
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are

retained by the author and/or other copyright owners. A copy can be downloaded for personal non-

commercial research or study, without prior permission or charge. This thesis and the accompanying

data cannot be reproduced or quoted extensively from without first obtaining permission in writing

from the copyright holder/s. The content of the thesis and accompanying research data (where ap-

plicable) must not be changed in any way or sold commercially in any format or medium without the

formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) ”Full thesis title”, University of Southampton, name of the

University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]





UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

On the Learning and Structure of Symmetry
Based Disentangled Representations

by

Matthew Painter
ORCiD: 0000-0003-0666-2497

A thesis for the degree of
Doctor of Philosophy

14th June 2022

http://www.southampton.ac.uk
mailto:mp2u16@ecs.soton.ac.uk
http://orcid.org/0000-0003-0666-2497




University of Southampton

Abstract

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

Doctor of Philosophy

On the Learning and Structure of Symmetry Based Disentangled Representations

by Matthew Painter

Representation learning is fundamental to many machine learning techniques,
perhaps even more so in the subfield of deep learning. Disentangled representations
introduce a form of interpretability such that both humans and our models can
understand (to a degree) how decisions are made - or at least, what is important to
such decisions. Symmetry based disentangled representations introduce a stricter
form of interpretability which ensures the representations are structured based on
how the data is observed, which is described by symmetries acting on it. In this work
we explore two aspects of symmetry based representations. First we consider
methods to learn such representations with a particular focus on doing so without
action labelling. Secondly we consider their structure and potential benefits for
downstream tasks. We find that through the use of policy gradients, we can
successfully learn linear disentangled representation without knowledge of world
states or action labels. Indeed our proposed method achieves similar performance to
supervised methods. Subsequently, we find that linear disentangled representations
are highly structured with respect to a particular symmetry group. This structure
allows for better performance than standard disentangled representations on both the
tasks of generative factor prediction and observed action prediction.
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Chapter 1

Introduction

The study of symmetry has a long history in the fields of pure mathematics and
theoretical / applied physics. Prior to the mathematical formulation of symmetry via
Group theory, its structures were utilised by many mathematicians, notably by Euler
in his study of Fermat’s little theorem, manifesting as Euler’s φ function - which forms
a group with multiplication modulo n. After it’s formal introduction, usually
accredited to Lagrange, Galois and Cauchy, Group theory went on to become an
important aspect of 20th and 21st century mathematics, simplifying many problems in
geometry and topology whilst simultaneously becoming a growing field of study in
and of itself.

Group theory quickly spread to other fields, in particular physics and chemistry
where symmetries are rife. In physics, Noether’s theorem famously shows that all
physical conservation laws are the direct result of a corresponding physical symmetry,
which is defined in group theoretical terms. In chemistry, it was found that chemical
molecules can be categorised based on their symmetry properties, again defined in
terms of group theoretical concepts.

In a less formal sense, when observing natural scenes, symmetries are present at all
levels, be it the bilateral symmetry of human (and many animal) bodies, radial
symmetries of many flowers and plants or temporal symmetries in how things move.
It is these kinds of ideas that initially motivated Higgins et al. [2018] to consider group
theory for the study of disentanglement and disentangled variational representations.

Currently, deep variational methods lack the reconstruction fidelity of other
generative models, although partly this is due to their focus not being accurate
generative sampling. The main goal of variational models is to produce a smooth and
meaningful representation of the data distribution, even if the original space is not
smooth itself. Preferably this representation would disentangle the “generative
factors” of the data distribution, i.e. render them separable in the representation space.
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It is of no surprise then that disentanglement has been the focus of the majority of
work in this area in recent years.

Despite this, there is not a strong understanding of exactly how to define or quantify
disentanglement, despite a number of metrics that estimate how “disentangled” a
given representation would be considered by a human. Such metrics are often based
on the ability of a simple classifier to distinguish changes in individual generative
factors, or concepts such as the total correlation between latent dimensions. Whilst
individually, they stem from an understanding of disentanglement which makes sense
relative to the general consensus, they do not all agree, and do not always correlate
with common techniques to demonstrate disentanglement (i.e. latent traversals).

The definition by Higgins et al. [2018], stated in group theoretic terms, is the first
attempt to rigorously define and study disentanglement, forming the basis and
motivation for much of my work. At its broadest level, their notion of
disentanglement says that we can relate generative factors to symmetry groups and
each group should represent and “act on” independent subspaces of the
representation, i.e. generative factors are separated in this space. Higgins et al. [2018]
did not explicitly demonstrate this with deep variational models, however, recently
this has been done in the simplest case by Caselles-Dupré et al. [2019]. They show that
to effectively learn in the manner required by Higgins definition, the model needs to
observe “transitions”, image pairs which differ by action of one symmetry group. The
advantage of the symmetry based definition over those based on concepts such as the
total correlation is that for a given symmetry structure, the structure of the expected
representation can be defined exactly. This cannot be said of the classical definitions,
which encompass a broad range of representational structures.

It is from the basis of symmetry based disentanglement that our work will begin. We
will now give an overview of each chapter in this work.

Chapter 1 - Introduction The current chapter, an introduction to the following work

Chapter 2 - Groups and Representations Symmetry based disentangled
representation learning uses the language of group and representation theory.
This chapter will briefly cover necessary definitions and useful relations that will
be useful when discussing SBDRL and models based on the SBDRL framework.

Chapter 3 - Symmetry based Disentangled Representation Learning This chapter
will provide an overview of classical and symmetry based disentanglement
(SBDRL). Our work will relate to variational auto-encoders (VAEs), so it will
focus on disentanglement in that area. It will begin by introducing the original
VAE definition, before introducing subsequent improvements to the VAE which
aimed to improve disentanglement performance. We will then introduce the
standard methods to measure disentanglement and introduce the only large
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scale (classical) disentanglement study and its findings. Finally we will
introduce the SBDRL framework from which the subsequent chapters shall
work.

Chapter 4 - Learning Linear Disentangled Representations This chapter will cover
the contents of my NeurIPS 2020 publication ‘Linear Disentangled
Representations and Unsupervised Action Estimation’ [Painter et al., 2020a]. We
will begin with a feasibility study, which we performed prior to the NeurIPS
work which explores learning linear disentangled representations in the ideal
case. Section 4.2 will then give a brief overview of ForwardVAE[Caselles-Dupré
et al., 2019], which was the first model to explicitly demonstrate linear
disentangled representations learnt by a VAE. We will then provide an expanded
report of my NeurIPS work which covers Sections 4.3-4.5. Section 4.6 includes
experiments present in our NeurIPS paper (Section 4.6.1) and additional
exploration of our model.

• Indepedence, Mean Component Overlap and Factor Leakage Metrics

• Method to supervised learn a linearly disentangled intermediate space
from existing representation spaces

• GroupVAE to learn LDR end-to-end without action labels

• Proof that LDRs are sometimes learnt in baseline VAEs, but not consistently

Chapter 5 - Structure and Benefits This chapter will cover and expand upon the
contents of our paper ‘On the Structure of Cyclic Linear Disentangled
Representations’ published in the 1st NeurIPS 2020 workshop on Interpretable
Inductive Biases and Physically Structured Learning [Painter et al., 2020b]. It
will begin with an exploration of posterior and prior structure on a simple
dataset on which we can vary the symmetry structure. We will then determine if
we can find evidence of linear disentangled representations through classical
(and symmetry based) disentanglement metric scores. This will lead on to
evaluating symmetry based models on two downstream tasks - predicting
actions and predicting generative factor values. Finally, we will consider the
data efficiency of symmetry based models on these tasks. In particular, looking
to correlate efficiency with symmetry based metrics, since it was found by
Locatello et al. [2018] that efficiency did not correlate with classical metrics (at
least on the dataset and models they tested).

• FlatLand variants

• Method to learn observed structure (the true generative process) rather
than the simplest structure, through normalising flows

• Exploration of whether individual disentanglement metric scores can be
used to determine if a representation is linearly disentangled or not
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• Evidence that LDRs improve downstream scores and data efficiency on
factor prediction

• Evidence that LDRs improve data efficiency on action prediction

Chapter 6 - Conclusions This chapter will provide concluding remarks and thoughts
on future directions in the area of symmetry based disentangled representation
learning.



5

Chapter 2

Groups and Representations

This chapter will briefly motivate and detail the algebraic structures required to
explore the symmetry based variational learning in following chapters. It will begin
with the basic definitions and intuitions behind simple groups before progressing to
the representation theory that is the basis of the Higgins et al. [2018] definition of
disentanglement.

2.1 What is symmetry?

At a young age, most of us are taught about symmetry and lines of symmetry in
simple 2D shape such as squares. Often we are tasked with drawing the lines of
symmetry through an object to show we understand its symmetries. Despite this, we
might struggle to concisely write down an exact definition of what a symmetry is. For
the particular case of lines of symmetry (reflectional symmetry, Figure 2.1a) this might
be quite simply, a line through a shape on either side of which is the same shape, reflected, or
something similar. Lines of symmetry aren’t the only form of symmetry however, we
could also consider rotational symmetry (Figure 2.1b). Again, a definition can be
written fairly concisely, the property of a shape where rotation by a fixed angle results in the
same shape. But there are many more forms of symmetry such as translational, helical,
scale, etc. (see Figure 2.2).

If we want to define the term symmetry it must encompass all the different forms of
symmetry at once. The Oxford English dictionary has a number of definitions,
beginning with The quality of being made up of exactly similar parts facing each other or
around an axis. This covers rotational and reflectional symmetries but not any of the
more complex forms listed. A second definition provided is Similarity or exact
correspondence between different things. This is more encompassing, however it is
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(A) Reflectional symmetries of a square. Blue
and white regions are mirrors of each other.

A B

CD

D A

BC

90 45 C

D

A

B

(B) (Blue): One valid rotational symmetry of
square. (Red) Invalid rotation of square, no

symmetry.

FIGURE 2.1: Symmetries of the Square.

(A) Scale symmetry.1 (B) Translational symmetry, no
global rotational symmetry about

any point.

FIGURE 2.2: Other examples of symmetries or patterns with symmetries.

perhaps too vague in that it doesn’t lead you to be able to the define any of the
particular forms.

Similar problems led mathematicians to algebraic structures which have the flexibility
to describe symmetry properties. As mentioned in the Introduction, this area became
known as Group Theory and the algebraic structures which describe symmetries
became known as Groups.

2.2 Group Theory

We begin with the definition of a Group.

Definition 2.1. A Group is a pair (G, ·) of a set G and binary relation · : G× G → G
which satisfies the following,

– Closure: g1 · g2 ∈ G ∀g1, g2 ∈ G
– Associativity: (g1 · g2) · g3 = g1 · (g2 · g3) ∈ G ∀g1, g2, g3 ∈ G
– Identity: ∃I ∈ G s.t. I · g = g · I = g ∀g ∈ G. Often we denote 1 := I.
– Inverse: ∀g ∈ G, ∃g−1 ∈ G s.t. g−1 · g = g · g−1 = I

Remark 2.2. Often we refer to the group (G, ·) simply as G for brevity.

1Source: http://texample.net/tikz/examples/tag/fractals/

http://texample.net/tikz/examples/tag/fractals/
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Introductory group theory courses often follow this definition with an illustrating
example, commonly the group of symmetries of the square2. We shall follow suit.

To form a group we need to enumerate (label) elements of the set G. To do this for the
group of symmetries of the square we introduce some notation. In Figure 2.1b,
viewing the first square, we have labelled each corner (A, B, C, D)3. We can now
denote each symmetry by how it affects these labels. Note that valid symmetries are
only those that result in the square looking exactly the same (disregarding the corner
labels), thus the red square in Figure 2.1b is invalid since it is orientated like a
diamond, not a square.

Lets first enumerate the reflectional symmetries in Figure 2.1a. From left to right we
label, σ0 := (A, D, C, B), σ1 := (B, A, D, C), σ2 := (C, B, A, D) and σ3 := (D, C, B, A).
We now denote the anti-clockwise rotations by 0, 90, 180 and 270 degrees by
ρ0, ρ1, ρ2, ρ3 respectively. In (A, B, C, D) notation, these cycle the labels through the list
backwards, e.g. ρ1 = (B, C, D, A) and ρ2 = (C, D, A, B).

Note that if we applied ρ1 twice, we would achieve the same result as ρ2, ρ1 · ρ1 = ρ2.
Similarly, for the square, it we applied ρ1 4 times we would return to the same
position, i.e. it is the identity. It is often useful to denote applying the same group
element to itself by powers, an example in this case, ρ4

1 = 1, this is known as the order.

Definition 2.3. The order of a group element g ∈ G is given by,

|g| = n ∈ Z such that gn = 1G where n is minimal .

Remark 2.4. Reflections σi all have order 2, except the identity element, which has
order 1.

Having enumerated each valid symmetry operation on the square we now need to
define the binary relation · on G. We can use our previously defined notation to
consider an example before presenting the operation table. Consider the rotation
ρ3 = (D, A, B, C) and the reflection σ0 = (A, D, C, B), then the composition of first
applying the rotation and then the reflection, σ0 · ρ3 = (D, C, B, A) is equal to the
reflection σ3 (see Figure 2.3). This demonstrates the closure property for this particular
pair of elements. From the operation table (Table 2.1a) we can see that the operation as
defined over the corner labels is indeed closed. We could also demonstrate the other
properties of the group if desired.

Having introduced a simple (and visual) example of a group, we will now use this to
demonstrate some other group theoretical concepts.

2Usually this group is denoted D4, the Dihedral group of order 4.
3This notation is similar to Cauchy’s two line notation for permutations [Wussing, 2007, p.94], although

not the one line version.
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A B

CD

D A

BC

ρ3

D C

BA

σ0

A B

CD

σ3

90

FIGURE 2.3: Visual example of the composition σ0 · ρ3 = σ3

· ρ0 ρ1 ρ2 ρ3 σ0 σ1 σ2 σ3

ρ0 ρ0 ρ1 ρ2 ρ3 σ0 σ1 σ2 σ3

ρ1 ρ1 ρ2 ρ3 ρ0 σ1 σ2 σ3 σ0

ρ2 ρ2 ρ3 ρ0 ρ1 σ2 σ3 σ0 σ1

ρ3 ρ3 ρ0 ρ1 ρ2 σ3 σ0 σ1 σ2

σ0 σ0 σ3 σ2 σ1 ρ0 ρ3 ρ2 ρ1

σ1 σ1 σ0 σ3 σ2 ρ1 ρ0 ρ3 ρ2

σ2 σ2 σ1 σ0 σ3 ρ2 ρ1 ρ0 ρ3

σ3 σ3 σ2 σ1 σ0 ρ3 ρ2 ρ1 ρ0

(A) Symmetry group of squares

· ρ0 ρ1 ρ2 ρ3

ρ0 ρ0 ρ1 ρ2 ρ3

ρ1 ρ1 ρ2 ρ3 ρ0

ρ2 ρ2 ρ3 ρ0 ρ1

ρ3 ρ3 ρ0 ρ1 ρ2

(B) Subgroup ({ρ0, ρ1, ρ2, ρ3}, ·)

TABLE 2.1: Binary operation tables for symmetry group of squares and the subgroup
of rotations under · : G× G → G.

Definition 2.5. A subgroup H of G denoted H ≤ G is a subset H of G such that (H, ·)
also forms a group.

Remark 2.6. It can be shown that if H ⊆ G then (H, ·) is a subgroup if and only if it is
closed, contains the identity (on H) and contains inverses. i.e. we don’t need to check
associativity.

There is a nice example of a subgroup in our symmetry group of the square,
comprised of the rotations. Intuitively we might expect this since it’s visually obvious
that if we compose any two rotations then we get another rotation. Similarly the
identity (rotation by 0 degrees) and inverses (rotations by 360 - X degrees) are also
rotations. We can actually see this in the operation table for this subset in Table 2.1b
since it contains no reflections (closed), ρ0 · g = g for any g in the subset (identity) and
ρ0 appears on every row (inverses). There are also a number of other subgroups that
we can define, such as ({ρ0, ρ2}, ·) however they don’t add much more insight.

Note that Table 2.1a is not symmetric about the leading diagonal. This means that the
operation · is not commutative, i.e. g1 · g2 6= g2 · g1 ∀g1, g2 ∈ G. However, Table 2.1b
is symmetric, and so · does commute for the subgroup ({ρ0, ρ1, ρ2, ρ3}, ·).

Definition 2.7. We call a group (G, ·) abelian if g1 · g2 = g2 · g1 ∀g1, g2 ∈ G. i.e. G is
abelian if · is commutative over the whole group.
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Remark 2.8. The subgroup ({ρ0, ρ1, ρ2, ρ3}, ·) is abelian.

Along with the fact that the subgroup of rotations is abelian, it is also an instance of a
cyclic group. Cyclic groups are important to later chapters and will be discussed in
more detail later on in this chapter.

So far we have covered groups and operations from groups to themselves. We now
consider operations which act on a group and an arbitrary set. This kind of mapping
is known as a group action.

Definition 2.9. A (left) group action φ of (group) G on set X is a mapping

φ : G× X → X, (g, x) 7→ φ(g, x) for g ∈ G, x ∈ X ,

which satisfies,

– Identity: φ(1G, x) = x ∀x ∈ X.
– Compatibility: φ (g · h, x) = φ (g, φ (h, x)) ∀g, h ∈ G, x ∈ X

For simplicity we will generally denote an action by g ◦ x = φ(g, x).

Remark 2.10. A simple case of an action is when a group acts on itself, i.e. X = G. In
this case the group operation is also an action, g1 ◦ g2 = g1 · g2. Actions are sometimes
denoted by ·, the same as the group operation, and it is when X = G that this makes
the most sense. In the general case however, X 6= G, and so we will avoid using · to
denote an action.

Remark 2.11. Actions can be extended to act on spaces with structure, such as a vector
space V, as long as they preserve the appropriate properties. For example, an action
on a vector space is required to preserve linearity,
g(αx + βy) = α(g ◦ x) + β(g ◦ y), g ∈ G, x, y ∈ V, α, β ∈ R.

We can now have a look at how the symmetry group of the square acts on the set of
labels, one simple action that we can define. We know that the possible labellings of
the square are a subset of X = {(x1, x2, x3, x4) | xi ∈ {A, B, C, D}, xi 6= xj, i 6= j}. We
can now define actions by the effect on the labels, if they were placed on a square. For
example, we can consider a rotation acting on (A, B, C, D) by
ρ1 ◦ (A, B, C, D) = (B, C, D, A), or a reflection σ0 ◦ (A, B, C, D) = (A, D, C, B).

Definition 2.12. The orbit of an element x ∈ X under group G is the path that it takes
when acted upon by G, defined by,

G(x) = {g ◦ x | g ∈ G}

Returning to our previous example of an action, consider the orbit of (A, B, C, D)

under G. The result is the set of all states that can be reached under a single symmetry
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ρ0 ◦ α

A B

CD
ρ1 ◦ α

D A

BC
ρ2 ◦ α

D C

BA
ρ3 ◦ α

A B

CD

FIGURE 2.4: Visual orbit of α = (A, B, C, D) under subgroup of rotations
{ρ0, ρ1, ρ2, ρ3}.

operation. A more interesting example might be the orbit of α := (A, B, C, D) under
the subgroup of rotations. This results in the set of all rotated versions of the square,
{ρ0 ◦ α = α, ρ1 ◦ α = (B, C, D, A), ρ2 ◦ α = (C, D, A, B), ρ3 ◦ α = (D, A, B, C)}. Orbits of
this kind will become interesting to study in later chapters where we can demonstrate
the quality of learnt representations of actions.

A final structure that will become useful later is the direct product of groups, which
allows construction of a single group from several smaller groups.

Definition 2.13. The direct product G× H of groups G and H, is a group where,

– The underlying set is defined as the Cartesian product of the sets G and H,
(g, h) ∈ G× H, g ∈ G, h ∈ H.

– The group operation is defined element-wise as the corresponding operation for
each group, (g1, h1) · (g2, h2) = (g1 ·G g2, h1 ·H h2).

Remark 2.14. G× H has G and H as subgroups since G× 1 and 1× H behave in the
save way as groups G and H.

Before progressing onto the representation theory of groups, it is useful to cover some
other simple groups that we will make use of throughout this work. We will begin
with cyclic groups, which we have already seen an example of.

Definition 2.15. The cyclic group CN of order N is given by

CN = 〈g〉 = {gn | gN = 1, gi 6= gj, i 6= j} ,

where g is called the generator of CN .

Remark 2.16. An oft considered example of a cyclic group is the group of integers
modulo N, denoted (Z/NZ, +). The generators of this group are 1 and −1.
Z/NZ = {0, . . . , N − 1}

Example 2.1. Recall the subgroup of rotations that we considered earlier. As mentioned, this is
in fact an example of a cyclic group of order 4, C4, with generator g = ρ1 and identity 1 = ρ0.



2.3. Representation Theory 11

Another particularly useful group that we will require later on is the General Linear
group GLn(R).

Definition 2.17. The General Linear group GLn(R) is the set of invertible n× n
matrices whose elements have values in R.

Remark 2.18. There exists a subgroup of the general linear group known as the Special
linear group, the group of all invertible n× n matrices with determinant 1.

Two groups with obvious applications to vision are the 2D and 3D rotation groups,
SO(2) and SO(3), we will introduce the general case SO(n).

Definition 2.19. The general orthogonal group O(n) is the group of all distance
preserving transformations (with respect to a defined basis), group of n× n orthogonal
matrices. The Special Orthogonal group SO(n) is then the subgroup of O(n) with all
matrices of determinant 1.

SO(n) = {A ∈ GL(n) || AAT = AT A = I, |A| = 1}

Remark 2.20. The set of all distance preserving transformations is the set of rotations
and reflections.

Remark 2.21. SO(2) is equivalent to the circle group T = {z ∈ C | |z| = 1} and, unlike
higher degree SO groups, is abelian.

A final class of group that might be of interest is the Dihedral group, one instance of
which is the group of symmetries of the square.

Definition 2.22. The Dihedral Group Dn is the symmetry group of an n-sided regular
polygon. It can be considered as being generated by a rotation (of order n) and a
reflection (of order 2).

Dn =
〈
ρ, σ | σ2 = 1, ρn = 1, (σ · ρ)2 = 1

〉

Remark 2.23. We can see an example of this final condition in Figure 2.3.

Remark 2.24. This is another example of so called generator notation4 with angled
braces. In this case it means the set of powers of the elements and powers of the
products of the elements.

2.3 Representation Theory

In the visual example given in the previous section it was very easy to explore the
group and it’s properties since we can always imagine the operations happening on a

4Also called a group presentation
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real object. Generally it is not nearly as easy to visualise structures in other groups
without significant experience and time working with them. On the other hand, linear
algebra is a much easier area to grasp, since it deals with much more concrete objects,
linear functions, vectors and matrices.

Representation theory provides the framework necessary to explore concepts in
algebraic group theory purely by dealing with structures from linear algebra. Group
elements are “represented” by matrices and the group operation then becomes matrix
multiplication (or addition). Since representations allow group problems to be
reduced to corresponding linear algebra problems and linear algebra is well
understood, it has led mathematicians to some notable results (e.g. [Burnside, 1904])
that are complicated greatly by solely group theoretic principles.

Definition 2.25. A representation of group G (or group representation) is a mapping,

ρ : G → GL(V) ,

which satisfies:
ρ(g1 · g2) = ρ(g1) · ρ(g2) ∀g1, g2 ∈ G .

Remark 2.26. This mapping is called a group homomorphism which preserves the
identity and inverse. These are easy to show:

1 = ρ(1)−1ρ(1) = ρ(1)−1ρ(1 · 1) = ρ(1)−1ρ(1) · ρ(1) = ρ(1) .

ρ(g)−1 = ρ(1)ρ(g)−1 = ρ(g−1 · g) · ρ(g)−1 = ρ(g−1) · ρ(g) · ρ(g)−1 = ρ(g−1) .

Definition 2.27. We call a representation ρ faithful if it is injective. i.e.
{g | ρ(g) = 1} = {1 ∈ G}, the kernel is equal to the identity.

We will mostly be concerned with real representations where V = Rn. In this setting,
faithful representations allow us to view our group G as a subgroup of GLn(R),
resulting in group elements being mapped to invertible matrices.

Example 2.2. Let us consider representations of our example from the previous section, the
symmetry group of the square. Since the square is two dimensional, we can look for
representations on R2, standard 2D matrices. Recall that symmetries of the square are either
rotations or reflections. The rotation and reflection matrices are well known to computer vision
practitioners due to the heavy use of affine transforms in, for example, image alignment. The
rotation of 90 degrees ( 2π

4 radians) and reflection about x-axis matrices are given by:

P =

(
cos

( 2π
4

)
− sin

( 2π
4

)

sin
( 2π

4

)
cos

( 2π
4

)
)

and Σ =

(
1 0
0 −1

)

We can now relate our known group elements in the symmetry group of the square to elements
of GL2(R) through these two matrices. For example, ρ(ρi) = Pi, ρ(σi) = Σ · Pi. Note that the
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use of ρ for both the group elements ρi and the representation ρ is notational/conventional only
and represents no general relationship.

It is often useful to consider representations in terms of actions, and indeed, this is the
most useful interpretation for later chapters. In this setting, a representation
ρ : G → GL(V) can be thought about through the action
◦ : G×V → V, (g, v) 7→ ρ(g)(v). We will often see that it is much easier to find and
think about individual ρ(g) rather than ρ itself. The previous example perfectly
exemplifies how it can be easy to reason about ρ(g) but the general mapping ρ is less
intuitive.

Definition 2.28. The degree or dimension of the representation is given by the
dimension of V. i.e. If V = Rn then the dimension of a representation on this space is n.

Recall that for groups we have a notion of a subgroup that is contained inside a group.
In the same sense there exists the notion of a subrepresentation that exists inside a
representation.

Definition 2.29. Given a representation ρ : G → GL(V), then a subrepresentation of ρ

is a subspace W of V such that,

ρ(g)(w) ∈W ∀g ∈ G, w ∈W .

This is known as W being invariant under the group action ◦.

Remark 2.30. The trivial examples for W are the zero subspace {0} and V itself.

Definition 2.31. A representation ρ is known as irreducible if there exist no
subrepresentations other than the trivial representation.

We will see later that it is important to consider representations as combinations of
irreducible subrepresentations. Since subrepresentations are of lower dimension
(although not strictly) than the main representation, we need ways of combining
lower dimensional representations into larger dimensional ones. For us there exist
two important operations, the direct sum ⊕ and the tensor product ⊗.

To understand these operations we first must define them on vector spaces.

Definition 2.32. The sum of V1, V2 ⊆ V is given by,

V1 + V2 = {v1 + v2 | v1 ∈ V1, v2 ∈ V2} .

This a direct sum denoted V = V1 ⊕V2 iff ∀v ∈ V, ∃ unique v1 ∈ V1, v2 ∈ V2 such that
v = v1 + v2
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Remark 2.33. The direct sum of (finite dimensional) vector spaces V and W with bases
{v1, . . . , vn} and {w1, . . . , wm} has dimension n + m and basis {v1, . . . , vn, w1, . . . , wm}.

Definition 2.34. Given two representations ρ1 : G → GL(V) and ρ2 : G → GL(W),
then their direct sum is a representation ρ1 ⊕ ρ2 : G → GL(V ⊕W), defined by,

ρ1 ⊕ ρ2(g)(v, w) = (ρ1(g)(v), ρ2(g)(w))

Example 2.3. Returning to the case of D4, we can consider two representations of the rotation
subgroup, π and ρ which represent rotation matrices in the clockwise and anticlockwise
directions.

ρ(ρi) =

(
cos

( 2π
4

)
− sin

( 2π
4

)

sin
( 2π

4

)
cos

( 2π
4

)
)i

and π(ρi) =

(
cos

( 2π
4

)
sin
( 2π

4

)

− sin
( 2π

4

)
cos

( 2π
4

)
)4−i

Obviously if we evaluate the individual trigonometric functions then the resulting matrices are
the same for each rotation, but we shall leave them unevaluated so we can observe the result of
the direct product more explicitly. In this case the direct sum is given by,

ρ(ρi)⊕ π(ρj) =




(
cos

( 2π
4

)
− sin

( 2π
4

)

sin
( 2π

4

)
cos

( 2π
4

)
)i

0 0
0 0

0 0
0 0

(
cos

( 2π
4

)
sin
( 2π

4

)

− sin
( 2π

4

)
cos

( 2π
4

)
)4−j




In general it is true that for representations ρ : G → GLn(R) and π : G → GLm(R) that
the direct sum of group elements ρ(g) and π(g) with matrices A and B is,

ρ(g)⊕ π(g) =

(
A 0
0 B

)

Before giving a formal definition for the tensor product of two vector spaces, we will
give the result for two (finite dimensional) vectors v, w in Rn and Rm.

Definition 2.35. For vector spaces V and W with known bases then for two (row)
vectors v = (v1, . . . , vn) ∈ V and w = (w1, . . . , wm) ∈W, their tensor product is the
outer product:

v⊗ w = vTw =




v1w1 v1w2 . . . v1wm

v2w1 v2w2 . . . v2wm
...

...
. . .

...
vnw1 vnw2 . . . vnwm




Remark 2.36. Given this definition of tensor products, we can see that when equating
the equivalence relation to the usual equality in Rm×n, all these conditions hold. i.e. for
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distributivity of addition,

(v, w)ij + (v′, w)ij = viwj + v′iwj = (vi + v′i)wj = (v + v′, w)ij

Remark 2.37. For given bases {v1, . . . , vn} and {w1, . . . , vm} of V and W, then
{vi ⊗ wj | i ∈ {1, . . . , n}, j ∈ {1, . . . , m}} is a basis for V ⊗W

Definition 2.38. The tensor product of representations ρ1 : G → GLn(R) and
ρ2 : G → GLm(R) is a representation ρ1 ⊗ ρ2 : G → GL(V ⊗W), given by,

(ρ1 ⊗ ρ2)(g)(v⊗ w) = ρ1(g)(v)⊗ ρ2(g)(w)

Example 2.4. Considering the same example as Example 2.2, subgroups of D4,

ρ(ρi) =

(
cos

( 2π
4

)
− sin

( 2π
4

)

sin
( 2π

4

)
cos

( 2π
4

)
)i

and π(ρi) =

(
cos

( 2π
4

)
sin
( 2π

4

)

− sin
( 2π

4

)
cos

( 2π
4

)
)4−i

,

then,

ρ(ρ1)⊗ π(ρ3) =




cos
( 2π

4

)
cos

( 2π
4

)
cos

( 2π
4

)
sin
( 2π

4

)
− sin

( 2π
4

)
cos

( 2π
4

)
− sin

( 2π
4

)
sin
( 2π

4

)

cos
( 2π

4

)
− sin

( 2π
4

)
cos

( 2π
4

)
cos

( 2π
4

)
− sin

( 2π
4

)
− sin

( 2π
4

)
− sin

( 2π
4

)
cos

( 2π
4

)

sin
( 2π

4

)
cos

( 2π
4

)
sin
( 2π

4

)
sin
( 2π

4

)
cos

( 2π
4

)
cos

( 2π
4

)
cos

( 2π
4

)
sin
( 2π

4

)

sin
( 2π

4

)
− sin

( 2π
4

)
sin
( 2π

4

)
cos

( 2π
4

)
cos

( 2π
4

)
− sin

( 2π
4

)
cos

( 2π
4

)
cos

( 2π
4

)




Again, in general, for representations ρ : G → GLn(R) and π : G → GLm(R) the
tensor product of group elements ρ(g) and π(g) represented with matrices A and B is

ρ(g)⊗ µ(g) =




a11B a12B . . . a1mB
a21B a22B . . . a2mB

...
...

. . .
...

an1B an2B . . . anmB




Remark 2.39. We now have methods to combine representations. There are two
important relations that we shall use in future chapters. The first is that if some
representation V is reducible then we can reduce it into the direct sum of irreducible
representations. V = V1 ⊕V2 ⊕ . . .⊕Vm. The second is that if some group G is a direct
product of groups G1, G2 then the irreducible representations of G are the
representations ρ1 ⊗ ρ2 where ρ1 is an irreducible representation of G1 and ρ2 is an
irreducible representation of G2.
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We end by giving examples of irreducible representations for common groups some of
which will be useful in later chapters.

Example 2.5. The irreducible representations of CN are finite in number and one of

ρ(gn) = e
2πi
N n or ρ(gn) =

(
cos 2πn

N − sin 2πn
N

sin 2πn
N cos 2πn

N

)

depending on if we are on the field C or R respectively.

Example 2.6. The irreducible representations of SO(2) are infinite in number and one of

ρ(gθ) = eiθ or ρ(gθ) =

(
cos θ − sin θ

sin θ cos θ

)

depending on if we are on the field C or R respectively.

Example 2.7. The irreducible representation of SO(3) are infinite in number and relate to the
spherical harmonics.

Example 2.8. The irreducible representations of Dn are real and there are n−2
n

two-dimensional representations, each indexed by k and given by,

ρ(ρ) =

(
cos 2πk

N − sin 2πk
N

sin 2πk
N cos 2πk

N

)
ρ(σ) =

(
1 0
0 −1

)
(2.1)

There also exist a number of 1 dimensional representations, however they are not faithful and
will not be particularly useful/informative for our case.
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Chapter 3

Symmetry Based Disentangled
Representation Learning (SBDRL)

This chapter will introduce disentanglement and the symmetry based
disentanglement framework as set out by Higgins et al. [2018].

To begin, we will aim to describe the classical or standard deep learning approach to
disentanglement. First we will introduce the VAE framework, since all the models we
cover in this work will make use of it. Subsequently we will give a high level
overview of what disentanglement is, and what ‘generative factors’ are. We will then
introduce a number of VAE models which were designed to produce disentanglement
through the VAE framework. In general, this will be achieved through learning a
latent space, where each latent dimension relates to one generative factor of the
dataset. Later in this work, we will want to compare disentanglement of VAE models,
for which we will use a number of proposed disentanglement metrics. Such metrics
often require access to the generative factors, so before defining metrics, we define
standard datasets for disentanglement research, and their generative factors.
Alongside the metrics, we also describe common empirical demonstrations that help
provide us intuition on whether a representation is disentangled or not.

Having the foundation of classical disentanglement, we then move on to describing
symmetry based disentanglement as per Higgins et al. [2018], working towards the
main definitions of linear disentanglement (Definitions 3.7 and 3.9).

3.1 Variational Auto Encoders

Variational auto-encoders are often used to explore disentanglement in deep learning,
and will be used throughout this work. As such, we need to introduce the model first
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proposed by Kingma and Welling [2014]. Rather than following the original work, we
will follow the intuitive introduction to VAEs that is provided by Doersch [2016].

VAEs are a particular form of generative model which aim to model a dataset X
consisting of data points x. It is assumed that the data are generated by some random
process depending on unobserved continuous random variable z. The generative
process of Kingma and Welling [2014] has two steps, first a sample z is drawn from a
prior distribution pθ∗(z) , before a sample x is drawn from pθ∗(x|z).

VAEs, as auto-encoders, in implementation have an encoder and a decoder. For this
section, it may be useful to keep in mind that the estimated generative parameters θ

are the parameters of the decoder network whilst the inference parameters φ are those
of the encoder network.

The aim of the VAE is to learn to approximate the true generative parameters θ∗ whilst
also learning to approximate posterior inference of x under the estimated generative
parameters θ. In order to estimate parameters θ∗, the VAE maximises the likelihood of
the data points x under the parameters θ,

pθ(x) =
∫

pθ(x, z)dz =
∫

pθ(x|z)p(z)dz (3.1)

It is assumed that maximising the likelihood of real data points will result in the
model generating data that appears similar to real samples. For image problems with
generative process f : Z × θ → X, Kingma and Welling [2014] set pθ(x|z) to either a
multivariate Gaussian N

(
X| f (z; θ), diag(σ2)

)
for real valued data1 or Bernoulli

B( f (z; θ)) for binary data.

Note that in general, and for most z, we expect that pθ(x|z) will be very small, since
assuming the dataset is of non-trivial size, the inference function will be fairly
complex, with varied outputs. As such, an accurate estimate of p(x) will require a
large number of samples of z. Certainly, we could not approximate it with a single
sample, as would be desired for fastest estimation. One way to avoid having to sample
a large number of z is to introduce a model qφ(z|x), to estimate the space of z which is
likely to produce inference outputs similar to x. Introducing q and parametrising it
with a neural network (with parameters φ) is a core concept behind VAEs.

Recalling that we want to maximise pθ(x), we can relate it to qφ(z|x) by examining the
KL-Divergence [Kullback and Leibler, 1951],

1Generally the hyperparameter σ2 is just set to 0.5.
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DKL
[
qφ(z|x)||pθ(z|x)

]
= Ez∼qφ

[
log qφ(z|x)− log pθ(z|x)

]

= Ez∼qφ

[
log qφ(z|x)− log pθ(x|z)− log pθ(z)

]
+ log pθ(x)

= DKL
[
qφ(z|x)||pθ(z)

]
−Ez∼qφ [log pθ(x|z)] + log pθ(x) .

Following this, we can write,

log pθ(x)− DKL
[
qφ(z|x)||pθ(z|x)

]
= Ez∼qφ [log pθ(x|z)]− DKL

[
qφ(z|x)||pθ(z)

]
.

(3.2)

This allows a lower bound on log pθ(x) (since DKL
[
qφ(z|x)||pθ(z|x)

]
≥ 0), which is

known as the Evidence Lower BOund (ELBO),

log pθ(x) ≥ Ez∼qφ [log pθ(x|z)]− DKL
[
qφ(z|x)||pθ(z)

]
.

Also from Equation 3.2, we can see that if we can optimise the right hand side then we
are optimising the log evidence alongside the KL-Divergence between the inferred
posterior qφ(z|x) and the true posterior pθ(z|x). For a sufficiently complex qφ it should
be possible to optimise this to 0.

In order to optimise the right hand side we need to define a prior for z. In particular, it
would be useful to choose one which makes the divergence against qφ(z|x) easily
calculable. For this reason it is usual to choose pφ(z) = N (z|0, diag(1)), in which case,
we have a simple, k-dimensional Gaussian-Gaussian divergence, with closed form
solution,

DKL [N (µ0, Σ0)||N (µ1, Σ1)] =
1
2

(
trace

(
Σ−1

1 Σ0

)
+ (µ1 − µ0)TΣ−1

1 (µ1 − µ0)

− k + log(detΣ1)− log(detΣ0)
)

Simplifying further since our prior has 0 mean and covariance matrix equal to the
identity and assuming qφ(z|x) has diagonal covariance,

DKL
[
N (µ0, diag([σ2

i ])||N (0, diag(1))
]

= −1
2

k

∑
i=1

(
1 + log σ2

i − µ2
i − σ2

i

)

Alongside this we also need to be able to compute Eq [log pθ(x|z)]. We could get a
good estimate of this by repeatedly sampling z from qφ and the computing P(X|z)

however this would be expensive. We can see from Fig. 3.1 that this would require
multiple passes through a (computationally expensive) decoder network. Instead it is
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Encoder φ (MLP/CNN)
Mean (µ) and
Variance (σ2)
∈ Rn

∼

Latent Sample
z ∼ N (µ, σ2)
∈ Rn

Decoder θ (MLP/CNN)

FIGURE 3.1: Simple VAE schematic.

usual to simply approximate this with a single sample from qφ, assuming that it gives
a decent estimate.

Even if we decide to approximate the expectation, we still have the problem that we
would need gradient for it. Standard automatic differentiation programs cannot
compute gradient through a random sampling operation. To avoid this limitation,
Kingma and Welling [2014] propose the “reparametrisation trick” which allows good
gradient estimation from the single Monte-Carlo sample2.

The reparametrisation trick simply samples a stochastic auxiliary variable ε rather
than sampling directly from qφ(z|x) = N (z|µ(x), σ(x)). This allows us to sample
z ∼ qφ(z|x) by z = µ + σε where ε ∼ N (0, 1).

Generally we either assume pixels are distributed normally or Bernoulli, which allows
us to compute log pθ(x|z) by the mean squared error (Gaussian, with unit variance) or
binary cross entropy (Bernoulli). As such, by reparametrization and our KL
divergence estimate, we can compute and optimise all terms in the ELBO, allowing us
to train a VAE model using auto-grad methods.

3.2 Disentanglement as a Concept

Disentanglement (particularly in VAEs) has been difficult to define, hence the efforts
by Higgins et al. [2018] to provide a mathematical basis, which we will discuss later in
the chapter. In this section we will provide some intuition on what to expect from
disentangled representations, and introduce models which aim to produce them. We
will then discuss some standard approaches to measure them.

The concept of disentangled representations was known before the introduction of
VAEs by Kingma and Welling [2014]. Generally, the initial introduction is accredited
to Bengio et al. [2013] for the following high level description of what to expect from
disentangled representations.

2You could define other gradient estimators which do not require reparametrisation, however they can
be of higher variance and require manual implementation in auto-grad methods.
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“Different explanatory factors of the data tend to change independently of each
other in the input distribution, and only a few at a time tend to change when one
considers a sequence of consecutive real-world inputs . . . [we desire to] leverage
the data itself, using vast quantities of unlabelled examples, to learn
representations that separate the various explanatory sources. ” (Bengio et al.
[2013])

Generally, this quotation and disentanglement is interpreted to mean that individual
latent units are sensitive to changes in individual generative factors, and not the
others. We will introduce generative factors more rigorously in the next section.
Disentanglement can be intuitively described in terms an inverse graphics problem,
and we briefly consider this as introduced by Kulkarni et al. [2015]. In computer
graphics, renders often map from scene descriptions encoded into a dense vector to an
image of the scene. Generally the encoded scene will separate the notions of object
location, pose, lighting etc. This allows fine grained control over the scene. The
problem of inverse graphics is then how to infer from a (possibly) rendered image, the
graphics code that generated the scene.

In Fig. 3.2, we provide an example of some factors of variation (i.e. generative factors)
for the MNIST dataset of handwritten digits [LeCun et al., 1998]. In this problem, each
digit can be fairly well defined by the digit type, angle, thickness and stroke width.
These are good examples of conditionally independent factors, which we will discuss
in the next section. You can also imagine that there exist very individual styles of
writing digits which might not be fully explained by the factors shown in the figure,
and these would be examples of dependent factors (again see next section). It is
generally expected that disentangled representations will encode the conditionally
independent factors into independent latent dimensions, but not dependent ones,
which can be encoded in any way into dimensions which weren’t occupied by
independent factors.

3.2.1 Generative Factors

In the quotation, Bengio et al. [2013] talk about the explanatory factors of the data. In
many modern works, these are referred to as the generative factors. The term generative
factors derives from the assumption our dataset X is the result of a generative process
depending on parameters θ∗ and variable z, as described in Section 3.1.

In particular, Higgins et al. [2017] assume that the random variable z can be split into
two parts, the conditionally independent v and conditionally dependent w. They then
write the generative process (which they call the simulator process ‘Sim’) as,
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(A) Angle (B) Thickness

(C) Digit type (D) Stroke Width

FIGURE 3.2: Example factors of variation as captured by Dupont [2018] on the MNIST
dataset of handwritten digits. Each subfigure traverses a different latent unit and
shows a different factor of variation. The ability to learn to separate these factors into
different latent units is generally known as disentanglement. Figure by Dupont [2018].

pθ∗(x|v, w) = Sim(v, w) , (3.3)

Whilst the total set of generative factors is still given by v and w, for disentanglement,
we will generally only consider factors v since the dependent factors w cannot be
separated from each other. Whilst there is no generally accepted rigorous definition of
disentanglement in terms of the VAE model (hence the work by Higgins et al. [2018]),
if we assume that v and w exist, an acceptable (but loose) definition would be that the
VAE latent space encodes vi into independent dimensions.

In general, we say that for each image in the dataset, there exists a set of variables that
completely defines the image, and the simulator process allows us to sample an image
given these factors. Furthermore, there are a subset of these factors that are
conditionally independent, and we will generally think of these as concepts which we
can separate in the data. For example, the rotation of an object is independent of its
location in the image, so the rotation and position may be examples of two of these
conditionally independent factors. From this point onwards, whenever we refer to
generative factors, we will mean the conditionally independent factors, not including
the dependent factors.

If we consider 3D modelling software, then the simulation process is precisely the
rendering function and the generative factors are the set of numbers that describe the
objects in the scene, their positions, textures etc. Whilst for a complex real world
scene, the set of such numbers might be very large or unknown, for synthetic data, we
can be certain that they exist. Indeed, the datasets we will explore in this work were
generated in such a fashion, and the generative factors values for each image are
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available. It will often be useful to associate the factors vi with the dataset concept to
which they relate, e.g. v1 may be describe rotation whilst v2 might describe translation
in the x direction. We will often talk about concepts such as rotation and translation as
being the generative factors, when in reality, the factors are actually the underlying
simulator variables vi which relate to these concepts in the simulation process.

We can now see that the quote suggests that a disentangled representation space
should have the property that concepts such as position, shape, etc. are separated into
independent subspaces. In the particular case of a VAE model, for a disentangled
latent space, we would expect each of these generative factors to be encoded into an
independent latent dimension or latent subspace. As such, if we define a series of
points in the latent space that only differ in the value of a single latent dimension, we
would expect the output images to vary by just a single factor (for example, just the
orientation of an object).

Following the description by Bengio et al. [2013], a number of works attempted to
learn disentangled representations in semi-supervised [Cheung et al., 2014, Kingma
et al., 2014, Kulkarni et al., 2015] and fully unsupervised [Whitney et al., 2016] settings.

3.2.2 Models for Disentanglement

We will now introduce a number of models for disentanglement. In all cases, the
ultimate goal will be to learn a generative model with a latent code which is
disentangled as described by the previous section. Specifically, the generative factors
of the dataset should be separated in the latent code. We begin with InfoGAN, one of
the first successful unsupervised methods, before outlining a set of models which will
be used for evation in later chapters.

InfoGAN InfoGAN [Chen et al., 2016] aims to encourage a GAN [Goodfellow et al.,
2014] to adhere to a latent code z alongside the usual noise variable η by maximising
the mutual information I(z; G(η, x)) between z and the generator distribution G. By
maximising this information and sampling the latent code dimensions independently,
they hope the model will learn to associate different generative factors with
independent latent dimensions.

To train the InfoGAN model, they first write the information,

I(z; G(η, z)) = H(z)− H(z|G(η, z)) = Ex∼G(η,z)

[
Ez′∼p(z|x)

[
log p(z′|x)

]]
+ H(z) .

Since sampling from p(z|x) would usually be intractable, they take advantage of the
same trick we saw in the previous section, and compute a variational lower bound on
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the mutual information. An inference distribution q(η|x) is introduced alongside a
prior p(z) which is usually set to be uniform. First rewriting the expectation term,

Ex∼G(η,z)

[
Ez′∼p(z|x)

[
log p(z′|x)

]]
= Ex∼G(η,z)

[
Ez′∼p(z|x)

[
log
(

p(z′|x)

q(z′|x)
q(z′|x)

)]]

= Ex∼G(η,z)

[
Ez′∼p(z|x)

[
log

p(z′|x)

q(z′|x)
+ log q(z′|x)

]]

= Ex∼G(η,z)

[
DKL

(
p(z′|x)||q(z′|x)

)
+ Ez′∼p(z|x) log q(z′|x)

]

≥ Ex∼G(η,z)Ez′∼p(z|x) log q(z′|x) .

Chen et al. [2016] now state and prove the following lemma that allows them to avoid
sampling from p(z|x). We present a slightly expanded proof3 for clarity.

Lemma 3.1. For random variables X,Y and a function f(x,y) with suitable regularity
conditions then

Ex∼X,y∼Y|x [ f (x, y)] = Ex∼X,y∼Y|x,x′∼X|y
[

f (x′, y)
]

Proof.

Ex∼X,y∼Y|x [ f (x, y)] =
∫

x
P(x)

∫

y
P(y|x) f (x, y)dydx

=
∫

x

∫

y
P(x, y) f (x, y)dydx

=
∫

x

∫

y
P(x, y) f (x, y)

∫

x′
P(x′|y)dx′dydx

=
∫

x

∫

y
P(x|y)P(y) f (x, y)

∫

x′
P(x′|y)dx′dydx

=
∫

x

∫

y
P(x|y) f (x, y)

∫

x′
P(x′, y)dx′dydx

=
∫

x′

∫

y
P(x′|y) f (x′, y)

∫

x
P(x, y)dxdydx′

=
∫

x
P(x)

∫

y
P(y|x)

∫

x′
P(x′|y) f (x′, y)dx′dydx

= Ex∼X,y∼Y|x,x′∼X|y
[

f (x′, y)
]

3By: https://stats.stackexchange.com/questions/250838/integral-identity-of-lemma-

contained-in-infogan-paper

https://stats.stackexchange.com/questions/250838/integral-identity-of-lemma-contained-in-infogan-paper
https://stats.stackexchange.com/questions/250838/integral-identity-of-lemma-contained-in-infogan-paper
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Given this lemma and the previous inequality, there is an optimisable lower bound of
the information given by,

L(G, Q) = Ez∼p(z)Ex∼G(η,z)

[
log q(z|x)

]
+ H(z)

= Ex∼G(η,z)

[
Ez′∼p(z|x)[log q(z′|x)]

]
+ H(z) (by lemma)

≤ I(z; G(η, z)) .

We can now maximise L(G, Q) rather than maximising the information I(z; G(η, z))

directly. Architecturally speaking, this process is now simple. For fake data, we can
sample a latent z from some defined prior p(z) (via the reparametrisation trick), pass
this through the generator with sampled noise η and using a small linear layer on top
of the discriminator, output the parameters for q. The minimax game for the InfoGAN
becomes,

min
G,q

max
D

VInfoGAN(D, G, Q) = V(D, G)− λL(G, Q)

where D is the GAN discriminator and V(D, G) is the standard GAN minimax
objective.

This simple architecture is enough for disentanglement to emerge in the latent codes.
In the paper, they experimented with manually chosen distributions for each code, i.e.
for MNIST they chose one categorical (digit) and two continuous (style variations).
Interestingly however, some of the more interesting results occurred when less care
was put into choice of distribution, for example the classic CelebA dataset where they
chose just 10 categorical codes (of size 10). Here they successfully extracted factors
such as azimuth, elevation, lighting and face width.

β-VAE The β-VAE Higgins et al. [2017] was one of the first models to show
consistent disentanglement using the VAE framework . β-VAE provided three
additional contributions toward disentanglement that contributed to its success: first
they cast a new light on the standard VAE framework based on an information
bottleneck in the latent code, second they introduce a repeatable metric for
approximating disentanglement (see Section 3.2.4) and third they introduce the
dSprites dataset (see Section 3.2.3) a ubiquitous synthetic dataset for disentanglement
research.

Similar to InfoGAN, the β-VAE aims to separate generative factors in a latent code. It
differs from InfoGAN in that it uses the VAE framework and doesn’t attempt to
maximise the information between the latent code and the generated image. β-VAE
instead aims to encourage independence through imposing a capacity constraint
(modulated by parameter β) on the latent code. For large β, the code will be
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encouraged to be independent if there are some underlying generative factors which
are independent, the assumption being that encoding the generative factor values is
the most efficient means of conveying information about the data.

Assume we have the simulating process set out in Section 3.2.1, with simulator ‘Sim’,
dataset X, conditionally independent factors v and conditionally dependent factors w.
The β-VAE framework aims to train an unsupervised generative model to learn the
joint of the data points x and latents z such that p(x|z) approximates p(x|v, w). Recall
from Section 3.1, a standard objective is to maximise the likelihood of the data x
marginalised over the latents z,

max
θ

Ez∼pθ(z) pθ(x|z) .

Similarly to the standard VAE, we prefer to approximate pθ(z|x) with an inference
distribution qφ(z|x), since accurately estimating p would be hard. A secondary
consideration for the β-VAE framework is that we also want qφ(z|x) to capture the
generative factors v in a conditionally independent way - which is consistent with our
notion of disentanglement. They allow w to be captured by q in any manner, as long as
it is in separate dimensions to those which capture v.

The important conceptual idea that this framework introduces compared to the
standard VAE framework is that, rather than aiming to maximise pθ(x), they
maximise the marginal of pθ(x|z) over z under an information bottleneck constraint
on z. This constraint is chosen to be matching qφ to a prior p(z) which has the capacity
constraint alongside the dimension-wise statistical independence which is desired.
The constrained problem becomes,

max
φ,θ

Ex∼X

[
Eqφ(z|x)

log pθ(x|z)
]

subject to DKL
(
qφ(z|x) || p(z)

)
< ε ,

which under KKT conditions gives the Lagrangian (with multiplier β),

L = Eqφ(z|x)
log pθ(x|z)− β

(
DKL

(
qφ(z|x) || p(z)

)
− ε
)

. (3.4)

The prior is then set to N (0, diag(1)), and we arrive back at the original VAE
objective, with the divergence term reduced by some constant ε and scaled by the
multiplier β. In implementation, the multiplier is generally chosen manually and used
to control the relative importance of the two objectives. The original paper examined
this purely based on the fact that higher β would lead to a higher penalty for not
matching the prior. Larger values should result in more disentangled results, since the
prior is dimension-wise independent.

The objective was further analysed by the follow-up work by Burgess et al. [2018]. By
looking at qφ(z|x) as a set of information channels that noisily transmit information
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about input x, they can view the KL-Divergence as an upper bound on the amount of
information that can be transmitted through the channel per data sample.

I(x, z) = DKL (p(x, z) || p(x)p(z))

Since the posterior and prior are factorised Gaussians, we can interpret the latent
dimensions as Gaussian white noise channels, with information capacity ε.

In the case of ε = 0, this constraint encourages maximising the overlap of q(z|x1) and
q(z|x2) for any two images x1 and x2. Burgess et al. [2018] explain that this is due to
the KL being minimised when q(z|xi) = N (0, 1), and increased by non-zero posterior
means or low posterior variances. Thus the KL pressure encourages similar means,
which increases the overlap. Furthermore, good discriminability (and thus data log
likelihood), q(z|xi) requires low variance, so overlapping these posteriors will lead to
a broadening of the aggregate posterior allowing a lower KL divergence. The overlap
is important since it encourages nearby (in pixel space) data points to be nearby in the
latent space. When a sample z from q(z|x1) is more likely under q(z|x2), then the log
likelihood cost (mean squared error between x1 and reconstruction from sampled z) is
high if x1 and x2 are visually distinct and low if they are visually similar. The result is
that the distance between points in data space is preserved through the mapping to
latent space, a concept termed as data locality.

Given this framework, the β-VAE with an appropriately chosen β outperformed
Info-GAN in their experiments. Furthermore, the Info-GAN framework was sensitive
to how the latent code was defined (i.e. the number of categorical vs continuous
variables), whereas the β-VAE did not require such choices.

Controlled Capacity Increase VAE Burgess et al. [2018] provide the conceptual leap
that explains how the information framework can lead to disentangling in the latent
space. They find that starting with low (zero) capacity latent channels and gradually
increasing this capacity over time leads to better disentanglement.

Assuming we start with a very strong zero capacity bottleneck (β� 1, ε = 0), we can
expect the image reconstruction loss to be high, and the KL-divergence loss to become
small (since β� 1, and the latent space can transmit very little information). In the
information framework, reducing the image reconstruction loss requires transmitting
a non-zero amount of information through the latent channels. Burgess et al. [2018]
propose gradually increasing the information capacity of the latent channels (increase
ε) over training. As the capacity is increased, more information can be passed through
the latent channels, and the image reconstruction can be improved.

Burgess et al. [2018] argue that the first concepts to be encoded will be those that most
significantly increase the data log-likelihood. Borrowing the same example as Burgess
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et al. [2018], for dSprites, this would likely be the position of the object, since log
likelihood will vanish if the reconstruction has position off by even a few pixels. They
then contend that as the capacity is further increased, new factors (for example, scale)
would be encoded into independent latent dimensions and that this happens due to
the same loss pressure that leads to data locality.

This analysis lead Burgess et al. [2018] to propose the Controlled Capcity Increase VAE
(cc-VAE). This model begins training with low capacity latent channels (β� 1, ε = 0)
and as training progresses, they gradually allow the capacity to increase (increase ε).
In the early stages of training (low capacity), the model will learn factors that give the
best reconstruction gains (e.g. position). As capacity is increased, other factors such as
scale or rotation are encoded. As discussed, they hope that gradually introducing
factors to the encoding, rather than all at once, will result in better disentangling
performance due to the log-likelihood penalty of encoding two factors into the same
latent.

InfoVAE If one observes poor sample quality from a VAE it is understandable that
you would attribute this to poor approximation of the true parameters of the
generative process, or poor approximation of the data distribution. This could arise
from a lack of complexity in the decoder θ. However, when using extremely high
capacity decoders, it was found [Bowman et al., 2015] that the model often collapses to
be independent of z (pθ(x|z) = p(x)). In this case, the latent distribution collapses to
the prior, qφ(z|x) = p(z), the capacity is 0 and the information I(x; z) is also zero.

The goal of InfoVAE was to allow the maximisation of the information term I(x; z) in
the VAE framework, so that this collapse could not occur, even with high capacity
decoders.

Since generally it is agreed that the aim of VAEs is to learning meaningful
representations of data and not just produce high quality samples, having 0
information about the input is undesirable. As such Zhao et al. [2017] modified the
ELBO to additionally maximise the information Iq(x; z). However, rather than
optimising the standard ELBO form, they consider an equivalent form, reweighted
with α and λ,

LInfoVAE = −λDKL(qφ(z)|p(z))− Eq(z)[DKL(qφ(x|z)||pθ(x|z))] + αIq(x; z) .

This can then be rewritten to be a weighted form of the standard ELBO,

LInfoVAE = Ep(x)Eqφ(z|x) log pθ(x|z)

− (1− α)Ep(x)D(qφ(z|x)||p(z))

− (α + λ− 1)D(qφ(z)||p(z)) .
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Notice that this now explicitly optimises the aggregate posterior to be like the prior.
Furthermore, notice that it regresses to the β-VAE objective when D = DKL and
α = 1− λ, with β = (1− α). When β > 1, α < 0 and the objective penalises the
information Iq(x; z).

Zhao et al. [2017] consider a number of different divergences D(qφ(z)||p(z)) which are
easier to compute that the KL divergence. Any implementation in our work will use
the MMD variant, which we denote MMD-VAE. The MMD variant was found to
result in better log-likelihood in their tests compared to the standard VAE, being close
to those reported by the extremely high capacity PixelRNN, whilst retaining
dependency on z.

Whilst not directly targetted at improving disentanglement performance, we will use
the InfoVAE as one of our baselines for experiments later in this work. It is an
interesting comparison since it allows from better image reconstructions whilst
maintaining the disentangling properties of the VAE framework.

BetaTcVAE One of the greatest strides in terms of understanding and disentangling
performance came from Chen et al. [2018] with the BetaTcVAE model. They propose
to improve disentanglement performance by structuring the objective to minimise the
total correlation between latent dimensions. To achieve this, they provide a simple
decomposition (assuming a factorised p(z)) of the relative entropy to yield 3 terms
with distinct properties.

Ep(x)DKL
(
q(z|x)||p(z)

)
=

= Ep(x)Eq(z|x) log
q(z|x)

p(z)
Expand KL

= Ep(x)Eq(z|x)

[
log q(z|x)− log p(z) + log q(z)− log q(z) + log ∏

j
q(zj)− log ∏

j
q(zj)

]

= Eq(z,x) log
q(z|x)

q(z)
+ Eq(z) log

q(z)

∏j q(zj)
+ Eq(z) ∑

j
log

q(zj)

p(zj)
A©

= Eq(z,x) log
q(z|x)p(x)

q(z)p(x)
+ Eq(z) log

q(z)

∏j q(zj)
+ ∑

j
Eq(z) log

q(zj)

p(zj)
B©

= Eq(z,x) log
q(z|x)p(x)

q(z)p(x)
+ Eq(z) log

q(z)

∏j q(zj)
+ ∑

j
Eq(zj)q(z\j|zj) log

q(zj)

p(zj)
C©

= Eq(z,x) log
q(z|x)p(x)

q(z)p(x)
+ Eq(z) log

q(z)

∏j q(zj)
+ ∑

j
Eq(zj) log

q(zj)

p(zj)

= DKL
(
q(z, x)||q(z)p(x)

)

︸ ︷︷ ︸
I. Index-Code MI

+ DKL
(
q(z)||∏

j
q(zj)

)

︸ ︷︷ ︸
II. Total Correlation

+ ∑
j

DKL
(
q(zj)||p(zj)

)

︸ ︷︷ ︸
III. Dimension-wise KL

(3.5)



30 Chapter 3. Symmetry Based Disentangled Representation Learning (SBDRL)

Chen et al. [2018] propose the total correlation term (II.) is the vital component for
disentanglement and the reason that β-VAE produces disentanglement. Penalising
this term encourages the model to learn statistically independent factors, i.e.
disentangling them. However, since evaluating q(z) would normally require
computing Exq(z|x) (i.e. over the whole dataset), Chen et al. [2018] prefer a
Monte-Carlo estimation which can be evaluated with mini-batch sampling, which
they call Minibatch Weighted Sampling (MWS).

Let BM = {x1, . . . , xM} be a minibatch sampled from p(x), then p(BM) = (1/N)M. Let
r(BM|x) be the probability of a minibatch given one of the samples is fixed to be x,
then r(BM|x) = (1/M)N−1. Note that r(BM|x) = 0 for minibatches which do not
contain x and so r < p in general. The expectation can then be estimated:

Eq(z) log q(z) = Eq(z,x) log Ex′∼p(x)q(z|x′) Expanding the expectation

= Eq(z,x) log Ep(BM)
1
M

M

∑
m=1

q(z|xm)

≥ Eq(z,x) log Er(BM |x)
p(BM)

r(BM|x)

1
M

M

∑
m=1

q(z|xm) Since r < p

= Eq(z,x) log Er(BM |x)
1

MN

M

∑
m=1

q(z|xm) Expanding p, r

This allows for approximating each of the terms in equation 3.5 through minibatch
sampling, since we can approximate Eq(z) log q(z) by,

Eq(z) log q(z) ≈ 1
M

M

∑
i=1

[
log

M

∑
j=1

q(z(xi)|xj)− log(MN)

]

where z(xi) is a sample from q(z|xi).

A© Grouping and Eq(z|x)Ep(x) = Eq(z,x) B© Linearity of expectation C© Break out dependent var
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The alternate (and simpler) method given by Chen et al. [2018] was a process they
termed stratified minibatch sampling, which computes q(z) through the following:

q(z) = Ep(x)q(z|x)

= Ep(BM)
1
M

M

∑
m=1

q(z|xm)

= P(x∗ ∈ BM)E

[
1
M

M

∑
m=1

q(z|xm)
∣∣∣ x∗ ∈ BM

]

+ P(x∗ /∈ BM)E

[
1
M

M

∑
m=1

q(z|xm)
∣∣∣ x∗ /∈ BM

]

=
M
N

E

[
1
M

M

∑
m=1

q(z|xm)
∣∣∣ x∗ ∈ BM

]
+

N −M
N

E

[
1
M

M

∑
m=1

q(z|xm)
∣∣∣ x∗ /∈ BM

]

By isolating x∗ from the first term and xM from the second, there is an estimator,

f (z, x∗, BM+1\{x∗}) =
1
N

q(z|x∗) +
1
M

M−1

∑
m=1

q(z|xm) +
N −M

NM
q(z|xM)

with the following estimates which become exact when M = N,

q(z) ≈ E f (z, x∗, BM+1\{x∗})

Eq(z,n) log q(z) ≈ 1
M + 1

M+1

∑
i=1

log f (zi, xi, BM+1\{xi})

Using either MWS or MSS, the three terms I, II and III can be computed since they
allow evaluation of q(z) in some efficient form. The BetaTcVAE loss function then
weights each term individually,

L = Ep(x)q(z|x) log p(x|z)− αI(z; x) + βDKL
(
q(z)||∏

j
q(zj)

)
+ γ ∑

j
DKL

(
q(zj)||p(zj)

)

rather than weight each by a single β as is the case in β-VAE.

The resulting model shows consistently strong disentanglement (both visually and
empirically) and is generally a good choice for comparing disentanglement
performance.

3.2.3 Datasets for Disentanglement

There have been many datasets created for the purpose of studying disentanglement
and disentangled representations. Since it is useful to have access to the generative
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(25, 25) (18, 43) (47, 29) (27, 16) (39, 15) (43, 23) (20, 20)

FIGURE 3.3: A selection of Flatland images with the associated generative factors (x,
y) (top row) and an example of an action applied to the top row with results shown in

the bottom row.

factors, these datasets are generally synthetic. In this work we will mostly use the
FlatLand [Caselles-Dupré et al., 2018] and dSprites [Matthey et al., 2017] datasets,
however we will also use the Norb dataset [LeCun et al., 2004]. We will now briefly
describe these datasets and give their generative factors. As stated earlier, these
factors will be defined by the concepts which they relate to (e.g. rotation etc) instead of
just some dimensions of the dataset simulator variables v.

FlatLand The Flatland dataset was introduced by Caselles-Dupré et al. [2018] as a
simple environment for reinforcement learning. It consists of a circular agent
navigating a 2D world which may contain obstacles. For our work, we will use the
simplified version of flatland (as used by Caselles-Dupré et al. [2019]) which does not
contain obstacles.

Specifically, the Flatland dataset has a black canvas of size 64×64 pixels, with a white
circular agent with radius 15 pixels. The agent cannot move into the boundary of the
canvas (cannot be occluded) however it can take any other x-y position. For any given
image from the dataset, the state is completely defined by the x-y position of the
agent. As such, the generative factors are exactly the set of possible x-y positions.

Generative Factors = {(x, y)|x, y ∈ [15, 49]}

In the reinforcement learning framework, there must be actions that act on the
environment. For Flatland, these actions are moving the agent in one of four
directions (up, down, left, right). Whilst it can be selected freely, the step size (number
of pixels moved by the agent) is set to 5 for Flatland in this work and Caselles-Dupré
et al. [2019]. In Fig. 3.3 we show example Flatland images and actions.

dSprites The dSprites dataset [Matthey et al., 2017] is the most common dataset
used for disentanglement research which use VAEs. It was introduced by [Higgins



3.2. Disentanglement as a Concept 33

(0, 2, 29, 21, 1) (0, 5, 14, 25, 25) (0, 4, 18, 31, 24) (0, 3, 12, 16, 13) (0, 1, 23, 4, 20) (0, 0, 4, 25, 7) (0, 3, 12, 7, 8) (0, 0, 7, 30, 31)

(1, 3, 33, 1, 27) (1, 5, 18, 6, 4) (1, 3, 33, 14, 29) (1, 4, 10, 2, 11) (1, 2, 24, 12, 24) (1, 0, 9, 30, 14) (1, 3, 37, 1, 11) (1, 5, 17, 6, 1)

(2, 4, 23, 26, 2) (2, 4, 4, 1, 1) (2, 2, 31, 7, 28) (2, 5, 1, 13, 30) (2, 5, 30, 28, 16) (2, 0, 26, 13, 22) (2, 4, 17, 13, 21) (2, 4, 5, 17, 15)

FIGURE 3.4: A selection of dSprites images with their associated generative factors
(shape, scale, orientation, x, y).

et al., 2017] (under the name 2D shapes) as a means to allow evaluation of their
disentanglement metric (BetaVAE Metric, see Section 3.2.4), which requires access to
the generative factors.

Generative Factors = {(shape, scale, rotation, x, y)}

The dSprites dataset consists of a black canvas (64×64 pixels) with one of 3 white
shapes present, a heart, square, or oval. The shapes are placed on a grid with 32 x
positions and 32 y positions. Furthermore, they are rotated by one of 40 rotational
angles (between 0 and 2π), and are scaled by one of 6 scale values. Each image can be
defined exactly by these values (shape, scale, rotation, x, y), and as such, these form
the generative factors for the dataset. In Fig. 3.4 we show example dSprites images.

Norb The norb dataset was introduced by LeCun et al. [2004] for the purpose of
recognising 3D objects from their shape. It consists of real world images of 50 different
toys under varying lighting conditions (6 variants), from 9 different elevations and
from 18 different azimuth angles. Since again, each image can be described by the toy,
lighting, elevation and azimuth values, these form the generative factors of the
dataset.

Generative Factors = {(azimuth, toy, elevation, lighting)}

In Fig. 3.5 we show example Norb images.
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(14, 'cars', 1, 2) (17, 'airplane', 2, 5) (6, 'animal', 6, 2) (17, 'trucks', 3, 3) (15, 'figure', 0, 4)

FIGURE 3.5: A selection of Norb images with their associated generative factors (azi-
muth, toy, elevation, lighting)

3.2.4 Measuring Disentanglement

Given the wealth of models aiming to produce disentangled representations, there is a
requirement for methods to compare results. Many of the works proposing the
previously discussed models also proposed new metrics to measure disentanglement
based on differing interpretations of what disentanglement is or in what context it
should be seen. We will now briefly list and discuss the main metrics and comparison
methods that have been used. . Most of this work will be concerned with learning
linear disentangled representations, which are a form of disentanglement to which
some of the metrics we discuss may or may not be able to measure appropriately. As
such, it will also be useful to discuss here each metrics relevance to linear
disentanglement, which will be introduced properly in Section 3.3.

Throughout these metrics, we will often require labels of the generative factors. We
will consider the conditionally independent factors v from Section 3.2.2 (β-VAE),with
individual factor k (e.g. shape or rotation angle) denoted by vk. For the VAE latent
space, we will denote the j’th dimension by zj.

Latent Space Visualisations The simplest way to gauge disentanglement is through
visualisations of latent walks. By traversing a single latent dimension and keeping all
others fixed, we can observe changes in the output that are solely due to that latent. If
we perform this separately for each dimension, we can get an overview of how data is
encoded into the space. If we see the generative factors encoded independently into
different latents then we can say the space is disentangled. If we see dimensions with
variation in multiple generative factors then we can say it is (likely) entangled. For an
example, consider Fig. 3.6a which shows disentangled latent traversals. For the two
factors (x and y position), we see each encoded into a single dimension with no
overlap between them. For comparison, Fig. 3.6b shows entangled traversals, with
dimensions (rows) encoding parts of both factors and multiple rows encoding the
same factor.

Latent traversals have the advantage of being simple to perform and allow good
intuition on whether a space is disentangled. They do, however, have a major
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(A) Disentangled (B) Entangled

FIGURE 3.6: Example Disentangled and Entangled latent traversals for a simple two
factor problem (x and y position) using 4 latent dimensions (rows).

drawback which is that they do not allow quantification of how disentangled the space
is. So whilst latent walks can be used to demonstrate that a model can learn
disentanglement, they cannot be used (effectively) to compare models. Furthermore,
they are representative of only a single instance of the model being visualised, not a
general property of the model.

Latent visualisations will continue to be a useful visualisation for linear disentangled
representations. We will often traverse the orbit of actions on the latent space, rather
than individual latent dimensions as has been described here.

BetaVAE Metric The BetaVAE metric [Higgins et al., 2017] reports the classification
accuracy of a (low capactiy) linear classifier on the task of predicting the latent
dimension index in which a specific generative factor is encoded. The metric relies on
a simulating process (‘Sim’) for the data, as described in Section 3.1, and also requires
that we have labels for a subset of the independent factors v ∈ RK, although the
conditionally dependent factors (w) need have no labels. We then

Each element of the dataset used to compute this metric is generated in the following
way:

1. Choose dimension index i ∼ Uniform(0, K)

2. For a batch of L samples:

• Sample two sets (a and b) of factors va,l , vb,l where the i’th dimension of
each is the same and l refers to the number in the batch.

• Sample two sets of factors wa,l , wb,l randomly

• Sample images xa,l ∼ Sim(va,l , wa,l), xb,l ∼ Sim(vb,l , wb,l) from the
simulating process

• Infer the latent codes za,l = µ(xa), zb,l = µ(xb,l) using the VAE encoder:
q(z|x) ∼ N(µ(x), σ(x))

• Compute zl = |za,l − zb,l |
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3. Return tuple (z = 1
L ∑ zl , i) where the classifier has to predict the label i

The metric is then given as the classification accuracy on this dataset, i.e. how
accurately the low capacity classifier can predict the label i using z. This has the
obvious downsides that it will depend on the classifier chosen, the hyperparameters
used to train the classifier, etc. In this work we use the scikit-learn multinomial logistic
regression classifier with newton-cg solver and no penalty (other settings default). A
link to the specific implementation is given at the end of this section.

The intuition for this metric is as follows, if the VAE latent space is disentangled and
we fix index i, then z should have some dimension (k) which is close to 0, since the
factor vi is encoded in the latent dimension with index k. We can see this by
considering the k’th dimension of za,l , denoted [za,l ]k. Since factor index i is fixed, then
we expect [za,l ]k to be very close to [zb,l ]k and thus

[
|za,l − zb,l |

]
k

should be close to 0.

Since the other dimensions of va,l , vb,l are chosen randomly, [zl ]j 6=k =
[
|za,l − zb,l |

]
j 6=k

will not always be close to 0. As such, in a disentangled space, [zl ]k should be close to
0 and [zl ]j should be greater than 0. Even a low capacity classifier should be able to
map from this to a unique index for k.

However, if the VAE latent space is entangled, even when fixing index i, the values
[za,l ]k and [zb,l ]k need not be similar. As such, there is no way to determine which
index has been fixed by looking at zl .

Mutual Information Gap (MIG) The mutual information gap [Chen et al., 2018] is
motivated by the idea that (classical) disentangled representations encode individual
generative factors into individual latent dimensions. Thus for disentangled
representations, the difference in information about a single factor encoded into the
first and second most informative dimensions will be large. Ideally it will all be
encoded into a single dimension. However for entangled representations, the
information about any given factor will be encoded across many or all dimensions,
resulting in this difference being small.

Thus for each generative factor vk, Chen et al. [2018] compute its mutual information
I(zj, vk) with each latent dimension zj. The information gap is given as the average
normalised (by the entropy H(vk) = −Ep(vk) log p(vk)) difference between the first
and second most informative latent dimensions. The MIG score, is then given as,

1
K

K

∑
k=1

1
H(vk)

(
I(zjk , vk)−max

j 6=jk
I(zj, vk)

)
where jk = arg max

j
I(zj, vk) . (3.6)

The MIG metric can capture linear disentanglement where all acting symmetry groups
have only 1D irreducible representations, however groups with higher dimensional
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representations (e.g. cyclic groups) result in a low information gap and poor MIG
scores. This is due to the information about the symmetry (which generally can be
directly related to a single generative factor) being encoded across as many latent
dimensions as the dimensionality of its irreducible representations. We will extend
this to more adequately express linear disentangled representations with the Factor
Leakage metrics.

DCI Informativeness, Disentanglement and Completeness The three DCI metrics
proposed by Eastwood and Williams [2018] work from a common set of regressors,
which are required to produce an importance matrix Rij over the latent dimensions zi

for predicting the factor vj. The regressors take the form of the Scikit-learn Gradient
boosting classifier with default settings trained to predict the factor vj from the whole
code z. The importance matrix is then computed using the feature importances
reported by Scikit-learn. Using the importance matrix, the three metrics can be
defined.

Disentanglement measures the degree to which latent dimensions capture information
about at most a single generative factor. The disentanglement score Di for latent
dimension zi is given by,

Di = ∑
i

ρi
(
1− H(Pi)

)
where ρi =

∑j Rij

∑ij Rij
, Pij =

Rij

∑k Rik
. (3.7)

The entropy is computed by H(Pi) = −∑K−1
k=0 Pik logk Pik, and is high when latent

dimension zi is important to predicting many factors vj, thus resulting in a low Di.
Again, ideal disentangled representations have one latent dimension important for
one factor, in which case the entropy would be low and Di high.

DCI disentanglement is suitable for all linear disentangled representations since they
all enforce single latent dimensions to be relevant to single symmetry groups. The
exception to this would be cases where symmetries do not correspond exactly with
what is considered a generative factor. For example, orientation in 3D might feasibly
(albeit perhaps incorrectly) be split into a 3 generative factors, one for rotations about
each Cartesian axis. In this case, the entropy of any latent dimension concerned with
orientation/rotation would be non-zero since it has non-zero probability over 3
factors. This can be overcome by choices of generative factors that align with the
symmetry groups acting on the data or visa versa.

Completeness measures the degree to which generative factors are captured by a single
latent dimension. The completeness score Cj is given by,

Cj = 1− H(P.j) (3.8)
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The entropy here is given by H(P.j) = −∑D−1
d=0 Pdj logD Pdj. In this case, if a single

latent dimension contributes to the prediction of factor vj then the score will be 1,
however if many do then it will be close to 0.

For linear disentangled representations, it is often the case that irreducible
representations are of dimension greater than 1. Thus linear disentangled
representations will often be considered over-complete if the generative factors do not
align with the symmetry groups acting on the data.

Informativeness is simply the amount of information the representation captures about
the underlying generative factors. To measure this, Eastwood and Williams [2018]
propose training a classifier to directly predict the generative factor values for a given
latent representation. So, assuming x ∼ Sim(v, w) and z = µ(x) is encoded using the
VAE encoder q(z|x) ∼ N(µ(x), σ(x)), then the classifier is tasked with predicting v
from z. The informativeness is then reported as the classification accuracy subtracted
from 1.

The informativeness continues to provide insight to linear disentangled
representations, although it only measures information content and not
disentanglement performance, so we will not make use of this metric.

Modularity and Explicitness Ridgeway and Mozer [2018] define two scores, the
modularity which measures the extent to which latent dimensions encode information
about a single factor, and explicitness which measures the extent to which factors are
represented/retrievable in/from the code. To define the modularity, they first define a
template vector,

tiv =





θi if v = arg maxk(I(zi, vk))

0 else,
(3.9)

where θi = maxk(I(zi, vk)) and I(zi, vk) is the mutual information between latent
dimension i and generative factor vk. Thus θi represents the information between
latent dimension zi and the generative factor vk with which it has the most mutual
information. The modularity is then defined,

Modi = 1− ∑k
(

I(zi, vk)− tik
)2

θ2
i (N − 1)

, (3.10)

where the quotient represents the deviation from the ideal case.

To measure the explicitness, Ridgeway and Mozer [2018] fit a one-versus-rest
logistic-regression classifiers which classify the factors vk from the latent code z. The
explicitness metric is then reported as the mean of the ROC-AUC scores of the
classifiers for each factor vk. For this ROC analysis, we use Scikit-learn multiclass
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implementation which allows us to compute ROC-AUC scores from multiclass
classifiers which predict each dimension of factor vk (See end of section).

Similar to previous metrics, the modularity is suitable for linear disentangled
representations since it measures the extent latent dimensions talk about single factors
(assuming factors equate to symmetries). The explicitness is also suitable since the
whole code is used as input to the classifiers.

SAP The SAP score [Kumar et al., 2017] aimed to better correlate metric score with
qualitative measurements (inspection of latent traversals). They begin by obtaining
the score matrix Rik which represents the ability to predict factor vk using only latent
dimension i . For categorical factors, this is computed as a classification accuracy from
a linear SVM. For continuous factors, it is computed as the R2 score of a linear
regression.

The SAP score is then reported as the mean difference between the top two scores for
each generative factor. A high SAP score is obtained when each factor is encoded into
a single latent dimension, as is desired by classical disentanglement. A low SAP score
is obtained when the opposite is true.

SAP =
1
N ∑

k

(
max

i
Rik −max

i 6=ik

Rik

)
(3.11)

Whilst this is not immediately a good metric for linear disentanglement, the authors
suggest grouping the latents based on correlation and getting the score matrix at group
level. This would allow grouping based on the expected dimensions of the irreducible
representations for linear disentanglement and may offer a good metric in that case.

Our Implementations The implementations of these metrics which we used for all
our experiments is hosted online at https://github.com/MattPainter01/
UnsupervisedActionEstimation/tree/master/metrics.

3.2.5 Common Assumptions

Locatello et al. [2018] present one of the largest empirical studies of disentanglement,
in terms of number of models trained, and provide context for many baseline models
and datasets. Through training over 10000 models on baseline datasets and evaluating
a number of disentanglement metrics, they aimed to address questions such as:

• Do Disentanglement metrics agree?

https://github.com/MattPainter01/UnsupervisedActionEstimation/tree/master/metrics
https://github.com/MattPainter01/UnsupervisedActionEstimation/tree/master/metrics
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• How important is model selection compared to hyper-parameter choice or
randomness?

• Can we identify disentangled representations without knowing generative
factors?

• Are disentangled representations beneficial?

In general, they find that the majority of disentanglement metrics correlate with each
other, albeit to varying degrees across different datasets. There are some metrics
which do not follow this trend, in particular the modularity score which seemed to
correlate strongly with solely the BetaVAE metric. The SAP score also did not strongly
correlate with other metrics.

Their next findings were more sombre. Model selection was shown to only explain
37% of the variance in disentanglement scores, with the rest being attributed to
hyperparameters (22%) and randomness (41%) (i.e. choice of random seed). They also
found no successful means to distinguish disentangled representations from
entangled ones without supervision. It was found, however, that transferring good
hyperparameters from datasets with known generative factors onto other datasets, is
somewhat beneficial. This does not guarantee a disentangled model however, only
providing a set of hyperparameters which might increase the probability.

For the final question, Locatello et al. [2018] consider the data efficiency of
disentangled representations, since it was generally assumed disentanglement would
correlation with efficiency. They in fact find no correlation, a finding that was
consistent across all models trained, refuting this commonly held assumption. Whilst
they are careful to state they have not considered all forms of disentanglement (i.e.
supervised/semi-supervised) or other benefits of disentanglement (fairness,
interpretability), this is still an impactful finding.

3.3 Towards a Definition of Disentangled Representations

This section will introduce the SBDRL framework which defines linear disentangled
representations, which will be the focus of most of the rest of this work. SBDRL
considers a slightly different problem setting to the standard VAE, and is based on the
notion of symmetries of the data, defined by symmetry groups which act on it. We
will introduce the SBDRL framework through a classic deep learning example which
will be used throughout the later chapters. Recall from 3.2.3 that dSprites is a
synthetic dataset which was generated by taking 3 shapes and rendering images for
each whilst varying the following factors: x position, y position, scale and
orientation/rotation. Further recall that since these factors generate the dataset, we
call them generative factors.
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A B

FIGURE 3.7: Visualisation of the Grid World explored by Higgins et al. [2018] consist-
ing of a circular agent moving on a grid with periodic boundary conditions alongside

a circular hue axis.

SBDRL Problem Setting Setting aside the VAE framework for the moment, the
SBDRL problem statement is introduced by Higgins et al. [2018] through a
reinforcement learning setting. In particular, we have an environment which provides
statesW , and a set of actions that can be applied in each state. We will refer toW as
the set of world states. Higgins et al. [2018] then define the actions on this
environment to correspond to it’s symmetries.

The example given by Higgins et al. [2018] to help visualise this scenario is a grid
world with a single object, which can move around in four directions (up, down, left,
right), and change colour by taking discrete steps on a circular hue axis (See Fig. 3.7).
In this instance, each state in the world space is given by the triplet of
(‘x position, y position, colour). If we define symmetries as any transformations which
preserve the identity of the object, then we have 3 symmetries on this space: x
translation, y translation and colour change. The effect of these transforms on the
world space are then the actions in this environment.

Higgins et al. [2018] then define a generative process alongside this environment,
which maps the world states to observations, given by b :W → O. Whilst the
observation space may take any form, we can assume for this work that it will be a
space of images, akin to the space X from the VAE formulation. In order to study
representations in this setting, Higgins et al. [2018] then introduce a inference process
(representation function) h : O → Z . The space Z is then called the representation
space (usually Z ⊆ RN for some N). The inference process can be any model which
takes an observation as input and returns a representation. For the moment, we have
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x

x

FIGURE 3.8: Visual example of wrapping on sphere. Unfolding the dome (left) as
you would a world map (similar to a Mercator Projection) would result in a 2D grid
(right), where we can see the object wrapping.Whilst this analogy holds for a single
cyclic symmetry, if we were to include the ’y’ axis, then a torus would be the correct

geometric depiction.

no particular model in mind for learning the representation, it is simply a function
which takes an observation/image and returns z ∈ Z . SBDRL focuses on how this
mapping must behave in order for it to be called linearly disentangled. We will
discuss in Section 3.3.2 how we can apply VAEs in this setting.

How do Symmetry Groups Fit In Now the question becomes, how do we relate
these symmetries to symmetry groups? Still considering the grid world of Fig. 3.7, let
us consider just translation in the x axis. Each state is then defined by its x coordinate,
x ∈ {0, 1, . . . , Nx}. Since we have the periodic boundary condition, when we
continually increment the x coordinate by 1, once it reaches Nx, the next state
coordinate would wrap back to 0. For the simple 1D case, we can analogise this to an
object on a globe (See Fig. 3.8). This periodic relationship looks very similar to that of
elements of a cyclic symmetry group, where gn−1 = 1. It is this relationship which
motivates the initial discussion of Higgins et al. [2018].

If we think of each point on the grid in Fig. 3.8 as representing an image with the
generative factor x (continuing to exclude the others for now), then we can consider
the x translation symmetry. We know that if we move (for the case of Fig. 3.8) 13 steps
in the x direction, then we end up in the same place. Thus consider the group C13

acting on the world space of x values as the relationship gN ◦ x = x + N(mod 13).
This group describes the x translational symmetry in our world. Naturally the same
argument would hold for y translational symmetry, however in CN × CN , the best
geometric analogy would be the torus, rather than the sphere, since the Mercador
projection depicted in Fig. 3.8 distorts space, particularly around the poles.

Considering dSprites for example, we have 32 values for each Cartesian coordinate, so
the translational symmetries are described by C32 for both x and y. The group which
reflects translation is then the product of these two, G = C32 × C32, with group action
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(gn
x , gm

y ) ◦ (x, y) = (x + n, y + m). For (2D) rotation, there exists a natural choice of
symmetry group, which is the continuous rotation group SO(2), however in dSprites
the rotations are discrete, so it might make more sense to again consider a cyclic group
(of order 40). The final symmetry in dSprites is scale. It is not clear what symmetry
group best describes scale, but we can take the same trick we used in translation and
define periodic boundary conditions, allowing us to consider it relative to another
cyclic group C6. Taking these groups, we can consider the symmetry group acting on
dSprites as G = C32 × C32 × C40 × C6, as we will see in Section 3.3.1.

Obviously, since we can decompose the symmetries of dSprites into a product of cyclic
groups, this might be considered quite a simple problem. Indeed, as we saw in the
previous section, disentanglement on dSprites is fairly simple to achieve to some
degree. In the real world we are far more likely to require consideration of the full
SO(2) or SO(3) groups for rotations in 2 or 3 dimensions, for example. Whilst the
irreducibles of SO(2) are relatively easy to determine, SO(3) is non-abelian, and it’s
much harder to enumerate all irreducibles.

Disentangled Group Actions The previous paragraphs discussed groups acting on
the world space of dSprites. For SBDRL, these groups will generally take the form of a
product of groups, each of which describes a different symmetry and has a
corresponding group action. We can then consider the representation of a VAE and
how these actions change the space. In particular, we can look at whether these
different symmetries are disentangled in the VAE representation space, i.e. do they
effect latent subspaces that are independent of each other. We will now give the
necessary definitions to explore this.

The most important definition from SBDRL is that of a disentangled group action.

Definition 3.2. An action ◦ : G× X → X of a group G = G1 × G2 on a set X is a
disentangled group action if there exists a decomposition X = X1 × X2 and actions
◦i : Gi × Xi → Xi such that

(g1, g2) ◦ (v1, v2) = (g1 ◦1 v1, g2 ◦2 v2)

Remark 3.3. This basically says that when we act on, for example, a world spaceW
with a subgroup in G = G1 × G2, then only a subspace of the world space should be
affected, and it should be independent of those affected by the other subgroup/s.
Equivalently, if it acts on a representation Z , then it should only affect a subspace
independent of actions by the other subgroup/s.

We would like to move from the notion of a disentangled action on a set X to that of a
disentangled representation f :W → Z (of the world space) on the representation space
Z . We define f as the composition of h and b, f = h ◦ b, where only here does the ◦
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G×W W

G×Z Z

◦w

f

◦z
1× f O

b

h

FIGURE 3.9: Function relationships for SBDRL

denote composition and not a group action. Recalling the problem setting for SBDRL
in Fig. 3.10, we have the functional relationships given in Fig. 3.9. In general the
generative process b will be predefined, and our models will only have access to the
observation space O, not the world spaceW . As such we will often call h the
representation rather than f , furthermore we will also call Z a representation if it is
clear from context that we are referring to a space and not a mapping.

Example 3.1. Recalling the symmetry group acting on dSprites, G = C32 × C32 × C40 × C6,
an example of a disentangled action of subgroup C32 on world spaceW = {(x, y, s, θ)} would
be if g ◦ (x, y, s, θ) = ((x + 1) mod 32, y, s, θ). The world subspace affected by this action is
the space {(x, y, s, θ) | x ∈ {0, . . . , 31}}, for any given y, s, θ. If we had the ideal f , mapping
to the generative factor labels, then g is equivariant and this would form a disentangled
representation.

We can now give a definition of disentanglement with respect to some symmetries
acting on the data given by symmetry group G.

Definition 3.4. Given a group action ◦w : G×W → W , a representation Z is a
disentangled representation with respect to G if there exists an disentangled group
action ◦z : G×Z → Z such that,

g ◦z f (w) = f (g ◦w w) ∀g ∈ G, w ∈W ,

i.e. f is an equivariant map.

Remark 3.5. This equivariance ensures that the symmetry structure of Z reflects that of
W . So whilst it is not assumed that the action ◦w is disentangled, it’s likely that we
could not find a disentangled action ◦z if ◦w was not also disentangled.

Remark 3.6. A representation Z may be disentangled with respect to more than one set
of symmetries acting on the data (i.e. more than one symmetry group). In this case,
there would exist an action corresponding to each of these symmetry groups.

For us, we can create a dataset of transitions for which each transition corresponds to
action by a specific symmetry. In other words, the observations in any given transition
differ by one action in the world space ◦w. If it is then possible to find a disentangled
action on the latent space then the representation can be considered disentangled with
respect to the symmetry group used to generate the transitions.
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Definition 3.7. The previous definition can be written in a longer, but more useful and
intuitive form:

A representation Z is disentangled with respect to G = G1 × · · · × Gn if:

1. There exists action ◦ : G×Z → Z ,

2. The map f :W → Z is equivariant between actions onW and Z , and

3. There is a decomposition Z = Z1 × · · · × Zn or Z = Z1 ⊕ · · · ⊕ Zn such that
each Zi is fixed by action ◦j of all Gj,j 6=i and affected only by Gi.

Remark 3.8. This will be important when considering metrics for linear disentangled
representations in later chapters. In particular, part 3, subgroups acting on independent
subspaces.

Linear Disentangled Representations Since our work will be concerned with
representations learnt by a variational autoencoder with latent spaces forming real
vector spaces, it is a good idea to consider actions which preserve their linear
structure. There is a large body of work concerning linear transformations on vector
spaces which revolves around group representations. A linearly disentangled
representation can now be defined through the following definitions.

Definition 3.9. A group representation ρ : G → GL(V) is linearly disentangled with
respect to group decomposition G = G1 × · · · × Gn if there exists a decomposition
V = V1 ⊕ · · · ⊕Vn and representations ρi : Gi → GL(Vi), i ∈ {1, . . . , n} such that
ρ = ρ1 ⊕ · · · ⊕ ρn, that is,

ρ(g1, . . . , gn)(v1, . . . , vn) = (ρ1(g1)v1, . . . , ρn(gn)vn) .

Remark 3.10. This definition can be seen as the equivalent of Definition 3.4 in the
specific case where the action is defined by a group representation, e.g. ◦g = ρ(g). We
can think of this as a restricted case where the action is linear.

Remark 3.11. Recall from Chapter 2 (remark 2.39) where we stated two relations
(without proof) that the irreducible representations of G = G1 × · · · × Gn are the
representations ρ1 ⊗ · · · ⊗ ρn where ρi is an irreducible representation of Gi.
Combining this with definition 2.34, and the assumption that V decomposes into
V1 × · · · ×Vn, then we would expect the representations to look like

ρ = (ρ11 ⊗ · · · ⊗ ρ1n︸ ︷︷ ︸
Irreducible of G

) ⊕ . . . ⊕︸ ︷︷ ︸
For each Vi

(ρn1 ⊗ · · · ⊗ ρnn)

Comparing this with the definition, we can see that to be linearly disentangled
requires ρij to be irreducible, where only one of the ρij are non-trivial for each i. In this
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case,
ρ = ρ1 ⊕ · · · ⊕ ρn ,

where ρ1, . . . , ρn are the non-trivial irreducible representations.

Definition 3.4 defined a disentangled representation with respect to some symmetry
group G, but the action ◦z was not necessarily linear. We can now define a linear
version of this definition through group representations, which are by definition
linear.

Definition 3.12. A representation f = h ◦ b is a linear disentangled representation
with respect to G = G1 × · · · × Gn if there exists a linearly disentangled group
representation ρ and the related action ◦z : (g, v) 7→ ρ(g)(v) such that f is equivariant
with respect to ◦z, ◦w.

Remark 3.13. We will see models in later chapters which can explicitly learn such ρ.

Example 3.2. If we consider the group G = C4 × SO(2), then we know the (real) irreducible
representations (Chapter 2, example 2.5) are both rotation matrices. We find that action by the
group element gk (for some k ∈ {0, 1, 2, 3}) and rotation angle θ will correspond to action,

ρ(gk, θ) = ρ1(gk)⊕ ρ2(θ) =
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on the representation space Z .

Disentanglement with respect to symmetries This section has introduced a
definition of linear disentanglement with respect to a particular decomposition of a
symmetry group acting on the data. Assuming we know which symmetries are acting,
and we know their irreducible representations, then this allows us to know the
structure of a linearly disentangled representation with respect to that particular
symmetry group. It might be that there are multiple valid symmetries for dataset, in
which case a given representation may be linearly disentangled with respect to one (or
more) but not others. This is a downside of the SBDRL framework, since it requires
that we know (or can know) what the acting symmetries are.

It is important that the linear form of disentanglement defined (Definition 3.9) in this
chapter lets us understand the structure through irreducible representations. This is
not the case for the definition of disentanglement given in Definition 3.4. It is for this
reason that this work will almost exclusively focus on linear symmetry based
disentanglement.
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3.3.1 Symmetries on Disentanglement Datasets

For the rest of this work, we will often need to consider symmetries acting on the
disentanglement datasets defined in Section 3.2.3. Since we know the generative
factors for these datasets, we can associate one symmetry with each generative factor.
Furthermore, since the generative factors are discrete, the simplest way to define
symmetries on these datasets is by defining group actions for each of them and
determining which symmetry group they would correspond to.

FlatLand As mentioned in Section 3.2.3, FlatLand has been explored under the
reinforcement learning framework, which already assigns actions to the dataset.
Specifically, the actions were defined to be translating the agent by ±5 pixels in one of
the x or y axes. Since the agent can only take positions in the range [15, 49], and it is
warped to the opposing side when reaching a boundary, this results in the symmetry
structure

C7 × C7 . (3.12)

This is since we have (49− 15)/5 = 6.8 ≈ 7 possible steps in each of the x and y axis,
when taking 5 pixel steps.

dSprites Whilst dSprites does not have a standard set of actions under the
reinforcement learning framework, we can easily define some using the generative
factors. The simplest action we can define for each factor is an action which
increments the value of that factor by 1 (or some step size) and wraps back to 0 when
applied to the last value of that factor. This then corresponds to a cyclic symmetry
where the action is by the generator of that cyclic group.

For example, action on the x position factor by such a generator gx, would take the
form: gx ◦ (scale, rotation, x, y) = (scale, rotation, x + 1(mod 32), y). If we define
actions of this form for each of the generative factors (with the modulo based on the
number of each factor), we get the symmetry structure,

C6 × C40 × C32 × C32 . (3.13)

Note that we do not consider the shape factor in the symmetry structure. In general,
we think of symmetries as mappings that preserve the identity of an object, and not
mappings that change the identity. For dSprites, the identity of the object can be
thought of as the shape, and as such we don’t consider changing the shape factor as a
valid symmetry. This is however a design choice, and it could be that others would
consider changing the shape as a valid symmetry.
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Norb Similar to dSprites, the Norb dataset does not have a standard set of actions
defined on it by previous works. We can use a similar approach to dSprites and define
actions on this dataset based on the generative factor values. If we do this, we get the
symmetry structure,

C18 × C9 × C6 (3.14)

Similar to the dSprites dataset, we again do not consider changing the toy as a valid
symmetry. The reasoning behind this is more evident in the Norb dataset, where each
toy is in fact a different real world object. Saying that changing the toy is a symmetry
of the toy is a particularly strange way of framing the problem.

Transition Datasets On each of the datasets we have just listed, we have an
alternate version which consists of transitions rather than just states. The transitions in
each case are simply a triplet consisting of a state, an action and the state resulting
from applying the action to the first state. We can then create a dataset of transitions
which is the set of all possible transitions on all states using all actions. For the
datasets we explore, we will just be considering actions by the cyclic generators and
their inverses. which reduces the number of transitions we have in each dataset.

3.3.2 VAEs as the representation function

In the previous section, we introduced the notion of a representation as simply a
function that maps from an observation space (generally images) to a representation
space. The generative process in SBDRL is determined by the function b, and the
representation space Z is not necessarily the same space asW . For the VAE however,
it is assumed that the dataset is generated by a generative process which depends on
some latent space, which is also the space to which the VAE encoder maps. This
allows us to frame the problem as attempting to optimise the VAE parameters θ

towards the true generative process parameters θ∗.

As noted by Quessard et al. [2020], it is difficult to immediately relate the SBDRL and
VAE frameworks since SBDRL assumes a deterministic simulator as opposed to the
prior based generative process in the VAE. There has been recent work Yang et al.
[2021] that aims to join the two frameworks by considering actions as permutations on
the observation space. For our work, we will assume that the VAE can be applied to
the dataset of observations, and not attempt to define a concrete relationship between
them.

Even without a concrete relationship between these spaces we can still use the SBDRL
results to understand how the VAE representation needs to look in order to be linearly
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SBDRL W Z O b h
VAE Z Z X Sim qθ(z|x)

TABLE 3.1: Loose relationships between SBDRL spaces and spaces in the VAE frame-
work.

LÖVE
b

q(z|x)
h

Observation
o ∈ O

Representation
z ∈ Z

Factors
w ∈ W

FIGURE 3.10: Visual schematic of the SBDRL problem setting for a VAE on dSprites

disentangled and how this compares to standard disentanglement. It might be useful
to keep in mind the loose associations given in Table 3.1 whilst thinking about this
problem.

For the specific example of dSprites, we can define the world space as equal to the set
of generative factors (See Section 3.2.3),

W = {(s, θ, x, y) | s ∈ {0, . . . , 5}, θ ∈ {0, . . . , 39}, x, y ∈ {0, . . . , 31}, } .

Note that we do not consider the shape to be a generative factor. This is arguable in
dSprites, since it is not clear what constitutes an ‘object’. In the real world, objects tend
not to spontaneously change shape, but this is entirely possible in the world of
dSprites.

For the dSprites problem, we then have that the SBDRL simulator function b is simply
the code written in the LÖVE framework of Lua, which takes one such vector, say
w = (5, 18, 6, 4) and returns an image/observation b(w) = o. This is essentially a
simple rending function which draws a shape at the position defined in w with the
desired rotation and scale. This is diagrammed in Fig. 3.10. Given a VAE model, the
inference function h is given by qθ(z|o), the VAE encoder. The representation space Z
is then given by the VAE latent space.

3.3.3 Linear Symmetry Based vs Classical Disentanglement

The general consensus for a representation to be classically disentangled is that it must
encode individual generative factors into individual (and independent) latent
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dimensions. Under this definition, it cannot generally be said that symmetry based
disentangled representations form a subset of classically disentangled ones, or visa
versa. However, in the restricted case where all the symmetries acting on the data
have 1 dimensional representations, then they will be functionally equivalent. In all
other cases, linear disentangled representations will encode generative factors across
more than 1 latent dimension. As we saw in Section 3.2.4, the idea that factors must be
encoded into single latent dimensions is a core assumption of some disentanglement
metrics. As such, such linear disentangled representations would often be considered
entangled under these metrics.

We can see this difference if we consider specific examples of representations for the
flatland problem. On Flatland, we know the two generative factors are the x and y
positions of the agent in the image. These can be within the closed intervals [15, 49].
We could define a classically disentangled 2D representation of this problem to encode
these variables linearly in the range [−1, 1], given by

zClassical(x, y) = (
x− 32

17
,

y− 32
17

) . (3.15)

Recall from Section 3.3.1 that we can define cyclic symmetries on Flatland by
G = C7 × C7. In this case, we can use Definition 3.9 and Remark 3.11, to see that a
linearly disentangled representation can be given by,

zSym(x, y) =
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(3.16)

where nx = x−15
5 , ny = y−15

5 . This representation encodes x into a circle in the first two
dimensions and y into a circle in the last two dimensions. The point (x, y) = (15, 15) is
represented by the point (1, 0, 1, 0). This form of zsym comes from the fact that the
irreducible representation of the cyclic group C7 is a rotation matrix of order 7, so the
direct product is given by the form in Remark 3.11, and the point (1, 0, 1, 0) was
chosen arbitrarily. In this specific case, we have V = V1 ⊕V2 where |V1| = |V2| = 2
where V1 is the space spanned by {(1, 0, 0, 0), (0, 1, 0, 0)} and V2 is the space spanned
by {(0, 0, 1, 0), (0, 0, 0, 1)}.

We can see that there is significant difference between the classical and symmetry
based representations, not least being that the classical representation can be defined
on R2 and the symmetry based representation must be defined on R4. Furthermore,
each of the Cartesian dimensions are encoded across two latent dimensions in the
symmetry based representation and across one in the classical representation.
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The real difference between symmetry based and classically disentangled
representations is that through SBDRL, we have a stronger basis for what the
representation should look like.

In the example we just gave, the standard disentangled representation could take any
form where the factors are encoded into separate dimensions. There are many
transformations or changes that can be made which would result in a disentangled
representation, for example, scaling, rotation or dimension permutation. These
transformations can be made asymmetrically for either of the factors also.
Furthermore, there is no requirement that the states be encoded linearly, so
consecutive x positions may not be equally separated in the latent space.

For symmetry based disentanglement (assuming the cyclic symmetry), there are only
two ambiguities, the point (1, 0, 1, 0) (i.e. the representation can be rotated) and the
order of V1 ⊕V2 (i.e. the x and y factor subspaces can be swapped). The result is that
we have a much better idea of what the structure of the representation will be before
we even train a model.
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Chapter 4

Learning Linear Disentangled
Representations

This chapter will cover methods to learn linear disentangled representations and how
we might quantify them. We will aim to answer the following questions:

• Can we learn linearly disentangled representations?

• How do we measure them?

• Are they learnt by standard VAE models?

• Can we learn them without action labels?

To answer the first question, we first perform a two part feasibility study in
Section 4.1. In the first part (Section 4.1.1), we show that we can learn a disentangled
representation in the supervised setting - where we learn an encoder that maps from
observations to generative factors, and a decoder that can map from observations to
generative factors. Since linear disentanglement requires equivariance between
actions in world space and latent space, in the second part (Section 4.1.2), we show
that we can learn to approximate the effect of world space actions in latent space. We
show this both using an arbitrary neural network, and also by learning a mapping to
space where the action is forced to be equivariant. Having shown that each part of the
problem is feasible in isolation, we then move on detailing
ForwardVAE [Caselles-Dupré et al., 2019] (Section 4.2) before introducing our
proposed model for linear disentanglement, GroupVAE [Painter et al., 2020a]
(Section 4.3).

For the second question, we introduce in Section 4.4, a number of our proposed
metrics for measuring different aspects of linear disentanglement. We introduce the
Independence score, SVD overlap and relative latent error for this purpose, and
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expand the mutual information gap metric to better deal with linear independence
with the Factor leakage metrics.

To address the third question, we perform an empirical study of the representation
spaces for a number of standard VAE models in Section 4.5. We attempt to explicitly
optimise representations of actions on the latent space such that they are equivariant
to those actions on the world space. By determining if this is possible, and the extent
to which the actions are equivariant, we can determine whether the representations
spaces are linearly disentangled.

To answer the final question, we explore (in Section 4.6) GroupVAE, our proposed
model to learn linear disentanglement without access to labelled actions/transitions.

4.1 Actions on VAE Subspaces

This section will act as a feasibility study to demonstrate that we can learn to
approximate group actions on VAE subspaces. In particular, that we can learn them
such that are equivariant to those on the world space, as is required by the definition
of linear disentanglement from Definition 3.7. This will allow us to answer in part the
first question posed in the previous section, “Can we learn linearly disentangled
representations?”. To do this, we break the problem down into idealised parts, where
if we can learn all parts of the problem effectively, then it suggests that we might be
able to learn it as whole. First we show that we can learn an idealised encoder, then an
idealised decoder, before finally showing that we can approximate actions on VAE
spaces. Finally, we show that when we know the symmetry structure, we can learn a
mapping from the VAE latent space to a linearly disentangled one with this symmetry
structure.

4.1.1 The Idealised Model

We consider the idealised model where each component is learnt independently and
with ideal inputs. We shall learn first a disentangled classifier, then a disentangled
simulator and finally we examine two means to directly learn actions.

Classifying Disentangled Factors A model which learns to represent images by
their exact generative factors would be the perfect model with regards to classical
disentanglement. This also extends to linear disentanglement since a linearly
disentangled representation could likely be obtained with minimal computation,
certainly if the symmetry structure was known. We now demonstrate that a simple
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FIGURE 4.1: Idealised inference (A) and simulator (B) results. (A) We can classify
dSprites generative factors directly from pixels to a high degree of accuracy. (B) We

can learn to simulate dSprites images from the generative factors.

MLP can learn to classify dSprites generative factors (shape, scale, orientation, x, y)
directly from pixels, whilst under supervision.

To do this, we take an 3-layer MLP with 1200 hidden units and train it for 40 epochs
using back propagation to classify from dSprites pixels (64×64px) the generative
factor values for that image (see Section 3.2.3). We train using the Adam
optimiser [Kingma and Ba, 2014], batch size of 64, learning rate of 1× 10−4 and a cross
entropy loss. We then report the per class classification accuracy using an independent
(from training) validation set comprised of 10% of the total dataset.

From Fig. 4.1a, we find that individual factors can be classified to a very high accuracy
(99%) with the sole exception being orientation which proved comparatively difficult
(88%). This could be due to small visual differences between sequential orientation
observations, however for dSprites the visual difference for orientation is
approximately 0.0103 per pixel. This is lower than that for translations (approx 0.0150)
but higher than that for scale (approx 0.00897). If we normalise by the number of
possible values each factor can take, we find a relationship similar to our prediction
scores ([27.5206, 0.001495, 0.00026, 0.0005, 0.0005]). Since these numbers don’t quite
align with Fig. 4.1a (scale and translation are equally predictable but do not vary
equally), it is likely there are additional factors at play such as biases inherent in the
model choice.

We know that models are unlikely to ever learn the exact generative factor values as
their representations. Generally VAE representations are continuous (with
exceptions [Maddison et al., 2016]) and generative factors are discrete. However, this
shouldn’t prevent them learning representations which hold similar structure to the
generative factors. An example of such structure could be encoding generative factors
into independent subspaces as required by classical and linear disentanglement.
Another example could be preserving the relations between states in each factor, i.e.
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an object rotated by 2◦ is encoded close to that of the original object, but an object
rotated by 50◦ is encoded far away. This kind of structure is naturally present in linear
disentangled representations when the symmetry structure reflects the visual
structure, which occurs when subgroups talk about the same concepts as the
generative factors. Furthermore, this kind of structure is present in standard
(disentangled) VAEs also, since variational sampling leads to smoothness with respect
to output observations. A good understanding of this is provided by Burgess et al.
[2018].

Learning a Disentangled Simulator Recall from Section 3.3 that SBDRL has two
mappings, a generative/simulator process b and an inference process h. The previous
paragraph can be seen as attempting to learn the inverse simulator b−1 as the
inference process. We now attempt to learn the simulator process (in a supervised
manner) for dSprites. In the VAE setting this can be considered as learning the
decoder when given idealised latent encodings (i.e. the generative factors).

To do this, we train a 4 layer MLP (1200, 1200, 1200, Npixels units) to generate the
observation corresponding to the generative factors over a period of 40 epochs. We
optimise using the Adam optimiser, batch size of 128, learning rate of 1× 10−4 and a
Binary cross entropy loss. We can then report the validation mean squared error
(MSE) per pixel (Fig. 4.1b) for a validation set comprising of 10% of the total data. For
reference we also provide results for trained β-VAEs with β = 1, 5 and 10 on the same
validation data.

We can see that the simulator generates images with low error suggesting that the
decoding task of a VAE is simple compared to encoding, at least in this setting.
Obviously these results should not be surprising given the wealth of works applying
VAEs to disentangle dSprites. It is still useful to consider idealised cases before
attempting to solve the problem as a whole, not least to understand which aspects of
the problem may be difficult.

4.1.2 Approximating world space actions

Given that we can learn idealised versions of the simulator and inference processes,
the question remains as to whether we can learn to approximate actions on pretrained
VAE subspaces. This section will form the second part of the feasibilty study, where
we explore learning to approximate world space actions on the latent space.

Learning Actions on VAE Subspaces Recall from 3.1 that a VAE has encoder
parameters φ and decoder parameters θ. Setting aside the task of learning (group)
representations for now, we look instead at the easier task of supervised modelling
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models.

where the action label is provided to the model. We will consider the case where the
group acting on dSprites has subgroups corresponding to generative factors and
actions (by cyclic generators) which increase the appropriate factor by exactly 1. As
such the symmetry structure is G = C3 × C6 × C40 × C32 × C32.

We consider two idealised methods to learn actions, the factor-wise and
observation-wise settings. Schematic diagrams of the learning process for both models
are given in Fig. 4.2.

The factor-wise model trains an MLP with parameters ψ to predict post action factors
with an MSE loss between predicted and true post action factors. The
observation-wise model uses the same idea but decodes predicted factors to post
action observations, which then has a loss signal provided by the binary cross entropy
between predicted and true post action observations, avoiding knowledge of the exact
post action factors.

In both cases, we use the same pretrained VAE, a CC-VAE with capacity 25 annealed
over 100000 iterations and 10 latent dimensions. This has the backbone of a β-VAE
with the architecture as defined in section B.2, which follows the CelebA [Liu et al.,
2015] experiments of the original paper [Higgins et al., 2017]. The CC-VAE was
trained on dSprites for 100 epochs using a binary cross entropy loss, a batch size of
128, a learning rate of 1× 10−4 and the Adam optimiser. We can then report the MSE
between the reconstructed image and the true image when the action changes only a
single factor. This MSE is given on a 10% validation set, independent of the training
set.

For both factor-wise and observation-wise settings, we train a linear (linear map) and
non-linear (3 layer, 1 hidden) MLP to determine the complexity of the problem. The
linear model was just a single dense layer between input and output. The non-linear
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(A) Factor-wise (B) Observation-wise

FIGURE 4.4: Some examples of an input image (top row), the observation after apply-
ing an action in world space (second row), the reconstruction after applying the learnt
action (third row) and the true reconstruction of the second image (bottom row). The
models learn to apply most actions fairly well, and can’t learn to change the shape.
Generated with CCVAE and capacity 25. Note that actions are generally visually small

(change only a few pixels). Actions are most noticeable in scale or shape change.

model was a 3 layer MLP with 64 hidden units. In all cases, the MLPs were trained
with a batch size of 256, the Adam optimiser with learning rate 1× 10−3 and 100
epochs. The factor-wise model was trained using a binary cross entropy loss and the
observation wise model was trained using a mean squared error loss. All results are
evaluated on a validation set of 10% of the whole dataset.

In Fig. 4.3, we give the expected MSE for linear and non-linear prediction models on
individual factors. We can see that the linear models fail to learn the action in both
cases, whereas the non-linear models can predict the action to a good degree. From
the example reconstructions in Fig. 4.4, we can see that both models perform
adequately, generally reconstructing the post-action observation decently.

Learning actions on VAE subspaces is obviously possible, and it seems likely that fully
end to end models could learn similar structures. However, neither of these models
necessarily learn actions in independent subspaces since this is decided by the
underlying (pretrained) VAE. We will perform a similar experiment to search for
linear structures in backbone VAE models in Section 4.5.

Learning known structure The previous experiments have shown that we can learn
actions on VAE subspaces. However they did not allow us to extract symmetry
structure easily and the actions were free to depend on the latent code. For this
problem and our defined (cyclic) symmetries, we know the irreducible representations
(rotation matrices) which should be learnt in a linearly disentangled space.

We now take the representation of a VAE and instead of attempting to directly
optimise a neural network to approximate the actions, we learn a mapping to an
intermediate space where the actions are cyclic. Since the previous experiment
showed that a linear model could not learn actions, we only consider non linear
models for this task. We use a small MLP, mapping to an intermediate space where we
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Repeated application of internal representation

Scale

Rotation

Transl. X

Transl. Y

FIGURE 4.5: Visualisation/Orbit of learnt actions (Scale, Rotation, X translation and
Y translation) on dSprites. Taking the same initial image, each row shows a different
internal representation / action as it is repeatedly applied. There is some degradation
as actions are repeated (see x translation in the third row) although most actions are of

good quality.

apply the known irreducible representation for the observed action. We can then
apply a (learnt) inverse map to return to the VAE latent space, where the image is
decoded and compared to the post action image. The goal is for the intermediate
space to be linearly disentangled with respect to the defined symmetries, whilst the
VAE latent space need not be. We know that an intermediate space exists for which
actions are linear (at least locally), since this is the final layer of the non-linear model
in the previous experiment. The difference here is that we want it to obey the same
structure as the symmetries (cyclic), in addition to being linear.

For this experiment, we use the same underlaying VAE (CC-VAE) as the previous
experiment, trained under the same procedure. The MLP which maps from the VAE
latent space to the intermediate space has 3 layers with (128, 128, Nout) units. The
inverse model, which maps from the intermediate space back into the VAE latent
space was an MLP with the same structure but mirrored. These were trained over 300
epochs with the adam optimiser, using a learning rate of 10−4, batch size of 256 and a
binary cross entropy loss. MSE results are reported on a 10% validation set which was
independent of the training set.

In Fig. 4.5, we demonstrate the actions learnt on this task via latent traversals. We see
good quality action traversals, albeit with some degradation as they are composed. In
Fig. 4.6a we show the MSE of a single action for each factor, where translation errors
are very low and the scale and orientation errors are slightly larger. Note that these
errors are generally smaller than those from the previous experiments, and despite
long training times, the model was still converging, so these errors could be improved.
In Fig. 4.6b we quantify the degradation by comparing the result obtained when
taking N steps of an action to the image obtained when applying the action in world
space. The error scales roughly linearly in all cases and with similar rate of increase.
We can see a saw tooth type shape in the Scale factor, with a period of roughly 3 steps,
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FIGURE 4.6: Evaluating a model trained to learn cyclic structure on pre-existing lat-
ent spaces. (left) MSE for a single action. We don’t see the degradation from Fig. 4.5,
suggesting that locally, the action estimation is good. (right) We see that the error
gradually increases as the actions are composed. Solid lines indicate mean perform-

ance with 1 standard deviation given as the shaded area.

which correlates with the number of scale factors. The error increases when the shape
cycles from large to small, and gradually decreases as the shape gets larger, before
cycling again.

Learning a mapping to this known structure was surprisingly difficult, taking a large
number of iterations to train to a acceptable degree. This emphasises that the task of
transforming a standard disentangled representation is not as simple as it may seem,
even if we are effectively just parametrising a circle for cyclic symmetries. We have
found that on FlatLand, a simpler dataset than dSprites, we can learn the model in
under 5 epochs, however this has only two factors and no visual variation other than
translation. Its possible a larger model may allow for much faster dSprites
convergence, however this would still imply that the task is more complicated than it
seems. This result will be useful to remember in later sections where we train end to
end models to learn linear disentangled representations, obviously this is not a simple
task.

4.2 ForwardVAE

The previous section aimed to learn linear disentangled representations from a
predefined VAE representation. Caselles-Dupré et al. [2019] introduced ForwardVAE
as the first model to learn linear disentangled representations jointly with a VAE
model. In this section, we will detail the ForwardVAE model as an example of how to
learn linear disentangled representations end-to-end.
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The intuition behind ForwardVAE was that by observing action transitions (pre and
post action observation pairs), we can learn internal matrix representations to
approximate actions in the latent space. Since these are linear maps, encouraging them
to approximate actions forces the latent space to be structured in a way that the actions
can be represented linearly. As such, we are encouraging equivariance between the
actions on the world and latent spaces, whilst also encouraging them to be linear,
which is required by the definition of a linearly disentangled representation
(Definition 3.12). We can think of the internal representations of ForwardVAE to be
approximations of the representations ρ(g) in Definition 3.9.

In order to train ForwardVAE, at each training step, it is provided an observation x
associated with the world state w and an action a. ForwardVAE stores a number of
internal representations {Ai} each corresponding to one of the possible actions that
may be applied. Caselles-Dupré et al. [2019] enforce Ai to take the form:

Ai =




Uδ
i

0 0
0 0

0 0
L1−δ

i0 0




, (4.1)

where δ ∈ {0, 1} and U, L are learnt, i.e. Ai has the form of an identity matrix with
either an upper or lower (2D) block being learnt. This structure reflects the expected
linearly disentangled structure of FlatLand, C13 × C13, which has block diagonal
irreducibles (recall Remark 3.11) in the form of rotation matrices. The block diagonal
structure is what forces the representation to be disentangled with respect to the
symmetry groups acting on the data, since the actions by different symmetry groups
are mapped to different blocks.

ForwardVAE is optimised by first passing x through the VAE encoder, resulting in
latent code z. The internal representation Aa associated with action a is then applied to
the latent code, resulting in an estimate of the post action latent ẑa = Aaz. This can
then be compared to the true post action latent code za obtained by encoding the post
action image xa, i.e. the observation corresponding to world state wa = a ◦ w.

The objective can then be formed,

LForwardVAE(x, za) = (x− x̂)2 + KL + (za − ẑa)
2 , (4.2)

where KL is the usual VAE KL divergence loss. This process is diagrammed in
Fig. 4.7a. This is an action supervised process, since selection of the internal
representation Aa is dependent on knowledge of which a was applied. Note that our
model GroupVAE will be introduced to avoid this restriction.
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(A) Schematic Diagram (B) Learnt action visualisations/orbits: Aiz

FIGURE 4.7: ForwardVAE

The training procedure introduced by Caselles-Dupré et al. [2019] successfully
resulted in learning linear disentangled representations on FlatLand. This can be seen
through visualisations of the learnt internal representations (Ai) in Fig. 4.7b, where
each representation (row) clearly corresponds to an independent action (down, left,
up, right). Since there is no mixing of actions in the visualisation, it must be that the
representations corresponding to horizontal translations have the opposing δ value to
those corresponding to the vertical ones. In other words, the two component groups of
the FlatLand symmetry are encoded into independent latent subplanes, and thus are
linearly disentangled. This was further demonstrated by Caselles-Dupré et al. [2019]
through explicitly examining the internal representations Ai and comparing them to
the known irreducible representations. It was found that the average difference
between an internal representation Ai and the known irreducible representation of C7

(rotation matrix with rotation angle α = 0.9) was of the order 10−4.

4.2.1 Learning Observed Actions

ForwardVAE learns to represent actions that it observes in the data, a concept which
has some prior work in the reinforcement learning space. Rybkin et al. [2018] learn a
(composable) mapping from pre to post-action latents, conditioned on observing the
action. Edwards et al. [2019] learn both a forward dynamics model to predict post
action states (given state and action) and a distribution over actions given the initial
state. Contrary to ForwardVAE and our work, both methods allow arbitrarily
non-linear actions (parametrised by neural networks) which makes them unsuitable
for learning linear disentangled representations. Furthermore they differ significantly
in implementation. Thomas et al. [2017] utilise an autoencoder with a
‘disentanglement’ objective to encourage actions which correspond to changes in
independent latent dimensions. They use a similar reward signal to that we will use in
Section 4.3, however encourage no latent structure other than that single latents
should vary with single actions. Furthermore, they require action labels, which will be
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unnecessary for our work. Choi et al. [2018] learn to predict actions between two
frames in an (action) supervised manner with a focus on localising the agents in the
image. Whilst these methods all learn actions, they do not learn them with regards to
a particular symmetry structure and thus will not consistently form linear
disentangled representations.

4.3 Unsupervised Action Estimation

ForwardVAE explicitly requires the action label at each step in order to choose the
correct internal representation to apply, and thus it cannot learn linear disentangled
representations in their absence. We propose jointly learning to estimate the observed
action alongside the latent representation mapping. This will enable learning of linear
disentangled representations when action labels are not known, extending the domain
of application. For our proposed solution, GroupVAE [Painter et al., 2020a], we will
introduce two variants. First we describe the overall structure of GroupVAE without
the specifics that lead to the two variants.

GroupVAE GroupVAE will follow a similar overall structure to ForwardVAE. We
have a backbone VAE for encoding images to a latent space and decoding back into
observation space. There is an associated VAE loss term in the objective LVAE which
comprises of the standard reconstruction (likelihood) loss (Lrecon) and the KL
divergence term (KL). Alongside this, we have a number of learnable internal
representations (Ai) which serve a similar purpose as in ForwardVAE. Importantly, in
GroupVAE, the number of internal representations is not necessarily equal to the
number of true actions, since this would require knowledge of the action labels.
GroupVAE also has a set of parameters (ψ), in the form of a small (convolutional)
neural network, which allow us to infer from the image pair (x, xa) a distribution
p(Ai|x, xa) over the internal representations, noting that a is unknown. The input to
this network will be the concatenation of the image pair and the output will be a
distribution1 which is akin to a policy in RL terms. Whilst the structure of this
network will be determined by the complexity of the problem (how hard is it to
determine what action occurred), for all our experiments, it will take the form
described in appendix Section B.6.

Our aim is optimise the distribution p to associate each action a with a particular
internal representation Ai, and simultaneously optimise Ai to be an irreducible
representation of a. When Ai is a good approximation of the irreducible
representation, we get a good estimate of the post action latent za by ẑa = Aiz. The
particular way we use the distribution p to associate actions and internal

1In reality a probability mass function
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FIGURE 4.8: Schematic diagram for the GroupVAE variants. Dashed lines denote pos-
sible paths dependent on policy. Weighted lines represent the strength of attention.

- Learnable module. - Loss. - Operation without parameters.

representations is the differentiator between the two GroupVAE variants AGrVAE and
RGrVAE. Having chosen a variant, we can compute the post action latent objective
LLatent. The GroupVAE objective is a function of the input observation x and the post
action latent za for some action a. It is given by,

LGrVAE(x, za) =

LVAE︷ ︸︸ ︷
(x− x̂)2
︸ ︷︷ ︸
LRecon

+KL +γ (za − ẑa)
2

︸ ︷︷ ︸
LLatent

+LPolicy , (4.3)

where LPolicy is only used for RGrVAE. Fig. 4.8 provides a schematic of the general
GroupVAE structure where the variant decision making is encapsulated by the
module labelled A/RGrVAE.

Action Selection We consider two possible methods for action selection, given the
distribution over internal representations p(A|x, xa). The first variant is known as
Reinforced GroupVAE (RGrVAE) and uses policy gradients to optimise ψ and select
an internal representation. The second is known as Attentional GroupVAE (AGrVAE)
and uses an attention mechanism for the same purpose.

Reinforcement - Policy Gradients One of the core algorithm families in
reinforcement learning is Policy Gradient methods. Using a policy gradient method,
we can directly sample from distribution Ai ∼ p(A|x, xa), and we have the GroupVAE
post action latent estimation

ẑa = Aiz .

Since we are optimising the parameters ψ which generate p, we need to be able to
compute gradient through the Categorical sampling. In the REINFORCE
setting [Williams, 1992], the policy gradient where action Ai receives reward R(Ai, s)
is given by,

Lpolicy =




− log(p(Ai|ψ, s)) · R(Ai, s) if R(Ai, s) > 0

− log(1− p(Ai|ψ, s)) · |R(Ai)| if R(Ai, s) < 0
. (4.4)
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The intuition being that actions with high reward will be encouraged and negative
rewards ensure bad actions are discouraged (by encouraging all others). Since this loss
is defined solely by the policy distribution p, and not the sampled action Ai, the
gradient is free to pass backwards through the parameters ψ. The choice of reward is
important in this setting since it drives the whole process. We could envisage a
number of different reward functions for this problem, such as:

Rrecon(I1, I2, Î2) = ∑(I2 − Î2)2 −∑(I2 − I1)2

Rbinary(z1, z2, ẑ2) =





1, if ∑(z2 − ẑ2)2 < ∑(z2 − z1)2

−1, otherwise

However, we will choose the reward to be,

Rlatent(z1, z2, ẑ2) = ∑(z2 − ẑ2)2 −∑(z2 − z1)2 . (4.5)

This reward encourages actions that result in predictions of the post action latent
which are close to the true values. This has a couple of advantages. First, it is very
similar to the latent loss used in ForwardVAE. Second it only requires a pass through
the encoder, and not the decoder, as is required by Rrecon. Third, it provides stronger
signal the better our predictions become, unlike Rbinary which provides a constant
signal and could result in multiple choices being rewarding for each action.

The final consideration of policy gradient methods is an exploration strategy. It is
possible for the policy network to collapse and only allocate density to one of the
possible selections, thus only giving gradient to this representation. To avoid this,
exploration methods are used. For RGrVAE, we will consider entropy weighting
(used by methods such as soft-actor critic [Haarnoja et al., 2018]) and random action
selection. We will briefly explore these methods in Section 4.6. A schematic of the
reinforcement method is given in Fig. 4.8 (mid).

Attentional Mechanisms The term attention in machine learning can refer to a few
different concepts. The particular form we are interested in is a simple concept which
was popularised in language models and essentially weights each possible choice by
how “important” it is.

For GroupVAE, these choices are the possible internal representations Ai, and the
attentional mechanism simply takes the distribution p(Ai|x, xa) and applies it linearly
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to the choices. Thus the post action latent estimation is given by,

ẑa = ∑
i

p(Ai|x, xa)Aiz . (4.6)

A schematic for the attentional mechanism is given in Fig. 4.8 (right).

Attention or Reinforcement? Given that we have two methods that perform the
same function, we now discuss some advantages and disadvantages. We will
empirically compare them in Section 4.6, but for now we focus on the mechanics of
each method and how they might affect learning.

The major value of a reinforcement mechanism is that we select and apply only a
single choice from {Ai}, which is not possible in the attentional mechanism. This
allows us to find exact representations of actions, which we can compare to known
irreducibles as a performance metric. The downside of reinforcement methods is that
they are generally harder to train and slower to converge and run.

The advantage of the attentional mechanism is that the gradients are consistent
throughout {Ai}, coming directly from reconstruction performance of z2. This will
generally lead to more stable training, whereas reinforcement learning is known to be
relatively unstable and difficult to tune. Attention also ensures that all actions are
updated, which is not guaranteed by the reinforcement method, since the policy can
freely ignore individual actions. The downside of attention is that applying a linear
combination of {Ai}means that no particular Ai need correspond to any particular
action. Whilst this could be mediated by finding the linear combination chosen for
each action, there is no guarantee that this will be constant across the latent space.
This may prevent us from comparing to known irreducibles which limits the
usefulness of the attentional variant.

Finally, there are runtime and memory differences between the two methods. Whilst
attention on paper requires more operations to apply each action (each internal
representation is multiplied), they are extremely optimised on modern hardware.
Reinforcement however has the additional overhead of REINFORCE, which is
exacerbated when memory intensive methods such as regret minimisation are used.
We will briefly explore runtime and memory requirements at the end of this section.

Internal Representations GroupVAE, like ForwardVAE, houses a number of
internal representations, which we have denoted {Ai}. In the ideal case, each internal
representation Ai will represent some true action a and will take the form of an
irreducible representation of that action. For example, if action a is by cyclic generator
g ∈ CN , then the internal representation which learns to represent a will take the form
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of a rotation matrix of degree N. Naturally, for GroupVAE to be able to optimise Ai

towards (for this example) a rotation matrix, Ai must be be able to take the right form.
Ai cannot be, for example, a matrix of size 1. ForwardVAE chooses these
representations to be 2D matrices without any additional structure. Quessard et al.
[2020] have similar representations (in a different context) which they restricted to be
rotation matrices.

For GroupVAE, we can use either of these approaches and we will see in later
experiments that either can be effective. To represent rotation matrices, we can learn a
cyclic angle α for each representation, and upon applying the action we can compute,

ρ(g) =

(
cos α − sin α

sin α cos α

)
.

We will often talk about the internal representations as being related to a particular
symmetry group. The rotation matrices would be related to CN , or SO(2). Similarly,
the generic 2D matrices used by ForwardVAE would be related to GL(2). For standard
disentanglement, which encodes factors into a single dimension, we could consider an
Integer group (Z, +) with presentation < t >, 1D representation ρ(t) = (τ) ∈ R, and
learnable τ. Another possible group with simple irreducibles is DN , it is generated by
a cycle and reflections, the reflection elements can be represented by,

ρ(σx) =

(
1 0
0 −1

)
ρ(σy) =

(
−1 0
0 1

)

Change of Basis Thus far, we have assumed that the actions of dimension greater
than one should be encoded into sequential latent dimensions, an assumption also
made by other models in this space ([Caselles-Dupré et al., 2019]). This is not required
however, since we can learn a change of basis alongside each internal representation,
which can be applied to latents before computing the post action latent. A true change
of basis would have columns forming a basis of the latent space (or a real vector space
of the same dimension), but restricting a learnable matrix to have this property is
difficult. We could imagine normalising columns and adding additional losses such as
full rank losses which might help, but will likely be expensive (could involve
computing SVDs). Instead we choose to simply initialise a 2D ‘change of basis’ matrix
B ∈ RN×N to the identity and assume that the process of optimising representation A
under the change of basis za = B−1ABz learns an appropriate mapping. This does
leave open the possibility for the change of basis to map into lower rank spaces,
however in this case the inverse is not computable and the optimisation will fail. In
practice, we tend to include an additional loss on the determinant such that it is close
to 1, and consequently, encourage invertibility.
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FIGURE 4.9: Parameter count and runtime charts for RGrVAE on FlatLand, both given
in excess of those of the underlying VAE. Solid lines denote GroupVAE with a change
of basis matrix also learnt. Dashed lines denote GroupVAE without a change of basis.
When not varying the latent dimension number, we used 8 latent dimensions, and in
all experiments used cyclic internal representations. Batch times were estimated on

FlatLand with a batch size of 128 over 10 batches.

Assuming we can learn such a mapping, a change of basis may be useful if the latent
space has existing structure which encodes latents into non-sequential dimensions.
This focuses the learning task less on rearranging the latent space and more towards
learning the actions and finding the spaces in which they are encoded. Whilst the
change of basis does add parameters and runtime, it also offers flexibility which may
be worth the additional complexity.

Properties GroupVAE introduces parameters ψ and Ai on top of the standard VAE.
In Fig. 4.9a we chart this parameter count as we vary the number of latent dimensions
or the number of internal representations. Note that RGrVAE and AGrVAE have the
same number of parameters, however introducing a change of basis will increase the
number of parameters in proportion to the size and number of internal
representations. We plot this with and without a change of basis matrix. There is
roughly a linear increase in parameters without a change of basis with respect to both
latents and representations. When a change of basis is used, we see linear increase
with representations, and polynomial increase with latent dimensions. Typically
however we are using a low number of latent dimensions, so this should not be overly
restrictive.

Fig. 4.9b compares the runtime performance of RGrVAE (left) and AGrVAE (right).
Here we can see that the runtime increases polynomially for RGrVAE and linearly for
AGrVAE both with and without a change of basis matrix. AGrVAE is an order of
magnitude faster than RGrVAE per batch, which is mostly due to the methods used by
AGrVAE being commonplace in deep learning and consequently have highly
optimised implementations in the underlying frameworks. It should be possible to
significantly improve the runtime speed of RGrVAE with efficient kernels and fused
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operations. Note that the change of basis matrix has very little impact on the runtime
performance.

4.4 How do we measure LDR

Given the definition of linear disentanglement and the fact that we can learn these
representations through models such as ForwardVAE, it would be useful to quantify
the degree to which representations are linearly disentangled. In this section we will
propose metrics which aim to measure linear disentanglement and examine their
drawbacks and merits. This section will aim to answer the second of our questions
posed at the beginning of the chapter, “How do we measure LDRs?”.

Independence Score The first of our proposed metrics is the Independence Score. This
score is based on part 3 of definition 3.7, which states:

3. There is a decomposition Z = Z1 × · · · × Zs such that Zi is fixed by the
action of all Gj, j 6= i and affected only by Gi.

This says that each of the subgroups Gi must act on an independent latent subspace
Zi. We define the independence score explicitly to measure the extent to which a
representation satisfies this part of the definition. It measures explicitly how
independent latent subspaces which are affected by actions of Gi are from all the other
subgroups, i.e. do they share latent dimensions. For actions of G = G1 × · · · × Gs on
the latent code z and the latent code after applying action a, denoted za, we define the
score as:

Independence Score = 1−Ez
2

s(s− 1) ∑
i, j 6=i

max
a∈Gi ,b∈Gj

(∣∣∣∣
z− za

||z− za||2
· z− zb

||z− zb||2

∣∣∣∣
)

.

(4.7)
We can break down individual parts of the definition to provide insight,

• z− za: Taking this difference means that for actions which only interact with a
few latent dimensions, all dimensions other than these in the difference will be 0.
This means the dot product value depends only on the dimensions that have
been changed by the actions, and isn’t dependent on the number of latent
dimensions.

• z−za
||z−za||2 : Unit vector in the direction of the action at particular latent z
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•
∣∣∣ z−za
||z−za||2 ·

z−zb
||z−zb||2

∣∣∣: Projection of ‘direction’ of action a onto direction of action b.
This will be 1 if they are the same action and 0 if they are perpendicular.

• maxa∈Gi ,b∈Gj (...): We are interested in the worse case. If most of the actions in a
subgroup are independent of actions in another subgroup but 1 action is shared
between them then we shouldn’t consider the representation independent at
that z.

• 2
s(s−1) ∑(...): Average by the number of possible pairs (Gi, Gj).

• Ez[...]: We care about the expected independence, not necessarily the
independence at any particular part of the latent space.

• 1− (...): We would like independent representations to score 1 and dependent
ones to score 0.

In general we will measure the independence score by optimising a set {Ai} of
predefined (but learnable) representations for ai. This will allow us to compute
metrics such as symmetry approximations (how well do the learnt representations
match the known ones) for models which do not have internal representations, i.e.
non-symmetry based models. Furthermore, this will allow us to estimate the
independence with respect to known symmetries, by restricting Ai to have particular
structure. For example, for symmetries CN , we will often restrict them to be cyclic by
learning only a cyclic rotation angle, rather than a generic SO(2)/GL(2) matrix. Since
this is our general approach, we will denote the result ‘Independence’, ‘True
Independence’ or ‘G-Independence’ (where G would be CN when the acting
symmetries are cyclic). When estimating directly from the dataset (without learning
representations Ai), we will denote the result as ‘Direct Independence’. Note that
often a dataset does not have transitions from a given state for every action, usually
only a subset of such actions. In this case the Independence as written in Eqn. 4.7 is
hard to estimate since it relies on comparing local actions. We can achieve an estimate
of the Direct Independence by averaging over all actions we have observations for,
which will offer us decent estimates for highly independent spaces, but degrades as
the space is less independent. As such, we will use the G-Independence since it allows
us to estimate the independence based on all actions for all observations.

Relative Latent Error Of the 3 parts of definition 3.7, part 1 is concerned with
existence, which is assumed. Part 3 we can measure by the independence score. Part
22 says that the action on the latent space should be equivariant with that on the world
space.

2Note that h ◦ b denotes a function composition here, and not a group action as it will continue to be
elsewhere
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2. The composition f = h ◦ b :W → Z is equivariant with respect to the
group actions onW and Z . i.e. g ◦Z f (w) = f (g ◦W w) ∀w ∈ W , g ∈ G.

ForwardVAE encourages this by optimising for it, the actions will be equivariant if the
latent space is structured cyclically (on FlatLand), which is the case of low latent
reconstruction error.

w z

wa za

g◦W

f

f

g◦Z ≈ Aa

Minimising ||Aaz − za|| effect-
ively minimises ||Aaz − f (g ◦W
w)|| since Aaz approximates
g ◦Z f (w) and za = f (g ◦W w).

As such we can estimate the extent to which part 2 holds by the error term. If our
learnt action has the same effect as the world action, they are equivariant. Since no
model is going to have an error of 0 and different models will encode into different
spaces, we will consider the relative latent error - the latent error divided by the
expected distance between latents.

Relative Latent Error = Ez,a
(za − ẑa)2

1
N ∑z,a(z− za)

(4.8)

SVD Overlap For an alternate measure to the independence, we can consider the
singular values of the spaces of latent actions, i.e. the spaces spanned by vectors za − z
for each a. The number of high magnitude singular values tells us the number of
active dimensions for that action. This allows us to find the degree of actions as well
as determine the independence by comparing the singular vectors for different
actions. To relate back to part 3 of the definition 3.7, we can consider the mean overlap
between two action planes (assuming for demonstration that the actions have two
dimensional irreducible representations).

Action Vectors : Va = {z− za | ∀z }
Singular Vectors : {Aa,i} = SVD(Va)

Mean Overlap :
s(s− 1)

2 ∑
a∈Gi ,b∈Gj

1
4 ∑

k,l∈{0,1}
Ai,k ◦ Aj,l

In its current form, the mean overlap is dependent on knowing the dimensionality of
the irreducible representations of the symmetries acting on the data (we chose the
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range of k, l based on this). For our work we will know the form of the irreducibles,
however there may be situations when this is not possible. In this case we could
simply consider all singular vectors (k, l ∈ {0, . . . , N}) and weight them by their
singular values. This method would mean that vectors with low singular values
would not contribute significantly to the overlap, and it would largely be determined
by the significant (by singular value) vectors.

Factor Leakage We introduce the Factor Leakage as an extension to the Mutual
Information Gap metric (Chapter 3, Section 3.2.4) to allow awareness of the number of
dimensions the latent factor is encoded across. The MIG metric measures the
difference in information between the first and second most informative latent
dimensions for each factor. The Factor Leakage instead considers the whole
information curve, so as to better capture factors which are encoded across latent
subspaces rather than single dimensions. This is important for considering linear
disentangled representations. We have i’th latent dimension zi, the k’th generative
factor vk and the mutual information between the two I(zi, vk). We assume that for
each vk, the order of latent dimensions zi has been sorted by the mutual information.
We can consider a number of variants,

FL Mean(z, v, d) =
1

Nv

Nv

∑
k=1

Nz

∑
i=d

I(zi, vk) (4.9)

FL Norm Mean(z, v, d) =
1

Nv

Nv

∑
k=1

Nz

∑
i=d

I(zi, vk)

maxt I(zt, vk)
(4.10)

FL(z, v) =
1
K

Nz

∑
d=1

FL Norm Mean(z, v, d) (4.11)

In general, we will use the final variant (4.11) if not specified otherwise, and d is set to
2 when the Mean metrics are used individually. The parameter d allows us to ignore
the information between the code and the d most informative latents. For classically
disentangled representations, we would expect there to be 1 highly informative latent
for each factor. For linearly disentangled representations, we can see more than 1
highly informative latent dimension. The parameter d then decides the sensitivity of
the metric to these cases. For instance, for a classically disentangled representation, we
would expect FL Mean to be large for d = 1 and small for d = 2, whereas, for a
linearly disentangled representation with cyclic symmetry, we would expect it to be
large for d = 2 and small for d = 3.

Comparison Note that the symmetry based metrics (i.e. not Factor Leakage) all
require labelled observations and the ability to sample based on actions. This may
seem overly restrictive compared to some standard disentanglement metrics which
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can be evaluated without generative factor labels, however since linear
disentanglement is fundamentally tied to the symmetry decomposition we believe
that supervision can be the only way to measure it.

Since the independence and latent error metrics speak to different parts of the linear
disentanglement definition, they are naturally complementary. The SVD metric
however responds to similar structures as the independence. Whilst the SVD and
independence scores can effectively serve the same purpose, the major decider is
complexity. The independence is relatively simple to compute and does not require
singular value decompositions or other analysis techniques. For this reason, we will
mostly be considering the independence score when comparing models, however the
SVD metric can be used for additional analysis. For example, it may be useful to
consider the singular values when you can sample actions from a (component) group
but do not know the dimensionality of its irreducibles. In this case, the singular values
might allow us insight into the dimensionality.

The Factor Leakage, as an extension of the Mutual Information Gap is not a symmetry
based metric. Whilst the Factor Leakage will respond to linear disentanglement
differently to standard disentanglement, it may also be degenerate. A model which is
not linearly disentangled may have the same Factor Leakage score to one that is.
Given additional scores from symmetry based metrics (like independence), we may be
able to separate these models, and similarly, the Factor Leakage may be able to
distinguish models which have similar independences. This however may also be the
case for the latent error metric. Similar to the SVD metric, the Factor Leakage will be
most useful as an analysis tool and as a means to further justify if a model is linearly
disentangled or not.

Empirical Comparison We can briefly compare the different metrics on FlatLand to
see how they relate empirically for a number of baseline models (symmetry based or
otherwise). In Fig. 4.10a we report the Pearson correlations between the symmetry
metrics. Unsurprisingly, the Independence and SVD overlap correlate fairly
(negatively) strongly, as they both measure the extent component groups act on
independent subspaces. The Factor Leakage is also (negatively) correlated with the
Independence, however the relative latent error is much less so. Considering the SVD,
FL and Relative error metrics, we can see that the SVD overlap correlates lightly with
the others whilst the latter two correlate very weakly.

The Pearson correlation is a measure of linear correlation, whereas the Kendall
correlation is a rank correlation - are the resulting value orderings the same between
two variables. In Fig. 4.10b we see similar results to the Pearson correlation. The
Independence results in fairly similar rankings (albeit reversed) to all metrics barring
the relative latent error. The Kendall correlations between the SVD, FL and relative
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FIGURE 4.10: Comparison of Symmetry Metrics

error metrics are reduced compared to the Pearson correlations, showing that they
measure fairly distinct representational properties.

Finally we show the general distributions of the metrics in Fig. 4.10c. We can see that
the independence is weighted towards higher values, which is unsurprising since we
are evaluating disentangling models (and symmetry based models, which will have
high independence, as we will see). The SVD is weighted heavily towards low
overlaps, for the same reasons. The Factor Leakage shows a much broader
distribution, which is likely due to the range of different models encoding the data in
different ways. Finally, the relative latent error is mostly weighted low with moderate
density at higher errors.

In general, the G-Independence will be a good all rounder metric, since it should
capture some symmetry structure whilst also reflecting the independence (in the sense
of Eqn. 4.7) of the representation. As it correlates with the SVD and FL metrics to a
moderate degree, it may be sufficient to consider only the Independence out of the
three. The relative latent error does not correlate significantly with any of the other
metrics, so we will try to consider it alongside the Independence when possible.

4.5 Which Spaces Admit LDR

In the previous sections we have defined ForwardVAE and proposed GroupVAE as
models to learn linear disentangled representations. In this section we will show that
these models can learn such representations and explore if standard VAE baselines
also have this capability. We shall use the FlatLand problem due to its simplicity and
few viable symmetries. This will allow us to search candidate spaces empirically for a
number of the possible symmetries. This ability will allow us to explore the third
question posed in the chapter introduction, “Are LDRs learnt by standard VAE
models?”.
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FIGURE 4.11: Minimum MSE for translations in each direction against axis aligned
translations (left) and axis aligned as well as diagonal translations (right). We can
see the minimum MSE decreases dramatically once we consider additional translation

vectors. Step Size: 5

Possible Actions FlatLand is a grid world of size 64 with 32 possible agent states on
each Cartesian axis. Even restricting to solely cyclic symmetries of order N acting on
the data, there are many possible realisations of their actions since they can act at any
angle to the Cartesian. For example, a perfectly valid symmetry structure could have
actions which translate the agent by orthogonal vectors (2, 1) and (−1, 2). The first
acts at approximately 26 deg from the Cartesian x-axis, however any such angle is
equally valid, as long as the two vectors are orthogonal. Since we cannot consider all
possible actions, we will restrict to actions at 0 or 45 degrees, i.e. corresponding to
translation vectors (1, 0) and (0, 1) or (1, 1) and (−1, 1). We will call these two sets of
actions the Normal and Diagonal bases respectively. Whilst there are a large family of
other possible building block translations (e.g. (2, 1), (1,3), etc.), we believe they are
suitably close to one of our listed translations. Indeed, in Fig. 4.11, we show that the
expected MSE against translations in different directions is much lower once we
consider these additional vectors.

Method We would like to empirically search for linear disentangled representations
in a latent space with respect to group structure G = C13 × C13, which act according to
a pair of orthogonal translation vectors as we previously defined.

We first define a rotation matrix Ai for each action and their inverses, i.e.
{A1, A2, A3, A4} since we have two actions and two inverses. We then observe
transitions (x, xa) with latent codes (z, za) and optimise the matrix Ai corresponding
to action a in order to best approximate the post action latent, L = ||za − Aiz||. Once
converged, we can measure the independence of the representations Ai by replacing
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za and zb of Equation 4.7 with Aaz and Abz respectively. We can also compute post
action observation errors, post action latent reconstruction error and symmetry
reconstruction errors. The latter being defined as the mean squared error between the
expected rotation angle of 0.926r and that found in rotation matrices Ai.

The matrices are optimised for 30 epochs using a mean squared error loss, batch sizes
of 1024, and the Adam optimiser with learning rate of 0.1. All results will be reported
on a 10% validation split of the dataset.

Pretrained VAEs For this experiment we require a number of pretrained VAE
models, the architecture for the backbone VAE in each case was the same for most
instances. This architecture is defined in appendix section B.3. There are two
exceptions to this, the first being the TC model which uses the architecture defined in
section B.4. The second is the MMD-VAE which uses the architecture defined in
section B.5. All VAEs were trained as outlined in Appendix Section C.1, with the only
variation being the training length, where all models for this section were trained for
200 epochs.

Results We first consider reconstruction scores and the rotational symmetries
discovered (or not so). In Fig. 4.12 we provide reconstruction errors for (relative) post
action latents (Relative Latent) and observations (Recon), alongside the independence
score and symmetry reconstruction (MSE between rotation matrix angle α of internal
representation and known irreducible). We first note that ForwardVAE and RGrVAE
in general achieve the best scores in each metric for the normal basis (blue) and show
extremely low variance. Since they are designed to learn linear disentangled
representations, this should be expected. We can also see that this is not the case for
the diagonal axes, since they both encourage actions to be aligned to the Cartesian.

Of the baseline (non symmetry based) VAEs, we first note that the TcBetaVAE
independence scores are very high under the Cartesian axes whilst the DIP-I and
β-VAE score similar to ForwardVAE on all metrics bar latent MSE.

TcBetaVAE is known to learn strongly disentangled representations in the classical
sense. Models that do this well should learn very independent representations. For
this particular experiment, we are optimising 2D rotation matrices (with a change of
basis) to best approximate actions. For perfect classical disentanglement, there is one
active dimension per factor, and the remaining dimensions are inactive - the output
does not depend on them. As such, approximating them with 2D rotation matrices
would result in the representation acting on the active dimension and one inactive
dimension - otherwise the output would vary in two factors, leading to worse action
approximations. Since learning of each rotation matrix is independent, the inactive
dimension chosen by each rotation matrix is completely arbitrary. This could lead to
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FIGURE 4.12: Metrics when attempting to find linear disentangled representations in
VAE latent spaces. We look for actions which translate on the normal (Cartesian) and
diagonal (Cartesian rotated 45 degrees) axes. In all subfigures, blue denotes results
under the normal axes and red those under the diagonal axes. Solid lines indicate

mean performance with 1 standard deviation given as error bars.

reduced independence scores if two representations by chance selected the same
inactive dimension. The fact that TcBetaVAE scores consistently high independence
scores suggests that this doesn’t happen, despite there being only two inactive
dimensions (and two active ones). This then suggests that TcBetaVAE encodes each
factor almost completely in a single dimension (based on latent traversals) but they still
depend a small amount on a second dimension, which the learnt rotation matrices
select.

Since they perform relatively similarly, we shall discuss BetaVAE and DIP-I together.
The first thing to note is that the variance (particularly on the independence) is much
higher for baselines compared to symmetry based models. This suggests that if
baselines learn linear disentangled representations, they are not consistent in doing so.
Consider the reconstruction MSE, which is a good overall measure of action
estimation quality. Compared to the symmetry models, none of the baseline models
perform well at all. We will explore in a later section if individual instances of baseline
models actually learn linear disentangled representations or not.

Returning to an overall comparison of baselines to symmetry models, in Fig. 4.13a we
plot the mean component overlap (SVD metric). We see a similar picture to the
previous results, ForwardVAE/GroupVAE achieves very low overlap (very
independent) whilst the baselines show varying larger overlaps. DIP-I is the only
baseline model that shows similar overlap to the symmetry based models. Note that
whilst the previous experiment suggested that TcBetaVAE may be potentially linearly
disentangled, we can see from the overlap that it is almost certainly not. This is
reinforced by Fig. 4.13b which plots the expected magnitude of the singular values,
and shows that TcBetaVAE has one large value and three small values. This says that it
relies strongly on single dimensions to encode actions, and is not linearly disentangled
with respect to cyclic groups, which would show two dimensions per action. This can
be seen for the ForwardVAE and RGrVAE models, with a large gap between the
magnitude of the first and second two singular values. Fig. 4.13b specifically
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FIGURE 4.13: Singular value analysis for baselines and ForwardVAE on FlatLand. (B)
Solid lines indicate mean performance with 1 standard deviation given as the shaded

area.

highlights the baselines that are potentially linearly disentangled. We can see that
DIP-I also shows a relatively large gap between the first and second pair of singular
values. By comparison DIP-II and β-VAE show relatively linear decrease in
magnitude.

The two methods we explored in this paragraph have highlighted DIP-I and β-VAE as
showing possible linear disentanglement, with DIP-I looking more promising. From
considering the variance in most of the baselines, we can conclude that, in general,
baseline VAEs do not learn linear disentangled representations on FlatLand, at least
with respect to cyclic symmetries. This does not rule out the possibility of them
learning such representations occasionally, by luck, however.

Do baselines show Linear Disentanglement? Compared to ForwardVAE and
RGrVAE, baselines show lower independence and reconstruction scores across both
bases. This suggests that baselines do not consistently learn linear disentangled
representations, and that there is no loss pressure towards them. However, we can see
some evidence that they are occasionally found in the baselines despite this. In
particular, the BetaVAE and DIP-I models show high independence in the standard
basis alongside relatively low reconstruction errors. It is easier to see this in Fig. 4.14
(left) which scatters the independence and (symmetry) reconstruction scores against
each other for all the data points, coloured by their model type. The cluster in the
lower right (red circle), contains all the ForwardVAE and RGrVAE runs, which are
linear disentangled representations. There are a number of DIP-VAE runs in the
cluster which are likely linearly disentangled. There is a second, looser, cluster with
lower independence and worse reconstructions which seem to have some degree of
linear disentanglement, perhaps they are not linear for all factors, or it is a low quality
linear disentangled representation.
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FIGURE 4.15: Learnt action orbits on two different Dip-VAE latent spaces. We can see
that sometimes BetaVAE learns a linear representation, and other times it does not.
Note that even in the non-linear case, the lower two actions appear to be somewhat

linear.

To further demonstrate the ability of some baselines to learn linear disentangled
representations, we provide examples from a DIP-I. On the left of Fig. 4.15 we see
action traversals on a DIP-I run which happened to be linearly disentangled and on
the right, a different (non linear disentangled) run. Notice that in the latter case, the
lower two traversals seem like they are somewhat disentangled, however the top two
are not. This explains why in the previous experiments we see baselines such as
β-VAE and DIP-I sometimes achieving scores similar to the symmetry based models -
they learn linearly disentangled representations some of the time. Even in the cases
where they do not, they may have partial disentanglement as seen in the figure. Note
however that we cannot confidently extend this to models other than DIP-I, DIP-II
(possibly) and β-VAE, since these are the only models that showed similar scores to
the symmetry based models.
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FIGURE 4.16: Action orbit traversals for all available actions of RGrVAE trained on
dSprites and a heat-map over the actions selected over the dataset. We sampled the
true actions from the dataset based on the following symmetry groups: Scale: C3,
Rotation: C10, Translation: C8. Thus the group acting on the data is: G = C3 × C10 ×

C8 × C8.

Extending to dSprites FlatLand being a simple, lightweight dataset allowed us to
quickly train and evaluate lots of models, whilst searching for linear disentanglement.
We will now perform reduced versions of these experiments on the more
computationally demanding dSprites dataset, to see if the results match those on
FlatLand. The training parameters for the dSprites RGrVAE models are given in
Appendix Section C.2.

We present RGrVAE action traversals in Fig. 4.16, with a heat-map to highlight active
dimensions. Without yet evaluating the representation through metrics, we can
already see that this example is linearly disentangled. We can see high quality
representations of all actions, although the rotation has learnt a lower order symmetry
than is present in the data. This is likely due to internal rotational symmetry present in
two of the three dSprites shapes making this symmetry (≈ C4) a good representation
for the action on most of the observations. It is possible that with additional training
the proper rotation symmetry could be learnt.
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FIGURE 4.17: Reconstruction metrics for RGrVAE and baselines on dSprites. Solid
lines indicate mean performance with 1 standard deviation given as error bars.

Since we cannot easily access diagonal actions, and the results of testing diagonal
actions in Fig. 4.12 are generally worse than those on the standard bases, we will only
evaluate symmetry metrics on the Cartesian for dSprites. Fig. 4.17 provides
reconstruction, relative latent and symmetry MSEs. We find that, similar to the
experiment on FlatLand, the reconstruction MSE of DIP-VAE (in this case both I and
II) are similar to that of the symmetry based model. However, unlike in the FlatLand
experiment, DIP-VAE performs significantly worse on all the other experiments,
including the symmetry reconstruction, suggesting that this time the DIP-VAE did not
learn a linear disentangled representation in any of the test runs. The same follows for
β-VAE. Note that the reconstruction MSEs are worse across the board, even for
RGrVAE, since dSprites is a significantly more complex task with more factors and
different shapes to model. Despite this, RGrVAE continues to show very high
independence, indicative of continuing to learn a linear disentangled representation,
albeit with diminished quality due to task complexity. We believe that additional
training time could alleviate this.

In Fig. 4.18a we repeat the singular value analysis of Fig. 4.13a, where we see a similar
picture. RGrVAE shows much lower mean overlap than other models, although due
to lower quality representations, the overlap is comparatively larger than on FlatLand.
Fig. 4.18b then plots the (size sorted) singular value magnitudes, and shows that
RGrVAE has two high value singular values with the rest significantly lower. Baseline
models show large initial singular values with a gradual drop off or a steep initial
drop off before levelling out. This suggests that none of the baselines have learnt
linear disentangled representations in this test. This doesn’t disprove the possibility,
rather just that we did not observe them.

In general the dSprites experiments show the same results as the FlatLand
experiments. Symmetry based models consistently learn linear disentangled
representations, whilst baseline VAEs do not, but may by chance learn them on
occasion. This may be rarer in more complex datasets such as dSprites, although we
cannot say this definitively.
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FIGURE 4.18: Singular value analysis for baselines and RGrVAE on dSprites. (B) Solid
lines indicate mean performance with 1 standard deviation given as the shaded area.

4.6 Evaluating GroupVAE

Having defined models which have the ability to learn linear disentangled
representations, and looked at whether standard VAE baselines learn the same
representations, we now want to further explore the symmetry based models, and in
particular our proposed GroupVAE. We will begin by determining which of the two
GroupVAE variants is best for learning linear disentangled representations. We will
then look at other aspects of GroupVAE, such as hyperparameters, to determine how
they impact the learning. By exploring GroupVAE and it’s properties, we aim to
answer the final question posed in the chapter introduction, “Can we learn LDRs
without action labels”.

Metrics Throughout this section we will be comparing models using a number of
reconstruction metrics, other than the symmetry based metrics outlined in Section 4.4.
The first is the observation reconstruction metric (or ‘X’) which is simply the mean
squared error between the input image and the VAE reconstruction of this image. The
second reconstruction metric is the latent reconstruction. This is the mean squared
error between the predicted post action latent and the true post action latent, this can
also be given as the relative latent reconstruction error as described in Section 4.4. The
final reconstruction metric is the symmetry reconstruction, which is given as the men
squared error between the rotation angle of the learnt internal representations and the
rotation angle of the true irreducibles (rotation matrices for cyclic symmetries). All
metrics are reported averaged over a validation set consisting of 10% of the data held
out from training and given with errors over 5 trained model instances.

Attention or Reinforcement In Section 4.3, we gave a high level comparison of
RGrVAE and AGrVAE. We now perform preliminary experiments on FlatLand for
both variants to determine their effectiveness. For this, we train 5 repeats for both
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FIGURE 4.19: Action traversals for RGrVAE and AGrVAE. AGrVAE has both traversal
of the internal representations directly and based on the attention mask generated once

for each action.
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Recon MSE Relative Z MSE

RGrVAE 0.022±0.009 0.150±0.001
AGrVAE 0.309±0.113 0.202±0.079

TABLE 4.1: Comparison of RGrVAE and
AGrVAE reconstruction metrics.

AGrVAE and RGrVAE on the FlatLand dataset. Both models use the backbone defined
in appendix section B.3 and RGrVAE uses the action estimation network defined in
appendix section B.6. Both GroupVAE variants used 4 internal representations, one for
each observable action. The models were trained for 200 epochs, with the adam
optimiser, learning rate 0.0001, batch size 128 and mean squared error loss. All results
are reported on an validation split consisting of 10% of the total dataset.

We begin with Fig. 4.19, showing action traversals on FlatLand. RGrVAE shows very
distinct actions with correct warping as the agent reaches the edges of the frame.
AGrVAE however does not show any sign of the actions in the traversals - since the
true actions are a combination of the internal representations. For AGrVAE, is not
guaranteed that these combinations are constant for each action however, they may be
different at different points in the latent space. In Fig. 4.19c, we use an attention mask
generated once for each action to traverse. Since we still do not see good quality
actions, it is likely that the correct attention for each action varies over the latent space
- i.e. it has not learnt a linear disentangled representation.

To confirm this, we can look at the expected attention distribution for each action in
expectation over the latent space, as shown in Fig. 4.20. There is no obvious structure
in these distributions, they are almost uniform across all dimensions, which tells us
that the action representations do vary across the latent space. We can be sure of this
and that it is not just poor learning since the post action reconstructions (Table 4.1)
show similar error to RGrVAE.
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FIGURE 4.21: Disentanglement metrics for FlatLand (blue) and dSprites (red). Solid
lines indicate mean performance with 1 standard deviation given as error bars.

Since AGrVAE did not learn linear disentangled representations effectively, we will
only be considering RGrVAE for further experiments. Whilst we may be able to ‘fix’
AGrVAE with additional losses and structural changes, we prefer to stick to the
conceptually simple RGrVAE, rather than tailor AGrVAE for each problem. Since the
main disadvantage of RGrVAE is that it has slower convergence/runtime, this does
not limit its scope, only the hardware requirements of future experiments.

Symmetry based models under disentanglement metrics Section 4.5 discussed
how we can learn linear disentanglement metrics and searched for evidence of them in
standard VAE baselines. We now would like to compare the symmetry based models
to standard VAEs under a set of classical disentanglement metrics. We would also like
to understand what role our independence, SVD and factor leakage metrics play.

For these experiments, all models were trained as outlined in Appendix Section C. We
then evaluated disentanglement metrics on the resulting representations. This
provided us with a set of metric scores for each model, resulting in variance in the
scores which we represent with 1 standard deviation error bars.

Fig. 4.21 provides classical metric scores on FlatLand and dSprites for the baseline
VAEs and symmetry based models. Overall, we see the same relationship between
symmetry based and classical models on both datasets. There is a notable exception
where the MIG metric shows the symmetry based models having a (relatively) large
gap compared to most (not Tc) of the classical models on FlatLand, but not on
dSprites. We would expect the symmetry based models to have very low MIG since
the first two most informative latents should relate to a single factor on both tested
datasets. On FlatLand, the symmetry based models tended to have larger mutual
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FIGURE 4.22: Symmetry Disentanglement metrics for FlatLand and dSprites. Solid
lines indicate mean performance with 1 standard deviation given as error bars.

information scores than the classical models, with a small gap (relative to the mutual
information) between the first two (sorted) latents and a very large gap for the next
two. This may also be due to classical models (except Tc) learning low quality
disentangled representations, which would explain the disparity between them and
Tc, since the latter is known to nearly always learn well disentangled representations.

For the other metrics we see broadly similar relationships between symmetry based
and classical models on both datasets. In general the symmetry based models get
good metric scores on the BetaVAE metric, Modularity, DCI disentanglement,
Informativeness and Completeness. The explicitness metric shows less distinction
between symmetry and classical, although symmetry based models tend to get similar
scores to the highest classical models. In most cases, Tc performs the best of the
classical models, achieving higher metric scores than symmetry based models in a
number of cases.

The linear disentangled representations appear to lend themselves to generally
consistent and often distinct scores under the classical metrics, probably due to their
highly structured nature, which we will see in Chapter 5. In particular, under the
BetaVAE metric, symmetry based models consistently achieve 100% accuracy, a
property that is only otherwise achieved by Tc.

Now considering symmetry based metrics (Fig. 4.22), we can see that the post action
reconstruction errors (X, Relative) show symmetry based models performing best on
both datasets. Note that in some cases on dSprites, we were unable to learn good
estimates of the actions at all, in particular for BetaVAE, FactorVAE and Tc. The
DIP-VAE models however were fairly amenable to learning linear approximations of
the actions, as we can see from the low post action observation error. We see similar
results for the Independence and SVD metrics. Symmetry based models are highly
independent and show very little SVD overlap and in general the classical models are
less independent and show more overlap. Interestingly, the DIP-VAE models do not
show particularly strong independence or particularly low overlap, so despite
occasionally seeing them learn linear disentangled representations in Section 4.5, we
don’t believe they have done so on dSprites in this instance.
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For FlatLand, we again see the symmetry based models have lower post action
reconstruction metrics and SVD overlap, with higher independence. Notice that the
DIP-I model has very low SVD overlap, suggesting that these instances may have
learnt somewhat linear disentangled representations, although the fairly poor post
action observation and relative latent scores, suggest it would be a low quality
representation. The only stand out result here is the SVD overlap of Tc, which is
extremely large for this dataset. This is likely due to the SVD estimation learning 2D
cyclic matrix representations, which are not a great fit for strongly classically
disentangled models such as Tc. Since each factor will be encoded into a single ‘active’
dimension, each representation matrix will act on one ‘active’ dimension and one
(basically random) ‘inactive’ dimension. If the inactive dimensions chosen are the
same for multiple actions then the overlap will be high, despite the model being
strongly disentangled.

4.6.1 Properties

Training Scheme All models in this section were trained according to the scheme
set out in Appendix Section C.

Temporal Consistency One means to determine the quality of learnt action
representations is to observe the errors introduced by composition. Over a number of
steps we can randomly select an action, apply the corresponding internal
representation and compare the decoded result to the true observation/latent after
applying the same action in world space. The better the representation and action
estimation, the less error will be introduced over time.

Fig. 4.23a presents the reconstruction (observation) error on FlatLand for RGrVAE and
ForwardVAE. Despite RGrVAE being (action) unsupervised, the initial errors are
comparable to those of ForwardVAE. As we increase the number of steps, RGrVAE
tends to perform slightly worse, although is more consistent. We see a similar picture
in the relative latent error (Fig. 4.23b), where RGrVAE initially performs well and
gradually accumulates errors. Note that the errors accumulation is decreasing with
respect to the observation (Fig. 4.23a), but are increasing linearly when considering
relative latent error. Also note that RGrVAE has a steeper linear error compare to
ForwardVAE, so it will become increasingly worse than ForwardVAE.

Symmetry based models are effective at modelling short term action sequences, as
shown by the low errors in reconstruction metrics. However as the number of steps is
increased, any error in the internal action estimations is bound to accumulate, which is
evident from both of these figures. This might be particularly relevant for cyclic
symmetries, since there is error in both the rotation angle and the determinant, which
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FIGURE 4.23: Comparing ForwardVAE and RGrVAE under temporal consistency.
Solid lines indicate mean performance with 1 standard deviation given as the shaded

area.

can lead to Anz exploding or tending towards a constant in the limit. Nevertheless, for
short term modelling and planning, symmetry based models may be a suitable
method.

Long Action Sequences The previous paragraph considered the errors introduced
as symmetry based models attempt to extrapolate over action composition. We will
now consider learning by observing image transitions which are separated by
application of more than a single action. To do this, we created a FlatLand dataset
where transitions could consist of more than one action application, with the
maximum number of actions defined by the ‘offset’ variable. To compensate for the
increased number of actions that can be observed, we allowed RGrVAE to apply more
than one action also. To do this, we first take a single action step in RGrVAE as usual,
and decode the result. Using the decoded result and the post-transition image, we
then using the RGrVAE action estimation network to infer another action to apply. We
repeat this process for a fixed number of actions (10 for this experiment), and also
include a identity internal representation in RGrVAE so that it can decide when to
stop applying actions.

We can see from Fig. 4.24a that the policy continues to converge for a small number of
steps, however the final independence shows a large variance. This is reflected in the
post action observation reconstructions (Fig. 4.24a) which show gradually increasing
error as the steps are increased. When taking a large number of steps, the
reconstruction error is relatively low with low independence, showing that the model
has learnt a good representation of the actions however it is not linearly disentangled
with respect to CN × CN .
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FIGURE 4.24: Long Action Sequences
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FIGURE 4.25: Over Representation when we have 1, 2 or 3 internal representations per
true action. (A) 1 standard deviation is given as the shaded area.

Over Representation A problem unique to GroupVAE is that of choosing how
many internal representations to define. If we define fewer internal representations
than there are actions acting on the data, then we will never learn a good
representation. However, if there are fewer actions than internal representations then
we may learn multiple representations of the same action - possibly in different latent
subspaces. Considering this, we should strive to define as many internal
representations as actions, however since we are unlikely to know this number, it is
preferable to ‘over represent’ each action by defining more internal representations.
For this experiment, we simply train RGrVAE instances as outlined in Appendix
Section C but multiply the number of internal representations by 1, 2 or 3.

To see how RGrVAE responds to over representation, we measure the number of
active policy dimensions per action, estimated by N ≈ eh where h is the mean entropy
of the policy distribution per action. In Fig. 4.25a we consider the active dimensions as
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we increase the number of representations for each action (colour), considering both
the total number active and that per action.

In all cases, we can see that the total active policy dimensions (dashed) is slightly
above the expected 4 for FlatLand, and the active policy dimensions per action is
slightly above 1. This says that in all cases, the models were making occasional
mistakes. Note however that the total number of active dimensions only increases
significantly when the number of representations per action is equal to 3. As such, we
feel it is reasonable to assume RGrVAE can deal with over representation, as long as
you have some idea of the total number of actions. Only once the model becomes
extremely over represented does it start failing. We note that even the worst model in
this test still resulted in a good linear disentangled representation, it just had
redundancy. It’s possible that a stronger identity loss on the representations, would
resolve this. Since the model still learns desirable representations, this does not appear
to be a large problem.

We further demonstrate the quality of the representations in Fig. 4.25b where we plot
representation and symmetry errors. Here we can see that even when over
represented, the model still learns good estimates of post action observations (X),
latents (Relative) and independence. The symmetry reconstruction is impacted, but
not significantly. This does suggest that as we increase the over representation, the
quality of the latent representation will decrease, however it appears to do so
relatively slowly.

Robustness - Visual Noise Experiments so far have all been under the ideal
conditions for each dataset. Since it is important to understand robustness of our
models we now consider learning in noisy conditions - for a few different types of
distractor. There will be two simple problems - Gaussian noise (mean 0, variance 0.01)
and Salt+Pepper noise (per pixel probability 0.1) - and one complex problem, where
the backgrounds of FlatLand images are replaced with images from CIFAR10. From
studying these, we hope to determine if symmetry based models are overly reliant on
the cleanliness of the data. Due to the complexity of learning linear disentangled
representations, it is not currently feasible for us to train them on large scale real
world datasets.

Fig. 4.26 provides independence scores for ForwardVAE and RGrVAE, alongside the
symmetry reconstruction score and (for RGrVAE) an estimate of convergence time
based on the independence of the policy. This estimate is given as the number of
epochs required for the policy distribution to have an estimated independence score
of (0.95).

From the independence (Fig. 4.26 - left), we can see that none of the distractors
prevented learning. ForwardVAE showed lower independence for both the
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FIGURE 4.26: Metric scores for ForwardVAE and RGrVAE when trained on FlatLand
under different distractors.

Salt+Pepper and Gaussian noises, but generally still being larger than 0.95. Note that
we saw a single case of low independence, which was likely due to a failure in the
independence estimation and not due to a poor representation, since the symmetry
scores (estimated directly from the model) are very good. RGrVAE shows the same
relationship, with the simple noises reducing the independence. Interestingly the
complex background showed very similar independence to the standard (noiseless)
case. This may be due to the significantly longer training time (due to significantly
longer convergence time) refining the latent space independence.

Symmetry reconstruction scores (Fig. 4.26 - mid) for ForwardVAE are, as expected,
very good. In all cases they are an order of magnitude better than RGrVAE, and very
consistent across the simple noises. RGrVAE also appears to be unaffected by the
simple noises, showing very similar errors in each case. Unsurprisingly, the complex
noise resulted in worse estimation of the underlying symmetry. Since the problem is
more complex, we expected the representations to suffer, although it is interesting that
the independence was largely unaffected. In either case, the symmetry error was still
small even in the worst cases (< 0.1), suggesting the representation is still of good
quality.

Finally, we can see that (for RGrVAE) the convergence time (Fig. 4.26 - right) was only
significantly slowed by the complex backgrounds. The simple noises are random in
nature and it’s likely there was never gradient toward learning spurious structures.
For CIFAR10 images however, there is significant structure, much of it that might be
shared between CIFAR10 and FlatLand images. Structures such as curves are
obviously very useful in detecting the agent in FlatLand, and likely act as a strong
distractor when occurring in CIFAR10 backgrounds.

4.6.2 Backbone VAEs

RGrVAE has the property that it can be combined with any standard VAE. We will
briefly compare different VAEs as backbones for RGrVAE, and fine tuning on top of
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FIGURE 4.27: RGrVAE performance with different backbone VAE models. DIP-VAE
backbones achieve slightly better independence, but slightly worse observation and

symmetry errors. There is no consistent benefit.

pre-trained backbones to determine how they impact the representation.

Training Scheme All RGrVAE instances for this section were trained as outlined in
Appendix Section C but with 400 epochs to allow for the more complex backbones to
converge.

Backbones Fig. 4.27 reports independence, post action observation reconstruction
and symmetry reconstruction for the different backbones. We can see that despite
slightly higher independence scores on the DIP-VAE backbones, they result in larger
observation and symmetry errors. The FactorVAE backbone shows similar
independence to the standard VAE with better median post action observation
reconstructions, but higher symmetry error. The FactorVAE model also generally lead
to large variances in the score, whereas the default VAE and DIP-II model were more
consistent. Given these observations, whilst the backbones only perform slightly
worse than the standard VAE (which might be due to their increased complexity
requiring additional training), there is no obvious benefit to them. As such, we should
stick to the standard VAE which has fewer parameters and offers simplicity.

4.6.3 Policy Convergence

For RGrVAE to function correctly, the policy should converge to an injection between
observed actions and internal representations. We will now explore policy
convergence through the estimated independence score (the independence of the
policy distribution).

Training Schemes For all the following experiments on policy convergence we will
use the same training scheme (of Appendix Section C, barring the parameters under
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FIGURE 4.28: Policy convergence on FlatLand. RGrVAE is sensitive to learning rate
choices, but less so to regret and change of basis. Solid lines indicate mean perform-

ance with 1 standard deviation given as the shaded area.

examination. The training time for each experiment is indicated by the x axis of the
figures, since we found that different parameters required different amounts of
training to converge adequately.

Learning Rates Choice of learning rate has been found to be vital for good policy
convergence. In particular, the relationship between the internal representation
learning rate (‘Group’ - Red) and the main learning rate of the VAE/policy network
(‘Main’ - Blue). In Fig. 4.28a we see that the main learning rate is very sensitive,
however the internal representation learning rate is less so. We found that the optimal
choice for main learning rate was 10−4 (for a Group learning rate of 0.1). For the
Group learning rate, (and Main learning rate 10−4), any value between 10−3 and 10−1

results in consistent policy convergence. Anecdotally, we found that these learning
rates transferred well to the dSprites dataset.

Regret Regret minimisation provides gradient to all possible actions and so should
result in more consistent learning. The downside of regret minimisation is the vastly
increased runtime, since it has to evaluate the reward for every action rather than just
one. For this reason, we only use regret for the FlatLand experiments, but it is still
interesting to determine its impact. From Fig. 4.28b we can see that, as expected, the
use of regret leads to faster convergence with more consistency. Without regret, we see
a large variance in the estimated independences although all models had converged
within 150 epochs.

Change of Basis Similar to the regret, we only use a change of basis for the FlatLand
experiments due to runtime considerations. The change of basis allows the latent
space to encode actions into any plane, rather than sequential axis aligned planes. We
might expect this to result in faster convergence, and from Fig. 4.28c, we can see that
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FIGURE 4.29: Exploration Strategies in RGrVAE. For FlatLand, entropy weighting was
not particularly beneficial, but some amount of random action selection can offer faster
convergence. Solid lines indicate mean performance with 1 standard deviation given

as the shaded area.

using a change of basis results in more consistent convergence, with slightly improved
convergence rate, on average.

Exploration Strategy In Section 4.3 we mentioned two different exploration
methods, both of which are common in reinforcement learning and can be applied to
GroupVAE - entropy weighting and random action selection. In Fig. 4.29, we report
the estimated independences for different weightings of these strategies. Notice that
in neither case is there a significant impact on convergence. First consider Fig. 4.29a,
where we see no particular trend between the entropy weighting and performance.
This suggests that for FlatLand, this exploration strategy is not vital for training.
Possibly by the time the policy distribution has low enough entropy for the weighting
matter, the model has already converged. Note that this may not stand for other
datasets where the policy will be more complex. If we consider Fig. 4.29b, we can see
that without exploration (ε = 1), convergence is slowed, although again, not
significantly. The fastest converging strategy was ε = 0.95, which appears to be the
optimal strategy for FlatLand.

Internal Representations In Section 4.3, we raised the idea of structuring internal
representations to match desired symmetry groups. Thus far we have only considered
data with cyclic symmetries, and so have tended to only use representations
parametrised by cyclic rotation angle. In Fig. 4.30a we consider RGrVAE estimated
independence on the FlatLand problem using a number of different internal
representation choices - cyclic rotation angle, generic matrix M ∈ GL(R), cycles or
rotations from Dn, and unit determinant matrices M ∈ SL(R). We can see that other
than generic matrices, all methods converge rapidly to independent representations.
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FIGURE 4.30: Comparing RGrVAE internal representations on FlatLand. Solid lines in-
dicate mean performance with 1 standard deviation given as the shaded area. Dashed

lines indicate the min and max performance.

Notice that the fastest converging result was actually the vanilla cyclic
representations, rather than those which are initialised to positive and negative angles
(Cyclic + Init). Furthermore, notice that the introduction of reflection actions
(Dihedral) seemed to reduce convergence rate. These results suggest that for FlatLand,
simpler is better and we should avoid complicated internal representations.

For SO(2), we have plotted the mean and standard deviation (solid line with shading)
alongside the max and min lines (dashed). Notice that they do not always fall into the
local minima which are evident from the large deviations, sometimes they rapidly
converge just like the cyclic representations (Fig. 4.30a, red dashed). We initially
thought that the poor or local optima could be caused by the regret or the exploration
strategy. Regret may be more likely to stick to local optima, since we are always
encouraging the instantaneously best action. This might not be the same as the best
action globally. The exploration strategy is more subtle. For FlatLand we have used a
mix of entropy weighting and random action selection. Random action selection in
particular can introduce a lot of noise into training, which might result in poor optima,
whereas entropy weighting is less likely to cause this.

To determine if the exploration caused poor convergence, we report in Fig. 4.30b
results with and without regret and also for a modified exploration scheme that
removes the random action sampling - hopefully to avoid poor optima. We can see
that in general, if we ignore the one poor run, the standard scheme actually beats both
modified exploration schemes. Indeed both standard runs perform similarly, with a
similar worst case run, although training with regret seems to slightly out-perform
training without. The same is true of the modified exploration scheme. The main
difference between the two exploration schemes is the worst case runs. The modified
scheme tends to avoid the particularly bad runs seen in the standard scheme, however
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FIGURE 4.31: RGrVAE Hyperparameters. Large Beta and very small or very large
gamma can result in poor performance.

cannot completely avoid poor convergence. Based on this, we can say that the random
action sampling is likely introducing noise into the training and whilst it is fine for the
structured internal representations (cyclic etc.), it may not be a good idea for more
flexible or more complex representations. We can also say that regret is generally good
for convergence although it should be noted that the runtime cost may not be
worthwhile.

4.6.4 Hyperparameters

RGrVAE has two main hyperparameters which govern its behaviour. The capacity
parameter β of β-VAE and the prediction weighting γ from Eqn. 4.3.

Training Scheme All models in this section were trained according to Appendix
Section C, barring the hyper-parameter in testing and the training length which was
set to 400 epochs.

Capacity β The β weighting in β-VAE is usually thought of as pressuring the
posterior towards the prior. Indeed, it was shown by Hoffman and Johnson [2016] that
D(q(z)||p(z)) is a component of the ELBO. The other interpretation of β is based on
information channel capacity where the standard prior has 0 capacity. Thus,
increasingly weighting the KL encourages reducing the information capacity of the
latent space. In this light, it is unsurprising that with increased β we observe an
inability to learn linear disentangled representations - indeed in the limit β→ ∞ we
should be able to learn no representations at all. We demonstrate in Figure 4.31a that
the estimated independence (policy distribution independence) is decreased with
increasing β.
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Prediction weight γ The γ term increases pressure to reconstruct the post-action
latent. We can see from Figure 4.31b that when this weight is 0, the model doesn’t
learn to predict the actions in any way. As we increase γ, the estimated independence
increases, until the model is extremely consistent at learning linear disentangled
representations. Once the weight becomes too large, the learning begins to fail due to
an optima where the posterior collapses to a single point. This naturally has Lpred = 0
but LVAE > 0. Whilst in the figure, at γ = 100, linear disentangled representations
likely form the global optima (some runs still converge), as we increase γ, this will no
longer be the case. Whilst γ is obviously important, since RGrVAE continues to
converge over a wide range of values, it should be relatively simple to find an
appropriate choice for most problems. Indeed, we found that γ = 10 is suitable for
both FlatLand and dSprites.

4.7 Conclusions

This chapter has aimed to answer 4 main questions:

1. Can we learn linear disentangled representations?

2. Are they learnt by standard VAE models?

3. How do we measure them?

4. Can we learn them without knowledge of action labels?

Can we learn linear disentangled representations? For the common
disentanglement datasets (dSprites, FlatLand, etc.), any linearly disentangled
representation will also have to disentangle the generative factors, since we define the
symmetry groups to act on these factors. As such, we first tested the feasibility of
learning an idealised simulator (decoder) and classifier (encoder). We found in Fig. 4.1
that this was feasible. Obviously there have been many VAE models which have
shown disentanglement, so this was not surprising, but it was useful to begin our
feasibility study with known results.

Given that linear disentangled representations have to disentangle actions, the next
step was to demonstrate that we could learn to approximate these actions, given
knowledge of which was applied. We found in Fig. 4.3 that this could be done when
directly supervised with the post action latent and also indirectly supervised by the
post action observation. For the standard VAE backbone, we did find that the ability
to approximate the action is dependent on the complexity of the approximating
function. In particular, a linear model was not expressive enough to capture the action
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in latent space, however non linear models were. Requiring a non-linear model
obviously shows that the representation was not linear, let alone linear disentangled.
This however, is not sufficient to answer our question of whether standard models can
learn linear disentangled representations, it simply showed that this particular model
did not.

The final part of our feasibility study was to determine whether we can learn the
(SBDRL) expected cyclic structure on dSprites. This was the major test of whether
linear disentanglement was feasible. We found that we could indeed learn a
(non-linear) mapping to a intermediate representation space where the dSprites
actions (scale, rotation, translation) were cyclic of the appropriate degree.
Furthermore, we found that the space had high quality linear disentanglement since
the actions visualised in Fig. 4.5 showed minimal entanglement between actions.

Given these results, we find that linear disentangled representations were indeed
feasible. In fact, under action supervision we could even transform the latent space
(non-linearly) to a linearly disentangled one. Furthermore, we learnt an inverse
mapping for this transformation which provides us with a full linearly disentangled
VAE model.

Are they learnt by standard VAE models? Since linear disentangled
representations are defined based on the symmetry group acting on the data, without
access to actions labels, it’s difficult to determine if a given model has learnt such a
representation. For our tests, we used FlatLand where we know that the data was
generated with cyclic symmetries acting on the data. Since standard VAE models do
not observe transitions, if they learn linear disentangled representations, it is not
guaranteed to be with respect to the symmetries used to generate the data.

Due to the simplicity of FlatLand, we assumed that if a model learnt linear
disentangled representations, it would be cyclic, since they are one of the simplest
symmetries. Since these action may not necessarily be with respect to the Cartesian,
we test against both the Cartesian and 45 degree from Cartesian axes. Upon empirical
search, we found that in general the classical VAE models did not learn linear
disentangled representations with respect to cyclic groups. This is not to say that
individual instances did not learn them. In fact, we found isolated instances of linear
disentangled representations emerging from DIP-VAE-I and the standard β-VAE. This
is very interesting since it suggests that there is no pressure against such
representations in standard models, and that they might be encouraged without
significant modifications to the training procedure - possibly just an additional ‘linear
disentanglement’ loss term.
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How do we measure them? Some symmetry groups can have irreducible
representations of degree 2 or higher, leading to actions being encoded across multiple
latent dimensions. This is at odds with classical disentanglement metrics which often
(many but not all) assume good disentanglement has single generative factors
encoded into single latent dimensions. As such we wanted to explore symmetry based
metrics for measuring linear disentanglement. We proposed the Independence Score
and the SVD overlap, which both aim to measure the extent that actions are encoded
into separate latent subspaces. We also proposed the relative latent error in an effort to
determine how equivariant the encoding map is. These metrics speak directly to
different parts of the definition of a linear disentangled representation. The final
metric we propose is a straight forward extension of the Mutual Information Gap
(MIG) metric such that it can respond to factors being encoded across multiple
dimensions. These metrics do not form a single metric of linear disentanglement
quality, however in combination and conjunction with other metrics, they should
provide a good understanding.

Can we learn them without action supervision? Prior work has shown that linear
disentangled representations can be learnt when supervised directly on the actions
that are observed. With GroupVAE, we aimed to show that we do not require the
action labelling to learn high quality linearly disentangled representations. We show
that we can infer the observed action, and use this to optimise internal representations
towards the irreducibles for that action.

Whilst we proposed two GroupVAE variants, we found that the attentional model
failed to learn good representations. The reinforcement variant (RGrVAE) however
was found to learn high quality representations. We determined that the learnt action
representations did not introduce large errors under composition, and were robust to
visual noise. We also found that as long as we defined more internal representations
than true actions, it continues to converge to a good representation. Furthermore, we
will see in the next chapter that the policies learnt are extremely accurate at action
inference and could potentially be used to label un-labelled action datasets. RGrVAE
concretely shows that we can learn linear disentangled representations action
supervision.
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Chapter 5

Structure and Benefits of LDR

This chapter will explore the structure of linear disentangled representations through
visualisation and empirical experiments. It is based on our NeurIPS workshop
paper [Painter et al., 2020b]. There are two important parts of VAE representational
structure, the posterior and the prior. The posterior shape determines the
representation whilst the prior restricts the posterior shape. Given that we expect
LDRs to be consistently structured, we might imagine that they have distinct
characteristics in disentanglement metrics and performance on downstream tasks.
Since it was found by [Locatello et al., 2018] that there was no correlation between
disentanglement metrics and data efficiency in classical models, we will also explore
this aspect.

Specifically, over the course of this chapter we look to answer the following questions,

• What is the posterior structure of FlatLand linear disentangled representations?

• Can we find better priors for FlatLand?

• Can we find evidence of LDRs in disentanglement metrics?

• How do LDRs compare to classical representations under data efficiency and
downstream tasks?

• Can we find any correlations with data efficiency?

5.1 Cyclic Structures

This section will look at structure of the posterior and prior distributions of linear
disentangled representations with respect to group structure G = CN × CN . Since
cyclic structure is the most common in disentanglement datasets, e.g.
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FlatLand Boundary Condition
None Contact Gradual

Name FlatLandN FlatLand FlatLandG
States {(xi, yj)|i, j ∈ [R, 64−

R]}
{(xi, yj)|i, j ∈ [R, 64−
R]}

{(xi, yj)|i, j ∈ [0, 64]}

Boundary gx ◦ x64−R, g−1
x ◦ xR

are not observed.
gx ◦ x64−R = xR,
g−1

x ◦ xR = x64−R

gx ◦ x64 = x1,
g−1

x ◦ x1 = x64

Symmetry Undefined ≈ C7 × C7 ≈ C13 × C13

Samples

TABLE 5.1: Definition of FlatLand variants and example samples. Arrows indicate
possible actions. Red arrow indicates action chosen for that sample. ‘None’ restricts
actions at a boundary so that the object never cross it. ‘Contact’ warps the agent to
the other side of the grid on contact. ‘Gradual’ allows continuous transitions through
boundaries. The radius of the agent is given by R = 15 and the step size corresponding

to an action is 5 pixels.

FlatLand [Caselles-Dupré et al., 2018] and dSprites [Higgins et al., 2017], we will be
exploring variants of FlatLand with different cyclic symmetries. This will help us
answer the first question set out in the chapter introduction, “What is the posterior
structure of FlatLand LDRs?”.

Varying Symmetries on FlatLand Since FlatLand is such a simple dataset, it is good
for rapid experimentation and we will find it useful to define different sets of
symmetries acting on it. The simplest way to do this would be to vary agents step size
per action resulting in different order cyclic symmetries. Instead, we will vary how the
agent interacts with the boundary, in the hope that it will add some additional
complexity over simply changing the step size. We summarise the different boundary
conditions in Table 5.1 in terms of the state spaces S, actions ◦ and boundary
conditions. The Contact and Gradual conditions are similar, the former being the
usual FlatLand warping as the agent touches the boundary and the latter allowing
gradual (continuous) transition through the boundary. Both these conditions lead to a
cyclic symmetry structure with different degrees. The None boundary condition is
different, we simply do not allow the model to observe actions into the boundary. This
leads to an undefined symmetry structure, since the models will never observe all
actions in all states. The main benefit of this is that we can explore symmetry based
models under incomplete information, a situation which would likely be prevalent in
real world problems. We have denoted the different boundary conditions by
appending a letter as follows, (N)one - FlatLandN and (G)radual - FlatLandG. Contact
boundary conditions is equivalent to the original dataset, FlatLand.
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Dataset d((x1, y1), (x2, y2))

FlatLandN |∆x|+ |∆y|
FlatLand min(∆x, (Nx − 30)− ∆x) + min(∆y, (Ny − 30)− ∆y)
FlatLandG min(∆x, Nx − ∆x) + min(∆y, Ny − ∆y)

TABLE 5.2: Metrics which describe how many actions are required to move between
two states in each FlatLand variant, assuming a step size of 1.

Action Metrics on Flatland Variants In ForwardVAE, we have the action estimation
term za − ẑa, which is minimised when the action a can be approximated by it’s
corresponding internal representation. Since the internal representations are fixed for
any given batch, the action is encouraged to take the same form across the whole
latent space.

On FlatLand, the symmetries are cyclic with order N, and we only ever observe action
by the cyclic generators. As such, the internal representations should tend towards
rotation matrices with rotation angle equal to 2π

N . In this case, the distance between
two states when encoded into the latent space will be encouraged to be proportional
to the number of actions it requires to move between these two states.

For this reason, it will be useful to have metrics that tell us the minimum number of
actions it takes to move between two states in each of the flatland variants. Each state
(and observation image) in flatland is entirely described by the x-y position of the
agent, so we define the metric d((x1, y1), (x2, y2)) in terms of the two states
s1 = (x1, y1) and s2 = (x2, y2). We will also make use of the quantities ∆x = |x2 − x1|
and ∆y = |y2 − y1|, and the width and height of the FlatLand images Nx = 64,
Ny = 64.

These metrics assume a step size of 1, and in reality, we will use a step size of 5 to be
consistent with Caselles-Dupré et al. [2019], and the original FlatLand dataset. Despite
this, since we will only ever observe states that differ by application of one action, the
metrics will still be proportionally correct.

Training Scheme Unless otherwise stated, all ForwardVAE instances trained in this
chapter use the same training scheme, as detailed in Appendix Section C.1.

5.1.1 Posterior Structure

In Chapter 4, we have seen copious examples of symmetry based models learning the
FlatLand problem. In this subsection we will assume that a linear disentangled
representation has already been learnt and observe the resulting posterior distribution
structure. This will directly target the first question we posed in the chapter
introduction, “What is the posterior structure of FlatLand LDRs?”.
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Posteriors and Action Maps
Structure FlatLandN FlatLand FlatLandG

Posterior

Action Map
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TABLE 5.3: Posteriors and action maps for FlatLand variants on the latent subspace
of a ForwardVAE which corresponds to y translation on each of the dataset variants.

Both posteriors and action maps have the same axis limits

Visualising the Posterior Throughout this chapter we will be making use of
posterior visualisations. To do this we will need to estimate the posterior density over
the latent space. For this task, we first encode all images in the dataset and store the
resulting latent codes. Rather than try to visualise a high dimensional space, we will
be restricting to visualising the posterior in 2D. So we next select the two dimensions
which we want to visualise - generally these dimensions will be chosen based on
which dimensions are affected by a group action. After selecting the two dimensions,
we have a set of points in 2D on which we can run a Gaussian kernel density
estimation (by Scipy1) to get an estimate of the posterior density.

In addition to the posterior, we will also sometimes visualise the action map for the
same two dimensions. To do this we take the internal representation from
ForwardVAE which acts on those two dimensions and create a stream-plot for each
point in the space. This is done by matrix-vector multiplication between the internal
representation matrix and each point in the space. This then allows us to visualise
how the action moves each point in the space.

Cyclic Posterior In Table 5.3, we present posteriors of a ForwardVAE trained on
each of the FlatLand variants. In this case, the posteriors are on the plane
corresponding to y translation. Since on FlatLand all component groups are identical,
this plane should be fairly representative of the action plane corresponding to x
translation, assuming both actions had been learnt to a good degree.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html
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FIGURE 5.1: Visualisations of the posteriors for both action planes of 10 ForwardVAE
instances trained on FlatLandN.

Notice that in all cases we observe some circular structure, with the posterior
‘wrapping’ around the origin. On FlatLand and FlatLandG this is expected, as the
irreducible representations of CN are rotation matrices. Note that as the order of the
symmetry group increases, the number of distinct peaks increases and they are
merged into smoother distributions. This can be seen by comparing the distinct peaks
of FlatLand to the relatively smooth posterior on FlatLandG. We have also provided
visualisations of the action via the ‘action maps’, which are simply stream plots of the
field generated by applying the matrix representation at each point. Notice that
FlatLandG shows wide and slow convergence towards the origin, whilst the other two
datasets have faster rate of change and convergence. Converging towards the origin is
(inversely) related to the quality of the learnt action, since it is proportional to the rate
at which errors are introduced under composition of the action (assuming the action is
cyclic). Beyond being the origin of the latent space, and the KL divergence term in the
ForwardVAE loss encouraging the posterior to be centred around this point, to our
knowledge, there is no additional significance to it.

It is particularly interesting that we continue to see circular structure even when cycles
are not explicitly observed in the data (i.e. FlatLandN). Fig. 5.1 presents a set of
posteriors from 10 independently trained models, where we can see that the cyclic
behaviour is dominant, with non cyclic behaviour occurring only once, and only in
one of the two action subplanes (rows). The non-cyclic behaviour is likely due to
unlucky initialisation and the Lrecon pressure overcoming that of the KL divergence.
The KL divergence of a cyclic posterior is lower than that of a non-cyclic one since
more of the peaks are close to the origin or overlapping. To lower the KL of the
non-cyclic representation, the posterior would need to shift to the other side of the
origin. From the action map (Fig. 5.2a), if we lay it over the posterior (Fig. 5.2b left)
and shift the posterior to the other side of the origin (Fig. 5.2b right), the stream lines
no longer travel through high probability states. As such the gradient from the two
loss terms act to push the posterior in different directions, with the equilibrium
appearing as the posterior shown.

How does the objective influence the latent structure In the VAE, the
KL-divergence loss against the isotropic Gaussian prior tends to encourage the
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(A) Action Map. (B) Overlay of action map (left) and shifted action map (right).

FIGURE 5.2: Action map on the non-cyclic posterior seen in Fig. 5.1.

overlap in posterior peaks (Recall the data locality argument of β-VAE outlined in
Section 3.2.2). It is our intuition that the cyclic posteriors on FlatLandN are driven by
this same pressure. In order to test this we can ablate it from the objective.

Does the KL cause Wrapping Posteriors on FlatLandN? We can determine if the
KL divergence contributes to this unexpected circular structure on FlatLandN by
ablating it or varying its weighting in the final objective. To do this, we can modify the
ForwardVAE objective term from Equation 4.2 using parameter β,

LForwardVAE(x, za) = (x− x̂)2 + βKL + (za − ẑa)
2 . (5.1)

We then train ForwardVAE instances with the value of β in the set
{0, 0.1, 0.2, . . . , 0.9, 1.0, 10.0}.

The objective has three main components, the reconstruction term (x− x̂), the KL term
and the action estimation term (za − ẑa). It is likely that the reconstruction term alone
shouldn’t have a large effect on the structure of the latent space, since a sufficiently
complex decoder should be able to map any latent point to any image. As such, it is
the KL and action reconstruction terms that we suspect will dictate the latent space
structure. In Fig. 5.3 we present posteriors for ForwardVAE instances trained on
FlatLandN (See Appendix Section C.1) whilst we vary the KL weighting β. This
allows us to determine what effect the KL term has on the latent structure.

Low KL (β < 0.2) In the low KL regime (< 0.2), we see no wrapping around the
origin. Indeed the posterior is arranged almost linearly and is very similar to the
non-cyclic posterior seen in Fig. 5.1. This may actually be the expected structure in
absence of the KL term. Since the KL term has such low weighting, the structure is
almost entirely determined by the action estimation term. Consider the action metric
for FlatLandN from Table 5.2. Under this metric, the distance between two states is
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FIGURE 5.3: FlatLandN posterior distributions with varying KL-Divergence weight-
ings. See the general trend towards clustering around the origin at higher KL weight-

ings. Low weightings tend to align with the Cartesian axes.

proportional to how close we would consider the agent in the image. In the low KL
regime, we find that the latent structure aligns with the action metric. The posterior
peaks corresponding to states near opposing boundaries are mapped far away from
each other.

In this specific case, of the low KL regime on FlatLandN, the action metric aligns with
the data locality (Recall Section 3.2.2, β-VAE). For FlatLand and FlatLandG, the action
metric is different, and points on opposing boundaries are close together under the
metric but not visually. Despite this, the latent space is structured cyclically on those
datasets, which shows that the action estimation term can overcome the structuring
pressure that comes from the KL term. We will see in the next paragraph that on
FlatLandN, it is not always the case that the latent structure adheres exactly to the
action metric.

Medium - High KL (β > 0.2) As the KL pressure is increased (> 0.2), we see
increased wrapping around the origin and very little structural change for weights
above 0.5. In the high KL regime (10), the posterior is wrapped tighter around the
origin and individual peaks have lower variance. This suggests that if we increase the
KL weighting further, we will eventually loose the ability to reconstruct since all states
will overlap in the posterior. This is a known phenomena in VAEs, and is easiest
understood when we consider the VAE latent dimensions as a set of noisy information
channels [Burgess et al., 2018] (as discussed in Section 3.2.2 paragraph entitled β-VAE).

From the figure, it is obvious that strong KL weighting causes the posterior to wrap
around the origin on FlatLandN. It seems reasonable to assume that this helps
increase the overlap in the posterior peaks (as discussed in Section 3.2.2, β-VAE),
which is a direct consequence of the Gaussian prior. We will see in Section 5.1.2 that
when we allow more expressive priors, this no longer occurs, which provides further
evidence for this assumption.
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(B) FlatLand
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(C) FlatLandG

FIGURE 5.4: Posterior matrix vs cycles

Note that this discussion of the KLs effect on FlatLandN does not directly extend to
FlatLand/FlatLandG, since on these datasets, states at opposing boundaries are close
together under the action metric || ◦ ||a (despite being far away in pixel space). As
such, the latent reconstruction term may also introduce pressure towards this cyclic
posterior structure.

Internal Representation In the previous Section, and particularly in Fig. 5.3, we saw
that cyclic structures were learnt even in the absence of cyclic groups acting on the
data (FlatLandN). We found that this posterior behaviour was due to the KL
divergence term in the loss. Choice of internal representation also provides a means to
bias learnt structures. We would like to determine if there are any structural
differences or advantages gained from different internal representation types and if
they change the optimisation result.

ForwardVAE is defined with generic matrix internal representations (GL(2)), however
as with GroupVAE, we can replace these with representations associated with
different symmetry groups. In particular, we would like to compare the posteriors of
GL(2) internal matrix representations with cyclic group CN internal representations -
where we learn purely a cyclic angle. In Fig. 5.4 we compare posteriors for
ForwardVAE instances trained on the FlatLand variants with the two internal group
structures, and see no obvious difference in the learnt posteriors. We saw in Chapter 4
(Section 4.6.3) that appropriate internal representation choice might allow for faster
convergence, but there appears to be little to no structural benefit on FlatLand. This
may differ for more complex datasets however, and we found that on dSprites, cyclic
representations were overly restrictive and actually slowed down learning.

Recall (Fig. 5.3) that in the absence of the KL term, the posterior no longer had cyclic
structure on FlatLandN. Whilst cyclic internal representations appear to offer no
structural benefit on the standard ForwardVAE, they may have sufficient bias to learn
cyclic posteriors when the KL is ablated. As previously mentioned, on FlatLandN,
there is no explicit pressure towards or against cyclic structures, either from Llatent or
the action metric.
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FIGURE 5.5: Example posteriors from a ForwardVAE with cyclic internal representa-
tions and 0 KL weighting. Note that the non-cyclic posteriors were significantly fur-

ther away from the origin and all axes are scaled to best show structure.

Since the KL term is integral to ForwardVAE, ablating it is not particularly informative
for general use cases. It does however allow us to understand the extent of the bias
introduced by changing internal representations. In Fig. 5.5 we present a number of
example ForwardVAE posteriors using cyclic internal representations and whilst it
appears that there is a strong bias towards cyclic structures, they are not guaranteed.
Indeed we continue to see similar structures as in Fig. 5.3 (KL ≤ 0.2), which do not
wrap around the origin. Note that the major difference between the posteriors
presented in Fig. 5.5 is the order of the learnt cyclic group. Wrapping posteriors show
lower order than the more linear ones, but most states in the latter don’t have much
posterior density. Also of note is that since the internal cyclic representations are
learnt through purely cyclic angle, they force the posterior to be near, and curve (but
not necessarily wrap) around the origin. When learning GL(2) representations, the
model is free to learn rotation matrices about any point in the latent space. The KL
term generally just encourages the posterior to be located near the origin, but in its
absence (i.e. Fig. 5.3), we see the posterior is free to curve around any point.

Other Data Thus far we have only shown that cyclic posteriors are present on
FlatLand and its variants. In Table 5.4 we show that RGrVAE learns cyclic posteriors
(of varying quality) on both dSprites and Norb. We provide these examples to show
that the posterior structure which we visualise on FlatLand variants is generally
representative of that found in other more complex problems also.

The symmetry for dSprites translation is C40, dSprites rotation is C32 and Norb
illumination is C5. For the two dSprites posteriors, we can see obvious, high order
cyclic structure, as would be expected by their symmetries. The dSprites translation
posterior shows density unevenly distributed between states, which may correspond
with biases in the training set used (90% train with 10% test) or inherent in the dataset
itself (there may be few instances of objects at boundaries). The rotation posterior
shows more consistency in the density peaks, however it has additional density, not
expected in the standard cyclic structure. This extra density may be simply due to
limited training time, or it could be due to different shapes in dSprites having
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Sprites Translation Sprites Rotation Norb Illumination
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TABLE 5.4: Additional posterior visualisations for actions.

different rotational symmetries (due to rotational symmetries inherent to the shape).
The final example, of illumination on Norb is fairly reminiscent of a lower
dimensional FlatLand representation.

5.1.2 Prior Structure

It is obvious from our previous posterior visualisations, that the standard Gaussian is
not a good prior for the FlatLand problems, at least in the sense of accurately
representing the true distribution of the data. As such, the posterior which we
visualise may not be an accurate representation of the true prior of the generative
process. If we allow more complex priors, we may be able to better visualise this
distribution. In this section, we will explore more complex priors, in aims to answer
the second question posed in the chapter introduction, “Can we find better priors for
FlatLand?”. Furthermore, we would like to explore whether these more complex
priors, and consequently the potential for more complex posteriors, are a benefit or
hindrance to the learning problem.

In VAEs, we have two easy ways to change the prior distribution. We could
analytically define a set of priors, find the KL-Divergence between them and a number
of different distributions, and sample in the VAE accordingly. Alternatively, we could
allow a learnable prior, through methods such as normalising flows. The first
approach has the advantage that we have the exact form of the prior and can perform
analysis using this. The major downside is that it is limited by the set of priors that we
choose, it may be that we do not test the best priors. We will instead explore
normalising flows, which optimise towards the best possible prior (which minimises
KL(q(z|x)||p(z))) for each case. The major downside of this approach is the lack of an
analytical form.

Normalising Flows In general terms, normalising flows [Rezende and Mohamed,
2015] are invertible mappings f : X → Y, (X, Y ⊂ Rd) that are differentiable by
automatic gradient methods. If we consider the probabilities p(x) and p( f (x)) = p(y)
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then by multivariate change of variables, we have the relationship in log space,

log p(y) = log p(x) + log
∣∣∣∣det

∂ f−1

∂y

∣∣∣∣ = log p(x) + log
∣∣∣∣det

∂ f
∂x

∣∣∣∣
−1

, (5.2)

where the Jacobian J f = ∂ f
∂x acts to scale the probabilities such that the integral remains

1. Note that the second equality follows from the inverse function theorem since f is
invertible.

The change of variables can be easily composed, consider

z0 = x, zi = fi(zi−1) where fN(zN−1) = y, fi : Zi−1 → Zi , (5.3)

then,

log p(y) = log
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−1

+ log p(zN)

= log
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∂zN−1

∣∣∣∣
−1

+ log
∣∣∣∣det

∂ fN−1

∂zN−2
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−1

+ log p(zN−1)

= . . .

=
N

∑
i=0

log
∣∣∣∣det

∂ fi

∂zi−1

∣∣∣∣
−1

+ log p(x) .

We now have a means to take a (possibly complex) distribution and iteratively map it
to another distribution, assuming our functions fi are invertible and we can compute
the Jacobians. Indeed, there is nothing preventing these functions from having
learnable parameters enabling them to be optimised by back propagation. It should
also be noted that the number of functions fi can be thought of as the number of layers
in the flow , and the more layers, the more complex the flow can be. These ideas are
the driving force behind normalising flow methods in deep learning. There have been
a number of such learnable functions proposed in the literature, we will be exploring
planar flows, radial flows (both [Rezende and Mohamed, 2015]) and non-volume
preserving flows (RealNVP [Dinh et al., 2016]) since they are relatively simple and
easy to implement compared to more advanced methods such as GLOW [Kingma and
Dhariwal, 2018] and PixelCNN [Oord et al., 2016].

Planar Flow Planar flows simply contract or expand space in the direction
perpendicular to a hyperplane which is defined by free parameters w and b (see
example in Fig. 5.6a). The contraction or expansion is determined by free
parameter u, which also allows shearing along the plane. The flow is then
defined by

f (z) = z + uh(wTz + b) , (5.4)
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where h is is a smooth non-linearity with derivative h′. Conditions for which this
is invertible are given by Rezende and Mohamed [2015]. They provide the
Jacobian determinant as,

∣∣∣∣det
∂ f
∂z

∣∣∣∣ =
∣∣∣1 + uTh′(wTz + b)w

∣∣∣ (5.5)

Radial Flow Radial flows expand and contract (through free parameters α > 0, β)
space about a point z0 (see Fig. 5.6b) rather than a plane, as in the planar flows.
Where α controls the steepness at z0, β controls the expansion/contraction
degree and r = r(z) = ||z− z0||2. The flow is defined by,

f (z) = z +
β

α + r(z)
(z− z0) , (5.6)

where again, conditions for being invertible are given by Rezende and
Mohamed [2015]. They provide the Jacobian determinant as,

∣∣∣∣det
∂ f
∂z

∣∣∣∣ =

[
1 +

β

α + r

]d−1 [
1 +

β

α + r
− β

(α + r)2

]
(5.7)

RealNVP Unlike the previous two methods, RealNVP introduces autoregressive
components, where dimension i of some variable z depends on all dimensions
{0, . . . , i− 1} of z. RealNVP takes advantage of a particular construction of the
flow function f that is invertible and allows the Jacobian to be easily calculable.
It is given by,

f (z)i =





zi if i ∈ {0, . . . , M}
zi � exp (s(z0:M)) + t(z0:M) if i ∈ {M + 1, . . . , N}

, (5.8)

where t, s : RM → RN−M and z0:M denotes the vector comprised of the first M
dimensions of vector z. Notice that in the second case, s and t are independent of
zM+1:N , resulting in the following,

∂ fi

∂zj
=





1 for i, j ∈ {0, . . . , M}
exp (s(z0:M)) for i, j ∈ {M + 1, . . . , N}
0 for i ∈ {0, . . . , M}, j ∈ {M + 1, . . . , N}

. (5.9)

These three quantities are trivial to calculate so the only difficult terms in the
Jacobian are the remaining cross terms. However since the Jacobian is lower
triangular, the determinant is equal to the product of the diagonals,

∣∣∣∣det
∂ f
∂z

∣∣∣∣ =

∣∣∣∣∣exp

(
N

∑
j=M+1

s(x0:M)j

)∣∣∣∣∣ , (5.10)
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(A) Planar (B) Radial (C) RealNVP

FIGURE 5.6: Example flows on a Gaussian distribution. Note that the RealNVP is
simply randomly initialised, and isn’t representative of all possible flows. For both
Planar and Radial flows, we show a single flow layer, in general models use many

layers, we use 10-20 for our models.

which is simple to compute. An example of a randomly initialised RealNVP
flow is given in Fig. 5.6c. Our particular implementation of RealNVP essentially
combines two steps of the above process, swapping the terms kept
constant/conditioned upon, i.e. first condition upon 0 : M and then condition
upon M + 1 : N. The result is that after the combined step, all dimensions have
been transformed and we retain the ability to easily compute the Jacobian
determinants.

Complex Priors with Normalising Flows In Fig. 5.7, we diagram the concept
behind emulating a complex VAE prior using normalising flows which sequentially
adapt a (potentially complex) posterior towards the standard prior. The basic idea is
to map the posterior to a parametrised posterior which is as close to the standard prior
as possible. This allows us to compute the standard KL term whilst retaining the
flexibility of the complex posterior. It is important to note that the flow is used solely
for computing the KL term, not when decoding reconstructions, since the latter would
be simply adding complexity to the encoder, and not emulating a change in prior.

Experimental Setup For all experiments with flow based models, we use the same
setup. We train 5 instances of a ForwardVAE using each flow type (plus no flow).
Training of these models is done in the same way described in Section 5.1. All metrics
reported are measured on a validation set of 10% of the dataset, which is held out
from the training data.

Basic Properties To judge the effectiveness of the flows, we can consider the KL
divergence. As a measure of relative entropy between the posterior and prior, this tells
us the efficiency of the VAE encoding (relative to the prior).

In Fig. 5.8a we provide violin plots of the KL-divergence error for each flow type (i.e.
we have 5 KL error scores for each flow type corresponding to the 5 model instances
trained). Violin plots use kernel density methods to approximate a distribution over
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Posterior Flow Inward Flow Outward
Parameterised

Posterior

f1(z) f2(z)

FIGURE 5.7: The concept behind normalising flows to emulating prior change. We
allow a complex VAE posterior that is gradually mapped back to the standard prior.
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FIGURE 5.8: Comparison of priors under normalising flows on FlatLand. (A) Kernel
density estimation for the validation KL-Divergence error term for flow based models.
(B) Convergence of validation observation reconstruction error as the model is trained.

Lines indicate mean whilst shaded area indicates 1 standard deviation.

the data, and in this instance we use the default kernel settings from
matplotlib. [Hunter, 2007]. From the figure, we find that the relative entropy (expected
over the validation latent space) achieved by flow based methods is far lower than
that of a standard ForwardVAE model (‘None‘), showing the standard Gaussian prior
is not a good fit for FlatLand. In addition, the flow based models were far more
consistent in their scores. It does appear however, that there is very little difference
between the flow types on FlatLand, likely due to it’s simplicity. We evidence this
further in Fig. 5.8b which reports the expected post-action observation reconstruction
||xa − x̂a|| under the different flows. We see that all flows again perform similarly
whilst the standard prior performs with less consistency in early training (grey
shading) however achieves similar reconstruction in the long term.

We can see examples of posterior and parametrised posterior (posterior after the flow
has been applied) in Table 5.5. Observe that the standard model (‘None‘) has a slight
tendency to align with the Cartesian axes. This is a direct consequence of the KL term,
the standard estimator of which is the sum of the divergence for the individual
dimensions, although there are alternative forms (e.g. Hoffman and Johnson [2016]).
To learn a strong representation under the standard prior, the model has to fight this
axis-aligning pressure at the expense of relative entropy and slower convergence, as
we saw in Fig. 5.8b. The flow based models allow the posterior to be any shape, as we
see from the Planar and RealNVP models, which do not align with the Cartesian.
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FlatLandG Posterior Maps
None Planar Radial RealNVP

Posterior

Param
Posterior

TABLE 5.5: Example posteriors and parametrised (i.e. after the flow layers) posteriors
for FlatLandG. Note that colour scale is constant for the posteriors but not for the
parametrised posteriors, which are significantly higher density than the posteriors.
Black dot indicates the origin. ‘None‘ refers to the baseline model with no flow layers.

Interestingly the Radial flow model still appears to show some alignment near the
origin. Position relative to the origin is also important, since the standard prior is
centred around it. For the baseline model (’None’), we can see the origin is close to a
region of higher density, which helps reduce the divergence with the prior. The flow
based models no longer have this restriction and are free to map the posterior
anywhere in the space, only limited by the complexity of the flow. We can see that all
of the flow based models continue to map the posterior near the origin since this
reduces the requirements on the flow and does not harm the likelihood term of the
objective. The last noteworthy property of Table 5.5 is that the flow based models tend
to show more consistent density across the posterior. The standard model posterior
increases density near the origin, whereas the flow based models show lower but
more consistent density throughout.

Looking at the parametrised posteriors, it is obvious that the RealNVP parametrised
posterior has different structure to the others, despite a fairly similar posterior. This is
likely due to the increased complexity of the RealNVP flow compared to the simple
planar and radial flows. Also of note is that the planar and radial parametrised
posteriors are quite similar, both appearing almost as scaled (towards the prior)
versions of the original posterior. It seems that the advantage flow models have over
the standard one is that they can retain discriminability when contracting the
parametrised posterior close to the prior. The variational sampling limits how well
this can be done in the baseline model. For the flow based models, the sampling is
performed in the posterior, which has high discriminability due to the spread out
density.
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VAE Planar Radial RealNVP

FIGURE 5.9: Comparing ForwardVAE posteriors on FlatLandN to those from flow
based models.
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FIGURE 5.10: Exploring flow based models on FlatLandN, where there are no cycles in
the data. (A) Validation observation reconstruction error over training. Lines indicate
mean, shaded area indicates 1 standard deviation. (B) Boxplot of KL-Divergence error

for the flow based models.

Learning the True Structure On FlatLand and FlatLandG, there is obvious true
structure, we observe cycles in the data and the learnt structure reflects this. On
FlatLandN however, there are (at least) two interpretations of the problem. We could
consider it a problem of incomplete data, where there were cycles in the generative
process and we were just unlucky to never observe them. Alternatively, we could say
that since we never saw cycles, they were likely not present in the generative process,
and so any learnt structure should not have cycles. Whilst in this instance we have
access to the generative process, that may not always be the case, and FlatLandN
could equally have come from a generative process with cycles.

In Fig. 5.9 we show example posteriors on FlatLandN which came from a standard
ForwardVAE (‘VAE‘) and flow based ForwardVAE models (the rest). Notice that the
flow based models do not learn the same structure as the standard model. The Radial
flow model is the closest, and it learns almost cyclic structure with some degree of
alignment to the Cartesian axes, as we saw in Fig. 5.4. The Planar flow and RealNVP
models do not learn cyclic behaviour, instead learning non-cyclic structures similar to
those we saw on FlatLandN when we ablated the KL term (Fig. 5.3).
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The two different behaviours are akin to the two scenarios of incomplete data and
non-cyclic symmetries. The standard prior learns the simplest distribution it can,
which in this case is a cyclic structure, and this minimises the KL by increasing
posterior overlap. The flow models learn a more (spatially) complex posterior (with
respect to the standard prior), which allows them to model the observed structure
since they don’t have simplifying pressure from the prior. So if we thought we had
incomplete data, we would want to learn cycles and would use the standard prior. If
we thought we had non-cyclic symmetries, then we’d want to learn non-cyclic latent
structure and thus use flows. This is muddied by the fact that under the post action
observation reconstruction error (Fig. 5.10a), there is very little difference between the
flows and the standard model. Furthermore, both encodings are still very efficient,
giving similar KL divergences (see Fig. 5.10b) to those we saw on the standard
FlatLand (Fig. 5.8a).

In auto-encoders, the goal is to encode an image, so we generally prefer the simplest
solution to a given problem - and consequently should use the standard prior. For
learning symmetries acting on the data, it is not clear if we should aim for the simplest
solution or the one that best fits the observed data. Depending on the true generative
process and the particular observations, either one may fail to find the true
symmetries.

Flow Complexity During the previous experiments, we noticed (anecdotally) that
deeper flows (more flow layers) sometimes performed worse than shallower, simpler
ones. As such we investigate the effect of flow complexity (defined by the number of
flow layers) on the learnt representations of FlatLandG. In Fig. 5.11a we can see that
Radial flows clearly perform best at 10 flow layers, with significantly worse encodings
at higher or lower flow depths. Radial flow has shown to perform inconsistently in
this and previous experiments, so we will discard this result, possibly there is an
implementational bug or the Radial flow is just not suited for FlatLand problems. The
Planar flow shows the encoding improving as we increase the complexity, and the
most efficient encodings achieved with a flow depth around 10. Notice that with only
1 flow layer, the coding efficiency of the Planar and Radial flows are equivalent to
those of a standard ForwardVAE (cf. Fig. 5.8a). RealNVP, which is inherently more
complex than the other flows, shows very little difference in latent code efficiency as
we increase the number of layers. Both the Planar and RealNVP flows showed the
best performance at 10 flow layers, with (marginal) reduction in encoding efficiency
with subsequent added layers.

Whilst RealNVP shows good code efficiency with few flow layers, from Fig. 5.11b we
can see that its ability to accurately model the data is reduced. Notice that all models
perform comparatively poorly and show low consistency with less than 5 flow layers.
Once the flow is sufficiently complex, the performance of Planar flow and RealNVP
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FIGURE 5.11: Flow Complexity on FlatLandG. (A) KL-Divergence error for models
with different depth flows. (B) Observation reconstruction for different depth flows.

(C) Convergence times for models with different depth flows.

does not significantly change with additional flow layers. From these results, we can
conclude that with sufficient number of layers, the flow depth could be optimised for
maximum performance, but the improvement is not significant and likely
unnecessary.

Whilst performance might not be harmed by overly deep flows, depth may impact
convergence time - more parameters to optimise (slower) or adequate complexity to
quickly learn the optimal map (faster). In Fig. 5.11c we estimate convergence time as
the number of epochs until a post action observation reconstruction error of 0.001 is
achieved. We can see that for few flow layers, the convergence is slow and
inconsistent, however for deeper flows the convergence time is fairly constant.
Furthermore, the convergence rate does seem to be reduced with depth, however the
improvement is again marginal.



5.2. Distinguishing Linear Disentangled Representations 117

5.2 Distinguishing Linear Disentangled Representations

Given the highly specific structure of the flatland linear disentangled representations,
we expect to see evidence of them in disentanglement metrics. In this section we will
explore whether a classifier can distinguish a linear disentangled representation from
a classically disentangled representation purely from the disentanglement metric
scores. This section will aim to answer the third question posed in the chapter
introduction, “Can we find evidence of LDRs in disentanglement metrics?”.

Experimental Setup For this section we will need a dataset consisting of
disentanglement metric scores from a number of linearly and classically disentangled
models.

For FlatLand, we reuse the models detailed in Section 4.5 with additional RGrVAE
instances, whilst for dSprites, we trained 18 models, the training schemed for which
are detailed in Appendix Section C.2. For both datasets, we then computed
disentanglement metric scores for each model on a 10% validation set held out from
the training dataset. We then create a number of datasets which each consist of an
individual metric score for each model instance, and an associated label which says if
the representation of that model instance is linearly disentangled or not. We set these
labels by hand, and assumed that ForwardVAE and RGrVAE instance were linearly
disentangled, and then decided based on observation if the other model instances had
linearly disentangled representations or not. This was mostly done by observing
orbits of actions obtained by the process outlined in Section 4.5. For FlatLand, we had
6 linearly disentangled representations and 18 classically disentangled
representations. For dSprites, we had 3 linearly disentangled representations and 15
classically disentangled representations.

Given this setup, we then train an SVM for each metric, using the default Scikit-Learn
SVM settings, barring the class weighting which was set to balanced.

Disentanglement Metrics For this experiment, we compute the metrics detailed in
Section 3.2.4 (Classic), the unsupervised metrics2 used by Locatello et al. [2018]
(Unsupervised), the metrics detailed in Section 4.4 (Factor Leakage and Symmetry),
and finally, some additional quantities computed from the representation (Symmetry).
In Table 5.6 we provide a summary on each of these metrics.

Evaluation Metrics To determine how well the SVMs can distinguish linearly and
classically disentangled representations from the disentanglement metric scores, we

2Modified from: https://github.com/google-research/disentanglement_lib

https://github.com/google-research/disentanglement_lib
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Metric Description

Val Beta BetaVAE metric, see Section 3.2.4.
MIG Mutual information gap metric,see Section 3.2.4
Informativeness Metric by Section 3.2.4
DCI DCI Disentanglement metric, see Section 3.2.4
Completeness See Section 3.2.4
Modularity See Section 3.2.4
Explicitness See Section 3.2.4
SAP See Section 3.2.4

GaussTC Total correlation of the latent code dimensions based on fitted
Gaussian. See Locatello et al. [2018].

Wass Corr Wasserstein correlation of the latent code dimensions based
on fitted Gaussian. See Locatello et al. [2018].

Wass Corr Norm Normalised version of Wass Corr.
MI Score Average mutual information between latent dimensions. See

Locatello et al. [2018].

FL Mean Factor Leakage metric. See 4.4
FL Norm Mean FL Mean normalised.
FL Average over i for the factor leakage computed ignoring the

i most informative latent dimensions.
FL NM FL where the first most informative latent dimension is ig-

nored.

Downstream
Rep

Accuracy of a gradient boosted tree when trying to predict
an observed action from the pre and post action latent codes.

True Indep True independence. See Section 4.4.
Av Symmetry L1 Average difference between the known irreducible represent-

ation matrix and the learnt representation matrix for the rep-
resentation (uses the methods from Section 4.5).

Av Rep Mean x2 Average observation reconstruction error.
Av Rep Mean z2 Average latent reconstruction error between predicted and

true post action latent codes.
SVD Overlap See Section 4.4.

TABLE 5.6: Disentanglement metric summary.

need evaluation metrics. Using the SVM classifiers, we can report the accuracy ‘Acc’
and the probabilities that the classifier predicts a linearly disentangled representation
to be classically disentangled (P[L|N]) and visa-versa (P[N|L]). In addition to these,
we also report the ROC-AUC, Precision-Recall area under curve (PR) and F1 scores.
Since we are working with single (continuously valued) disentanglement metrics, we
can define a simple classifier by just setting a threshold, for example, we could say
that all model instances with a MIG greater than 0.1 are linearly disentangled. This
allows us to compute the ROC-AUC, PR and F1 scores by varying this threshold.
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FIGURE 5.12: Relevance of each metric to distinguishing linear from classical disen-
tanglement. ROC and PR are computed directly on the metric values and given as
AUC measures. Scores are the probability that an RBF-SVM can classify the model
correctly from the metric alone. P[L|N] is the probability the SVM predicted a model

was (L)inear disentangled when it was (N)ot/(N)ormal.

Results In Figure 5.12, the first thing to notice is that whilst on average,
discriminability of each metric is similar across both datasets, they do not always
agree. We attribute this to the comparative complexities of the dataset. FlatLand is
very simple and models converge rapidly, resulting in very optimised representations.
dSprites is much more complex and it takes significantly longer for representations to
converge fully. Whilst we increased training length dramatically to account for this,
models may still have rather ‘noisy’ representations - i.e. not optimised to their
maximum potential. This is particularly true for RGrVAE, since representation
convergence depends on the policy having first converged.

Despite this observation, we can still draw some conclusions from Fig. 5.12. We can
see that, surprisingly, some of the best performing metrics are classical ones, with
Informativeness, DCI Disentanglement, Completeness and Modularity all achieving
high scores. This is true for all estimates, and across both datasets. This is interesting
since of the four, two of them (Modularity and Disentanglement) depend on
individual latent dimensions encoding information about a single factor, a property
which you would expect to be strong in both forms of models. We know that linear
disentangled models are strict on this property since it is similar to the independence.
They also likely have cleaner (better disentangled) representations than standard
VAEs, which was somewhat evident in Fig. 4.21. Of the other two metrics,
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informativeness is computed as the ability to predict factors from latent values, a form
of downstream task linear disentangled models are particularly good at, as we will see
later. Finally, Completeness measures the extent single generative factors are encoded
into a single latent. We know that for both datasets, all symmetries are cyclic and so
each factor will be encoded across two latents. Since standard disentanglement would
encode them across one dimension each, this allows the metric to be discriminative.
This, however would not extend to data where there are symmetries acting with 1D
irreducible representations. Whilst we have no such examples in our datasets, it is
important to note that Completeness may not be discriminative in all cases.

The other classical metrics are less discriminative. The BetaVAE metric allows high
scores for both classical and linear disentangled representations. The MIG and SAP
metrics have already been discussed in previous sections. The explicitness is
interesting, since it relates to the ability to determine generative factors from the latent
code, seemingly similar to the Informativeness, however the major difference is that
Explicitness is computed from the entire latent code, whereas the Informativeness is
computed from individual dimensions. Across the whole code, it is likely that both
symmetry based and classical models can predict the generative factors accurately,
however symmetry based models may have the advantage when considering only
single dimensions due to their highly structured posteriors.

We now consider unsupervised metrics. In general they are not consistently
discriminative, with the possible exception of the MI score. We do note that the
dSprites PR-AUC is fairly low, whilst the F1 score is relatively high. Possibly this is
due to a small number of anomalous results prompting low precision values in the PR
curve. Such anomalies mean we cannot say conclusively if this metric would be
discriminative for larger sample sizes.

The third class of metrics are Factor Leakage derivatives. We consider the area under
the curve (AUC), the mean (Mean), the AUC whilst ignoring the most informative
latent (NM AUC) and finally the mean of the normalised curve (Norm Mean). In
general all the FL metrics are fairly discriminative on both datasets, with particularly
high scores on dSprites. The best overall variant appears to be the non-maximum
AUC variant, at least under ROC, PR and F1 scores. The worst appears to be the norm
mean variant. Since there is not much difference between the other three, we will
generally consider one of the two AUC variants.

The final class of metrics (symmetry based) are a mix of metrics which we have
proposed and quantities related to symmetry based models. First note that the
Independence and SVD metrics are fairly discriminative across both datasets and as
we might expect, they perform similarly. Neither the symmetry reconstruction or post
action observation/latent errors are particularly discriminative on dSprites. This is
likely due to lower quality representations, as we mentioned at the beginning of this
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section. Whilst only the symmetry reconstruction performs poorly on FlatLand, we
cannot be certain if these are good metrics for determining whether a model is linear
disentangled or not. Since these quantities are all estimated through the process
outlined in Chapter 4 (Section 4.5), it is possible that the representations learnt
(independent of the models) were not well optimised due to multiple bad local optima
in the loss space. We note this since the learnt (internal representations) on FlatLand
were generally more accurate than those estimated independent of the model. Whilst
we could use the internal representation to directly compute independence, we could
only do this for the symmetry based models, so the comparison to classical metrics
would be impacted by any biases in the estimation procedure.

5.3 Downstream Tasks

Strong performance in downstream tasks is the goal of most unsupervised
representation learners. For disentanglement research, a simple and common
downstream task is to predict generative factor values from the
representation [Locatello et al., 2018].

Since Caselles-Dupré et al. [2019] showed that symmetry based models require
interaction with the environment (i.e. observe actions / state transitions), they
evaluated on the downstream task of predicting which action occurred between two
sequential observations. We will compare symmetry based and classical models on
both the downstream tasks of factor and action prediction, to determine if and how
much improvement linear disentangled representations offer over classical ones. We
will also confirm the findings of Caselles-Dupré et al. [2019] where it was shown that
linear disentangled representations perform better on the task of predicting actions.
This section will aim to answer the downstream task portion of fourth question posed
in the chapter introduction, “How do LDRs compare to classically disentangled
representations under data efficiency and downstream tasks?”

Experimental Setup In this section we explore two downstream tasks. In both
cases, we use the same training parameters as detailed in Appendix Section C. We
train 5 instances of each model type and report results using these on a 10% held out
validation set. We use the same backbone architectures as in Section 4.5.

To measure performance on downstream tasks we use either a gradient boosted tree
(GBT) or random forest classifier (Forest). The GBT experimental setup uses that
defined by Locatello et al. [2018], whilst the Forest experimental procedure
follows Caselles-Dupré et al. [2019]. Both classifiers use the sklearn implementation
with default settings.
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Predicting Actions For this task, the specifics of the experiment are as follows. For
this task we need to work with the transition versions of FlatLand and dSprites as
defined in Section 3.3.1. We take pretrained VAE models, and compute the latent
representations (take the mean of the encoder output) of each data point, pre and post
action. This gives us a dataset of pre-action representations, post action
representations and the action label, for each VAE model instance. In this task, we
train the classifiers to then predict the action label from the concatenation of pre and
post action latent representation codes.

Caselles-Dupré et al. [2019] explored the question of whether linear disentangled
representations are “increasingly better” for downstream tasks when compared to
standard disentangled representations. To do this they evaluated this downstream
task of predicting observed actions (using Random Forests) under limitations of
classifier complexity and dataset size. Specifically, they limited the depth of a tree
based classifier (classifier complexity) or limited the number of samples in the dataset
(Dataset Size). They found that given a large enough dataset and a classifier of
sufficient complexity, there is little difference between symmetry based and classical
models on task. However, when the classifier complexity or dataset size (or both) are
limited, the linear disentangled representations consistently allow for stronger
downstream performance.

We first compare the absolute performance of symmetry based models to baselines.
We find that the symmetry based models allow for better downstream scores on both
datasets (Fig. 5.13a and Fig. 5.13b). On FlatLand (Fig. 5.13a), all models achieve very
high scores, however ForwardVAE and RGrVAE are higher scoring. On dSprites
(Fig. 5.13b), the baselines show highly variable scores, although TcBetaVAE
approaches the same score as RGrVAE, with RGrVAE performing better on average.
These results suggest that well trained classical models can perform well on this task,
however symmetry based models still have an advantage.

We also consider restricting dataset size and classifier complexity, with an additional
comparison to the RGrVAE policy distribution. The policy distribution is (under ideal
conditions) a labelling of exactly which action has been observed, which is naturally a
perfect representation for this particular downstream task. We can see that when
provided a large enough dataset (Fig. 5.13c), the policy is a perfect classifier by itself -
since the forest classifier has 100% accuracy at a depth of 1, and it simply maps policy
dimensions to action labels. When data is limited (Fig. 5.13d), the policy performance
becomes less consistent and based on the wide variance at dataset fraction 0.7, likely
depended quite heavily on the selected data being representative of enough states. We
do note that on average it achieved accuracy greater than 95%. In general, the policy
will not be a particularly strong representation on its own for most tasks, however for
this particular task and any that require knowledge of the action observed, it is a
natural choice.
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FIGURE 5.13: FlatLand and dSprites Downstream performance on action prediction
for all baselines.

Returning to Fig. 5.13c, we can see that the symmetry based models (red and blue)
allowed for better downstream performance with lower complexity classifiers, when
compared to baseline VAEs. This is consistent with the findings of Caselles-Dupré
et al. [2019], and shows that linear disentangled representations are beneficial for this
task. When comparing RGrVAE to ForwardVAE, we see that in both cases of reduced
data and reduced classifier complexity, performance is almost identical. This further
shows that RGrVAE learns structurally the same representations as ForwardVAE
when trained sufficiently, despite the lack of action supervision.

Note that for the complexity and dataset size experiments we have used Random
Forest Classifiers rather than the Gradient Boosted Tree (GBT) classifiers used for
computing the general downstream performance. We found that the GBT classifier
complexity was mainly decided by the number of iterators, rather than the depth of
the individual trees in the ensemble. For this reason, we chose to measure
performance under Random Forests, which allowed us to vary classifier complexity
by depth. This has the further advantaged of being consistent with the experimental
procedure of Caselles-Dupré et al. [2019].

Predicting Factors Predicting factors is a standard downstream task in
disentanglement research. This task does not require datasets of transitions, just the
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FIGURE 5.14: Generative factor prediction downstream performance for baselines and
symmetry based models on FlatLand and dSprites using a Gradient Boosted Tree
(GBT) classifier. Symmetry based models perform better on both datasets in this task.

base datasets. To evaluate this task, we compute the latent representation of each
point in the dataset, and store the generative factor values (See Section 3.2.1) as the
targets. The classifier is then tasked with predicting the exact generative factor values
from the latent representation values for each state.

Locatello et al. [2018] found that disentangled representations correlated with
improved performance on this downstream task for most datasets. We now compare
our models under this task. We follow the same experimental procedure as Locatello
et al. [2018], using a Gradient Boosted Tree (GBT) and default sklearn settings. We also
note that, similar to Locatello et al. [2018], we found that the dSprites baselines had
not consistently converged to disentangled representations however the majority
appeared to do so.

Beginning with FlatLand (Fig. 5.14a), we can see that the models perform very well on
this task, all achieving greater than 90% classification accuracy. The symmetry based
models achieve consistently higher scores (> 98%) with much more consistency than
the baseline VAEs. Whilst for FlatLand we only see fractions of a percent
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improvement, this is a very simple dataset, so it is to be expected that the
improvements would be marginal. In Fig. 5.14b (right) we evaluate on dSprites, where
the distinction between symmetry based models and classical models is much more
distinct. The classical models achieve between 30− 60% accuracy, whereas the
symmetry based model achieves greater than 90%. When comparing the performance
under the limitation of classifier complexity, we can see that similar to the previous
task, symmetry based models allow for better performance at lower complexities.

It is interesting that RGrVAE achieved similar dSprites performance on the factor
classification task as it did on action classification. On dSprites, there are 4 actions (we
did not consider changing shape an action) and the rotation and translation factors
have > 32 possible values. You would expect that models would perform significantly
worse at classifying factor values than they would at classifying actions.

Symmetry Based Models on Downstream Tasks In both of the evaluated
downstream tasks, symmetry based models performed the strongest in pure
performance and when restricted by complexity. For the task of predicting observed
actions, there is a strong case to be made that the symmetry based models have an
inherent advantage. ForwardVAE is explicitly supervised by action labelling and
RGrVAE has implicit bias since it observes the results of single actions, and not a
mixture of actions. The baseline VAEs by comparison are completely unsupervised
and have no concept of actions during training or evaluation. This advantage could be
the reason symmetry based models perform better on this task. The same cannot be
said of the factor prediction task. During training, neither ForwardVAE or RGrVAE
have any knowledge of the generative factors, other than the fact that they only ever
observe actions on single factors. Whilst it may be true this could provide symmetry
based models cleaner gradients towards separating factors in the latent space, this
does not make predicting the full set of generative factors any easier. However, we
have seen that linear disentangled representations have significant posterior structure,
which offers rich information about the generative factor values. The consistency in
the learnt representations also allows for consistency in downstream task
performance, although more so in ForwardVAE due to supervision. Consistency is not
always a given with VAE models, as can been seen by the disentanglement metrics
and downstream scores. This may be considered another advantage of symmetry
based models, a single instance will often provide the best performance of that model
class, whereas with a standard VAE, you may have to train/evaluate multiple
instances to achieve top performance.
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5.4 Data Efficiency

Whilst Locatello et al. [2018] found that disentanglement metrics correlated (on most
datasets) with factor prediction performance, they also found that there was no
consistent correlation with data efficiency. This is important as it has been cited as a
potential benefit for learning disentangled representations in the past [Bengio et al.,
2013]. Data efficiency (aka sample complexity) of a representation, can be thought of
as how easy it is to learn downstream tasks from the representation. Locatello et al.
[2018] measure this by evaluating a classifier which has been trained on a restricted
number of samples from the representation. Specifically, for the task of generative
factor prediction, they evaluated the performance (classification accuracy) conditioned
on 100 samples divided by the performance conditioned on 10000 samples.

We will look to answer the following two questions: are symmetry based models more
data efficient, and can we correlate symmetry based metrics with efficiency? Towards
this, we evaluate the data efficiency on FlatLand and dSprites for symmetry based
models and baselines. Since we evaluated two downstream tasks in the previous
section, we will continue to compare them under efficiency.

Experimental Setup All data efficiency experiments use a GBT classifier using
default Scikit-Learn parameters. For each downstream task, the classifier accuracy
was evaluated using 10, 100, 1000 and 10000 data points, and data efficiency was
reported as the ratio of the performance using 10000 data points to that using 100 data
points. The backbones are the same trained backbone instances as used in the
downstream score experiments.

Are symmetry based models more efficient? First discussing the factor prediction
task, we can see from Fig. 5.15a that on FlatLand, the symmetry based models have a
clear advantage in efficiency. On dSprites (Fig. 5.15b), RGrVAE shows a higher median
efficiency than the classical models, albeit the improvement is far less distinct than on
FlatLand. Indeed the TcBetaVAE upper quartile is close to the median RGrVAE score.
Also of note is FactorVAE, which shows strong scores, approaching those of RGrVAE.
In general, we can say that the symmetry based models achieve higher efficiency
scores on this task. Indeed this will be reinforced when we consider an efficiency score
normalised by the downstream performance of the representation (Fig. 5.17).

For action prediction task, the comparison between symmetry and classical models is
not clear. For FlatLand (Fig. 5.15c) we see a similar results to the previous task,
although RGrVAE shows an extremely large variance. For dSprites (Fig. 5.15d), the
classical models show far higher efficiencies than the symmetry based models, which
have surprisingly low efficiency scores. Upon examining the downstream scores for
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FIGURE 5.15: Data Efficiency Scores

this task (recall Fig. 5.13b), we can see that the classical models achieve very low
accuracies. Since the performance conditioned on 100 samples is very similar to that
on 10000 samples, the efficiency is high, despite the performance being poor. This can
be seen in Fig. 5.16a which scatters the mean efficiency against the mean downstream
score for dSprites. Notice that, if we disregard the RGrVAE policy, there is an inverse
relationship between the two, higher efficiencies seem to correlate with lower
downstream scores. This downstream task appears to be very hard to solve with
access to small amounts of data, and even the highly structured RGrVAE
representations cannot achieve strong scores in this domain. We can see this in
Fig. 5.16b which plots the downstream score with increasing data. The classical
models do not improve significantly as the available data increases, whereas RGrVAE
has a large jump between 100 samples and 10000, resulting in the data efficiencies
shown in Fig. 5.15d. Notice that all models still appear to be improving at the 10000
data size. This suggests that we could achieve higher downstream scores if we
included more data on which to train. However, for consistency with Locatello et al.
[2018], we shall stick to the scheme of 10000/100 data points. Of course, as we can see
from Fig. 5.16a, none of this analysis includes the policy representation, which
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FIGURE 5.16: Downstream Score Comparisons

achieves very high downstream scores and data efficiency - since it is an extremely
good representation for this task.

Given that the data efficiency can be heavily impacted by the final downstream
performance, we now compute a ‘Scaled Efficiency’. We take into account the overall
quality of the representation by multiplying the efficiency by the downstream score,
through which we arrive at the ‘Scaled Efficiency’ score reported in Fig. 5.17. From
Figures. 5.17a and 5.17b, we continue to see symmetry based models achieving higher
data efficiencies on both datasets for the Factor prediction task. Indeed the
improvement over classical models is increased compared to Fig. 5.15. On the action
prediction task the story is still not clear. On FlatLand (Fig. 5.17c) we can see
ForwardVAE achieves very strong scores, however RGrVAE continues to show high
variance. This could be due to one low quality representation degrading the results.
On dSprites (Fig. 5.17d), we see that RGrVAE still does not offer the best scaled
efficiency, with an almost identical median to TcBetaVAE, but a much worse upper
quartile. The proximity of the median and upper quartile suggests a single
representation lowering the score. However, since the median is the same as
TcBetaVAE, it is unlikely that we would see significantly higher scaled efficiency even
with retrained models.

From the results so far, we can say that for Factor prediction, symmetry based models
are more efficient than classical models on the datasets tested. Whilst dSprites showed
Tc, Factor and RGrVAE having overlapping scaled efficiency distributions, the median
of the latter was much higher. This suggests it’s unlikely that running more tests
would show classical models being consistently more efficient than RGrVAE. This
does not preclude single instances of (for example) TcBetaVAE being more efficient
than an RGrVAE instance, however in general this outcome is unlikely. When we
consider the action prediction task, the results are not as conclusive. Under the
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FIGURE 5.17: Scaled Data Efficiencies.

standard data efficiency, ForwardVAE shows consistently high efficiency on FlatLand,
whilst RGrVAE shows high efficiency on average with a large tail. Since in the ideal
case RGrVAE should learn the same representation as ForwardVAE, this is likely due
to a single RGrVAE instance performing poorly for this task. On dSprites, RGrVAE
shows the lowest efficiency tested. This, however was due to the classical models
being unable to learn the downstream task effectively, resulting in unrepresentative
efficiency scores. When scaled by the downstream performance, we find that RGrVAE
performs as well as the best classical model, but notably not better, if we disregard the
policy as a representation in itself. From these results, we cannot conclude that
symmetry based models are more efficient on this task. It is interesting, however, that
the action prediction task is so reliant on large amounts of data. For our testing, we
concatenated the representations of the pre and post action observations as the
representation for the action. It is possible that this is not particularly suitable for the
classifiers tested and that a better way to combine the pre and post action
representations would result in better performance with low data. We chose our
method as the simplest available without introducing biases by performing operations
on the data.
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Do symmetry metrics correlate with efficiency? Arguably the most important
result of Locatello et al. [2018] was that disentanglement metric scores do not
consistently correlate with data efficiency across all datasets. Some metrics such as
DCI disentanglement were found to correlate on, for example, Shapes3D, however
there was no general trend across all tests. Accurately estimating correlations requires
a dataset of large enough size to properly represent the general trends and not be
susceptible to outliers. Locatello et al. [2018] evaluated over 12000 models, which
should be sufficient to represent true trends (for the models tested). For our work, we
cannot evaluate such a large number of models due to compute limitations, and will
have to evaluate on the limited number models we have. As such, our correlations
should be considered rough estimates, even if the reported p-values are low. This is
particularly true for the dSprites results, for which we could train a very limited
number of models. To mitigate this, for all the correlation figures, we will provide the
Pearson correlation here and a scatter of the results in appendix A, so that correlations
can be judged accordingly.

Fig. 5.18 reports correlation between metric scores and efficiency for both downstream
tasks and datasets. First we consider the task of factor prediction. From Fig. 5.18a we
find that on FlatLand we have strong correlation between the classical DCI metrics, as
well as the Factor leakage metrics and the symmetry reconstruction metric. These
correlations however, are much weaker on the dSprites dataset. The classical metrics
show similar correlations on dSprites as those found by Locatello et al. [2018], bar the
Modularity, which they found to be negatively correlated and we find to be positively
correlated. These results are influenced by the presence of the symmetry based models
however. We can see from Fig. 5.18b that when we remove the symmetry based
models, the classical metric correlation on dSprites is reduced dramatically, and the
p-value is heavily increased, indicating uncertainty. Interestingly, the Modularity
continues to show some correlation. Similarly, the Factor Leakage metrics and the
symmetry based metrics no longer show strong correlations once the symmetry based
models are removed - on either FlatLand or dSprites. In general, we believe it is fair to
say that if there is any correlation between any of the metrics tested and efficiency on
this task, we would likely see stronger results than this. As such we believe that, as
found by Locatello et al. [2018], any correlation is likely to be weak, and cannot be
accurately estimated by our tests. In particular, there is no evidence that symmetry
based metrics correlate any stronger with data efficiency than classical metrics.

Moving on to the action prediction task, we find that Figure 5.18c shows conflicting
results between the two datasets. On FlatLand, the DCI metrics are generally
positively correlated with data efficiency, whereas on dSprites they are negatively
correlated. This is consistent both with and without symmetry based models. This
relationship continues across the Factor Leakage and symmetry based metrics, with
the direction of correlation inverted between the datasets. Recall from the previous
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Corr

p-val

F
la

tL
an

d

0.25 -0.20 0.64 0.67 0.68 0.51 -0.18 -0.07

0.24 0.34 0.00 0.00 0.00 0.01 0.40 0.76

Classic

-0.03 -0.08 -0.05 0.44

0.89 0.71 0.83 0.03

Unsupervised

-0.51 0.55 -0.52 -0.45

0.01 0.01 0.01 0.03

Factor Leakage

0.37 0.26 0.48 -0.68 -0.29 -0.19

0.08 0.23 0.02 0.00 0.17 0.38

Symmetry

Val
Bet

a
M

IG

In
fo

rm
at

iv
en

es
s

D
CI

Com
pl

et
en

es
s

M
od

ul
ar

ity

Exp
lic

itn
es

s
SA

P

Corr

p-vald
S

p
ri

te
s

-0.62 -0.36 -0.59 -0.57 -0.59 -0.66 -0.74 -0.67

0.01 0.15 0.01 0.01 0.01 0.00 0.00 0.00

G
au

ss
TC

W
as

sC
or

r

W
as

sC
or

rN
or

m

M
I Sc

or
e

-0.17 -0.29 -0.45 -0.61

0.51 0.23 0.06 0.01

FL

FL
M

ea
n

FL
N
M

FL
N
or

m
M

ea
n

0.56 -0.72 0.56 0.55

0.02 0.00 0.01 0.02

D
ow

ns
tr
ea

m
R
ep

Tru
e
In

de
p

A
v

Sy
m

m
et

ry
L1

A
v

R
ep

M
ea

n
x2

A
v

R
ep

M
ea

n
z2

SV
D

O
ve

rla
p

-0.71 -0.50 -0.67 -0.42 0.30 0.25

0.00 0.03 0.00 0.08 0.23 0.32

(D) Action - with out Symmetry based models

Corr

p-val

F
la

tL
an

d

0.04 -0.02 0.28 0.30 0.35 0.20 0.19 0.19

0.87 0.95 0.27 0.23 0.15 0.42 0.45 0.44

Classic

0.24 0.22 0.26 -0.10

0.33 0.39 0.30 0.71

Unsupervised

-0.23 -0.06 -0.23 -0.20

0.37 0.80 0.35 0.43

Factor Leakage

0.07 -0.25 -0.23 -0.27 0.19 0.24

0.79 0.31 0.36 0.28 0.46 0.34

Symmetry

Val
Bet

a
M

IG

In
fo

rm
at

iv
en

es
s

D
CI

Com
pl

et
en

es
s

M
od

ul
ar

ity

Exp
lic

itn
es

s
SA

P

Corr

p-vald
S

p
ri

te
s

-0.46 -0.58 -0.49 -0.43 -0.41 -0.62 -0.74 -0.55

0.08 0.02 0.06 0.11 0.13 0.01 0.00 0.03

G
au

ss
TC

W
as

sC
or

r

W
as

sC
or

rN
or

m

M
I Sc

or
e

-0.32 0.34 -0.24 -0.49

0.25 0.22 0.38 0.06

FL

FL
M

ea
n

FL
N
M

FL
N
or

m
M

ea
n

0.37 -0.78 0.38 0.39

0.17 0.00 0.16 0.16

D
ow

ns
tr
ea

m
R
ep

Tru
e
In

de
p

A
v

Sy
m

m
et

ry
L1

A
v

R
ep

M
ea

n
x2

A
v

R
ep

M
ea

n
z2

SV
D

O
ve

rla
p

-0.61 -0.30 -0.79 -0.66 0.29 -0.13

0.02 0.28 0.00 0.01 0.30 0.64

FIGURE 5.18: Correlating data efficiency scores with disentanglement metrics.
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section that we considered a scaled data efficiency to compensate for poor
performance on the task. In Fig. 5.19 we consider correlation of metrics with the scaled
efficiency.

Under the scaled efficiency and the Factor prediction task, the correlations seen in
Fig. 5.19a are simply stronger versions of those seen in Fig. 5.18a. Structurally, no
changes are observed. We also see from Fig. 5.19b that the symmetry based models are
very influential, where once again correlations are reduced when the symmetry based
models are removed. Whilst the dSprites correlations are stronger (with and without
symmetry based models) under the scaled efficiency, we still believe that we cannot
conclude there is a true correlation, particularly since the DCI metrics are not strongly
correlated in the absence of symmetry based models. Furthermore, we once again see
that there is no evidence that symmetry based metrics correlate stronger than classical
ones against the scaled data efficiency.

Returning to the action prediction task (Figures 5.19c,5.19d), we see a clearer picture
than under the standard efficiency. In general the correlations have the same sign
across both datasets. We again see fairly strong correlation with the DCI metrics on
FlatLand and dSprites, although this is reduced on FlatLand when the symmetry
based models are removed. Of the symmetry based metrics, those that measure
independence (true independence and SVD overlap) are very uncertain in most cases,
which precludes us from drawing any conclusions on them. It does appear however
that the factor leakage metrics are consistent across the datasets (excepting FL Mean)
in both Figures 5.18 and 5.19, suggesting there may be some true (small) negative
correlation there.

From these results, we cannot provide a conclusive answer to the question ‘what is the
correlation between symmetry metrics and efficiency’ due to lack of data. We can say
that it is unlikely that symmetry based metrics correlate with efficiency any more than
classical metrics. This is interesting since symmetry based models appear to have
better downstream performance and efficiency than classical models. This suggests
that none of the symmetry based metrics individually correlate with whether a model
is symmetry based or not. For example, strongly disentangled classical models will
likely have high independence - since they encode factors into single dimensions.
Whilst this may appear to contradict the results in Section 5.2, we note that the
correlation scores are computed based on the pair (metric, efficiency) for each model
instance. As such, even if the symmetry based models had perfect efficiency and very
distinct metric scores (neither of which are the case), the correlations would still
depend on the scores of the classical models. It may be that some classical models
show high metric scores and low efficiency, whereas others show the opposite,
weakening the correlation. We highlight this by considering the correlation with and
without the symmetry based models, and in general we did see reduction in
correlation when the symmetry models were ablated. Whilst we have concluded that
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FIGURE 5.19: Correlating scaled data efficiency scores with disentanglement metrics.
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there is likely no strong correlation with the symmetry based metrics and
(scaled/standard) data efficiency, there are intriguing results for the factor leakage
metrics, which, alongside a much larger study of the symmetry based metrics, would
be an good starting point for future work.

Combined Data Efficiency For single metrics, we saw fairly high correlations in
some cases, although our confidence is limited by the small amount of data. We will
now consider correlation over both datasets to alleviate this problem somewhat.
Subsequently, we will optimise linear combinations of metric scores for best data
efficiency over both datasets.

Comparing Fig. 5.20a to Fig. 5.18a, we can see that the standard efficiency score
continues to correlate fairly strongly with the DCI classical metrics and the Factor
Leakage metrics. The major difference is that the unsupervised and symmetry based
metrics now show very low correlations, with the exception of the MI Score, which
correlated fairly strongly on both datasets. These observations hold true for both the
efficiency and the scaled efficiency, although this is unsurprising since there is only a
small discrepancy between them on this task.

For the action prediction task (Fig. 5.20b), the standard efficiency appears to correlate
with very few metrics, only showing weak correlations with the FL mean and
reconstruction symmetry metrics. This is likely due to dSprites efficiency results being
strongly biased towards models which perform poorly on this task. When considering
the scaled efficiency, we find the BetaVAE metric shows middling correlation and the
Informativeness shows strong correlation, alongside the MI Score and the FL Mean
metrics.

Considering both tasks together, we can see that the FL Mean metric seems to
correlate quite strongly in all cases. The Informativeness and MI Score metrics
correlate quite strongly in all but the dSprites action prediction task. Notably the
symmetry metrics do not correlate consistently across tasks and neither do the Factor
Leakage metrics beyond FL Mean.

Optimal Metric Combination for Data Efficiency Having considered single metric
correlations, we now explore the optimal set of metrics, which, when combined
linearly, have the maximal (Pearson) correlation with the data efficiency. To do this we
simply gradient ascend a weight for each metric, optimising to maximise the final
Pearson correlation coefficient. To find the minimal set of metrics, we introduce an L1
penalty on the weights such that many are set to 0. In addition to this, we apply a soft
threshold to the weights (sharp sigmoid rising at 0.05) such that low weights (< 0.05)
can be set to 0 in the final correlation computation, whilst still retaining gradient in the
optimisation process. As the optimiser, we use Adam with a learning rate of 0.001.
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FIGURE 5.20: Correlation of data efficiency with metrics for combined FlatLand and
dSprites.

In Fig. 5.21 we report non-zero metric weights as we vary the L1 penalty. In both
figures, the low penalty weights are not particularly interesting, with Fig. 5.21a
showing multiple equivalently weighted metrics and Fig. 5.21b massively prioritising
a training metric - which likely doesn’t capture much true information. With a weight
of 1 we start to see trends occur. In both figures the FL Mean metric is strongly
weighted throughout, which correlates with its strong individual correlation scores as
seen in Fig. 5.20. Alongside this metric, for the factor prediction task we see the DCI
disentanglement being prominent whilst for the action prediction task, FL Mean is
basically the only important metric. Note that the correlation of the linear combination
is larger than the best individual correlation score (0.87) for the factor prediction task.
For the action task however, the correlation is stronger for lower weights (< 20) but
returns to the individual score for the highest weighting.

The Pearson correlation coefficient can be slightly misleading, especially for small
amounts of data. In Fig. 5.22 we scatter the metric combinations against (scaled) data
efficiency for both tasks and for two different L1 penalty weights. For the factor
prediction task we can see that the correlation looks strong, and matches with the high
Pearson correlation score. Furthermore, both datasets seem to show the same
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FIGURE 5.21: Optimal linear combination of metrics to correlate with data efficiency
as the weight penalty is increased.
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FIGURE 5.22: Scatter metric combinations against efficiency for L1 penalty weights 1
and 5.

relationship. For the action prediction task however, we see two distinct populations,
corresponding to the two datasets. We also see that the relationship for dSprites is
very different to that of FlatLand. dSprites seems to show some slight negative
correlation, whereas FlatLand shows very little correlation at all. As we have seen in
previous experiments, the action prediction task is extremely messy and doesn’t seem
consistent across datasets.

5.5 Conclusions

This chapter has aimed to address the following questions:
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• What is the posterior structure of FlatLand linear disentangled representations?

• Can we find better priors for FlatLand?

• Can we find evidence of LDRs in disentanglement metrics?

• How do LDRs compare to classical representations under data efficiency and
downstream tasks?

• Can we find any correlations with data efficiency?

What is the posterior structure for ForwardVAE on FlatLand? Linear disentangled
representations offer more structured distributions than standard disentanglement,
and through SBDRL, their structure can be defined very precisely with respect to the
symmetry groups acting on the data. By comparing different variants of FlatLand, we
saw that the posterior structure changed correspondingly. For instance, by increasing
the order of the cyclic symmetries, we saw a posterior with more density peaks. When
considering FlatLandN, we found that cyclic structures were present in the posterior
despite not being observed in the data. When ablating the KL divergence, we saw that
this no longer occurred, suggesting that cycles helped minimise this divergence by
increasing the overlap between density peaks and increasing the density at the origin.

It is interesting to consider what structure is desired for FlatLandN. For FlatLand/G it
is obvious that cyclic structures are both aesthetic and a good representation of the
data. For FlatLandN cycle-less posteriors are the best representation of the data as
observed. Furthermore for a downstream task such as planning, this would be the best
representation assuming boundary warping is not a valid action in this task. As such,
the standard ForwardVAE model would not perform well, since it continued to learn
cyclic structures. Viewing the KL as a capacity constraint, the cyclic posterior learnt by
ForwardVAE is the simplest (lowest capacity) representation available under the
standard prior. This may not always match the actual observed structure of the data.

Since ablating the KL biased the model away from cycles on FlatLandN, this allowed
us to observe the bias introduced by cyclic internal representations. Interestingly, we
saw that this bias was not strong for either the standard model, or when ablating the
KL. In the latter case we did observe cyclic behaviour more frequently, but it was far
from guaranteed, as might be expected for purely cyclic internal representations.

Can we find better priors? We observed that ForwardVAE learns cyclic structure
for FlatLandN, a dataset without observed cycles. We noted that this was the lowest
capacity representation under the standard prior. This suggests that the standard prior
is too simple to capture the true observed structure of this dataset.
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To explore this we decided to emulate a change in prior through normalising flows.
By mapping the posterior to a parametrised posterior, we can calculate its KL against
the standard prior. This allows more complex posteriors whilst retaining a simple (to
compute) KL divergence. When comparing the divergence under the normal prior to
that when using the flow layers, we saw that the latter was indeed more efficient, by a
factor of 5.

As mentioned, a complex posterior should be able to represent the observed data
more faithfully than a simple one, since it has more capacity. Visualising the posteriors
under the normalising flows, this is exactly what we saw. The flow based models did
not learn cyclic structures on FlatLandN whilst continuing to learn them on
FlatLand/G. This observation highlights a choice we have when defining the model.
Do we prefer to model the true observed structure accurately or do we prefer to have
a simple representation of the data. As mentioned, for tasks such as planning, an
accurate representation is vital, however this may not be true of other downstream
tasks. Furthermore, the observed data may not actually fully represent the
distribution from which it is drawn - i.e. we may have incomplete data. In this case,
the simplest representation may actually be more accurate and more useful than
representing the observed data well.

Can we find evidence of LDRs in disentanglement metrics? Given the highly
structured nature of the LDR representations, we wanted to determine whether this is
reflected in disentanglement metrics. Under the classification accuracy, ROC-AUC, PR
and F1 scores, we saw good discriminability from a number of classical metrics, the
Factor Leakage metrics and the independence based metrics. Whilst other metrics
were discriminable on one of the two datasets tested, these were the only ones
consistent across datasets and under different scores.

These results indicate that even if we do not know the symmetry structure, we may be
able to determine if a representation is linearly disentangled or not based solely on
metric scores. This would be a very useful result. Since we have only explored this for
FlatLand and dSprites, we cannot conclusively say whether the metrics would
continue to be discriminative across more datasets. It would be interesting to see a
larger scale study of this, which forms potential future work.

How do LDRs compare to classical representations under data efficiency and
downstream tasks? Performance on downstream tasks is perhaps the most
important judge of a representation. To that point, we find that symmetry based
models score consistently higher downstream scores on both the task of generative
factor estimation and observed action estimation. Whilst the latter is unsurprising
since they are trained using action transitions, the former is much more interesting. It
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is likely that the constrained structure of linear disentangled representations is
particularly suited to this task. This was seen in Figures 5.13 and 5.14 where we saw
that you could achieve stronger performance with simpler classifiers using LDRs as
opposed to classical (disentangled) representations. This is obviously a beneficial
property for downstream tasks, since it allows downstream models to be less
computationally intensive.

Sample efficiency is another method to demonstrate the utility of a representation. If
we can learn a downstream task from a small dataset drawn from the representation,
then it is obviously a good representation. Admittedly this may be susceptible to task
complexity, since a small dataset may not have enough samples to represent the
entirety of a complex task, no matter how good the representation is. Nevertheless, we
saw that for the factor prediction task, symmetry based models consistently offered
better data efficiency than classical models. The action prediction task was less clear,
partially due to extremely poor performance by classical models regardless of dataset
size. When efficiency is scaled by the end performance, we see that the symmetry
based models have efficiency equivalent to the best classical model, or better. It is
important to note, however that efficiency is more difficult to estimate accurately than
simple downstream performance. Whilst we see that symmetry based models
generally have better efficiency, this may not hold over more datasets or with many
more models trained.

Can we find any correlations with data efficiency? Locatello et al. [2018] found
through large scale study that there was no consistent evidence of strong correlations
between disentanglement metric scores and data efficiency scores. Whilst individual
datasets and metrics were seen to have correlation in isolation, this was not the case
when considered across all datasets. In Figures 5.18 and 5.19 we look for consistent
correlations in classical and symmetry based metrics with and without symmetry
based models. We found no consistent correlations between any metrics and the
efficiency, similar to Locatello et al. [2018], despite the addition of symmetry based
metrics. In general, the inclusion of symmetry based models increased the correlation
scores across all metrics, however this is due more to efficiency correlating with the
type of disentanglement - linear vs otherwise. Since symmetry based metrics do not
consistently correlate with efficiency, this does suggest they do not (individually)
capture the extent to which a model is linearly disentangled - even if they may be able
to discriminate linear vs not. These results were also consistent when combining the
data points of FlatLand and dSprites - although it is not obvious if this is a useful test
since scores across datasets can vary dramatically.

Action Prediction vs Factor Prediction In general, we found that the factor
prediction task was a more suitable evaluation problem, with the action prediction
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task being simpler yet far more inconsistent in the results. For example, all models
performed worse on the action prediction task than the factor task, despite there being
far more possible factor values. The exception to this is the RGrVAE policy
distribution, which was (unsurprisingly) extremely effective on the action prediction
task. We did not evaluate it on the factor prediction task since we knew there would be
no signal. It is interesting to note however, that this could be a useful (complementary)
representation for tasks in which knowledge of observed actions is important.
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Chapter 6

Conclusions

This work was comprised of two main parts, Chapter 4 concerned with learning linear
disentangled representations and Chapter 5 concerned with the structure of such
representations.

Chapter 4 addressed the following questions:

1. Can we learn linear disentangled representations?

2. Are they learnt by standard VAE models?

3. How do we measure them?

4. Can we learn them without knowledge of action labels?

Answering these questions (Section 4.7) lead to a number of contributions. The first of
which, GroupVAE was introduced to extended the domain in which we can learn
linear disentangled representations to problems with actions which were completely
unlabelled. In order to measure the extent to which a representation was linear
disentangled, we had to introduce the independence, SVD and factor leakage metrics
discussed in Section 4.4. We could then introduce a method to optimise for the best
representation of symmetries on top of pre-existing representations, and determine
through the metrics if these representations were linearly disentangled or not.

Disentanglement research has generally be limited to synthetic datasets where the
generative factors are available, e.g. dSprites. Recently there has been work towards
creating real world datasets in a constrained environment, where we can control the
generative factors ([Gondal et al., 2019]). As such, our work to extend the domain in
which we can learn linear disentangled representations is a particular strength. At the
same time, by still requiring knowledge of transitions, it can also be considered a
weakness, which leads to future work in completely unsupervised learning of linear
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disentangled representations. Similarly, our methods to determine if a pre-existing
representation is linearly disentangled or not are important tools in this area, but by
requiring knowledge of the symmetry structure, cannot be applied to all problems.

Chapter 5 addressed the following questions:

• What is the posterior structure of FlatLand linear disentangled representations?

• Can we find better priors for FlatLand?

• Can we find evidence of LDRs in disentanglement metrics?

• How do LDRs compare to classical representations under data efficiency and
downstream tasks?

• Can we find any correlations with data efficiency?

Through these questions we explored the posterior structure of linearly disentangled
models on data with different symmetry structures. We found that by allowing for
more complex posteriors, we learn structures which were closer to those which
generated the data (i.e. without cycles). Through evaluating a variety of model
instances, we then found evidence that linear disentangled representations result in
better downstream performance and high data efficiency.

Consistently stronger performance on downstream tasks would be a significant
advantage of linear disentangled representations over classically disentangled
versions. It is interesting to find evidence of this in this work, however a weakness
which can form the basis of potential future work is to explore this on a much large
scale in order to determine strong correlations.

6.1 Future Directions

Throughout this work there have been directions and questions which we would like
to have explored but could not due to time limitations. We will now briefly discuss
some of these directions.

How can we determine the symmetry structure of a linearly disentangled
representation without prior knowledge? Our exploration of structure is limited to
cyclic symmetries, since it is hard to determine and model other symmetries which
might be relevant in physical problems. Consequently, we knew which structures to
search for when trying to determine if a given representation is linearly disentangled.
Furthermore we could easily sample transitions based on the actions by these
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symmetries. For general data, it is not obvious what the true symmetry structure is, or
even if there is a notion of truth with regards to symmetries acting on the data.
Models which do not observe transitions are free to learn representations with respect
to any symmetries (or none), and we currently have no way to determine if this has
happened unless by chance they coincide with those we choose.

Assuming we search for the correct type of symmetry (i.e. cyclic) but not the specifics
(i.e. order), then directly learning an approximation of the representation, or an
intermediate space, would likely suffice to determine if a representation is linearly
disentangled. When we search for the wrong type of symmetry, then none of the
methods we have explored would suffice. In general, cyclic symmetries may be the
best default choice. Quessard et al. [2020] believe that cyclic symmetries are dominant
in nature, and the fundamental theorem of finite abelian groups shows that cyclic
groups are expressive, however there are no guarantees that baseline models will
learn them.

Can we encourage LDRs in standard VAEs? We have seen in earlier chapters that
LDRs are learnt in standard VAE models, however only rarely. This suggests that
whilst LDRs are not discouraged by the objectives of these models, they are not a
global optima - perhaps not even a good optima. There have been many objective
functions tailored towards classical disentanglement, indeed all the baseline VAEs we
test do this to some extent. In most cases, they do not change the model architecture
significantly, and simply modifying the objective often results in improved results.
Since LDRs are not discouraged, it would be ideal if they could be encouraged
through a new objective term, rather than having to directly observe actions of each
symmetry. Whilst Caselles-Dupré et al. [2019] show that we cannot choose the
symmetry structure without observing their actions, this does not imply that linear
disentangled representations cannot be learnt without such observations.

Large Scale Study of LDR Efficiency In this work, we have presented preliminary
results on the data efficiency of LDRs compared to classical models, and preliminary
correlations between efficiency and metrics. However accurate estimates of these
requires consideration of more datasets and larger samples sizes than was feasible for
this work. Locatello et al. [2018] found that performance varied quite significantly
across datasets, and whilst we considered two different datasets, this possibly does
not provide the full picture. A larger scale study would allow us to better determine if
these results are representative, and could also

Planning Tasks We have seen that ForwardVAE and RGrVAE learn actions which
are accurate and consistent over composition. The ability to accurately model states
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over time is a vital component of any planning model. Whilst there have been
reinforcement learning models which learn to approximate actions, to our knowledge,
none have done so in a linear way. It seems that linear disentangled representations
should be a good fit for planning tasks. This could provide an additional downstream
task with which to compare linear disentanglement to standard disentanglement.
Planning is much harder and more useful task than action/factor prediction, so this
would better determine which might be better for real world scenarios.

Representations of Continuous Groups We have limited our study to finite groups
so that we can explicitly learn a representation for each group element or group
generators. Many important symmetries such as rotations are fundamentally
continuous in nature, and whilst we can learn finite approximations (i.e.
approximately generate SO(2) by a small rotation angle), we could not capture the full
symmetry. This was studied by Quessard et al. [2020] outside of the VAE framework,
and could be applied to ForwardVAE or GroupVAE models.

On a related note, continuous representations are already achievable by the attentional
variant of GroupVAE, however the variant does not learn in practice. If it were to
work as intended, AGrVAE would learn a basis for the space of actions that it
observes. This would allow for learning of continuous symmetries at the expense of
strongly associating each internal representation with a known action.

Can we learn intermediate spaces alongside training a VAE In Chapter 4, we
learnt a linearly disentangled intermediate space from a standard VAE representation.
We found that this could not be done with linear models (the space isn’t already
linear) but non-linear models could find a good representation given time.
Theoretically, there is no reason that we cannot learn the intermediate space alongside
learning the base VAE representation. An important consideration is that gradients
from the intermediate network would need to be detached from the VAE backbone,
since otherwise the model becomes equivalent to ForwardVAE. This will likely slow
down training, so this form of model would probably be slower to train than
ForwardVAE, and potentially have lower quality (linear) representations, since the
VAE is not being optimised explicitly for that. The ideal result would be learning a
linear disentangled intermediate space on top of a VAE with high fidelity samples -
such as a PixelVAE ([Gulrajani et al., 2016]) - so that we benefit from quality samples
and an interpretable latent space.

Another minor direction to explore with this model would be the use of invertible
network layers. My current implementation learns two separate networks, which are
optimised to be forward and inverse functions for the intermediate space. Invertible
network layers such as the invertible 1x1 convolutions by Kingma and Dhariwal
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[2018] would enable us to learn a single layer with the inverse being exact, rather than
an optimised approximation. This would also allow us to be more confident that the
inverse network is not introducing information, which is not guaranteed in our
current implementation.

Learning LDRs by Reinforcement Tasks Caselles-Dupré et al. [2019] showed that
interaction with the environment was required to learn linear disentangled
representations. In our work, we used REINFORCE to learn an action estimation
policy. Despite this, neither of these works used particularly difficult reinforcement
learning tasks, or any which are more suited to the observation-action framework
(such as navigating a maze). It would be interesting to see if LDRs are beneficial to
solving these tasks, or indeed if representations of these tasks tend to be more linear in
nature.
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Appendix A

Correlation Scatters

Val Beta MIG Informativeness DCI Completeness Modularity

Explicitness SAP GaussTC WassCorr WassCorrNorm MI Score

FL Mean FL Norm Mean FL AUC FL NM AUC Downstream Rep True Indep

Rep Mean z2 Symmetry L1 Av Rep Mean z2 SVD Overlap

FIGURE A.1: Scatter of data efficiency (y) and disentanglement metrics (x) for FlatLand
factor prediction task.
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Val Beta MIG Informativeness DCI Completeness Modularity

Explicitness SAP GaussTC WassCorr WassCorrNorm MI Score

FL Mean FL Norm Mean FL AUC FL NM AUC Downstream Rep True Indep

Rep Mean z2 Symmetry L1 Av Rep Mean z2 SVD Overlap

FIGURE A.2: Scatter of data efficiency (y) and disentanglement metrics (x) for FlatLand
action prediction task.

Val Beta MIG Informativeness DCI Completeness Modularity

Explicitness SAP GaussTC WassCorr WassCorrNorm MI Score

FL Mean FL Norm Mean FL AUC FL NM AUC Downstream Rep FacEvalAcc

True Indep Rep Mean z2 Symmetry L1 Av Rep Mean z2 SVD Overlap

FIGURE A.3: Scatter of data efficiency (y) and disentanglement metrics (x) for dSprites
factor prediction task.
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Val Beta MIG Informativeness DCI Completeness Modularity

Explicitness SAP GaussTC WassCorr WassCorrNorm MI Score

FL Mean FL Norm Mean FL AUC FL NM AUC Downstream Rep FacEvalAcc

True Indep Rep Mean z2 Symmetry L1 Av Rep Mean z2 SVD Overlap

FIGURE A.4: Scatter of data efficiency (y) and disentanglement metrics (x) for dSprites
action prediction task.
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Appendix B

Standard Model Architectures

Throughout this work we have used a number of models which work on top of a VAE
backbone. In general we use the same VAE backbones for different types of VAE. We
now define some of the common backbone architectures which we have used.

B.1 Shapes

The Shapes backbone encoder is a 3 layer MLP with (1200, 1200, Nlatent) units and
ReLU activations. The corresponding decoder is a 4 layer MLP with (1200, 1200, 1200,
Nout) units, and tanh activations.

B.2 Celeb

The Celeb backbone encoder consists of 2 convolution layers with 32 filters, kernel
size of 4, stride of 2 and padding of 1, followed by another two convolution layers
with 64 filters and the same kernel size, padding and stride. The convolution layers
are followed by two linear layers with (256, Nlatent) units. All layers use the ReLU
activation.

The Celeb decoder then consists of two linear layers with (256, 1024) units followed by
4 transpose convolution layers with (64, 32, 32, Nout) filters, kernel size of 4, stride of 2
and padding of 1. All layers again use the ReLU activation.
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B.3 Forward

The Forward backbone encoder consists of 4 convolutional layers with 32 filters,
kernel size of 4, stride of 2 and padding of 1 for each layer. The convolution layers are
followed by 3 linear layers with (256, 256, Nlatent) units. All layers use the SeLU
activation [Klambauer et al., 2017].

The forward decoder consists of 2 linear layers with (256, 512) units. This is followed
by 4 transpose convolution layers which have (32, 32, 32, Nout) filters, kernel size of 4,
stride of 2 and padding of 1. All layers use the SeLU activation.

B.4 TC Model

The TC model encoder consists of 4 convolutional layers with 32 filters, kernel size of
4, stride of 2 and padding of 1 for each layer. The convolution layers are followed by 2
linear layers with (256, Nlatent) units. All layers use the Leaky ReLU activation.

The decoder consists of 1 linear layer with 512 units. This is followed by 4 transpose
convolution layers which have (32, 32, 32, 32) filters, kernel size of 4, stride of 2 and
padding of 1. There is a final convolutional layer (no activation) at the output which
has Noutfilters, a kernel size of 3 and padding of 1. All layers use the Leaky ReLU
activation.

B.5 MMD-VAE

The MMD-VAE model used 5 convolution layers in the encoder (32, 64, 128, 256, 512)
filters, with kernel size of 3, stride of 2 and padding of 1. This is followed by 1 linear
layer with Nlatentunits. The decoder has a single linear layer with 2048 units followed
by 5 transpose convolutions (512, 256, 128, 64 32) filters, kernel size of 3, stride of 2 and
padding of 1. There is a final convolution layer at the output (no activation or batch
norm) which has Noutfilters, kernel size 3, stride 2 and padding 1.

All layers in both the encoder and decoder used leaky ReLU activations.
Convolutional (normal and transpose) layers have a batch norm layer before the
activation is applied.
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B.6 RGrVAE Action Estimator

The CNN which learns to estimate actions in RGrVAE consists of 3 convolution layers
with (32, 16, 16) filters followed by a linear layer with Nactions units. The convolutional
layers have kernel size 3, stride 2 and use ReLU activations. The output is then also
softmaxed.

B.7 RGrVAE

All RGrVAE instances used the action Estimator network defined in B.6. The
backbone VAE used for both FlatLand and dSprites was the backbone defined in B.3.
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Appendix C

Training Schemes

In all experiments, results (metrics or figures) are reported using a 10% validation set
which was held-out during training. Metrics are reported as averages over this
validation set.

C.1 FlatLand

All models trained on FlatLand share a number of parameters. All models use the
same networks for encoder and decoder (See Forward B.3). All models have 4 latent
dimensions, batch size of 128, base learning rate of 0.0001, Adam optimiser and mean
square error loss function. Each model type has some additional parameters which we
now detail. All models not listed were trained for 100 epochs. Error bars are always
provided over 5 repeats for each model.

ForwardVAE The ForwardVAE instances were trained for 300 epochs.

RGrVAE The RGrVAE instances were trained for 300 epochs, used γ = 10,
exploration epsilon of 0.95, and entropy weight of 0.01. The internal group structure
was CN , and used a learning rate of 0.1.

BetaVAE The BetaVAE instances were trained with β = 10.

DIP-VAE The DIP-VAE variants used parameters λod = 10 and λd = 5.

FactorVAE The FactorVAE used the parameter γfactor = 6.4.
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BetaTCVAE The BetaTCVAE model used parameter βTC = 6.

MMD-VAE The MMD-VAE used parameters αMMD = −0.1 and λMMD = 20.

C.2 dSprites

All models trained on dSprites share a number of parameters. All models use the same
networks for encoder and decoder (See Forward B.3). All models also have 16 latent
dimensions, base learning rate of 0.0001, Adam optimiser and binary cross entropy
loss function. Each model type has some additional parameters which we now detail.

RGrVAE The RGrVAE instance on dSprites use an internal representation learning
rate of 0.1, internal group structure of GL(2) matrices, γ = 10, exploration epsilon of
0.95, batch size of 1024, and trained for 5 million iterations.

VAE The VAE models use a batch size of 128, and were trained for 2.5 million
iterations.

BetaVAE The BetaVAE models were trained using a β = 5 for 2.5 million iterations
and a batch size of 1024.

Dip VAE i The DIP-VAE-I model was trained for 1 million iterations using a batch
size of 1024.

Dip VAE ii The DIP-VAE-II model was trained for 2.5 million iterations using a
batch size of 1024.

Extental models Two external models were sourced from the PyTorch-VAE github
project [Subramanian, 2020], and their pretrained weights were used on dSprites
experiments. These models were the BetaTcVAE and FactorVAE.
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