, |01⟩, |10⟩ and |11⟩. Similarly, any n-qubit state can be represented as
the linear combinations of 2n basis states, which corresponds to all n-bit binary strings.

2.3 Mixed States and Density Matrices

In practice, the physical systems representing the qubits are not closed systems. Con-
sequently, the interaction between the qubits and the environment will cause decoher-
ence, namely turning a deterministic pure quantum state into a probabilistic mixture of
states. The probabilistic mixtures are also termed as mixed states. A mixed state of a
qubit can be fully characterized by a 2 × 2 matrix termed as the density matrix ρ given
by

ρ = ∑
i

pi |ψi⟩ ⟨ψi| , (2.9)

satisfying pi ≥ 0 for all i and ∑i pi = 1. Hence the density matrix is positive semi-
definite and has unit trace. The pure states |ψi⟩ are the components of the probabilistic
mixture. Additionally, under the computational basis, it can be expressed as the linear
combination of the following matrices:

SI =

[
1 0
0 1

]
, SX =

[
0 1
1 0

]
,

SY =

[
0 −i
i 0

]
, SZ =

[
1 0
0 −1

]
.

The density matrix representation is also compatible with pure states. For example,
in the density matrix form, the basis state |0⟩ can be written as |0⟩ ⟨0|, which may be
viewed as a special case of (2.9) having only a single component.
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FIGURE 2.2: The interior of the Bloch sphere represents the space of all single-qubit
states. The mixed states correspond to the convex combination of pure states residing

on the surface of the sphere.

Geometrically, single-qubit mixed states can also be represented using the Bloch sphere.
In particular, let us consider a simple example:

ρ1 =
1
4
|0⟩ ⟨0|+ 3

4
|1⟩ ⟨1| . (2.10)

The state ρ1 may be represented as the vector summation of the vectors correspond-
ing to the pure states |0⟩ ⟨0| and |1⟩ ⟨1|. This implies that ρ1 corresponds to a point
within the Bloch sphere, as illustrated in Fig. 2.2. In fact, all single-qubit mixed states
correspond to points within the Bloch sphere, which may be observed from (2.9). To
elaborate a little further, the pure states |ψi⟩ ⟨ψi| lie on the surface of the Bloch sphere,
and the mixed state ρ may be shown to be the convex combination of the pure states,
since we have pi ≥ 0 for all i and ∑i pi = 1. Therefore, the mixed states lie in the convex
hull of pure states, which is exactly the interior of the Bloch sphere.

In general, a mixed state of an n-qubit system can be characterized by a 2n × 2n density
matrix. Similar to the single qubit case, the n-fold tensor products of SI , SX , SY and
SZ form a basis for the space of 2n × 2n density matrices, termed as the n-qubit Pauli
group. To facilitate further discussion, we denote S(n)

i as the i-th operator in the n-qubit
Pauli group. The superscript (n) is omitted when it is clear from the context.
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FIGURE 2.3: The fidelity between a pure state and a (potentially) mixed state can be
represented by the inner product of the vectors representing the states in the Bloch

sphere.

The difference between two quantum states ρ1 and ρ2 is typically quantified using the
terminology of fidelity, defined as [48, Section 9.2.2]

F(ρ1, ρ2) = Tr

{(
ρ

1
2
1 ρ2ρ

1
2
1

) 1
2
}2

, (2.11)

and can be simplified as
F(ρ1, ρ2) = Tr{ρ†

1ρ2}

if either ρ1 or ρ2 represents a pure state. On the Bloch sphere, the fidelity between a
pure state and a (potentially) mixed state is given by the inner product of the vectors
representing the states, as illustrated in Fig. 2.3.

2.4 General Quantum Operations and Their Representations

The unitary operations of (2.5) (and exemplified by (2.7)) introduced in Section 2.2 map
a pure state to another pure state, hence cannot be applied to model the decoherence
process, which maps a pure state to a mixed state. In quantum computers, except
for measurements, a general quantum operation (carried out by a “quantum gate”)
is modeled as a completely positive, trace-preserving (CPTP) transformation [48, Sec.
8.2].

A widely-used representation of a general quantum operation is termed as the operator-
sum representation, also known as the Kraus representation [48, Sec. 8.2]. In particular,
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using the operator-sum representation, a quantum operation may be written as the fol-
lowing mapping

E(ρ) = ∑
k

EkρE†
k , (2.12)

where the matrices Ek are referred to as the operation elements of the quantum opera-
tion E(ρ), which are not required to be unitary. Intuitively, the operation E(ρ) maps its
input ρ to one of the potential outputs EkρE†

k with some probability, and the equivalent
output is the probabilistic mixture ∑k EkρE†

k . In the classical case, probabilities are re-
quired to be normalized to one. Similarly, in the quantum case, the trace of the output
should be normalized to one, namely we have

Tr

{
∑

k
EkρE†

k

}
= 1. (2.13)

Since this relationship is satisfied for all input ρ, we further have

∑
k

EkρE†
k = I. (2.14)

This is the so-called completeness relation [48, Sec. 8.2].

Without loss of generality, we may decompose a quantum operation into an ideal uni-
tary operation and another CPTP operation, as follows

E(ρ) = C(U (ρ))
= ∑

k
EkUρU†E†

k , (2.15)

where the matrix U is the only operation component of the unitary operation U , and
the matrices Ek denote the operation components of the operation C. In the context
of quantum computation, the unitary operation U models the error-free operation that
we intend to implement, while the CPTP operation C models the imperfection of our
implementation, which is also popularly referred to as the quantum channel.

Alternatively, quantum operations can also be expressed in a matrix form. To elaborate,
if we represent a quantum state having a density matrix of ρ as a vector x, a quantum
operation C acting on x having the following operator-sum representation

C(ρ) = ∑
i

KiρK†
i

can be written as a matrix C satisfying

Cx = ∑
i
(K∗

i ⊗ Ki)x, (2.16)
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implying that
C = ∑

i
(K∗

i ⊗ Ki).

In general, the specific matrix form of a quantum channel depends on the set of bases
we choose. In this thesis, we use the Pauli transfer matrix (PTM) representation of
quantum operations, given by

[C]i,j =
1
2n Tr{SiC(Sj)}. (2.17)

In this sense, the vector representation x of a density matrix ρ can be expressed as

[x]i =
1√
2n

Tr{Siρ}. (2.18)

We choose the PTM representation mainly because many important properties of a
quantum operation may be readily obtained from its PTM. In general, the PTM repre-
sentation of any completely positive trace-preserving (CPTP) quantum operation may
be expressed as follows:

C =

[
1 0T

b C̃

]
. (2.19)

To elaborate, the top-left entry is always 1, since 1
2n Tr {IC(I)} = 1, which follows from

the fact that C preserves trace. Similarly, the rest of the first row is constituted by all
zeros, since all other Pauli operators (i.e. except I) have zero trace.

Correspondingly, a quantum state (either pure or mixed) has the following PTM repre-
sentation

x = [1, x̃]T, (2.20)

which may be viewed as a point in the (2n − 1)-dimensional space under the homoge-
neous coordinates [88].1 We may further obtain

Cx = [1, C̃x̃ + b]T, (2.21)

which implies that the effect of a quantum channel C on the state x may be viewed as
an affine transformation, consisting of the linear transformation C̃ and the translation
b.

1The conventional (2n − 1)-dimensional vector representation of a point cannot accommodate trans-
lation as a linear operation. Fortunately, by using the 2n-dimensional homogeneous coordinates (under
which the first entry of the vector is always 1, while the remaining entries correspond to the conventional
Euclidean coordinates), the translation becomes a linear operation [88].
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2.5 Quantum Algorithms

In 1982, Richard Feynman proposed the idea of simulating quantum systems using
quantum computers in his seminal speech, Simulating Physics with Computers [10]. Feyn-
man believed that quantum systems could be simulated more efficiently by quantum
algorithms than by classical algorithms. Since then, this belief has been developed into
a fruitful and active field of research, supported by concrete theorems and experiments.

The potential of quantum algorithm in efficiently solving practical problems other than
simulating physical systems was demonstrated by Peter Shor [12], who proposed the
first quantum algorithm capable of providing exponential speedup compared to its best
known classical counterpart. Soon after Shor’s discovery, Lov Grover proposed a quan-
tum algorithm providing a quadratic speedup for search problems, which is applicable
even to NP-hard problems [13]. Later investigations also contributed to the library of
quantum algorithms providing substantial speedup, including the Harrow-Hassidim-
Lloyd (HHL) algorithm for solving linear systems [16], and quantum walk-based algo-
rithms [89, 90].

In this section, we discuss the fundamental subroutines of these successful quantum
algorithms. Furthermore, we will also introduce recent advances in the area of hybrid
quantum-classical algorithms tailored for NISQ computers.

2.5.1 Fundamental Subroutines Providing Quantum Speedup

Broadly speaking, quantum algorithms providing substantial speedup over their clas-
sical counterparts fall into three categories.

The first relies on the capability of quantum algorithms for finding periodicity. Specif-
ically, the quantum version of the classical discrete Fourier transform is exponentially
faster than its classical counterpart [48, Section 5.1]. The quantum Fourier transform is
typically used as a subroutine of quantum phase estimation [91], which aims for com-
puting the eigenvalue associated with a given eigenvector of a matrix. To elaborate a
little further, for an eigenstate |ψ⟩ of a given unitary matrix U, we have

U |ψ⟩ = ejφ |ψ⟩ , (2.22)

where ejφ is the eigenvalue associated with |ψ⟩, and φ is the phase to be estimated.
As portrayed in Fig. 2.4, the phase estimation process commences with preparing the
uniform superposition |+⟩⊗M over all 2M possible states in the ancillary register, using
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Ancillary Register

Data Register

FIGURE 2.4: The circuit diagram of quantum phase estimation.

Hadamard gates given by2

H =
1√
2

[
1 1
1 −1

]
.

Then, by repeatedly applying the controlled-U operations in Fig. 2.4 for N times, one
may obtain the following sinusoidal data record

y = [1, ejφ, ej2φ, . . . , ejNφ]T. (2.23)

Intuitively, the initial state |+⟩⊗M may be viewed as a rectangular window applied to
the data record, which will be discussed in more detail in Chapter 8. Observe that the
phase parameter φ is related to the frequency of the record y, which is φ/2π. Thus for
N = 2M − 1, we may store the accumulated phase of y in the M-qubit ancillary register
in Fig. 2.4, and estimate φ by applying the quantum Fourier transform to this register.
This is essentially similar to the technique of estimating the frequency of a sinusoidal
signal by computing its classical discrete Fourier transform and finding the peak of the
spectrum, which is widely applied in classical signal processing [92].

This approach can be extended to an arbitrary matrix A, by constructing an ancillary
unitary matrix U = ejA. Due to the superposition property of quantum states, when the
input state is not an eigenvector, quantum phase estimation would return a superposi-
tion state of multiple eigenvalues. This is useful in some quantum algorithms designed
for solving linear algebraic problems [16].

Typically, the computational complexity of quantum phase estimation is proportional
to N. The phase estimation error is on the order of O(1/N), which implies a quadratic
speedup compared to classical phase estimation, since classically the estimation error
scales as O(1/

√
N). This is related to a deep-rooted characteristic of quantum informa-

tion systems, namely the Heisenberg limit [93]. However, the N-th power of U does

2The “plus state” |+⟩ is defined as |+⟩ = 1√
2
(|0⟩ + |1⟩), which may be obtained by applying a

Hadamard gate to the |0⟩ state.
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not necessarily require applying U N times, hence the actual speedup may be well be-
yond quadratic, sometimes even exponential. A representative example of the super-
quadratic speedup is Shor’s algorithm for factoring integers [12]. In Shor’s algorithm,
the N-th power of the unitary operator U corresponds to the modular exponentiation
of integers, which admits efficient implementations. Consequently, Shor’s algorithm
provides an exponential speedup over its best known classical counterpart.

The second category relies on the fact that quantum states can accumulate their proba-
bility amplitude rapidly, which may be viewed as generalizing the quadratic speedup
provided by quantum phase estimation. A representative algorithm of this kind is the
quantum amplitude amplification, first proposed by Grover for finding a marked entry
in an unstructured database [13]. Geometrically speaking, quantum amplitude ampli-
fication iterates between a pair of reflection operations. To elaborate a little further, in
each iteration of quantum amplitude amplification, the quantum state is first reflected
about a hyperplane representing the “marked subspace”, using the following operator:

Uo = I − 2 ∑
k marked

|k⟩ ⟨k| , (2.24)

and then reflected with respect to the initial state |ψ⟩init, using the operator

Us = 2 |ψ⟩init ⟨ψ|init − I. (2.25)

The operator Uo is also known as the oracle [48, Section 6.1], which may be viewed
alternatively as a phase flip on all marked entries as follows:

Uo |k⟩ =
{

− |k⟩ , k is marked;
|k⟩ , otherwise.

(2.26)

We may understand the quadratic speedup of quantum amplitude amplification by
considering its state evolution on a two-dimensional plane. Specifically, the initial state
may be decomposed as follows

|ψ⟩init = sin θ |ψ⟩mark + cos θ |ψ⟩rest , (2.27)

where |ψ⟩mark and |ψ⟩rest denote the projections of the initial state onto the marked sub-
space and its orthogonal complement, respectively. After each iteration, the quantum
state is rotated by an angle of 2θ on the plane spanned by |ψ⟩mark and |ψ⟩rest [94], as
portrayed in Fig. 2.5. Hence the output state after n iterations is given by [48, Section
6.1]

|ψ⟩(n)out = sin[(2n + 1)θ] |ψ⟩mark + cos[(2n + 1)θ] |ψ⟩rest . (2.28)

This implies that the success probability of the search algorithm will be close to 1 when
the number of iterations is set to ⌊π/4θ⌋, which is on the order of O(

√
N/M), where
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FIGURE 2.5: Geometric illustration of the quantum amplitude amplification.

N is the number of all candidate solutions, and M denotes the number of marked solu-
tions (i.e. the dimensionality of the marked subspace).

Let us now consider the classical exhaustive search, whose expected complexity would
be on the order of O(N/M). We may also view this procedure as a state evolution over
a two-dimensional plane. Specifically, the success probability of the “initial state” is
pinit = M/N, which may be alternatively represented as

xinit = pinit · xmark + (1 − pinit)xrest, (2.29)

where xmark and xrest may be arbitrary orthonormal basis vectors of the two-dimensional
plane. As an example, we choose xmark = [1, 0]T and xrest = [0, 1]T. In each iteration,
we randomly choose one entry and test whether it is a marked entry, hence the output
state after n iterations is given by

x(n) = (npinit) · xmark + (1 − npinit)xrest. (2.30)

Upon comparing (2.30) to (2.28), we see that the associated quantum operations can
accumulate the probability amplitude of quantum states linearly, whereas the classical
search can only accumulate the probability linearly. Note that probability amplitudes
are in fact the square roots of probabilities, hence quantum amplitude amplification is
capable of providing a quadratic speedup.
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The third category is what Richard Feynman originally conceived in his vision of quan-
tum computation, namely simulating quantum physical systems, also known as Hamil-
tonian simulation [11]. Mathematically speaking, Hamiltonian simulation aims for ap-
proximating the matrix exponential exp(−jtH), where H is the Hamiltonian, which
may be expressed in terms of a 2n × 2n matrix. Classically, one would expect a com-
putational complexity on the order of O(2n) for the same task. By contrast, when the
Hamiltonian H is sparse under a certain representation, a polynomial-time quantum
algorithm is typically viable. A possible such representation is constituted by a linear
combination of sub-Hamiltonians as follows:

H =
K

∑
k=1

θkHk, (2.31)

where for each Hk, the corresponding exponentiation exp{jτθkHk} can be readily im-
plemented by native gates in quantum computers. Although the sub-Hamiltonians are
not in general mutually commutative, one may use the Trotter approximation [75] to
achieve an accuracy of O(1/∆t), where ∆t = t/N is the length of an evolution time
step. Therefore, the accuracy can be arbitrarily improved as long as one opts for a suf-
ficiently large number of time steps N. The total computational complexity is on the
order of O(KN/ϵ), where ϵ is the maximum tolerable error.

Another common sparsity is that the Hamiltonian has only a small number of non-
zero entries. If additionally we can compute each of the non-zero entries efficiently
(i.e. using a constant number of operations per entry) using an oracle, quantum walk-
based methods may be applied to achieve a computational complexity on the order
of O(td∥H∥max/

√
ϵ) [95], where d is the maximum number of non-zero entries per

row/column, and ∥H∥max represents the maximum absolute value of the entries in H.
Specifically, the quantum walk based methods rely on a walk operator W having the
following eigendecomposition [95]

W = jS
(

2T T † − I
)

, (2.32)

where T is an isometry that maps an n-qubit computational basis state |i⟩ to two n-
qubit quantum registers (plus one ancilla), given by [95]

T =
2n

∑
i=1

|ηi⟩ ⟨i| , (2.33)

where we have

|ηi⟩ =
√

θ

∥H∥1

2n

∑
k=1

√
H∗

ik |k⟩+
√

1 − θ ∑2n

k=1 |Hik|
∥H∥1

|2n + 1⟩ ,

with θ being a parameter controlling the step size of state evolution. The operator
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S simply swaps the two quantum registers, meaning that S |i, k⟩ = |k, i⟩. It has been
shown in [96] that one may implement an approximate state evolution based on the
walk operator W as follows:

1
2
T †(I − jS)(jW)t∥H∥1(I + jS)T = e−jtH + O(θt). (2.34)

Recent contributions [11, 96] have improved the error scaling in (2.34), which may also
be viewed as reducing the overall computational complexity. Remarkably, the “quan-
tum signal processing” technique proposed in [11] achieves a complexity on the order
of O(td∥H∥max +

log 1/ϵ
log log 1/ϵ ), which is proved to be optimal in [97].

The Hamiltonian simulation problem plays a particularly important role in the com-
plexity theory of quantum computation, since it is known to be BQP-complete [98,99].
To elaborate, BQP stands for Bounded-error Quantum Polynomial time, which marks
the specific class of computational tasks that can be solved efficiently by quantum com-
puters within a number of operations that scales polynomially with the size of the input
data, at a success probability higher than 2/3 [100]. BQP-complete problems are such
problems, that every BQP problem can be reduced to them using polynomial num-
ber of quantum operations. Intuitively, these problems may be viewed as the most
representative and the most computationally challenging problems in the BQP class.
To elaborate a little further, in computational complexity theory, “reducing problem A
to problem B” refers to the process of transforming problem A to problem B using a
certain amount of computational resources. For example, the problem of computing
5 × 6 × 7 may be reduced to that of computing 30 × 7 using one operation (a multi-
plication). Intuitively, this toy example may be viewed as a “task addition” formula
of C(5 × 6 × 7) = C(5 × 6) + C(30 × 7). Since any BQP problem can be reduced to
BQP-complete problems using polynomial number of quantum operations (which is
negligible in the sense that the BQP class is closed under the aforementioned “task
addition” [101]), we may conclude that the computational class constituted by all BQP-
complete problems are “the most representative problems” of the BQP class.

In practice, quantum algorithms do not necessarily fall completely into one of these cat-
egories. In fact, many practical quantum algorithms are conceived based on a beneficial
fusion of subroutines of those different categories. A representative example of such al-
gorithms is the Harrow-Hassidim-Lloyd (HHL) algorithm [16] aiming for solving lin-
ear systems having the form of Ax = b, which is capable of providing exponential
speedup over classical algorithms in solving some specific linear algebraic problems.
Specifically, the HHL algorithm provides a high speedup, when the matrix A is well-
conditioned, since the computational complexity is on the order of O(log Nκ2), where
N denotes the dimensionality of x, and κ is the condition number of A.

The HHL algorithm is constituted by a successful blend of subroutines of all three cat-
egories. It relies substantially on a subroutine known as Uinvert [16], which essentially
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Figure 1: The Uinvert subroutine in the HHL algorithm.

1

FIGURE 2.6: The Uinvert subroutine in the HHL algorithm. The operation R represents
the conditional rotation that takes the reciprocal of the eigenvalues. The operations

e−jktA, k = −n . . . n may be implemented using Hamiltonian simulation.

inverts the matrix A with a small probability p determined by the condition number
of matrix A [16]. This is achieved by first computing the eigendecomposition of A,
then taking the reciprocal of all the “well-conditioned” eigenvalues (i.e., those that are
larger than 1/(2κ)), and finally apply the inverse operation (termed as “uncomput-
ing” [16]) of the eigendecomposition to reconstruct A−1, as portrayed in Fig. 2.6. In
particular, the eigendecomposition is implemented by computing e−jtA for several dif-
ferent t using Hamiltonian simulation, and then obtaining the eigenvalues of these
operators — hence also that of A — using quantum phase estimation. Indeed, compar-
ing Fig. 2.4 with Fig. 2.6, we see that the circuit in Fig. 2.6 before the controlled-R gate
is in fact a quantum phase estimation circuit computing the eigendecomposition of A.
Moreover, the circuit after the controlled-R gate is exactly the inverse of the quantum
phase estimation circuit, hence can reconstruct the matrix A−1 from its eigendecom-
position, obtained by applying the controlled-R gate to the eigendecomposition of A.
The controlled-R gate implements the operation of taking the reciprocal of eigenvalues
relying on the ancillary qubit S, which indicates whether the inversion is successful or
not. Finally, the success probability p is enhanced using an outer iteration of quantum
amplitude amplification algorithm, which may be expressed as follows [16]:

Uiter = UinvertBRinitB†U †
invertRsucc, (2.35)

where B denotes the operator that computes the state |b⟩ taking the initial state |ψ⟩init

as the input, and the operators Rinit and Rsucc represent the reflection operators of the
quantum amplitude amplification algorithm, given by [16]

Rinit = I − 2 |ψ⟩init ⟨ψ|init ,

Rsucc = IS − 2 |1⟩S ⟨1|S ,
(2.36)

respectively, where the subscript S means that the operation is only executed on the
ancilla S. Comparing (2.36) to both (2.25) and (2.24), we see that Rinit corresponds
to the reflection with respect to the initial state |ψ⟩init, while Rsucc corresponds to the
oracle.
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2.5.2 Hybrid Quantum-Classical Computation

As discussed in Section 2.5.1, in many existing quantum algorithms, such as Shor’s al-
gorithm, the HHL algorithm, and in Hamiltonian simulation [11,12,16], the evaluation
of eigenvalues and eigenvectors is a fundamental subroutine. In early contributions,
quantum phase estimation [48, Sec. 5.2] was the default algorithm for eigenvalue eval-
uation, which typically requires a long coherence time. To enable eigenvalue evaluation
on noisy intermediate-scale quantum computers, hybrid quantum-classical algorithms
based on variational optimization have been proposed in [62, 102, 103].

Mathematically, for a Hermitian matrix H, the eigenvector ψ0 corresponding to the
smallest eigenvalue can be calculated as follows [62]

ψg = arg min
ψ

ψ†Hψ, (2.37a)

subject to ∥ψ∥2 = 1. (2.37b)

This problem is referred to as the variational formulation of eigenvalue evaluation in
the literature [34, 62, 104]. If the eigenvectors are reparametrized using a vector θ,
yielding ψ = ψ(θ), the task of finding the smallest eigenvalue or the corresponding
eigenvector may be accomplished by searching for the minimum of the objective func-
tion [62]

J(θ) = ψ†(θ)Hψ(θ) (2.38)

in the space of θ, while satisfying the normalization constraint (2.37b). The formula-
tion (2.38) has been applied to the electronic structure computation of the hydrogen
molecule3 in [67]. In general, this would be a non-convex problem with respect to θ,
which may be solved using iterative non-convex optimization solvers, such as the clas-
sic gradient descent and the Nelder-Mead simplex method [105]. In each iteration, the
objective function or another function (e.g. the gradient) is first evaluated at a specific
point in the parameter space, and then the parameters are updated according to the
function values.

Under the framework of quantum computation, the problem (2.37) can be recast as [62]

∣∣ψg(θ)
〉
= arg min

|ψ(θ)⟩
⟨ψ(θ)| H |ψ(θ)⟩ , (2.39)

where H is a quantum observable [48, Sec. 2.2.5] representing the matrix H, and the
state

∣∣ψg(θ)
〉

here corresponds to the ground state of H. The quadratic form J(θ) =

⟨ψ(θ)| H |ψ(θ)⟩ can be viewed as the expectation value of the observable H. The con-
straint (2.37b) is automatically satisfied due to the normalization property of quantum

3The problem of hydrogen molecular electronic structure computation aims to find the bond length
corresponding to the ground state of the hydrogen molecule. In this case, the objective function J(θ) is the
ground state energy, while the parameter θ (which is a scalar) corresponds to the inter-atom distance.
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states. Taking decoherence into account, (2.39) can be reformulated equivalently for
mixed states as

ρg(θ) = argmin
ρ(θ)

Tr{Hρ(θ)}. (2.40)

For conciseness of our discussion, we shall use the pure-state formulation (2.39) here-
after, whenever there is no confusion.

The essence of hybrid quantum-classical computation is to evaluate the functions using
a quantum circuit, whereas the parameter values are updated using a classical com-
puter, as illustrated in Fig. 1.1. To be more specific, a schematic of the quantum circuit
evaluating the objective function J(θ) is portrayed in Fig. 2.7. The input state of the
circuit is typically the all-zero state |0⟩⊗n. The function-evaluation circuit U (θ) encodes
the parameter vector θ, and transforms the input state to the state |ψ(θ)⟩. The expecta-
tion value J(θ) is then computed based on the result of multiple measurements. This
is achieved by decomposing the observable H (involving at most K-qubit interactions)
as [62]

H =
K

∑
k=1

{
∑

i1,j1,...,ik ,jk

h(j1,j2,...,jk)
i1,i2,...,ik

k

∏
l=1

σ
(jl)
il

}
, (2.41)

where σ
(jl)
il

denotes a Pauli-jl operator (i.e., jl may be X , Y or Z) acting on the il-th

qubit. In light of this, the term ∏k
l=1 σ

(jl)
il

can be implemented using a simple quan-
tum circuit consisting of k single-qubit gates followed by measurements, as shown in
the dashed box of Fig. 2.7. For example, a Pauli-Z operator in (2.41) corresponds to
a direct measurement, whereas a Pauli-X operator corresponds to a Hadamard gate
followed by measurement. Thus, the expectation value can be obtained by measuring
the outputs of these simple circuits, and evaluating a weighted sum over them using
the weights hi1,i2,...,ik . Note that this weight sum (represented by the operator W in Fig.
2.7) may be calculated using a classical computer.

In contrast to “fully quantum” algorithms (e.g. Shor’s algorithm and Grover’s search
algorithm [106]) aiming to arrive at one of the computational basis states at the very end
of computation, hybrid quantum-classical algorithms aim for computing the expecta-
tion values. Therefore, the measurement results have to be averaged over a number of
independent circuit executions. In this thesis, we will refer to this process as “circuit
sampling”.

To portray the potential advantage of hybrid quantum-classical computation, we pro-
vide a rudimentary complexity comparison between classical computation and hy-
brid quantum-classical computation. Using classical computation, evaluating J(θ) for
ψ ∈ C2n

requires on the order of O(22n) operations. By contrast, the complexity of the
hybrid scheme depends both on the complexity of the function-evaluation circuit as
well as on the structure of H. More precisely, denoting the complexity of the function-
evaluation circuit in terms of quantum gates as T, the total complexity of evaluating
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FIGURE 2.7: Portrayal of a quantum circuit evaluating the objective function J(θ) in
a hybrid quantum-classical algorithm. The operator W represents the weighted aver-
aging operation. The gates in the dashed box are chosen according to the observable

decomposition (2.41).

J(θ) would be O(T ∏K
k=1 Nk). Therefore, for application scenarios where the observable

H is “sparse” in the sense that the number of terms ∏K
k=1 Nk is small (e.g. polynomial

in n), a substantial speedup over classical computation may be achieved, when using
the hybrid approach.
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Chapter 3

Introduction to Quantum
Error Mitigation

In Chapter 2, we have introduced the fundamental units of quantum information pro-
cessing, namely the qubits, and representative quantum algorithms based on gates (i.e.
quantum operations) acting on qubits. In particular, we have discussed the family of
quantum algorithms conceived under different error models, including “conventional”
quantum algorithms based on error-free assumptions and hybrid quantum-classical al-
gorithms aiming for potential applications to be run on near-term NISQ computers. In
practice, errors are inevitable, while the error-free assumptions may only be approx-
imately satisfied at the circuit-level using quantum error correction codes (QECCs).
Against this background, the concept of quantum error mitigation (QEM) is proposed
to meet the computational accuracy requirements of practical quantum algorithms exe-
cuted on NISQ computers, by mitigating both the circuit-level errors and the algorithm-
level errors.

In this chapter, we present a brief overview of the error sources in quantum compu-
tation as well as their countermeasures, with an emphasis on QEM techniques. The
rest of this chapter is organized as follows. We first discuss the error sources in quan-
tum computation in Section 3.1, including circuit-level error sources in Section 3.1.1
and algorithm-level error sources in Section 3.1.2. Next, in Section 3.2, we briefly intro-
duce the conventional countermeasures against circuit-level errors, namely QECCs and
QEDCs. We then discuss four main types of circuit-level QEM techniques in Section 3.3,
followed by a discussion on algorithm-level QEM techniques in Section 3.4.
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3.1 Error Sources in Quantum Computation

Errors are ubiquitous in practical computational systems. At the top level of a compu-
tational system, tasks are performed based on algorithms, which may be probabilistic
or approximate in nature, hence result in computational errors. At a lower level of the
system, algorithms are eventually executed relying on physical components such as
circuits or mechanical structures. These components may themselves be imperfect, i.e.,
affected by noise, which may accumulate through the entire process of computation
and lead to errors in the final result.

3.1.1 Circuit-Level Error Sources

At the circuit level, quantum algorithms are compiled into gates. Ideal quantum gates
can be modelled as unitary operators acting on quantum states. However, due to the
imperfection of the gate implementation or external noises, the actual operations ap-
plied to the quantum states are typically non-unitary. As discussed in Section 2.4, the
undesired operations play the role of imperfect “quantum channels”, which are for-
mally modelled as CPTP operators.

To be more specific, let us consider some tangible examples of single-qubit quantum
channels. According to Section 2.4, the effect of a single-qubit quantum channel C on
the state x may be viewed as an affine transformation, consisting of a linear transfor-
mation and a translation. Moreover, according to our discussion in Section 2.3, the
space containing all single-qubit quantum states may be geometrically represented by
the Bloch sphere. Therefore, the effect of a quantum channel may be interpreted as
an undesired affine transformation applied to the Bloch sphere,1 potentially including
rotation, contraction (dilation is not allowed by the trace-preserving condition [48, The-
orem 9.2]) and translation, as portrayed in Fig. 3.1. By contrast, an ideal unitary gate
only corresponds to a pure rotation of the Bloch sphere.

Pauli channels constitute a class of single-qubit channels having paramount signifi-
cance, which can be represented by diagonal matrices under the PTM formulation
[107]. Geometrically, Pauli channels may be interpreted as pure contractions to the
Bloch sphere. Under the operator-sum representation, a general Pauli channel may be
expressed as

CPauli(ρ) = (1 − pX − pY − pZ)ρ + pXSX ρSX + pYSYρSY + pZSZρSZ . (3.1)

1Strictly speaking, quantum channels only apply to quantum states. However, in order to gain further
insights, we may alternatively view the actions of quantum channels on the collection of all quantum states
as affine transformations applied to the entire space of all quantum states, geometrically represented as
the Bloch sphere.
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FIGURE 3.1: Geometrical interpretation of an imperfect quantum gate acting on a
qubit: Sequential application of 1) rotation 2) contraction and 3) translation to the

Bloch sphere. The ideal gate is a rotation around the Z-axis.

As special cases, when pY = pZ = 0, the channel is termed as a bit-flip channel, also
known as an X-error channel. Similarly, Pauli channels corresponding to pX = pY = 0
are termed as phase-flip channels, also known as Z-error channels. The channels satis-
fying pX = pY = pZ = p ̸= 0 are termed as depolarizing channels. These specific Pauli
channels are particularly important both in practice and in the analysis of quantum er-
ror correction codes, which will be further elaborated on in Section 3.2. Geometrically,
bit-flip channels correspond to contractions towards the X-axis, phase-filp channels cor-
respond to contractions towards the Z-axis, while depolarizing channels correspond to
homogeneous contractions towards the center of the Bloch sphere.

When the quantum channel consists of pure rotations, it is termed as a coherent chan-
nel [108], sometimes also referred to as an over-rotation channel [38], because the ideal
gate itself is the “exact rotation”. Compared to Pauli channels, coherent channels do
not necessarily incur information loss, since they only involve basis transformations,
but may still cause deleterious effects if the channel is not known before activating the
quantum circuit. Especially, coherent channels may even be more detrimental than
Pauli channels for certain quantum error correction codes [109].

A quantum channel frequently encountered by practical quantum computers is the
amplitude damping channel [48, Section 8.3.5], which has the following operator-sum
representation

Cdamp(ρ) = E0ρE†
0 + E1ρE†

1, (3.2)

where

E0 =

[
1 0
0

√
1 − γ

]
, E1 =

[
0

√
γ

0 0

]
, (3.3)

with γ termed as the amplitude damping probability. The amplitude damping channel
is an abstraction of the ubiquitous phenomenon of undesired energy dissipation, for
example, the loss of a photon. This may be recognized by considering its effect on the
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computational basis states, as follows:

Cdamp(|0⟩ ⟨0|) = |0⟩ ⟨0| , Cdamp(|1⟩ ⟨1|) = (1 − γ) |1⟩ ⟨1|+ γ |0⟩ ⟨0| . (3.4)

In practical quantum computers, the state |0⟩ typically refers to the “ground state”
having the lowest energy, while the state |1⟩ is an excited state having higher en-
ergy [48, Section 8.3.5]. Hence from (3.4) we observe that with probability γ, the ampli-
tude damping channel would incur an energy loss. Geometrically, amplitude damping
channels correspond to contractions towards the northpole of the Bloch sphere, namely
the |0⟩ state. The PTM of amplitude damping channels is given by

Cdamp =




1 0 0 0
0

√
1 − γ 0 0

0 0
√

1 − γ 0
γ 0 0 1 − γ




. (3.5)

Observe from (3.5) that amplitude damping channels may be alternatively viewed as
the composition of a contraction towards the center of the sphere (i.e., a depolarizing
channel), a contraction towards the Z-axis (i.e., a bit-flip channel), and a translation
towards the northpole |0⟩.

3.1.2 Algorithm-Level Error Sources

Most existing quantum algorithms are essentially probabilistic. This originates from the
fact that the output states of quantum algorithms are in general not the eigenstates of
the observables, and thus the subsequent measurement outcomes are not deterministic.
For example, in the Grover’s popular search algorithm [13] conceived for unstructured
search over N database entries, the probability of success after k iterations is given
by [13]

psuccess = sin2
[

2
(

k +
1
2

)
arcsin

(
1√
N

)]
, (3.6)

which might not reach exactly 1 for any integer k. Similarly, Shor’s factoring algo-
rithm [12], which is one of the few quantum algorithms shown to provide exponential
speedup over their classical counterparts, also has a constant probability of failure. Due
to the probabilistic nature of quantum algorithms, the “polynomial time” complexity
class for quantum computers is termed as Bounded-error Quantum Polynomial time
(BQP) [100]. This implies that there is a fundamental trade-off between the complexity
and the accuracy of quantum computation, since a near-unity successful probability is
achievable through multiple repetitions of an algorithm having bounded error proba-
bility.
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Apart from the above-mentioned probabilistic errors, many practical quantum algo-
rithms also suffer from approximation errors. A representative example is constituted
by Hamiltonian simulation [11], which aims for performing a state evolution according
to the exponentiation exp{jτH} of the Hamiltonian H, relying on a linear decomposi-
tion of H as

H =
K

∑
k=1

θkHk, (3.7)

where for each Hk, the corresponding exponentiation exp{jτθkHk} can be readily car-
ried out by native gates in the quantum computer. However, the implementation of the
global evolution exp{jτH} is not straightforward, since the components Hk, k = 1 . . . K
do not in general commute with each other. To this end, the Trotterization technique
(also known as the Lie-Trotter product formula) [75] is usually applied, which divides
the entire state evolution duration τ into various “Trotter steps” as follows

ejτH =
(

ejτ/NτH
)Nτ

=
{(

ej τ
2Nτ

H1 . . . ej τ
2Nτ

HK
) (

ej τ
2Nτ

HK . . . ej τ
2Nτ

H1
)}Nτ

+ O(N−2
τ ),

(3.8)

where the terms on the order of O(N−2
τ ) are neglected in practice, hence result in an

approximation error. The formula (3.8) is termed as the second-order Trotterization.
Another popular variant of Trotterization, also known as the first-order Trotterization,
which is given by [75]

ejτH =

(
K

∏
k=1

ejτ/NτHk

)Nτ

+ O(N−1
τ ), (3.9)

that has an error on the order of O(N−1
τ ).

Naturally, probabilistic errors and approximation errors may be mitigated by increas-
ing the number of circuit activations (i.e., the number of samples) and the depth of
the circuit (e.g., the number of Trotter steps), respectively. However, these naive ap-
proaches may be computationally inefficient, and sometimes outright unaffordable.
For example, the achievable depth of quantum circuits on NISQ computers is limited
by their coherence time, and thus one cannot simply mitigate the error due to Trotter-
ization by increasing the number of Trotter steps. This motivates the development of
algorithm-level QEM methods, which will be discussed in more detail in Section 3.4.

3.2 Quantum Error Correction/Detection Codes

In quantum computation, by far the most plausible technique conceived for combatting
circuit-level errors is quantum error correction codes (QECCs) [24, 52]. Conceptually,
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QECCs bear resemblance with classical error correction codes relying on syndrome-
based decoding. Classically, for a (n, k) linear block code, redundancy is injected into
the transmitted codeword using a k × n generator matrix G ∈ Fk×n

2 formulated as

yT = xTG, (3.10)

where we have x ∈ Fk
2 and y ∈ Fn

2 , and the matrix multiplication is carried out over
the binary finite field F2. Apparently, a legitimate codeword y would reside in the row
space of G, hence it is orthogonal to the left null space of G. In other words, given a
matrix H whose columns form a basis of the left null space of G, we should have

yTHT = 0, (3.11)

which holds for every legitimate codeword y. The matrix H, termed as the parity check
matrix (PCM), may be formulated for a so-called “systematic code” as

G = [Ik|P], H = [PT|In−k], (3.12)

which reflects that the identity matrix part directly copies the original information bits
into the encoded word, while the parity part represents the redundant bits providing
the correction capability. When the received word is corrupted by an additive error
vector e as r = y + e, with e containing a binary 1 in the particular position, where the
legitimate codeword was corrupted, one may obtain the error syndrome as follows

sT = rTHT

= eTHT,
(3.13)

where the second line follows from yTHT = 0. The hard-decision-based maximum
likelihood decoder may then be realized by constructing a look-up table containing all
legitimate syndrome vectors s, each associated with a correctable e, having the lowest
Hamming weight.

A quantum-domain counterpart of the error syndrome, namely the stabilizers [52], may
be applied to identify the circuit-level errors in quantum states. Specifically, a stabilizer
G of the quantum state |ψ⟩ satisfies

G |ψ⟩ = |ψ⟩ . (3.14)

In other words, the state |ψ⟩ is the eigenvector of S associated with the eigenvalue +1.
We require furthermore that the stabilizer G should be a Hermitian operator, ensuring
that it is observable. In general, a state |ψ⟩ might have multiple stabilizers. This for-
malism is motivated by the fact that, when we measure the stabilizer G for a quantum
state satisfying (3.14), we would be informed that an error has occurred, if we obtain
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an outcome of −1.2 Furthermore, if we obtain +1 from the measurement, the original
state |ψ⟩ is unchanged due to (3.14).

The error-correction capability of QECCs hinges on the specific design of a stabilizer
group S , which contains a set of stabilizers {Gi}K

i=1 obeying the commutative property
[Gi,Gj] = 0, ∀i ̸= j, Gi,Gj ∈ G . In particular, we have

Gi |ψ⟩ = Gj |ψ⟩ = GiGj |ψ⟩ . (3.15)

Based on the specific terminology that will be detailed in Chapter 7, (3.15) implies that
the elements in the stabilizer group are simultaneously observable. This means that
their error-detection capability can be exploited simultaneously for the state |ψ⟩. We
may better understand the error-detection property of stabilizers by considering their
effect when applied to erroneous states. For example, if the state |ψ⟩ is contaminated
by an error operator P , we obtain the erroneous state |φ⟩ = P |ψ⟩. The outcome of the
stabilizer G of |ψ⟩ acting upon |φ⟩ may then be expressed as

G |φ⟩ = GP |ψ⟩ =
{

|φ⟩ , [G,P ] = 0;
− |φ⟩ , {G,P} = 0.

(3.16)

The conditions (3.16) are particularly useful when the stabilizer S belongs to the Pauli
group P . To elaborate a little further, a Pauli operator A ∈ P would either commute
with another Pauli operator B, i.e. [A,B] = 0, or anti-commute with B, i.e. {A,B} = 0.
When the stabilizer G itself is a Pauli operator, once we measure G with respect to a
state |φ⟩, |φ⟩ would automatically collapse to a state corresponding to either the +1
eigenvalue or the −1 eigenvalue. According to (3.16), we see that the collapsed state,
denoted as |φ̃⟩, corresponds to an error operator P̃ in the Pauli group. In other words,
regardless of what the original error P is, it would become a Pauli error, once we mea-
sure a Pauli stabilizer G. This phenomenon illustrates the importance of Pauli channels,
since a stabilizer check may be viewed as “Pauli twirling” capable of transforming an
arbitrary quantum channel into a Pauli channel [110].

We can now see that the stabilizer group may be practically constructed using Pauli
operators, we may then consider a mapping from the single-qubit Pauli operators to
integers as follows:

I → 0, X → 1, Z → 2, Y → 3, (3.17)

which may be represented alternatively in a binary form as

I → 00, X → 01, Z → 10, Y → 11. (3.18)

2Note that the only possible outcomes are +1 and −1, since G is both unitary and Hermitian.
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The mapping (3.18) is also known as the Pauli-to-binary isomorphism [111], which is
an isomorphism from the Pauli group to GF(2)× GF(2). Correspondingly, the multi-
plication operation in the Pauli group is mapped to the addition operation on GF(2)×
GF(2) (up to a global phase), as may be verified by considering the examples in (3.18),
and omitting the global phase by treating Y as Y = XZ = ZX.3 In light of this iso-
morphism, we may view a stabilizer group as a quaternary linear block code, usually
termed as a quantum stabilizer code (QSC) [24,52]. The quaternary code may be further
decomposed into a pair of binary linear block codes having the PCMs Hx and Hz, re-
spectively. This is plausible, since we have eTHT = 0 when e is an undetectable error for
a classical linear block code. By contrast, we would have ẽTH̃T = 0, where H̃ = [Hx|Hz]

is the PCM of the entire QSC, if ẽ is an undetectable error of the stabilizer group (i.e.
equivalent to the identity operator I within the stabilizer group). QSCs composed of
such a pair of codes are termed as Calderbank-Shor-Steane (CSS) codes [41,112], which
constitute a large class of practical QSCs whose members are eminently suitable for
quantum computation. An additional constraint termed as the “symplectic criterion”
should be satisfied by CSS codes, in order to preserve the commutativity properties
between different Pauli operators [24], which is given by

HzHT
x + HxHT

z = 0, (3.19)

where the “+” operation should be interpreted as the addition operation on GF(2).

To provide further intuitions concerning the construction of QSCs, let us consider a
specific example, namely Steane’s 7-qubit code [41]. The stabilizers of the 7-qubit codes
are as follows:

G1 = I1I2I3X4X5X6X7, G2 = I1X2X3I4I5X6X7, G3 = X1I2X3I4X5I6X7,

G4 = I1I2I3Z4Z5Z6Z7, G5 = I1Z2Z3I4I5Z6Z7, G6 = Z1I2Z3I4Z5I6Z7,
(3.20)

where Ii, Xi and Zi represent the identity, the Pauli-X, and the Pauli-Z operator acting
upon the i-th qubit, respectively. According to the Pauli-to-binary isomorphism, we
have an equivalent linear block code representation for this 7-qubit code, characterized
by its PCM H̃ = [Hx|Hz], where

Hx = Hz =




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


 , (3.21)

obtained by replacing the Pauli-X operators (resp. Pauli-Z operators) in (3.20) with 1,
while replacing the identity operators with 0. It is also straightforward to verify that
(3.19) holds for this code.

3Omitting the global phase is plausible, since the action of a phase-shifted Pauli operator ejθP on a
specific quantum state ρ may be expressed as (ejθP)ρ(ejθP)† = PρP†, where the global phase is cancelled
out.
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Depending on the error detection capability of a QSC, it may be referred to as either a
quantum error correction code (QECC) or a quantum error detection code (QEDC). In
particular, a CSS code composed of an (n, k1, d1) code and an (n, k2, d2) code (k1 > k2)
is referred to as a [[n, k1 − k2, d]] code, where d = min{d1, d2} is the minimum distance
of this CSS code. Similar to classical linear block codes, CSS codes having a minimum
distance of d can detect an arbitrary error pattern involving (d − 1) qubits, but only
those involving no more than (d − 1)/2 qubits can be corrected [113]. Therefore, CSS
codes having a minimum distance of d = 2 are called QEDCs, since they can only detect
a single error, but they are not capable of correcting any errors. Those QSCs that are
capable of correcting at least one error are typically referred to as QECCs.

Naturally, the decoding of a QECC may be implemented using the decoding algorithms
designed for the associated classical linear block code. This becomes more convenient
when we consider CSS codes, since the pair of component codes are both binary codes,
which have been studied extensively in classical coding theory. For QEDCs, once we
detect an error, we may avoid further errors in the subsequent computation by simply
discarding the circuit execution, and restart the entire process.

The theoretical significance of QECCs lies in the fact that fault-tolerant quantum com-
putation may be achieved by concatenating multiple QECCs [48, Section 10.6.1], or
using a sufficiently high block length for some specific classes of QECCs, for exam-
ple, the topological codes [59, 114, 115]. Fault tolerance implies that the overall error
probability can be reduced to an arbitrarily low level, but only at the cost of a com-
putational overhead (specifically, qubit overhead for QECCs) increasing modestly with
the number of gates. This ensures that the additional computational cost due to error
correction does not completely erode the speed advantage of quantum computation.
It is widely believed that fault tolerance is required for many practical quantum al-
gorithms providing substantial quantum speedup, such as Shor’s factoring algorithm
and Grover’s quantum search algorithm, since they rely on deep quantum circuits that
would be extremely noisy without QECCs. By contrast, QEDCs may not be suitable
candidates for achieving fault tolerance, since their additional computational cost due
to the “discard-and-restart” process grows exponentially with the number of gates.

Sometimes a QECC may have a better error-correction performance than a classical
error correction code having the same minimum distance d, due to its degeneracy [116].
Broadly speaking, degeneracy means that some undetectable non-zero error patterns
may not necessarily degrade the computational result, hence they actually improve
the error-correction capability. Formally, degeneracy refers to the phenomenon that
some non-identity error operator commutes with all stabilizers. Note that degeneracy
is a unique characteristic of QECCs, since all undetected error patterns are harmful for
classical error correction codes.
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Although the error-correction performance of QECCs has strong theoretical guarantees,
using solely QECCs in its own right may not be sufficient for improving the accuracy of
quantum computation, especially for state-of-the-art NISQ computers. To elaborate, al-
though the computational overhead of error correction grows slowly with respect to the
size of the circuit in an asymptotic regime, the overhead is still unaffordable for NISQ
computers typically having only around 100 qubits and gate error rates in the range of
10−3 ∼ 10−2 [31]. Furthermore, existing NISQ computers typically do not have qubit
array topologies that are suitable for QECCs. Consequently, error correction and stabi-
lizer measurements would require additional processing steps for swapping different
qubits, which further exacerbates the computational overhead [117]. Moreover, QECCs
are only effective in reducing circuit-level errors, since algorithm-level errors cannot be
identified using stabilizer checks.

The limited capability of QECCs motivates the development of quantum error mitiga-
tion (QEM), which aims for mitigating the deleterious effect of both circuit-level and
algorithm-level errors for quantum algorithms relying on short-depth circuits, at a low
computational overhead. Typically, the computational overhead of QEM is much lower
than that of QECCs for small-scale quantum circuits, but the overhead increases expo-
nentially as the circuit size increases. Therefore, QEM is not a substitute of QECCs, but
should rather be considered as a technique tailored for NISQ computers, and might
be used in conjunction with QECCs for their mutual benefits. We will introduce some
representative QEM method in Sections 3.3 and 3.4.

3.3 Circuit-Level Quantum Error Mitigation

In this section, we present a brief overview of the representative techniques suitable for
circuit-level QEM [36, 37, 37–39, 64–66, 118–123]. The basic characteristics of these tech-
niques, including their main computational overhead and the requirements concerning
any prior knowledge about the computational task or the noise model, are shown in
Table 3.1. In particular, the methods shown in bold fonts represent the main subject of
study in the rest of this treatise. We will present our detailed performance analysis as
well as generalized or improved versions of these techniques in Chapters 4, 5, 6 and 7.

3.3.1 Channel Inversion Based QEM

When contaminated by decoherence, the quantum circuits of hybrid quantum-classical
computation would produce erroneous expectation values. Fortunately, the weighted-
averaging nature of hybrid quantum-classical computation facilitates the conception
of a qubit-overhead-free method that mitigates the deviation from the true expecta-
tion value, namely the channel inversion based QEM (CI-QEM). In this section, we
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Main overhead Prior knowledge required Remark
Zero-noise
extrapolation
[37, 38, 118]

Sampling overhead No
Requires pulse-level control,
or less effective to errors that

do not commute with the gates
Channel
inversion
[37, 39, 119]

Sampling overhead
Channel estimation

(gate set tomography)
Has error floor due to

imperfect channel estimation

Learning-based
[64, 120, 121] Sampling overhead

Pre-training on
certain circuit sets

Symmetry
verification
[36, 122]

Sampling overhead,
qubit overhead

Type of symmetries
in the computational task Symmetry-based

Virtual
distillation
[65, 66]

Sampling overhead,
qubit overhead No

Symmetry-based;
Has error floor due to mismatch

in the dominant eigenvector [123]

TABLE 3.1: Comparisons between different circuit-level QEM methods. Methods in
bold red fonts are the main subjects of study in this treatise.

introduce the formulation of CI-QEM and the computational overhead it incurs – the
sampling overhead.

3.3.1.1 The Basic Formulation of CI-QEM

The philosophy of CI-QEM is to insert a probabilistic quantum circuit right after every
quantum gate, which reverts the effect of the quantum channel modelling the imper-
fection inflicted by the gate. Conceptually, a CI-QEM-protected gate can be portrayed
as in Fig. 3.2. The imperfect gate (in this case an imperfect CNOT gate) can be decom-
posed into a perfect gate and a quantum channel C. Given an input state having the
density matrix ρin, according to (2.12), the output state after the imperfect gate is given
by

ρout = ∑
i

KiUgρinU†
g K†

i , (3.22)

where the matrix Ug corresponds to the effect of the perfect gate. In a vectorized form,
the output state can be expressed as

xout = CGxin, (3.23)

where we have G = U∗
g ⊗ Ug, and the Pauli transfer matrix C is given in (2.16). If we

have an estimate Ĉ of C, potentially obtained using methods such as quantum process
tomography [124], an estimate of the output of the decoherence-free gate G can be
obtained as

x̂ = Mxout = Ĉ−1CGxin, (3.24)

where M = Ĉ−1 is the Pauli transfer matrix representation of the probabilistic quantum
circuit M constructed for inverting the channel.
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To elaborate further, if a gate is followed directly by measurement, M is implemented
by applying different circuits according to a probability distribution in different cir-
cuit executions and performing a weighted averaging over the measurement outcomes.
This can be formulated as

K

∑
k=1

mT
k Mxout =

K

∑
k=1

wk pkmT
k Mkxout, (3.25)

where Mk is the k-th candidate circuit applied at a probability of pk, wk is the weight
of the k-th potential measurement outcome, and mk is the Pauli transfer matrix rep-
resentation of the measurement operator corresponding to the k-th outcome. For a
circuit constructed by multiple gates, the weights and probability distributions follow
directed by linearity. For example, for a simple circuit containing two consecutive im-
perfect gates G̃(1) and G̃(2), we have

J

∑
j=1

K

∑
k=1

mT
jk M(2)G̃(2)M(1)G̃(1)xin

=
J

∑
j=1

K

∑
k=1

w(1)
j w(2)

k p(1)j p(2)k mT
jkM

(2)
k G̃(2)M(1)

j G̃(1)xin,

(3.26)

where the superscripts “(1)” and “(2)” indicate the first and the second gate, respec-
tively.

Since the expectation evaluation in hybrid quantum-classical computation is imple-
mented by applying a linear transformation (weighted averaging) to the measurement
outcomes, it fits nicely with CI-QEM. Both the numerical and experimental results
of [38, 39] show that QEM is indeed capable of reducing the computational error in
VQAs in the context of quantum chemistry problems. By contrast, “fully quantum”
algorithms such as Shor’s algorithm and Grover’s algorithm operate in different ways,
hence they might not be protectable by CI-QEM.

Optionally, one may apply a quantum channel precoder to the imperfect gate, yielding

x̂P = MPP2CGP1xin

= (P2ĈGP1G−1)−1P2CGP1xin,
(3.27)

as shown in Fig. 3.2. The quantum channel precoder turns the channel C into an-
other (possibly more preferable) channel P2CGP1G−1. For example, the so-called Pauli
twirling of [38,39,125] may be viewed as a quantum channel precoder turning an arbi-
trary channel into a Pauli channel. Similarly, Clifford twirling [126] turns an arbitrary
channel into a depolarizing channel. According to the operator-sum representation [48,
Sec. 8.2.4], a quantum channel precoder can be implemented by a probabilistic mixture



3.3. Circuit-Level Quantum Error Mitigation 51

Imperfect Gate

Channel Precoder

p(·)

P1 P2C M

Figure 1: Schematic of a qem!-protected imperfect CNOT gate equipped with
a quantum channel precoder.

1

FIGURE 3.2: Schematic of a CI-QEM-protected imperfect CNOT gate equipped with a
quantum channel precoder.

of gates applied both before and after the imperfect gate to be protected4.

In order to obtain the inverse channel M, we may consider a linear combination of
predefined quantum operations, taking the following form

M = Ĉ−1 =
L

∑
l=1

µlOl , (3.28)

where Ol is the l-th quantum operation, while µC := [µ1 . . . µL]
T is the quasi-probability

representation vector satisfying 1TµC = 1. This linear combination may be rewritten as
a probabilistic mixture of the quantum operations as follows:

Ĉ−1 = ∥α∥1

L

∑
l=1

sl plOl , (3.29)

where sl and pl are the l-th entries of s and p, respectively, given by

pi =
|µi|

∥µC∥1
,

s = sgn{µ}.
(3.30)

Note that the vector p describes a probability distribution.

The remaining task is to find the linear coefficients µC . To this end, we may first con-
struct a basis matrix B, in which each column is the vectorized Pauli transfer matrix
of a candidate circuit [38], namely, we have [B]:,l = vec(Ol). Next, we determine the

4For the moment, we assume that the gates used to implement the quantum channel precoder are
decoherence-free. The practical case of erroneous gates will be considered in Section 4.2.4.
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FIGURE 3.3: An illustration of the sampling overhead of CI-QEM. The curves repre-
sent the distribution of the computational results with/without CI-QEM.

coefficients as follows:

µC = B−1vec{Ĉ−1}. (3.31)

Given the coefficients µC , we can now express M as

M = ∑
i
[µC ]ivec−1{[B]:,i}. (3.32)

This can be realized by applying the candidate circuit corresponding to [B]:,i with prob-
ability |[µC ]i| · ∥µC∥−1

1 and assigning a weight sgn([µC ]i) · ∥µC∥1 to the measurement
outcome. In light of this, µC is referred to as the quasi-probability representation [37] of
channel C.

3.3.1.2 The Sampling Overhead of CI-QEM

In general, the probabilistic implementation of M will incur a sampling overhead. To
elaborate, if we wish to compute the expectation value J(θ) to a certain accuracy, we
have to operate the circuit a certain number of times (sampling from the output state
vector). When the gates are perfect, the number of samples required is determined by
the variance of the observable H given by

Var{H} = ⟨ψ(θ)| H2 |ψ(θ)⟩ − (⟨ψ(θ)| H |ψ(θ)⟩)2. (3.33)

Upon assuming that the required accuracy is quantified in terms of its variance σ2, this
may be achieved using Ns samples in the perfect gate scenario. After CI-QEM, the
expected value remains unchanged. However, if the number of samples is kept fixed,
CI-QEM will lead to a variance increase, since the entries in µC are not necessarily
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positive. Explicitly, the variance after CI-QEM is given by

σ2
QEM = ∥µC∥2

1σ2, (3.34)

where ∥µC∥1 ≥ 1. Therefore, in order to achieve the same accuracy, we have to sample
every quantum gate Ns(∥µC∥2

1 − 1) times additionally. To elaborate a little futher, we
consider a toy example portrayed in Fig. 3.3. In this example, we assume that the error-
free expectation value is E, and we assume that ∥µC∥1 = 3. As can be observed from the
figure, when the circuit is sampled Ns times, the computational result without CI-QEM
is randomly distributed around its mean value Ẽ, which deviates from the true value E.
Having been corrected by CI-QEM, the mean value of the computational result equals
to E, however, the variance of the result is enlarged by ∥µC∥2

1 = 9 times. To ensure
that the accuracy meets our requirement, we have to sample the circuit Ns∥µC∥2

1 = 9Ns

times, as illustrated by the dotted curve in Fig. 3.3. Empirical evidence has shown that
applying quantum channel precoders is capable of reducing the sampling overhead for
certain types of channels [38].

In the previous example, we have considered the case of a single channel C. In general,
a quantum circuit consists of Ng > 1 gates, which may be viewed as the cascade of Ng

channels, denoted by C1, . . . , CNg . To achieve the required computational accuracy, we
have to sample the circuit for

Ñs = Ns

Ng

∏
i=1

∥µC∥2
1 (3.35)

times. To facilitate our analysis, we define the sampling overhead of a circuit as the addi-
tional number of samples imposed by CI-QEM, which equals to Ñs − Ns in our previous
example. It is noteworthy that the sampling overhead of a circuit grows exponentially
with the number of gates.

According to the previous discussions, we may use the following notion to characterize
the sampling overhead incurred by a single channel C when compensated by CI-QEM.

Definition 3.1 (Sampling Overhead Factor). We define the sampling overhead factor
(SOF) of a quantum channel C as

γC ≜ ∥µC∥2
1 − 1. (3.36)

Remark 3.2. When there is only a single gate with associated channel C in the circuit,
from (3.35) we see that the sampling overhead of the circuit may be represented in
terms of the sampling overhead factor (SOF) γC as NsγC . When there are more that one
gates in the circuit, the sampling overhead of the circuit can be computed using the
SOFs of the channels as follows:

Ñs − Ns = Ns

[
Ng

∏
i=1

(1 + γCi)− 1

]
. (3.37)
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(a) The depolarizing channel shrinks the Bloch sphere.

(b) The inverse of the depolarizing channel dilates the Bloch sphere.

FIGURE 3.4: Geometric illustration of a single-qubit depolarizing channel as well as
the corresponding inverse channel.

To provide further intuitions about the SOF, let us consider the toy example of a single-
qubit depolarizing channel C, having the following operator-sum representation

C(ρ) = 0.97ρ + 0.01SX ρSX + 0.01SYρSY + 0.01SZρSZ ,

which can be observed to have generalized gate error probability (GGEP) ϵ = 0.03.
The corresponding Pauli transfer matrix takes the following form

C = diag {1, 0.96, 0.96, 0.96} ,

and the inverse Pauli transfer matrix is given by

C−1 = diag {1, 1.0417, 1.0417, 1.0417} .

Geometrically, the channel C corresponds to a homogeneous shrinking of the Bloch
sphere, making its radius 0.96 times the original radius, while the inverse channel C−1

corresponds to a homogeneous dilation extending the raduis to 1/0.96 = 1.0417 times
the original radius, as portrayed in Fig. 3.4.
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To perform CI-QEM on the channel C, we should first choose a basis. Note that the
Pauli operators have the following Pauli transfer matrix representations

PI = diag {1, 1, 1, 1} ,

PX = diag {1, 1,−1,−1} ,

PY = diag {1,−1, 1,−1} ,

PZ = diag {1,−1,−1, 1} ,

(3.38)

which constitutes a complete basis of diagonal Pauli transfer matrices. In light of this,
we may choose the Pauli operators as the basis. The corresponding quasi-probability
representation can then be computed as

µC = [1.03125 − 0.01042 − 0.01042 − 0.01042]T,

yielding ∥µC∥1 = 1.0625. Therefore, given the basis we chose, the SOF of the channel
C is given by

γC = ∥µC∥2
1 − 1 = 0.1289.

3.3.2 Symmetry-Based QEM

Broadly speaking, symmetry-based QEM methods may be viewed as low-complexity
quantum error detection codes that have incomplete error detection capability. To elab-
orate, these methods are designed to detect the violations of certain symmetry condi-
tions, either intrinsically embedded in the quantum algorithms themselves or artifi-
cially constructed. Once an error event is detected, one may simply discard the compu-
tational result, or project the result onto an “error-free subspace” using post-processing
techniques, depending on the specific symmetry-based QEM methods used.

There are many symmetry conditions that can be exploited for QEM [36, 65, 127, 128].
State symmetry is a class of widely used symmetry conditions, which are typically
represented using the stabilizer formalism, as follows:

S |ψ⟩ = |ψ⟩ . (3.39)

If we have a set of symmetry conditions for the state |ψ⟩, it is clear from (3.39) that
the corresponding stabilizers form a group S , which is similar to the stabilizer group
of quantum error correction codes. In this treatise, we term the symmetry conditions
obeying the form of (3.39) as state symmetries, since they are characteristics of quan-
tum states. As it will be discussed in Chapter 7, the concept of symmetry may also be
generalized to circuit symmetries, which may offer additional error mitigation capa-
bility for practical quantum algorithms.
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3.3.2.1 Symmetry Verification

In order to exploit the state symmetries at a certain time instance during the computa-
tion, we should ensure that the state can be stabilized by the corresponding symmetry
operators up until this moment. One of the possible approaches is to prepare an initial
state satisfying all the symmetry conditions at the input of the circuit, as follows:

Si |ψ⟩in = |ψ⟩in , ∀Si ∈ S . (3.40)

Additionally, the gates constructing the circuit should be chosen for ensuring that the
circuit commutes with all the symmetries, in the following sense

[Si, C] = 0, ∀Si ∈ S , (3.41)

where C denotes the unitary operator representing the idealized noise-free quantum
circuit. This ensures that

Si |ψ⟩ = SiC |ψ⟩in = CSi |ψ⟩in = |ψ⟩ , (3.42)

hence the output state is also stabilized by the symmetries. In light of this, any error
caused by noise or other imperfections of the circuit that violate the symmetry condi-
tions may be identified by stabilizer checks and then mitigated.

As discussed in Section 3.2, identifying the specific form of the error would require
from the stabilizer group to satisfy certain conditions, which typically implies a large
number of stabilizer generators, especially when we aim for a high error correction
capability. This would reduce the effective number of logical qubits, hence may not
be computationally affordable in the context of NISQ computation. Thus we have to
tolerate a limited error mitigation capability, in the sense that we might only detect
the error event without recognizing its specific form. Consequently, the error can no
longer be completely compensated for using unitary operations, which is in contrast to
the recovery procedure of quantum error correction codes.

Mathematically speaking, given the stabilizer group S , a natural technique of mit-
igating the potential error is to project the quantum state onto the “symmetry sub-
space” [129], using the following projection operator

TS =
1

|S | ∑
S∈S

S . (3.43)

Practically, this operator may be simplified by using the set G of generators of the sta-
bilizer group S

TS =
1
|G | ∑

S∈G

S . (3.44)
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FIGURE 3.5: Illustration of “identify-discard” symmetry verification based on ancillas.

Apparently, we have TS |ψ⟩ = |ψ⟩ for legitimate states |ψ⟩. The family of error mit-
igation methods based on these projection operators is termed as symmetry verifica-
tion [36, 127, 128].

Similar to the syndrome measurement in quantum error correction codes, the most
straightforward implementation of the projection operator is to use ancillas [36], as
portrayed in Fig. 3.5. In this example, we verify a symmetry condition by measuring
the corresponding X1X2 stabilizer using a single ancilla. Measuring a |1⟩ on the ancilla
implies violation of the symmetry condition, hence we may simply discard this circuit
activation. It is also possible to dispense with using the ancilla, when the number of
qubits is limited (termed as “in-line symmetry verification” in [36]), but at the cost of
increased circuit depth. Assuming that the additional circuitry required for symmetry
verification does not incur extra error, given an observable O, the computational result
of both ancilla-based and in-line symmetry verification may be expressed in a unified
form as

rSV =
Tr {OTS ρ}
Tr {TS ρ} , (3.45)

where ρ is the density matrix representation of the state to be verified. For the simplic-
ity of further discussion, we will refer to these two methods as “in-circuit” symmetry
verification.

Similar to channel inversion based QEM, symmetry verification also suffers from a
sampling overhead, due to the fact that the denominator Tr {TS ρ} in (3.45) is typically
less than 1 (otherwise the state ρ is already in the symmetry subspace, and thus the
symmetry verification has no further error mitigation effect on it). This increases the
variance of the computational result, hence additional samples are required for ensur-
ing that the output variance remains the same as that of the result without symmetry
verification.

Alternatively, symmetry verification may also be implemented in a post-selection fash-
ion, which would further reduce the computational error compared to that of in-circuit
symmetry verification, since it does not need any addition circuitry (which may itself
incur addition error). This may be achieved by treating the projection operator in (3.44)
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as a uniform distribution over the stabilizer generators of S , and obtain the accuracy-
improved computational result using Monte Carlo averaging over samples randomly
drawn from this distribution [129].

3.3.2.2 Virtual Distillation

In general, using symmetry verification requires some prior knowledge about the com-
putational task in terms of its intrinsic symmetries. This is because constructing artifi-
cial symmetries is a non-trivial task, requiring appropriate basis transformations to the
gates in the quantum circuit [36], similar to the problem of constructing logical gates in
quantum error correction codes. Therefore, it would be more practical to rely solely on
the intrinsic symmetries, but, this also imposes restrictions on the potential application
scenarios of symmetry verification.

Permutation symmetry is an exception, which may be manipulated without introduc-
ing complex basis transformation circuits, hence has received much attention [65, 66,
123, 130, 131]. Specifically, if we could prepare N identical states on different qubits,
when there is no error, these states should remain the same upon rearranging the po-
sitions of the underlying qubits. Any error violating the permutation symmetry may
then be identified under the framework of symmetry verification.

It has been shown in [65] that the stabilizer check circuits relying on the permutation
symmetry may be implemented using controlled-swap gates (also known as quantum
Fredkin gates [132]). The authors of [66] proposed essentially the same method, but
with a particular focus on the scenario where only a pair of identical states are ex-
ploited. Additionally, they have proposed rather different circuit implementations,
and termed the method as virtual distillation. Later versions of virtual distillation
strike a flexible trade-off between the qubit overhead and the computational time in
each circuit activation, by partially serializing the permutation symmetry verification
procedure, which may be beneficial when the qubit resources are scarce [130, 131].

The trade-off between the error mitigation capability and the computational overhead
of virtual distillation can be flexibly manipulated by appropriately adjusting the num-
ber of copies. Specifically, given an observable O, in the same spirit as (3.45), the effect
of virtual distillation relying on N copies may be formulated as follows [66]

Tr
{
O(1)S (N)ρ⊗N

}

Tr
{
S (N)ρ⊗N

} =
Tr
{
OρN}

Tr {ρN} , (3.46)

where O(1) denotes the observable O acting upon the first copy (but essentially an
arbitrary copy) of the state ρ, and S (N) denotes the cyclic shift operator applied to all
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N copies satisfying

S (N) (|ψ1⟩ ⊗ |ψ2⟩ . . . |ψN⟩) = |ψ2⟩ ⊗ |ψ3⟩ . . . |ψ1⟩ . (3.47)

From the perspective of spectral analysis, when the quantum noise is not particularly
strong, the ideal noise-free computational result should still be similar to the dominant
eigenvector of ρ. Since the eigenvalues of ρ are all non-negative and satisfy the normal-
ization property and hence they sum up to 1, as the power N tends to infinity, ρN would
tend to |ψdom⟩⟨ψdom|, where |ψdom⟩ denotes the dominant eigenvector of ρ, which is
also the key observation exploited in the classical power method of matrix eigenvalue
decomposition [133]. However, since the dominant eigenvector is not in perfect match
with the noise-free result, there would be some error floor as N → ∞, which becomes
more significant when the main source of error in the circuit is coherent error instead of
decoherence [123]. Fortunately, this error floor may be further mitigated by using vir-
tual distillation in conjunction with other error mitigation techniques, such as the class
of zero-noise extrapolation based methods, which will be discussed in Section 3.3.3.

3.3.3 Zero-Noise Extrapolation Based QEM

Reducing the physical noise level is a major challenge for all practical quantum com-
putational systems. However, artificially increasing the noise level5 may be relatively
simple. Zero-noise extrapolation [37,38,74,134] is exactly such a class of QEM methods
relying on artificial noise, which aims for extrapolating the computational results to the
zero-noise limit using measurements obtained at different noise levels.

The key ingredients of zero-noise extrapolation are as follows:

1. A perturbation-based approximate expansion of the computational error as a
function of certain noise parameters;

2. Quantum control techniques associated with the noise parameters capable of
manipulating their values.

3.3.3.1 Error Expansion Methods

The original form of zero-noise extrapolation proposed in the seminal contribution [37]
relies on the Richardson extrapolation method of [135]. To be more specific, we may
first represent the effect of noise as [135]:

C = (1 − ϵ)I + ϵN , (3.48)
5As will be discussed shortly, the “noise level” used in zero-noise extrapolation is not restricted to

the probability of error or the power of the noise. In fact, it can be any parameter that determines the
computational error.
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where ϵ is the error probability, I denotes the identity operator, and N represents the
undesired transformation acting on the quantum state when the error event occurs.
Since the error rate ϵ is typically small (close to 0), given an observable O, we may
approximate its expectation value by a polynomial function of ϵ according to the Taylor
expansion as follows:

r = Tr {ρO} := F(ϵ)

= F(0) +
K

∑
k=1

αkϵk + o(ϵK),
(3.49)

where F(ϵ) represents the noise-contaminated computational result at the noise level
ϵ, and αk, k = 1 . . . K are unknown coefficients. Based on the previous assumptions,
Richardson’s extrapolation [135] may be used for approximating the noise free result
F(0) in terms of K + 1 noisy measurement results, in the following form [135]

F̂(0) =
K

∑
k=0

µkF(ηkϵ0)

= F(0) + o(ϵK),

(3.50)

where ϵ0 is the minimum achievable noise level, ηk, k = 0 . . . K is a list of multipliers
adjusting the noise level satisfying 1 = η0 < η1 < . . . < ηK, and the coefficients
µk, k = 0 . . . K are determined by [135]

µk = ∏
j ̸=k

ηj

ηk − ηj
. (3.51)

Similar to other QEM methods, Richardson’s extrapolation also has a sampling over-
head induced by the variance-increasing effect. In particular, its sampling overhead
factor may be expressed as [74]

γRE = ∥µ∥2
2 − 1, (3.52)

where µ := [µ0, µ1, . . . , µK]
T.

When the number of gates in a quantum circuit is high, the polynomial approximation
of Richardson’s extrapolation becomes less accurate. This motivates the proposal of
exponential extrapolation, which treats the dependence between the noisy computa-
tional result and the noise level as an exponential function [38, 136]. The plausibility of
exponential extrapolation may be understood by considering a circuit consisting of NG

gates, each associated with a channel given by (3.48). The effect of this circuit may then
be formulated as [136]

NG

∏
n=1

CnUn =
NG

∑
k=0

(1 − ϵ)NG−kϵk ∑
i
E (i)

k , (3.53)
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where E (i)
k represents one of the error patterns (i.e., the i-th error pattern) containing k

errors. Upon introducing the notations of pk := (1 − ϵ)NG−kϵk and Ek := (NG
k )

−1
∑i E (i)

k ,
we may further rewrite (3.53) as

NG

∏
n=1

CnUn =
NG

∑
k=0

pkEk. (3.54)

Note that pk may be viewed as the occurrence probability of k errors in a binomial
distribution, which may be approximated by a Poisson distribution given by

pk ≈
ϵNG

k!
exp(−ϵNG), (3.55)

when the number of gates NG is large. Hence the effect of the circuit in (3.53) may then
be rearranged as

NG

∏
n=1

CnUn = exp(−ϵNG)
NG

∑
k=0

ϵNG

k!
Ek, (3.56)

where the factor exp(−ϵNG) decreases exponentially with the noise level ϵ.

3.3.3.2 Noise Level Manipulation

Note that in Section 3.3.3.1, the noise level ϵ is a rather abstract parameter, as we have
not assumed any physical interpretation of it. In the seminal contribution [37], the noise
level is assumed to be a scaling factor of the Hamiltonian that generates the quantum
circuit. In general, the evolution of a quantum state according to a quantum circuit may
be expressed in terms of the master equation as [37]

∂

∂t
ρλ(t) = −j[H(t), ρϵ(t)] + λL{ρλ(t)}, (3.57)

where ρϵ(t) represents the quantum state at time t, H(t) denotes the Hamiltonian at
time t, L(·) is the Lindblad operator [137] modelling the noise effect, and λ denotes
the (not yet manipulated) strength of noise. If we prolong the evolution time to be
m times that of the original time, and reduce the evolution strength to be 1/m of the
original strength, the Hamiltonian becomes 1/mH(t/m), leading to the state ρmλ(t).
This implies that the noise level is increased from λ to mλ. This procedure is typically
implemented by reshaping the controlling pulse of quantum gates in experiments [37,
134, 138].

The Hamiltonian-based method of [37] offers an accurate control of the noise parame-
ter, but it requires pulse-level control of the quantum circuits, which may not be accessi-
ble for the end-users of quantum computers. To this end, gate-level methods have also
been proposed [139]. As an intuitive example, if we wish to increase the error rate of
gate U satisfying Um = I (e.g., the Pauli-X operator satisfies X 2 = I), we may simply
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repeat the gate (km + 1) times, where k is an integer. The drawback of this method is
that it can only boost the error component that commutes with the repeated gate, while
the non-commuting component is left unchanged. Consequently, zero-noise extrapola-
tion based on gate repetition can only mitigate the commuting errors. Another issue is
that it only offers discrete values of the noise level, which can be partially resolved by
treating k as a random variable [140, 141].

3.3.4 Learning-Based QEM

Most of the aforementioned QEM techniques either require prior knowledge about the
noise (e.g., channel inversion and symmetry verification), or assume that the noise sat-
isfies certain properties (e.g., zero-noise extrapolation). Since both noise sensing and
error mitigation would incur sampling overhead, an integration of both tasks may re-
duce the overhead. As machine learning and data-driven modelling becoming increas-
ingly successful in diverse areas [142–145], they have also been applied to QEM for
extracting information about the noise characteristics from a set of training data before
the main computational task is performed.

Considering the practicality of learning-based QEM, the training data should be ob-
tained at a negligible cost compared to that of the main computational task. In light
of this, the Clifford gates (i.e., quantum operations forming the Clifford group [146])
play a significant role in learning-based QEM, due to the celebrated Gottesman–Knill
theorem [147], formally stated as follows:

Theorem 3.3 (Gottesman–Knill). A quantum circuit satisfying the following conditions:

1. Initial states are the eigenstates of Pauli operators;

2. They only have Clifford gates;

3. They rely on measurements in the computational basis,

can be simulated in polynomial time on classical computers.

Proof. Please refer to [147].

For the simplicity of further discussion, we will refer to quantum circuits satisfying
the conditions in the Gottesman–Knill theorem as “Clifford circuits”. Given a specific
Clifford circuit and an observable, we may generate two sets of data: a set of noisy
expectation values of the observable obtained using the quantum computer, denoted
by xnoisy, and an associated set of ideal error-free expectation values obtained using
efficient classical simulation algorithms, denoted by xideal. Machine learning methods
may then be applied to fit a model that describes the mapping from xnoisy to xideal,
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FIGURE 3.6: Illustration of a computational circuit (which is non-Clifford) and the
Clifford circuit obtained by replacing the non-Clifford gates by corresponding best-fit
Clifford gates. In this example, we assume that the Rz gate represents a −60-degree
rotation around the Z-axis of the Bloch sphere, while the Ry gate represents a 60-

degree rotation around the Y-axis.

denoted by xideal = f (xnoisy, θ), where θ is some model parameter. Hence the effect of
noise on the computational result is mitigated. Formally, the above-mentioned model
may be learnt by minimizing a cost function taking the following form [64]

J(θ) = ∑
n

[
f (xnoisy, θ)− xideal

]2 . (3.58)

This is the basic idea of the so-called Clifford data regression proposed in [64], whose
performance has been experimentally quantified based on the IBM quantum computer.

The main practical issue concerning Clifford data regression is that the mapping be-
tween the noisy and the ideal data would be different from f (xnoisy, θ) in practice,
since the quantum circuit used in actual computation is typically not a Clifford circuit
(otherwise there will not be any computational advantage compared to classical algo-
rithms, according to the Gottesman–Knill theorem). The authors of [64] have suggested
a potential solution to this issue, which essentially fits the Clifford circuit to the actual
computational circuit. Specifically, we may construct the Clifford circuit by replacing
the non-Clifford gates in the computational circuit by Clifford circuits that are close in
terms of certain distance metrics to the original gates, as portrayed in Fig. 3.6. To elab-
orate, we see that the T gate representing a 45-degree rotation around the Z-axis of the
Bloch sphere is replaced by the S gate, which represents a 90-degree rotation around
the Z-axis. Similarly, the Rz gate representing a −60-degree rotation around the Z-axis
is replaced by the S† gate, which represents a −90-degree rotation around the Z-axis.
Finally, the Ry gate representing a 60-degree rotation around the Y-axis, hence is ap-
proximated by the Hadamard gate representing a 90-degree rotation around the Y-axis.
These replacement gates are chosen from the set of Clifford gates by minimizing the so-
called “diamond distance” to the original gates [64]. Specifically, the diamond distance
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between two quantum operations A and B is defined as [48]

∥A− B∥♢ = max
ρ

∥(A⊗ I)ρ − (B ⊗ I)ρ∥1. (3.59)

The idea of training the refinement model f (xnoisy, θ) on the set of Clifford gates has
also been generalized in conjunction with channel inversion based QEM [120]. Simi-
lar to the original channel inversion based QEM, the method proposed in [120] inserts
some additional gates after each gate in the original computational circuit. The ad-
ditional gates are specifically chosen for minimizing a cost function similar to (3.58),
where the mapping f (xnoisy, θ) is implemented by these additional gates. In order to
simplify the learning process, one may apply Pauli twirling to each gate in the com-
putational circuit, which effectively turns the quantum channels associated with these
gates to Pauli channels. Consequently, the effective number of parameters to be esti-
mated is reduced, since in general a Pauli channel over n qubits has 4n − 1 free param-
eters [1], while the number of free parameters of a general quantum channel would be
on the order of O(16n) [1].

3.4 Algorithm-Level Quantum Error Mitigation

As discussed in Section 3.1.2, one of the main algorithm-level source of error is the
approximation error caused by the non-commutativity between Hamiltonian compo-
nents in Hamiltonian simulations. For example, the first-order Trotter approximation
given by [75]

ejτH =

(
K

∏
k=1

ejτ/NτHk

)Nτ

+ O(N−1
τ ), (3.60)

has an approximation error on the order of O(N−1
τ ). To mitigate this error, the authors

of [63] provided the key observation that upon denoting ϵ = 1/Nτ, (3.60) may be
rewritten as

ejτH =

(
K

∏
k=1

ejτϵHk

)1/ϵ

+ O(ϵ). (3.61)

Observe that ϵ may be viewed as the level of the error. This suggests that the zero-noise
extrapolation method introduced in Section 3.3.3 may be applied to extrapolate the ap-

proximated computational result
(

∏K
k=1 ejτϵHk

)1/ϵ
towards the ϵ → 0 limit. Specifi-

cally, given an observable O, we may consider the expansion

Tr {ρO} : = F(ϵ)

= F(0) +
K

∑
k=1

αkϵk + o(ϵK).
(3.62)
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In light of this, one may then use Richardson’s extrapolation method to obtain an es-
timate of the error-free result F(0), based on multiple measurement outcomes corre-
sponding to different ϵ, using the following inverse expansion [63]:

F̂(0) =
K

∑
k=0

µkF(ηkϵ0)

= F(0) + o(ϵK).

(3.63)

The manipulation of ϵ is straightforward, since it is simply the reciprocal of the number
of Trotter steps Nτ.

Another method mitigating the algorithmic error of Hamiltonian simulation is the
quantum circuit Monte Carlo [148], which is based on a “summation over unitaries”
decomposition of the time evolution operator exp(jτ/NτH) at a single time step τ/Nτ,
as follows

ejτ/NτH = ∑
s

csUs, (3.64)

where cs are coefficients, and Us are unitary operators. Note that there is a large degree
of freedom in choosing the specific form of the decomposition (3.64). A straightforward
choice is the Pauli decomposition given by

ejτ/NτH =
1
2n ∑

S(n)
i ∈Pn

Tr
{

S(n)
i ejτ/NτH

}
S(n)

i , (3.65)

where Pn denotes the Pauli group over n qubits. However, this is typically computa-
tionally inefficient, since the complexity of computing all the coefficients Tr

{
S(n)

i ejτ/NτH
}

would be prohibitive.

To construct a computationally efficient decomposition of exp(jτ/NτH), the authors of
[148] conceived a modification of the Trotterization method, termed as “Pauli operator
expansion”, which is based on the following decomposition

ejτ/NτH = TLVTR, (3.66)

where TL and TR are Trotterization operators in a similar product form as (3.60), while
V is a correction term. The Pauli operator expansion relies on a Taylor expansion of the
correction term V in the form of

V = I + jL+W , (3.67)

where I is the identity operator, L is the first-order term, and W denotes the higher
order term that will be neglected in the circuit implementation.

Geometrically, multiplying a quantum state by a certain operator may be viewed as
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FIGURE 3.7: Geometric interpretation of the Trotter approximation and the quantum
circuit Monte Carlo (QCMC) method.

“taking a step” in the state space, while a summation of operators may be viewed as av-
eraging the output states generated by multiple paths. Hence, as portrayed in Fig. 3.7,
the Trotter approximation in (3.60) may be viewed as approximating the exact state
evolution using a single path, since it is merely constituted by multiplications. By con-
trast, the Pauli operator expansion in (3.65) may be viewed as a weighted summation
over multiple paths (i.e., the “path integral” [149]), where the weights are determined
by the correction term V . The parlance “quantum circuit Monte Carlo” arises from the
fact that this weighted summation may be implemented by sampling the quantum cir-
cuits corresponding to the different evolution paths from a probabilistic distribution
determined by the weights, and taking the average of the outcomes [148].

To elaborate further, let us consider the second-order Pauli operator expansion having
the following form

ejτ/NτH = T1

(
− τ

2Nτ

)†

V2(τ/Nτ)T1

(
τ

2Nτ

)
, (3.68)

where S1(t) is the Trotterization operator defined as S1(t) = ∏K
k=1 ejtHk , while the cor-

rection term V2(τ/Nτ) is given by

V2(t) = I +
(
F (3)

2 (t) +F (5)
2 (t)

)

︸ ︷︷ ︸
First−order terms

+W2(t), (3.69)

with F (k)
2 having a complex form given as (39) in [148]. Comparing the second-order

Trotterization (3.8) with the second-order Pauli operator expansion (3.68), we see that
their only difference resides in the correction term V2(τ/Nτ). However, the second-
order Pauli operator expansion has an algorithmic error on the order of O(N−6

τ ), which
is substantially lower than the O(N−2

τ ) error scaling of the second-order Trotterization.
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This implies that the correction term V2(τ/Nτ) serves as an efficient algorithm-level
error mitigator.

Besides the Trotterization error, another common source of algorithm-level error is the
probabilisitc sampling error due to the probabilistic nature of quantum algorithms, as
have been discussed in Section 3.1.2. Intuitively, quantum algorithms correspond to
unitary operators, which may be viewed as rotations in the space of quantum states.
Sampling errors would thus occur when the rotations do not finish at computational
basis states. This is common when the depth of the circuit is unknown before the com-
putation, as seen in quantum search algorithms [13–15], or the unknown parameter is
not an integer multiple of the number of computational basis states, as seen in quan-
tum phase estimation [91, 150, 151]. For quantum search algorithms, this issue is typ-
ically addressed by executing the same algorithm for multiple times, but gradually
increasing the search range after each execution [14]. For quantum phase estimation,
the algorithm-level error may be interpreted as a quantum version of the “spectral leak-
age” problem in classical signal processing, which will be discussed in more detail in
Chapter 8.
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Chapter 4

Channel-Inversion Based QEM:
Sampling Overhead Analysis

As discussed in Section 3.3.1.2, applying CI-QEM would incur a computational over-
head, namely the sampling overhead. It originates from the fact that the “inverse chan-
nel” is typically not CPTP, unless the original channel is of unitary nature, and hence
it does not impose decoherence [37, 38]. Consequently, CI-QEM leads to an increased
variance in the final computational result, hence additional measurements are required
at the output quantum state for achieving a satisfactory accuracy. In this chapter, we
provide a comprehensive analysis of the sampling overhead of CI-QEM.

From a broader perspective, the sampling overhead has a profound relationship with
the computational complexity theory. In effect, increasing the number of measurements
will slow down the computation process. As the depth of the quantum circuit grows,
the sampling overhead may accumulate dramatically. Ultimately, the benefit of quan-
tum speedup will be neutralized for computation tasks that require extremely long
coherence time. In its essence, CI-QEM may be viewed as an emulation of error-free
quantum circuits with the aid of realistic quantum circuits degraded by decoherence.
Since decoherence is widely recognized to perturb the quantum states (i.e., would ulti-
mately turn quantum states into classical states), the sampling overhead may be viewed
as a complexity penalty, when emulating quantum computers using “semi-classical”
devices corresponding to the noisy quantum circuits.

In general, the sampling overhead required depends on the channel characteristics.
Naturally, a fundamental question concerning the practicality of CI-QEM is: “Can we
predict and control the sampling overhead given a limited number of channel param-
eters?” In this chapter, we investigate this deep-rooted research question from both
theoretical and practical perspectives. We first introduce the notion of the so-called
SOF for characterizing the sampling overhead incurred by a quantum channel, and
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then provide a comprehensive analysis of the SOF of general CPTP channels. Finally,
we discuss potential techniques of reducing the SOF of quantum channels.

The rest of this chapter is organized as follows. In Section 4.1, we define some qual-
ity metrics of quantum channels, which will be applied extensively in the subsequent
sampling overhead analysis. Based on this formulation, we analyse the SOF of uncoded
quantum gates in Section 4.2. In Section 4.3, we conceive and analyse the amalgam of
CI-QEM and QECCs as well as QEDCs, which will be referred to as the QECC-CI-QEM
and QEDC-CI-QEM schemes, respectively. The accuracy of the analytical results is then
verified by numerical simulations in Section 4.4. Finally, we conclude in Section 4.5.

4.1 Quality Metrics of Quantum Channels

A key quality indicator of a quantum channel is its average fidelity. As the terminology
“average fidelity” suggests, it is the fidelity between the input and the output states,
integrated over the space of all legitimate input states. Formally, the average fidelity of
a quantum channel C is defined as [152]

F̄(C) =
∫

⟨ψ| C(|ψ⟩⟨ψ|) |ψ⟩ d|ψ⟩ , (4.1)

where the integral is taken over the Haar measure on the state space. This integral for-
mula can be substantially simplified, when we have an orthonormal basis spanning the
state space. Specifically, assume that the unitary operators {Uj/

√
d} (where d denotes

the dimensionality of the state space) constitute an orthonormal basis of the state space,
it has been shown in [152] that the average fidelity can be expressed as

F̄(C) =
∑j Tr

{
U†

j C(Uj)
}
+ d2

d2(d + 1)
. (4.2)

Using the Pauli transfer matrix representation, we have the following closed-form ex-
pression for the average fidelity of C.

Proposition 4.1. Given the Pauli transfer matrix C of the quantum channel C, the average
fidelity of C can be written in closed form as

F̄(C) = Tr{C}+ 2n

4n + 2n , (4.3)

where n is the number of qubits that C acts upon.

Proof. Under the Pauli transfer matrix representation, a natural choice for the unitary
operators Uj in (4.2) is constituted by the Pauli operators, namely Uj = Sj. Thus (4.2)
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may now be rewritten as

F̄(C) = ∑4n

j=1 Tr
{

SjC(Sj)
}
+ 4n

4n(2n + 1)
, (4.4)

where we used the fact that S†
i = Si holds for Pauli operators Si. According to the

definition of the PTM (2.17), we have

Tr {C} =
1
2n

4n

∑
j=1

Tr
{

SjC(Sj)
}

, (4.5)

and hence

F̄(C) = 2nTr {C}+ 4n

2n(4n + 2n)

=
Tr{C}+ 2n

4n + 2n ,
(4.6)

which completes the proof.

In general, F̄(C) satisfies 0 ≤ F̄(C) ≤ 1, and 1− F̄(C) is often referred to as the “average
infidelity” of C [152].

For Pauli channels, another important quality metric is the gate error probability (GEP),
namely the probability that the output state does not coincide with the input state. For
example, for the following channel

C(ρ) = (1 − p)ρ +
p
3

SX ρSX +
p
3

SYρSY +
p
3

SZρSZ , (4.7)

the GEP is p. Many important results on quantum coding, including the threshold
theorem, are based on GEP.

A somewhat perplexing issue is that the GEP is inconsistent with the average fidelity.
More precisely, for a Pauli channel C, we have F̄(C) ̸= 1 − GEP. To avoid the difficulty
of using two different metrics for Pauli and non-Pauli channels, in this chapter, we
introduce a generalization of the GEP, which will be referred to as the GGEP hereafter.
Specifically, we define the GGEP of channel C as

ϵ(C) = 1 − 1
4n Tr{C}. (4.8)

As a channel quality metric, GGEP has the following advantages.

1. When C is a Pauli channel, the GGEP degenerates to the conventional GEP, which
is p in (4.7).
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2. For a general channel C, which is not necessarily a Pauli channel, the GGEP is
proportional to the average infidelity of C, in the sense that

ϵ(C) =
(

1 +
2n

4n

)
[1 − F̄(C)]. (4.9)

Thus an operation preserving the average fidelity would also preserve the GGEP.

4.2 Sampling Overhead Factor Analysis for Uncoded Quantum
Gates

In this section, we investigate the SOF of quantum gates that are not protected by quan-
tum codes. This will also lay the foundation for the analysis of coded quantum gates in
Section 4.3.

The SOF, in essence, may also be viewed as a specific characteristic of the representa-
tion of a quantum channel under a specific basis, as implied by (3.31) and (3.36). Hence,
the particular choice of basis will certainly have an impact on it. Considering realistic
restrictions and aiming for simplifying our analysis, we make the following assump-
tions concerning the choices of basis.

1. The basis vectors should correspond to legitimate quantum operations in order to
be implementable. Formally, we assume that the basis vectors are the vectorized
Pauli transfer matrices of completely positive trace-nonincreasing (CPTnI) opera-
tors, for which the operation components of (2.12) satisfy

∑
i

K†
i Ki ≼ I. (4.10)

This includes perfect gates (unitary operators), imperfect gates (CPTP operators),
and measurements (trace-decreasing operators).

2. We assume that the basis always includes all vectorized Pauli operators. This is
not very restrictive for most existing quantum computers, since Pauli gates are
one of their most fundamental building blocks.

The other (potentially more important) factor influencing the SOF is the quantum chan-
nel itself. Various channel models have been proposed in the literature, such as depolar-
izing channels, phase damping channels, amplitude damping channels, etc. [38,44,153].
To maintain the generality of our treatment, we do not explicitly consider a specific
channel model, but rather a general CPTP channel.
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FIGURE 4.1: Geometric interpretation of the coherent–triangular decomposition of a
signle-qubit CPTP channel on the Bloch sphere, detailed in Lemma 4.2. For better

illustration, we only plot a cross-section of the Bloch sphere.

4.2.1 Coherent–Triangular Decomposition of Memoryless CPTP channels

Without loss of generality, we assume that

Assumption 1. The first row and the first column in a Pauli transfer matrix corresponds
to the identity operator I⊗n in the n-qubit Pauli group.

Note that for a valid density matrix ρ, the condition Tr{ρ} = 1 is always satisfied. Ac-
cording to Assumption 1, this implies that for the corresponding vector representation
x, we have

x =
1√
2n

[1, x̃T]T, (4.11)

where x̃ ∈ R4n−1, according to (2.18). The dimensionality of x is 4n, because the number
of Pauli operators over n qubits is 4n. Thus for any trace-preserving channel, we have

C =

[
1 0T

b C̃

]
, (4.12)

which amounts to the following result

Cx =
1√
2n

[1, C̃x̃ + b]T. (4.13)

It can now be seen from (4.11), (4.12) and (4.13) that a CPTP channel can be viewed as an
affine transformation in the (4n − 1)-dimensional space spanned by the Pauli operators
excluding the identity. In this regard, we have the following result for single-qubit
channels, whose geometric interpretation is demonstrated in Fig. 4.1.
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Lemma 4.2. Any single-qubit CPTP channel can be expressed as the composition of (up to)
two coherent channels1 and a triangular channel, meaning that

C = UDVT

=

[
1 0T

0 Ũ

] [
1 0T

ŨTb D̃

] [
1 0T

0 Ṽ

]T

,
(4.14)

where Ũ and Ṽ are a pair of unitary matrices, and D̃ is a diagonal matrix. The matrix D corre-
sponds to the triangular channel, while the matrices U and V represent the coherent channels.

Proof. Consider the singular value decomposition of C̃ given by

C̃ = ŨD̃ṼT. (4.15)

From (4.12) we obtain directly that D is a triangular channel, and hence it now suffices
to show that both U and V can be implemented by unitary gates. Since the entries
of Pauli transfer matrices are all real numbers [107], the matrices Ũ and Ṽ are both
3 × 3 orthogonal matrices, corresponding to the three-dimensional rotations around
the Bloch sphere belonging to the special orthogonal group SO(3). They can be im-
plemented by single-qubit unitary gates belonging to SU(2) due to the SO(3)-SU(2)
homomorphism.

Compared to the triangular component, the coherent component of a CPTP channel
might be easier to deal with, since their effect may be compensated by using unitary
gates. This implies that if the unitary gates designed for the compensation are error-
free, the effect of coherent channels may be reversed without any sampling overhead.
By contrast, the triangular component may have to be compensated by using proba-
bilistic gates, hence imposes overhead.

It is known that Lemma 4.2 does not hold for general multi-qubit channels [154]. Nev-
ertheless, it is applicable to the case where the channel C is memoryless, hence it can be
described by the tensor product of single-qubit channels. To see this, we may rewrite a
memoryless channel as C = C1 ⊗ C2 ⊗ . . . ⊗ Cn, and for each Ci we have Ci = UiDiVT

i .
This further implies that

C =

(
n⊗

i=1

Ui

)(
n⊗

i=1

Di

)(
n⊗

i=1

Vi

)T

.

Observe that both
⊗n

i=1 Ui and
⊗n

i=1 Vi correspond to practically implementable single-
qubit gates. Since the Kronecker product preserves the triangular structure, we see that
⊗n

i=1 Di also represents a triangular channel.

1The term “coherent channels” refers to the channels having unitary matrix representations and them-
selves can be implemented using (error-free) unitary gates.
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4.2.2 Analysis on Triangular Channels

According to the discussions in Section 4.2.1, we are particularly interested in the quasi-
probability representation of triangular channels, whose Pauli transfer matrices take
the same form as the matrix D in (4.14). More precisely, we define triangular channels
as CPTP quantum channels whose Pauli transfer matrix can be written as follows

D =

[
1 0T

b L

]
, (4.16)

where L is a lower triangular matrix. This includes both amplitude damping channels
and Pauli channels as representative examples. For example, a single-qubit amplitude
damping channel having decay probability p has the following Pauli transfer matrix




1 0 0 0
0
√

1 − p 0 0
0 0

√
1 − p 0

p 0 0 1 − p




,

where the rows/columns are ordered for ensuring that they correspond to the Pauli-I,
X, Y, and Z operators, respectively. Observe that the matrix does have a triangular struc-
ture, which is preserved under the permutation of the Pauli-X, Y, and Z operators. As a
direct corollary, for a multi-qubit channel inflicting amplitude damping independently
on each qubit, the Pauli transfer matrix is triangular, since the triangular structure is
preserved under the Kronecker product.

For a fair comparison, we consider channels having the same GGEP ϵ, meaning that
D ∈ Cn(ϵ), where we have:

Cn(ϵ) = {D ∈ Cn| 4−nTr{D} = 1 − ϵ
}

, (4.17)

and Cn denotes the set of Pauli transfer matrices of all CPTP triangular channels over n
qubits. A noteworthy fact is that D is a lower-triangular matrix, which will be exploited
in our forthcoming discussions.

In the following proposition, we will show that regardless of the specific choice of the
basis B, Pauli channels have the lowest SOF among all triangular CPTP channels. The
Pauli channels are defined as channels that transform one Pauli matrix into another.
Based on (2.17), this implies that the corresponding Pauli transfer matrices are diagonal
matrices.

Proposition 4.3 (Pauli channels have the lowest SOF). Given a fixed GGEP ϵ, for any
full-rank basis matrix B consisting of vectorized Pauli transfer matrix representation of CPTnI
operators, among all CPTP channels over n qubits whose Pauli transfer matrix representation
is a triangular matrix, Pauli channels have the lowest SOF.
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Proof. Please refer to Appendix A.1.

Remark 4.4. We note that there is some empirical evidence supporting that projecting a
quantum channel onto the set of Pauli channels might help in reducing the sampling
overhead [38]. Here we formally show that this is indeed true, and it is true for all
channels having triangular Pauli transfer matrices, namely for the family of triangular
channels.

Next, we consider some notational simplifications for a further investigation in the con-
text of Pauli channels. First of all, since the Pauli transfer matrices of Pauli channels are
diagonal (as exemplified by (3.38)), we may rewrite the vector representation of a Pauli
transfer matrix (or that of its inverse) in a reduced-dimensional manner. Specifically,
we could represent the Pauli transfer matrix of a Pauli channel using merely the vector
on its main diagonal, i.e. d = vec{mdiag{D}}. Hence we have Dx = d ◦ x.

Additionally, the 16n × 16n basis matrix B can be reduced to B̃ ∈ R4n×4n
for Pauli

channels. In light of this, we have

µD = vec{mdiag{B̃−1(1/d)}}. (4.18)

For simplicity, we introduce the further notation of

µ̃D = B̃−1(1/d). (4.19)

Note that each column in B̃ represents the vectorized Pauli transfer matrix of a specific
Pauli operator (as a quantum channel). According to the definitions of the Pauli op-
erators and (2.17), under the computational basis, the vectorized Pauli transfer matrix
representation of single-qubit Pauli operators can be expressed as

sI = [1 1 1 1]T,

sX = [1 1 − 1 − 1]T,

sY = [1 − 1 1 − 1]T,

sZ = [1 − 1 − 1 1]T,

(4.20)

respectively. In this case, it can be seen that the corresponding simplified basis matrix
of

B̃1 = [sI sX sY sZ ]

has the form of the Hadamard transform matrix. In general, Pauli operators over n
qubits can be expressed as the tensor product of n single-qubit Pauli operators, hence
the corresponding B̃ takes the form of

B̃ = (B̃1)
⊗n,
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which is simply a Hadamard transform matrix of higher dimensionality, where B̃1

denotes the matrix B̃ for single-qubit systems.

By exploiting the properties of the Hadamard transform, we are now able to obtain the
following result.

Proposition 4.5 (Depolarizing channels have the lowest SOF). Among all Pauli channels
over n qubits having the GGEP ϵ, depolarizing channels have the lowest SOF.

Proof. Please refer to Appendix A.2.

According to Proposition 4.5, depolarizing channels lend themselves most readily to
be compensated by CI-QEM. This means that the CI-QEM method has a strikingly
different nature compared to the family of quantum error correction schemes in terms
of the overhead imposed, since depolarizing channels may be viewed as the channels
most impervious for QECCs. To elaborate, depolarizing channels exhibit the lowest
hashing bound among all Pauli channels, hence they would require the highest qubit
overhead2 for QECCs [48].

4.2.3 Bounding the SOF of Pauli Channels

In Section 4.2.2 we have shown that Pauli channels are preferable for CI-QEM in the
sense that they have the lowest SOF. In this subsection, we proceed by further investi-
gating Pauli channels and bound their SOF for a given GGEP ϵ. First of all, by explicitly
calculating the SOF of depolarizing channels, we can readily obtain a lower bound on
the SOF of triangular channels (hence also on Pauli channels), as stated below.

Corollary 4.6 (SOF lower bound). For an triangular channel C having the GGEP ϵ, the SOF
incurred by CI-QEM is bounded from below as

γC ≥ 4ϵ · 1
(1 − ϵ)2 . (4.21)

The lower bound is attained, when C is a depolarizing channel.

Proof. According to Proposition 4.5, it is clear that the channel having the lowest SOF
among all N-qubit triangular channels is the N-qubit depolarizing channel. The SOF
of this channel is given by

γ =
∥∥∥H−1

N (1/ (HNdN))
∥∥∥

2

1
− 1 (4.22a)

=

(
(4N − 1)(1 − 2ϵ)− ϵ

4N(1 − ϵ)− 1

)2

− 1. (4.22b)

2Given a fixed GEP.
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where HN and H−1
N are the Hadamard transform matrix and the inverse Hadamard

transform matrix having dimensionality of 16N × 16N , respectively, and we have dN =

[1 − ϵ ϵ(4N − 1)−11T]. It is straightforward to verify that the right hand side of (4.22b)
is a monotonically decreasing function of N, thus

γ ≤ lim
N→∞

(
(4N − 1)(1 − 2ϵ)− ϵ

4N(1 − ϵ)− 1

)2

− 1 (4.23a)

=
4ϵ

(1 − ϵ)2 . (4.23b)

Hence the proof is completed.

Let us now derive an upper bound on the SOF of Pauli channels. For this purpose, we
consider a matrix representation specifically designed for Pauli channels, which will be
referred to as the Pauli random walk (PRW) representation hereafter. More precisely, a
Pauli channel C over n qubits can be represented by a matrix CPRW having the following
form:

[CPRW]i,j =
1
2n Tr{PiCPj}. (4.24)

Conventionally, an n-qubit Pauli channel C can be characterized using a vector ηC sat-
isfying

C(ρ) =
4n

∑
i=1

[ηC ]iS
(n)
i ρ

(
S(n)

i

)†
. (4.25)

We will refer to ηC as the probability vector of C in the rest of this paper. For examples
of ηC values corresponding to some simple channel models, please refer to Appendix
B.1. In light of (4.25), the PRW representation can be expressed as a function of ηC as
follows

[CPRW(ηC)]i,j = [ηC ]l ,

PiPj = Pl .

To gain further insights into the PRW representation, we will rely on a weighted Cayley
graph [155] G of Pauli groups, in which the i-th vertex represents the i-th operator in
Pn. For a specific channel C, a pair of nodes i and j in the Cayley graph are connected
with an edge having a weight of [ηC ]l , if we have PiPj = Pl . As a tangible example,
the graph G corresponding to the single-qubit Pauli group is portrayed in Fig. 4.2. The
function σ(O) denotes the index of the operator O in P , where we have σ(X ) = 2,
σ(Y) = 3, and σ(Z) = 4. For a fixed GGEP ϵ, we can rewrite CPRW(ηC) as

CPRW(ηC) = (1 − ϵ)I + A(G , ηC), (4.26)
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Figure 1: The weighted Cayley graph G of the single-qubit Pauli group P
constructed based on channel C. The vertices represent the four operators in
P. The quantities next to the edges represent the corresponding edge weights.

1

FIGURE 4.2: The weighted Cayley graph G of the single-qubit Pauli group P con-
structed based on channel C. The vertices represent the four operators in P . The

quantities next to the edges represent the corresponding edge weights.

where A(G , ηC) is the weighted adjacency matrix of the graph G corresponding to the
channel C, which satisfies

[A(G , ηC)]i,j =

{
[ηC ]l , i ̸= j, PiPj = Pl ;
0, i = j.

(4.27)

Whenever there is no confusion, we will simply denote CPRW(ηC) as C, and A(G , ηC)

as A.

It can be observed from (4.27) that the channel C may be interpreted as a random walk
over the graph G , which maps an input state |ψ⟩⟨ψ| to Pi|ψ⟩⟨ψ| with probability ηi.
The goal of the quasi-probability representation method is to find another operator
that reverses the random walk process. Specifically, (3.31) can be simplified as follows

µ̃C = C−1α, (4.28)

where α = [1 0T
4n−1]

T, and µ̃C is obtained by extracting the 4n entries corresponding to
Pauli operators from µC in (3.31).

With the aid of PRW representation, we are now ready to present the following SOF
upper bound for Pauli channels.

Proposition 4.7 (SOF upper bound). For an n-qubit Pauli channel C, given a GGEP ϵ, the
SOF can be upper bounded as

γC ≤ 4ϵ · 1 − ϵ

(1 − 2ϵ)2 . (4.29)

The equality is attained when there is only a single type of error, namely there is only one non-
zero entry in ηC .
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Proof. Please refer to Appendix A.3.

Note that Pauli channels having only a single type of error correspond to the highest
hashing bound, when mitigated by QECCs. Therefore, by considering both Corollary
4.6 and Proposition 4.7, one may intuitively conjecture that for Pauli channels having
the same GGEP, the SOF increases as the hashing bound increases. The hashing bound
of a Pauli channel C can be expressed as [156–158]

Rhashing = 1 − H(ηC), (4.30)

where Rhashing is the highest affordable coding rate capable of satisfying the hashing
bound, and H(ηC) denotes the entropy of ηC viewed as a probability distribution.
Mathematically, the entropy H(ηC) is a Schur-concave function [159, Section 2.1] with
respect to the probability distribution ηC . To elaborate, a Schur-concave function f (x)
is characterized by

f (x) ≤ f (Qx),

for any doubly stochastic matrix Q. This implies that doubly stochastic transforma-
tions on ηC would lead to the increase of entropy [160]. The term Rhashing in (4.30) can
be seen to have the exactly opposite property termed as Schur-convex [159, Section
2.1], hence the aforementioned conjecture can be formulated as follows: “the SOF is a
Schur-convex function with respect to the probability vector ηC”.

Next we show that the conjecture is correct, when the channels under consideration are
memoryless channels, in the sense that they can be described by the tensor product of
single-qubit channels.

Proposition 4.8. For any n-qubit memoryless Pauli channel C =
⊗n

i=1 Ci, given a fixed GGEP
ϵ, the SOF is a Schur-convex function of ηC , meaning that

∥µ(ηC)∥1 ≥
∥∥∥∥∥µ

(
n⊗

i=1

QiηCi

)∥∥∥∥∥
1

(4.31)

holds for all doubly-stochastic matrices Qi preserving the GGEP, where µ(x) denotes the quasi-
probability representation vector of the Pauli channel having the probability vector of x.

Proof. Please refer to Appendix A.4.

4.2.4 SOF Reduction Using Quantum Channel Precoders: Practical Consid-
erations

Our previous analysis indicates that depolarizing channels are the most preferable
channels in terms of having the lowest SOF. This implies that Clifford twirling [126,
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FIGURE 4.3: Clifford twirling.

161, 162], a technique that turns an arbitrary channel into a depolarizing channel while
preserving the original average fidelity, might be a quantum channel precoder enabling
effective SOF reduction. Specifically, given a quantum channel C over n qubits, the Clif-
ford twirling TC transforms the channel such that the output state satisfies

TC [C(ρ)] = ∑ U†C(UρU†)U, (4.32)

where the summation is carried out over the Clifford group on n qubits. Conceptually,
the Clifford twirling over two-qubit channels can be implemented as demonstrated in
Fig. 4.3, where the gates comprising the circuits U and U † are chosen according to a
uniform distribution over the set of Clifford gates.

In practice, however, the gates used for implementing Clifford twirling might be imper-
fect themselves. In light of this, a real-world Clifford twirling would in general impose
an average fidelity reduction, and thus lead to additional SOF. For certain channels, the
theoretical SOF reduction of Clifford twirling may be outweighed by this additional
overhead. A representative example is constituted by the family of Pauli channels,
whose SOF is rather close to that of depolarizing channels, according to Proposition
4.7.

The observation that the Pauli channels have similar SOFs implies that Pauli twirling
TP might be a more practical quantum channel precoder, which turns an arbitrary
channel into a Pauli channel in the following manner [125]

TP [C(ρ)] = 1
4n

4n

∑
i=1

S†
i C(SiρS†

i )Si. (4.33)

The implementation of Pauli twirling is portrayed in Fig. 4.4, where gates A, B, C and
D are chosen according to a uniform distribution on the set of Pauli gates. In state-of-
the-art quantum computers, two-qubit gates, as used in the Clifford twirling shown in
Fig. 4.3, would result in much more error than single-qubit gates (typically by a factor
of 10 or even higher [163]), hence Pauli twirling using single-qubit gates may introduce
much lower additional SOF than Clifford twirling.

In practice, we cannot directly implement twirling at both sides of the channel. Instead,
we have to twirl simultaneously both the perfect gate and the channel. Therefore, the
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FIGURE 4.4: Pauli twirling.

techniques should be slightly modified in order to effectively apply the twirling to the
channel. Specifically, if we wish to apply Pauli twirling to a channel C associated with
an imperfect gate G̃ = C ◦ G where G denotes the perfect gate, we may apply the fol-
lowing modified twirling to G̃

T̃P [G̃(ρ)] = 1
4n

4n

∑
i=1

S†
i G̃[(G†SiG)ρ(G†SiG)†]Si

=
1
4n

4n

∑
i=1

S†
i C[SiGρG†S†

i ]Si

= [TP(C) ◦ G](ρ).

A similar procedure can also be applied to Clifford twirling. We note that the oper-
ation (G†SiG)ρ(G†SiG)† can be simplified to SmρS†

m for some m, if the perfect gate G
is a Clifford gate, since the Clifford group Cn is the normalizer of the Pauli group Pn

satisfying Cn = {U ∈ U(2n)|UPnU† = Pn}.

4.3 Sampling Overhead Factor Analysis for Coded Quantum
Gates

In this section, we investigate the SOF of gates protected by quantum channel codes,
including QECCs and QEDCs. These codes are designed to convert the original channel
corresponding to the unprotected gate into an reduced-error-rate channel over more
qubits, with the objective of having lower GGEP. Under the framework of CI-QEM,
they can also be viewed as channel precoders. Naturally, it is of great interest to us,
whether an amalgam of quantum codes and CI-QEM can benefit each other.

Specifically, we consider the scenario where every set of k logical qubits is protected
using n physical qubits. Using the terminology of quantum coding, this means that we
consider [[n, k, d]] codes, where d is the minimum distance of the code [26]. Further-
more, if not otherwise stated, we assume that Clifford gates are considered using the
transversal gate scheme of [44], while non-Clifford gates are implemented via the magic
state distillation process of [164]. These are conventional assumptions in the quantum
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FIGURE 4.5: Conceptual schematic of a CI-QEM-protected uncoded Hadamard gate.
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FIGURE 4.6: Conceptual schematic of a CI-QEM-protected coded Hadamard gate.

fault-tolerant computing literature [48, Section 10.6]. Furthermore, for the conciseness
of discussion, we assume that the quantum channels encountered in this section are all
Pauli channels, or had been turned into Pauli channels by means of Pauli twirling.

4.3.1 Amalgamating Quantum Codes with CI-QEM: A Toy Example

To elaborate further on how CI-QEM may be amalgamated with quantum codes, we
consider the simple example of protecting a single Hadamard gate. As shown in Fig.
4.5, an uncoded imperfect Hadamard gate can be decomposed into a perfect Hadamard
gate H and a quantum channel CH. Given that the channel CH is known, we can apply
the CI-QEM circuit MH to invert it. By contrast, in the coded scheme, the logical qubit
is protected using an encoder V exploiting n physical qubits at the input of the circuit,
as portrayed in Fig. 4.6. In the code space, the original input state |ψ⟩ is expressed
as the coded state |ψ̄⟩, while the coded Hadamard gate may be decomposed into an
equivalent perfect Hadamard gate H′ and another quantum channel C ′

H. Consequently,
the CI-QEM circuit M′

H has to be designed for the transformed channel C ′
H. More

specifically, the Hadamard gate protected using the transversal gate configuration is
depicted in more detail in Fig. 4.7. The equivalent Hadamard gate is implemented
simply by n transversal Hadamard gates. As a result, each physical qubit experiences
the same channel CH. Right after the transversal gates, with the help of m ancillae,
the integrity of the output state is examined by the stabilizer check S . The subsequent
recovery circuit R is capable of correcting a fixed number of Pauli errors, depending
on the minimum distance of the code. For example, if Steane’s codes is applied, R
can correct any single Pauli error that appeared within the circuit. The transversal
gates along with the stabilizer check and the recovery circuit constitute the transformed
channel C ′

H.

Ideally, since S and R are able to correct errors, the transformed channel C ′
H might

have a lower GGEP than the original channel CH. However, this might not be true in
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FIGURE 4.7: Detailed schematic of a CI-QEM-protected coded Hadamard gate relying
on the transversal gate configuration.

practice, because S and R themselves are also prone to errors. Intuitively, assuming
that the GGEP of each gate in the circuit is at most ϵ, as ϵ tends to zero, the GGEP of C ′

H

is at most on the order of O(ϵ2), since all single errors are corrected. Therefore, quantum
codes are capable of reducing the channel GGEP, provided that ϵ is sufficiently small.
Specifically, the value of physical gate GGEP ϵth, below which quantum codes become
beneficial, is referred to as the fault-tolerance threshold [165].

In general, given a quantum code, the logical gate GGEP would be higher than the
physical gate GGEP, when the physical gate GGEP is relatively high. As the physi-
cal gate GGEP decreases, it gradually becomes higher than the logical gate GGEP, as
sketched in Fig. 4.8 and detailed in [51, Section VI-B]. The physical gate GGEP corre-
sponding to the cross-over point of the two curves is the fault-tolerance threshold of
the quantum code. We will refer to the region where the quantum code is beneficial, in
the sense that the logical gate GGEP is lower than the physical gate GGEP, as the error-
resilient region, while the opposite region will be referred to as the error-proliferating
region.

In the following subsections, we will first analyse the SOF of coded gates when the
code is operating in its error-proliferation region, followed by the opposite scenario.

4.3.2 Quantum Codes Operating in Their Error-Proliferating Regions

Using our previous results on uncoded gates in Section 4.2.3, it may be readily shown
that quantum codes operating in their error-proliferating regions may not lead to sub-
stantial SOF reduction. Formally, we have the following result.
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FIGURE 4.8: Illustration of the fault-tolerance threshold, the error-proliferating region
and the error-resilient region of quantum codes.

Corollary 4.9. For an uncoded gate having a GGEP of ϵ and SOF γ, the SOF is lower-
bounded by γ · (1−2ϵ)2

(1−ϵ)3 , when the gate is protected by some quantum code operating in its error-
proliferating region. Furthermore, provided that the channel corresponding to the uncoded gate
is a depolarizing channel, the lower bound can be further refined to γ · (3−4ϵ)2

3(1−ϵ)2(3−ϵ)
.

Proof. This is a direct corollary following from Corollary 4.6 and Proposition 4.7. To
elaborate a little further, considering the extreme case where the threshold is met ex-
actly so that the output GGEP of the quantum code is equal to ϵ, the generic lower
bound is obtained in the form of:

γ · 1
(1 − ϵ)2 · (1 − 2ϵ)2

1 − ϵ
= γ · (1 − 2ϵ)2

(1 − ϵ)3 (4.34)

using (4.21) and (4.29). The lower-bound valid for depolarizing channels is obtained as

γ ·
4ϵ 1

(1−ϵ)2

(
(4−1)(1−2ϵ)−ϵ

4(1−ϵ)−1

)2
− 1

= γ · (3 − 4ϵ)2

3(1 − ϵ)2(3 − ϵ)
(4.35)

using (4.21) and (4.22b), and by further exploiting the fact that single-qubit depolariz-
ing channels have the highest SOF among all depolarizing channels sharing the same
GGEP.

To demonstrate the implications of Corollary 4.9 more explicitly, we plot the lower
bounds in Fig. 4.9. Since the fault-tolerance thresholds of most QECCs are as low as
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FIGURE 4.9: Lower bounds of the output-to-input SOF ratio for quantum codes oper-
ating in their error-proliferating regions.

10−2 ∼ 10−3, as it can be observed from Fig. 4.9, even when the GGEP meets the
threshold exactly, the quantum codes can only offer an overhead reduction of at most
1%. Therefore, amalgamating CI-QEM with codes operating in their error-proliferating
regions may not be mutually beneficial.

4.3.3 QECCs Operating in Their Error-Resilient Regions

In light of our previous discussions, it becomes plausible that QECCs operating in their
error-resilient regions may contribute to SOF reduction by reducing the gate error prob-
ability. As is known in the literature [48, Section 10.6.1], their error-correcting capability
can be further improved via concatenation. However, the price of concatenating codes
is a drastic increase in the qubit overhead. It is thus interesting to investigate whether
the amalgamation of QECC and CI-QEM would outperform pure concatenated QECCs,
and if so, in what scenarios.

To elaborate, we consider the simple example of transversal Hadamard gates protected
by a rate 1/3 repetition code, as portrayed in Fig. 4.10 and detailed in [51]. By con-
catenating the repetition code twice, the number of physical qubits protecting a single
logical qubit become three times that of the non-concatenated code. By contrast, if we
amalgamate the rate 1/3 code with CI-QEM, the additional qubits can be used to par-
allelize the computation, leading to a computational acceleration by a factor of three.
In this sense, the QECC-CI-QEM scheme outperform the concatenated scheme, when
the SOF of CI-QEM obeys γC ≤ 2.
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FIGURE 4.10: Comparison between the concatenated QECC scheme (the left figure)
and the QECC-CI-QEM scheme (the right figure) protecting transversal Hadamard
gates using the rate 1/3 repetition code. In the example, the QECC-CI-QEM scheme

runs three times as fast as the concatenation scheme.

As the number of gates in a circuit increases, the CI-QEM sampling overhead grows
exponentially (as indicated by (3.37)), while the qubit overhead of the concatenated
scheme remains constant. Therefore, there would be a critical point where the overall
CI-QEM sampling overhead escalation starts to outweigh the parallelization speedup
benefits. This may be interpreted as a limitation imposed on the circuit size, beyond
which full fault-tolerance becomes necessary. Next we provide an estimate of the criti-
cal point, given that the gate error probability is sufficiently low.

Proposition 4.10 (Lower bound on the critical point). Consider a quantum circuit in which
each gate has a GGEP at most ϵ. If the gates are protected using l-stage concatenated (i.e.,
concatenated l times) [[n, k, d]] QECC operating in its error-resilient region via the transversal
gate configuration, amalgamating the code with CI-QEM is more preferable than applying the
(l + 1)-stage concatenated code, when the number of gates Nl satisfies

Nl ≤
ln n

ln(1 + 4 f (l)(ϵ))− ln[1 + 4 f (l+1)(ϵ)]
(4.36a)

≈ 1
f (l)(ϵ)− f (l+1)(ϵ)

· ln n
4

(4.36b)

when ϵ ≪ 1, and f (ϵ) is the output GGEP of the single-stage [[n, k, d]] code given the input
GGEP ϵ, and f (l)(ϵ) denotes the l-times self-composition of function f (ϵ), as exemplified by
f (2)(ϵ) = f [ f (ϵ)].

Proof. For a circuit in which every gate is protected using l-stage concatenated [[n, k, d]]
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QECCs, the total computational overhead (including both the CI-QEM overhead and
qubit overhead) γ̃l can be bounded as

γ̃l ≤ nl(1 + γl)
N , (4.37)

where γl denotes the highest SOF of a single logical gate in the circuit, and N is the
total number of gates. Hence the critical point Nl between l-stage concatenation and
(l + 1)-stage concatenation satisfies

(1 + γl)
Nl = n(1 + γl+1)

Nl . (4.38)

According to Corollary 4.6 and Propostion 4.7, when ϵ ≪ 1, the upper and lower
bounds for the SOF of a single gate tend to be equal. Thus the SOF of each uncoded gate
can be upper bounded by γ ≤ 4ϵ. For l-stage concatenated codes, we have γl ≤ 4 f ◦l(ϵ).
Therefore we obtain

Nl ≤
ln n

ln(1 + 4 f (l)(ϵ))− ln[1 + 4 f (l+1)(ϵ)]
. (4.39)

Additionally, using the Maclaurin approximation of ln(1 + x) ≈ x when x > 0 is suffi-
ciently small, we obtain (4.36b). Hence the proof is completed.

Remark 4.11. As a special case, the pure CI-QEM (i.e., l = 0) is more preferable than
amalgamating a single-stage [[n, k, d]] code with it, when the number of gates satisfies

N0 ≤ ln n
ln(1 + 4ϵ)− ln[1 + 4 f (ϵ)]

(4.40a)

≈ 1
ϵ − f (ϵ)

· ln n
4

. (4.40b)

Note that when (l + 1)-stage QECC concatenation cannot be implemented due to the
associated physical limitations (e.g. total number of physical qubits), the amalgam of
l-stage QECC and CI-QEM may be applied even beyond the critical point.

4.3.4 QEDCs Operating in Their Error-Resilient Regions

Due to their smaller minimum distance than that of QECCs, QEDCs are not capable
of correcting any error. Nonetheless, they can be used as important building blocks in
the scheme of post-selection fault-tolerance [166, 167]. To expound a little further, post-
selection fault-tolerance differs from its conventional counterpart in that it is imple-
mented by detecting potential errors, and only accepting the results if no error is de-
tected. Typically, QEDCs have a shorter codeword length compared to QECCs, hence
they often also possess a higher threshold. For instance, the [[4, 2, 2]] QEDC can de-
tect an error at the price of protecting a logical gate using four physical gates, while
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Steane’s [[7, 1, 3]] QECC requires seven gates. This makes post-selection fault-tolerance
a preferable scheme, when the gates are relatively noisy [166–168].

In the context of CI-QEM, the high threshold of QEDCs appears to make their amal-
gamation with CI-QEM more beneficial. However, a subtle issue is that QEDCs suffer
from their own sampling overhead. To elaborate, if for every gate the probability of
successful error detection is p, similar to that of CI-QEM, the SOF of the QEDC may be
defined as

γQEDC =
1

1 − p
− 1

=
p

1 − p
,

(4.41)

which will be referred to as the QEDC-SOF in the following disucssions. Additionally,
performing CI-QEM on the post-selected channel (where single errors are eliminated)
also incurs an SOF, which in this context will be referred to as the CI-QEM-SOF. Thus,
the total SOF can be calculated as follows:

γtotal = (1 + γQEDC)(1 + γQEM)− 1

= γQEDC + γQEM + γQEDC · γQEM,
(4.42)

where γQEDC and γQEM represent the QEDC-SOF and the CI-QEM-SOF, respectively.
In this regard, the amalgamation of QEDC and CI-QEM is only beneficial when the
total SOF is lower than that of CI-QEM applied directly to uncoded gates.

To compute the QEDC-SOF of each logical gate for a specific QEDC, it suffices to com-
pute the probability that a single Pauli error occurs in the entire physical circuit corre-
sponding to the logical gate. Let us assume that every single-qubit gate incurs a Pauli
channel having a GGEP of ϵ1, and every two-qubit gate incurs a Pauli channel having
GGEP ϵ2. For any logical gate implemented using the transversal gate configuration, it
is clear that the occurrence probability of a single Pauli error in single-qubit and two-
qubit gates, namely p1 and p2, can be expressed as

p1 = nϵ1 + O(ϵ2
1), p2 = nϵ2 + O(ϵ2

2), (4.43)

for any [[n, k, d]] QEDC, since every logical gate is implemented using n physical gates.
The terms having the orders of O(ϵ2

1) and O(ϵ2
2) are negligible when the GEPs are suffi-

ciently small. According to (4.41), we also have the following result for the correspond-
ing QEDC-SOF

γ1 = nϵ1 + O(ϵ2
1), γ2 = nϵ2 + O(ϵ2

2). (4.44)

Among QEDCs capable of detecting a single arbitrary Pauli error, the one having the
lowest n is the [[4, 2, 2]] code. In this case, we have γ1 ≈ 4ϵ1 and γ2 ≈ 4ϵ2. The actual
QEDC-SOF would be even higher due to the inevitable imperfections in the stabilizer
measurements. On the other hand, for small ϵ1 and ϵ2, we can see from Corollary 4.6
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FIGURE 4.11: Illustration of an uncoded controlled-Z gate (the left figure) and a
controlled-Z gate protected by the [[4, 2, 2]] QEDC code (the right figure), which is

not implemented in a transversal manner.
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FIGURE 4.12: Illustration of an uncoded SWAP ◦ H⊗2 (the left figure) and its coded
counterpart protected by the [[4, 2, 2]] QEDC code (the right figure), which is not im-

plemented in a transversal manner.

and Proposition 4.7 that when no QEDC is applied, the CI-QEM-SOF is also approxi-
mately four times the GGEP. Therefore, we have the following remark.

Remark 4.12. Amalgamating QEDCs and CI-QEM might not be beneficial in the sense
of SOF reduction, given that the logical gates are implemented using the transversal
gate configuration.

This result may not be applicable to some logical gates, namely to those that are not im-
plemented transversally. For example, some two-qubit gates processing the two logical
qubits within a single block of the [[4, 2, 2]] QEDC may be implemented using simple
physical gates. As illustrated in Fig. 4.11, a logical controlled-Z gate can be imple-
mented using six single-qubit gates S ⊗ (Z ◦ S)⊗ (Z ◦ S)⊗ S . Since two-qubit gates
typically have much higher GGEP compared to single-qubit gates, the QEDC-SOF may
be even lower than the GGEP of a single controlled-Z gate. Similarly, the logical gate
SWAP ◦ H⊗2 can be implemented by simply using four physical Hadamard gates,
hence also has a low QEDC-SOF. Here, the operator SWAP refers to the SWAP gate
exchanging a pair of qubits [48, Section 1.3.4].

Unfortunately, non-transversal logical gates can only be designed in a case-by-case
manner. Moreover, not all of them admit the nice and simple implementation as those
shown in Fig. 4.11 and 4.12. For example, a CNOT gate between the two qubits in a
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TABLE 4.1
Sixteen basis operators used in CI-QEM for single-qubit channels.

Operator Output state
1 I I(ρ) = ρ

2 X X (ρ) = SX ρS†
X

3 Y Y(ρ) = SYρS†
Y

4 Z Z(ρ) = SZρS†
Z

5 Rx Rx(ρ) =
1
2 (I + ıSX )ρ(I + ıSX )†

6 Ry Ry(ρ) =
1
2 (I + ıSY )ρ(I + ıSY )†

7 Rz Rz(ρ) =
1
2 (I + ıSZ )ρ(I + ıSZ )†

8 Ryz Ryz(ρ) =
1
2 (SY + SZ )ρ(SY + SZ )†

9 Rxz Rxz(ρ) =
1
2 (SX + SZ )ρ(SX + SZ )†

10 Rxy Rxy(ρ) =
1
2 (SX + SY )ρ(SX + SY )†

11 πx πx(ρ) =
1
4 (I + SX )ρ(I + SX )†

12 πy πy(ρ) =
1
4 (I + SY )ρ(I + SY )†

13 πz πz(ρ) =
1
4 (I + SZ )ρ(I + SZ )†

14 πyz πyz(ρ) =
1
4 (SY + ıSZ )ρ(SY + ıSZ )†

15 πxz πxz(ρ) =
1
4 (SX + ıSZ )ρ(SX + ıSZ )†

16 πxy πxy(ρ) =
1
4 (SX + ıSY )ρ(SX + ıSY )†

[[4, 2, 2]] code block has to be implemented via a SWAP gate, which has a high QEDC-
SOF. By contrast, the transversal gate configuration is a general design paradigm that
can be applied to all logical Clifford gates [44]. In this regard, we may draw the con-
clusion that QEDC-CI-QEM is only beneficial for certain specific non-transversal gate
designs.

4.4 Numerical Results

In this section, we augment our discussions throughout previous sections by numeri-
cal results. Throughout this section, for single-qubit channels, the basis matrix B used
for CI-QEM is constituted by the conventional set of quantum operations listed in Ta-
ble 4.1 [38]. The geometric interpretation of these operations are further portrayed in
Fig. 4.13. The basis operators of CI-QEM for two-qubit channels are constituted by
the tensor product of these operators. The operators Rx, Ry, and Rz represent π/2
rotations around the x-, y-, and z-axes of the Bloch sphere, respectively, while Ryz, Rxz,

and Rxy represent π rotations around the axes determined by the equations
{

y = z
x = 0

,
{

x = z
y = 0

, and
{

x = y
z = 0

, respectively. Similarly, the operators πx, πy, πz, πyz, πxz, and

πxy represent the measurement operations on the corresponding axes.
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FIGURE 4.13: The trajectories of quantum states under the corresponding basis oper-
ations on the Bloch sphere. The circles represent the initial states, while the bold solid

lines represent the trajectories.

4.4.1 Uncoded Gates

We first characterize Proposition 4.3 and Proposition 4.5 via numerical examples. In
Fig. 4.14 and 4.15, the SOF vs. the GGEP is plotted for both single-qubit and two-qubit
gates inflicted by coherent errors, amplitude damping and depolarizing channels, as
detailed below. Here, the two-qubit channels are restricted to product channels, namely
those constructed by the tensor product of two single-qubit channels. Specifically, a
single-qubit amplitude damping channel Cdamp is characterized by [48, Section 8.3.5]

Cdamp(ρ) = E0ρE†
0 + E1ρE†

1, (4.45)

where the operation components are given by [48, Section 8.3.5]

E0 =

[
1 0
0

√
1 − δ

]
, E1 =

[
0

√
δ

0 0

]
,
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FIGURE 4.14: SOF as a function of GGEP for uncoded single-qubit gates inflicted by
coherent error, amplitude damping and depolarizing channels having the same GGEP.
The Pauli-twirled versions of coherent error and amplitude damping channels are also

plotted for comparison.

and the parameter δ is the amplitude damping probability of the channel, namely the
probability that the channel turns an excited state |1⟩ into the ground state |0⟩. Notably,
the amplitude damping channel is a non-Pauli triangular channel. The single-qubit
coherent channel we consider here is the over-rotation channel, which takes the form
of [38]

Cover(ρ) = UxρU†
x , (4.46)

where

Ux =

[
cos( 4ϕ

π ) ı sin( 4ϕ
π )

ı sin( 4ϕ
π ) cos( 4ϕ

π )

]
.

The parameter ϕ controls the over-rotation angle of the channel, and ı =
√
−1 denotes

the imaginary unit.

Observe from Fig. 4.14 and 4.15 that the amplitude damping channels affecting both a
single and two qubits have higher SOFs than depolarizing channels. This corroborates
Proposition 4.3 and Proposition 4.5, which imply that depolarizing channels have the
lowest SOF among all triangular channels. The over-rotation channels are not triangu-
lar channels, yet they exhibit the highest SOF. In general, their SOFs would depend on
the specific set of basis operators comprised by the matrix B. In fact, coherent chan-
nels are represented by unitary transformations. In light of this, in the ideal case that
“unitary rotation” gates can be implemented without decoherence, they can be com-
pensated in an overhead-free manner by simply applying its complex conjugate.

In Fig. 4.14 and 4.15, we can also see the effect of quantum channel precoders, especially
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FIGURE 4.15: SOF as a function of GGEP for uncoded two-qubit gates inflicted by
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The Pauli-twirled versions of coherent error and amplitude damping channels are also

plotted for comparison.

that of Pauli twirling. To elaborate, observe in both Fig. 4.14 and 4.15, that the Pauli-
twirled versions both of the coherent error and of the amplitude damping channels
have almost the same SOF as depolarizing channels, provided that the gates used in
the implementation of Pauli twirling are free from decoherence. By contrast, when
Pauli twirling is implemented using realistic imperfect gates, the twirled channels have
higher SOF, which is still lower than that of the amplitude damping channels. Another
noteworthy fact is that imperfect Pauli twirling of two-qubit gates incurs relatively low
overheads, compared to single-qubit gates. This is because two-qubit gates are more
prone to decoherence than their single-qubit counterparts. Specifically, in this example
we assume that every single-qubit gate (resp. two-qubit gate) has the same GGEP, and
follow the convention that two-qubits gates have 10 times higher GGEP than single-
qubit gates [163]. In light of these results, Pauli twirling may be a preferable quantum
channel precoder, especially for two-qubit gates.

Next we illustrate the bounds of the SOF of Pauli channels presented in Section 4.2.3.
As portrayed in Fig. 4.16, given a fixed GEP ϵ, all points representing the SOFs of
randomly produced Pauli channels fall between the upper bound (4.29) and the lower
bound (4.21). Moreover, it can be seen that when the GEP is less than 5 × 10−3, the
upper and lower bounds are nearly identical, and a linear approximation of the SOF
(i.e., 4ϵ) becomes rather accurate.
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FIGURE 4.16: Upper and lower bounds of the SOF as a function of GEP ϵ for Pauli
channels over a single uncoded qubit.

4.4.2 Transversal Gates Protected by QECC

In this subsection, we investigate the SOF when CI-QEM is applied to transversal logi-
cal gates protected by QECCs operating in their error-resilient regions. For the simplic-
ity of presentation, we assume that all physical gates are subjected to the deleterious
effect of depolarizing channels. Furthermore, we also assume that they can be de-
composed into the tensor products of single-qubit depolarizing channels. Finally, we
assume that all single-qubit gates have an identical GEP, and so do two-qubit gates.

As presented in Section 4.3.3, CI-QEM and QECCs operating in their error-resilient
regions can be beneficially amalgamated to reduce the SOF. Here we consider the
amalgam of CI-QEM and an l-stage concatenated Steane [[7, 1, 3]] code. According to
Proposition 4.10, for every QECC operating in its error-resilient region, there would be
several critical circuit sizes. To elaborate, if a quantum circuit contains gates that ex-
ceeds the (l + 1)-th critical point, amalgamating CI-QEM with the l-stage concatenated
code will be more beneficial than relying on the (l + 1)-stage concatenated code, and
vice versa.

In Fig. 4.17 and 4.18, we compare the performance of three QECC-CI-QEM schemes for
quantum circuits containing various number of logical gates. In Fig. 4.17, we demon-
strate the aforementioned critical points of circuit size. In Fig. 4.18, areas with differ-
ent shadings represent the circuit configurations for which the corresponding QECC-
CI-QEM scheme is the most preferable among the three candidates. As portrayed in
the figures, for the case where the GEP of physical gates equals to 10−4, pure CI-QEM
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FIGURE 4.17: The critical points of circuit sizes (discussed in Proposition 4.10) versus
the GEP of physical gates. Here the QECC is chosen as Steane’s [[7, 1, 3]] code.

is preferable when the circuit contains less than about 6 × 103 gates, while the single-
stage QECC-CI-QEM combination may be a good choice for circuits containing be-
tween 6 × 103 and 8 × 104 gates. An interesting issue is that the pure CI-QEM be-
comes the most preferable when the GEP is higher than about 10−3, which is somewhat
counter-intuitive. This may be attributed to the fact that the fault-tolerance threshold
of the [[7, 1, 3]] code under our assumptions in this report is around 1.5 × 10−3. When
the GEP of physical gates is close to their threshold, the error-correction capability of
QECCs is not fully exploited. To elaborate a little further, the term [ f (l)(ϵ)− f (l+1)(ϵ)]

in (4.36b) would typically be a non-monotonic function of ϵ, with its maximum located
close to the threshold. Hence, the critical circuit size increases as the GEP of physical
gates decreases, provided that the GEP is sufficiently low.

4.4.3 Gates Protected by QEDC

In this subsection, we consider a combined QEDC-CI-QEM scheme, for which we make
the same assumptions concerning the quantum gates as those stated in Section 4.4.2.
Additionally, we assume that the GEP of two-qubit gates is 10 times as high as that of
single-qubit gates.

When logical gates are implemented transversally, according to the discussion in Sec-
tion 4.3.4, the total SOF of the QEDC-CI-QEM scheme would typically be even higher
than that of pure CI-QEM. This is demonstrated in Fig. 4.19, where we consider the
total SOF of a single transversal logical CNOT gate protected by the [[4, 2, 2]] QEDC. It
can be seen that most of the overhead is attributed to the QEDC-SOF, which is much
higher than the overhead of pure CI-QEM. By contrast, the CI-QEM overhead in the
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FIGURE 4.18: The most preferable QECC-CI-QEM scheme versus the GEP of physical
gates. Here the QECC is chosen as Steane’s [[7, 1, 3]] code.
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FIGURE 4.19: SOF comparison between pure CI-QEM and amalgamated [[4, 2, 2]]
QEDC-CI-QEM for a CNOT gate. The logical CNOT gates is implemented using the

transversal gate configuration.

QEDC-CI-QEM scheme is significantly lower than that of pure CI-QEM, implying that
the post-selection fault-tolerance threshold of the [[4, 2, 2]] code is higher than 0.01.

As suggested by Fig. 4.11 and 4.12, some non-transversal logical gates may even out-
perform transversal gates in terms of requiring lower QEDC-CI-QEM SOF. In particu-
lar, we consider the specific logical gate of SWAP ◦ H⊗2 implemented in the manner
illustrated in Fig. 4.12. Since this implementation only involves single-qubit gates, the
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FIGURE 4.20: SOF comparison between pure CI-QEM and amalgamated [[4, 2, 2]]
QEDC-CI-QEM for a SWAP ◦ H⊗2 gate. The logical SWAP ◦ H⊗2 gate is imple-

mented as illustrated in Fig. 4.12 instead of transversally.

QEDC-SOF is significantly lower compared to the transversal implementation. Conse-
quently, as portrayed in Fig. 4.20, the total QEDC-CI-QEM overhead is lower than that
of pure CI-QEM. However, it is still not clear, whether this fact can justify the practical
value of the QEDC-CI-QEM scheme, since designing a low-sampling-overhead non-
transversal implementation of all Clifford gates would require substantial effort. This
may be an interesting topic deserving further investigation.

4.5 Conclusions and Future Research

4.5.1 Conclusions

In this chapter, we have presented a comprehensive analysis on the SOF of CI-QEM un-
der various channel conditions. For uncoded gates affected by errors modelled by gen-
eral CPTP channels, we have shown that Pauli channels have the lowest SOF among all
triangular channels (which includes the amplitude damping channels) having the same
GGEP. Following this line of reasoning, we have shown furthermore that depolarizing
channels have the lowest SOF in the family of all Pauli channels.

We have also conceived the QECC-CI-QEM as well as the QEDC-CI-QEM schemes, and
have shown that there exist several critical quantum circuits sizes, beyond which so-
phisticated codes having more concatenation stages is more preferable, and vice versa.
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Specifically, for QEDC-CI-QEM, we have demonstrated that it may not be compati-
ble with the popular transversal gate configuration, but they may still have beneficial
applications, when the logical gates are appropriately designed.

4.5.2 Future Research

• The analysis presented in this chapter relies on the assumption that the basis oper-
ations used in CI-QEM are themselves error-free. This simplifies the analysis, but
may not fully reflect the practical scenario. One possible solution to this issue is
to use these imperfect basis operations themselves to derive the quasi-probability
representations of quantum channels, as proposed in [38]. For example, the Pauli-
X gate in practice might also involve some Y-rotation and Z-rotation, but we may
still use it as a basis operation, as long as this imperfection is known prior to chan-
nel inversion. Specifically, one may estimate the imperfections of basis operations
using quantum gate set tomography [107], which essentially estimates the noise
parameters within a relative coordinate frame. This relative coordinate frame is
useful, since it is insensitive to the errors in the state preparation and measurement
stages.

• Another practical issue that we did not account for in our analysis is the imper-
fections of the stabilizer measurements in quantum error-correction codes. Fortu-
nately, it is a common practice to repeat the stabilizer measurements for several
times when they are prone to noise [169]. Although this technique was originally
proposed to enhance the error-correction performance, it also provides partial in-
formation about the quantum channels associated with these stabilizer measure-
ments. This can be particularly useful, since other channel estimation techniques
(including gate set tomography) would require additional computational over-
head, which is similar in spirit to the pilot overhead in wireless communication
systems. By contrast, when the repeated stabilizer measurements are exploited
for channel sensing, the pilot overhead may be reduced, as seen in the code-aided
solutions in wireless systems.
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Chapter 5

Channel Inversion Based QEM:
Monte Carlo Implementation

In Section 2.5.2, we have discussed a class of algorithms tailored for NISQ comput-
ers, namely that of the hybrid quantum-classical algorithms, also known as the VQAs
[32, 34, 62, 170]. Briefly, VQAs aim for sharing their computational tasks between rel-
atively simple quantum circuits and classical computers. A little more specifically,
quantum circuits are employed in VQA for computing a cost function or its gradi-
ent [68], which is then fed into an optimization algorithm run on classical computers.
The objective of this design paradigm is to assist near-term quantum devices in out-
performing classical computers in the context of practical problems, such as solving
combinatorial optimization problems using the quantum approximate optimization al-
gorithm [32, 33, 171] and quantum chemistry problems using the variational quantum
eigensolver [34].

Although the performance of VQAs has been characterized using some illustrative ex-
amples [34, 71, 175, 176], it is not fully understood whether these examples could be
scaled up to problems of larger size. In fact, recent analytical results in [172, 177, 178]
support the opposite statement. More explictly, [172] proves that the magnitude of the
cost function (or its gradient) computed by VQAs vanishes exponentially as the num-
ber of qubits n increases. Fortunately, the follow-up investigations [179, 180] found
that this so-called “barren plateau” phenomenon may be mitigated to a certain extent
by techniques borrowed from the literature of classical machine learning, such as pre-
training and layer-by-layer training. However, the authors of [173] show that when
decoherence is taken into account, the dynamic range of the computational results also
vanishes exponentially upon increasing the circuit depth NL, even if these techniques
are applied. To summarize, these results imply that when the quantum circuit is long
in depth or large in the number of qubits, the computational error become excessive in
practical applications.
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TABLE 5.1: Comparison between the contributions of this chapter and existing litera-
ture evaluating the performance of VQAs and CIQEM.

Circuit condition Subject of Analysis Method of performance
evaluationNoisy? QEM implementation

[62] × No QEM
Only accuracy

Only numerical
[172] × No QEM Analytical and numerical
[173] ✓ No QEM Analytical and numerical
[38] ✓ Exact channel inversion

Sampling overhead vs.
accuracy trade-off

Only numerical
[1] ✓ Exact channel inversion Analytical and numerical
[174] ✓ Exact channel inversion Analytical and numerical
This
chapter ✓

Monte Carlo-based
channel inversion Analytical and numerical

In Section 3.3, we have established that circuit-level QEM [37, 127, 181, 182] may be
applied to improve the error scaling of VQAs with respect to the depth of the circuits.
However, the error reduction capability of QEM comes at the price of a computational
overhead, as discussed in Section 3.3.1.2. By appropriately choosing the total number
of samples, one may strike a beneficial computational accuracy vs. overhead trade-off.
Therefore, it is important to quantify the sampling overhead, before we may conclude
whether QEM can play a significant role in making VQAs practical.

In this chapter, we focus our attention on the accuracy vs. overhead trade-off of CI-QEM.
The literature of CI-QEM sampling overhead analysis typically assumes that the chan-
nel inversion procedure is implemented exactly [1, 38, 174]. Under this assumption,
we have shown in Chapter 4 that the sampling overhead can be characterized by the
sampling overhead factor (SOF), which is determined by the quality of the channel as
well as by the accuracy of the basis operations implementing the channel inversion.
However, perfect channel inversion may be unrealistic in practical scenarios, since it
requires a pre-processing stage that is computationally excessive. Moreover, the com-
putational cost of this pre-processing stage increases rapidly with the number of gates,
which may negate the benefit of CI-QEM.

In this chapter, we consider a practical channel inversion method based on Monte Carlo
sampling, which only increases the pre-processing complexity linearly with the num-
ber of gates. The drawback of this method is that it cannot invert the channel exactly,
hence there would be some residual error that accumulates during computation. Com-
pared to the ideal CI-QEM, this method has a less beneficial accuracy vs. overhead
trade-off, because additional samples would be necessary to compensate for the resid-
ual error. To characterize this trade-off, we investigate the relationship between the
residual error and the number of gates NG, the number of samples Ns, and the gate
error probability ϵ. In particular, we show that the Monte Carlo based method has
an error scaling on the order of O(

√
NG), while the non-QEM-protected quantum cir-

cuits exhibit an error scaling on the order of O(NG). This implies that although the
Monte Carlo based method incurs residual computational errors, it still substantially
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outperforms the non-QEM-protected methods. We boldly and explicitly contrast our
contributions to the related recent research on VQAs and CI-QEM in Table 5.1.

The rest of this chapter is organized as follows. In Section 5.1, we present the formula-
tion of VQAs and the quantum channels modelling the decoherence. Then, in Section
5.2, we discuss a pair of CI-QEM implementation strategies, namely the Monte Carlo-
based CI-QEM and the exact channel inversion. Based on this discussion, in Section 5.3,
we analyse the error scaling behaviours of these two CI-QEM implementations, respec-
tively, under the assumption that they use the same number of circuit executions. We
provide further intuitions concerning these analytical results in Section 5.4, with an em-
phasis on the accuracy vs. sampling overhead trade-off, complemented by numerical
examples in Section 5.5. Finally, we conclude in Section 5.6.

5.1 System Model

A typical VQA iterates between classical and quantum devices, as portrayed in Fig. 5.1.
The parametric state-preparation circuit (also known as the “ansatz” [33]) transforms a
fixed input state to an output state, according to the parameters chosen by a classical
optimizer. The output state is then measured and fed into a quantum observable, which
maps the measurement outcomes to the desired computational results. The results
correspond to the value of a cost function or its gradient, which in turn serve as the
input of the associated classical optimization algorithm. The iterations continue until
certain stopping criterion is met, for example, the computed gradient becomes almost
zero.

In this chapter, we focus on the error induced by the sampling procedure in CI-QEM,
hence we consider the computational result of a single iteration, meaning that the pa-
rameters used for state preparation are fixed. We model the decoherence-induced im-
pairment in the parametric state-preparation circuit as quantum channels acting upon
the associated quantum states at the output of perfect quantum gates, as exemplified
by the simple circuit shown in Fig. 5.2. In this figure, Ck, k = 1 . . . 4 represents the
channel modelling the decoherence in the k-th quantum gate, while Gk represents the
k-th ideal decoherence-free quantum gate.

In the subsequent subsections, we present the mathematical formulations of the system
models shown in Fig. 5.1 and 5.2.
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FIGURE 5.1: The structure of a typical implementation for variational quantum algo-
rithms.

|ψ1〉 G1 C1
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1

FIGURE 5.2: Simple example of the noisy parametric state-preparation circuit seen in
Fig. 5.1.

5.1.1 Operator-sum Representation

Without loss of generality, we assume that the input state of the circuit is the all-zero
state |0⟩⊗n, where n is the number of qubits. In general, when the circuit is decoherence-
free, the computational result of a variational quantum circuit may be expressed as

r̃ = ⟨0|⊗n

(
NG

∏
k=1

G†
i

)
Mob

(
NG

∏
k=1

GNG−k+1

)
|0⟩⊗n , (5.1)

where NG is the number of gates in the circuit, Gk denotes the k-th quantum gate, and
the operator Mob represents the quantum observable, which describes the computa-
tional task as a linear function of the final state.

If we consider a more practical scenario, where the quantum state evolves owing to
quantum decoherence as the circuit operates, the state can no longer be fully char-
acterized using the state vector formalism. Instead, we may use the density matrix
formalism. In particular, the input state may be described as

ρ0 = (|0⟩ ⟨0|)⊗n. (5.2)

Correspondingly, the output state of the k-th imperfect quantum gate may be repre-
sented in an operator-sum form [48, Sec. 8.2.4], relying on following recursive relation-
ship

ρk = Ck

(
Gkρk−1G†

k

)
, (5.3)
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where the operator Ck is characterized by

Ck(ρ) =
nk

∑
i=1

(
Ek,iρE†

k,i

)
, (5.4)

representing the channel modelling the imperfection of the k-th gate. The matrices
Ek,i represent the operation elements [48, Sec. 8.2.4] of the channel Ck satisfying the
completeness condition of ∑nk

i=1 E†
k,iEk,i = I. Finally, when all gates completed their

tasks and the measurement results have been obtained, the computational result may
be expressed as

r = Tr {MobρNG} . (5.5)

5.1.2 Pauli Transfer Matrix Representation

In the standard operator-sum form [48, Sec. 8.2.4], the quantum states are represented
by matrices. However, in many applications, such as the error analysis considered in
this treatise, it would be more convenient to treat them as vectors. Correspondingly,
the quantum channels and gates would then be represented by matrices. To this end,
the PTM representation of quantum operators was proposed in [183], which allows a
quantum operator O to be expressed as

[O]i,j =
1
2n Tr

{
SiO(Sj)

}
, (5.6)

where Si denotes the i-th Pauli operator in the n-qubit Pauli group. Similarly, a quan-
tum state ρ can be expressed as

[ρ]i =
1√
2n

Tr {Siρ} . (5.7)

Under the PTM representation, the computational result may be rewritten as

r = vT
ob

(
NG

∏
k=1

(CNG−k+1GNG−k+1)

)
v0, (5.8)

where Gk represents the k-th perfect gate, and Ck represents the channel modelling the
imperfection of the k-th gate. The vector v0 denotes the initial state, whereas vob is the
vector representation of the quantum observable Mob.

To simplify the notation, we define

Rk :=
k

∏
i=1

(Ck−i+1Gk−i+1),

R̃k :=
k

∏
i=1

Gk−i+1.

(5.9)
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Especially, for k = 0, we define R0 = R̃0 = I. The output state of the k-th quantum gate
can then be expressed as

vk : = Rkv0

= CkGkvk−1.
(5.10)

Hence we have
r = vT

obvNG

= vT
obRNG v0.

(5.11)

5.1.3 Channel Model

In this treatise, we consider Pauli channels [184], for which the Pauli transfer matrices
take the following form

Ck = diag {ck} , (5.12)

where
ck = H̃ pk, (5.13)

with H̃ denoting the Hadamard transform, whereas pk represents a probability distri-
bution satisfying 1T pk = 1, pk ≥ 0.

5.2 CI-QEM and Its Implementation Strategies

Ideally, for a channel Ck, CI-QEM would apply its inverse based on a linear combina-
tion of predefined quantum operations, taking the following form

C−1
k =

L

∑
l=1

α
(k)
l Ol , (5.14)

where Ol is the l-th quantum operation, while αk := [α1 . . . αL]
T is the quasi-probability

representation vector satisfying 1Tαk = 1. This linear combination may be rewritten as
a probabilistic mixture of the quantum operations as follows:

C−1
k = ∥αk∥1

L

∑
l=1

s(k)l p(k)l Ol , (5.15)

where s(k)l and p(k)l are the l-th entries of sk and pk, respectively, given by

p(k)i =
|α(k)

i |
∥αk∥1

,

sk = sgn{αk}.

(5.16)

Note that the vector pk describes a probability distribution.
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Typically, the probabilistic mixture in (5.15) is implemented by generating a set of can-
didate circuits and performing post-processing on the output of these circuits. In the
following subsections, we will discuss different candidate selection strategies and their
characteristics.

5.2.1 Exact Implementation and Sampling Overhead

The inverse channel C−1
k in (5.15) is assumed to be implemented exactly in the seminal

paper [37] that proposed CI-QEM for the first time, as well as in many other existing
contributions [1, 38, 174]. Exact implementation implies that, each quantum operation
Ol should appear in exactly Np(k)l candidate circuits in every N samples of the compu-
tational result.

The assumption of exact implementation significantly simplifies the performance anal-
ysis of QEM. In particular, it leads to a clear and concise formula of sampling overhead,
which describes the computational overhead imposed by the variance-boosting effect
of QEM. To elaborate, assume that the variance of the computational result is σ2 based
on N0 samples. According to (5.15), if we implement the inverse channel C−1

k , the vari-
ance would become ∥αk∥2

1σ2. Therefore, in order to achieve the same accuracy as the
case without QEM, we should acquire N0(∥αk∥2

1 − 1) additional samples. If we further
assume that all gates are protected by CI-QEM, we have the following formula for the
total sampling overhead

Nexact = N0

(
NG

∏
k=1

∥αk∥2
1 − 1

)
. (5.17)

The simplicity of (5.17) is largely due to the assumption of exact implementation.

Despite its theoretical convenience, the practicality of exact implementation is doubtful.
Specifically, the number of the l-th candidate circuit, Np(k)l has to be an integer, which
might be unrealistic for an arbitrary p(k)l . Furthermore, the number of the probabil-
ity parameters p(k)l would increase exponentially as the number of CI-QEM-protected
gates increases, which may render the candidate circuit selection procedure compu-
tationally prohibitive when NG is large. Motivated by these drawbacks, we consider
using a Monte Carlo implementation of CI-QEM, detailed in the next subsection.

5.2.2 Monte Carlo Implementation

In the Monte Carlo implementation, we first sample from the probability distribution
pk for each gate, and obtain N samples constituting a set L = {l1, . . . , lN}, where for all
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k we have lk = 1, 2, . . . , L. Thus we may approximate the inverse channel as

Γk =
∥αk∥1

N

N

∑
i=1

s(k)li
Oli

= ∥αk∥1

L

∑
l=1

s(k)l p̃
(k)
l Ol ,

(5.18)

where

p̃
(k)
m =

1
N

N

∑
i=1

I{li = m}.

The advantage of the Monte Carlo approach is that it may result in a much lower com-
plexity for candidate circuit generation, compared to the exact implementation. To
elaborate further, as a “toy” example, for a circuit consisting of two gates we have

Γ2G̃2Γ1G̃1 =
∥α1∥1∥α2∥1

N

N

∑
i=1

s(1)li,1
s(2)li,2

Oli,2 G̃2Oli,1 G̃1, (5.19)

where G̃k = CkGk, and li,k denotes the i-th sample drawn from the distribution pk. This
implies that in order to obtain a sample for the entire circuit, we may simply generate
one sample for each gate, and concatenate them as shown in the right hand side of
(5.19). Compared to the exact implementation, the Monte Carlo implementation can
generate an arbitrary number of circuit samples N, at a relatively low computational
cost of O(NNG).

The reduced complexity of the Monte Carlo implementation comes with a cost of inac-
curate channel inversion, since Gk is only an approximation of C−1

k . Hence there would
be a residual channel for each gate, which is given by

C̃k = ΓkCk. (5.20)

A natural question that arises is, whether the additional computational error caused
by these residual channels would erode the error reduction capability of Monte Carlo-
based QEM. In the rest of this treatise, we will discuss the impact of these residual
channels on the accuracy vs. sampling overhead trade-off.

5.3 Error Scaling Analysis of Monte Carlo Based CI-QEM

In this section, we discuss the error scaling behaviour of quantum circuits protected by
Monte Carlo-based CI-QEM, and contrast the results to that of circuits without QEM
protection. In order to make a fair comparison, we consider the following assumptions.
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5.3.1 Assumptions

Assumption 2 (Bounded gate error rate). The error probability of each quantum gate is
upper bounded by ϵu.

Since we consider Pauli channels in this treatise, the gate error probability correspond-
ing to a quantum channel Ck (under its PTM representation) may be computed as

ϵ(Ck) = 1 − 1
4n Tr {Ck} . (5.21)

Assumption 3 (Bounded observable). The eigenvalues of the quantum observable Mob

are bounded in the interval [−1, 1].

Assumption 3 ensures the boundedness of the computation result r. In this treatise we
assume that the upper and lower bounds are 1 and −1, respectively, but they may be
replaced with any other constant real numbers without affecting our analytical results.
The assumption may also be rewritten as

max
v∈Sn

vT
obvvTvob ≤ 1, (5.22)

where Sn denotes the space of all density matrices over n qubits. Furthermore, the
assumption also implies that

∥vob∥2 ≤
√

2n. (5.23)

This follows from the fact that ∥vob∥2 = ∥Mob∥F, and that

∥Mob∥F =
2n

∑
i=1

λi(Mob)

≤
√

2n,

where λi(·) denotes the i-th largest eigenvalue of its argument.

Assumption 4 (Zero bias term). We assume that

Tr {Mob} =
√

2n[vob]1 = 0. (5.24)

Note that [vob]1 is the coefficient of the identity operator, which serves as a bias term
in the computation result being constant with respect to the quantum state. Thus this
assumption does not restrict the generality of our results.

5.3.2 Benchmark: Error Scaling in the Absence of QEM

In this subsections, we characterize the error scaling of quantum circuits that are not
protected by QEM. The results will serve as important benchmarks in the following
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discussions. Let us start with a bound of the dynamic range of computational results,
which will lead to a lower bound of the computational error.

Proposition 5.1. Assume that each qubit would be processed by at least NL gates, and that for
each of these gates, the probability of each type of Pauli error (i.e., X error, Y error or Z error) on
each qubit is lower bounded by ϵl. The computational result r exhibits the following convergence
behaviour:

|r| ≤ exp (−4ϵlNL) . (5.25)

Proof. Please refer to Appendix A.5.

Proposition 5.1 implies that decoherence would force the computation result to be al-
most independent of the quantum observable vob in an asymptotic sense. Indeed, as
indicated by (5.25), when NL is large, r is only determined by the first entry of vob.
Moreover, consider the case where |r̃| ≥ 1 − c holds for all NG, the computational error
is lower bounded as

|r − r̃| ≥ 1 − c − exp (−4ϵlNL) . (5.26)

From the Taylor expansion

exp (−4ϵlNL) = 1 − 4ϵlNL +
(4ϵlNL)

2

2
− · · · ,

we see that when ϵLNL ≪ 1, the lower bound is approximately

|r − r̃| ⪆ 4ϵlNL − c, (5.27)

which increases linearly with respect to ϵlNL.

We may also provide an upper bound for the computational error as follows.

Proposition 5.2. The computational error can be upper bounded as

|r − r̃| ≤ 2ϵuNG. (5.28)

Proof. Please refer to Appendix A.6.

Combining Propositions 5.1 and 5.2, we see that the computational error grows linearly
with NG, when the number of gates in each “layer” is constant (hence NL is a constant
multiple of NG. This is typically true for VQAs.
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5.3.3 The Statistics of the Residual Channels

Before diving into details about the error scaling, in this subsection, we first investigate
the characteristics of the residual channels of gates protected by Monte Carlo-based
CI-QEM.

According to the sampling overhead analysis in [1] based on the assumption of ex-
act channel inversion, if we wish to execute the decoherence-free circuit Ns times, we
should sample from the probabilistic mixture of candidate circuits for as many as

N = Ns∥αk∥2
1 (5.29)

times, in order to keep the variance of the computational result unchanged by the chan-
nel inversion procedure. Here we consider the Monte Carlo-based channel inversion
using the same number of samples, hence we have

p̃
(k)
m =

1
Ns∥αk∥2

1

Ns∥αk∥2
1

∑
i=1

I{li = m}. (5.30)

Of course, the Monte Carlo-based channel inversion has lower accuracy compared to
the exact channel inversion, when they use the same number of samples. The accuracy
could be improved by using additional samples, which will be discussed in more detail
in Section 5.4.2.

After the sampling procedure, αk is approximated by α̃k taking the following form

α̃k = ∥αk∥1 · sk ⊙ p̃k

= ∥αk∥1 · sk ⊙ (pk + n)

= αk + ∥αk∥1 · sk ⊙ n,

(5.31)

where n denotes the sampling error. In general, the approximated inverse channel may
be expressed in terms of α̃k as

Γk =
L

∑
i=1

[α̃k]iBi,

where {Bi}L
i=1 is a set of operators forming a basis of the space where the imperfect gate

CkGk resides in. Interested readers may refer to Table 1 in [1] for an example of such
operator sets. For the Pauli channels considered in this treatise, Γ has a simpler form.
Specifically, using (5.12), the quasi-probability representation vector may be expressed
as

αk = H̃−1(1/ck), (5.32)

where H̃ is the Hadamard transform over n qubits, and H̃−1 is the corresponding in-
verse transform given by H̃−1 = 1

4n H̃. The approximated inverse channel can now be
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expressed as
Γk = diag−1{H̃α̃k}, (5.33)

and thus the residual channel takes the following form

C̃k = diag−1{H̃α̃k ⊙ ck}. (5.34)

To simplify our further analysis, we introduce c̃k := H̃α̃k ⊙ ck, where c̃k may be further
expressed as

c̃k = 1 + ∥αk∥1 · H̃(sk ⊙ n)⊙ ck

= 1 + ∥αk∥1 · ck ⊙ ñ,
(5.35)

and ñ := H̃(sk ⊙n). Note that the vector p̃k is a multinomial distributed random vector,
satisfying

E{p̃k} = pk,

Cov{p̃k} =
1

Ns∥αk∥2
1

(
Pk − pk pT

k

)
,

(5.36)

where Pk = diag {pk}. Therefore, the vector ñ satisfies

E{ñ} = 0,

Cov{ñ} = H̃Cov{p̃k}H̃,
(5.37)

since the sign vector sk does not have an effect on the covariance matrix. Thus we have
the following results for c̃k:

E{c̃k} = 1,

Cov{c̃k} = ∥αk∥2
1 · Cov{ck ⊙ ñ}

=
1

Ns
H̃
(

Pk − pk pT
k

)
H̃ ⊙ ckcT

k .

(5.38)

For simplicity of further derivation, we use the notation of Ξk := Cov{c̃k}.

5.3.4 Error Scaling in the Presence of Monte Carlo Based CI-QEM

In this subsection, we investigate the scaling law of computational error when the
quantum circuit is protected by Monte Carlo-based CI-QEM, based on the above dis-
cussions concerning the residual channels in the previous subsection.

We note that for CI-QEM-protected circuits, the computational result is a random vari-
able due to the randomness in the sampling procedure, given by

r = vT
obvNG , (5.39)



5.3. Error Scaling Analysis of Monte Carlo Based CI-QEM 113

where
vk = Rkv0 = C̃kGkvk−1. (5.40)

Using these definitions, we have the following bound on the RMSE of the computa-
tional result r.

Proposition 5.3 (Square-root Increasing QEM Inaccuracy). For a quantum circuit consist-
ing of NG gates which is protected by QEM, the RMSE of the computational result is upper
bounded by √

E{(r− r̃)2} ≤ 2n/2
√

exp(2NGN−1
s )− 1. (5.41)

Proof. Please refer to Appendix A.7.

Note that by applying the Taylor expansion to exp(2NGNs), we have

exp(2NGNs)− 1 =
2

Ns
NG +

1
2

(
2

Ns
NG

)2

+ · · · ,

which is approximately 2NGN−1
s , when NG ≪ Ns. This means that when the RMSE

is far less than 1, its scaling law is given by O(
√

NG/
√

Ns). This is particularly useful,
since in typical applications (e.g., variational quantum algorithms), having an RMSE
close to 1 would be excessive.

In Proposition 5.3, the dependence of the RMSE on the error probability of quantum
gates is not demonstrated. According to (A.67) of the Appendix, this dependence
mainly relies on the term ∥Ξk∥max. Next we expound a little further on this issue based
on Assumption 2.

Proposition 5.4. Under Assumption 2, we have the following refined upper-bound for the
RMSE of the computational result:

√
E{(r− r̃)2} ≤ 2n/2

√
exp

(
ϵ̃NGN−1

s

)
− 1

≈ 2n/2
√

exp
(

10ϵuNGN−1
s

)
− 1

(5.42)

where ϵ̃ is given by

ϵ̃ :=
5
2

σu +
1
4

σ2
u, (5.43)

and
σu := 4ϵu ·

1 − ϵu

(1 − 2ϵu)2 . (5.44)

The approximation is valid when ϵu ≪ 1.

Proof. Please refer to Appendix A.8.
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Proposition 5.4 implies that, when ϵuNG ≪ Ns, the RMSE is on the order of O(
√

ϵuNG/
√

Ns).

Remark 5.5. We note that the factor 2n/2 in (5.41) and (5.42) is an artifact of our specific
proof technique. According to the numerical results which will be presented in Section
5.5, we conjecture this scaling factor is essentially unnecessary, implying that

√
E{(r− r̃)2} ≤

√
exp

(
ϵNGN−1

s

)
− 1. (5.45)

However, it seems to be technically challenging to remove this factor from the bounds.
Further investigations into this issue will be left for our future research.

5.4 Discussions

In this section, we provide further intuitions concerning the analytical results of Section
5.3.

5.4.1 Intuitions about the Error Scaling with the Circuit Size

The results in Section 5.3 indicate that, with respect to NG, we observe an O(
√

NG)

scaling of the computational error of circuits protected by Monte Carlo-based CI-QEM,
when the number of samples is the same as that of CI-QEM based on exact channel
inversion. By contrast, when QEM is not applied, the computational error scales as
O(NG), as discussed in Section 5.3. Thus we may conclude that, although there are
residual channels due to the inexact channel inversion, Monte Carlo-based CI-QEM
can still slow down the accumulation of computational error.

We may understand these error scaling behaviours more intuitively by considering the
low-complexity example of a single-qubit circuit, where the entire space of all legit-
imate quantum states can be described by the celebrated Bloch sphere [48, Sec. 1.2]
As demonstrated in Fig. 5.3, the Bloch sphere would shrink as NG increases when no
QEM is applied, since the Pauli channels are contractive. This is in stark contrast with
the case where Monte Carlo-based CI-QEM is applied, when the Bloch sphere becomes
“blurred” as NG increases, since it is not determined whether the sphere will expand or
shrink after each gate. Consequently, the sphere may expand after one gate and then
shrink after another, hence the corresponding errors will cancel each other to certain
extent. In light of the aforementioned intuition, we may interpret the error scaling of
Monte Carlo-based CI-QEM in following informal way.

Assume that every gate k would transform the Bloch sphere in a way that its radius
becomes (1 + λk) times that of its original value, where λk is a zero-mean random vari-
able with variance σ2

k . If additionally all λk values are mutually independent, we can
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As NG increases

(a) Gates without QEM protection

As NG increases

(b) Gates protected by QEM

FIGURE 5.3: Graphical illustration of the Bloch sphere undergoing a sequence of NG
imperfect gates. The Bloch sphere shrinks when QEM is not applied, whereas it be-

comes “blurred” when QEM is applied.

see that
1

NG

NG

∑
k=1

ln(1 + λk) ∼ N
(
−1

2
σ2, σ2

)

holds asymptotically as NG → ∞ by applying the central limit theorem, where we
have:

σ2 =
1

NG

NG

∑
k=1

σ2
k .

Hence the radius of the Bloch sphere after k gates, denoted by ak, tends to be a log-
normally distributed random variable characterized by

E{ak} = 1,

Var{ak} = exp
(

NGσ2)− 1.

Therefore, the standard deviation of the Bloch sphere’s radius tends to be
√

exp (NGσ2)− 1,
which is on the order of O

(√
NGσ2

)
when NGσ2 ≪ 1. This agrees with our formal an-

alytical results.

The linear error scaling experienced in the case where no QEM is applied may be in-
terpreted by considering the graphical illustration in Fig. 5.4. Since the computational
result r converges exponentially fast to zero as indicated by Proposition 5.1, it deviates
from r̃ linearly when NG is relatively small, which may be viewed as a lower bound of
the computational error. Additionally, the actual evolution of r is also bounded by the
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Error-free Evolution
Actual Evolution
Error Upper Bound
Error Lower Bound

NG

r

0

FIGURE 5.4: Demonstration of the evolution of computational result r in the absence
of QEM, as a function of NG. The upper and lower bound of computational error

correspond to the results in Proposition 5.2 and Proposition 5.1, respectively.

tangent line of it at NG = 0, which gives rise to the error upper-bound in Proposition
5.2.

5.4.2 The Accuracy vs. Sampling Overhead Trade-off

If we denote by ϵ the average error probability of each gate, from the discussion in
Section 5.3 we see that the computational error roughly scales as Θ(ϵ) when QEM is
not applied, whereas it scales as O(

√
ϵ) when Monte Carlo-based CI-QEM is applied,

according to Section 5.3.4. This may be understood by considering the variance of the
samples, which is proportional to ϵ. Hence the RMSE is proportional to

√
ϵ.

Since ϵ is typically far less than 1, it seems that Monte Carlo-based CI-QEM has a less
preferable performance. Nevertheless, it is noteworthy that the error scaling in the
CI-QEM-protected case is actually O(

√
ϵN−1

s ), where the number Ns of effective circuit
executions is a configurable parameter. The O(

√
N−1

s ) dependency on Ns originates
from the fact that the sampling variance scales as O(N−1

s ). Therefore, our results should
not be viewed as indicating the superiority of non-QEM-based solutions. Rather, they
should be viewed as a suggestion on the specific selection of Ns, in the sense that it
should be on the order of ϵ to ensure the error scaling is as beneficial as that of the
family of non-QEM-based solutions.

Similarly, by increasing Ns as a function of NG, one could also improve the error scaling
of Monte Carlo-based CI-QEM with the circuit size. Indeed, since the error of Monte
Carlo-based QEM scales as O(

√
NGN−1

s ), we can choose an Ns that is proportional to
NG in order to attain a constant error with respect to NG. Note that the exact chan-
nel inversion also has a constant error with respect to NG in the asymptotic limit of
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NG → ∞. Therefore, using Monte Carlo-based CI-QEM, we could use NG times the
number of samples to attain the same error scaling as that of QEM based on exact
channel inversion. In practical scenarios, however, this may be an excessive sampling
overhead. Fortunately, even if we use the same number of samples as that of the exact
channel inversion, Monte Carlo-based CI-QEM still exhibits a quadratic error scaling
improvement compared to the no-QEM-based case.

5.4.3 The Intrinsic Uncertainty of the Computational Results

In the previous discussions, we followed the definition of computational results in (5.5).
But even if the gates are decoherence-free, the intrinsic uncertainty of quantum states
may impose some randomness on the computational result. To be specific, for a quan-
tum state ρ, the variance of a quantum observable O can be computed as follows [62]:

Varρ{O} = Tr
{
O2ρ

}
− (Tr {Oρ})2, (5.46)

which quantifies the intrinsic uncertainty of the state ρ under the observable O. If the
quantum circuit is executed Ns times, the resultant variance is given by N−1

s Varρ{O},
and hence the mean squared error can be expressed as

MSE = (r − r̃)2 +
1

Ns
· Varρ{O}. (5.47)

We first consider the case where no QEM is applied. Since the observable Mob is typi-
cally implemented via a decomposition into Pauli operators in VQAs, its variance may
also be decomposed as

VarρNG
{Mob} =

4n

∑
i=1

1
2n [vob]

2
i VarρNG

{Si}. (5.48)

For each Pauli operator, we have

VarρNG
{Si} = Tr

{
S2

i ρNG

}
− (Tr {SiρNG})2

= 1 − (Tr {SiρNG})2.
(5.49)

Hence we arrive at

VarρNG
{Mob} =

4n

∑
i=1

1
2n [vob]

2
i (1 − (Tr {SiρNG})2)

= vT
ob

(
1
2n I − V2

NG

)
vob,

(5.50)
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where we have VNG = diag {vNG}. Note that from (5.7) we have [vNG ]
2
i ≤ 2−n for all i,

hence it follows that
0 ≤ VarρNG

{Mob} ≤ 1. (5.51)

Thus the MSE of the computational result is bounded by

(r − r̃)2 ≤ MSE ≤ (r − r̃)2 +
1

Ns
. (5.52)

When quantum circuits are protected by QEM, it has been shown in [37] that if the
number of effective executions is Ns, the variance equals to that in the case, where no
QEM is not applied. Thus the scaling of the total error is on the order of

O

(√
ϵNG

Ns

)
+ O

(√
1

Ns

)
.

This implies that, the effect of CI-QEM may not be very significant when ϵNG ≪ 1. But
note that when ρNG corresponds to one of the eigenstates of all Pauli operators i having
a non-zero coefficient [vob]i, we have

VarρNG
{Si} = 1 − (Tr {SiρNG})2 = 0,

which follows from the fact that Pauli operators only have eigenvalues of ±1. There-
fore, CI-QEM would be more effective when the final state ρNG is close to one of these
eigenstates.

5.5 Numerical Results

In this section, we evaluate the analytical results presented in the previous sections via
numerical examples. If not otherwise stated, the following parameters and assump-
tions will be used throughout the section.

• The number of effective circuit executions is Ns = 5000;

• For Monte Carlo-based CI-QEM, we use the same number of samples (i.e., actual
circuit executions) as that of CI-QEM based on exact channel inversion;

• The quantum channels modelling the gate imperfections are single-qubit depolar-
izing channels having gate error probability 10−3.

5.5.1 Rotations Around the Bloch Sphere

We first consider the simplest scenario, where the quantum circuits are constituted of
single-qubit gates, because these simple circuits allow us to clearly observe the error
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|0〉 X X · · · X

1

FIGURE 5.5: Circuit implementing repeated Pauli X gates.

Repeat NG/3 times

|0〉 H Rz(θ) H

1

FIGURE 5.6: Circuit implementing repeated θ-rotations around the X-axis.
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FIGURE 5.7: The RMSE versus NG of the results computed by quantum circuits con-
sisting of repeated Pauli X gates (as demonstrated in Fig. 5.5).

scaling described in the previous sections. In particular, we consider the circuits shown
in Fig. 5.5 and 5.6. The quantum observable Mob in this example is the Pauli Z operator
Z on the qubit, which satisfies

Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩ .

The corresponding PTM representation is given by vob = [0 0 0
√

2]T.

For the circuit consisting of repeated Pauli X gates shown in Fig. 5.5, the RMSE of the
computational results both with and without QEM protection is demonstrated in Fig.
5.7, as a function of NG. As it can be observed from the figure, when NG is relatively
small, the RMSE of circuits operating without QEM protection grows linearly with NG,
while the RMSE of circuits protected by Monte Carlo-based CI-QEM scales as O(

√
NG).

The RMSE of CI-QEM based on exact channel inversion scales as O(
√

NG) for small
NG, but converges to a constant (≈

√
N−1

s ) when NG is large. Furthermore, when
NG is large, the RMSE of circuits operating without QEM protection converges to a
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FIGURE 5.8: The RMSE versus gate error probability (NG = 10)of the results computed
by quantum circuits consisting of repeated Pauli X gates (as demonstrated in Fig. 5.5).

constant. This agrees with Proposition 5.1, which indicates that their computational
results converge to zero regardless of the quantum observable.

The RMSE scalings with respect to the gate error probability ϵ are shown in Fig. 5.8,
where we choose NG = 10, while the number of effective circuit executions, namely
Ns = 5000, does not vary as the gate error probability increases. It is noteworthy that
when ϵ is small, the RMSE of circuits operating without QEM protection is lower than
that of their counterparts protected by QEM. This phenomenon may be understood
from our discussion in Section 5.4.2, where we have indicated that the error scaling
of CI-QEM-protected circuits is O(

√
ϵN−1

s ). Compared to the O(ϵ) scaling of non-
QEM-protected circuits, the RMSE may be higher when ϵ is much smaller than Ns.
Interestingly, as seen from the figure, the square root scaling with respect to ϵ becomes
preferable to the linear scaling when ϵ is relatively large.

For the circuit comprising repeated rotations around the X-axis, as illustrated in Fig.
5.6, we set θ = π/256, and the results are plotted in Fig. 5.9. Observe that the envelope
of the RMSE curves exhibit similar scaling behaviours as those in Fig. 5.8, but there
are some oscillations. To understand the RMSE oscillations of circuits protected by
Monte Carlo-based CI-QEM, from (A.61) we may express the covariance matrix of vk

as follows
Σk = (11T + Ξk)⊗ GkΣk−1G†

k + Ξk ⊗ µkµT
k . (5.53)

Note that the term Ξk ⊗ µkµT
k varies with k under the observable Mob = Z , and hence

the RMSE is oscillatory.
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FIGURE 5.9: The RMSE of the results computed by quantum circuits carrying out
repeated rotations around the X-axis of the Bloch sphere (as shown in Fig. 5.6), as

functions of NG, when θ = π/256.

The RMSE oscillation of non-QEM-protected circuits may be better understood by in-
vestigating the evolution of the computational result r as NG increases, which is por-
trayed in Fig. 5.10. It can be seen that the mean values of the non-QEM-protected
circuits fit nicely within the bounds given by Proposition 5.1. Furthermore, the RMSE
of CI-QEM-protected circuits is mainly contributed by the variance of the computation
results, while the RMSE of circuits not protected by QEM is mainly determined by the
mean value, since in the latter case the bias is far larger than the standard deviation.
As the dynamic range of the mean values is reduced, by coincidence, there are multi-
ple intersections of the ground truth and the mean values, and thus the computational
error of non-QEM-protected circuits oscillates as NG increases.

Finally, we demonstrate that some non-Pauli channels may also exhibit the O(
√

NG)

error scaling. In particular, we consider amplitude damping channels [107] having the
following PTM representation

Cdamp =




1 0 0 0
0

√
1 − γ 0 0

0 0
√

1 − γ 0
γ 0 0 1 − γ




, (5.54)

where γ is the amplitude damping probability. Here, we set the amplitude damping
probability to γ = 1 × 10−3. The RMSE scalings with respect to the number of gates
NG are shown in Fig. 5.11 for the circuit comprising repeated Pauli X gates, and in
Fig. 5.12 for the circuit consisting of repeated (π/256) rotations around the X-axis. We
observe that the curves corresponding to CI-QEM based on exact channel inversion
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FIGURE 5.10: The computational results of QEM-protected and non-QEM-protected
circuits configured for carrying out repeated rotations (θ = π/256) around the X-axis

of the Bloch sphere (shown in Fig. 5.6), as functions of NG.
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FIGURE 5.11: The RMSE of the results computed by quantum circuits shown in Fig.
5.5, which are contaminated by amplitude damping channels, as functions of NG.

and those corresponding to Monte Carlo-based CI-QEM exhibit the O(
√

NG) scaling
behavior, while the non-QEM-protected curves scale as O(NG), which is similar to the
error scaling under Pauli channels as portrayed in Fig. 5.7 and Fig. 5.9.
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FIGURE 5.12: The RMSE of the results computed by quantum circuits shown in Fig.
5.6, which are contaminated by amplitude damping channels, as functions of NG.

5.5.2 The Quantum Approximate Optimization Algorithm Aided Multi-User
Detection

In this subsection, we apply our analytical results to a practical variational quantum
algorithm, the quantum approximate optimization algorithm [32], which aims for solv-
ing combinatorial optimization problems assuming the following form

max
z∈{−1,+1}n

K

∑
k=1

wk

nk

∏
i=1

zlk,i , (5.55)

where z = [z1 . . . zn]T, and lk,i ∈ {1, 2, . . . , n}. In the formulation of the quantum
approximate optimization algorithm, the problem (5.55) is transformed into the maxi-
mization of ⟨ψ| H |ψ⟩, where the quantum observable H is given by

H =
K

∑
k=1

wk

nk

∏
i=1

Zlk,i . (5.56)

The trial state |ψ⟩ is prepared using a parametric circuit having an alternating structure,
so that

|ψ⟩ = e−iβPBe−iγPH · · · e−iβ1Be−iγ1H |+⟩⊗n ,

where P is the number of stages in the alternating circuit, and B is the “mixing Hamilto-
nian” [33] given by B = ∑n

i=1 Xi. The parameters β = [β1 . . . βP]
T and γ = [γ1 . . . γP]

T

are typically obtained using via an optimization procedure implemented on classical
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computers [34]. For the purpose of this treatise, here we do not optimize the parame-
ters, but use the following (suboptimal) adiabatic configuration [185] instead

γk = kP−1, βk = 1 − kP−1.

We consider the multiuser detection problem of wireless communications [186]. In
particular, assuming that the modulation scheme is BPSK, in a spatial division multiple
access system, the signal received at a base station equipped with m antennas from n
single-antenna uplink transmitters may be expressed as

y = Hx +ω,

where H ∈ Rm×n denotes the channel, x ∈ {−1,+1}n represents the transmitted
signal, and ω ∈ Rm is the noise. We assume here that the noise is i.i.d. Gaussian.
Hence the maximum likelihood estimate of x is given by

x̂ML = arg max
x∈{−1,+1}n

2(Hy)Tx − xTHTHx.

This may be further reformulated as the maximization of the quadratic form ⟨ψ| H |ψ⟩,
where

H =
1
Z

(
n

∑
i=1

[HTy]iZi −
n−1

∑
i=1

n

∑
j=i+1

[HTH]i,jZiZj

)
, (5.57)

and Z is a normalizing coefficient ensuring that the quantum observable H satisfies our
Assumption 3.

In this illustrative example, we consider the case where m = n = 4, and [ω]i ∼
N (0, 0.0631), ∀i, such that the signal-to-noise ratio is 12dB. We assume furthermore that
the channels between each pair of antennas are uncorrelated non-dispersive Rayleigh
channels, hence the entries of the channel H are i.i.d. Gaussian variables with zero
mean and variance m−1 [187]. For the quantum circuits, we choose gate error prob-
ability ϵ = 3 × 10−4. Under these assumptions, the RMSE scalings with respect to
P of non-QEM-protected circuits and that of circuits protected by Monte Carlo-based
CI-QEM are portrayed in Fig. 5.13. It can be observed that the non-QEM-protected
circuits exhibit an O(P) scaling, while the CI-QEM-protected circuits exhibit an O(

√
P)

scaling, as indicated by Propositions 5.2 and 5.4, respectively.

To illustrate the evolution of the computational results during the execution of circuits,
we plot the objective function values (i.e., ⟨ψ| H |ψ⟩) computed at each stage k of the
circuits in Fig. 5.14, for the case where P = 225. Note that the results computed by the
QEM-protected circuits converge monotonically towards the optimum, for which the
main source of error is the variance. By contrast, for the non-QEM-protected circuits,
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FIGURE 5.13: The RMSE of the results computed by QEM-protected and non-QEM-
protected circuits implementing the quantum approximate optimization algorithm

based on (5.57), as functions of the number of stages P.
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FIGURE 5.14: The objective function values computed at the k-th stage of the quan-
tum approximate optimization algorithm (for which P = 225) implemented based on

(5.57).

the results were on the right track for k < 100, but soon they deviate from their QEM-
protected counterparts, and start to converge to zero. In this example, the bound (5.25)
is not as tight as it was in Section 5.5.1, but it still indicates that the dynamic range of the
results computed by non-QEM-protected circuits decays exponentially as k increases.
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5.6 Conclusions and Future Research

5.6.1 Conclusions

The trade-off between the computational overhead and the error scaling behaviour of
both quantum circuits protected by Monte Carlo-based CI-QEM and their non-QEM-
protected counterparts was investigated. As for the non-QEM-protected circuits, we
have shown that the dynamic range of the noisy computational results shrinks expo-
nentially as the number of gates NG increases, implying a linear error scaling with NG.
By contrast, the error scales as the square root of NG in the presence of Monte Carlo-
based QEM, at the same computational cost as that of CI-QEM based on exact channel
inversion. Moreover, the error scaling of Monte Carlo-based QEM can be further im-
proved with increased computational cost. We have also demonstrated the analytical
results both for low-complexity examples and for a more practical example of the quan-
tum approximate optimization algorithm employed for multi-user detection in wireless
communications. It may be an interesting future research direction to apply the results
to other practical examples, or verify them using experimental approaches.

5.6.2 Future Research

• In this chapter, we have assumed that the channel inversion is implemented by
sampling directly from the quasi-probability representation of the inverse chan-
nels. In fact, other sampling strategies might also be useful when we consider the
Monte Carlo-based implementation of inverse channels. For example, let us con-
sider the inversion of a depolarizing channel, characterized by its Pauli transfer
matrix given by

C = diag{1, 0.99, 0.99, 0.99}. (5.58)

If we use the standard Monte Carlo sampling, we would sample from the dis-
tribution of [0.9925, 0.0025, 0.0025, 0.0025]T, which is obtained by renormalizing
the quasi-probability representation. However, when the number of samples is
not sufficiently large, for example, if we use Ns = 1000 samples, the events cor-
responding to small probabilities such as 0.0025 would rarely occur, leading to a
large variance. Alternatively, one may deliberately allocate more samples to these
rare events to reduce the variance. The correct expectation values may then be ob-
tained upon multiplying these samples by a weighting factor (which is less than
1) to these samples. However, this sample re-allocation might also increase the
variance corresponding to the error-free event. Therefore, an interesting future
research topic would be finding the optimal sampling allocation strategy in terms
of the overall sample variance.
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• The stabilizer measurements of coded gates may provide valuable information
about the channel condition. In light of this, circuit execution results may be used
simultaneously for both channel estimation and CI-QEM, which may further re-
duce the overall sampling overhead. Moreover, this may also improve the ca-
pability of channel estimation results to accommodate the channel variations vs.
time.

FIGURE 5.15: The “differential detection” method in code-aided CI-QEM.

Specifically, the quantum channels concerning the quality of the stabilizer check
circuits may be estimated relying on the measured syndromes, using a technique
similar to the concept of “differential detection” in wireless communications, as
portrayed in Fig. 5.15. Explicitly, the stabilizer-induced channels are represented
by the boxes following the corresponding stabilizer checks. As may be seen from
the figure, we may repeat the stabilizer checks for several rounds. This helps
us to extract the information about the quantum channel corresponding to the
stabilizer checks by subtracting the syndrome measured in different rounds of
stabilizer checks, as represented by the broken lines in Fig. 5.15. After solving
a linear system of equations based on these subtracted measurements, we may
then obtain rough estimates of the error probability of stabilizer checks. Finding
an efficient way of constructing these equations and refining the rough estimates
may be an important future research direction.





129

Chapter 6

Permutation Symmetry Based QEM

We have introduced symmetry-based QEM in Section 3.3.2. Specifically, the first symmetry-
based QEM method, namely symmetry verification, is only applicable when the type
of state symmetry characterized by the stabilizer group is precisely known in advance.
By contrast, the recently proposed virtual distillation (VD) concept [65, 66] relying on
the permutation symmetry of quantum states has the advantage that the symmetry of
the states can be easily manipulated. To elaborate, VD prepares multiple copies of the
same quantum state, and filters out the components in the states that are not identical
across all copies, as portrayed in Fig. 6.1. The observables are then measured on one of
the copies. The error mitigation capability can be flexibly strengthened by increasing
the number of copies, but naturally, at the cost of higher qubit overhead.

FIGURE 6.1: An n-th order virtual distillation method (relying on n copies of the para-
metric state-preparation circuits) applied to a variational quantum algorithm.

From the spectral analysis perspective of quantum states, when the noise is not ex-
tremely strong, the dominant eigenvector of the output state serves as a good approxi-
mation of the ideal noise-free output state [65]. In this sense, VD may be implemented
as a high-pass filter in the spectral domain, since its output would tend to the dominant
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FIGURE 6.2: An n-th order permutation filter proposed in this chapter applied to a
variational quantum algorithm.

eigenvector as the number of copies N tends to infinity, according to our discussion in
Section 3.3.2.2.

In this chapter, we first discuss the rationale of the VD method in more detail, and then
generalize this idea by proposing a general framework for designing optimal filters
in the spectral domain of quantum states. These filters assume a similar form as the
finite impulse response (FIR) filters widely used in classical signal processing tasks, by
computing a weighted average over the outputs of multiple virtual distillation circuits
of different orders, as shown in Fig. 6.2.

The rest of this chapter is organized as follows. In Section 6.1 we provide a detailed
introduction to permutation symmetry and virtual distillation. In Section 6.2, we de-
scribe the permutation filter as well as its design algorithm. Then, in Section 6.3 we
analyze the error-reduction performance of permutation filters. The results are further
illustrated using numerical results in Section 6.4. Finally, we conclude the paper in
Section 6.5.

6.1 Permutation Symmetry and Virtual Distillation

The permutation-based quantum error mitigation philosophy is inspired by the con-
cept of permutation tests, which constitute generalizations of the swap test [188]. As
portrayed in Fig. 6.3, the swap test is implemented by controlled-SWAP gates. It is
widely employed for evaluating the overlap between a pair of quantum states ρ and σ,
since the expected value of the measurement outcome is given by Tr{ρσ}. Naturally,
when we have two copies of the same state ρ, we may compute Tr{ρ2} using the swap
test.

The permutation tests, exemplified by the cyclic-shift test [189], may be implemented
using quantum circuits taking the form shown in Fig. 6.4. As a generalization of the
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FIGURE 6.3: Schematic of the swap test.
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FIGURE 6.4: Schematic of the permutation test.
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FIGURE 6.5: Schematic of Koczor’s method.

swap gate, an n-th order cyclic-shift circuit Pn taking an input of n pure states |ψ1, ψ2, . . . , ψn⟩
would output a shifted state |ψ2, ψ3, . . . , ψn, ψ1⟩. Note that the swap gate may be viewed
as a specific case of cyclic-shift circuit, since it is equivalent to P2. Similar to the swap
test, one may show that the expectation value of the outcome in an n-th order cyclic-
shift test is given by Tr{ρn} [65], when the inputs are represented by n copies of the
same mixed state ρ.

Typically, when quantum circuits are contaminated by decoherence, the output state
would approximately take the following form

ρ = λ1 |ψ⟩ ⟨ψ|+
2Nq

∑
i=2

λi |ψi⟩ ⟨ψi| , (6.1)

where |ψi⟩ denotes the eigenvector associated with the i-th largest eigenvalue of ρ,
and |ψ⟩ = |ψ1⟩ is the dominant eigenvector, which approximates the noise-free output
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FIGURE 6.6: The VD in [66]

state [65, 123]. Inspired by these observations, Koczor [65] proposed the concept of
permutation-based quantum error mitigation (which has later been generalized to the
concept of VD [66]), as portrayed in Fig. 6.5. Compared to the permutation test shown
in Fig. 6.4, it may be observed that the output of the VD circuit for a given unitary
observable U is given by

ỹ(n)VD = Tr {ρnU} , (6.2)

where n is the order of the circuit Pn, and we will also refer to it as the order of VD.
Another implementation yielding the same result as in (6.2) is proposed in [66], as
shown in Fig. 6.6. This implementation enables simultaneous measurement of multi-
ple compatible observables, and thus reduces the total number of circuit repetitions.
Note that all Pauli strings are unitary observables, hence they can be nicely fit into this
framework. Next, upon replacing the observable U by the identity operator I (i.e., the
original n-th order permutation test), one may also compute Tr {ρn}, and obtain the
final result

y(n)VD =
ỹ(n)VD

Tr {ρn} =
Tr {ρnU}
Tr {ρn} . (6.3)

The accuracy of this normalization procedure may be further improved by replacing
Tr {ρn} with λn

1 . However, λ1 is typically not known prior to the computation, and
is also difficult to be computed exactly from the observations. By contrast, Tr {ρn} is
readily obtainable by observing the identity operator.

Note that

ỹ(n)VD = λn
1 ⟨ψ| U |ψ⟩+ (1 − λ1)

n
2Nq

∑
i=2

pn
i ⟨ψi| U |ψi⟩ , (6.4)

where pi = λi(1 − λ1)
−1 satisfies ∑

Nq
i=2 pi = 1. When λ1 is far larger than the other

eigenvalues, it becomes clear from (6.4) that the term (1 − λ1)
n decreases much more

rapidly with n than λn
1 . Hence the contribution of the undesired components |ψi⟩ , i > 1

to the final computation result is substantially reduced by VD.
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FIGURE 6.7: Schematic of a third-order permutation filter Tr{(α1ρ3 + α2ρ2 + α3ρ)U}.

6.2 Permutation Filters

In this section, we propose a generalized version of virtual distillation, which will be
referred to as “permutation filters”. A third-order permutation filter is portrayed in
Fig. 6.7. As it may be observed from the figure, the third-order filter consists of the
third-order and the second-order VD circuits. In general, an n-th order permutation
filter would contain all the m-th order VD circuits, where m = 2, 3, . . . , n. Note that
these circuits can be activated one after the other by reusing the same qubit resources,
since the post-processing stage only involves a weighted averaging of the measured
outcomes, which are classical quantities.

Formally, an N-th order permutation filter may be expressed as an N-th order polyno-
mial of the input state ρ formulated as

Fα(ρ) =
N

∑
n=1

αN−n+1ρn, (6.5)

where α = [α1 α2 . . . αN ]
T ∈ RN . Correspondingly, the eigenvalues of the output state

are thus given by

hα(λ) =
N

∑
n=1

αN−n+1λn. (6.6)

Observe that the function hα(λ) may be viewed as the “spectral response” of the filter,
resembling the frequency response of conventional filters used in classical signal pro-
cessing tasks. The final computational result with respect to an observable U is given
by

y(N)
filter(U ) =

Tr {Fα(ρ)U}
Tr {Fα(ρ)}

. (6.7)

The reason that we do not include the constant term αN+1 in (6.5) is that it does not
contribute to the final computational results in (6.7) for most practical applications. To
elaborate, consider the Pauli string decomposition of observables used in variational
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quantum algorithms, taking the following form

H =
4Nq

∑
i=1

wiS (Nq)
i , (6.8)

where S (Nq)
i denotes the i-th Pauli string acting upon Nq qubits, given by

S (Nq)
i =

Nq⊗

j=1

S (1)
digit(i,j)+1, (6.9)

where digit(i, j) represents the j-th digit of i when treated as a base-4 number. Since
the single-qubit Pauli operators except for the identity have a trace of zero, we have
Tr {U} = 0 for every Pauli string U . Therefore, even if we include the constant coeffi-
cient αN+1 in our filter, it will not contribute to the final result, since we have:

αN+1Tr
{

ρ0U
}
= 0. (6.10)

As for the term involving the identity operator, we could simply account for it by
adding a constant to the final computational result, since Tr {ρ} = 1 always holds.

It is often convenient to design filters under an alternative parametrization, namely the
pole-zero representation widely used in classical signal processing theory. To elabo-
rate, in classical signal processing theory, filters are represented by a ratio between two
polynomials in the complex frequency domain. “Poles” refers to the roots of the de-
nominator polynomial, while “zeros” refer to the roots of the numerator polynomial.
When considering “FIR-like” filters taking the form (6.5) (since there is no denominator
in this formula), there are only zeros but no poles. Observe from (6.5) that the first zero
is at β = 0 due to the lack of the constant term. Upon denoting the remaining zeros by
β = [β1 . . . βN−1]

T, we have

Fβ(ρ) = ρ
N−1

∏
n=1

(ρ − βn I), (6.11)

and

hβ(λ) = λ
N−1

∏
n=1

(λ − βn). (6.12)

The relationship between α and β is

α =
N−1
⋆

n=1
[1, − βn]

T, (6.13)
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where we define ⋆K
n=1 vn := v1 ⋆ v2 ⋆ . . . ⋆ vK, and ⋆ denotes the discrete convolution

given by

[x ⋆ y]n =
min{k,m}

∑
i=max{1,k+1−n}

xiyk−i+1,

where x ∈ Rm, y ∈ Rn, and x ⋆ y ∈ Rm+n−1. Without loss of generality, we assume
that

β1 ≤ β2 ≤ . . . ≤ βN−1. (6.14)

6.2.1 The Performance Metric of Permutation Filter Design

For a given observable U , we would hope to minimize the estimation error

ϵU (β) =
∣∣∣y(N)

filter(U )− ⟨ψ| U |ψ⟩
∣∣∣

=

∣∣∣∣∣
∑2Nq

i=1 hβ(λi) ⟨ψi| U |ψi⟩
∑2Nq

i=1 hβ(λi)
− ⟨ψ| U |ψ⟩

∣∣∣∣∣

=

∣∣∣∣∣∣

1
hβ(λ1)

∑2Nq

i=2 hβ(λi) (⟨ψi| U |ψi⟩ − ⟨ψ| U |ψ⟩)

1 + [hβ(λ1)]−1 ∑2Nq

i=2 hβ(λi)

∣∣∣∣∣∣
.

(6.15)

However, in a typical variational quantum algorithm, a large number of unitary ob-
servables U1, . . . ,UNob would have to be evaluated. In light of this, we consider the
minimization of the following upper bound

ϵU (β) ≤ ϵ(β)

=
2

hβ(λ1)

∥∥hβ(λ̃)
∥∥

1 ,
(6.16)

where λ̃ = [λ]2:2Nq , and λ = [λ1 . . . λ2Nq ]T.

If we know a priori the distribution of λ̃, or in other words, the spectral density of ρ

(excluding the dominant eigenvalue), we may directly minimize the cost function ϵ(β)

as follows:
min

β
ϵ(β),

s.t. β ∈ B, (6.14),
(6.17)

where ϵ(β) can be rewritten as

ϵ(β) =
1

λ1 ∏N−1
n=1 (λ1 − βn)

∫ 1

λm

∣∣∣∣∣λ
N−1

∏
n=1

(λ − βn)

∣∣∣∣∣ f (λ)dλ,
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λm > 0 denotes the minimum value of λ, and f (λ) denotes the spectral density. The
feasible region B is given by

B = {β|β ≽ 0, β1 ≤ β2 ≤ . . . ≤ βN−1}.

For most practical scenarios, we have βi ≪ λ1, hence ϵ(β) may be approximated as

ϵ(β) ≈ ϵ̃(β) =
∫ 1

λm

∣∣∣∣∣λ
N−1

∏
n=1

(λ − βn)

∣∣∣∣∣ f (λ)dλ, (6.18)

since the optimal solution is hardly affected by the denominator. Note that hβ(1) is
always positive, hence we may further simplify the approximated objective function as
follows:

ϵ̃(β) =
∫ 1

λm

∣∣Gβ(λ)
∣∣dλ

=
N−1

∑
i=0

(−1)i
∫ βN−i

βN−i−1

Gβ(λ)dλ,
(6.19)

where Gβ(λ) = f (λ)λ ∏N−1
n=1 (λ − βn), and additionally we define βN = 1 and β0 = λm.

6.2.2 Practical Permutation Filter Design Algorithms

When f (λ) is known exactly, we may directly solve the optimization problem discussed
in the previous subsection. However, for practical applications, f (λ) is never known
precisely; it has to be estimated from observations. In this treatise, we fit Pareto distri-
bution [190, 191] to f (λ) which is formulated as:

f (λ) = kλk
mλ−(k+1), (6.20)

where k > 2 is a shape parameter.

The reason for using the Pareto distribution is two-fold. First of all, it approximates
our empirical observations concerning the output spectra of noisy quantum circuits
quite closely. Secondly, it fits nicely with the polynomial form of the permutation filter,
making the design problem more tractable. Specifically, under the parametrization of
the Pareto distribution, the indefinite integral of Gβ(λ) can be explicitly calculated as
follows:

G̃α(λ) =
1

kλk
m

∫
Gβ(λ)dλ

=
∫

λ−k
N−1

∏
n=1

(λ − βn)dλ

=
N

∑
n=1

αN−n+1

n − k
· λn−k.

(6.21)
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The definite integrals in (6.19) can then be obtained as

∫ βi+1

βi

Gβ(λ)dλ = kλk
m
(
G̃α(βi+1)− G̃α(βi)

)
. (6.22)

Note that for an N-th order permutation filter, we may obtain N − 1 observations m =

[m1 . . . mN−1]
T where mi = Tr

{
ρi+1}. These observations can be used to fit the Pareto

distribution to f (λ) using the method of moments [92]. For example, when N = 3, the
equations of moments are given by

1 − λ̂1(m)

2Nq − 1
=

kλm

k − 1
,

m1 − λ̂1(m)2

2Nq − 1
=

kλ2
m

k − 2
,

(6.23)

where λ̂1(m) is an estimate of λ1. Here, the quantities 1−λ̂1(m)

2Nq−1
and m1−λ̂1(m)2

2Nq−1
are es-

timates of the mean value and the variance of the spectrum, respectively. We do not
use the conventional sample mean and variance, because the eigenvalues cannot be
sampled directly. A natural choice of λ̂1(m) for an N-th order filter is

λ̂1(m) = ∥λ∥N = (mN−1)
1
N , (6.24)

which is asymptotically exact as N → ∞, since λ1 = ∥λ∥∞.

Using the equations of moments in (6.23), we may then estimate the unknown param-
eters k and λm. However, for the N = 2 case, the method of moments would encounter
an identifiability problem, since the number of observations (one) is less than the num-
ber of parameters (two). Fortunately, we may obtain the closed-form solution of β1 as
follows:

β1 = λm

[
2(1 + λk−1

m )−1
] 1

k−1 , (6.25)

which is obtained by taking the derivative of ϵ̃(β) with respect to β1 and setting it to
zero. For k ≥ 2, β1 can be closely approximated by

β1 ≈ µ = kλm(k − 1)−1, (6.26)

where µ is the mean value of the Pareto distribution. This may be seen by neglecting
the term λk−1

m (since typically λk−1
m ≪ 1 when k ≥ 2), and noticing that the ratio µ/β1

is then approximately (approximately because of neglecting λk−1
m ) bounded by

1 ⪅ µ/β1 ⪅
2−

1−ln 2
ln 2

ln 2
≈ 1.062,
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where the lower bound is attained at k = 2 and the upper bound is attained at k =

(1 − ln 2)−1. The mean value µ may then be estimated by

µ̂ =
1 − λ̂1(m)

2Nq − 1
. (6.27)

For the N > 2 case, it is difficult to obtain closed-form solutions of β. Furthermore, in
general, the optimization problem with respect to β may no longer be convex. Fortu-
nately, in the following proposition we show that ϵ̃(β) satisfies a generalized convexity
property, which guarantees that the global optimum is always attainable.

Proposition 6.1 (Invexity of the Permutation Filter Design Problem). The cost function
ϵ̃(β) in (6.17) is an invex1 function of β in the convex feasible region B. In other words, every
stationary point of ϵ̃(β) in B is a global minimum.

Proof. Please refer to Appendix A.9.

Proposition 6.1 implies that the following simple projected gradient descent iteration
rule

β̃(ℓ+1) = β(ℓ) − δ(ℓ) · ∂ϵ̃(β)

∂β

∣∣∣∣
β(ℓ)

,

β(ℓ+1) = TB

[
β̃(ℓ+1)

]
,

(6.28)

may be used to solve the problem in (6.17), despite that ϵ̃(β) may not be convex with
respect to β. The operator TB(·) projects its argument onto the convex feasible region
B, which can be implemented by simply sorting the entries of β after each iteration.
The step size parameter δ(l) can be determined using classic line search methods [193].
More sophisticated methods, such as modified Newton’s method specifically tailored
for invex optimization [194], may also be applied to accelerate the convergence.

According to our discussion in Appendix A.9, the cost function ξ(α) is a convex func-
tion of α. The reason that we do not solve directly this convex problem is that it is a
challenge to differentiate the cost function ξ(α). By contrast, it is relatively simple to
compute the gradient ∂

∂β ϵ̃(β), as follows:

∂

∂β
ϵ̃(β) =

N−1

∑
i=0

(−1)i ∂

∂β

∫ βN−i

βN−i−1

Gβ(λ)dλ

=
N−1

∑
i=0

(−1)i
∫ βN−i

βN−i−1

∂

∂β
Gβ(λ)dλ

=
N−1

∑
i=0

(−1)i+1
∫ βN−i

βN−i−1

gβ(λ)dλ,

(6.29)

1Invexity is a generalization of convexity, ensuring that the global optimal solutions can be found by
using the Karush-Kuhn-Tucker conditions [192].



6.2. Permutation Filters 139

Algorithm 1 Type-2 permutation filter design

Input: Spectral density parameters k and λm
Output: The filter weight vector α

1: Initialisation: β(0)

2: ℓ = 0;
3: repeat
4: Compute ∂ϵ̃(β)

∂β

∣∣∣
β(ℓ)

using (6.21), (6.22), (6.29) and (6.30);

5: Determine δ(ℓ) using line search methods;
6: Update β(ℓ+1) = β(ℓ) − δ(ℓ) · ∂ϵ̃(β)

∂β

∣∣∣
β(ℓ)

;

7: Sort the entries in β(ℓ+1) in the ascending order;
8: ℓ = ℓ+ 1;
9: until convergence conditions are met

10: Compute α = φ(β(ℓ)) using (6.13);
11: return α

where [gβ(λ)]i = λ−k ∏N−1
n=1
n ̸=i

(λ − βn). The order between the integration and the dif-

ferentiation is interchangeable, since Gβ(λ) = 0 for λ = βi, ∀i = 1, 2, . . . , N − 1. The
integrals can be computed using (6.21) and (6.22), but for [gβ(λ)]i the vector α should
be replaced by

α̃i =
N−1
⋆

n=1,n ̸=i
[1 − βn]

T. (6.30)

When low-complexity methods are preferred, a simple heuristic alternative, which will
be referred to as the “Type-1 permutation filter”, is to set

β1 = β2 = . . . = βN−1 = µ. (6.31)

Correspondingly, we refer to the aforementioned optimization-based method, summa-
rized in Algorithm 1, as the “Type-2 permutation filter”. In Section 6.3 we will show
that, even though the Type-1 filters rely on a heuristic method, they are capable of out-
performing VD.

To conclude, the complete workflow of an N-th order permutation filter for a given
observable U consists of the following steps:

1. Execute the original circuit and obtain the estimate of Tr {ρU};

2. Execute all n-th order virtual distillation circuits (2 ≤ n ≤ N), and obtain the
estimates of Tr {ρnU} as well as additional observations mn−1 = Tr {ρn};

3. Fit the spectral density model using the observations m = [m1 . . . mN−1]
T, and

determine the filter parameters α;

4. Obtain the final filtered result by classical post-processing.
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6.2.3 The Computational Overhead of Permutation Filters

In terms of the number of gates, the computational overhead of permutation filters is
the same as virtual distillation. The number of gates in order to implement the permu-
tation operation Pn (which is the additional gate cost of the protocol compared to the
unprotected circuit) has been discussed in [65]. Specifically, if the original unprotected
circuit acts on Nq qubits, implementing Pn would require Nq(n − 1) controlled-SWAP
gates (i.e. the Fredkin gate), which is on the order of O(Nq). Hence we may conclude
that the method would be beneficial when the algorithm circuit has an increasing depth
with respected to Nq.

As for the sampling overhead, permutation filters are slightly different from virtual dis-
tillation due to the weighted averaging process. For virtual distillation, an approximate
expression for the variance of a given observable U has been presented in [66]. Using
similar arguments, we may also obtain an expression for permutation filters as

Var{y(N)
filter(U )}

≈ 1 − ∑N
n=1 α2

N−n+1Tr {ρnU}2

(αN + ∑N
n=2 αN−n+1Tr {ρn})2

− 2(∑N
n=1 αN−n+1Tr {ρnU})

(αN + ∑N
n=2 αN−n+1Tr {ρn})3

×
N

∑
n=2

α2
N−n+1 (Tr {ρU} − Tr {ρnU}Tr {ρn})

+
(∑N

n=1 αN−n+1Tr {ρnU})2(1 − ∑N
n=2 α2

N−n+1Tr {ρn}2)

(αN + ∑N
n=2 αN−n+1Tr {ρn})4

.

(6.32)

The variance of the entire Hamiltonian H can then be calculated by a weighted sum-
mation over the Pauli observables. In light of this, the sampling overhead factor of
permutation filters may be defined as the ratio between the variance of the Hamilto-
nian estimator based on the permutation filter and that based on the unprotected cir-
cuit. We will evaluate the sampling overhead of permutation filters applied to practical
variational quantum algorithms using this metric in Section 6.4.3.

6.3 The Error Reduction Performance of Permutation Filters

In this section, we quantify the error reduction of permutation filters compared to VD
of the same order using the following performance metric.
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FIGURE 6.8: The spectral response of a third-order permutation filter, compared to
that of the third-order VD.

Definition 6.2 (Error Ratio). We define the error ratio between an N-th order permuta-
tion filter Fβ(·) and its corresponding N-th order counterpart based on VD as follows:

R(β) :=
ϵ̃(β)

ϵ̃(0)
. (6.33)

Note that VD is equivalent to a permutation filter that satisfies β = 0.

Intuitively, the permutation filters are narrowband notch filters, hence they should per-
form better when the “bandwidth” of the undesired spectral components is lower. To
see this more clearly, we consider the spectral response of a third-order permutation fil-
ter, as portrayed in Fig. 6.8. Observe that every zero contributes 10 dB per decade to the
slope of the filter gain.2 For both third-order permutation filters and for VD, the slope
will be 30 dB per decade beyond the largest zero. In light of this, the only region where
permutation filters have smaller gain is the narrowband range around the two largest
zeros. Therefore, permutation filters perform the best when the noise components are
concentrated in this region.

To make our aforementioned intuitions more rigorous, we define the following quanti-
ties to characterize the bandwidth.

Definition 6.3 (Noise Bandwidth). We define the bandwidth of the noise (i.e., the un-
desired spectral components λ̃ in a mixed state ρ) as follows:

B(λ̃) :=
√

E{|λ − µ|2}, (6.34)

2For readers do not familiar with classical signal processing theory, please refer to Appendix B.2 for
further explanation.
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where
E{g(λ)} :=

∫ 1

λm

g(λ) f (λ)dλ, (6.35)

denotes the expectation operation, and µ = E{λ} denotes the mean value of noise
components. We also define the relative noise bandwidth as

b(λ̃) := µ−1B(λ̃). (6.36)

Given the previous definitions, we are now prepared to state the following result con-
cerning the error ratio of Type-1 permutation filters.

Proposition 6.4 (Generic Error Ratio Scaling Behaviour of Type-1 Permutation Filters).
The error ratio R(β) of an N-th order Type-1 permutation filter, as a function of the relative
noise bandwidth b(λ̃), can be bounded by

R(β) ≤ 1
µ

[
b(λ̃)

√
2Nq − 1

]N−1
, (6.37)

as b(λ̃) → 0.

Proof. The term ϵ̃(0) can thus be written explicitly as

ϵ̃(0) = E{λN}. (6.38)

Using Jensen’s inequality [195], we have

ϵ̃(0) ≥ [E{λ}]N = µN . (6.39)

Therefore, from (6.33) we obtain

R(β) ≤ ϵ̃(β)µ−N

= E{|λ(λ − µ)N−1|}µ−N

≤ 1
µ
· E

{∣∣∣(λ − µ)µ−1
∣∣∣

N−1
}

,

(6.40)

where the last line follows from the fact that λ ≤ 1 holds for all eigenvalues. Further-
more, assume that we have access to the actual values of λ̃ (which will only be used for
calculating intermediate results), we have
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E

{∣∣∣∣
λ − µ

µ

∣∣∣∣
N−1

}
=

(
µ−1

∥∥λ̃ − µ1
∥∥

N−1

(2Nq − 1)
1

N−1

)N−1

≤
(

µ−1 ∥∥λ̃ − µ1
∥∥

∞

)N−1

≤
(

µ−1 ∥∥λ̃ − µ1
∥∥

2

)N−1

=
(

b(λ̃)
√

2Nq − 1
)N−1

.

(6.41)

Hence the proof is completed.

Proposition 6.4 supports our intuition that the error ratio decreases, as the noise band-
width becomes smaller. However, the constant

√
2Nq − 1 in (6.37) can be extremely

large for large Nq, when the bound becomes of limited practical significance. In the
following result we show that for spectral densities satisfying Pareto distributions, the
dependence of the bound on Nq can be eliminated.

Proposition 6.5 (Type-1 Filters Applied to Pareto-Distributed States). Assume that f (λ)
corresponds to a Pareto distribution, and that b(λ̃) < (N − 1)−1. The error ratio of an N-th
order Type-1 permutation filter can be bounded by

R(β) ≤ (N − 1)![1 + b(λ̃)]N

e ∏N−2
n=1 [1 − nb(λ̃)]

· [b(λ̃)]N−1

= O
{
[b(λ̃)]N−1

}
.

(6.42)

Proof. Please refer to Appendix A.10.

Both Proposition 6.4 and 6.5 show that, the error ratio of Type-1 filters decreases ex-
ponentially with the filter order N. For Type-2 filters, this may be viewed as an upper
bound of the error ratio, since their parameter vectors β are obtained via optimization.
By contrast, the parameter vectors of Type-1 filters are determined using only the mean
value of noise components, hence are suboptimal.

A natural question that arises is: under what practical conditions do the undesired
spectral components have small relative bandwidth? In the following proposition, we
show that the relative noise bandwidth decreases with the depth of quantum circuits,
as well as with the error rate of the gates in the circuits.

Proposition 6.6 (Exponential Spectral Concentration of Deep Quantum Circuits). As-
sume that each qubit is acted upon by at least L gates, and that each of the gates is contami-
nated by quantum channels containing Pauli noise, which have matrix representations under
the Pauli basis given in (A.108). We assume furthermore that the probability of each type of
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FIGURE 6.9: Schematic of a stage in the parametric state preparation circuit used in
the simulations. Here we set Nq = 4 only for illustration.

Pauli error (i.e., X error, Y error or Z error) on each qubit is lower bounded by ϵl. Under these
assumptions, the relative noise bandwidth can be upper bounded by

b(λ̃) ≤ 1 +
√

2Nq − 1
1 − 2−Nq − exp(−4ϵlL)

· exp(−4ϵlL)

= O {exp(−4ϵlL)} .

(6.43)

Proof. Please refer to Appendix A.11.

From Proposition 6.6 we observe that the relative noise bandwidth decreases exponen-
tially with the product of ϵl and L. This implies that the proposed permutation filters
would provide more significant performance improvements when the circuits are rela-
tively deep, or the gates therein are noisy.

6.4 Numerical Results

In this section, we further illustrate the results discussed in the previous sections us-
ing numerical simulations. In all simulations, we consider a class of parametric state
preparation circuit consisting of different number of stages, for which a single stage is
portrayed in Fig. 6.9. For illustration we drawn a four-qubit circuit, but in the actual
simulations we set Nq = 10. As observed from Fig. 6.9,3 each stage of the circuit is
constructed by two-qubit ZZ-rotation gates acting upon each pair of qubits, and single-
qubit X- and Y-rotation gates acting upon each qubit. The rotation angle of each gate is
a parameter to be determined. In the simulations, we choose the parameters by inde-
pendent sampling from uniform distributions over [−π, π], and the simulation results
are averaged over 100 random instances of the circuits. The gates are inflicted by de-
polarizing errors occurring at varying probabilities, but we always set the depolarizing
probabilities of two-qubit gates 10 times higher than that of single-qubit gates.

3The notation Rx, Ry, and Rz denote X-, Y-, and Z-rotation gates, respectively.
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FIGURE 6.10: The spectra of the output states of parametric state preparation circuits
having different depolarizing probability ϵ.

6.4.1 Spectral Properties of the Output States

We first demonstrate the spectral densities of the output states. In particular, we con-
sider parametric state preparation circuits having 10 stages acting on Nq = 10 qubits.
The spectral densities and the corresponding cumulative density functions for ϵ =

3 × 10−4 and ϵ = 3 × 10−3 are portrayed in Fig. 6.10 and Fig. 6.11, where ϵ denotes
the depolarizing probability of each two-qubit gate. The Pareto fit are also plotted for
comparison. We see that the Pareto distributions provide good approximations to the
eigenvalue spectra, except for very small eigenvalues. This also suggests that the Pareto
fit may become less accurate when the noise bandwidth is very narrow, for which the
approximation error becomes more significant.

6.4.2 The Filter Design Metric

Next, we investigate the values of the cost function ϵ̃(β) for filter design under different
scenarios, which may be used for evaluating the performance of the filters irrespective
of the specific choices of observables.

In Fig. 6.12, we compare the values of ϵ̃(β) obtained both by our permutation filters
and by VD, as functions of the number of stages in the state preparation circuits. The
depolarizing probability of two-qubit gates is 1.25 × 10−3. In this figure, the curve
“Closed-form, 2nd order” corresponds to the second-order permutation filter designed
based on the closed-form solution in (6.25)–(6.27). We observe from the figure that
permutation filters significantly outperform VD, when the number of stages is large,
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FIGURE 6.11: The Pareto fits of the output spectra of parametric state preparation
circuits having different depolarizing probability ϵ.

10 20 30 40 50 60

-60

-50

-40

-30

-20

-10

0

10

20

VD, 2nd order

VD, 3rd order

Closed-form, 2nd order

Optimal, 2nd Order

Optimal, 3rd Order

Type-1, 3rd Order

Type-2, 3rd Order

0.5 1 1.5 2 2.5 3 3.5

-6

-5

-4

-3

-2

-1

0

1

2

FIGURE 6.12: The value of the design metric ϵ̃(β) in (6.19) for both VD and for the
proposed methods, as functions of the number of stages. The two-qubit depolarizing

probability is 1.25 × 10−3.

for both the second-order case and the third-order case. In particular, in the second-
order case, both the Type-1 and Type-2 permutation filters have the same parameters β,
and we see that their performance is very close to that of the optimal solution, which is
obtained by directly solving (6.17) relying on the full a priori knowledge of the spectral
density f (λ).

For the third-order case, we see that the Type-2 filter slightly outperforms the Type-1
filter, when the number of stages is relatively small. Intuitively, by adjusting the two
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FIGURE 6.13: The value of the design metric ϵ̃(β) in (6.19) for both VD and for the
proposed methods, as functions of the number of stages. The two-qubit depolarizing

probability is 5 × 10−3.
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FIGURE 6.14: The value of the design metric ϵ̃(β) in (6.19) for both VD and for the
proposed methods, as functions of the depolarizing probability.

zeros of the third-order filters, it is indeed possible to achieve a better error-reduction
performance than that of simply placing the zeros at the same point. However, the
effect of adjusting the positions of zeros would be less significant when the noise band-
width is smaller, corresponding to the case where the number of stages is large. Closer
scrutiny reveals that the performance of both the Type-1 and Type-2 third-order filters
become similar when the number of stages is large, especially when it is larger than
45. By contrast, the performance of the Type-2 filter is near-optimal when the number
of stages is moderate (around 25-40). This trend may prevail, because the Pareto fit
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FIGURE 6.15: The error ratio R(β) in (6.33) between Type-1 permutation filters and
VD vs. the reciprocal of the relative noise bandwidth b(λ̃).

becomes more accurate, when the noise bandwidth is moderate.

In Fig. 6.13, we consider the case where the two-qubit depolarizing probability is 5 ×
10−3, which is four times that of Fig. 6.12. The trends of the curves are similar to those
of the lower depolarizing probability scenario. It may now be seen more clearly that
the Type-2 permutation filter substantially outperforms its Type-1 counterpart, when
the number of stages is small.

Next, in Fig. 6.14, we consider circuits having varying depolarizing probabilities. The
number of stages is fixed to 10. We observe a similar increasing gap between the per-
mutation filters and VD. In addition, the Type-2 permutation filter also exhibits better
performance for moderate depolarizing probabilities.

In Fig. 6.15, we illustrate the scaling behaviour of the error ratio between the type-1 per-
mutation filters and VD, which has been discussed in Section 6.3. In particular, we plot
the error ratios computed using the data presented in Figures 6.12, 6.13 and 6.14. We
observe that when the relative noise bandwidth b(λ̃) is small (less than around 0.5), all
error ratios are reduced roughly polynomially with [b(λ̃)]−1. Furthermore, the slopes
of the curves are almost equal to the asymptotes scaling quadratically and linearly with
b(λ̃), respectively for third-order and second-order filters. These observations corrob-
orate Propositions 6.4 and 6.5.

Finally, in Fig. 6.16 and Fig. 6.17, we demonstrate that the commonly used metric of
noisiness, namely the expected number of errors, does not determine the relative noise
bandwidth on its own, and hence does not solely determine the error ratio between
permutation filters and VD. To this end, we fixed the number of expected errors, and
change the number of stages and the depolarizing probability accordingly. As it can



6.4. Numerical Results 149

10
1

10
2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FIGURE 6.16: The relative noise bandwidth b(λ̃).
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FIGURE 6.17: The error ratio R(β) in (6.33) between permutation filters and VD. The
number of expected errors is 0.7.

be seen from Fig. 6.16, the relative bandwidth shrinks with the number of stages, even
when the number of expected errors is fixed. Similarly, we observe from Fig. 6.16 and
Fig. 6.17 that the error ratio decreases with decreasing depolarizing probability (or in-
creasing number of stages).

From the discussions in this subsection, we may conclude that the benefit of the per-
mutation filter method is more significant when the circuit is rather noisy, or it is deep
but is constituted by gates having relatively small error probabilities.
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6.4.3 Case Study: QAOA-Aided Multi-User Detection

In this subsection we demonstrate the performance of permutation filters when applied
to a practical variational quantum algorithm, namely the QAOA. The parametric state-
preparation circuits of QAOA are multi-stage circuits having an alternating structure,
which take a plus state |+⟩⊗Nq as the input and produce the following output

|ψ⟩out = e−ıbNLHM e−ıcNLHP . . . e−ıb1HM e−ıc1HP |+⟩⊗Nq , (6.44)

where NL denotes the number of stages, HM denotes the mixing Hamiltonian defined
as HM := ∑

Nq
n=1 Xi (Xi denotes the Pauli-X operator acting on the i-th qubit), and HP

denotes the phase Hamiltonian that encodes the problem to be solved. The parameters
b = [b1, . . . , bNL ]

T and c = [c1, . . . , cNL ]
T control the dynamic of the algorithm, and are

typically determined by an iterative optimization procedure [32]. Since we focus on the
performance evaluation for error mitigation methods, here we consider a suboptimal
linear scheduling [185] instead of optimizing for the parameters, given by cℓ = ℓ/NL

and bℓ = 1 − ℓ/NL.

In particular, we construct the phase Hamiltonian corresponding to the multi-user de-
tection problem [186] for wireless communication systems.4 For an m × n multiple-
input mutliple-output (MIMO) system, the received signal may be modelled as

y = Hx + ω,

where H denotes the MIMO channel, x represents the transmitted signal, and ω de-
notes the noise. For simplicity of the illustration, we assume that the noise is i.i.d.
Gaussian on each receiving antenna, and that the modulation scheme is binary phase-
shift keying (BPSK), hence x ∈ {−1, 1}n and H ∈ Rm×n. The phase Hamiltonian corre-
sponding to the maximum likelihood estimator of x is thus given by

n

∑
k=1

[HTy]iZi −
n−1

∑
i=1

∑
j>i

[HTH]i,jZiZj. (6.45)

We consider the following scenario for the numerical simulation: Nq = m = n = 10,
the channel H has i.i.d Gaussian entries with zero mean and a variance of 1/m = 0.1,
and the signal-to-noise ratio is 13dB, implying that [ω]i ∼ N (0, 0.05).

We first fix the number of expected errors at 0.7 and investigate the dependency of the
computational error (the absolute difference between the error-free result and the result
computed relying on noisy circuits based on the entire Hamiltonian) on the number of
stages. As it may be seen from Fig. 6.18, the permutation filters are more beneficial
when the circuit is deep, as have been discussed in Section 6.4.2. We may also observe

4For readers not familiar with wireless communication, just note that it is a quadratic unconstrained
binary optimization problem.
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FIGURE 6.18: The computational error of permutation filters applied to QAOA-aided
multi-user detection vs. the number of stages, where the number of expected errors is
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errors is fixed at 0.7.

from Fig. 6.19 that the sampling overhead is nearly constant with the number of stages,
suggesting that the number of expected errors might be the principal determining fac-
tor of the overhead.

Next, we present the relationship between the computational error and the number
of expected error, with a fixed number of stages NL = 50, in Fig. 6.20. It is seen
from the figure that the permutation filter improves the error mitigation performance
significantly when the number of expected errors is large. However, it should also be
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noted that the sampling overhead increases dramatically when the number of expected
errors is larger than 1, as shown in Fig. 6.21. Extra care should be taken for this issue,
since a high sampling overhead may render the error mitigation method unfavorable
in practice.
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6.5 Conclusions and Future Research

6.5.1 Conclusions

In this chapter, we have proposed a general framework for designing FIR-like permuta-
tion filters for mitigating the computational errors of variational quantum algorithms.
In particular, the filter takes a polynomial form, combining different order of VD cir-
cuits. The original VD circuits may be viewed as special cases of permutation filters
having only one non-zero coefficient. We have also shown that the filter design prob-
lem is an invex problem, hence the algorithm is guaranteed to converge to the global
optimum. For narrowband noise scenarios, we have also shown a polynomial error
reduction compared to VD. This implies that permutation filters improve the error-
reduction performance more substantially for quantum circuits having large depth or
higher gate error rate.

6.5.2 Future Research

• We note that the performance metric we used for filter design is an upper bound
of the error magnitude across all unitary observables. A possible future research
direction is to find other metrics better suited to specific classes of practical ob-
servables. For example, many combinatorial optimization problems and quantum
chemistry problems may be encoded in Hamiltonians that can be decomposed
into a weighted sum of low-degree Pauli strings [62]. One may derive tighter
upper bounds of the error magnitude particularly for these Pauli strings.

• From a broader perspective, permutation filter is a technique aiming for extract-
ing the dominant eigenvector from a noisy quantum state represented by its den-
sity matrix. In this context, a related technique is quantum principal component
analysis (QPCA) [196], which extracts the principal components (i.e., the eigen-
vectors associated with the largest k eigenvalues) by using fractional-order swap
operators and quantum phase estimation. Specifically, in virtual distillation and
permutation filters we use the original swap operator S between different copies
of the state ρ to obtain an integer power of ρ, such as ρ2 and ρ3. By contrast, in
QPCA one use the fractional-order swap operator ejtS to implement the Hamilto-
nian simulation taking the density matrix ρ as the Hamiltonian, which is obtained
using the following approximation:

trρ

{
e−jS t(ρ ⊗ σ)ejS t

}
= cos2 tσ + sin2 tρ − j sin t cos t[ρ, σ]

= σ − jt[ρ, σ],
(6.46)
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which corresponds to the evolution of e−jtρσejtρ. This enables us to estimate the
eigenvalues (especially, the largest eigenvalue) of ρ using quantum phase estima-
tion, as discussed in Section 2.5.1. Furthermore, since we focus on the dominant
eigenvector, we may design a filter directly in the spectral domain to extract the
largest eigenvalue and uncompute the phase estimation subroutine, following as
similar design philosophy as the HHL algorithm [16] discussed in Section 2.5.1.
This procedure is portrayed in Fig. 6.22.
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FIGURE 6.22: The workflow of the direct spectral-domain filter for permutation sym-
metry based QEM.

Compared to permutation filters, the QPCA-based method might has a lower sam-
pling overhead, since it applies the filter directly on the spectral domain, and do
not need to compute higher-order quantities such as ρ3 that require a large number
of samples. However, this potential benefit comes at the price of more sophisti-
cated quantum circuits due to the quantum phase estimation subroutine, which
may impose additional errors on the computational results. Therefore, an inter-
esting research topic would be striking a beneficial trade-off between circuit depth
and sampling overhead by amalgamating QPCA with permutation filters.
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Chapter 7

Circuit Symmetry Based QEM

We have established in Chapter 6 that virtual distillation, as a special case of symmetry
verification concerning permutation symmetry, can be generalized to a class of FIR-
like filters of quantum states, namely the permutation filters. They may be viewed
as “spatial filters” verifying the spatial consistency of quantum circuits, since qubits
are typically physical entities that occupy disjoint spatial areas. In this chapter, we
present another possible direction of generalizing symmetry verification, by exploiting
circuit symmetries instead of state symmetries. This enables us to verify the temporal
consistency of quantum circuits.

A related topic, namely the superposition of causal orders [76–78], which can be phys-
ically realized using the quantum switch of [79], has been investigated from the per-
spective of quantum communication. Specifically, it has been shown that the capacity
of two quantum channels A and B may be improved by producing a coherent super-
position between their compositions of different orders, i.e. A ◦ B and B ◦A [197–199].
More surprisingly, non-zero capacity is achievable even if both the capacity of A and
that of B are zero [200]. The implementation of the quantum switch relies on a con-
trol qubit, the state of which may be used to indicate the commutativity between the
composite channels.

In this chapter, we argue that the quantum switch based method can be beneficially
used for QEM, with some modifications. In particular, the quantum switch and its
derivations are capable of verifying circuit symmetries such as the commutativity be-
tween quantum gates. This is in stark contrast to existing symmetry verification meth-
ods relying on stabilizer checks, which aim for verifying the specific properties of quan-
tum states instead of circuits.

To be more specific, for quantum circuits consisting of mutually commuting gates, the
original form of the quantum switch to verify the gate commutativity. However, the
gate commutativity is a relatively weak symmetry condition, since it cannot be used
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to identify any error that commute with the gate itself. To this end, for quantum cir-
cuits that are known to commute with certain operators, especially Pauli operators,
we propose a modified quantum switch based method termed as the “spatio-temporal
stabilizer (STS)”, which may be used for detecting and mitigating errors violating the
commutativity condition. In contrast to conventional stabilizer-based symmetry verifi-
cation, STSs do not depend on the specific quantum state, hence they are more gener-
ally applicable.

In Section 3.3.2, we have mentioned a fundamental difference between state symme-
tries and circuit symmetries, namely the simultaneous observability. This property is
important, because only those symmetry conditions that can be simultaneously veri-
fied can contribute to the error mitigation capability at the same time. In particular,
state symmetries are by definition simultaneously observable, since they form a stabi-
lizer group. However, as will be shown in Section 7.3.3 this does not necessarily apply
to circuit symmetries, hence the conditions under which STSs are simultaneously ob-
servable becomes practically significant.

We organize the rest of this chapter as follows. In Section 7.1, we elaborate on the differ-
ence between state symmetries and circuit symmetries. Then, in Section 7.2, we present
the implementations of the quantum switch for verifying gate commutativity. For cir-
cuits having explicitly known symmetries, we propose the spatio-temporal stabilizers
method in Section 7.3. In particular, we present the analysis and the implementation
of spatio-temporal stabilizers in Section 7.3.1 and 7.3.2, respectively, followed by our
discussions of the associated practical issues, including the simultaneous observability
and the accuracy vs. overhead trade-off in Section 7.3.3 and 7.3.4. We then discuss the
strategies of applying the method of spatio-temporal stabilizers to practical quantum
algorithms in Section 7.4. Our numerical results are discussed in Section 7.5, and finally,
we conclude in Section 7.6.

7.1 State Symmetry and Circuit Symmetry

In this section, we discuss the difference between quantum state symmetries as well as
circuit symmetries, and show the importance of distinguishing them from each other.

Let us consider the simple quantum circuit portrayed in Fig. 7.1. In this diagram, Rx(·)
denotes a single-qubit X-rotation gate, while Rxx(·) denotes a two-qubit XX-rotation
gate. Note that this circuit may be represented by an operator that is diagonal under
the X-basis. To see this, recall that all Z-rotation gates are represented by diagonal
matrices under the conventional computational basis, also known as the Z-basis. By
the same token, all X-rotation gates are diagonal under the X-basis, since we could turn
X-rotations into Z-rotations by changing the basis. When the input state of the circuit is
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|+〉 Rx(ϕ1)

Rxx(ϕ5)

Rx(ϕ7)

|+〉 Rx(ϕ2)

Rxx(ϕ8)

|+〉 Rx(ϕ3)

Rxx(ϕ6)

|+〉 Rx(ϕ4) Rx(ϕ9)

1

FIGURE 7.1: A quantum circuit having symmetries that may be viewed from both
state-oriented and circuit-oriented perspectives.

|+⟩⊗4 as shown in the figure, we observe two different types of symmetries as follows:

• State symmetry: The output state of the circuit has the stabilizer S = X1X2X3X4,
where Xi denotes the Pauli-X operator acting on the i-th qubit. This stabilizer may
be used to detect Z-errors.

• Circuit symmetry: This circuit can be diagonalized under the X-basis. Conse-
quently, we have: 1) Every gate in this circuit commutes with one another; 2) The
circuit commutes with the operator S .

Observe that in this simple example, the circuit symmetries are more fundamental and
more essential than the state symmetry. Indeed, the stabilizer S originates from the fact
that the circuit commutes with S , and that the input state is an eigenstate of S . If the
input state is different, the state may no longer be stabilized by S , and hence symmetry
verification techniques based on stabilizer checks are no longer applicable. However,
the circuit symmetries are still valid in this case. This motivates us to design efficient
techniques for verifying circuit symmetries and for mitigating errors that violate these
symmetries.

7.2 Gate Commutativity Verification: Quantum Switch

In this section, we show that the commutativity of gates in a quantum circuit could by
verified by exploiting the concept of quantum switches. Note that this is a weaker cir-
cuit symmetry compared to “the circuit commutes with some known operator”, which
will be investigated in the next section.

Quantum switches constitute a physical realization of the superposition of causal or-
ders, producing quantum states that are coherent superpositions of the outputs of cer-
tain quantum circuits. These circuits contain the same operations, but are executed
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in different sequential orders. Quantum switches have received the attention of both
communication and information theorists, since they have been shown to have the po-
tential of improving the overall capacity by superposing certain noisy channels [200].
In its simplest form, the quantum switch involving a pair of channels A and B would
effectively produce a superposition of A ◦ B and B ◦A, with the assistance of a control
qubit. The composite channel may be represented as follows:

C(ρ, ω) = ∑
i,j

Cij(ρ ⊗ ω)C†
ij, (7.1)

where ρ and ω represent the state of the data register and the control qubit, respectively,
while Cij denotes a Kraus operator of C given by

Cij = AiBj ⊗ |0⟩⟨0|+ Bj Ai ⊗ |1⟩⟨1| , (7.2)

with Ai and Bj denoting the Kraus operators of A and B, respectively. We observe
from (7.2) that A ◦ B is applied when we measure a |0⟩ on the control qubit, and B ◦ A
is applied otherwise. This suggest that if the control qubit is set to be a superposition
of |0⟩ and |1⟩, the resulting channel would be a superposition of A ◦ B and B ◦ A. A
classical example showing the information-theoretic advantage of the quantum switch
is that, when both A and B are entanglement-breaking channels (which are extremely
noisy) given by

A(ρ) = B(ρ) = 1
2
(XρX + YρY),

then we obtain a noiseless channel by performing post-selection based on the control
qubit.

Inspired by the example of entanglement-breaking channels, we propose to verify the
commutativity of gates using quantum switches. Intuitively, we first prepare the con-
trol qubit at a superposition state of |0⟩ and |1⟩ in order to produce a superposition of
A ◦ B and B ◦ A. Then, conditioned on the measured outcome of the control qubit, we
discard the computational results corresponding to the non-commutative components.
Formally speaking, we have the following result.

Proposition 7.1 (Commutator-Omitting Switches). Suppose that the control qubit is ini-
tialized to the state |+⟩. If we do not discard any result, the state of the data register is1

ρraw = ∑
i,j

{Ai, Bj}
2

ρ
{Ai, Bj}†

2
+

[Ai, Bj]

2
ρ
[Ai, Bj]

†

2
. (7.3)

1The commutator and the anti-commutator between two matrices A and B are defined as [A, B] :=
AB − BA and {A, B} := AB + BA, respectively.



7.2. Gate Commutativity Verification: Quantum Switch 159

|ψc〉 • X • U

|ψ〉 A B A

1

FIGURE 7.2: The quantum circuit implementation of a quantum switch between two
commuting gates.

By contrast, if we do discard the state once we measure a |−⟩ at the output of the quantum
switch, the state of the data register is given by

ρout =
1
Z ∑

i,j

{Ai, Bj}
2

ρ
{Ai, Bj}†

2
, (7.4)

where Z is a normalization factor given by

Z =
Tr{∑i,j{Ai, Bj}ρ{Ai, Bj}† + [Ai, Bj]ρ[Ai, Bj]

†}
Tr{∑i,j{Ai, Bj}ρ{Ai, Bj}†} .

Proof. Please refer to Appendix A.12.

From Proposition 7.1 we see that with the help of the quantum switch, we may filter
out the components taking the form of [Ai, Bj]ρ[Ai, Bj]

† from the output state. Since
A ◦ B should be equivalent to B ◦ A if both A and B are noiseless, we have [Ai, Bj] =

0 under the noise-free condition. This implies that by filtering out components like
[Ai, Bj]ρ[Ai, Bj]

†, we may mitigate the computational error. To elaborate further, let us
consider the classical average of the computational results of A ◦ B and B ◦ A, which
may be expressed as

ρavg =
1
2 ∑

i,j
AiBjρB†

j A†
i + Bj AiρA†

i B†
j . (7.5)

After some further manipulations, one would obtain ρavg = ρraw. This means that
by combining a quantum switch and post-selection, we could indeed eliminate certain
error components in the raw output state that do not satisfy the gate commutativity
conditions.

7.2.1 Circuit Implementation and Practical Issues

The quantum switch between two commuting gates A and B can be implemented with
the aid of a control qubit [77], as portrayed in Fig. 7.2. The states |ψc⟩ and |ψ⟩ represent
the states of the control qubit and that of the data register, respectively. The gate U
is applied for rotating the control qubit so that its state becomes diagonal under the



160 Chapter 7. Circuit Symmetry Based QEM

∣∣∣ψ(1)
c

〉
• X • U

. . . . . . . . . . . .
∣∣∣ψ(NG−1)

c

〉
• X • U

|ψ〉 A1 . . . ANG−1 ANG ANG−1 . . . A1

1

FIGURE 7.3: The implementation of the quantum switch methods containing NG > 2
commuting gates relying on multiple control qubits.

|ψc〉 • X • U

|ψ〉 A1 A2 A3 . . . ANG−1 ANG A1

1

FIGURE 7.4: The implementation of the quantum switch methods containing NG > 2
commuting gates using a single control qubit.

Z-basis. For example, the control qubit is typically initialized to the state |ψc⟩ = |+⟩,
and thus the corresponding U is the Hadamard gate. Upon measuring a |0⟩ on the
control qubit, we know that the commutativity between gates A and B is preserved.
Otherwise, we discard the computational result.

There are some noteworthy issues associated with this implementation, when we apply
it to practical quantum circuits. First of all, one of the two gates (e.g. the gate A in Fig.
7.2) has to be implemented in a controlled form, which increases the number of qubits
that it acts upon. In practice, a quantum gate acting on more qubits is typically noisier
than those acting on less qubits. Therefore, it is not clear whether the quantum switch
method achieves a practical accuracy improvement over the original (unprotected) cir-
cuit. Another issue is that there is no natural and unified generalization of the method
to NG > 2 gates under the gate model.2 Here we present some possible generalizations
relying on multiple control qubits, portrayed in Fig. 7.3 and 7.4.

7.3 Commutativity with Known Unitaries: Spatio-Temporal Sta-
bilizers

In the previous section, we have shown that quantum switches could be used to verify
the commutativity of quantum gates. But in some practical scenarios, we may have
a stronger circuit symmetry, in the sense that a block of gates commute with some
known unitaries. For example, in the QAOA, the part implementing a phase Hamilto-
nian commutes with all Pauli operators containing only Pauli-I and Pauli-Z operators.

2Natural generalizations do exist for other models of quantum computation, for example, photonic
quantum computers using the implementation described in [78].
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Intuitively, this stronger sense of symmetry may lead to better error mitigation perfor-
mance than that of gate commutativity.

7.3.1 Improving the Quantum Switch Method

In fact, we could verify this strong sense of circuit symmetry by slightly modifying the
quantum switch method. Let us denote the circuit to be verified as C(ρ) = ∑i CiρC†

i ,
and assume that the noiseless component in the circuit, represented by the Kraus op-
erator C1, commutes with the operator U (ρ) = UρU†. By applying a quantum switch
between C ◦ U and U ◦ C, we obtain the following composite circuit

D(ρ, ω) = ∑
i

Di(ρ ⊗ ω)D†
i , (7.6)

where
Di = CiU ⊗ |0⟩⟨0|+ UCi ⊗ |1⟩⟨1| . (7.7)

Similar to the result in Proposition 7.1, after applying D, the output state is given by

ρm ∝ ∑
i

{Ci, U}
2

ρ
{Ci, U}†

2
. (7.8)

Now we have a coherent superposition of C ◦ U and U ◦ C. But in order to verify the
strong circuit symmetry, we do not need to actually apply U , which differs from the case
discussed in the previous section. In light of this, we apply the inverse of U , namely
U †, to ρm and obtain the final output as

ρout ∝ ∑
i

Ci + U†CiU
2

ρ
C†

i + U†C†
i U

2
. (7.9)

In this way, we eliminate the impact of U on the noiseless component in the final result
by exploiting the commutativity between U and C1. Indeed, observe from (7.9) that for
the noiseless component C1, we have

C1 + U†C1U
2

= C1,

since UC1 = C1U, implying that it remains unchanged by our modified quantum
switch.

We could gain further insights into the error mitigation performance of this modified
quantum switch by considering more specific noise models. Here we assume that each
Kraus operator Ci can be decomposed as C̃iC1, namely the noiseless circuit followed
by some quantum channel modeling the noise. For the noiseless component we have
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C̃1 = I. Under these assumptions, we may obtain

Ci + U†CiU = C̃iC1 + U†C̃iC1U

=
(

C̃i + U†C̃iU
)

C1.
(7.10)

Let us further assume that the symmetry operator U is a Pauli operator, which is com-
mon for practical quantum circuits. Note that among the group of Pauli operators,
given a fixed operator U, any other operator either commutes with U or anti-commutes
with U. This implies that C̃i may be decomposed into two parts as

C̃i = C̃(comm)
i + C̃(anti)

i , (7.11)

where C̃(comm)
i commutes with U and C̃(anti)

i anti-commutes with U. This is because
all quantum operations can be represented as linear combinations of Pauli operators.
Therefore, (7.10) can be further simplified as

Ci + U†CiU =
(

C̃(comm)
i + C̃(anti)

i

)
C1

+
(

C̃(comm)
i − C̃(anti)

i

)
C1

= 2C̃(comm)
i C1,

(7.12)

since
U†C̃(anti)

i U = −C̃(anti)
i ,

and
U†C̃(comm)

i U = C̃(comm)
i .

Hence we have
ρout ∝ ∑

i
C̃(comm)

i C1ρC†
1

(
C̃(comm)

i

)†
. (7.13)

One could verify that similar arguments can also be applied to the case where C consists
of more than one noisy gates. For example, when there are two noisy gates in the circuit,
the Kraus operators satisfy Cij = C̃1,iC1,1C̃2,jC2,1, and we have

Cij + U†CijU

= C̃(comm)
1,i C1,1C̃(comm)

2,i C2,1 + C̃(anti)
1,i C1,1C̃(anti)

2,i C2,1,
(7.14)

as long as both C1,1 and C2,1 commute with U. If we assume that the channels only
impose anti-commutative errors (e.g., bit-flip channels when U = Z), and that the anti-
commutative Kraus operators such as C̃(anti)

1,i (and also others with different subscripts)

satisfy ∥C̃(anti)
1,i ∥ = O(

√
ϵ) where ϵ denotes the average error rate per gate, we may infer

from (7.14) that:
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|+〉 • X • H

|ψ〉 U C U U†

1

FIGURE 7.5: Direct implementation of an STS check.

|+〉 • • H

|ψ〉 U C U†

1

FIGURE 7.6: Simplified implementation of an STS check.

|+〉 • • • • H

X

C
X

X X

1

FIGURE 7.7: The STS S{X1(0), X2(0), X1(1), X2(1)}.

Remark 7.2. Upon the verification of the commutativity with U , the residual error for a
circuit containing multiple noisy gates is on the order of O(ϵ2).

Intuitively, by verifying a circuit symmetry U which is a Pauli operator, we may detect
any single-qubit anti-commutative error. This resembles the characteristics of error-
detecting stabilizer codes. Partly for this reason, we will refer to the aforementioned
modified quantum switch method as the “spatio-temporal stabilizer method” in the
rest of this chapter. This terminology will be explained in more detail in Section 7.3.2.

7.3.2 Implementation: Spatio-temporal Stabilizer Check

According to the discussion in Section 7.3.1, we could readily obtain a circuit imple-
menting the modified quantum switch portrayed in Fig. 7.5. But this circuit admits a
simplification, as portrayed in Fig. 7.6, which helps us better understand this method.
As it may be observed from the figure, the final state of the data register would be
U † ◦ C ◦ U (|ψ⟩⟨ψ|) if the control qubit is in |1⟩, when the controlled-U and controlled-
U † gates are being applied, and C(|ψ⟩⟨ψ|) if the control qubit is in |0⟩. But the control
qubit is in |+⟩ due to the Hadamard gate, hence if we measure a |0⟩ on the control qubit
at the output of the circuit, the Kraus operators on the data register are given by

Ki =
1
2

(
Ci + U†CiU

)
, (7.15)

as we have expected.
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|+〉 • • H

X

X

1

FIGURE 7.8: The conventional stabilizer X1X2.

To gain further intuition, we consider a toy example, where the circuit C commutes
with a Pauli operator U given by U = X1X2. In this case, the simplified circuit can be
constructed as shown in Fig. 7.7. From this figure we see that the simplified circuit
is rather similar to the ones performing stabilizer checks. For example, if we wish to
measure a stabilizer X1X2, we could use the circuit portrayed in Fig. 7.8. Compared to
Fig. 7.8, the circuit in Fig. 7.7 looks like measuring a bipartite “stabilizer”, for which
a part is applied before the circuit C, and the rest of it is applied after C. In fact, upon
denoting the input state of the data register as |ψ⟩, it is clear that the output state C |ψ⟩
has the following stabilizer

S = C(X1X2)C†(X1X2), (7.16)

and that the circuit in Fig. 7.7 indeed measures the stabilizer S. Since the gates in quan-
tum circuits are executed in a sequential manner, if we define the time right before C is
applied as t = 0, and the time right after C is applied as t = 1, we see that the stabilizer
S contains a (X1X2) at time t = 0, and another (X1X2) at time t = 1. Therefore, we re-
fer to S as a “spatio-temporal stabilizer” of the output state C |ψ⟩, which can be formally
defined as follows.

Definition 7.3 (Spatio-temporal Stabilizer). Consider a quantum circuit consisting of
N unitary gates given by C = CNCN−1 . . . C1, with input state |ψ⟩. We say that S is a
(N + 1)-partite spatio-temporal stabilizer (STS) of the output state C |ψ⟩, if it satisfies
SC |ψ⟩ = C |ψ⟩, and takes the following form

S = S{S0(0), S1(1), . . . , SN(N)}
:= CS†

0C†
1 S†

1 . . . C†
NS†

N .
(7.17)

The argument t in Sn(t) represents the time instance when this partial operator is ap-
plied. The partial operators Sn, n = 1 . . . N are called the components of S. When it is
more convenient, we may require that the partial operators {Sn}N

n=0 satisfy the follow-
ing (stronger) alternative condition

SNCNSN−1 . . . C1S0 = C. (7.18)

We say that C is an STS of the circuit if (7.18) is satisfied. In the context of STSs, we refer to
the control qubits as ancillas to be consistent with the terminologies in the conventional
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|+〉 • • . . . • H

|ψ〉 S0 C1 S1 . . . CN SN

1

FIGURE 7.9: The circuit measuring the STS in (7.17).

|+〉 Rx(ϕ1)

Rxx(ϕ5)

Rx(ϕ7) H

|+〉 Rx(ϕ2)

Rxx(ϕ8)

H

|+〉 Rx(ϕ3)

Rxx(ϕ6)

H

|+〉 Rx(ϕ4) Rx(ϕ9) H

1

FIGURE 7.10: A circuit having an STS as in (7.19), but it is difficult to find an operator
that commutes with it.

stabilizer formalism.

The circuit measuring the STS in (7.17) is portrayed in Fig. 7.9. We may observe from
Fig. 7.9 that the concept of STS actually generalizes the idea of verifying circuit com-
mutativity with known operators, since the partial operators S0 through SN can all be
different. A natural question that arises is, whether this generalization has any prac-
tical implication. In fact, we could illustrate the usefulness of this generalization, by
revisiting the example in Fig. 7.1. We now see that the circuit commutes with X⊗4, and
equivalently, we say that the circuit has the STS

S (st){X1(0), X2(0), X3(0), X4(0),

X1(1), X2(1), X3(1), X4(1)}.

But if we further apply a Hadamard gate to each of the qubits at the output of the
circuit, as portrayed in Fig. 7.10, it becomes difficult to find an operator that commutes
with the new circuit. By contrast, we could say that this circuit has a different STS given
by

S = S (st){X1(0), X2(0), X3(0), X4(0),

Z1(1), Z2(1), Z3(1), Z4(1)},
(7.19)

since the circuit (denoted by C) satisfies

Z⊗4C = CX⊗4. (7.20)
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t = 0 t = 1 t = 2 t = 3

Rz(ϕ1)

Rzz(ϕ5)

Rx(ϕ6)

Rz(ϕ2)

Rzz(ϕ4)

Rx(ϕ7)

Rz(ϕ3) Rx(ϕ8)

1

FIGURE 7.11: A circuit having two STSs S1 = S{Z⊗3(0), Z⊗3(2)} and S2 =
S{X⊗3(1), X⊗3(3)} that are not simultaneously observable.

7.3.3 Simultaneous Observability of STSs

When we consider the verification of a quantum state or a circuit that has multiple
symmetries, a natural requirement is that these symmetries can be checked at the same
time. Otherwise, only a subset of the symmetries can be verified in each computation,
which may result in an unsatisfactory error mitigation performance.

Simultaneous observability is a natural property of conventional stabilizers [48, Sec.
10.5.4]. A fundamental characteristic of quantum mechanics is the uncertainty princi-
ple, stating that a pair of observables can be simultaneously determined to an arbitrary
accuracy, if and only if they commute with each other. Stabilizers, being special cases of
observables, also follow this principle. In fact, all stabilizers of the same quantum state
commute with one another, and hence they form the so-called stabilizer group [48, Sec.
10.5.4]. This is easily seen by observing that

S1 |ψ⟩ = |ψ⟩ AND S2 |ψ⟩ = |ψ⟩
=⇒ S1S2 |ψ⟩ = S2S1 |ψ⟩ = |ψ⟩ ,

S1S2 ̸= S2S1 =⇒ S1S2 |ψ⟩ ̸= S2S1 |ψ⟩ .

Therefore, conventional stabilizers of the same state are always simultaneously observ-
able.

For STSs, however, simultaneous observability is not necessarily satisfied. To be more
specific, let us consider the example portrayed in Fig. 7.11. It is clear that the circuit has
two STSs, namely S1 = S{Z⊗3(0), Z⊗3(2)} and S2 = S{X⊗3(1), X⊗3(3)}. However,
S1 and S2 are not simultaneously observable, since X⊗3 does not commute with Z⊗3,
and hence the combination of S1 and S2 given by S{Z⊗3(0), X⊗3(1), Z⊗3(2), X⊗3(3)} is
not an STS of the original circuit. Therefore, we are motivated to propose the following
formal definition of simultaneous observability for STSs.

Definition 7.4 (Simultaneous Observability). Consider a set of STS checks of a certain
circuit C, implemented in the fashion shown in Fig. 7.9 with the aid of ancillas. If the
state of the data register at the output of C is the same regardless of the initial states of
the ancillas, we say that the STSs are simultaneously observable.
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the control qubit for S1

the control qubit for S2

the action scope of S1 the action scope of S2

FIGURE 7.12: STSs having temporally disjoint action scopes are simultaneously ob-
servable.

the control qubit for S1

the control qubit for S2

the action scope of S1

the action scope of S2

FIGURE 7.13: STSs having spatially disjoint action scopes are simultaneously observ-
able.

Intuitively, by initializing some ancillas to the state |0⟩, we effectively “disable” certain
STSs. Hence, simultaneous observability means that an arbitrary combination of the
STSs still constitutes an STS of the circuit. Unfortunately, determining the simultaneous
observability directly using the definition may be inconvenient when the number of
STSs is large, given the excessive number of possible STSs combinations. To this end,
we provide some sufficient conditions that may be useful in practice, based on the
following definition of the action scope of STSs.

Definition 7.5 (Action Scopes). The action scope of an STS S is a set S = Ss × St,
where Ss is the spatial action scope constituted by the indices of all qubits that the
component operators of S act upon, while St = {t|t ≤ tmax, t ≥ tmin, t ∈ Z} is the
temporal action scope, with tmax and tmin denoting the maximum and the minimum
temporal indices in S, respectively.

To elaborate, for example, the action scope of the STS S = S{X0(0), Z1(0), X1(2), Z2(3)}
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X

X

X

X

Z

Z

the action scope of S1

the action scope of S2
(after time shift)

time shift

FIGURE 7.14: STSs having disjoint action scopes after appropriate time shifts are si-
multaneously observable.

is {0, 1, 2} × {0, 1, 2, 3}. By exploiting the concept of action scope, the following suffi-
cient condition of simultaneous observability may be obtained.

Sufficient Condition 1 (Disjoint Action Scopes). If the action scopes of a set of STSs are
mutually disjoint, these STSs are simultaneously observable.

Proof. If the STSs S1 and S2 have disjoint action scopes, they can be viewed as STSs of
two disjoint sub-circuits of the original circuit, respectively, as portrayed in Fig. 7.12.
Hence they are simultaneously observable.

A more sophisticated (and potentially more useful) sufficient condition may be ob-
tained by modifying Sufficient Condition 1, detailed as follows.

Sufficient Condition 2 (Disjoint Action Scopes After Time Shift). Consider a set of STSs
A . The STSs in A are simultaneously observable, if for each Si ∈ A , we may impose
appropriate “time shifts” to ∀Sj ∈ A , j ̸= i, ensuring that the results after the time
shifts are still STSs of the original circuit, and that their action scopes are disjoint with
that of Si. A legitimate time shift for STS Sj is a translation of certain components in
Sj to another time instance, satisfying the condition that these components commute
with all the components of other STSs in A lying on the trajectory of the translation, as
portrayed in Fig. 7.14.

Proof. Denote the result of time shift for Sj as T (Sj). From Sufficient Condition 1 we
see that T (Sj) and Si are simultaneously observable, and thus the combination of Si

and T (Sj) is an STS. Since the translated components of Sj commute with those of
other STSs on the translation trajectory, we see that the combination of Si and Sj is also
an STS. By applying the arguments to all pairs of STSs in A , we arrive at the desired
result.

In the example shown in Fig. 7.14, the STSs S1 and S2 are simultaneously observable,
because X⊗2 commutes with Z⊗2. We will see how this is related to the STSs of the
QAOA in Section 7.4.3.
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FIGURE 7.15: Reducing the overhead of control qubits by combining simultaneously
observable STSs.
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FIGURE 7.16: Mitigating error proliferation by measuring a single STS relying on mul-
tiple control qubits.

7.3.4 The Accuracy vs. Overhead Trade-off

According to the discussion in Section 7.3.2, by default, we use one ancilla for checking
each STS. In fact, we could reallocate the qubit resources exploited for controlling STSs
to strike more flexible accuracy vs. overhead trade-offs. For example, we may combine
several simultaneously observable STSs into a single STS to reduce the overall qubit
overhead, as portrayed in Fig. 7.15.

The overhead reduction obtained by combining STSs comes at a price of stronger error
proliferation. To elaborate, observe that in the circuits shown in Fig. 7.15, the errors
may propagate from the ancillas to the data register. However, the circuit on the right
hand side suffers from more severe error proliferation, since the errors in the data reg-
ister may propagate to the control, and then back to the data register. Therefore, when
a higher accuracy is required and the qubit resources are abundant, we may measure a
single STS using multiple ancillas to mitigate error proliferation, relying on pre-shared
entanglements between the ancillas (i.e., the “cat” state [48, Sec. 10.6.3]), as portrayed
in Fig. 7.16. This implementation bears some similarity with the fault-tolerant mea-
surements of conventional stabilizers [48, Sec. 10.6.3].

Another type of computational overhead is the sampling overhead, which originates
from the fact that some computational results are discarded due to their failure to pass
the STS checks. To quantify the sampling overhead, we introduce the concept of sam-
pling overhead factor, originally defined in [1] for the analysis of channel inversion-
based QEM.

Definition 7.6 (Sampling Overhead Factor). The sampling overhead factor of a set A

of STSs applied to a circuit C is defined as

SOF(C, A ) =
1

ppass(C, A )
− 1, (7.21)
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|ψ1〉 • . . . H . . . RN−2 RN−1
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|ψN−1〉 . . . • . . . • . . . H R2

|ψN 〉 . . . • . . . • . . . • H

1

FIGURE 7.17: The circuit implementing an N-qubit QFT.

where ppass(C, A ) denotes the probability that the circuit passes all the STS checks in
A .

We will characterize the sampling overhead factors of the STSs applied to some practi-
cal quantum circuits in Section 7.5.

7.4 Case Study: The STSs of the QFT and the QAOA

In this section, we demonstrate the applicability and the characteristics of the STS
method using two classes of practical quantum circuits, namely that of the QFT and
the QAOA.

7.4.1 The STSs of the QFT Circuits

The QFT serves as a subroutine in the quantum phase estimation algorithm, which in
turn plays significant roles in other more sophisticated quantum algorithms, including
Shor’s algorithm and the Harrow-Hassidim-Lloyd (HHL) algorithm [12,16]. Therefore,
mitigating the error in the QFT is beneficial for a range of quantum algorithms.

The structure of an N-qubit QFT circuit is portrayed in Fig. 7.17, where the operator
Rn (in the controlled-Rn gates) is a single-qubit Z-rotation defined by Rn = |0⟩⟨0|+
eı2π2−n |1⟩⟨1|. It is clearly seen from the figure that each qubit in the circuit participates
in (N − 1) two-qubit controlled gates. For the gates before the Hadamard gate, the
qubit serves as the control, while for those after the Hadamard gate, the qubit serves as
the target.

We observe that for each qubit, the gates before the Hadamard gate and those after the
Hadamard gate commute with the Pauli-Z operator, respectively, because all the two-
qubit gates are controlled Z-rotations. Hence a straightforward implementation of the
STSs is to treat these two blocks of gates separately, as shown in Fig. 7.18. However,
this implementation may be excessively complex, since we would need two ancillas
for every data qubit. Thus we may combine both STSs on each qubit, and arrive at the
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FIGURE 7.18: The straightforward implementation of the STSs on the single qubit in
the QFT circuit.
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FIGURE 7.19: Combinging the STSs on the single qubit in the QFT circuit.

design portrayed in Fig. 7.19 after a slight simplification. The operator U in Fig. 7.19
has the following matrix representation

U = ZX =

[
0 −1
1 0

]
, (7.22)

which only differs from the Pauli-Y operator by a global phase. Note that this global
phase is non-negligible in the controlled-U operation.

7.4.2 Brief Introduction to the QAOA

The QAOA is an algorithm aiming for approximately solving discrete optimization
problems taking the following form

max
x

F(x) :=
K

∑
k=1

fk(x),

subject to xi ∈ {−1, 1}, ∀i = 1 . . . N,

(7.23)

where x = [x1 . . . xN ]
T, and fk(x) is a k-th order polynomial containing only k-th order

monomials. For example, when N = 3, we may have f1(x) = 0.1x1 + 0.2x2 + 0.3x3,
f2(x) = 0.4x1x2 + 0.5x2x3, and f3(x) = x1x2x3. The most common problem instances
belong to the class of quadratic unconstrained binary optimization (QUBO) problems
corresponding to K = 2, which can be expressed as

max
x

xTAx + bTx,

subject to xi ∈ {−1, 1}, ∀i = 1 . . . N.
(7.24)
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By representing the vector x using a quantum state |ψ⟩, we could represent the objective
function F(x) of (7.23) in the following alternative form

F(|ψ⟩) = ⟨ψ| HP |ψ⟩ , (7.25)

where HP = ∑K
n=1 Fk is called the phase Hamiltonian encoding of the objective func-

tion, and Fk is the operator obtained by replacing terms such as xi in fk(x) by Pauli-Z
operators Zi.

In order to maximize the objective function F(|ψ⟩), the QAOA applies two Hamilto-
nians, namely the phase Hamiltonian and the mixing Hamiltonian, in an alternating
order. Specifically, given the initial state |ψ(0)⟩, the output state can be expressed as

|ψ(β, γ)⟩ = e−ıβp HM e−ıγp HP . . . e−ıβ1 HM e−ıγ1 HP |ψ(0)⟩ , (7.26)

where β = [β1 . . . βp]T and γ = [γ1 . . . γp]T are adjustable parameters controlling the
search trajectory of the algorithm, and the mixing Hamiltonian HH is given by

HM =
N

∑
i=1

Xi. (7.27)

It has been shown that the optimal solution can be closely approximated by measuring
|ψ(β, γ)⟩ on the computational basis, when p is sufficiently large and the parameters β

and γ are chosen appropriately [32].

7.4.3 The STSs of the QAOA Circuits

From (7.26) we could observe that a typical QAOA circuit has p stages, among which
the n-th stage is

Un(βn, γn) = e−ıβn HM e−ıγn HP . (7.28)

Since the structure of each stage is similar, we will focus on a single stage in the follow-
ing analysis. It is clear that HM commutes with X⊗N and HP commutes with Z⊗N . But
we could find more symmetries by decomposing the phase Hamiltonian as follows:

HP =
⌊K/2⌋
∑
k=1

F2k +
⌊K/2⌋
∑
k=1

F2k−1

:= H(even)
P + H(odd)

P .

(7.29)

We note that

Remark 7.7. The “even part” H(even)
P commutes with X⊗N , while the “odd part” H(odd)

P

anti-commutes with X⊗N . Furthermore, e−ıγn H(even)
P also commutes with both X⊗N and

Z⊗N , since [A, B] = 0 implies [eıθA, B] = 0.
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FIGURE 7.20: Circuit implementing a single stage of the QAOA on an even number of
qubits N, protected by two STS checks. The gates in the dashed boxes are protected

from any single-qubit error by the STS checks.

To see this more clearly, let us consider the QUBO case (7.24), for which we have

H(even)
P =

N

∑
i=1

N

∑
j=1

aijZiZj,

H(odd)
P =

N

∑
i=1

biZi,

(7.30)

where aij denotes the (i, j)-th entry of A and bi denotes the i-th entry of b. Observe that
the operator ZiZj commutes with X⊗N , while Zi anti-commutes with X⊗N . In general,
any Pauli operator constituted by the tensor product of an even number of Pauli-Zs
would commute with X⊗N , whereas it would anti-commute with X⊗N , if the number
of Pauli-Z’s is odd.

Since the gates implementing e−ıγn HP commute with one another, we may rearrange the
order of execution of these gates, so that e−ıγn H(odd)

P is executed before e−ıγn H(even)
P . This

leads to the following decomposition of the n-th stage into three sub-stages

Un(βn, γn) = U(3)
n U(2)

n U(1)
n

= e−ıβn HM e−ıγn H(even)
P e−ıγn H(odd)

P .
(7.31)

This tripartite circuit has the following STSs

S1 = S{Z⊗N(0), Z⊗N(2)}, S2 = S{X⊗N(1), X⊗N(3)}. (7.32)

A noteworthy fact is that S1 and S2 are not simultaneously observable when N is odd.
Therefore, we arrive at different circuit implementations for even N and odd N, as
shown in Fig. 7.20 and 7.21, respectively. The ancillas can be re-initialized and reused
in the subsequent stages. The main difference between the two implementations is that
the third sub-stage U(3)

n is not protected when N is odd, and thus the circuits having
odd N and those having even N are not equally protected. Fortunately, the third sub-
stage only consists of single-qubit gates that are typically less noisy in practice. Also
note that the second sub-stage U(2)

n = e−ıγn H(even)
P commutes with both X⊗N and Z⊗N ,

hence we could detect any single-qubit error that occurs within this sub-stage.
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FIGURE 7.21: Circuit implementing a single stage of the QAOA on an odd number of
qubits N, protected by two STS checks. The gates in the dashed boxes are protected

from any single-qubit error by the STS checks.

7.5 Numerical Results

In this section, we characterize the performance of the STS method using numerical ex-
amples. When evaluating the computational accuracy, we use the purity3 of the output
state of the data register as the performance metric, defined by Tr

{
ρ2

data

}
, where ρdata

is the output state of the data register.

7.5.1 Consecutive Single-Qubit Gates

We first contrast the STS method to the quantum switch based method described in
Section 7.2, using the low-complexity example of single-qubit circuits. Specifically, we
consider consecutive X-rotation gates applied to a single qubit. Since the gates are
diagonal under the X-basis, we do not expect that any of the two methods would detect
X-errors. In light of this, we assume that each X-rotation gate is associated with a Pauli-
Z (dephasing) channel having the error probability of ϵ1 = 0.001. The two-qubit gates
applied in both error mitigation methods are also assumed to be contaminated by Pauli-
Z errors at an error probability of ϵ2. We will consider different values of ϵ2 in the
following discussion.

Let us first consider the case of ϵ2/ϵ1 = 2. This is an idealistic case for quantum
switches, since the controlled rotation gates (e.g. the gate A in Fig. 7.2) inflict an er-
ror on the data register at the same probability as that of the uncontrolled gates (e.g.
the gate B in Fig. 7.2). However, this is typically not the case for practical devices, for
which ϵ2/ϵ1 is around 10. We portray the simulation results in Fig. 7.22 where we have
NG = 2 consecutive X-rotation gates, while in Fig. 7.23 we have NG = 10. As we have
discussed in Section 7.2.1, there are multiple possible implementations of the quantum
switch based method, when NG > 2. In Fig. 7.23, “quantum switch, type-1” refers to
the implementation shown in Fig. 7.3, while “quantum switch, type-2” refers to that
shown in Fig. 7.4.

3Instead of evaluating directly the error of certain computational tasks, we use the purity because it
does not depend on the specific observable, and hence may reflect the performance of the error mitigation
techniques more clearly.
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FIGURE 7.22: The output purities of different implementations of two consecutive X-
rotation gates vs. the rotation angle of each gate, where ϵ2/ϵ1 = 2.
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FIGURE 7.23: The output purities of different implementations of ten consecutive X-
rotation gates vs. the rotation angle of each gate, where ϵ2/ϵ1 = 2.

Observe from Fig. 7.22 that the output purity of both the quantum switch and of the
STS depends on the rotation angle of each X-rotation gate. To elaborate, the rotation
angle has an impact on the commutativity with the Z-error, which in turn determines
the error mitigation performance. Observe from Fig. 7.23 that, compared to the unpro-
tected circuits, the accuracy improvement of both methods becomes more significant
when NG is larger, since the additional error introduced by the methods themselves be-
comes less severe than that of the consecutive X-rotations. An interesting phenomenon
is that the quantum switch based method performs better for larger rotation angles.
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FIGURE 7.24: The output purities of different implementations of two consecutive X-
rotation gates vs. the rotation angle of each gate, where ϵ2/ϵ1 = 10.

This may be interpreted as a penalty of treating the X-rotation gate itself as the ref-
erence of symmetry verification, instead of using a universal reference (e.g. Pauli-X
operators in the STS method).

The results are portrayed for the more practical case of ϵ2/ϵ1 = 10 in Fig. 7.24 and 7.25.
We see that the quantum switch based method is only beneficial for a limited range of
rotation angles in the NG = 10 case, while STS is beneficial across a wider range. Note
that the STS technique may be generalized to more complex circuits. Hence may expect
that STSs are potentially beneficial for a large range of practical circuits, while quantum
switches might only be useful for certain special circuits. However, it is noteworthy that
using STSs requires the knowledge of the specific type of symmetry, while quantum
switches are applicable as long as we know that certain gates commute with each other.

7.5.2 QFT Circuits

In this subsection, we evaluate the error mitigation performance of STSs when applied
to N-qubit QFT circuits.

Specifically, we consider the combined STS shown in Fig. 7.19. The output purities
under various channel models are shown in Fig. 7.26. Observe that STSs are more
beneficial under Y-error as well as X-error channels, and they are even detrimental for
Z-error channels. This is as expected, since the STSs of QFT circuits commute with
Z-errors. As for the sampling overhead, it is seen from Fig. 7.27 that the sampling
overhead factor increases with the error detection probability, as may be inferred from
its definition (7.21).
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FIGURE 7.25: The output purities of different implementations of ten consecutive X-
rotation gates vs. the rotation angle of each gate, where ϵ2/ϵ1 = 10.
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FIGURE 7.26: The output purities QFT circuits under different channel models, as
functions of the number of qubits. The gate error rate is 0.003 for two-qubit gates, and

0.0003 for single-qubit gates.

The output purity versus the gate error rate under depolarizing channels is illustrated
in Fig. 7.28. Here we consider the practical case of ϵ2/ϵ1 = 10, where ϵ1 and ϵ2 are
the error rates of single-qubit and two-qubit gates, respectively. The curves marked by
“STS, error-free check” correspond to the idealistic case where the gates used for im-
plementing STS checks are error-free. We see that the purity decreases approximately
linearly as the gate error rate increases. It is also noteworthy that the purity decreases
faster for larger N, since the number of gates is also larger.
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FIGURE 7.27: The sampling overhead factors of QFT circuits under different channel
models, as functions of the number of qubits. The gate error rate is 0.003 for two-qubit

gates, and 0.0003 for single-qubit gates.
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FIGURE 7.28: The output purities of QFT circuits under depolarizing channels, as
functions of the error rate of two-qubit gates. The error rate of single-qubit gates is

1/10 that of two-qubit gates.

We conclude that, for QFT circuits, the STS method is particularly beneficial for asym-
metric channels, for example, when the rate of X-errors is 10 times that of Z-errors.
Note that the specific type of the error does not matter as long as the channel is asym-
metric, because we may apply a global rotation to the entire circuit for ensuring that
the dominant type of errors does not commute with the gates.
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FIGURE 7.29: The sampling overhead factors of QFT circuits under depolarizing chan-
nels, as functions of the error rate of two-qubit gates. The error rate of single-qubit

gates is 1/10 that of two-qubit gates.

7.5.3 QAOA Circuits

Finally, let us evaluate the performance of STSs applied to QAOA circuits discussed
in Section 7.4.2 and 7.4.3. We first consider single-stage QAOA circuits, denoted as
QAOA1 circuits. For the simulations in this subsection, we use the following phase
Hamiltonian

HP =
N

∑
i=1

N

∑
j=1

aijZiZj +
N

∑
i=1

biZi, (7.33)

where aij and bi are randomly drawn from the uniform distribution over the interval
(−1, 1). The simulation results are then averaged over 1000 random instances of the pa-
rameters. Every two-qubit gate is affected by a depolarizing channel having a depolar-
izing probability of 0.001, while the single-qubit gates have 10 times lower depolarizing
probabilities.

The output purities and the sampling overhead factors are shown in Fig. 7.30 and
7.31, respectively. In these figures, “STS, Cat2” refers to the implementation of STSs
relying on cat states defined on two ancillas, as portrayed in Fig. 7.16. The specific
implementation of QAOA circuits is portrayed in Fig. 7.32.

Observe from Fig. 7.30 that the STS method relying on cat states defined on two ancillas
outperforms its counterpart relying on a single ancilla. This corroborates with our dis-
cussion on the mitigation of error proliferation in Section 7.3.4, and demonstrates the
trade-off between accuracy and qubit overhead. The sampling overhead factors shown
in Fig. 7.31 are on the order of the corresponding error detection probability, similar to
our previous discussion on QFT circuits in Section 7.5.2.
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FIGURE 7.30: The output purities of different implementations of the QAOA1 circuit,
as functions of the number of qubits.
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FIGURE 7.31: The sampling overhead factors of different implementations of the
QAOA1 circuit, as functions of the number of qubits.

Note that the purity curves of STS methods in Fig. 7.30 are not smooth. This is due
to the fact that QAOA circuits relying on an even number of qubits and those on an
odd number of qubits are not equally protected. Indeed, as we may observe from
Fig. 7.20 and 7.21, the final sub-stage corresponding to the mixing Hamiltonian is not
protected, when the number of data qubits N is odd, which is due to the simultaneous
observability issue of the STSs. Consequently, the purities of QAOA circuits having
odd N are lower than the expected purity, when the simultaneous observability is not
an issue.
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FIGURE 7.32: The implementation of an STS-protected QAOA1 circuit, relying on two
control qubits.
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FIGURE 7.33: The output purities of different implementations of multistage QAOA
circuits, as functions of the number of stages.

Next we consider multistage QAOA circuits. The components of the parameter vectors
α and β are randomly drawn from uniform distributions on (−π, π). As it can be
seen from Fig. 7.33, the purity of the cat-state STS method decreases more slowly than
that of the STS method relying on a single ancilla. Due to the complexity escalation of
emulating quantum circuits on classical computers, we cannot produce the results of
the STS method relying on larger cat states defined on Nc > 2 ancillas. We conjecture
that the purity can be further improved by using more ancillas, which is ultimately
upper-bounded by the purity when the gates used for STS checks are error-free.

7.6 Conclusions and Future Research

7.6.1 Conclusions

In this chapter, we have proposed a general framework for circuit-oriented symmetry
verification. Specifically, the quantum switch based method can be directly applied,
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FIGURE 7.34: The sampling overhead factors of different implementations of multi-
stage QAOA circuits, as functions of the number of stages.

when certain gates are known to commute with each other. For the case where the cir-
cuit has known symmetries, we propose the method of STS, generalizing the concept
of conventional stabilizers used for state-oriented symmetry verifications. This method
is capable of verifying the symmetries without the knowledge of the current quantum
state. Another major difference between STSs and their conventional counterparts is
that they are not necessarily simultaneously observable, and hence sometimes a re-
arrangement of the circuit is required to perform multiple STS checks. We have also
discussed the accuracy vs. overhead trade-off of STSs, and provided quantum circuit
designs that strike flexible trade-offs. Finally, we have demonstrated the performance
of the proposed methods using numerical examples concerning practical quantum al-
gorithms, including the QFT and the QAOA.

7.6.2 Future Research

• As discussed in Section 7.3.4, the additional circuitry introduced by STSs would
cause error proliferation among data qubits, which may be mitigated by splitting
a single STS into multiple simultaneously observable STSs. In conventional state-
oriented symmetry verification, the circuitry overhead-induced error proliferation
can be suppressed to its minimum by relying on post-selection [36]. Specifically,
instead of using ancillas and controlled gates to perform non-destructive mea-
surements, we may measure the stabilizers by computing the weighted sum over
multiple outcomes of destructive measurements. For example, if we know (prior
to the computation) that the state ρ at the output of the circuit is stabilized by a
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stabilizer S , we may compute the expectation of some operator M as follows:

Tr {Mρ} =
Tr {Mρ}+ Tr {MSρ}

1 + Tr {Sρ} . (7.34)

This would significantly reduce the circuitry overhead, since the only overhead
comes from the basis transformation required by the destructive measurements.
However, this method seems unlikely to be extendible to STSs. To elaborate, STSs
are properties of a part of a quantum circuit, which do not necessarily hold at
the output of the circuit, which the destructive measurements take place. By con-
trast, state symmetries are preserved by the entire circuit, hence can be naturally
verified using destructive measurements. Therefore, we conjecture that STSs do
not have efficient post-selection-based implementations. Proving or disproving
this conjecture would significantly improve our understanding of STSs from both
theoretical and practical perspectives.

• Another possible future research direction is to find more practical algorithms for
which STSs is beneficial. In the “treasury house” of quantum algorithms, one of
the algorithms that seem to be most suitable for STSs is the Hamiltonian simu-
lation discussed in Section 2.5.1. Specifically, the Hamiltonians may themselves
satisfy certain symmetry conditions. For example, when a Hamiltonian H can be
decomposed as

H =
K

∑
k=1

θkHk, (7.35)

where Hk, k = 1 . . . K are sub-Hamiltonians that may be readily implemented
using native quantum gates, the symmetry of these sub-Hamiltonians may be ex-
ploited for error mitigation. Since the sub-Hamiltonians do not necessarily com-
mute with each other, the symmetries are most likely to be circuit symmetries
instead of state symmetries. Thus we may apply our STS method to mitigate er-
rors that violates the symmetries. In this context, an important research topic is to
determine the best quantum circuit compilation, in which the symmetries may be
maximally exploited.
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Chapter 8

Algorithm-Level Error Mitigation
for Quantum Phase Estimation

8.1 Introduction

We have established in Chapter 3 that, besides circuit-level errors caused by decoher-
ence and hardware imperfections, another major source of errors in quantum compu-
tation is constituted by algorithm-level errors, which is rooted in the fact that quantum
algorithms are of probabilistic nature, and are typically characterized based on approx-
imate formulas. Notably, algorithm-level errors cannot be corrected by QECCs, hence
we have to resort to QEM methods. In Section 3.4, we have discussed techniques that
mitigate the Trotterization error [75] of Hamiltonian simulation. In this chapter, we
investigate the algorithm-level error mitigation in the context of quantum phase esti-
mation [91,150,151], which is another key enabler of quantum computational speedup
over classical computers.

In particular, quantum phase estimation is a widely used component of quantum algo-
rithms providing substantial acceleration over their best classical counterpart, includ-
ing Shor’s factoring algorithm [12], the Harrow-Hassidim-Lloyd (HHL) algorithm [16]
conceived for solving linear systems, and the quantum counting algorithm [94, 201].
Recently, iterative quantum phase estimators have also been proposed for potential
application in near-term NISQ computers [202–204].

The circuit diagram of quantum phase estimation is portrayed in Fig. 8.1, where the
initial state |ψ⟩ of the data register is an eigenstate of the unitary operator U satisfying
U |ψ⟩ = ejφ |ψ⟩, and QFT−1

M denotes the inverse quantum Fourier transform [48, Sec.
5.1] applied to M qubits, which is a quantum-domain version of the classical discrete
Fourier transform [205, Sec. 8]. This algorithm aims for estimating the phase φ. Broadly
speaking, the 2M − 1 controlled unitaries produce a 2M-point sinusoidal signal in the
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Figure 1: The circuit diagram of quantum phase estimation.
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FIGURE 8.1: The circuit diagram of quantum phase estimation.

control register, whose frequency corresponds exactly to the desired phase φ. This may
be viewed as the quantum-domain version of the power method of eigendecomposi-
tion [133]. When efficient implementations of the power of the unitary operator U are
available, exponential speedup over classical algorithms is possible, as seen in Shor’s
algorithm [12].

Quantum phase estimation yields the exact result, when the recording length 2M is
an integer multiple of the period of the sinusoidal signal [48, Sec. 5.2.1]. When this
is not the case, the spectral leakage problem [206] arises, which is an important topic
in classical signal processing methods related to the discrete Fourier transform. The
quantum-domain version of this problem is somewhat more grave, since the measure-
ment outcome would assume erroneous values at non-negligible probabilities, hence
the information about the correct phase is lost.

One of the conventional solutions to the spectral leakage issue is to multiply the time-
domain signal by a smooth “window function” [206]. This idea has been applied to the
quantum phase estimation problem in [207], where the authors show that the cosine
window [205, Sec. 7] is optimal in terms of the mean squared error (MSE) of single-
sample-based estimation. An efficient quantum circuit-based implementation of the
cosine window has later been proposed in [208], also showing that it has satisfactory
performance in terms of the error probability.

While existing treatises focus on single-sample-based estimation, in this chapter, we
consider the spectral leakage mitigation attained by multiple samples (i.e. measure-
ment outcomes). This is motivated by the fact that the coherence time of NISQ com-
puters is limited [31], hence classical computing power may be harnessed, by appro-
priately fusing multiple samples. The rest of this chapter is organized as follows. We
first formulate the spectral leakage problem and discuss the existing countermeasures
in Section 8.2. Next, we derive the CRB of the windowed quantum phase estimation
in Section 8.3, and propose the dual-frequency estimator in Section 8.4. The numerical
results are then presented in Section 8.5, and we conclude in Section 8.6.
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8.2 The Spectral Leakage Problem and Windowing Methods

Let us commence by deriving of the output state of the quantum circuit used for phase
estimation and shown in Fig. 8.1. After the Hadamard gates, the joint quantum state of
both the control register and the target register becomes

|+⟩⊗M |ψ⟩ = 1√
2M

2M−1

∑
n=0

|n⟩ |ψ⟩ , (8.1)

which will be referred to as the initial state of the quantum phase estimation algorithm
in the rest of this chapter. The subsequent controlled-U gates transform the initial state
into the following state

|ϕ⟩ = 1√
2M

2M−1

∑
n=0

|n⟩ U n |ψ⟩

=
1√
2M

M−1⊗

k=0

(
|0⟩+ ej2k φ |1⟩

)
|ψ⟩

=
1√
2M

2M−1

∑
n=0

ejnφ |n⟩ |ψ⟩ .

(8.2)

Note that the inverse quantum Fourier transform QFT−1
M may be expressed as follows1

QFT−1
M =

1√
N

N−1

∑
m=0

e−j 2πm
N |m⟩ ⟨n| , (8.3)

where N = 2M is the record length. Hence the quantum state of the control register at
the output of the QFT−1

M may be expressed as

|ϕ⟩out =
1
N

N−1

∑
m=0

N−1

∑
n=0

ejn(φ− 2πm
N ) |m⟩ . (8.4)

The probability of observing the outcome |y⟩ is thus given by

f (y; φ) = | ⟨y| ϕ⟩out|2 =
1

N2

∣∣∣∣∣
N−1

∑
n=0

ejn(φ− 2πy
N )

∣∣∣∣∣

2

. (8.5)

When φ = 2πk/N, k ∈ Z, we see that the probability f (y; φ) takes the maximum value
of 1 at y = k, hence the phase estimation yields the exact solution. However, when φ

is not an integer multiple of 2π/N, f (y; φ) is non-zero for almost all 0 ≤ y ≤ N − 1,

1In classical signal processing theory, the transform having the minus sign “−” in the exponents is typ-
ically referred to as the discrete Fourier transform, and the transform having the plus sign is referred to as
the inverse discrete Fourier transform. However, the quantum computing community is using a different
convention, which refers the transform (8.3) as the inverse quantum Fourier transform [48, Section 5.1].
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FIGURE 8.2: Illustration of the observation probability distribution f (y; φ) for rectan-
gular and cosine windows, respectively.

causing large estimation errors. This phenomenon is referred to as “spectral leakage”
in the literature of classical signal processing [206, 209].

The spectral leakage issue can be mitigated using the classic windowing method [210],
multiplying the input signal by a “window” function defining a weighting vector α.
This results in the following observation probability distribution

f (y; φ) =
1
N

∣∣∣∣∣
N−1

∑
n=0

αnejn(φ− 2πy
N )

∣∣∣∣∣

2

, (8.6)

where αn is the n-th entry of α, and ∥α∥ = 1. Upon comparing (8.5) to (8.6), we see that
the original quantum phase estimation corresponds to a rectangular window of α =

1√
N

1. This weighting procedure may be implemented upon replacing the Hadamard
gates in the dashed box of Fig. 8.1 by customized state preparation circuits [208].

It has been shown that in terms of the lowest MSE, the optimal window is the cosine
window [207, 211], given by

α
(cos)
n =

√
2
N

sin
[

π(n − 1)
N

]
. (8.7)

The authors of [208] have designed an efficient state preparation circuit for the cosine
window. The effect of the window may be intuitively interpreted by considering the
corresponding observation probability distribution, as portrayed in Fig. 8.2. Observe
that the sidelobes of the cosine window are much lower than those of the rectangu-
lar window, hence the probability that extremely large errors occur is substantially
reduced. However, it is also seen that the cosine window has a wider mainlobe. If
the sidelobes can be suppressed without widening the mainlobe, we may achieve bet-
ter performance than that of the cosine window. This motivates our dual-frequency
estimator, which will be detailed in Section 8.4.
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8.3 CRB Analysis

In this section, we derive the CRB of the quantum phase estimation problem, which
will be used as a performance benchmark in the numerical simulations of Section 8.5.
It also motivates us to propose the dual-frequency estimator detailed in Section 8.4,
which asymptotically approaches the CRB upon increasing the number of samples.

The CRB is a lower bound on the mean-squared error of estimators [212], which is tight,
when the noise is weak or the number of observations is large. In light of this, it may
be used as the metric for determining the optimal window function for a large number
of samples.

In general, given the likelihood function f (y; θ) of an observation y, the CRB of the
parameter θ is given by

E{(θ − θ̂)2} ≥ 1
FI(θ)

, (8.8)

where

FI(θ) = E

{[
∂ ln f (y; θ)

∂θ

]2
}

. (8.9)

is the Fisher information of θ [212]. When there are multiple independent and identical
distributed observations, the total Fisher information is the sum of the Fisher informa-
tion of all individual observations.

In the context of quantum phase estimation, the likelihood function of a single obser-
vation is given by (8.6), which may be rewritten in a more compact form as

f (y; φ) =
1
N
|eH

y α|2

=
1
N

eH
y ααHey,

(8.10)

where

ey :=
[

1, exp
{

j
(

φ − 2πy
N

)}
, . . . , exp

{
j(N − 1)

(
φ − 2πy

N

)}]T

denotes the vector containing all the phase terms in (8.5).
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For the simplicity of further derivation, we rewrite the Fisher information in (8.9) in the
following alternative form

FI(φ) = E

{[
∂ ln f (y; θ)

∂θ

]2
}

= ∑
y

f (y; θ)

[
∂ ln f (y; θ)

∂θ

]2

= ∑
y

1
f (y; φ)

·
(

∂

∂φ
f (y; φ)

)2

,

(8.11)

where the partial derivative may be expressed as

∂

∂φ
f (y; φ) =

1
N

[(
∂ey

∂φ

)T

α∗αTe∗y +
(

∂e∗y
∂φ

)T

ααHey

]

=
j

N
(eT Nα∗αTe∗ − eH NααHe)

=
j

N
eH

y (ααHN − NααH)ey,

(8.12)

where we have
N = diag{0, 1, . . . , N − 1}.

Upon introducing A = ααH, the Fisher information may be expressed as

FI(φ) =
1
N

N−1

∑
y=0

|eH
y (ααHN − NααH)ey|2

eH
y ααHey

=
1
N

N−1

∑
y=0

|eH [A, N]e|2
eH Ae

=
4
N

N−1

∑
y=0

Im2{eH
y ANey}

eH
y Aey

.

(8.13)

When there are Ns samples, due to their mutual independence, the total Fisher infor-
mation is simply formulated as Ns · FI(φ). This implies that the optimal window in the
asymptotic regime of infinite samples may actually be determined by considering the
Fisher information of the window applied to a single sample.

We may use (8.13) to obtain an intuition about the optimal window in the asymptotic
regime. In Fig. 8.3, we compare the square-root CRB of various windows, where we
set the record length to N = 128, corresponding to 7 control qubits. Observe that the
rectangular window (equivalent to no windowing over a finite interval) corresponds
to the lowest CRB. This indicates that it should have the best asymptotic performance.
However, we see that the naive sample-mean-based estimator operates far from the
CRB. By contrast, the sample-mean estimators of cosine and Bartlett windows exhibit
near-CRB performances. We will further address this issue in Section 8.4.
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FIGURE 8.3: The square-root CRB vs. number of samples of various window func-
tions, compared with the RMSE of corresponding sample-mean estimators.

8.4 The Dual-Frequency Estimator

Let us commence our discussion from constructing an approximate maximum likeli-
hood estimator based on the rectangular window with the aid of Ns samples. We first
denote the samples as y = [y1, y2, . . . , yNs ]

T. From (8.5), the exact maximum likelihood
estimator is given by

φ̂ML = argmax
φ

Ns

∑
i=1

ln

∣∣∣∣∣
N−1

∑
n=0

ejn
(

φ− 2πyi
N

)∣∣∣∣∣

2

. (8.14)

Since the samples only take integer values between 0 and N − 1, we may use an alter-
native parametrization of z ∈ RN , whose n-th entry zk represents the number of times
that n − 1 occurs in the samples y. Thus we may rewrite (8.14) as

φ̂ML = argmax
φ

N

∑
k=1

zk ln

∣∣∣∣∣
N−1

∑
n=0

ejn(φ− 2πk
N )

∣∣∣∣∣

2

. (8.15)

A naive strategy of solving (8.15) is an exhaustive search of φ in [0, 2π), which is com-
putationally expansive. To simplify the problem, we first obtain a rough estimate of φ

as

φ̂rough =
2π

N

[
(argmax

k
zk)− 1

]
. (8.16)

Note that the worst-case complexity of this step is on the order of O(Ns) when Ns ≪
N. Next we conduct a refined search within the interval of [φ̂rough − 2π/N, φ̂rough +
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FIGURE 8.4: Illustration of the ambiguity problem associated with the approximate
maximum likelihood estimator when φ is close to 2πk/N, k ∈ Z.

2π/N]. Although more sophisticated optimization techniques may yield more favor-
able accuracy-complexity trade-off, here we consider the simple approach of a uniform
grid search over O(

√
Ns) grid points, inspired by the fact that the Fisher information

is on the order of O(Ns). To avoid the summation over n in (8.15), we consider the
following approximation for large N:

1
N

∣∣∣∣∣
N−1

∑
n=0

ejn(φ− 2πk
N )

∣∣∣∣∣ ≈
∣∣∣∣sinc

(
Nφ

2π
− k
)∣∣∣∣ . (8.17)

Using the above approximation, the worst-case complexity of the grid search is reduced
to O(N1.5

s ). We denote the final estimate as φ̂AML, and the correction term as eAML =

φ̂AML − φ̂rough.

This estimator, however, does not in general yield satisfactory performance. We may
develop some further intuition concerning this issue by revisiting Fig. 8.2. Observe
that most of the information about φ is contained in the pair of sample points within
the mainlobe. When φ is near (2πk + 1)/N, k ∈ Z, the largest and the second largest
entries in z may be used as reliable estimates of the two sample points. However, when
φ is close to 2πk/N, k ∈ Z, it is likely that the second largest entry in z corresponds to
the first sidelobe, causing an unexpected estimation error. As portrayed in Fig. 8.4, the
difficulty of distinguishing the highest sidelobe from the sample point in the mainlobe
having smaller likelihood incurs an ambiguity problem for the maximum likelihood
estimator.

To understand this ambiguity problem in a more precise manner, let us consider a con-
crete example. Specifically, we set the record length to N = 100, the number of samples
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FIGURE 8.5: Scatter plot of the errors of the approximate maximum likelihood estima-
tor for φ uniformly distributed over a fixed interval.

to Ns = 30, and then plot the corresponding estimation error based on the approxi-
mate maximum likelihood estimator characterized in Fig. 8.5.2 Observe that the errors
are sometimes large when φ is close to an integer multiple of 1/2πN. In particular,
the magnitude of the error grows linearly with the distance to the closest integer mul-
tiple of 1/2πN. As we have discussed previously, this phenomenon originates from
the fact that two possible interpolations of the sample points are hardly distinguish-
able, hence there is a non-zero probability that the estimator yields the erroneous result
corresponding to the “mirror point” of the correct one across the line of φ = k/2πN,
where k is the closest integer multiple of 1/2πN.

To tackle this problem, we split the samples into two sets, each having Ns/2 samples.
For the first set, we compute the aforementioned approximate maximum likelihood
estimator, and obtain φ̂rough,1 and eAML,1. For the second set, we apply a frequency
offset of 1/2N (one half of a frequency resolution unit) to the control register, resulting
in the following maximum likelihood problem

φ̂ML,2 =
π

N
+ argmax

φ

N

∑
k=1

zk ln

∣∣∣∣∣
N−1

∑
n=0

ejn(φ− 2πk
N + π

N )

∣∣∣∣∣

2

. (8.18)

Similarly, we may obtain φ̂rough,2 and eAML,2. Based on these results, we construct four
candidate intermediate estimates, contained in a vector as follows:

u =

[
φ̂rough,1 + eAML,1, φ̂rough,1 − eAML,1,

φ̂rough,2 + eAML,2, φ̂rough,2 − eAML,2 +
2π

N

]T

.

(8.19)

Finally, we find the pair of entries in u that are the closest to each other, meaning that

(i, j) = argmax
(i,j)

(ui − uj)
2, (8.20)

2In practice, the record length can only be an integer power of 2. Here we choose N = 100 only for the
purpose of a clearer illustration.
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FIGURE 8.6: Scatter plot of the errors of the dual-frequency estimator for φ uniformly
distributed over a fixed interval.

and the final estimate is given by

φ̂DF =
1
2
(ui + uj). (8.21)

The overall complexity of the dual-frequency estimator is at most O(N1.5
s ), which is

comparable to the O(Ns) complexity of the simple sample-mean estimator. In practice,
the complexity can be lower than O(N1.5

s ). To elaborate, note that the actual complexity
of the dual-frequency estimator is proportional to

CDF = Nbin
√

Ns, (8.22)

where Nbin denotes the number of non-empty “bins” zk ̸= 0. In fact, most of the bins
would be empty, since the probability of observing those outcomes would be extremely
low. Moreover, the bins containing a small number of samples would provide less in-
formation about the desired phase φ, since they are much noisier than the bins contain-
ing more samples. For the numerical simulations presented in this chapter, we choose
8 bins having the largest number of samples. In light of this, the actual complexity of
the dual-frequency estimator becomes O(Ns +

√
N), where the O(Ns) comes from the

fact that re-organizing the samples into bins would require O(Ns) operations.

Next we show that the dual-frequency estimator indeed resolves the ambiguity prob-
lem using a concrete example. Similar to Fig. 8.5, we set the record length to N = 100
and the number of samples to Ns = 30. The estimation error of the dual-frequency es-
timator is portrayed in Fig. 8.6. As seen from the figure, the dual-frequency estimator
only produces small errors, and the linearly increasing trend of errors seen in Fig. 8.5
does not appear. This implies that the ambiguity point becomes distinguishable from
the correct solution.

The rationale of the dual-frequency estimator may be intuitively understood as follows.
To circumvent the difficulty of distinguishing the correct solution from the ambiguity
point, we include both points into the set of candidate estimates, and also apply the
same technique to the set of samples associated with the (1/2N)-frequency offset. Since
the ambiguity points of both sets are unlikely to be the same due to the frequency offset,
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we may then identify the correct solution by finding the matching pair of candidate
solutions using (8.20).

Finally, we show that the (1/2N)-frequency offset exploited in the estimator may be im-
plemented using single-qubit phase rotation gates, hence the computational overhead
of state preparation is negligible. Note that this offset may be obtained by initializing
the input state of the control register as

|ϕ⟩in =
1√
N

N−1

∑
n=0

e
jπn
N |n⟩ . (8.23)

This state admits the following simple tensor-product form

|ϕ⟩in =
M⊗

m=1

1√
2

(
|0⟩+ e

jπ2m−1
N |1⟩

)
, (8.24)

which may be implemented by applying a phase rotation gate Rz

(
π2m−1

N

)
to each m-th

qubit in the control register. This method bears some resemblance with the controlled-
U gates in the quantum phase estimation circuit, which also constructs a sinusoidal
signal (in other words, a frequency shift) on the control register.

8.5 Numerical Results

In this section, we characterize the performance of the proposed estimator using nu-
merical simulations. We first consider the relationship between the RMSE of the es-
timators and the number of samples. In this example, we set the number of control
qubits to M = 7, corresponding to N = 128. The number of samples Ns varies from
2 to 100. The unknown phase φ is randomly chosen from (0, 2π) in each of the 105

Monte Carlo trails. The RMSE of the dual-frequency estimator as well as that of the
sample-mean estimator based on the cosine window is portrayed in Fig. 8.7, where the
corresponding CRBs are also incorporated as benchmarks.

Observe that all curves in Fig. 8.7 exhibit the same linear trend in the asymptotic regime
on the log-log scale. This implies that both estimators have the same asymptotic error
scaling as the CRB, which scales on the order of O(1/

√
Ns) (in terms of RMSE). When

Ns is insufficiently large, the dual-frequency estimator exhibits a performance similar
to that of the sample-mean estimator. But as Ns increases, the performance of the dual-
frequency estimator “switches” to near-CRB operation. Observe furthermore that it
outperforms the cosine window-based method for Ns ≥ 16. The relatively low accu-
racy of the dual-frequency estimator in the small-Ns regime originates from the fact
that the number of samples is to small for us to construct any reliable candidate esti-
mate (as given in (8.19)). Consequently, the sample points that are far away from the
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FIGURE 8.7: The phase estimation RMSE vs. the number of samples of both the pro-
posed dual-frequency estimator and the cosine window method, compared to the cor-

responding CRBs.

true value of φ (i.e., the “outliers”) cannot be reliably identified, hence would cause
large estimation errors.

Next we consider the dependence of the RMSE on the record length N. We set the
number of samples to Ns = 30. The number of control qubits varies from 6 to 10,
corresponding to N = 64, 128, 256, 512, 1024. The corresponding results are portrayed
in Fig. 8.8. We also incorporate the approximate maximum likelihood estimator in
Fig. 8.8 for a better illustration.

Observe that the sample-mean estimator based on the rectangular window exhibits an
O(1/

√
N) scaling, while the others exhibit O(1/N) scaling. This is a phenomenon that

has also been observed in [207], which suggests that the rectangular window does not
provide a substantial quantum speedup in the sense of RMSE scaling, since the O(1/N)

scaling (i.e., the “Heisenberg limit [93]) is an important characteristic of quantum algo-
rithms conceived for phase estimation.

We also observe that the dual-frequency estimator does not exhibit the aforementioned
bimodal phenomenon with respect to N. This suggests that for large N, we may still
use a constant number of samples (for example, Ns ≥ 20 as indicated by Fig. 8.7) to
achieve a near-CRB performance.
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8.6 Conclusions and Future Research

8.6.1 Conclusions

In this chapter, a dual-frequency phase estimator was proposed for mitigating the spec-
tral leakage-induced error in quantum phase estimation algorithm based on multiple
samples. This is potentially useful in the context of noisy intermediate-scale quantum
computing, since the maximum achievable recording length N is ultimately restricted
by the coherence time, hence we have to rely on multiple samples when a high phase
estimation accuracy is required. To provide a systematic perspective, we have pre-
sented a CRB analysis of the quantum phase estimation problem in the asymptotic
regime, which inspires the design of our dual-frequency estimator. Compared to the
naive sample-mean estimator, the proposed estimator attains the Heisenberg limit in
the sense of exhibiting an RMSE scaling on the order of O(1/N). Furthermore, the
estimator is capable of outperforming the cosine window, which is shown to be opti-
mal for single-sample estimation, when the number of samples is sufficiently large (but
constant with respect to N).

8.6.2 Future Research

• When quantum phase estimation serves as the final subroutine in the entire com-
putational task, our method is straightforwardly applicable. For example, in the
quantum counting algorithm aiming for finding the number of entries satisfying
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certain conditions in a database, the quantum phase estimation algorithm is ex-
ploited to estimate the speed of amplitude accumulation as the quantum ampli-
tude amplification subroutine being repeatedly executed. The speed is then read
out from the quantum register, which is proportional to the desired number of
entries. In this example, we may directly use our dual-frequency estimator to en-
hance the accuracy of the estimation.

• Our method might also inspire future research on the algorithmic error mitigation
for a broader range of quantum algorithms, especially those tailored for noisy-
intermediate scale quantum computers. For example, in the original design of
variational quantum algorithms, the eigenvalues are directly read out using Pauli
measurements [62]. Although it is easy to implement, this procedure has an un-
favorable computational complexity scaling, which is on the order of O(1/ϵ2),
where ϵ is the desired accuracy. By contrast, one may use quantum phase estima-
tion to achieve a complexity scaling of O(1/ϵ), but at the cost of increased circuit
depth. The authors of [213] proposed to use multiple samples in quantum phase
estimation, in order to strike a beneficial trade-off between overall computational
complexity and the circuit depth. In this context, our dual-frequency estimator
may be applied to improve this trade-off, in the sense that a lower complexity
may be achieved using the same circuit depth.
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Chapter 9

Conclusions

In this thesis, the design of QEM has been improved. Explicitly, we have established
that QEM may be applied for mitigating both circuit-level and algorithm-level errors.
To strike a beneficial accuracy vs. overhead trade-off, we have developed several novel
QEM techniques, summarized as follows:

• Regarding channel inversion based QEM aiming for mitigating circuit-level errors,
we have presented a comprehensive sampling overhead analysis, and proposed a
computationally efficient Monte Carlo implementation.

• For another class of circuit-level error mitigation techniques, namely for symmetry-
based QEM, we have proposed the method of permutation filtering inspired by
classical single processing theory, which is a flexible QEM technique relying on
permutation symmetry. Furthermore, we have also proposed the technique of
STS, which extends the conventional symmetry verification technique from state
symmetries to circuit symmetries.

• Finally, we have proposed an algorithm-level error mitigation method, termed as
the dual-frequency estimator, for improving the accuracy of the quantum phase
estimation algorithm.

More specifically, our results in this thesis may be summarized in a chapter-by-chapter
manner as follows:

• In Chapter 1, we have presented a brief overview of error-resilient quantum com-
putation, including early research efforts focusing on fault-tolerant quantum com-
putation and recent advances in the area of hybrid quantum-classical computa-
tion. In particular, we have highlighted the major milestones of hybrid quantum-
classical computation as well as quantum error mitigation in Section 1.2.2. Our
novel contributions in this thesis are then summarized in Section 1.3, and the or-
ganization of the thesis is presented in Section 1.4.
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• In Chapter 2, we have introduced the preliminaries of quantum computation and
quantum information. Specifically, in Section 2.1, we have introduced the funda-
mental unit of quantum information processing, namely the qubit, and contrasted
it to its classical counterpart. We then elaborated the states of qubits and multi-
qubit systems in Section 2.2 and Section 2.3, followed by a discussion on quantum
channels modelling the imperfections of quantum gates in Section 2.4. In Section
2.5, we have discussed the design philosophy of representative quantum algo-
rithms, including “conventional” quantum algorithms relying on the assumption
of fault-tolerance in Section 2.5.1, and hybrid quantum-classical algorithms in Sec-
tion 2.5.2. In particular, the relationship between these algorithms is portrayed in
Fig. 9.1.

Quantum Phase

Estimation

Variational Quan-

tum Algorithms

Shor's Factoring

Algorithm

Grover's Search

Algorithm

Hamiltonian

Simulation

HHL Algorithm

Quantum Ampli-

tude Amplification

Variational Quan-

tum Eigensolver

Quantum Approx.

Optimization Algo.

Quantum Four-

ier Transform

FIGURE 9.1: The relationship between the representative quantum algorithms intro-
duced in Chapter 2. Coloured boxed represent the fundamental subroutines. Arrows
imply that the succeeding algorithm is developed based on the preceding algorithm,

while dashed lines connect algorithms that solve the same problem.

• In Chapter 3, we have presented an overview of QEM, outlining the taxonomy of
QEM techniques, as portrayed in Fig. 9.2. The difference between circuit-level and
algorithm-level error sources was highlighted in Section 3.1. For circuit-level er-
rors, we have discussed the conventional technique of QECCs and QEDCs, which
typically require a substantial qubit overhead. Then, we introduced circuit-level
QEM techniques in Section 3.3, including channel inversion based QEM in Section
3.3.1, symmetry-based QEM in Section 3.3.2, zero-noise extrapolation based QEM
in Section 3.3.3, and learning-based QEM in Section 3.3.4. For algorithm-level
errors, we have introduced the techniques mitigating the error of Trotter approxi-
mation in Section 3.4. In particular, we highlighted that zero-noise extrapolation,
a circuit-level QEM technique, may also be applied for mitigating algorithm-level
errors.

• In Chapter 4, we have presented a comprehensive analysis of the sampling over-
head factor of CI-QEM under various channel conditions. We first discussed the
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QEM
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Symmetry
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Virtual
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FIGURE 9.2: The taxonomy of existing QEM techniques introduced in Chpater 3.

quality metrics of quantum channels in Section 4.1, where we proposed the metric
of GGEP as a natural metric for our sampling overhead analysis. For uncoded
gates affected by errors modelled by general CPTP channels, we have shown in
Section 4.2.2 that Pauli channels have the lowest SOF among all triangular chan-
nels (which includes the amplitude damping channels) having the same GGEP.
Following this line of reasoning, in Section 4.2.3, we have shown furthermore that
depolarizing channels have the lowest SOF in the family of all Pauli channels.
These analytical results are illustrated in Fig. 9.3.

SOF

All CPTP Quantum Channels

FIGURE 9.3: Illustrative comparison between the SOFs of different quantum channels
having the same GGEP, according to the discussions in Chapter 4.

In Section 4.3, we conceived the QECC-CI-QEM as well as the QEDC-CI-QEM
schemes, and have shown that there exist several critical quantum circuits sizes,
beyond which sophisticated codes having more concatenation stages is more prefer-
able, and vice versa. Specifically, for QEDC-CI-QEM, we have demonstrated in
Section 4.3.4 that it may not be compatible with the popular transversal gate con-
figuration, but they may still have beneficial applications, when the logical gates
are appropriately designed.

• In Chapter 5, we have analyzed the error scaling versus sampling overhead trade-
off of a Monte Carlo based implementation of CI-QEM aiming for reducing the
computational cost of the candidate circuit generation for channel inversion. To
understand the practicality of the proposed implementation, we have investigated
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the trade-off between the computational overhead and the error scaling behaviour
of both quantum circuits protected by Monte Carlo based CI-QEM and their non-
QEM-protected counterparts. The main analytical results in this chapter are sum-
marized in Table 9.1.

TABLE 9.1: The characteristics of different error mitigation strategies discussed in
Chapter 5.

Performance Metric Monte Carlo Based Exact Inversion No QEM
Error scaling vs. the
number of gates NG

O(
√

NG) O(
√

NG) O(NG)

Error scaling vs. the
gate error rate ϵ

O(
√

ϵ) Unknown O(ϵ)

Error scaling vs. the
number of samples Ns

O(
√

Ns) O(
√

Ns) N/A

Candidate circuit
generation complexity

O(NsNG) O{exp(NG)} 0

As for the non-QEM-protected circuits, we have shown in Section 5.3.2 that the
dynamic range of the noisy computational results shrinks exponentially as the
number of gates NG increases, implying a linear error scaling with NG. By contrast,
in Section 5.3.4, we have shown that the error scales as the square root of NG

in the presence of Monte Carlo-based QEM, at the same computational cost as
that of CI-QEM based on exact channel inversion. Moreover, the error scaling
of Monte Carlo based QEM can be further improved at the cost of an increased
computational complexity. Then, in Section 5.4, we have presented an intuitive
geometric interpretation of the error scaling of Monte Carlo based QEM, using
the central limit theorem. Finally, in Section 5.5, we have illustrated the analytical
results both for low-complexity examples and for a more practical example of the
quantum approximate optimization algorithm employed for multi-user detection
in wireless communications.

• In Chapter 6, we have proposed a general framework for designing FIR-like per-
mutation filters for mitigating the computational errors of variational quantum
algorithms, relying on the permutation symmetry across different activations of
quantum circuits. In particular, we define these filters in Section 6.2, which obey a
polynomial form, combining different order of VD circuits. The spectral response
of permutation filters is illustrated in Fig. 9.4. The original VD circuits may be
viewed as special cases of permutation filters having only a single non-zero coef-
ficient.

We then proposed a filter design algorithm in Section 6.2.2, and proved that the
filter design problem is an invariant convex (i.e. the so-called “invex” [192]) prob-
lem, hence the algorithm is guaranteed to converge to the global optimum. In
Section 6.3, we have also proved a polynomial error reduction compared to VD
for narrowband noise scenarios. This implies that permutation filters improve the
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FIGURE 9.4: The spectral response of a third-order permutation filter proposed in
Chapter 6, compared to that of the third-order VD.

error-reduction performance more substantially for quantum circuits having large
depth or higher gate error rate.

• In Chapter 7, we have proposed a general framework for circuit-oriented sym-
metry verification, inspired by the quantum switch based method originally pro-
posed in the quantum communications area for improving the capacity of quan-
tum channels. When certain gates are known to commute with each other, we
proposed in Section 7.2 to directly apply the quantum switch method to miti-
gate the errors violating the commutativity conditions. For the scenario where
the circuit has known symmetries, in Section 7.3, we proposed the method of STS,
generalizing the concept of conventional stabilizers used for state-oriented sym-
metry verifications. This method is capable of verifying the symmetries without
the knowledge of the current quantum state. The quantum circuit implementation
of STSs is contrasted to that of conventional stabilizers in Fig. 9.5.

|+〉 • • • • H

X

C
X

X X

1

(a) The STS S{X1(0), X2(0), X1(1), X2(1)}.

|+〉 • • H

X

X

1

(b) The conventional stabilizer X1X2.

FIGURE 9.5: Comparison between the STSs proposed in Chapter 7 and the conven-
tional stabilizers.

We then discussed in Section 7.3.3 another major difference between STSs and
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their conventional counterparts, namely that they are not necessarily simultane-
ously observable, and hence sometimes a rearrangement of the circuit is required
to perform multiple STS checks. We have also discussed the accuracy vs. over-
head trade-off of STSs in Section 7.3.4, and provided quantum circuit designs that
strike flexible trade-offs. To demonstrate the aforementioned design philosophy,
in Section 7.4, we have provided specific design examples concerning a suite of
practical quantum algorithms, including the QFT and the QAOA.

• In Chapter 8, we have proposed a dual-frequency phase estimator for mitigating
the spectral leakage-induced algorithm-level error in quantum phase estimation
algorithms based on multiple samples. This is potentially useful in the context
of noisy intermediate-scale quantum computing, since the maximum achievable
recording length N is ultimately restricted by the coherence time, hence we have
to rely on multiple samples, when a high phase estimation accuracy is required.

10
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Dual-Frequency Estimator

CRB, Rect. Window

Sample-mean, Cosine Window

CRB, Cosine Window

Sample-mean, Rect. Window

FIGURE 9.6: The phase estimation RMSE vs. the number of samples of both the dual-
frequency estimator proposed in Chapter 8 and the cosine window method, compared

to the corresponding CRBs.

To provide a systematic perspective, in Section 8.3, we have presented the CRB
analysis of the quantum phase estimation problem in the asymptotic regime. In-
spired by the CRB analysis, in Section 8.4, we proposed the concept of a dual-
frequency estimator. Compared to the naive sample-mean estimator, the proposed
estimator approaches the Heisenberg limit in the sense of exhibiting an RMSE scal-
ing on the order of O(1/N). Furthermore, the estimator is capable of outperform-
ing the cosine window, which is shown to be optimal for single-sample estimation,
when the number of samples is sufficiently large (but constant with respect to N),
as portrayed in Fig. 9.6.
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Appendix A

Proofs of Propositions

A.1 Proof of Proposition 4.3

Proof. To prove our claim, it suffices to show that Pauli twirling does not increase the
SOF. Without loss of generality, we assume that the specific columns corresponding to
Pauli operators in B are the first 4n columns. First we note that the quasi-probability
representation corresponding to any CPTP channel having Pauli transfer matrix repre-
sentation C may be expressed as:

µC = B−1vec{C−1}, (A.1)

while the quasi-probability representation corresponding to the Pauli-twirled channel
is given by

µTPC = B−1vec{[TPC]−1}, (A.2)

where the super-operator TP represents the Pauli twirling operation. We can rewrite
(A.2) in a matrix form as

µTPC = B−1vec{[vec−1{TPvec{C}}]−1}, (A.3)

where TP denotes the matrix representation of the Pauli twirling operator. Recall that
the Pauli-twirled channel is given by

TPC =
1
4n

4n

∑
i=1

PiC. (A.4)

Upon introducing B = [b1 b2 . . . b16n ], the Pauli operator Pi can be expressed in a
matrix form as Pi = bibT

i . Thus the Pauli twirling operator can be represented as

TP =
1
4n (BIT )(BIT )T, (A.5)
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with IP being the following matrix

IP =

[
I4n 04n×(16n−4n)

0(16n−4n)×4n 0(16n−4n)×(16n−4n)

]
.

Thus we have
TPvec{C} = vec{mdiag {C}}.

Since the Pauli transfer matrix C is triangular, we have

(mdiag {C})−1 = (mdiag
{

C−1
}
),

hence (A.3) can be simplified as

µTPC = B−1TPvec{C−1}. (A.6)

Using (A.1) and (A.6), we can show that if the statement of

µTPC = TLB−1vec{C−1} = TLµC

holds for a certain matrix TL, the proof can be completed by showing that ∥TL∥1 ≤ 1,
since we have:

∥TL∥1 = sup
x

∥TLx∥1

∥x∥1
≥ ∥µTPC∥1

∥µC∥1
.

Next we construct the matrix TL explicitly. Let us consider the QR decomposition [133]
of the matrix B

B = QR, (A.7)

where Q is an orthogonal matrix and R is an upper triangular matrix. Substituting
(A.5) and (A.7) into (A.6), we have

µTPC =
1
4n IP RTQTvec{C−1}. (A.8)

Similarly, we can obtain
µC = R−1QTvec{C−1}. (A.9)

Having compared (A.8) and (A.9), we may observe that

TL =
1
4n IP RTR.
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Upon introducing Q = [q1 q2 . . . q16n ], the matrix R can be represented by

R =




qT
1 b1 qT

1 b2 qT
1 b3 . . .

0 qT
2 b2 qT

2 b3 . . .
0 0 qT

3 b3 . . .
...

...
...

. . .




. (A.10)

Since Pauli operators are orthogonal to each other, the first 4n columns in B (i.e., b1

through b4n ) are also mutually orthogonal, meaning that

qT
i bj =

{
∥bi∥2, i = j;
0, i ̸= j,

when i = 1, 2, . . . , 4n and j = 1, 2, . . . , 4n. Therefore we have

IP RT = [diag {∥b1∥2, ∥b2∥2, . . . , ∥b4n∥2} 04n×16n ].

Upon introducing mB = maxi=1,...,16n ∥bi∥2, from (A.10) we have

∥TL∥1 ≤ mB

4n max
i=1,...,16n

min{4n,i}
∑
j=1

|qT
j bi| (A.11a)

≤ mB

4n max
i=1,...,16n

∥wi∥1 max
j=1,...,4n

∥bj∥2 (A.11b)

≤ m2
B

4n max
i=1,...,16n

∥wi∥1, (A.11c)

where wi ∈ Rmin{4n,i}, and

[wi]j =
bT

j bi

∥bj∥2
2

. (A.12)

Using (A.12), the projection of bi onto the space spanned by Pauli operators can be
expressed as

TPbi = [Q]:,1:4n [Q]T:,1:4n bi

=
min{4n,i}

∑
j=1

(qT
j bi)qj

=
min{4n,i}

∑
j=1

[wi]jbj.

Since Bi = vec−1{bi} corresponds to a CPTnI operator, the complete positiveness1

implies [wi]j ≥ 0 for all i and j, and the “trace–non-increasing” property implies

1We say that an operator is complete positive if it maps positive semidefinite matrices to positive
semidefinite matrices.
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∑j[wi]j ≤ 1. Therefore we have ∥wi∥1 ≤ 1 for all i, and hence

∥TL∥1 ≤ 4−nm2
B. (A.13)

Note that m2
B = maxi ∥Bi∥2

F. By consider the operator-sum decomposition of Bi, we see
that

∥Bi∥2
F = ∥∑

i
(K∗

i ⊗ Ki)∥2
F (A.14a)

≤
(

∑
i
∥K∗

i ⊗ Ki∥F

)2

(A.14b)

=

(
∑

i
Tr{K†

i Ki}
)2

(A.14c)

≤ 4n, (A.14d)

where (A.14d) follows from (4.10).

Combining (A.13) and (A.14), we can see that ∥TL∥1 ≤ 1, hence the proof is completed.

A.2 Proof of Proposition 4.5

To facilitate our further analysis, we denote the Hadamard transform matrix on the
space of Pauli transfer matrix representation of an n-qubit system as Hn ∈ R4n×4n

.
The corresponding inverse Hadamard transform is denoted by H−1

n = 1
4n H. We omit

the subscript n, whenever there is no confusion. Given these notations, according to
(4.19), the simplified quasi-probability representation vector for a Pauli channel C can
be expressed as

µ̃C = H−1(1/c). (A.15)

Since the channel is CPTP, the vector 1/c satisfies [1/c]1 = 1. Hence we define ζ ∈
R4n−1 so that

1/c = 1 + [0 ζT]T.

For comparison, we consider a depolarizing channel L having quasi-probability rep-
resentation corresponding to µ̃L given by

µ̃L = H−1(1 + [0 ζ̄1T]T), (A.16)
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where ζ̄ ≜ 1
4n−1 ∑4n−1

i=1 ζi. One may verify that the channel L characterized by (A.16) is
a depolarizing channel with its GGEP satisfying

1 − ϵ(L) = 1
4n

(
1 +

4n − 1
1 + ζ̄

)
. (A.17)

By contrast, the GGEP of the channel C satisfies

1 − ϵ(C) = 1
4n 1Tc

=
1
4n

(
1 +

4n−1

∑
i=1

1
1 + ζi

)
.

(A.18)

Since ζi > −1, ∀i, from (A.17) and (A.18) we have

ϵ(L) ≥ ϵ(C) (A.19)

due to the convexity of f (x) = (1 + x)−1, when x > −1.

Next we show that ∥µ̃C∥1 ≥ ∥µ̃L∥1. Note that the vector µ̃C can be decomposed as

µ̃C = µ̃L + H−1r, (A.20)

where
r = 1/c − 1/l

= [0 (ζ − ζ̄1)T]T.

From the definition of ζ̄ we see that 1Tr = 0, hence [µ̃C ]1 = [µ̃L]1 ≜ µ1. In addition, we
have

1Tµ̃C = 1Tµ̃L = [1/c]1 = 1, (A.21)

since the channels are CPTP. Therefore we obtain

1T[µ̃C ]2:4n = 1T[µ̃L]2:4n . (A.22)

The 1-norm of µ̃L can be calculated explicitly as

∥µ̃L∥1 = µ1 −
4n

∑
i=2

[µ̃L]i. (A.23)

For µ̃C , we denote the sign of its i-th entry as si, thus

∥µ̃C∥1 = µ1 +
4n

∑
i=2

si[µ̃C ]i

= µ1 + 1T
+[µ̃C ]2:4n − 1T

−[µ̃C ]2:4n ,

(A.24)
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where

[1+]i =

{
1, si−1 > 0;
0, si−1 < 0.

and [1−]i =

{
1, si−1 < 0;
0, si−1 > 0.

From (A.22) we have

1T
+[µ̃C ]2:4n + 1T

−[µ̃C ]2:4n =
4n

∑
i=2

[µ̃L]i.

Hence
∥µ̃C∥1 = ∥µ̃L∥1 + 21T

+[µ̃C ]2:4n

≥ ∥µ̃L∥1.
(A.25)

Finally, since ϵ(L) ≥ ϵ(C), we may construct a depolarizing channel L′ characterized
by ϵ(L′) = ϵ(C), while satisfying

∥µ̃L∥1 ≥ ∥µ̃L′∥1.

Hence the proof is completed.

A.3 Proof of Proposition 4.7

Proof. From (4.28), we have
γC = ∥C−1α∥2

1 − 1, (A.26)

where
C = (1 − ϵ)I + A. (A.27)

Since the graph G is symmetric, each column (resp. row) of C can be obtained by
permuting the first column (resp. row) of C. Thus we have

γC = ∥C−1∥2
1 − 1. (A.28)

From (A.27) we can obtain

C−1 = ((1 − ϵ)I + ϵÃ)−1 (A.29a)

=
1

1 − ϵ

(
I +

ϵ

1 − ϵ
Ã
)−1

(A.29b)

=
1

1 − ϵ

∞

∑
n=0

(−1)n
(

ϵ

1 − ϵ

)n

Ãn, (A.29c)

where Ã ≜ ϵ−1A, and (A.29c) is obtained using the matrix inversion lemma. Exploiting
the sub-multiplicativity of matrix p-norms [214, Chap. 5], we have

∥Ãn∥1 ≤ ∥Ã∥n
1 = 1, (A.30)



A.4. Proof of Proposition 4.8 211

where the equality follows from the fact that 1TÃ = 1 and that all entries in Ã are
non-negative. Substituting (A.30) into (A.29), we have

∥C−1∥1 ≤ 1
1 − ϵ

∞

∑
n=0

∥∥∥∥(−1)n
(

ϵ

1 − ϵ

)n

Ãn
∥∥∥∥

1
(A.31a)

≤ 1
1 − ϵ

∞

∑
n=0

(
ϵ

1 − ϵ

)n

=
1

1 − 2ϵ
. (A.31b)

Therefore, from (A.28) we obtain

γC ≤
(

1
1 − 2ϵ

)2

− 1 = 4ϵ · 1 − ϵ

(1 − 2ϵ)2 . (A.32)

To show that channels having a single type of error achieve the equality, we note that

P2n
i = I , P2n+1

i = Pi (A.33)

holds for any Pauli operator Pi. In light of this, the inverse of their PRW matrix can be
shown to satisfy

C−1 =
1

1 − ϵ

∞

∑
n=0

{(
ϵ

1 − ϵ

)2n

I −
(

ϵ

1 − ϵ

)2n+1

Ã

}
.

Therefore we have

∥C−1∥1 =
1

1 − ϵ

∞

∑
n=0

{(
ϵ

1 − ϵ

)2n

+

(
ϵ

1 − ϵ

)2n+1 ∥∥Ã
∥∥

1

}

=
1

1 − ϵ

∞

∑
n=0

(
ϵ

1 − ϵ

)n

,

which is identical to (A.31b). Hence the proof is completed.

A.4 Proof of Proposition 4.8

Proof. Let η be the probability vector of a Pauli channel. We first show that the function

f (η) =
∥∥∥H−1

1

(
1/(H1[1 − ϵ ηT]T)

)∥∥∥
1

(A.34)

is Schur-convex with respect to η. We proceed by first decomposing f (η) as

f (η) = g{h1[h2(η)]}, (A.35)
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where

g(x) =
∥∥∥H−1

1 [1 xT]T
∥∥∥

1
(x ≽ 1), (A.36a)

h1(x) = 1/x (0 ≼ x ≼ 1), (A.36b)

h2(η) = H1[1 − ϵ ηT]T
(

0 ≼ η ≼
ϵ

3
1
)

. (A.36c)

Since h2(η) is an affine function of η, we see that

h(η) = h1[h2(η)]

= 1/
(

H1[1 − ϵ ηT]T
) (A.37)

is element-wise convex with respect to η. Therefore, to show that f (η) is Schur-convex,
it suffices to show that g(x) is Schur-convex and increasing for x satisfying x ≽ 1.

Next we show the Schur-convexity of g(x). Note that

g(x) =
∥∥∥H−1

1 [1 xT]T
∥∥∥

1
(A.38a)

= 1 + 1T(x − 1) +
1
4

∥∥H̃1(x − 1)
∥∥

1 , (A.38b)

where

H̃1 =




−1 1 −1
1 −1 −1
−1 −1 1


 (A.39)

is obtained by removing the first row and the first column from H1. Since doubly
stochastic transformations do not affect the term 1T(x − 1), the problem is reduced to
showing the Schur-convexity of ∥H̃1x∥1 for x ≽ 0. To facilitate the analysis, we utilize
ϵ = 1Tx and define x = [x1 x2 x3]T. Now we see that

H̃1x = [2x2 − ϵ 2x1 − ϵ 2x3 − ϵ]T, (A.40)

hence
∥H̃1x∥1 = ∥2x − ϵ∥1. (A.41)

For fixed ϵ, ∥2x − ϵ∥1 is convex with respect to x. In addition, it is also a symmetric
function of x, meaning that its value is unchanged upon permutation of x. Therefore,
g(x) is Schur-convex.

To show that g(x) is increasing, we calculate the gradient of g(x) as

∇xg(x) =
∂

∂x

(
1T(x − 1) + ∥H̃1(x − 1)∥1

)

= 1 + H̃1sgn(H̃1(x − 1))
(A.42)



A.5. Proof of Proposition 5.1 213

where sgn(·) is the sign function satisfying

[sgn(x)]i =





−1, xi < 0;
1, xi > 0;
0, xi = 0.

After some manipulation, one can verify that H̃1sgn(H̃1(x − 1)) ≽ −1 according to
(A.39), hence g(x) is increasing.

Given that the SOF of single-qubit Pauli channels is Schur-convex, we may generalize
the result to n-qubit memoryless Pauli channels. To elaborate, the PRW matrix of an
n-qubit memoryless Pauli channel can be expressed as

C(ηC) =
n⊗

i=1

Ci(ηCi), (A.43)

where Ci(ηCi) corresponds to the partial channel of the i-th qubit. Thus

∥∥∥C−1(ηC)
∥∥∥

1
=

n

∏
i=1

∥C−1
i (ηCi)∥1. (A.44)

Since ∥C−1
i (ηCi)∥1 is Schur-convex with respect to the corresponding probability vector

ηCi , we have
∥C−1

i (ηCi)∥1 ≥ ∥C−1
i (QiηCi)∥1 (A.45)

for any doubly stochastic matrix Qi. Therefore

∥∥∥C−1(ηC)
∥∥∥

1
≥

n

∏
i=1

∥∥∥C−1
i (QiηCi)

∥∥∥
1

. (A.46)

Hence the proof is completed.

A.5 Proof of Proposition 5.1

Proof. First observe that the matrix representation of a perfect gate Gi as well as that of
a channel Ci take the following block-diagonal form

Gi =

(
1 0T

0 Ui

)
, Ci =

(
1 0T

0 Di

)
, (A.47)

where Ui is a unitary matrix, whereas Di is a diagonal matrix having diagonal entries
taking values in the interval [0, 1]. Since the matrix RNG is the product of several Gi and
Ci, it becomes clear that its largest singular values satisfies σ1(RNG) = 1, and its second
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largest singular value satisfies

σ2(RNG) ≤
NG

∏
i=1

∥Di∥2. (A.48)

Furthermore, we have ∣∣∣∣r −
1
2n Tr {Mob}

∣∣∣∣ ≤ σ2(RNG) (A.49)

due to the “bounded observable” Assumption 3.

Note that the quantity NL defined in this proposition is related to the depth of the
circuit. To elaborate, if we say that “a layer of gates” is executed if each qubit has been
processed by at least one gate, then the entire circuit consists of at least NL layers. For
each single-qubit channel C in these layers, due to the assumption that each single-
qubit Pauli error occurs at probability of at least ϵl, the following bound holds:

C = I − 2diag {[pX + pZ pY + pZ pX + pY]}
≼ (1 − 4ϵl),

(A.50)

where pX, pY and pZ are error probabilities corresponding to the Pauli-X, Y and Z errors,
respectively. Thus we obtain

σ2(RNG) ≤ (1 − 4ϵl)
NL

= exp{NL ln(1 − 4ϵl)}
≤ exp(−4ϵlNL).

(A.51)

Hence the proof is completed.

A.6 Proof of Proposition 5.2

Proof. In this proof, we will work under the operator-sum representation of quantum
channels. Since we consider Pauli channels, the recursion (5.3) may be rewritten as

ρk =
4n

∑
i=1

[pk]iSiGkρk−1G†
kSi

= [pk]1Gkρk−1G†
k +

4n

∑
i=2

[pk]iSiGkρk−1G†
kSi.

(A.52)

Assumption 3 implies that ∥Mob∥2 ≤ 1, meaning that

Tr {Mobρ} ≤ 1
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holds for any legitimate density matrix ρ. Note that terms such as SiGkρk−1G†
kSi in

(A.52) are indeed legitimate density matrices. Thus the computational result satisfies

|r̃ − Tr {MobρNG}| ≤ (|r̃|+ ∥Mob∥2)

(
1 −

NG

∏
k=1

[pk]1

)

≤ 2

(
1 −

NG

∏
k=1

[pk]1

)
.

(A.53)

According to Assumption 2, for any k, the vector pk satisfies

[pk]1 ≥ 1 − ϵu,
4n

∑
i=2

[pk]i ≤ ϵu.
(A.54)

Therefore, we have

|r̃ − Tr {MobρNG}| ≤ 2(1 − (1 − ϵu)
NG)

≤ 2ϵuNG.
(A.55)

Hence the proof is completed.

A.7 Proof of Proposition 5.3

Proof. We first expand the expression of MSE as follows

E{(r− r̃)2} = E

{(
vT

obvNG − r̃
)2
}

= vT
obE

{
vNGv

T
NG

}
vob + r̃2 − 2r̃vT

obE{vNG}.
(A.56)

Hence the RMSE is given by

√
E{(r− r̃)2} =

√
vT

obAkvob + r̃2 − 2r̃vT
obµk, (A.57)

where Ak := E{vkv
T
k } and µk := E{vk}.

Using (5.40), we have
vk = c̃k ⊙ (Gkvk−1). (A.58)

This implies the following recursive relationships:

Ak = E{c̃kc̃
T
k } ⊙ Gk Ak−1GT

k ,

µk = Gkµk−1.
(A.59)
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In fact, we have
E{c̃kc̃

T
k } = 11T + Ξk, (A.60)

which follows from (5.38). Substituting (A.60) into (A.59), we obtain

Ak = Gk Ak−1GT
k + Ξk ⊙ Gk Ak−1GT

k . (A.61)

Let us now consider the case of k = 1. In this case, v0 of (5.8) is a deterministic vector,
thus we have

A0 = v0vT
0 ,

µ0 = v0.
(A.62)

Using the recursive relationship of µk = Gkµk−1, we now see that vT
obµNG = r̃. Hence

we may simplify (A.56) as

E{(r− r̃)2} = vT
obANG vob + r̃2 − 2r̃vT

obµNG

= vT
obANG vob − (vT

obµNG)
2

= vT
ob

(
ANG − µNG µT

NG

)
vob.

(A.63)

Observe that the term ANG − µNG µT
NG

is in fact the covariance matrix of vNG , upon defin-
ing

Σk := Ak − µkµT
k , (A.64)

and substituting into (A.63) we arrive at

E{(r− r̃)2} = vT
obΣNG vob. (A.65)

The covariance matrix can be further formulated as

Σk = Ak − µkµT
k

= Ak − R̃kv0vT
0 R̃T

k .
(A.66)

It now suffices to compute Ak. Taking trace from both sides of (A.61), we have

Tr {Ak} = Tr
{

Gk Ak−1GT
k + Ξk ⊙ Gk Ak−1GT

k

}

= Tr {Ak−1}+ Tr
{

Ξk ⊙ Gk Ak−1GT
k

}

≤ Tr {Ak−1} (1 + ∥Ξk∥max),

(A.67)

where the second line follows from the fact that unitary transformations preserve the
trace, and ∥ · ∥max is defined as

∥A∥max := max
i,j

|[A]i,j|.
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From (5.38) we obtain

∥Ξk∥max =
1

Ns
∥H̃

(
Pk − pk pT

k

)
H̃ ⊙ ckcT

k ∥max

≤ 1
Ns

∥H̃
(

Pk − pk pT
k

)
H̃∥max∥ckcT

k ∥max

≤ 1
Ns

(
∥H̃Pk H̃∥max + ∥H̃ pk pT

k H̃∥max

)
,

(A.68)

where the third line follows from the fact that ck represents a contractive transforma-
tion, so that ck ≼ 1. Note that every entry in H̃ has an absolute value of 1, and hence

∥H̃Pk H̃∥max ≤ ∥vec{Pk}∥1 = 1, (A.69)

and

∥H̃ pk pT
k H̃∥max ≤ ∥vec{pk pT

k }∥1 = 1. (A.70)

In light of this, the upper bound of Tr {Ak} can now be simplified as follows:

Tr {Ak} ≤ Tr {Ak−1}
(

1 +
2

Ns

)
. (A.71)

From (A.62) we have Tr {A0} = 1 since v0 is a unit vector, hence we obtain

Tr {ANG} ≤
NG

∏
k=1

(
1 +

2
Ns

)

≤ exp
(

2NGN−1
s

)
.

(A.72)

Using (A.66), we have

Tr {ΣNG} = Tr {ANG} − Tr
{

v0vT
0

}

≤ exp
(

2NGN−1
s

)
− 1.

(A.73)

Note that ΣNG is a positive semidefinite matrix, hence we have

Tr {ΣNG} ≥ λmax(ΣNG), (A.74)

where λmax(·) denotes the maximum eigenvalue of a matrix. This implies that

√
E{(r− r̃)2} =

√
vT

obΣNG vob

≤
√

Tr {ΣNG} · ∥vob∥

≤
√

exp
(

2NGN−1
s

)
− 1 · ∥vob∥.

(A.75)

Hence the proof is completed by applying (5.23).
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A.8 Proof of Proposition 5.4

Proof. We start the proof from revisiting the inequality in (A.68), and arrive at:

∥Ξk∥max ≤ 1
Ns

∥H̃
(

Pk − pk pT
k

)
H̃∥max

≤ 1
Ns

∥vec{Pk − pk pT
k }∥1.

(A.76)

Next we construct an upper bound for the term ∥vec{Pk − pk pT
k }∥1. According to the

sampling overhead of QEM in [1], Assumption 2 implies that

∥α∥1 ≤
√

1 + σu. (A.77)

Since α
(1)
k ≥ 1, we have

∑
i ̸=1

|α(i)
k | ≤

√
1 + σu − 1. (A.78)

This further implies that

p(1)k ≥ 1√
1 + σu

, ∑
i ̸=1

p(i)k ≤
√

1 + σu − 1. (A.79)

Therefore, upon taking the entry-wise absolute value, we obtain

∣∣∣Pk − pk pT
k

∣∣∣ ≤




σu
1+σu

p(2)k · · · p(4
n)

k

p(2)k p(2)k p(2)k p(3)k · · ·
... p(3)k p(2)k

. . .
...

p(4
n)

k
... · · · p(4

n)
k




. (A.80)

Here, the symbol “≤” stands for entry-wise “not larger than”. Observe that summing
up the first row, the first column and the main diagonal, by applying (A.79), we see that

∥vec{Pk − pk pT
k }∥1 ≤ 3

(√
1 + σu − 1

)
+

σu

1 + σu
+ ∥vec{qkqT

k }∥1, (A.81)

where qk := [p(2)k . . . p(4
q)

k ]T ∈ R4q−1. Note that

∥vec{qkqT
k }∥1 = 1TqkqT

k 1

≤ (
√

1 + σu − 1)2,
(A.82)

implying that

∥vec{Pk − pk pT
k }∥1 ≤ 5

2
σu +

1
4

σ2
u, (A.83)
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which follows from that fact that

√
1 + x − 1 ≤ x

2

holds for all x ≥ 0. Hence we have

∥Ξk∥max ≤ 1
Ns

(
5
2

σu +
1
4

σ2
u

)
, (A.84)

which proves (5.42). Thus the proof is completed.

A.9 Proof of Proposition 6.1

Proof. Consider the transform from β to α, which helps us to reformulate (6.17) (where
the cost function is approximated as in (6.18)) in the form of:

min
α

ξ(α),

s.t. [α]1 = 1,
(A.85)

where
ξ(α) := ϵ̃[φ(α)] =

∫ 1

λm

f (λ)
√

αT A(λ)α dλ, (A.86)

φ(·) is the mapping from β to α, A(λ) is defined by A(λ) := a(λ)[a(λ)]T, and a(λ) :=
[λN λN−1 . . . λ]T. Note that the term

√
αT A(λ)α is actually the Mahalanobis norm [215]

of α with respect to a positive semi-definite symmetric matrix A(λ), hence it is a convex
function of α. Thus the objective function itself is also convex with respect to α, since
the integration (weighted by a non-negative function f (λ)) preserves convexity.

Next, we observe that φ(·) can be computed via (6.13), and its inverse may be obtained
using the factorization of polynomials [216]. Since β satisfies the ordering (6.14), when
α is further constrained to be the coefficients of polynomials having only non-negative
real-valued roots, it is clear that φ(·) is a bijection, and hence the Jacobian Jβ that is
given by

Jβ =

[
∂φ(β)

∂β1

∂φ(β)

∂β2
. . .

∂φ(β)

∂βN−1

]T

,

is invertible for every β ∈ B. This implies that φ(·) is a diffeomorphism from β to α,
and hence ϵ̃(β) is an invex function of β [192, 217, 218]. To elaborate a little further, we
see that

∂ϵ̃(β)

∂β

∣∣∣∣
β0

= J−1
β0

∂ξ(α)

∂α

∣∣∣∣
φ(β0)

= 0 ⇔ ∂ξ(α)

∂α

∣∣∣∣
φ(β0)

= 0

holds for β0 ∈ B, implying that β0 ∈ B is a stationary point of ϵ̃(β) if and only if
φ(β0) is also a stationary point of ξ(α), which in turn is one of the global minima of
ξ(α).
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Our remaining task is to show that ξ(α) attains its global minimum when β = φ−1(α)

belongs to the feasible region B. This may be proved using the method of contradic-
tion. Assume by contrast that the minimum of ξ(α) is attained at α0 /∈ B. Then the
polynomial αT

0 a(λ) has either real negative roots or complex roots. For the former case,
it is plausible that |αT

0 a(λ)| > λN for all λ > 0, hence α0 is not the optimum. For the
latter case, we specifically consider a pair of conjugate complex roots x ± iy. It is clear
that

|(λ − x − iy)(λ − x + iy)| = λ2 − 2xλ +
√

x2 + y2

≥ λ2 − 2xλ + x2

= (λ − x)2,

implying that the cost function value can be reduced by replacing the complex roots
with real roots. Hence the proof is completed.

A.10 Proof of Proposition 6.5

Proof. The term ϵ̃(0) may be viewed as the N-th moment of the Pareto distribution.
Upon denoting the shape parameter and the minimum value of the Pareto distribution
as k and λm, we have

ϵ̃(0) =
k

k − N
· λN

m. (A.87)

From (6.19) we obtain

R(β) =
ϵ̃(β)

ϵ̃(0)

=
k − N
kλN

m

N−1

∑
i=0

(−1)i
∫ βN−i

βN−i−1

Gβ(λ)dλ.
(A.88)

Note that for Type-1 permutation filters, we have β = kλm
k−1 1. Hence (A.88) can be sim-

plified as

R(β) =
k − N
kλN

m

(∫ ∞

kλm
k−1

|Gβ(λ)|dλ +
∫ kλm

k−1

λm

|Gβ(λ)|dλ

)

=

∣∣∣∣G(λm)− G
(

kλm

k − 1

)∣∣∣∣+
∣∣∣∣G
(

kλm

k − 1

)∣∣∣∣

≤ 2
∣∣∣∣G
(

kλm

k − 1

)∣∣∣∣ ,

(A.89)

where for simplicity of notations we have defined G(λ) = k−N
λN−k

m
G̃α(λ). The last line of

(A.89) comes from the fact that

∫ kλm
k−1

λm

|Gβ(λ)|dλ ≥ 0.



A.10. Proof of Proposition 6.5 221

Furthermore, from (6.13) we have

αi = (N−1
i−1 )

(
− kλm

k − 1

)i−1

. (A.90)

Thus we obtain

G(λ) =
N

∑
n=1

αN−n+1
k − N
n − k

· λn−k

λN−k
m

= (k − N)
N

∑
n=1

(N−1
N−n)

n − k

( −k
k − 1

)N−n ( λ

λm

)n−k

.

(A.91)

This implies that

G
(

kλm

k − 1

)
=

k − N
(

k
k−1

)k−N

N

∑
n=1

(N−1
n−1)

n − k
(−1)N−n. (A.92)

Next, we denote
N

∑
n=1

(−1)N−n(N−1
n−1)η(n, k) = aT

N−1η, (A.93)

where [aN−1]i = (−1)N−i(N−1
i−1 ), [η]i = η(i, k), and η(n, k) denotes an arbitrary function

of n and k. Furthermore, we have

aT
N−1η = 1TAN−1η, (A.94)

where AN−1 is defined recursively by

An =

[
An−1 02n−2×1

02n−2×1 −An−1

]
, (A.95)

and A1 := [1 − 1]. Thus we have the following recursion

1TAnx = 1T An−1 ([x]1:L−1 − [x]2:L)

for x ∈ RL. From (A.92) we may now write η explicitly as

η =

[
1

1 − k
1

2 − k
. . .

1
N − k

]T

. (A.96)

When N = 2, we have

1TA1η =
1

1 − k
− 1

2 − k

=
Γ(−k)

Γ(1 − k)
− Γ(1 − k)

Γ(2 − k)
,
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where Γ(·) denotes the Gamma function [219]. Note that

Γ(−k)
Γ(m − k)

− Γ(1 − k)
Γ(m − k + 1)

=
mΓ(−k)

Γ(m + 1 − k)
. (A.97)

Hence for N = 3 we obtain

1TA2η =
Γ(−k)

Γ(2 − k)
− Γ(1 − k)

Γ(2 − k + 1)

=
2Γ(−k)
Γ(3 − k)

,

and in general we have

1T AN−1η =
(N − 1)!Γ(−k)

Γ(N − k)

= (−1)N(N − 1)! · Γ(k − N − 1)
Γ(k)

.

This implies that

∣∣∣∣G
(

kλm

k − 1

)∣∣∣∣ =
(k − N)(N − 1)!
(

k
k−1

)k−N · Γ(k − N − 1)
Γ(k)

=

(
1 + 1

k−1

)N−k
(N − 1)!

∏N−1
n=1 (k − n)

,

(A.98)

as a function of k.

Finally, since we have assumed that the spectral density obeys a Pareto distribution, we
may compute the relative noise bandwidth explicitly as follows:

b(λ̃) =

√
k

(k − 1)2(k − 2)

≥ (k − 1)−1.

(A.99)

Combining (A.98) and (A.99), we obtain the desired scaling law in (6.42).

A.11 Proof of Proposition 6.6

Proof. To simplify the discussion, we will use the Pauli basis. Under the Pauli basis, a
quantum channel C may be represented in a matrix form as

[C]i,j =
1

2Nq
Tr
{
SiC(Sj)

}
, (A.100)



A.11. Proof of Proposition 6.6 223

where Si denotes the i-th Pauli string acting upon Nq qubits. Correspondingly, a quan-
tum state ρ may be represented as a vector:

[xρ]i =
1√
2Nq

Tr {Siρ} . (A.101)

Since the Pauli operators are unitary and mutually orthogonal, both the transform from
the conventional computation basis to the Pauli basis, as well as the inverse transform,
are also unitary. This implies that

∥λρ∥2 = ∥xρ∥F = ∥xρ∥2, (A.102)

due to the unitary invariance of the Frobenius norm [214], where λρ denotes the vector
containing all eigenvalues of ρ sorted in descending order. Without loss of generality,
we assume that the first Pauli operator is the identity operator I⊗Nq . In light of this, we
have

xρ = [2−Nq/2 x̃T
ρ ]

T, (A.103)

since all quantum states satisfy Tr {ρ} = 1.

We say that “a layer of gates” is activated if each qubit has been act upon by at least one
gate. From our assumption we see that the circuit consists of at least L layers. After the
l-th layer, the output state xρl may be expressed as

xρl = G̃lxρl−1 = ClGlxρl−1 , (A.104)

where Gl denotes the ideal noiseless operation corresponding to the l-th layer, and Cl

denotes the associated quantum channel characterizing the noise. A perfect layer of
gates Gi can be expressed as

Gi =

[
1 0T

0 Ui

]
, (A.105)

where Ui ∈ R(4Nq−1)×(4Nq−1) is a unitary matrix, while a Pauli channel Ci takes the
following form

Ci =

[
1 0T

0 Di

]
, (A.106)

where Di ∈ R(4Nq−1)×(4Nq−1) is a diagonal matrix, whose diagonal entries take values
in the interval [0, 1]. We now see that the maximum singular value of G̃l is 1, while its
second largest singular value σ2(G̃l) is given by

σ2(G̃l) = ∥Dl∥2. (A.107)

Since the probability of each single-qubit Pauli error is at least ϵl, we see that for a
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single-qubit channel C characterized by the error probabilities of pX, pY and pZ corre-
sponding to the X, Y and Z errors, respectively, the following holds:

C = diag
{

H̃[1 − pX − pY − pZ pX pY pZ]
T
}

= I − 2diag {[pX + pZ pY + pZ pX + pY]}
≼ (1 − 4ϵl)I,

(A.108)

where H̃ denotes the inverse Hadamard transform over Nq qubits. Therefore, we ob-
tain

∥x̃ρL∥2 ≤ σ2

(
L

∏
l=1

G̃L−l+1

)

≤
L

∏
l=1

∥Dl∥2

≤ (1 − 4ϵl)
L

≤ exp (−4ϵlL) ,

(A.109)

where the last line follows from the fact that ln(1 − x) ≤ −x holds for all x > 0. This
implies that

∥xρL − [2Nq/2 0T]T∥2 ≤ exp (−4ϵlL) . (A.110)

Note that [2−Nq/2 0T]T corresponds to the completely mixed state 2−Nq I, hence from
(A.102) we have

∥λρL − 2−Nq1∥2 = ∥ρL − 2−Nq I∥F

≤ exp (−4ϵlL) .
(A.111)

The relative noise bandwidth is given by

b(λ̃) = µ−1(2Nq − 1)−
1
2 ∥λ̃ − µ1∥2, (A.112)

where µ =
1−[λρL ]1

2Nq−1
and λ̃ = [λρL ]2:2Nq . The term ∥λ̃ − (2Nq − 1)−11|2 can be bounded

by

∥λ̃ − µ1∥2 ≤ ∥λ̃ − 2−Nq1∥2 +

∥∥[λρL ]1 − 2−Nq1
∥∥

2

2Nq − 1

≤
(

1 + (2Nq − 1)−1/2
)

e−4ϵlL.
(A.113)

In addition, we have

µ =
1 − 2−Nq − |[λρL ]1 − 2−Nq |

2Nq − 1

≥ 1 − 2−Nq − e−4ϵlL

2Nq − 1
.

(A.114)

Substituting (A.113) and (A.114) into (A.112), we obtain (6.43). Thus the proof is com-
pleted.
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Proof. When ω = |+⟩⟨+|, we have

Cij(ρ ⊗ ω)C†
ij

=
1
2
(

AiBj ⊗ |0⟩⟨0|+ Bj Ai ⊗ |1⟩⟨1|
)

[ρ ⊗ (|0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0|+ |1⟩⟨1|)]
(

B†
j A†

i ⊗ |0⟩⟨0|+ A†
i B†

j ⊗ |1⟩⟨1|
)

=
1
2

(
AiBjρB†

j A†
i ⊗ |0⟩⟨0|+ AiBjρA†

i B†
j ⊗

|0⟩⟨1|+ Bj AiρB†
j A†

i ⊗ |1⟩⟨0|
+ Bj AiρA†

i B†
j ⊗ |1⟩⟨1|

)
.
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Therefore, if we do not post-select on the control qubit, the partial state on the data
register can be obtained by taking the partial trace as

∑
i,j

trω{Cij(ρ ⊗ ω)C†
ij}

=
1
2 ∑

i,j
AiBjρB†

j A† + Bj AiρA†
i B†

j

=
1
4 ∑

i,j
{Ai, Bj}ρ{Ai, Bj}† + [Ai, Bj]ρ[Ai, Bj]

†.

(A.116)

But if we discard the computational result once we measure a |−⟩ on the control qubit,
note that Cij(ρ ⊗ ω)C†

ij may be further expressed as

Cij(ρ ⊗ ω)C†
ij

=
1
4

[
AiBjρB†

j A†
i ⊗(|+⟩⟨+|+ |+⟩⟨−|+ |−⟩⟨+|+ |−⟩⟨−|)

+AiBjρA†
i B†

j ⊗(|+⟩⟨+| − |+⟩⟨−|+ |−⟩⟨+| − |−⟩⟨−|)
+Bj AiρB†

j A†
i ⊗(|+⟩⟨+|+ |+⟩⟨−| − |−⟩⟨+| − |−⟩⟨−|)

+Bj AiρA†
i B†

j ⊗(|+⟩⟨+| − |+⟩⟨−| − |−⟩⟨+|+ |−⟩⟨−|)
]

=
1
4

[
{Ai, Bj}ρ{Ai, Bj}† ⊗ |+⟩⟨+|

+ {Ai, Bj}ρ[Ai, Bj]
† ⊗ |+⟩⟨−|

+ [Ai, Bj]ρ{Ai, Bj}† ⊗ |−⟩⟨+|
+ [Ai, Bj]ρ[Ai, Bj]

† ⊗ |−⟩⟨−|
]
.

(A.117)
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Hence the data register will be in the following state

1
Z ∑

i,j

{Ai, Bj}
2

ρ
{Ai, Bj}†

2
, (A.118)

where Z is a normalization factor given by

Z =
Tr{∑i,j{Ai, Bj}ρ{Ai, Bj}† + [Ai, Bj]ρ[Ai, Bj]

†}
Tr{∑i,j{Ai, Bj}ρ{Ai, Bj}†} .

This completes the proof.
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Appendix B

Supplementary Illustrations

B.1 The Values of the Quasi-probability Representation Vector
For Basic Pauli Channels

To elaborate further on the intuition about ηC , the values of ηC corresponding to some
single-qubit Pauli channels are listed in Table B.1.

TABLE B.1
ηC values of single-qubit Pauli channels.

Channel Parameters ηC
Depolarizing Depolarizing prob. p [1 − p, p

3 , p
3 , p

3 ]
T

Bit-flip Bit-flip prob. px [1 − px, px, 0, 0]T

Phase-flip Phase-flip prob. pz [1 − pz, 0, 0, pz]T

B.2 Notes on the Spectral Response of Permutation Filters

Let us consider a third-order permutation filter as an example, which has the following
spectral response:

hβ(λ) = λ(λ − β1)(λ − β2), (B.1)

where β1 ≤ β2. By taking the limit λ → ∞, we see that hβ(λ) ∼ λ3, implying that
the spectral response can be well approximated by λ3 when λ ≫ β2. Since the cubic
function λ3 satisfies λ3

1 = 103 · λ3
2 when λ1 = 10λ2, we say that it “has a slope of

30dB per decade” (note that 10dB corresponds to 10 log10(10) = 10 times). Here, the
“slope” refers to that of the spectral response curve on a log-log scale, which appears
to be linear for power functions. Furthermore, if β1 and β2 is well separated, we see
that hβ(λ) ∼ λ2 when β1 ≪ λ ≪ β2, and hence “has a slope of 20dB per decade”.
In general, when the eigenvalue λ is in the region βn ≪ λ ≪ βn+1, we see that the
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slope is (approximately) 10(n + 1) dB per decade. Since the first zero is β0 = 0, we
may conclude that each zero βi ≪ λ0 contributes 10dB/decade to the slope at the point
λ = λ0.
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