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A B S T R A C T   

The uptake of e-scooters as an alternative mode of travel has risen sharply in recent years; however, their safety is less-understood compared to other modes of travel. 
For the first time in the extant literature, we explore the association between neighbourhood characteristics and e-scooter safety in Greater London, UK. We found 
that, over the study period, the expected e-scooter crash frequency was the highest in the City of London, followed by the West End, and then St. James’s–both wards 
located in the borough of Westminster in central London. We found that e-scooter crash frequencies increase with an increase in area-level walking and cycling 
activities. Similarly, we found that the number of schools is positively associated with the expected e-scooter crash frequency. In contrast, the results indicated that as 
the proportion of ward-level greenspace increases, the number of crashes involving e-scooters decreases. The results also highlighted social inequalities in this 
context, with higher e-scooter crash frequencies in areas with larger Black, Asian and Minority Ethnic population, those with higher crime rates, and those with a 
higher population of children in out of work households. This research provides practical recommendations to prioritise areas for safety interventions and for 
selecting suitable safety improvement programmes.   

1. Introduction 

Electric scooters (e-scooters) are becoming a popular form of 
micromobility around the world with the sales of private devices ever 
climbing and hire schemes appearing in an increasing number of loca-
tions. The rise of e-scooters is partly due to the recent pandemic that has 
had a positive impact on micromobility use in urban areas; see, for 
example, Wang & Noland (2021), and Heydari et al. (2021). E-scooters 
have been praised for offering an alternative to short car and public 
transit trips (Shaheen & Cohen, 2019) and may have a relatively small 
carbon footprint as compared to other powered vehicles1 as well as 
taking up less room on roads, thereby easing congestion, which in turn 
leads to improved air quality in urban areas. Therefore, e-scooters can 
potentially contribute to sustainability in urban areas. On the other 
hand, due to their small wheels, their ability to travel at relatively fast 
speeds, and a lack of legislation and accountability for their use, safety 
concerns arise. Due to the novelty of e-scooters and limited real-world 
crash data being available, published literature on their operation and 
safety is limited compared to other modes of transport. In fact, the safety 
of e-scooters is less-understood. 

Although e-scooters have been around for several decades, there has 
been an increase in their popularity over the past few years with more 
than 360,000 private e-scooters being purchased in the UK in 2020 

(Winchcomb, 2021). In actuality, according to the UK Department for 
Transport (DfT), it is not legal to ride private e-scooters on footpaths, 
public roads or cycle lanes except in specially designated trial areas 
(DfT, 2021). Despite the unlawful nature of private e-scooter travel, they 
are still used as a mode of transport in the UK and repercussions for their 
use seem to be rare. Hiring under an approved rental scheme is the only 
way to ride an e-scooter legally in the UK (DfT, 2021). In fact, several 
e-scooter rental schemes have been recently launched in different urban 
areas across the country, but all are still subject to a trial period (DfT, 
2020). Specifically, the Transport for London (TfL) launched the London 
e-scooter trial in June 2021 in ten boroughs: Camden, City of London, 
Ealing, Hammersmith & Fulham, Kensington and Chelsea, Lambeth, 
Southwark, Richmond upon Thames, Tower Hamlets, and Westminster 
(TfL, 2021a). 

1.1. Previous research 

A number of previous studies have recently examined different as-
pects of emerging e-scooters. These include, for example, identifying 
optimal locations for battery swapping stations (Torkayesh & Deveci, 
2021), exposure to air pollution while travelling by e-scooters (Tran 
et al., 2021), and factors associated with e-scooter usage (Hosseinzadeh 
et al., 2021; Noland, 2021). With respect to safety, a relatively limited 
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1 Although this is dependent on the lifespan of the vehicles and the servicing arrangements – see, for example, de Bortoli & Christoforou (2020). 
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number of previous studies examined various safety-related issues 
relating to e-scooters (see; e.g., Kobayashi et al. (2019), Rix et al. (2021), 
and Bodansky et al. (2022)). For example, illegal riding of e-scooters is 
an issue which is addressed in some previous research. Behaviours 
which constitute illegal riding differ between countries and even cities, 
but some common themes are an inappropriate age of the rider, riding 
under the influence, riding while distracted, and riding in inappropriate 
locations (Gioldasis et al., 2021; Haworth et al., 2021a, 2021b). A 
scarcity of e-scooter crash data means that many researchers have 
focused on the mechanics surrounding individual crashes. Findings such 
as a tendency for crashes to be an isolated fall and not involving another 
person or vehicle (Brownson et al., 2019) and a higher incidence of 
crashes at weekends (Stigson et al., 2021) have been identified. In a 
comparison study from Nashville (Tennessee), Shah et al. (2021) found 
the majority of e-scooter crashes can be explained with just two crash 
typologies: conflicts with a motor vehicle either turning right or going 
straight at an intersection. However, a greater number of crash typol-
ogies were found for cyclists, suggesting different collision mechanisms 
between the modes. 

To try and gain a more complete understanding of e-scooter crashes 
as a big picture, a range of data sources have been utilised by re-
searchers. Questionnaires have been asked of people who visited hos-
pitals after a crash (Cicchino et al., 2021), of people at targeted locations 
in the public realm (Gioldasis et al., 2021; Siebert et al., 2021) and of 
people recruited as a random sample for their perception of the safety of 
e-scooters (Gibson et al., 2021). A data mining technique with news-
paper reports is used by Yang et al. (2020) to gather information on 
common rider demographics as well as crash types and locations. Given 
the lack of available data on crash statistics from authorities, other data 
sets such as insurance reports were sometimes used to supplement this 
(Stigson et al., 2021). While these studies all have merits, research on 
the association between e-scooter crashes and built and natural envi-
ronment, traffic, and socio-demographic characteristics are rare. To our 
knowledge, only one study conducted by Azimian & Jiao (2022) 
investigated the impact of built environment and sociodemographic 
factors on e-scooter safety, considering dockless e-scooter injury acci-
dents in Austin, Texas. A significant association was found between 
crashes and population age/gender ratios, median household income, 
the ratio of public transport users to private transport users, the land use 
entropy index, and the percentage of restaurants and educational 
centres. 

Studies of other active travel modes, walking and cycling, are 
numerous, providing valuable macro-level (area-level) transportation 
safety and planning insights (Cai et al., 2016; Osama & Sayed, 2016; 
Wang et al., 2016). These studies exemplify the importance of con-
ducting big picture analysis at a geographic area level and drawing 
conclusions about a whole area. In Wang et al. (2016), for example, their 
analysis is shown to have two implications: first, areas with 
higher-than-expected crashes can be identified and addressed; second, 
any future-increase in expected pedestrian crashes due to land use 
development can be predicted and minimised. 

Tuli et al. (2021) utilised a macro-level approach with a range of 
geographical characteristics to analyse e-scooter usage patterns in Chi-
cago, Illinois. This study used a random-effects negative binomial model 
which was found to effectively model the origin-destination count of 
e-scooter trips. The research revealed that more trips are generated by 
more densely populated areas, those with more parks and open space, 
and those with a higher number of zero-car households. Another de-
mographic study of how low-income areas affect shared e-scooter usage 
was carried out by Frias-Martinez et al. (2021) who found that lower 
income areas in four major US cities engaged in fewer trips. The 
above-mentioned studies indicate that area-level characteristics have a 
bearing on e-scooter mobility patterns and exposure. It is therefore 
interesting to investigate how such characteristics affect e-scooter 
safety. 

1.2. The current research 

This research contributes to the existing e-scooter safety literature by 
investigating (to our knowledge, for the first time) the association be-
tween various neighbourhood characteristics and zonal level e-scooter 
safety. The present study differs principally from Azimian & Jiao (2022) 
as crashes mostly involving private e-scooters are considered in our 
research.2 Additionally, the random parameters multilevel modelling 
approach adopted in the present paper further considers the spatial 
dependencies in the data while accounting for unobserved heterogeneity 
more fully (Dupont et al., 2013; Heydari et al., 2018; Mannering et al., 
2016). In this paper, we utilise e-scooter crash data in the Greater 
London area from the beginning of 2020 to the end of June 2021. Using 
this crash data and other extensive data on built and natural environ-
ment characteristics, exposure measures, and socio-demographics, we 
carry out a ward-level study to identify various area-level factors that 
are associated with the propensity of e-scooters crashes in Greater 
London. This research improves our understanding of e-scooter safety 
and can lend itself to safety policy. The paper provides useful insights for 
local authority decision making with the aim of promoting micro-
mobility in urban areas. To this end, we discuss practical implications of 
the study based on our findings. 

2. Data description 

2.1. Crash data 

The crash data utilised in this study are obtained from STATS19 
databases which are recorded by UK police forces and kept by the DfT. 
The accidents are recorded with details of the local authority (borough 
in Greater London) in which they occurred. The ward is not recorded by 
the police; however, each crash is geo-tagged so using GIS software, we 
identified crash counts in each ward. At the time of writing, the 
STATS20 form, which is completed by police officers when recording a 
crash, does not feature an option to record an e-scooter as the vehicle 
type. Instead, an option of ‘other vehicle’ is selected and ‘electric 
scooter’ is added in a free text box if a crash involves an e-scooter. The 
data used here are of all crashes where at least one vehicle was tagged as 
e-scooter. Specifically, the crash data included 534 accidents of which 
around 4% were falls (no other parties were involved), around 17% were 
between e-scooters and pedestrians, and the remaining 79% involved 
other parties including motorised vehicles. 

The period of study includes 18 months of data from January 2020 to 
June 2021, which is the period for which the crash data is available. The 
2021 crash records, at the time of writing, are still provisional. The 
decision to include the latter was taken to consider a longer time period, 
which is known to be less affected by random fluctuations in crash data 
and thus resulting in a richer analysis (Hauer, 1997). While the 
six-month period data in 2021 is provisional, we have judged that any 
future changes in the 2021 data would be relatively minor and would 
not have a significant effect on the results of the study. 

2.2. Explanatory variables 

In addition to the crash data, we collected data on a broad range of 
variables covering various land use, demographics, exposure measures, 
and built and natural environment characteristics. Inspiration and 
guidance were taken from other active travel safety literature to select 
variables that had previously been found as determinants of active 

2 Note that rental e-scooters were available in selected London boroughs only 
during June 2021 as mentioned in Introduction; therefore, most crashes re-
ported over our study period involve private e-scooters. At the time of writing, 
it was not possible to distinguish between rental and private e-scooters in 
STATS19 databases. 
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modes safety, along with the knowledge and experience of the re-
searchers. The data were principally obtained from two sources that are 
collected by the Greater London Authority (GLA): London ward profiles 
(GLA, 2015a) and London borough profiles (GLA, 2015b). Owing to the 
range of sources which make up these datasets, such as census data, 
survey data, etc., and limitations with how often certain data are 
collected, there is some disparity between the years from which the data 
have provenance. As well as a temporal range, the variables are also split 
between two types of spatial unit, some being recorded at a borough 
level and others at a ward level. It is not always possible or practical for 
authorities to record data granulated to a ward level. 

No direct exposure measure (e.g., trip counts) for e-scooters was 
available; therefore, proxy exposure measures, especially those relating 
to walking and cycling, were considered. The proportion of adults who 
cycle to work according to the 2011 census was used as a measure of 
cycling activity. To capture walking activity, we used the 2018 data on 
the proportion of population who walk at least one, three or five times 
per week for at least ten minutes and for any purpose. The walking and 
cycling data were obtained from the DfT. London Tube (subway) entry 

and exit counts were obtained from Transport for London (TfL). Tube 
activity is correlated with active travel as underground trips often 
include at least one stage of walking or cycling to begin or complete the 
journey (TfL, 2021b). The London bike share scheme (Santander cycles) 
has become a popular mode of travel across many parts of London 
(Lovelace et al., 2020). Therefore, we obtained the ward-level numbers 
of docking stations, which can offer another proxy exposure measure for 
active travel, from TfL. Also, we considered traffic flow, which was 
available in the form of vehicle kilometres travelled at borough level. 
Note that, over the study period, around 75% of e-scooter crashes 
involved a motorised vehicle. The rental e-scooter trial was launched in 
10 London boroughs in June 2021 (TfL, 2021a), the end of our study 
period; therefore, this was not relevant in this research. 

Several built and natural environment characteristics were consid-
ered as well since these are known to have a bearing on area-level safety 
for various modes of travel, particularly active modes. These included 
land use with domestic garden, greenspace, water, non-domestic 
buildings, and domestic buildings. We obtained the number of schools 
and school enrolment in each ward from the Ordnance Survey 

Fig. 1. Schematic view of the data.  

Table 1 
Summary statistics of the data.  

Variable types Variables Spatial unit Mean SD Minimum Maximum 

Crash counts        
e-scooter Crashes Ward 0.843 1.158 0.000 9.000 

Exposure        
Population cycling to work (%)1 Ward 4.011 3.395 0.242 19.092  
Population walking at least once a week (%)2 Borough 73.156 5.408 62.800 86.510  
Population walking at least three times a week (%)2 Borough 49.591 5.945 40.071 64.922  
Population walking at least five times a week (%)2 Borough 38.223 5.224 30.090 51.830  
Tube entries and exits (00 millions of travellers) Borough 0.831 1.242 0.000 6.553  
Traffic flow (Billion vehicle kilometres travelled) Borough 0.936 0.422 0.150 2.147 

Land use, built and natural environment        
Area of ward (km2) Ward 2.720 2.760 0.350 29.04  
Number of schools Ward 5.146 2.791 0.000 24.000  
Land use with greenspace (%) Ward 26.20 16.60 15.30 90.00  
Land use with domestic gardens (%) Ward 26.208 12.092 0.120 59.161  
Land use with domestic buildings (%) Ward 11.904 5.154 0.850 30.540  
Land use with non-domestic buildings (%) Ward 6.582 5.701 0.390 42.180  
Land use with water (%) Ward 2.149 6.304 0.000 74.240  
Cycle network density (total length per borough area) Borough 2.373 0.769 0.585 4.125  
Density of pubs (pubs per km2) Borough 3.650 4.718 0.529 49.712  
Road network (km) Borough 448.933 184.833 55.522 902.679  
Santander docking stations (00 s) Borough 0.223 0.402 0.000 1.660 

Socio-demographic        
Number of cars per household Ward 0.840 0.327 0.233 1.705  
Population (000 s) Ward 14.132 3.083 4.622 32.046 
Population per square kilometre (0000 s) Ward 0.875 0.520 0.019 2.766  
Child population (%) Ward 19.805 3.761 6.473 32.695  
School enrolment (number of children) Ward 2287.986 1228.846 0.000 7388.000  
Number of children in out of work households Ward 607.770 372.183 10.000 1940.000  
BAME population (%)3 Ward 0.389 0.189 0.041 0.937  
Population with level 4 qualifications and above (%) Ward 37.678 12.840 12.500 68.700  
Crime rate (crimes committed per ward population) Ward 0.088 0.073 0.026 0.894  
Children in poverty (%) Borough 19.270 6.020 8.8000 32.500  
Lone parents without employment (%) Borough 46.110 8.540 20.820 73.580  
Yearly Expenditure on alcohol (£00 millions) Borough 0.525 0.244 0.029 1.125  
Average weekly earnings (£s) Borough 561.680 70.385 462.367 902.000  
Unemployed population (%) Borough 5.322 0.999 3.867 19.633 

1 Cycling measures the proportion of full time workers (adults) who cycle to work 
2 Walking measures any continuous walk for at least 10 min for any purpose 
3 BAME population refers to Black, Asian and Minority Ethnic population  
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Topography Layer for the year 2020. Other built environment variables 
included the density of pubs (the number of pubs divided by the area of 
the borough), the density of the cycle network (total length of cycle 
lanes per area of borough), and the length of road network at borough 
level. 

Socio-demographic variables from a range of sources were consid-
ered. The number of cars per household was obtained from the 2011 
census as was the percentage of people who hold a qualification at or 
above level four. According to the UK Government’s qualification levels 
in England, Wales and Northern Ireland, this level refers to the difficulty 
of obtaining the qualification, with higher levels being more difficult; 
level four dictates that a person has achieved beyond A-level or equiv-
alent. Weekly earnings and unemployment rates representing the eco-
nomic characteristics of the wards were obtained from the Department 
for Work and Pensions. Besides weekly earnings and unemployment 
rate, economic status is represented by expenditure on alcohol and the 
number of cars per household. Also, we considered data relating to child 
poverty, education levels, and crime rates, provided by the London Data 
Store and Metropolitan Police. The latter variables are markers of 
deprivation and are often associated with areas of higher crash incidence 
(Graham & Stephens, 2008; Graham et al., 2013; Li et al., 2017). Various 
population related variables, including population, child population, 
BAME (Black, Asian and Minority Ethnic) population, and population 
density were obtained from the London Data Store. For example, pop-
ulation density was used as a proxy measure for active modes’ exposure 
in previous literature (see e.g., Cottrill & Thakuriah, 2010). Fig. 1 dis-
plays a schematic view of the various components of the data compiled 
in this study. Summary statistics of the data are reported in Table 1. 

2.3. Statistical approach 

Given the nature of the data being ward-level crash counts nested 
within boroughs, we adopted a Bayesian multilevel random parameters 
(slopes) Poisson lognormal regression approach (El-Basyouny & Sayed, 
2009; Heydari et al., 2018). Random parameters models can address 
unobserved heterogeneity more fully compared to the conventional 
models (Mannering et al., 2016). To investigate how the fit improves, we 
also developed a simple Poisson lognormal model and a random in-
tercepts multilevel Poisson lognormal model. Note that multilevel 
models, which are extensively used in the crash literature, can capture 
spatially and non-spatially related unobserved factors effectively by 
accommodating the hierarchical structure of the data (Dupont et al., 
2013; Heydari et al., 2016; Huang & Abdel-Aty, 2010; Islam & El-Ba-
syouny, 2015). We also investigated spatial autocorrelation in the data, 
developing Bayesian conditional autoregressive models, but we did not 
find any evidence for such spatial dependency. We therefore discuss 
only our final model here. 

2.4. Multilevel random parameters Poisson lognormal model 

A multilevel random parameters Poisson lognormal model can be 
specified as follows. Let yi and γi be, respectively, observed and expected 
crash frequencies for ward i. Let X and α be explanatory variables and 
their respective regression coefficients. Let β0j represent the borough 
effects (varying intercepts) that follow a normal distribution with the 
mean μβ0 and the variance vβ0, where j stands for borough. Let Z be 
explanatory variables, the effects of which vary across different bor-
oughs, with their corresponding regression coefficients β. Let εi be a 
normally distributed ward-level error term which has a mean of 0 and a 
variance vε, accounting for extra variability in the data. We can then 
write: 

yij ∼ Poisson
(
γij
)

(1)  

log
(
γij
)
= β0j + Zijβj + Xijα + εij  

β0j ∼ normal
(

μβ0
, νβ0

)

βj ∼ normal
(
μβ, vβ

)

εij ∼ normal(0, νε)

We specified non-informative priors for various model parameters 
and implemented the models in the Nimble package in R (de Valpine 
et al., 2017). See Heydari et al. (2018) for further details on the model as 
applied to at-grade crossings where grade crossings were nested within 
various provinces. 

3. Results and discussions 

This section presents the model results and gives context to the 
findings, followed by the interpretation of the results, and finally some 
thoughts on policy implications. The best performing model was the 
multilevel random parameters Poisson lognormal model, providing the 
best fit to the data; therefore, our discussions will focus on the results of 

Table 2 
Estimation results of the regression coefficients.  

Poisson lognormal model  

Mean SD 95% Credible 
Intervals 

ln(Population walking at least three 
times a week for any purpose) 

1.338 0.521 0.328 2.361 

ln(Population cycling to work) 0.159 0.073 0.015 0.302 
ln(Crime rate) 0.741 0.086 0.573 0.910 
ln(number of children in out of work 

HH1) 
0.258 0.078 0.108 0.415 

Land use with greenspace − 0.866 0.378 − 1.600 − 0.128 
BAME population 0.926 0.342 0.250 1.592 
Number of schools 0.033 0.015 0.002 0.062 
Constant − 0.455 0.061 − 0.580 − 0.338 
Variance obs. level error term 0.077 0.056 0.006 0.206 
Model fit (WAIC) 1419 – – –      

Multilevel random intercepts Poisson lognormal model  
Mean SD 95% Credible 

Intervals 
ln(Population walking at least three 

times a week for any purpose) 
1.317 0.647 0.056 2.593 

ln(Population cycling to work) 0.184 0.087 0.015 0.356 
ln(Crime rate) 0.764 0.087 0.594 0.935 
ln(number of children in out of work 

HH1) 
0.241 0.083 0.079 0.405 

Land use with greenspace − 0.796 0.386 − 1.566 − 0.053 
BAME population 0.925 0.366 0.205 1.649 
Number of schools 0.030 0.016 0.004 0.055 
Borough effect − 0.458 0.071 − 0.604 − 0.324 
Variance Borough effect 0.050 0.036 0.002 0.139 
Variance obs. level error term 0.040 0.042 0.001 0.152 
Model fit (WAIC) 1412 – – –  

Multilevel random parameters Poisson lognormal model  
Mean SD 95% Credible 

Intervals 
ln(Population walking at least three 

times a week for any purpose) 
1.232 0.631 0.009 2.467 

ln(Population cycling to work) 0.202 0.099 0.009 0.401 
Variance ln(Population cycling to work) 0.065 0.054 0.002 0.200 
ln(Crime rate) 0.766 0.088 0.594 0.937 
ln(number of children in out of work 

HH1) 
0.238 0.084 0.077 0.402 

Land use with greenspace − 0.773 0.388 − 1.551 − 0.016 
BAME population 1.030 0.380 0.297 1.787 
Number of schools 0.028 0.016 0.002 0.054 
Borough effect − 0.467 0.069 − 0.608 − 0.334 
Variance Borough effect 0.022 0.027 0.001 0.095 
Variance obs. level error term 0.046 0.043 0.002 0.159 
Model fit (WAIC) 1407 – – – 
1 HH: household      
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this model. However, the results of the other two models are provided 
for context and comparison. 

3.1. Estimation results 

The parameter estimates for the variables that were found to be 
statistically significant (their 95% credible intervals not containing zero) 
are reported in Table 2. Note that, since we conducted the analysis using 
Bayesian statistics, we obtained credible intervals, which are analogue 
to frequentist confidence intervals. Credible intervals have a more 
intuitive interpretation compared to their classical counterparts; that is, 
a 95% credible interval indicates that there is 95% chance that an 
estimated coefficient happens to be in the range of that interval 
(Daziano et al., 2013). However, this probability is either zero or one 
when considering confidence intervals. While we discuss the interpre-
tation of the estimated regression coefficients in Section 4.2.2, as it can 
be seen in Table 2, all the models provide less or more similar regression 
coefficient estimates. The results indicate that variables walking, 
cycling, crime, children in out of work households, BAME population, 
and the number of schools are positively associated with ward level 
e-scooter crash frequencies in Greater London. However, land use with 
greenspace is negatively associated with these crashes. The random 
parameters model, which can accommodate the varying effect of the 
explanatory variables, revealed that the effect of the variable cycling 
varies across boroughs. This interesting finding indicates that perhaps 
other unknown factors influence the impact of cycling on e-scooter crash 
counts. To investigate this further, we attempted to explain the het-
erogeneity in the mean and the variance of this random parameter (see, 
for example, Seraneeprakarn et al., 2017); however, no variable in the 
data was found to be able to explain its variability. 

We also considered alternative distributional assumptions (e.g., 
lognormal) for our random coefficients; however, this did not result in 
any improvement. Allowing for the varying effect of cycling improved 
the model fit; that is, a lower Watanabe-Akaike information criterion 
(WAIC) value compared to the other models (see Table 2). Note that 
WAIC is among the most valid Bayesian model fitting criteria (Gelman 

et al, 2013; Watanabe, 2010). The varying borough effects indicate that 
there is a difference between various boroughs due to unobservables 
that have a bearing on safety. Through the multilevel model we can 
indirectly capture such differences. The observation level error term 
accounts for extra variation, which is not accounted for by the explan-
atory variables and the hierarchical component of the model. 

Based on our results, an increase in both walking and cycling levels 
leads to an increase in e-scooter crash frequency. Walking and cycling 
are generally found to have a positive association with pedestrian and 
cyclist crash frequencies (et al., 2016; Heydari, Fu, Miranda-Moreno & 
Joseph, 2017). It may also be the case that walking exposure correlates 
with cycle casualties and vice versa and this may extend to other similar 
travel modes such as e-scooters. Certainly, this appears to be the case in 
the current research, and this stands to reason as areas where people 
tend to walk and cycle more and drive less will likely be the same areas 
where more people have taken to using e-scooters as a mode of travel 
and thus more crashes are likely due to a higher exposure. 

Our results showed that as the number of crimes per population 
increased, e-scooter crash frequencies increase as well. One possible 
explanation for this finding is that, since e-scooter use was largely illegal 
during the study period (as discussed in Section 1), e-scooter crash fre-
quencies may be related to crime rates and those with a propensity for 
deviant behaviour. Overall, this finding is in accordance with previous 
research. For example, crime rate is noted to be associated with an in-
crease in pedestrian crashes by Cottrill & Thakuriah (2010) though the 
mechanisms behind this are unclear. Crime is however one of the indices 
of multiple deprivation (IMD) (see Graham & Stephens (2008) for a full 
specification of the indices) and research has shown that areas with 
higher IMD scores usually correlate with higher active travel crash fre-
quencies (Graham et al., 2005; Green, Muir & Maher, 2011; Li et al., 
2017). Similarly, we found that as the number of children in out of work 
households increases, e-scooter crash frequencies increase–deteriorat-
ing traffic safety. Similar to crime rate, child poverty variables are a 
deprivation measure; and therefore, a positive association with crash 
frequency is unsurprising. Also, the results indicated that an increase in 
the proportion of a ward’s population who identify as BAME is 

Fig. 2. Spatial distribution of expected e-scooter crash frequency across Greater London wards.  
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associated with an increase in ward-level crash frequencies involving 
e-scooters. Previous studies have also found that the ethnic de-
mographics of an area are associated with crash frequency for cyclists 
(Ding et al., 2020) and pedestrians (Su et al., 2021). 

We found a negative association between the proportion of land use 
with greenspace and e-scooter crash frequencies. This is an area of in-
terest as greenspace has been shown to be positively associated with the 
number of crashes for cyclists in London (Ding et al., 2020). In that study 
it was posited that over the summer months when leisure cycling levels 
are higher, areas with green space attract these cyclists and thus expe-
rience a higher number of cyclist crashes. The same could potentially be 
true of e-scooters; further study into seasonal instability of e-scooter 
usage and crashes would be needed. However, the result of the current 
paper may be explained by the fact that riding an e-scooter in a park, for 
example, means e-scooter users are less exposed to road traffic, leading 
to a reduced crash risk. 

Also, we found that, as the number of schools increases, e-scooter 
crash frequency increases. This is in accordance with previous literature. 
For example, an increase in crash frequency was shown for pedestrians 
with a higher number of schools (Zhan et al., 2015) as they attract more 
trips from children who possess innate cognitive, physical and behav-
ioural traits which make them more vulnerable to road accidents 
(Gitelman et al., 2019). Bhat et al. (2017) found an increase in pedes-
trian injuries in census tracts in New York as the number of schools in-
creases, though with the caveat that these injuries were less likely to be 

incapacitating due to lower speeds and heightened driver awareness. 
Also, with respect to school as a risk factor, Heydari et al. (2020) found 
that pedestrian injury frequencies increased at intersections in proximity 
to schools in Montreal, Quebec. Nevertheless, the latter requires further 
investigation in the context of e-scooter safety. 

4. Policy analysis 

4.1. Practical area level inferences 

Figs. 2 and 3 display the spatial distribution of expected e-scooter 
crash frequencies over the study period across different Greater London 
wards and boroughs, respectively. A darker colour indicates a higher 
expected crash frequency. Figs. 2 and 3 can be used to identify overall 
spatial patterns in terms of e-scooter safety in the Greater London area 
and to detect high crash wards and boroughs. These could be prioritised 
for safety improvement programmes that can follow from our study, 
considering the most important area-level variables that are associated 
with e-scooter safety (see Section 4.2.2.). 

It can be seen in Fig. 2 that the propensity of e-scooter crashes is, in 
general, higher in inner London wards. Specifically, we found that the 
City of London (if we consider it as a ward given its relatively small size), 
followed by the West End, and then St. James’s–both wards located in 
the borough of Westminster in central London–had the highest expected 
e-scooter crash frequencies. It can be inferred from Fig. 3 that the 

Fig. 3. Spatial distribution of expected e-scooter crash frequency across Greater London boroughs.  
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boroughs of Westminster, Tower Hamlets, and Lambeth had the highest 
expected e-scooter crash frequency over the study period, followed by 
Hackney, Camden, Southwark, and Wandsworth. It can be seen in Fig. 3 
that Croydon has the highest expected e-scooter crash frequency among 
the outer London boroughs. 

4.2. Elasticities and marginal effects 

To interpret the magnitude of the association between each explan-
atory variable and ward-level e-scooter crash frequencies over the study 
period, Table 3 reports average elasticities and marginal effects. These 
are based on the results of the multilevel random parameters count 
model, which provided the best fit to the data. For the log transformed 
variables, elasticities can be readily obtained based on their respective 
estimated regression coefficients (see Table 3). For the rest of the vari-
ables, we estimated average marginal effects (Washington et al., 2020). 
The estimation of the elasticities and marginal effects provides a clear 
understanding of the effect of the explanatory variables on ward level 
e-scooter crash frequencies, allowing us to identify the most impactful 
contributory factors. For example, our results revealed that walking has 
a much higher impact (having a bigger elasticity value) on e-scooter 
crash frequencies compared to cycling. This highlights the need for 
tailored safety interventions in areas with high levels of walking to 
mitigate e-scooter crash risk propensity. 

Our results indicate that a 10% increase in the proportion of the 
population who walk at least three times a week for any purpose will 
increase the expected e-scooter crash frequency (per 18-month period; i. 
e., the study period) by 12.32%.  The same increase in the proportion of 
people who cycle to work (i.e., those commuting by bike) will increase 
the expected e-scooter crash frequency by an average of 2.02%. Simi-
larly, a 10% increase in the ward crime rate will result in an average 
increase of 7.66% in the expected e-scooter crash frequency, and the 
same percentage increase in the number of children in out of work 
households will yield a 2.38% increase in the frequency of crashes 
involving e-scooters. The marginal effects show that a unit increase in 
land use with greenspace will reduce the expected crash frequency by an 
average of 0.652 crashes over an 18-mounth period (the study period). 
One unit increase in BAME population, on average, will lead to 0.869 
additional crashes over an 18-month period, and an additional school in 
a ward will result in an average increase of 0.024 in the expected e- 
scooter involved crash count over an 18-month period. 

To be able to compare the explanatory variables, which are in the 
model, in terms of their impacts on ward-level e-scooter crash fre-
quency, we computed marginal effects for the log transformed variables 
as well. These are ordered in terms of their impacts as follows (from the 
highest to the lowest): BAME population, green space, crime rate, 
walking, cycling, children in out of work households, and the number of 
schools. 

5. Summary and conclusions 

Following the proliferation of e-scooters in many urban settings 
worldwide in recent years, the intent of this study was to provide an 
improved understanding of zonal level e-scooter safety (measured in 
terms of crash frequency). Specifically, we investigated the association 
between various neighbourhood characteristics–including the built/ 
natural environment and socio-demographics–and ward-level e-scooter 
safety in Greater London. We used a Bayesian multi-level random pa-
rameters count model to effectively account for unobserved heteroge-
neity and the hierarchical structure of the data (wards nested within 
boroughs). 

We found that walking and cycling activities are important correlates 
of area level e-scooter safety. In fact, this research shows that, in the 
absence of reliable e-scooter trip data that can constitute a direct 
exposure measure for this novel mode of travel, walking and cycling can 
act as suitable proxy exposure measures for investigating e-scooter 
safety. Note that traffic flow was not found to have a statistically 
important effect on ward-level e-scooter safety. This is perhaps due to 
the fact that traffic flow was available at borough level in our study. Had 
ward- level traffic flow been available, this variable would have been 
appeared in the model as a statistically significant variable. Also, the 
effect of traffic volume is partly captured through other variables that 
are in model. The built and natural environment attributes such as the 
number of schools and greenspace were found to be associated with the 
number of crashes involving e-scooters. Specifically, we found that e- 
scooter crash counts are slightly higher in wards with higher numbers of 
schools. This indicates that a particular attention should be given to 
these wards when it comes to increasing traffic safety. The results also 
indicated that ward-level greenspace is beneficial to traffic safety: the 
larger the proportion of greenspace, the lower the expected e-scooter 
crash frequency. Different types of variables that were investigated in 
this research appear to align with literature on other active travel 
modes, such as walking and cycling. In other words, factors affecting the 
area level safety of pedestrians and cyclists, in general, would appear to 
affect the safety of e-scooter users in a similar fashion. In the absence of 
extensive real-world e-scooter crash data, this could provide valuable 
information on the way in which e-scooter use and regulation, and large 
scale transportation planning and safety policies are viewed. This will in 
turn help improve road safety as the uptake of this specific form of 
micromobility increases. 

In addition, this research revealed important socioeconomic and 
ethnic background differences in e-scooter related road crashes in Lon-
don. Specifically, we found higher e-scooter crash frequencies among 
areas with larger BAME population, those with higher crime rates, and 
those with higher numbers of children in out of work households. In this 
regard, the planning of interventions, which aim at increasing traffic 
safety, should consider the latter factors to reduce inequalities relating 
to e-scooter safety in the Greater London area. Note that this does not 
necessarily imply that the risk (in its epidemiological term) of getting 
involved in an e-scooter crash is higher, for example, among BAME 
population. As discussed by Noland & Laham (2018) caution must be 
taken in drawing conclusive conclusions in this regard based on 
ecological (spatial) studies. In fact, a crash-level analysis, with 
individual-level characteristics, would provide more detailed insights in 
this regard. 

Addressing inequalities in this context would be particularly 
important at this stage in which e-scooter riding is a relatively novel 
mode of travel. This can help contain the gap between people from 
diverse socioeconomic and ethnic backgrounds in a timely manner. This 
calls (i) for research to better understand the reason for such in-
equalities, and (ii) for policies that consider social inequality in decision- 
making processes and that consider suitable remedies to address 
inequity. 

Our findings, being based on a rigorous statistical analysis, can be 
utilised by authorities to identify high-crash wards and boroughs; and 

Table 3 
Average elasticities and marginal effects based on the random parameters count 
model.  

Log transformed variables Elasticities1 

Population walking at least three time a week 12.32% 
Population cycling to work 2.02% 
Crime rate 7.66% 
Number of children in out of work households 2.38%  

Other Variables  Marginal effects 
Land use with greenspace − 0.652 
BAME population 0.869 
Number of schools 0.024 
1 Elasticities are given based on a 10% increase in the variable in question  
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consequently, decide where to allocate safety improvement funds and 
projects. Also, this research can help authorities in selecting and 
implementing a variety of countermeasures: (i) educational programmes 
and publicity campaigns that aim at raising awareness among the pop-
ulation about the safety implications of e-scooters on the road network 
(e.g., in more deprived areas or where the number of schools is higher); 
(ii) stricter enforcement in high e-scooter crash locations (e.g., areas 
where walking is more prevalent); and (iii) traffic engineering in-
terventions. With respect to the latter; for example, the inclusion of e- 
scooters on traffic signage, at least, in high e-scooter crash wards, with 
the aim of warning other road users (e.g., pedestrians and car drivers) of 
their presence could be considered. Another engineering intervention 
may consider more segregated “e-scooter ways” which would allow e- 
scooters, like bicycles, to take advantage of being physically shielded 
from motorised traffic. This could happen in the form of designated e- 
scooter facilities that separate e-scooter riders from other road users 
where the prevalence of e-scooter riding is comparatively high or 
through sharing cycleways with cyclists. Finally, the use of dedicated 
traffic lights for e-scooter users, similar to those existing for pedestrians, 
at junctions with relatively high prevalence of e-scooter users, and “e- 
scooter boxes” (similar to bike boxes) at junctions in high-crash loca-
tions/wards would help improve e-scooter safety; and consequently, 
traffic safety. 

Note that our research did not investigate the impact of the above-
mentioned proposed safety interventions as data on such interventions 
were not available. However, these are recommended based on our 
findings, domain knowledge, and the study of previous research con-
ducted on pedestrian and cyclist safety. As more data become available, 
estimating the effectiveness of countermeasures in the context of e- 
scooter safety would be an important direction for future research. 
Table 4 reports some exemplars of relevant stakeholders for each safety 
intervention category discussed above. 

Our results might have been affected by the recent pandemic to some 
extent; however, the model can be readily updated as more recent e- 
scooter crash data (e.g., post-pandemic crash data) become available. In 
future research considering differing injury severity levels (e.g., slight, 
serious, and fatal injuries) would provide more detailed insights into 
understanding e-scooter safety. As new evidence will appear in this 
context in the future, our findings can be used to improve road safety, 
proactively, not only for e-scooter riders but also for other road users, 
particularly pedestrians. 
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Table 4 
Categories of safety interventions against potential stakeholders1.  

Safety intervention category Potential respective stakeholders 

Educational programmes and 
publicity campaigns 

Micromobility service providers, Local 
Authorities, Transport for London, Department for 
Transport, The Royal Society for the Prevention of 
Accidents 

Enforcement Police forces, Driver and Vehicle Licensing 
Agency, and micromobility service providers, to 
some extent, particularly over parking, where 
Local Authorities may also have a role 

Traffic engineering 
interventions 

Local Authorities, Transport for London, 
Department for Transport 

1 Note that this is not an exhaustive list and in many cases the roles may overlap.  
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