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Evaluating and Improving the Robustness of Alchemical Binding Free Energy
Calculations Using Adaptive Enhanced Sampling Methods

by Miroslav Dikov Suruzhon

Alchemical protein–ligand binding free energy calculations are currently a topic in
computational chemistry which requires expert knowledge and a multitude of initial
choices and parameters set by the researcher. While the impact of many of these
decisions on the resulting free energy values has been explored in recent years, the
influence of the initial protein crystal structure, as well as the protonation, tautomeric
and rotameric states of the amino acid side chains on the free energy values have been
underexplored. To perform these studies, a Python library (ProtoCaller) supporting an
arbitrary level of automation for setting up and running binding free energy
calculations is first developed and presented. Afterwards, it is shown that the choice
of initial protein crystal structure can significantly impact the resulting free energy
values at short timescales, while ligand rare events can induce discrepancies at longer
timescales. Similarly, different initial histidine protonation, tautomeric and rotameric
states can also result in free energy discrepancies, showcasing the need for enhanced
sampling methods on protein and ligand degrees of freedom.

To address these sampling problems, an alchemical variant of the sequential Monte
Carlo (SMC) enhanced sampling method is presented and validated on a range of test
cases. This methodology is then augmented with long-timescale sampling provided
by simulated tempering (ST), whose initial parameters are obtained from a
preliminary exploratory SMC simulation and are afterwards refined over time in an
adaptive fashion. The resulting method—fully adaptive simulated tempering
(FAST)—is completely automatable and does not require any system-dependent
parameters, making it generally applicable to the ligand sampling problem. Finally,
FAST is applied to relative protein–ligand binding free energy calculations, enabling
their full automation in combination with adaptive enhanced sampling. This
methodology improves free energy reproducibility by decreasing the number of initial
choices made by the researcher and can also be readily generalised to other sampling
scenarios, making it a highly relevant contribution to the field.
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Chapter 1

Introduction

1.1 Motivation

Drug discovery is a long and expensive process, which can involve the screening of
hundreds of thousands of compounds over the course of 12–15 years.9 Having access
to reliable computational methods which can eliminate a large amount of this effort is
therefore a highly desirable endeavour. Because of this, computational methods
spanning multiple levels of sophistication have become increasingly more popular in
drug discovery in the recent decades.10

There are various classes of computational methods, providing different levels of
accuracy. At the highest levels one has “rigorous” methods, i.e. methods based on
physical principles rather than statistical models. This thesis concentrates on one
particular such class of methods—alchemical free energy (AFE) calculations. AFE
methods are considerably more computationally expensive than most alternatives and
can only handle a small number of potential drug candidates, making them primarily
useful for the later stages of drug discovery.

The theoretical groundwork which preceded the first computationally performed AFE
calculations was first developed by Kirkwood 11 in 1935, who introduced the idea of a
coupling parameter, which interpolates between different thermodynamic states of
interest and can be used to obtain the free energy difference between them. In 1954,
Zwanzig 12 further extended this work by developing a method, known as the
Zwanzig equation or free energy perturbation (FEP), which transformed the problem
of calculating a ratio of partition functions into a sampling problem. This
methodology could then be used to exactly obtain the free energy difference between
any two thermodynamics states by means of computational sampling, as long as their
Hamiltonian is known. The acceptance ratio method introduced by Bennett 13 in 1976
further improved on this idea by introducing a statistically optimal estimator of the
free energy between two probability distributions.
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As computational power increased in the next decades, the calculation of free energies
of larger systems by computational means became feasible. The first application of
FEP on solvation free energy calculations of organic molecules was published in 1985
by Jorgensen and Ravimohan 14 , where the relative solvation free energies of methanol
and ethane were calculated. The success of this result motivated subsequent
retrospective15 and prospective16 work on the calculation of relative protein–ligand
binding free energies by computational means. Since then, the applications of
alchemical free energy methods have been increasing and the field has been maturing.
However, despite the numerous improvements over the years and the theoretical
rigour of AFE methods, they still suffer from issues regarding accuracy, precision and
reproducibility, which undermine their practical utility.

Accuracy is related to the deviation between the calculated and the true free energy.
Accuracy problems are inevitable, due to the quantum nature of chemistry, meaning
that classical models are inherently limited in their description of chemical systems.
On the other hand, quantum methods are currently too computationally expensive to
have a large impact in drug discovery. Therefore, the only way the accuracy problem
can be currently tackled is through the development of more sophisticated models
using recent developments in machine learning. Developing such improved models
often requires large-scale calculations and extensive expertise in computational
chemistry, making it one of the most challenging areas of the field.

Precision is directly linked to the ability of the computational method to sample all
relevant conformations of the molecular system. The precision problem arises due to
the enormous complexity of even small biomolecular systems, where multiple energy
minima separated by high kinetic barriers can co-exist and introduce variability and
bias in any estimated observables. This problem is commonly addressed by various
enhanced sampling methods, which help surmount these kinetic barriers using prior
knowledge about the important degrees of freedom of the system of interest. Current
enhanced sampling research is primarily concerned with the development of methods
which are robust, efficient and sufficiently general at the same time, as well as the
determination of the important degrees of freedom a priori.

Irreproducibility is another major problem in the field. Each biomolecular simulation
involves many choices and decisions which are completely unrelated to the actual
model but can nevertheless impact the results of the calculation by introducing
difficult to detect biases. A poor level of reproducibility is concerning, as it calls into
question the validity of a large fraction of the published literature, meaning that
evaluating the impact of these subjective decisions on AFE calculations is extremely
important. However, this area of research has been comparatively underexplored until
recently.
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Solving these three fundamental problems is the ultimate goal of this field and the
next section will describe how this thesis relates to them.

1.2 Thesis Overview

The primary aim of this thesis is to investigate some aspects of the reproducibility
problem and solve them if possible. This would not only improve the confidence in
AFE methods and the quality of their results, but it would also point towards issues
that need to be considered when developing new methods. Although easy to state,
reproducibility is difficult to explore, mainly due to practical reasons: scientific
software is specialised and often developed by completely different communities,
making the software landscape largely scattered and incohesive. This makes such
large-scale studies technically, albeit not conceptually, challenging.

Despite the technical challenges, there has recently been an increased interest in
measuring the impact of various decisions made by the researcher on the resulting
free energy calculations. The relevant developments in this area, as well as some
important factors that have not yet been considered in the literature, are reviewed in
Chapter 3. While these factors provide a good starting point for a research project, any
such large-scale study needs to be facilitated by an appropriate computational tool.

The first part of the project was therefore to develop a Python library, which acts as an
interface between different specialised pieces of software. The aim of this
development was to create a framework which is robust and permits arbitrary degrees
of customisation and flexibility in the scientific problems that can be studied by it. The
development and structure of this library, ProtoCaller, is described in Chapter 4.

In Chapter 5, ProtoCaller is then used to perform a large-scale study on the impact of
the initial crystal structure on binding free energy calculations. Although recent
literature has hinted at the significance of the problem, there had been no
comprehensive study addressing this question before this work. The practical
implications of this study are significant, as they call into question many of the
assumptions that are frequently made in alchemical free energy (AFE) calculations.

The study in Chapter 5 is afterwards continued in Chapter 6, where the protonation,
tautomeric and rotameric states of the histidine side chains of two different protein
systems will be investigated. Although it is commonly recognised that these can have
a significant impact on the resulting free energies, the magnitude of this effect had not
been known before this study. Another reason for undertaking this problem were
some of the observations made in Chapter 6, where it was discovered that the initial
crystal structure can also influence the setup process, including protonation and
tautomeric side-chain states.
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It will be shown in Chapter 5 that long-timescale sampling, as well as thorough
exploration of the ligand degrees of freedom is vital for performing reliable and
reproducible free energy calculations. This conclusion calls for the use of enhanced
sampling methods in the context of free energy calculations. As the literature on this
topic is vast, it warrants a separate review. In Chapter 7, tempering methods, which
are a subclass of enhanced sampling methods, are presented in a concise fashion and
comparison between the different algorithms will be drawn. These considerations will
evaluate the utility of each tempering method with the goal of improving sampling of
select few degrees of freedom over long timescales in the context of AFE calculations.

In Chapter 8, an adaptive alchemical version of the sequential Monte Carlo (SMC)
method is presented and evaluated over a range of systems. The main advantage of
adaptive alchemical sequential Monte Carlo (AASMC) is its ability to perform
explorative simulations with minimal system-specific knowledge. Although
Chapter 8 demonstrates that SMC is a valid sampling algorithm, the approach taken
in this thesis was to only use SMC in the preliminary stages of the AFE calculation.

The combination of AASMC and another enhanced sampling method, simulated
tempering (ST), is investigated in Chapter 9. In this chapter, AASMC is used as a
preliminary exploratory method which provides various initial parameters for ST in a
system-independent manner. This procedure is then refined as the simulation
progresses, resulting in a fully adaptive simulated tempering (FAST) algorithm, which
minimises the requirements for prior system-specific knowledge. FAST is then
validated on a range of protein–ligand systems, and shown to significantly improve
sampling in an automated way.

The theoretical framework presented in Chapter 9 is afterwards extended in
Chapter 10 to the case of relative protein–ligand AFE calculations and these are also
combined with enhanced sampling. This chapter shows that the resulting method
solves all of the issues presented in Chapter 5, thereby improving the robustness of
AFE calculations. The implications of this thesis, as well as possible future
developments, are finally discussed in Chapter 11.

We now proceed to Chapter 2, which contains a brief introduction to the relevant
theoretical methods common to all of the following chapters.
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Chapter 2

Theoretical Background

2.1 Statistical Mechanics

2.1.1 Ensembles

Statistical mechanics is the branch of physics which studies emergent macroscopic
properties arising from the behaviour of all constituent microscopic particles. Central
to statistical mechanics is the idea that the internal energy (E) of a system is an
extensive property, i.e. one which scales linearly with system size on a macroscopic
scale. One can then express E as a multilinear function with respect to all extensive
macroscopic observables of the system: the entropy (S, defined later), the volume (V),
the number of particles (N) and others, depending on the system studied. With the
help of the fundamental laws of thermodynamics, one can then include the following
intensive conjugate observables: temperature (T), pressure (P) and chemical potential
(µ) to postulate the relation:

E = TS− PV + ∑
i

µiNi (2.1)

where i iterates over all types of indistinguishable particles, whose number will
henceforth be denoted as a vector N⃗. If we express the internal energy as a function of
all extensive variables, the following scaling behaviour holds for an arbitrary scaling
factor λ:

λE(S, V, N⃗) = E(λS, λV, λN⃗) (2.2)

from which we can obtain the total differential of the internal energy:
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dE(S, V, N⃗) = T(S, V, N⃗)dS− P(S, V, N⃗)dV + ∑
i

µi(S, V, N⃗)dNi (2.3)

This relationship gives us a conditional conservation law: in a system with constant
entropy, volume and number of particles, the total internal energy is conserved. This
system is denoted as the microcanonical (NVE) ensemble.

In general, one can derive a multitude of statistical ensembles by expressing the
relevant conserved quantity (the thermodynamic potential) as a function of any
combination of intensive and extensive variables, provided that at least one variable is
extensive. For our intents and purposes, we will concentrate on the canonical
ensemble, where we keep the number of particles, system volume and temperature
constant (NVT) and the isothermal–isobaric ensemble (NPT), where instead of the
volume, we keep the pressure constant, much like in chemical reactions under
laboratory conditions.

In the canonical ensemble the relevant conserved thermodynamic potential is the
Helmholtz free energy F:

F = E− TS = −PV + ∑
i

µiNi

dF(T, V, N⃗) = −S(T, V, N⃗)dT − P(T, V, N⃗)dV + ∑
i

µi(T, V, N⃗)dNi

(2.4)

and in the isothermal–isobaric ensemble the conserved quantity is the Gibbs free
energy G:

G = E− TS + PV = ∑
i

µiNi

dG(T, P, N⃗) = −S(T, P, N⃗)dT + V(T, P, N⃗)dP + ∑
i

µi(T, P, N⃗)dNi

(2.5)

After we have defined an ensemble, we are most interested in its underlying
probability distribution defined over the phase space, spanned by the atom
coordinates x⃗ and momenta p⃗. A central idea in statistical mechanics is that all states
of equal energy are equally probable. This leads to the corollary that for a very large
number of particles (O(1023)), the probability distribution leading to the highest state
degeneracy will dominate over all other possible probability distributions. This
measure of degeneracy is denoted as “entropy” in physics and as “information” in
statistics and is proportional to minus the logarithm of the number of possible states
W:

S = −kB ln W (2.6)
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where kB is the Boltzmann constant. One can then postulate that a large number of
microscopic systems make up a microcanonical system (the “universe”), which
imposes constraints on the average number of particles, volume and internal energy.
The distribution which maximises the entropy given these constraints in the case of
the canonical ensemble is the Boltzmann distribution πNVT(x⃗, p⃗):

πNVT(x⃗, p⃗) =
e−βE(x⃗,⃗p)

ZNVT
(2.7)

where β ≡ 1/kBT and ZNVT is a normalisation constant, also known as the partition
function:

ZNVT =
1

h3N

∫
e−βE(x⃗,⃗p)dx⃗dp⃗ (2.8)

where we assume distinguishable particles and h denotes Planck’s constant. Since the
above definitions can be readily extended to the NPT ensemble using the substitution
−βE(x⃗, p⃗)→ −β(E(x⃗, p⃗) + PV), we will henceforth concentrate on the NVT
ensemble without loss of generality. In the following discussion we will also omit all
ensemble subscripts.

Using the underlying probability distribution one can then calculate any observable as
the average over the probability distribution (ensemble average). For example, the
total macroscopic internal energy of the system E can be expressed as a weighted sum
of the microscopic energies:

E ≡ ⟨E(x⃗, p⃗)⟩ =
∫

E(x⃗, p⃗)π(E(x⃗, p⃗))dx⃗dp⃗ =
∫

E(x⃗, p⃗)
e−βE(x⃗,⃗p)

Z
dx⃗dp⃗ (2.9)

There is also a fundamental relationship between the relevant thermodynamic
potential and the partition function of the equilibrium distribution defined by that
potential:

F = −β−1 ln Z (2.10)

Even though the partition function and/or the free energy can in principle supply us
with all relevant system information, the calculation of these quantities is impossible
analytically, apart from the simplest cases, and mostly unfeasible numerically,
although some efficient approaches exist for small systems.17 Therefore, we will
mainly be interested in free energy differences between e.g. two Hamiltonians A and
B:
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∆FAB = −β−1 ln
ZB

ZA
(2.11)

2.1.2 Free Energy Estimators

All commonly used approaches to numerically solve Equation 2.11 convert the
intractable problem of calculating the ratio of two partition functions into a sampling
problem. In general, there are three classes of free energy calculation methods: free
energy perturbation (FEP), thermodynamic integration (TI) and nonequilibrium free
energy calculations. We will henceforth focus on FEP methods. We will also be
working with the dimensionless potential energy u(x⃗), as by doing so we can
generalise the treatment of all relevant thermodynamic ensembles, as well as dispose
of the kinetic energy contribution to the free energy difference, which can be
calculated analytically and is of no numerical interest.

The simplest way of evaluating the dimensionless free energy difference ∆ fAB is by
transforming the free energy calculation into a sampling problem using the trivial
relation (Zwanzig equation):12

∆ fAB = − ln
ZB

ZA
= − ln

∫
e−(uB(x⃗)−uA(x⃗))e−uA(x⃗)dx⃗

ZA

≡ − ln
〈

e−∆uAB(x⃗)
〉

A
= ln

〈
e∆uAB(x⃗)

〉
B

(2.12)

with ∆uAB(x⃗) ≡ uB(x⃗)− uA(x⃗). In practice, estimating Equation 2.12 is difficult unless
∆uAB(x⃗) exhibits low variance. Therefore, even though the final two relations in
Equation 2.12 are formally equivalent, they will often give very different results in
practice. There are two modifications to the method to remedy this: the first is to split
a perturbation into N smaller perturbations dependent on a coupling parameter λ,
such that uλ1(x⃗) ≡ uA(x⃗) and uλN (x⃗) ≡ uB(x⃗):14

∆ fAB =
N

∑
i=1

∆ fλiλi+1 (2.13)

and the second is to use a statistically optimal estimator. The minimum variance
two-state estimator is known as the Bennett acceptance ratio (BAR)13 and its
multistate generalisation is commonly referred to as MBAR18 or unbinned weighted
histogram analysis method (UWHAM).19 MBAR is not only asymptotically optimal,
but is also a Rao–Blackwell estimator,20 which maximises the likelihood of the
observations given the statistical model.18
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An overview of MBAR will be presented in Section 9.2.2. Although MBAR is a
theoretically more efficient estimator than BAR, it requires MN2 energy evaluations
for N λ-windows and M frames per window. In contrast, BAR scales as O(MN),
which means that depending on the number of the intermediate states, BAR can
therefore be more desirable, since MBAR typically results in similar values to those
obtained with BAR.21

2.2 Energy Models

The main focus of this thesis will be solvated proteins which typically contain between
105 and 107 atoms. It is not possible to use high-level ab initio electronic structure
methods in such large systems with the current level of computational power,
meaning that electronic effects have to be handled approximately. The only quantum
mechanical method that can be employed on small whole proteins is density
functional theory (DFT)22 but it is still a highly expensive method for single-point
energy evaluations. Since free energy calculations involve ensemble averages, we
need to be able to not only evaluate thousands of single-point energies but also have a
procedure to generate new samples. The latter usually involves force calculations
which increase the computational complexity of the problem even further.

Therefore, we will opt for classical methods where electronic effects are coarse-grained
and accounted for by empirical parameters. This is justified for insulators, such as
most proteins, where electron mobility is expected to be low and the ground electronic
state is expected to dominate most of the physics. The most widespread type of
classical models is the atomistic force field, where only nuclear motions are accounted
for. While most atomistic force fields have similar features, in this discussion we will
concentrate on one particular model, the AMBER force field,23 which will be
exclusively considered hereafter.

2.2.1 Functional Form

One of the approximations of the AMBER force field is the splitting of the energy
function in two-body terms with the exceptions of bonded systems, where three- and
four-body effects are also accounted for. The total energy function can be expressed as
a sum of bonded, angular, torsional, van der Waals and electrostatic terms:

UAMBER = Ubond + Uangle + Utorsions + UvdW + Uel (2.14)

The bonded and angular terms are harmonically centred around their equilibrium
values:
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Ubond(x⃗) = ∑
bonds

kr(r− req)
2

Uangle(x⃗) = ∑
angles

kθ(θ − θeq)
2

(2.15)

where r is the bond distance, θ is the bond angle, xeq represents the corresponding
equilibrium value and kx denotes the respective force constant. The torsional terms
consist of proper dihedrals and improper dihedrals, which describe out-of-plane
motions. They have a periodic form:

Utorsions = ∑
torsions

kn(1 + cos(nϕ− γ)) (2.16)

Each torsion has a multiplicity n, an offset γ and an amplitude kn corresponding to the
dihedral angle ϕ. The short-range nonbonded interactions are described by the
Lennard-Jones (LJ) potential:

UvdW = ∑
i<j

4ϵij

[(
σij

rij

)12

−
(

σij

rij

)6]
(2.17)

where σ is related to the equilibrium inter-atomic distance and ϵ represents the depth
of the energy well. The following combination rules (Lorentz–Berthelot) are in place in
the AMBER force field for two atoms A and B with LJ parameters (σA, ϵA) and
(σB, ϵB), respectively:

ϵAB =
√

ϵAϵB

σAB =
1
2
(σA + σB)

(2.18)

Finally, the AMBER force field approximates long-range electrostatic interactions
using fixed partial charges q centred on each atom:

Uel = ∑
i<j

qiqj

4πϵ0rij
(2.19)

Here ϵ0 denotes the permittivity of free space. All nonbonded interactions are ignored
for pairs of atoms with bonded and angular interactions, since these are described by
the harmonic terms outlined above. In the case of 1,4 interactions, the following
“fudge” factors are used to scale the nonbonded terms in order to partially introduce
steric repulsion and classical electrostatic interactions to the periodic torsional
potential:
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fvdW = 0.5

fel ≈ 0.833
(2.20)

2.2.2 Force Field Types

2.2.2.1 Proteins

One of the most widely-used standard amino acid models is ff99SB,24 which has been
superseded by its more recent version, ff14SB25 and most recently, ff19SB.26 Here and
henceforth we will concentrate on ff14SB, which has been shown to achieve a marked
improvement over ff99SB by employing a large set (∼15,000) of training data in
vacuum with geometries optimised at low-level Hartree-Fock theory (HF) and
single-point energies calculated with second-order Møller-Plesset perturbation theory
(MP2). Since the functional form of the force field is inherently approximate, there is
an accuracy limit on the model and it has been argued26 that diverse training data is
more important in developing a practically useful force field than more accurate
training energies, making ff14SB a suitable protein force field for the systems
considered in the following chapters.

2.2.2.2 Small Molecules

Similarly to ff14SB, a general AMBER force field (GAFF)27 has been developed to
describe a diverse set of small molecules. The fitting procedure and the functional
form are comparable to ff14SB. The main differences are the need for an extensive set
of atom types, representing different chemical environments (which set has been
extended in the more recent version, GAFF2), as well as the on-demand calculation of
partial charges. Dihedral terms which are not present in GAFF are usually replaced by
their closest matches and associated with a quality metric to assess whether additional
quantum mechanical calculation is required to determine these. Similarly, partial
charges are obtainable from a quantum calculation using different approaches, such as
RESP.28 Alternatively, one can use semi-empirical charge derivation methods, such as
AM1-BCC.29,30 It is important to note that the latter is conformation-dependent and
the initial choice of coordinates will affect the energy model.

2.2.2.3 Water

Water is obviously a crucial component of any biomolecular simulation and much
effort has been spent in developing good water models. Unfortunately, since water
exhibits unusual macroscopic behaviour due to its extensive hydrogen bonding, it is
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difficult to create a reliable water model. Most widely used are 3- and 4-point water
models, such as TIP3P,31 TIP4P-Ew,32 SPC33 and OPC.34 3-point water models are
still widely used in the literature, mostly because of the extra computational speed
and in our study we will use TIP3P, which is compatible with both ff14SB and
GAFF/GAFF2. The TIP3P model only defines three constrained O–H and H–H
distances alongside a single partial charge parameter (the other two are obtainable by
symmetry and net neutrality) and two LJ parameters for the whole molecule, centred
on the oxygen atom.

2.2.2.4 Others

There are also LJ parameters for simple cations and anions, associated with TIP3P.
This is unfortunately not true for more complicated ions, for which complete
reparametrisation is needed. This is particularly difficult for transition metal centres,
since the concept of bonding is not as well-defined in these systems as in organic
molecules, meaning that the standard functional form of the force field is often
inadequate in such cases. In this thesis, systems with transition metal centres will not
be considered. Finally, many proteins have a range of purely organic cofactors, for
which a general force field is not adequate, partly due to the frequent presence of
difficult-to-parametrise phosphate groups. Therefore, manual parametrisation is
preferred and there is an online database35 containing many such efforts which are
compatible with the AMBER force field. This is the resource that will be used in the
following chapters for the systems containing common cofactors.

2.2.3 Evaluation

2.2.3.1 Periodic Boundary Conditions

As mentioned above, we can only simulate a number of atoms many orders of
magnitude less than Avogadro’s number with current computational power—a
system size which is much smaller than the full macroscopic system of interest. The
boundaries of the simulated system are thus non-physical and as such should not
exert any forces on it, which would be non-negligible at this lengthscale. A common
practice which circumvents this problem is to create an infinite 3-dimensional
“crystal” with every unit cell being the simulation of interest. This approximation
allows a net particle flow over the boundaries without any changes in the total
number of particles—a property which is extremely important for simulations
studying ensembles with constant number of particles. In practice, this simply means
that when a particle crosses a boundary, it is immediately moved to the other side of
the unit cell. The most commonly used unit cell shape is the cuboid and even though
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alternative unit cell shapes, such as dodecahedral, are also used in biomolecular
simulations for performance purposes, cubic cells will be exclusively utilised in the
following chapters.

2.2.3.2 Cut-Offs

In practice, the force field is a very complex model, and this complexity makes it
prohibitively expensive to evaluate it and its derivatives. The main reason for this is
the unfavourable O(N2) scaling of the multiple nonbonded interaction terms.
Additionally, there are an infinite number of nonbonded terms if there are periodic
boundary conditions, so the most common practice is to introduce short-range cut-offs
rc in the range between 0.8 and 1.2 nm, beyond which any interactions are ignored.

2.2.3.3 Long-Range Corrections

The introduced cut-off distances rc are only useful for short-range interactions and
introduce long-range errors in both LJ and Coulomb terms. This is not particularly
problematic for LJ dispersion interactions, since they decay as r−6, and any
contributions to the energy beyond the cut-off ∆Udisp can be approximated in a
mean-field fashion:

∆Udisp ∝
∫ ∞

rc

4πr2 1
r6 dr ∝

1
r3

c
(2.21)

This treatment is not possible for periodic electrostatic interactions, since it is readily
seen by comparison with Equation 2.21 that the mean-field integral diverges for
Uel ∝ 1

r . Nevertheless, one can split the whole electrostatic sum into real-space and
Fourier-space terms, each with an associated cut-off (Ewald summation36). However,
this sum still scales unfavourably as O(N2) and its fast Fourier transform version,
particle mesh Ewald (PME)37 is frequently used in practice instead. PME scales as
O(N log N) making it much faster than regular Ewald. It is still, however, the slowest
force field component to evaluate.

2.3 Performing Free Energy Calculations

In Section 2.1.2 it was shown that free energies are commonly calculated by
calculating thermodynamic averages of certain quantities over several simulations.
However, there are some practical subtleties when performing these calculations and
they will be described in this section.
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(A) Absolute binding free energy cycle (B) Relative binding free energy cycle

FIGURE 2.1: Constructing a thermodynamic cycle describing protein–ligand bind-
ing. (2.1a): each atom in the ligand is annihilated to a “dummy”. Since this
dummy does not interact with its surroundings, ∆G−◦du = 0, meaning that ∆G−◦ =
∆G−◦du,bound − ∆G−◦du,solvated. (2.1b): calculating the relative free energy ∆∆GAB by lig-
and transformation. This thermodynamic cycle shows that ∆∆G−◦AB ≡ ∆G−◦B − ∆G−◦A =

∆G−◦AB,bound − ∆G−◦AB,solvated.

2.3.1 Calculating Binding Free Energies

The main interest of the work presented in the following chapters will be the
calculation of equilibrium protein-ligand binding free energies. The standard Gibbs
binding free energy ∆G−◦A is a quantity which is directly related to the equilibrium
binding constant KA of some ligand A to the protein:

∆G−◦A = − 1
β

ln KA (2.22)

In practice, the standard relative Gibbs binding free energy between two ligands A
and B, ∆∆G−◦AB, is more desirable for direct calculation, due to its better convergence
properties:

∆∆G−◦AB = ∆G−◦B − ∆G−◦A (2.23)

Direct calculation of binding constants is difficult, since binding events are usually
extremely rare and practically intractable using current computational speed. A
technique which is overwhelmingly popular is to make use of the fact that the free
energy is a state function and any closed thermodynamic cycles have free energy
changes summing up to zero (Figure 2.1). In this way, one can express the relative free
energy ∆∆G−◦AB as:

∆∆G−◦AB = ∆G−◦AB,bound − ∆G−◦AB,solvated (2.24)

Where ∆G−◦AB,bound and ∆G−◦AB,solvated refer to the ligand transformation from A to B
when bound to the protein and in pure water, respectively. One downside of relative
free energy calculations is that the binding mode used for calculating ∆G−◦AB,bound

should be known in advance, since binding mode changes do not typically occur



2.3. Performing Free Energy Calculations 15

FIGURE 2.2: Illustration of the single and dual topology approaches. “D” refers to
a dummy atom, while “M” indicates a partially interacting atom in its intermediate

state. Image taken from [1].

under the usual timescales used for alchemical free energy (AFE) calculations.
Equation 2.24 is then reduced to two free energy calculations coupling two different
Hamiltonians (“bound leg” and “solvated leg”), and these free energies can be readily
estimated using intermediate alchemical states and the techniques described in
Section 2.1.2. Although the design of these intermediate states does not theoretically
affect the asymptotic free energy value, this choice can significantly impact the
efficiency of the calculation. Some common practices for defining the intermediate
states will be described in the next sections.

2.3.2 Topology

When interpolating the two Hamiltonians HA and HB, one usually distinguishes
between two types of protocols: single topology and dual topology (Figure 2.2). In the
single topology protocol, all atoms are mapped onto a maximum common
substructure (MCS) and the atoms that do not match are perturbed from/into
noninteracting dummy atoms. This protocol is employed in GROMACS.38 In the dual
topology protocol, both molecules are simulated at the same time and they do not
interact with one another, whilst being restrained to each other. This approach is used
in NAMD.39 One can also effectively combine both methodologies by simulating the
two molecules separately whilst constraining a subset of their atoms to have common
coordinates. This is the approach used in AMBER.40

In practice, single topology protocols result in lower estimator variance, since both
ligands sample the same part of phase space. However, this apparent convergence
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could be misleading, as will be shown in most of the following chapters. On the other
hand, dual topology is most useful for perturbations involving ring breaking, where
single topology approaches are either problematic41 or require substantial
modifications.42

When using single topology mapping, one can not only interpolate between the
energy functions of both endstates, but also between the force field parameters
thereof. The latter is the method used in GROMACS. Although the interpolation can
in principle use any powers of the λ variable, linear coupling is usually preferred in
practice, although the next section will discuss an important exception to this rule.

2.3.3 Perturbing Potentials

As discussed in the previous section, an obvious way to combine the two terminal
potential energy functions U0 and U1 into an intermediate Uλ is:

Uλ(r) = (1− λ)U0(r) + λU1(r) (2.25)

However, this simplistic approach can lead to numerical instabilities in the force field
components that admit singularities (in our case, electrostatics and van der Waals
interactions). Since any intermediate interpolation is arbitrary, one can choose to use
shifted distances which vary smoothly with λ and do not result in any singularities at
the intermediate states. This intermediate potential is called a soft-core potential43 and
a commonly used functional form is:44

Uλ(r) = (1− λ)aU0(r0) + λaU1(r1)

r0 = (ασ6
Aλb + rc)

1
c

r1 = (ασ6
B(1− λ)b + rc)

1
c

(2.26)

where α, a, b and c are tunable parameters. For LJ terms, it is commonly chosen that
a = 1, b = 1 and c = 6. On the other hand, electrostatic interactions are usually scaled
separately from LJ interactions and in such a setting it is more efficient to decouple
them linearly. Soft-core potentials are thus mainly used for perturbing van der Waals
interactions only.

2.4 Sampling

In order to obtain ensemble averages, one needs to find a way to sample from the
corresponding probability distribution. In general, this is a highly disconnected



2.4. Sampling 17

multimodal distribution, which means that global sampling is a challenge. In practice,
especially for large systems, one can only achieve local sampling. The main
traditionally employed methods to locally sample points in phase space are:
derivative-based approaches (e.g. molecular dynamics [MD]), derivative-free
approaches (e.g. Markov chain Monte Carlo [MCMC]) and hybrids (e.g. Hamiltonian
Monte Carlo [HMC]45). These will be briefly outlined in the next sections.

Even if global sampling is not possible for large systems, one can enhance the local
sampling over certain degrees of freedom of interest. Enhanced sampling is a broad
area of research and many algorithms have been published in the literature to
overcome the kinetic barriers associated with the highly disconnected multimodal
distributions. A brief summary of different approaches to enhancing the basic MCMC
algorithm will be considered in Section 2.4.3, while a more detailed discussion of
enhanced sampling methods, in particular tempering methods, will be presented in
Chapter 7.

2.4.1 Molecular Dynamics (MD)

2.4.1.1 Equations of Motion

Central to MD is the ergodic hypothesis,46 which postulates that for a sufficiently
chaotic system, the expectation value of an observable O(x⃗, p⃗) over the
multidimensional probability distribution π(x⃗, p⃗) can be mapped onto a
one-dimensional time integral:

⟨O(x⃗, p⃗)⟩ ≡
∫

O(x⃗, p⃗)π(x⃗, p⃗)dx⃗dp⃗ = lim
τ→∞

1
τ

∫ τ

0
O(x⃗(t), p⃗(t))dt (2.27)

The time evolution is then achieved using the classical equations of motion:

dxi

dt
= vi

dvi

dt
=

Fi(x⃗)
mi

(2.28)

where v⃗ is the velocity vector, F⃗(x⃗) is the force vector and mi is the mass associated
with the i-th degree of freedom. The above equation can be formalised as an operator
acting on an initial state in phase space z⃗(0) ≡ (x⃗(0), p⃗(0)):

z⃗(t) = eiL̂t⃗z(0) (2.29)

with L̂ being the Liouville operator, defined as:
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iL̂ =
3N

∑
i=1

[
vi

∂

∂xi
+

Fi(x⃗)
mi

∂

∂vi

]
(2.30)

where we have converted all momenta to velocities in order to compare with
Equation 2.28.

Since Equation 2.28 is a system of 6N first-order differential equations, solving it
analytically is not possible, apart from the simplest cases. However, numerical
methods have been quite successful at generating an approximate solution to the
above equations and the Liouvillian formalism facilitates the derivation of otherwise
unwieldy approximations in discrete time.

2.4.1.2 Numerical Integration

If we split the Liouville operator into a position and a velocity term:

iL̂ = iL̂x⃗ + iL̂v⃗ (2.31)

we can discretise Equation 2.29 using a symmetric Trotter expansion:47,48

eiL̂t⃗z(0) =
[
eiL̂v⃗

∆t
2 eiL̂x⃗∆teiL̂v⃗

∆t
2 + O(∆t3)

] t
∆t z⃗(0) (2.32)

If we ignore the O(∆t3) terms and approximate the action of each operator on our
state using the Euler method, we obtain the time-reversible volume-preserving
velocity Verlet algorithm,49 which is commonly used in MD simulations. Most
existing integrators can be derived by either keeping the higher-order terms or by
using alternative Liouvillian splitting procedures. More generally, we can denote the
velocity Verlet integrator as a “second-order VRV” integrator, where we use the
Liouvillian splitting as a unique label. This notation is useful for providing a concise
description of more sophisticated integration schemes.

The magnitude of the timestep is determined by the numerical stability of the fastest
motions in the system. In chemical systems, the fastest degrees of freedom are the
hydrogen atoms, which can usually be reliably simulated without any numerical
instabilities with a 1 fs timestep. Another common procedure is to integrate out the
hydrogen degrees of freedom by constraining their associated bonds, thereby allowing
a larger timestep of typically 2 fs. In this case, one needs a constraint algorithm, such
as SHAKE,50 LINCS51 or CCMA52 to efficiently solve the system of nonlinear
equations which arises from the constrained equations of motion. For simple cases,
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such as water molecules, it is possible to solve the constraint equations analytically at
a lower computational cost. This approach is known as the SETTLE53 algorithm.

2.4.1.3 Thermostats

The above integration procedures generate approximately energy-conserving motion.
In a system with heat dissipation we need to use thermostats in order to sample from
a canonical distribution. One approach is velocity rescaling (e.g. Berendsen
thermostat54), where the kinetic energy is rescaled exponentially quickly to the
desired temperature. This approach is not rigorous,55 but is nonetheless efficient for
equilibration. Another approach is the use of additional degrees of freedom which
represent the thermostat (e.g. Nosé-Hoover thermostat56). These extended
Lagrangian approaches are however only ergodic in the limit of an infinite amount of
additional degrees of freedom.57 Arguably the most reliable family of thermostat
methods sample velocities from their equilibrium distribution and mix them with the
current velocities (e.g. Langevin thermostat58). This approach is non-deterministic
and completely rigorous. In this case, one needs extended equations of motion with
an extra stochastic step (also abbreviated as “O”), which can be derived using
Equation 2.32. One commonly used form of an integrator incorporating a Langevin
thermostat is the second-order VRORV integrator (also known as BAOAB), which has
been shown to be the most accurate second-order splitting in practice.59

2.4.1.4 Barostats

Similarly, pressure control is needed if one samples from an isothermal–isobaric
ensemble. This is achieved using barostats. As with thermostats, there are
coordinate-rescaling barostats (e.g. the Berendsen barostat54) which are efficient but
not rigorous, extended Lagrangian barostats (e.g. the Parrinello–Rahman barostat60),
which are deterministic in nature, and Monte Carlo barostats, which are stochastic and
rigorous.

2.4.2 Markov Chain Monte Carlo (MCMC)

An alternative method for generating samples according to an arbitrary
multidimensional distribution is MCMC. A Markov chain is a stochastic model
defined over a space of discrete and continuous states. Sampling over these spaces is
only dependent on the most recent sample, making MCMC a memoryless method. If
we denote the current configuration by x⃗ and the subsequent configuration by x⃗′, a
suitable normalised transition kernel T(x⃗′ |⃗x) preserves the target probability
distribution π(x⃗) only if the following condition (“balance”) is met:
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π(x⃗′) =
∫

π(x⃗)T(x⃗′ |⃗x)dx⃗

1 =
∫

T(x⃗′ |⃗x)dx⃗′
(2.33)

The balance condition combined with the requirement that all states are connected in a
finite number of transitions (“ergodicity”) are the two sufficient and necessary
requirements to sample from π(x⃗). While balance is a completely general condition, it
is in most cases difficult to describe a suitable transition kernel T(x⃗′ |⃗x) for an
arbitrarily complex probability distribution in a simple way. Consequently, a more
stringent but universally applicable condition, called detailed balance, is usually used
instead:

π(x⃗)T(x⃗′ |⃗x) = π(x⃗′)T(x⃗|x⃗′) ∀x⃗, x⃗′ (2.34)

It can be easily seen that detailed balance trivially satisfies Equation 2.33 for any
distribution π(x⃗). In order to enforce detailed balance, one usually splits T(x⃗′ |⃗x) into
an arbitrary proposal probability pprop(x⃗′ |⃗x) and a residual acceptance probability
pacc(x⃗′ |⃗x), such that:

π(x⃗)pprop(x⃗′ |⃗x)pacc(x⃗′ |⃗x) = π(x⃗′)pprop(x⃗|x⃗′)pacc(x⃗|x⃗′)

pacc(x⃗′ |⃗x)
pacc(x⃗|x⃗′)

=
π(x⃗′)pprop(x⃗|x⃗′)
π(x⃗)pprop(x⃗′ |⃗x)

(2.35)

A common choice for pacc(x⃗|x⃗′) which satisfies Equation 2.35 while maximising the
transition probability is the Metropolis acceptance criterion:61

pacc(x⃗|x⃗′) = min

[
1,

π(x⃗′)pprop(x⃗|x⃗′)
π(x⃗)pprop(x⃗′ |⃗x)

]
(2.36)

Most of the efforts in MCMC research are centred around obtaining an appropriate
form of pprop(x⃗|x⃗′), i.e. a way to generate new configurations which results in both
high acceptance and fast sample decorrelation. Different schemes to achieve this exist,
some of which will be outlined in Section 2.4.3.

A key strength of MCMC in comparison to MD is its ability to not only sample
continuous state spaces, but discrete ones as well. In this case, the above formalism
still holds, except that the transition kernels can be thought of as finite-dimensional
matrices, rather than continuous functions. The utility of discrete state spaces will be
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described in more detail in Chapter 7, where it is shown how various enhanced
sampling methods benefit from this framework.

Another useful application of MCMC is its ability to sample an arbitrary subset of the
underlying variables conditionally on the other variables (Gibbs sampling62). This can
in practice be combined with other sampling methods, such as MD. Examples of this
specialised application of MCMC is the implementation of a Monte Carlo barostat
which only updates the box size conditionally on the system coordinates, as well as
temperature-based enhanced sampling methods, which update the temperature T
independently of the system coordinates (Chapter 7). Indeed, Gibbs sampling is often
preferred in high-dimensional systems due to its comparatively high acceptance rates.

The greatest advantage of MCMC is that it is an extremely general method which is
simple to understand and implement. However, one significant drawback is the fact
that detailed balance has to be almost invariably used in practice. Since detailed
balance is a sufficient but not necessary condition to preserve the equilibrium
distribution, it is usually very restrictive, leading to high rejection rates and therefore
wasted computational effort. On the other hand, such waste is not a feature of MD.

2.4.3 Enhanced Monte Carlo

As mentioned in Section 2.4.2, the proposal distribution pprop(x⃗′ |⃗x) can be engineered
to give rise to various Monte Carlo algorithms. For example, a transition kernel
consisting of untempered MD evolution over a time τ gives rise to the HMC
algorithm, while a tempered kernel results in the Metropolis-adjusted Langevin
algorithm (MALA).63 These methods can be seen as the exact version of MD, since the
latter has an associated discretisation error proportional to the timestep.

Similarly, one can devise transition kernels for surmounting specific kinetic barriers,
including those associated with certain translational, rotational and/or torsional
degrees of freedom. One such method is nonequilibrium candidate Monte Carlo
(NCMC),64 which is a generalisation of MALA to a time-dependent sequence of
different Hamiltonians. The suitable design of these can then enhance the sampling of
certain degrees of freedom.65 Another transition kernel more specific to simulations in
the grand canonical (µVT) ensemble is used in grand canonical Monte Carlo
(GCMC).66 This methodology can be utilised in exploring the translational and
rotational degrees of freedom of kinetically trapped binding site water molecules.67
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2.5 Markov State Models (MSMs)

Markov chains can not only be used to sample discrete and continuous distributions,
but they can also be utilised as a modelling tool to create a kinetic profile of certain
rare events of interest in a molecular simulation. This approach is known as Markov
state modelling.

A Markov state model (MSM) is defined by a collection of macrostates of interest (e.g.
a folded and an unfolded protein state) and the transition matrix describing
conditional transition probabilities ptrans after a lag time τ, such that:

Tij(τ) = ptrans(j|i, τ) (2.37)

for some states i and j. In this way, an MSM assumes that any transitions between
different macrostates are probabilistic and memoryless.

The assignment of a unique macrostate to each of the observed microstates depends
on what types of rare events are of interest. For example, the kinetics of a cis–trans
isomerisation of a particular double bond can be described by assigning to each
sampled structure a corresponding label: either cis or trans. This assignment can either
be performed by manually determining a dihedral angle boundary, or by using
various clustering methods.68 In other cases, such as protein folding, defining a
degree of freedom for subsequent clustering is not as straightforward as measuring a
single dihedral angle, and more general dimensionality reduction techniques need to
be used instead, such as principal component analysis (PCA)69 or time-lagged
independent component analysis (TICA).70

Once the macrostates of interest have been defined, the next step is the determination
of the transition matrix T(τ) given a particular lag time τ. Although this can in
principle be done by simply counting the number of transitions between states, this
methodology is not reliable when the number of transitions is low, which is often the
case if one is interested in the kinetics of rare events.71 Instead, maximum likelihood
approaches are more commonly used, where the likelihood of observing a particular
trajectory of macrostates given a transition matrix T(τ) is maximised by varying the
individual elements of T(τ).

However, a simple maximum likelihood approach is highly dependent on the
clustering procedure and is consequently sensitive to any discretisation errors. This
problem can be circumvented by employing hidden MSMs,72 which consist of hidden
states and observed states, where there is a finite probability that each hidden state
will be observed as a different observed state. In this way, discretisation errors can be
handled more robustly by modelling them as a noisy observation process. Another
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desirable quality of an MSM is the ability to estimate a confidence interval of its
observables. This can be done by generating a population of different MSMs using a
Bayesian approach73 and can also be performed in the case of hidden MSMs.74

As long as the estimated transition matrix is regular (i.e. there exists a positive power
thereof, such that all of its elements are strictly positive), it has an associated
stationary distribution π⃗0,75 such that:

π⃗0T(τ) = π⃗0 (2.38)

Since any initial distribution p⃗0 can be expressed as a weighted sum of the left
eigenvectors of T(τ), such that p⃗0 = ∑i ciπ⃗i, one can then express the evolution of p⃗0

after t ≡ nτ timesteps:

p⃗0Tn(τ) = ∑
i

ciπ⃗iTn(τ) = ∑
i

ciπ⃗iλi(τ)
n (2.39)

Since the magnitude of each eigenvalue apart from λ0 is less than unity,76 this means
that the contribution of the i-th eigenvector (i > 0) decays exponentially over time
with a decay factor of λi(τ)

n ≡ λi(τ)
t/τ. One can relate this decay factor to the one

corresponding to a general exponential decay process, e−t/tdecay :77

tdecay,i(τ) = −
τ

ln λi(τ)
(2.40)

tdecay,i is commonly referred to as the i-th implied timescale. For i = 1, which we
define as corresponding to the second largest eigenvalue, one can obtain the slowest
implied timescale, which gives a measure of the mixing rate of the Markov chain:

tslowest(τ) = −
τ

ln λslowest(τ)
(2.41)

For a perfectly Markovian system, λ(kτ) = λ(τ)k, meaning that the estimated implied
timescales should be independent of the choice of lag time.78 This expected property
can be used to validate the MSM. In practice, this is commonly done by plotting the
implied timescale of interest over a range of lag times and analysing the deviation of
the resulting plot from an expected horizontal line.79

We now turn to Chapter 3, where we review the recent literature investigating the
reproducibility of AFE calculations.
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Chapter 3

Reproducibility of Alchemical Free
Energy Calculations: A Review

3.1 Introduction

As described in Chapter 2, the two essential elements when performing a molecular
simulation are the energy model (force field) and the sampling method used to
generate structures according to the thermodynamic ensemble partially defined by the
force field Hamiltonian. These two constituents are also the main focus of study when
developing improved algorithms—the former directly affecting the accuracy, and the
latter determining the precision of the results obtained from the simulation.

Compared to force field development and enhanced sampling research, an
often-overlooked topic in the field of molecular simulation is that of reproducibility.
Reproducibility is defined as the extent to which two unrelated research groups can
obtain statistically equivalent results given the same research problem and
methodology. We will also note that this is a more general condition than repeatability,
which is related to the ability of the same researcher to obtain the same result by
exactly repeating the same methodology using the same apparatus. However, since
molecular dynamics (MD) simulation studies rely on many implicit choices and
parameters set by the researcher (e.g. initial coordinates and force field parameters),
these are only partially described in practice, meaning that the vast majority of MD
calculations are inherently difficult to reproduce. These decisions are not only
method-specific but are also related to how the researcher chooses to represent the
real-world physical system as a computational model and what the purpose of the
simulation is. Therefore, we will here and henceforth extend the concept of
reproducibility to the ability to obtain statistically similar results using two different
protocols.
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Evaluating the reproducibility of binding free energy calculations is critical to their
viability in commercial drug discovery studies. Even though guidelines and best
practices for alchemical free energy (AFE) calculations are routinely published,1,80,81

the process remains highly involved with multiple arbitrary choices made by the
researcher. If the resulting free energy values are highly sensitive to these choices, this
presents a significant problem for the utility of AFE methods.

Each binding free energy simulation consists of two stages: system setup and
simulation. The former involves the selection of starting coordinates, the choice of
force field, and the assignment of tautomeric and protonation states of the titratable
amino acids and the ligand. The latter is dependent on the choice of simulation length,
number of repeats, alchemical protocol and its associated parameters, the sampling
method used and its associated parameters, and the final free energy analysis method.
All of these choices can impact the precision and/or the accuracy of the resulting free
energy values.

For instance, system setup affects both precision and accuracy, since both the initial
coordinates and the Hamiltonian are defined during this stage. On the other hand, the
simulation stage mainly affects the simulation precision, although some of the
arbitrary parameters that can be chosen during this stage affect the accuracy of the
energy function evaluation. In recent years there has been a heightened interest in
measuring the extent to which various choices during either of these stages affect the
resulting binding free energy values. These will be reviewed in this chapter.

3.2 Simulation Setup

3.2.1 Initial Coordinates

3.2.1.1 Protein Crystal Structure

Owing to the limitations of current computing power, ab initio prediction of the
three-dimensional structure of a protein–ligand complex remains a computationally
challenging problem and is currently difficult to perform in the context of drug
discovery. As such, the choice of initial coordinates is crucial for ensuring the physical
validity of the MD simulation and needs to be obtained in a reliable and reproducible
way.

Although it is common practice to use a structure experimentally resolved by X-ray
crystallography or nuclear magnetic resonance (NMR) spectroscopy to provide the
initial coordinates, problems arise when no such structure is available. In this case one
must choose a somewhat unrelated complex to derive the initial coordinates. This can
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for example be achieved by homology modelling.82 However, despite the introduction
of automated homology modelling workflows,83 these methods remain sensitive to
choices in the computational protocol, making them difficult to reproduce.84

Another difficulty specific to AFE calculations is the choice of the initial structure of
the intermediate λ windows. For an alchemical perturbation of two ligands A→ B, it
is not clear which set of initial coordinates corresponding to these two complexes
should be used to model the intermediate states, making the choice thereof largely
arbitrary and not reproducible. In addition, even though two free energy calculations
with different initial coordinates and identical topology should eventually converge to
the same value with infinite sampling, the initial protein coordinates can also
influence most of the setup process, including initial protonation states and water
placement (both discussed in later sections).

The above considerations show that obtaining initial protein structures is a complex
process which not only directly impacts the sampling quality, but can also affect the
asymptotic free energy value. Since different researchers will generally have different
approaches to choosing an initial set of coordinates, it is important to be aware of the
extent to which this lack of reproducibility can impact the resulting free energies in a
practical setting. However, the magnitude of this effect has not been explored in the
literature.

Even more challenging are proteins with slow conformational modes. In these cases,
the initially resolved crystal structure is no longer sufficient for obtaining
representative sampling, and long-timescale or enhanced sampling becomes essential
for these systems. This was shown in the case of T4-lysozyme by Lim et al. 85 , who
reported a root-mean-square deviation (RMSD) of 4 kcal/mol between the two sets of
binding free energy values obtained from the open and closed conformations. In these
cases temperature-based enhanced sampling is a useful tool in overcoming relevant
high kinetic barriers and the authors reported a marked increase in consistency when
protein replica exchange with solute tempering (pREST)86 was used alongside the
calculation, reducing the RMSD to 0.57 kcal/mol.

3.2.1.2 Ligand Binding Mode

Similarly to protein folding, ligand binding/unbinding is a slow event which requires
timescales on the order of milliseconds to seconds. Although the binding kinetics of
small fragments can be studied in real time with long MD simulations87 (∼10 µs), this
approach is in general not feasible for high-throughput AFE calculations of larger and
more flexible ligands. In these cases, the initial binding mode needs to be known in
advance, preferably through experimental determination.
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In some cases, the binding modes of both ligands A and B in the alchemical
transformation A→ B are known. In such a scenario, it is not immediately clear
which complex should be used to provide the initial coordinates for the intermediate
λ windows. This choice has been partially studied by Pérez-Benito et al. 88 , who
demonstrated that the free energy discrepancies which arise from using the initial
coordinates of the protein bound either to ligand A or ligand B can often surpass 1
kcal/mol. Using one of the structures in favour of the other can even change the sign
of the free energy value in cases where its magnitude is large.

In other cases, such as large-scale drug discovery studies, the binding mode is not
always known in advance. In this scenario, the starting ligand coordinates are often
obtained by docking.89 Because of the large number of docking methods, this type of
workflow is poorly reproducible. Indeed, a study by Cappel et al. 90 on five different
protein–ligand systems demonstrated that different methods of obtaining initial
binding modes can in some cases result in strikingly different correlations against
experimentally obtained ∆G−◦ values, and they found that a docking procedure based
on maximum common substructure (MCS) constraints exhibits most consistent
performance on average. Furthermore, it has been shown by Granadino-Roldán
et al. 91 that manual interventions after docking can often help define a more
physically relevant binding mode and thereby improve the accuracy of the resulting
binding free energies. Such an approach is even more difficult to reproduce reliably
and directly hinders the automatability of binding free energy calculations.

If several plausible binding modes exist, or if it is known that the ligand binds in
several different conformations, it is possible to combine the results of alchemical free
energy calculations from several binding modes.92,93 However, this methodology
requires prior knowledge of the binding modes, as well as a separate simulation for
each one of them, making this method computationally expensive.

An alternative approach to evaluating the contributions of several binding modes is
through enhanced sampling simulations. Examples of methods facilitating binding
mode conversion are replica exchange with solute scaling (REST2),94,95

nonequilibrium candidate Monte Carlo (NCMC)64,65,96 and metadynamics.97,98 Of
these, one of the most popular methods for combining ligand sampling and relative
binding free energy calculations is the FEP/REST95 method, where sampling of
internal ligand degrees of freedom is concurrently performed with alchemical
perturbation between the two ligands. In this way, enhanced sampling provides a
much more automatable and reproducible workflow and this is one of the reasons
FEP/REST has been widely used in drug discovery studies.99
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3.2.1.3 Binding Site Hydration

Another kinetically hindered event is water molecule diffusion in a closed binding
site. Owing to the importance of interfacial water in mediating protein–ligand
interactions,100,101 the initial water molecule coordinates can have significant effects
on the resulting binding free energy. For example, it was shown by Wahl and
Smieško 102 that the choice of initial coordinates belonging to the protein complexed
with either ligand A or B can have significant effects (sometimes more than 3
kcal/mol) on the calculated relative binding free energy values and this effect was
largely explained by hydration differences between the two ligands. This has also
been observed by Ross et al. 103 , where removal of a single water molecule had an
average RMSD of 2.32 kcal/mol between the two sets of relative free energy values.

One way to assign binding site water molecules is to use experimental
crystallographic data.104 However, such data might not be reliable due to low
resolution105,106 or insufficient experimental reproducibility of the crystallographic
data.107 One way to augment the initial crystallographic structure in an automated
way is through the just add water molecules (JAWS) method.108 This can then
significantly improve calculated binding free energy values.109 Similarly to the
previous section, the initial water placement can also be improved by manual
intervention, which can result in better comparison to experiment.91 As already
discussed, however, such approaches are not amenable to automation and alternative
enhanced sampling methods are more desirable in a high-throughput practical setting.

One of the most widely used methods to enhance binding site water sampling in the
context of MD simulations is grand canonical Monte Carlo (GCMC).67 It has been
employed in many studies to reduce biases posed by the choice of initial water
molecule coordinates.103,104,110–112 For example, it reduced many of the discrepancies
arising in the studies by Wahl and Smieško 102 and Ross et al. 103 described above.
Another approach involves nonequilibrium switching using NCMC.113–115 However,
it has been suggested that GCMC is more efficient at water sampling that NCMC.115

3.2.1.4 Protonation States

Since hydrogen atoms are not detected in an X-ray crystallography experiment, they
have to be modelled by the researcher. While for most neutral amino acid residues this
is a relatively straightforward task, the acidic and basic ones can potentially exist in
multiple tautomeric states, which makes this assignment more challenging. Arguably
the most difficult amino acid residue to model is histidine, which can exist in two
neutral states (δ and ϵ), as well as a third protonated state. Moreover, it has a side
chain pKa of 6.5, which is very close to physiological pH conditions,116 meaning that
in many cases all of the tautomeric forms are physically relevant and modelling only
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one of them is an inherent approximation. While it is known that the choice of an
initial histidine protonation state can significantly affect docking results,117 no such
study has been performed in the context of binding free energy calculations.
Nevertheless, it is common knowledge among practitioners that such choices can
significantly affect the obtained binding free energy values and these need to be
carefully assigned, especially if these amino acids are in the binding site.

A popular approach to ameliorate the amino acid protonation state problem is to run
constant-pH simulations, where multiple protonation and/or tautomeric states are
simulated at the same time. Various methodologies to achieve this have been
explored, including propagation of a fictional protonation state coordinate,118–120

nonequilibrium switching moves between different protonation states,121–124 Monte
Carlo moves between different protonation states125 and concurrent simulation of
several protonation states.126 These have also been used in the context of
host–guest127,128 and protein–ligand129,130 binding free energy calculations.

Ligand tautomers can also affect the obtained binding free energy value. For example,
Hu et al. 131 showed that the protonation state of the ligand can significantly affect
correlation against experiment. Similar observations were later made by de Oliveira
et al. 132 , who found binding free energy discrepancies of ∼0.5–1.0 kcal/mol between
neutral and charged states of ligands bound to kinesin spindle protein and
coagulation factor Xa (FXa). In the latter publication, the authors showed that it is
possible to combine the relative binding free energies of different protonation states
and/or tautomers by calculating the expected pKa values of the protonation site of
interest using an ab initio approach. Even though their results showed consistent
improvement against experiment, as well as increased reproducibility with respect to
the initial tautomer choice, the computational cost of this approach increases
exponentially with the number of titratable sites and is therefore only reserved for
critical protonation sites in practice.

3.2.2 Force Fields

3.2.2.1 Protein/Ligand Force Field

Although the choice of protein force field can in principle impact the calculated
binding free energy, the ligand force field is commonly considered to be the more
important factor, owing to the larger number of atom types that need to be
parametrised compared to the twenty standard amino acids. In addition, since the
ligand is the part of the system which is perturbed in an AFE calculation, the resulting
free energies are likely to be most sensitive to its parameters. Combined with the
historical practice of using compatible protein/ligand force fields (e.g.
ff14SB25/GAFF27 and CHARMM36133/CGenFF134,135), this means that the choice of



3.2. Simulation Setup 31

protein force field is usually determined by the choice of ligand force field in practice.
Moreover, while the effect of the ligand force field on free energy calculations can be
separated from the protein force field in e.g. a solvation free energy calculation, this
cannot be done in a binding free energy calculation, where it will be nonetheless
assumed that the ligand force field is the main source of variability.

When comparing different force fields, it is rarely the case that all of them are
implemented in a single MD engine. This inevitably introduces another layer of
difficulty, as multiple MD engines need to be used to perform the study. In these cases
it is also difficult to decouple the effect of the force field parameters from other
implementation differences between different MD engines. Despite this difficulty,
studies comparing different ligand force fields have been performed. For example,
Vassetti et al. 136 showed that solvation free energies calculated using either
OPLS-AA137 or GAFF2 performed comparably against experiment on average but
there still were significant differences between each of the calculated values, with a
mean absolute difference of ∼3.5 kcal/mol. Similarly, GAFF was also compared
against OPLS3e,138 where the latter displayed better agreement with experiment and
the correlation between results from the two force fields was system-dependent,
ranging from ∼0.6 to ∼0.9.88

It transpires that sensitivity towards force field parameters also extends to minute
differences in the parameters of the same force field. For example, Rocklin et al. 139

demonstrated that small variations in the nonbonded parameters, such as charge
differences of more than 0.02 e, can result in significant free energy changes of more
than 1 kcal/mol. These results are especially relevant to charge derivation methods,
which are notorious for their dependence on the ligand conformation. In view of this,
Manzoni and Ryde 140 compared different charge derivation methods for ligands
bound to galectin-3C using different starting ligand geometries and found that these
can result in binding free energy discrepancies of more than 1 kcal/mol. Comparison
to experiment was also inconsistent, with the RESP method28 generating the datasets
with both highest and lowest correlation against experimental values.

Addressing the significant sensitivity of binding and solvation free energies to the
force field functional form and its parameters is not trivial, owing to the inherent
limitations of choosing a particular approximate functional form over another.
Nevertheless, reproducibility between different force fields is expected to be higher if
they are constantly updated to improve their performance against experiment in edge
cases. This can be achieved by using bespoke force fields with a suitable level of
quantum theory, such as QUBE,141 or force fields which are constantly updated with
extra parameters to handle edge cases, such as OPLS3138,142,143 and OpenFF.144,145 It is
even more challenging to increase the reproducibility of the charge derivation
methods, given the inherent limitations of atom-centred point charges. These can be
partially circumvented by using force fields with a more sophisticated treatment of the
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electrostatic interactions, such as AMOEBA,146 but these currently remain of limited
utility to drug discovery due to their high computational cost.

3.2.2.2 Water Model

As already discussed, the description of the binding site water molecules can have a
significant impact on the obtained free energy values. Therefore, it is expected that the
choice of a water model can also affect AFE calculations. There are two major
categories of water models: implicit147 (e.g. MM-GBSA, MM-PBSA148) and explicit
(e.g. SPC,33 TIP3P,31 TIP4P-Ew32). While implicit water models result in significantly
faster calculations, they are not straightforward to use in a binding site setting, where
there is a small number of solvent molecules, rather than a continuum. In such cases,
explicit solvent models are more appropriate.101

It has been shown by Michel et al. 149 that binding free energy calculations can result in
significantly different values depending on the use of an implicit or an explicit solvent
model. Surprisingly, the implicit water model is shown to perform at least as well as
the explicit one for cyclin-dependent kinase 2 (CDK2) and neuraminidase. Similarly,
Aldeghi et al. 150 demonstrated that different explicit solvent models can result in
significantly different binding free energy values. These findings are in agreement
with a previous study by Izadi et al. 151 , where the authors reported significant
differences in the predicted electrostatic free energies across different implicit and
explicit solvent models. These differences can be extremely high, in some cases
reaching ∼9 kcal/mol.

These findings suggest that there is no “gold standard” for a water model and more
sophisticated models need to be developed. There has been some effort in this
direction,152,153 such as the OPC34 and Bind3P154 water models and the performance
of these models among traditionally used water models has been recently investigated
by Çınaroğlu and Biggin 155 , who found that Bind3P in conjunction with the Parsley145

force field produce the most accurate binding enthalpy values for a model host–guest
system. Despite these encouraging preliminary results, until one of the proposed
models proves consistently more accurate than the other for a variety of systems,
water models will remain one of the main weaknesses of MD-based free energy
calculations in terms of reproducibility.
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3.3 Simulation Details

3.3.1 Sampling Time

As mentioned above, many of the initial choices during system preparation
(particularly those of initial coordinates), should not, in principle, affect the true
ensemble average. However, biologically relevant timescales (milliseconds to seconds)
are beyond the reach of most modern computing capabilities. Moreover, alchemical
free energy calculations often need multiple simulations to obtain a converged free
energy estimate, meaning that one can only dedicate a fraction of the allocated
computer time to a single λ window. Consequently, the length of each λ window is
typically chosen in practice to be in the range of 1–5 ns, especially in commercial
applications.156,157

While it is obvious that longer simulation times provide the researcher with more
highly decorrelated structures and access to molecular motions that are inaccessible at
shorter timescales, drug discovery applications benefit most from high throughput,
since even short alchemical calculations are expensive. Therefore, computational free
energy studies have historically focused on direct comparison to experiment rather
than measuring the short-timescale bias with respect to the true ensemble average
predicted by the force field.

A large-scale study by Fratev and Sirimulla 158 investigated the quality of the free
energy values with respect to equilibration time and the simulation time. A key point
in their paper is that there is a practical trade-off in terms of both equilibration and
simulation time, with short simulations comparing unfavourably to experiment and
long simulations resulting in low throughput. They found that an optimal procedure
involves a pre-REST equilibration protocol of two independent 10 ns runs followed by
8 ns sampling time per λ window. This protocol results in an approximately two-fold
decrease in mean absolute deviation (MAD) with respect to experiment across all five
protein systems studied. Their results suggest that while apparent convergence in the
sampling stage is not difficult to obtain, prolonged equilibration is crucial for
exploring crucial slow modes of motion. Therefore, proteins with higher levels of
structural flexibility benefit more from these extended protocols.

Nevertheless, other studies have found that extended protocols do not necessarily
result in better agreement with experiment. For instance, Wan et al. 159 showed that a
tenfold increase in sampling from 4 to 40 ns can significantly reduce correlation with
experiment, while any improvement is on average negligible regardless of the
sampling method used. In many cases the authors observed a significant shift in
predicted free energies after extending the length of the simulation, often reaching 1
kcal/mol, suggesting improved sampling offset by an insufficiently accurate force
field model.
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3.3.2 Free Energy Estimator

The choice of the free energy estimator can also have an impact on the obtained free
energy value. The most widely used equilibrium free energy estimators are the
Zwanzig equation (FEP),12 the Bennett acceptance ratio (BAR)13 and its multistate
generalisation (MBAR),18 and thermodynamic integration (TI). For a perturbation
involving N total λ windows, FEP requires a minimum of N − 1 simulations, unlike
all other methods, which require the full set of N simulations. TI, on the other hand,
needs only a minimum of N energy evaluations per unit time across all λ windows,
compared to 2N − 2 for FEP, 3N − 2 for BAR and N2 for MBAR. Consequently, even
though MBAR has been proven to be the asymptotically statistically optimal estimator
for N λ windows (reducing to BAR at N = 2),18 BAR and TI are still commonly used
in the literature because of their lower computational requirements, while
simultaneously providing sufficiently good accuracy in many cases.

Although it is usually assumed that the above estimators will eventually converge to
the same value with infinite sampling, this is not the case for TI, which also requires
infinitely many intermediate λwindows for asymptotic convergence. While these
conceptual differences are not necessarily practically significant, discrepancies
between the estimated free energy values do arise in some cases. For example, a study
by de Ruiter et al. 160 has demonstrated that there can be strikingly large differences
between BAR and TI estimates in protein-ligand binding free energy calculations, in
some cases reaching 3 kcal/mol. Moreover, TI is also dependent on the integration
procedure used, which can result in differences of 1 kcal/mol.160 Nevertheless, the
authors observed that increasing the number of λwindows to 21 naturally makes most
of these discrepancies negligible, showing that while TI is more sensitive to the shape
of the free energy profile, it is still systematically improvable in practice.

These observations are in accordance with an earlier publication by Shirts and
Pande 161 , which also showed that BAR is expected to significantly outperform TI and
FEP in most practical use cases. However, more recent developments have shown that
TI can perform sufficiently well in practice with a carefully designed protocol.162

Nevertheless, BAR and MBAR remain the free energy estimators that do not require
any additional user input (c.f. choosing FEP direction or TI integration method),
making them the most reproducible free energy methods.

3.3.3 Independent Repeats

Obtaining binding free energy estimates is an inherently stochastic process, meaning
that any estimated values have an associated variance which is a measure of
repeatability. Even though it is conceptually possible to estimate this variance from a
single simulation using effectively decorrelated samples,18,163 a more reliable, albeit
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more computationally expensive, approach is to run several repeats where the only
difference is the initial seed for the pseudo-random number generator.

It has been suggested by Knapp et al. 164 that running multiple repeats significantly
improves the certainty and hence the repeatability of the free energy estimation
procedure. In this way, it has been argued that multiple short simulations can be more
preferable than one long simulation. This view has recently started gaining support
from other authors.165,166

However, there is always a practical trade-off between the number of repeats and the
resources allotted to a single binding free energy calculation. While it is important to
obtain an estimate of the free energy variance, it is also highly desirable to obtain
effective decorrelation from the initial coordinates and sample binding rare events,
which can only be achieved with enhanced sampling and/or longer timescales. It is
therefore not obvious where the optimal balance lies between longer simulations and
more repeats—the definition of “optimal” is also somewhat ambiguous in this
scenario. In any case, several replicate simulations should be performed in practice to
measure the repeatability of the results.

3.3.4 Soft-Core Potential

When performing alchemical free energy calculations, the choice of the functional
form of the energy coupling between the endstates is arbitrary. However, it is
desirable to choose a functional form which minimises the free energy variance over λ

space. In practice, this is commonly achieved using soft-core potentials, which soften
the potential energy singularities of the alchemical atoms. Soft-core potentials are
most commonly used with van der Waals interactions, but can also be used with
electrostatic interactions. The choice of the soft-core potential, its parameters, and the
protocol of perturbing the bonded, van der Waals and electrostatic interactions can all
affect the free energy estimate in non-obvious ways. Arguably the most widely used
soft-core potential uses an effective radius rij,e f f between two atoms i and j, which is
related to the real radius rij in the following way:

rij,e f f = (σc
ijαλb + rc

ij)
1
c (3.1)

Here α is a continuous parameter, b and c are discrete parameters, and σij is a force
field parameter (the average particle “size”).44 The nature of the optimal parameters
has also been investigated. For example, Steinbrecher et al. 167 identified an acceptable
range of soft-core potential values, while demonstrating that the exact value does not
significantly affect the free energy estimate itself, only its variance. However, de
Ruiter et al. 168 observed significant differences between some soft-core parameter
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combinations, in some cases reaching 1 kcal/mol discrepancies. Nevertheless, these
are also dependent on the number of intermediate λ windows, meaning that with an
insufficient amount of intermediate states, discrepancies of 2 kcal/mol can be
observed using BAR and more than 10 kcal/mol using TI.

The viability of simultaneously performing the van der Waals and electrostatic
perturbations has also been investigated in several studies. For instance, Steinbrecher
et al. 167 showed that both the sequentially perturbed (split) and the concurrently
decoupled (unified) protocols result in consistent free energy estimates. Although
Loeffler et al. 169 obtained results which were largely consistent with this notion, they
observed in some cases free energy discrepancies of up to 1.5 kcal/mol. Even though
these differences appeared well-converged, the authors noted that the split protocol is
often more desirable than the unified, since electrostatic soft-core potentials often
introduce irregularities in the free energy profile, meaning that the free energies are
more easily reproducible.

3.3.5 Other

Alchemical free energy calculations are often modelled on the basis of either a
canonical (NVT), or an isothermal-isobaric (NPT) ensemble. As such, the choice and
the parameters of the corresponding integrators, thermostats and barostats can also
potentially affect the resulting free energy estimates. For example, a deficiency of the
Berendsen barostat was found during the course of the SAMPL6 challenge, resulting
in non-negligible sampling artifacts.170 More generally, it is well-known that velocity-
and pressure-rescaling algorithms do not correctly sample from the corresponding
thermodynamic distributions55 and they should be avoided in MD simulations. In
addition, different Liouville splittings of the integrator can give rise to significantly
different sampling distributions.59 Although these can be corrected by adding a
Metropolisation step171 which ensures stationarity of the Boltzmann distribution,
many practitioners still use rescaling algorithms or integrators without
Metropolisation, thereby hindering reproducibility.

Finally, the MD engine of choice can also have a non-negligible impact on the
calculated free energies. Quantifying the extent of this impact is nontrivial, however,
not least because different MD engines implement different thermostats, barostats,
integrators, soft-core potentials, etc. For instance, a study by Loeffler et al. 169 found a
reproducibility limit of 0.2 kcal/mol between relative free energies of solvation and
similar discrepancies of up to 1 kcal/mol were further observed in a host-guest system
during the SAMPL6 challenge.170 Although narrowing down the reason for these
inconsistencies remains largely speculative, they are at least partially explained by
code issues, some of which have notably been fixed since.172 It is therefore important
to keep oneself up to date with major bug fixes, as well as test any freshly installed
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code on basic benchmarks. On the developer side, this also means that any major bug
fixes should come with additional unit and integration tests to prevent the accidental
reintroduction of the bug.

3.3.6 Summary

The majority of the recent studies investigating the impact of various choices on the
obtained free energy value from an AFE calculation show that in many cases
reproducibility can be significantly hindered depending on these choices. Although
these discrepancies can be, in many cases, sufficiently improved by using enhanced
sampling methods, approximations introduced by other elements of the simulation,
such as force field parameters, energy evaluation and integration, method-specific
parameters and implementation details, remain difficult to address definitively.

There are at least two important areas which have not been sufficiently explored by
the above studies: the effect of the initial PDB structure and the amino acid
protonation states on AFE calculations. The impact of both of these decisions is
significant and warrants a large-scale study. Insights from these studies will also
suggest ways to address any reproducibility issues.

Before conducting these studies, a Python library, ProtoCaller, was created to facilitate
the preparation and running of multiple simulations in a semi-automated manner,
where all parts of the workflow can be automated to an arbitrary degree. This allowed
maximum control over the whole process, while minimising the chance of random
human error. ProtoCaller will be described in Chapter 4, while the crystal structure
and protonation state studies will be discussed in detail in Chapters 5 and 6.
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Chapter 4

ProtoCaller: Robust Automation of
Binding Free Energy Calculations

4.1 Introduction

A prerequisite for performing reliable and robust free energy calculations is their
automatability. This is particularly true for large-scale studies which investigate the
influence of a small subset of factors on the overall behaviour of the system. In such
cases, it is even more important that random human errors are not introduced into the
setup process.

Unfortunately, it is not always feasible to completely automate the setup of every
protein–ligand system in an unbiased way. Each system setup requires multiple steps
with varying degrees of user intervention. This means that system preparation is
arguably more time-consuming than data generation and has been suggested to be a
crucial step in determining the resulting free energy.88 Therefore, one needs a
“grey-box” approach, where it is possible to achieve full automation of the setup
process, while controlling an arbitrary number of intermediate steps and parameters
depending on the user’s needs.

Another issue is software interoperability. Linking together different specialised
pieces of software is an undesirable but necessary task which is usually solved by
using in-house scripts or commercial software. This is also prone to human errors and
can quickly become unmanageable when one starts interfacing with different pieces of
software.

Several tools exist which tackle these issues. Notably, YANK173 provides a
fully-automated workflow from system setup to computation of absolute free
energies. Protein Preparation Wizard174 and HTMD175 also handle system
preparation for relative free energies in a robust way, providing seamless links to
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commercial molecular dynamics (MD) engines. Finally, alchemical setup,176

FESetup177 and pmx178 are open-source tools which automate system setup for
relative free energy calculations on multiple molecular dynamics (MD) engines.

This chapter describes ProtoCaller, an open-source conda-installable Python library
which attempts to solve the above challenges by providing a customisable unified
interface to all of the steps of the free energy workflow. It utilises freely available
specialised libraries to set up and perform relative free energy calculations in an
open-source MD engine, GROMACS.38 Moreover, its modular nature means that the
user could feasibly tailor it to their needs, even if it is not currently directly supported
by the software. For example, ProtoCaller provides sufficient flexibility for performing
calculations outside its originally intended scope, such as absolute and relative
solvation free energies and simulations in MD engines supported by BioSimSpace,179

such as Sire180 (explained in more detail later in the text).

The next section will describe the workflow in more detail, whilst giving an overview
of the main algorithms and procedures used in the library.

4.2 ProtoCaller

4.2.1 Protein Preparation

The first step of the workflow (Figure 4.1) is choosing the protein crystal structure
from the Protein Data Bank (PDB).181 Since there are often a large number of relevant
crystal structures, the typical guideline is to choose the protein crystal structure which
has a bound ligand with a structure closest to the ligand of interest. This part of the
workflow determines the initial ligand binding orientation, making it the most crucial
step. In ProtoCaller, one can either use a plain PDB code or provide a user-specified
PDB file.

Experimental crystal structures are obtained using sophisticated models bridging
theory and experiment. Because of this, it is very likely that some parts of the
structure will be less reliable than others. For example, it is common that there will be
missing atoms and residues which require modelling. In ProtoCaller, several tools
which add missing atoms and/or residues have been linked: Modeller,182 pdbfixer,183

CHARMM-GUI184 and PDB2PQR,185 providing the user with the ability to choose the
most appropriate tool for their system. PDB2PQR also removes steric clashes in the
crystal structure and optimises hydrogen bonding by rotating His, Asn and Gln
residues.

To build an interface to all of the above pieces of software, an extensive PDB parser
was developed, which allows the user to manipulate PDB files in an object-oriented
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FIGURE 4.1: The full workflow for obtaining a relative binding free energy. Each of
these steps utilises one or more specialised tools. In this scheme ”prepare” stands for
the addition of missing residues and atoms, protonation and removing steric clashes.

fashion inside Python. This parser allows seamless communication between different
modules inside the software without any loss of relevant header data. This can also be
extremely useful when one deals with incomplete PDB files or simply wants to
introduce changes in the file in a way which is consistent with ProtoCaller.

The next step is the protonation of the protein. This is particularly difficult, since X-ray
crystallography does not usually locate hydrogen nuclei and they must be modelled.
Moreover, while in most cases the amino acid protonation state is straightforward to
determine, the acidic and basic amino acids can exist in several protonation states.
This is especially problematic for histidine, which has three different protonation
states, all of which may be relevant at equilibrium. Finally, a good algorithm should
be able to distinguish scenarios where there are exceptions, such as a protonated
aspartic acid in an Asp–Asp dyad.186 There are several approaches which attempt to
deal with protein protonation. The program used to protonate the protein in
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ProtoCaller is PROPKA3.1,187 as utilised by PDB2PQR because of its extensive
functionality in protein preparation and ease of incorporation into the workflow.

4.2.2 Ligand Protonation

Similarly, the protonation state of the ligands in the system must be determined as
well. Ideally, one should consider the protein–ligand complex as one entity while
performing protonation. However, in practice, the assignment of protonation states
can be sensitive to the ligand binding mode which is often unknown a priori. In
ProtoCaller, ligand protonation is thus performed separately from the protein using
Open Babel.188 Alternatively, one can provide an already protonated ligand as an
external file compatible with Open Babel or ParmEd.189 If the ligands are sufficiently
simple such that there are not multiple relevant conformations, one can also use
simplified molecular-input line-entry system (SMILES)190 and international chemical
identifier (InChI)191 strings to define ligands in ProtoCaller and generate starting
conformations using Open Babel. These initial conformations are crucial during
parametrisation, since the charge derivation method is conformation-dependent.

4.2.3 Parametrisation

The next step is force field parametrisation. In ProtoCaller there is currently only
support for the AMBER force field.23 Since parametrisation using AmberTools is
straightforward to implement, protein, ligand, water and simple ion parametrisations
are directly performed in a relevant wrapper using any supported force field
(ff99SB,24 ff14SB,25 GAFF,27 GAFF2 and TIP3P31 have currently been tested). Atomic
charges are derived using the semi-empirical AM1-BCC29,30 method where any
subsequent floating point errors in the total charges are equally distributed between
the atoms. In addition, some common cofactor parameters obtained from the AMBER
parameter database35 are also available in ProtoCaller. However, there is currently no
support for modified/nonstandard amino acid residues or systems containing
transition metals, since these require user intervention in any case and are
unfortunately not currently automatable.

4.2.4 Mapping and Alignment

Determining the ligand binding pose is a nontrivial and critical task, even when there
is a native ligand with a similar structure. This part of the workflow consists of two
steps: determining the maximum common substructure (MCS) and physically
aligning the ligand to the reference crystallographic binding pose.
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The MCS algorithm, more commonly known as the maximum common subgraph
algorithm, is an NP-complete192 problem whose exact solution requires exponential
time with respect to the number of graph nodes. Therefore, approximate solutions are
needed. An open-source implementation is available in RDKit193 and is the one used
in ProtoCaller. However, some modifications in addition to this code were made in
ProtoCaller to obtain a physically relevant MCS. First, ProtoCaller currently prohibits
mapping between two rings of different sizes due to the nature of the subsequent
alignment algorithm and the difficulties in opening a ring using a single-topology
protocol.41 Second, mapping of an acyclic chain to a reference ring is allowed, but the
reverse is not, due to the hard position constraints imposed by the subsequent
alignment algorithm. Finally, if there are chiral centres of different chiralities, only the
longest MCS segment between two such atoms is considered a valid common
substructure, which may or may not be the maximum one. The reason for this is that
MCS is purely a graph theoretical algorithm with no regard to stereoisomers and the
results from the algorithm have to be pruned to be physically relevant.

The alignment process is based on constraining the MCS atoms to the reference
positions (e.g. crystal ligand binding orientation) and performing a force field
minimisation using MMFF in RDKit194 on the rest of the atoms whilst preserving all
bond angles outside of the MCS to their prior values. Afterwards, all of the external
rotatable bonds of the target molecule are rotated until an optional target metric is
minimised. The current heuristic metric used in ProtoCaller is a generalised squared
error ϵ, computed in the following way:

ϵ =
Nre f

∑
i=1

Nmol

∑
j=1
|⃗xre f ,i − x⃗mol,j|2 −

Nmol

∑
i ̸=j

1
|⃗xmol,i − x⃗mol,j|12 (4.1)

Where Nre f and Nmol refer to the number of atoms in the reference molecule and the
aligned molecule respectively, and x⃗re f and x⃗mol refer to the position vectors in both
molecules. Here the first term ensures a good spatial match between the two
molecules, while the second is a repulsion term which penalises steric clashes arising
from the clustering of target atoms. In ProtoCaller, the second term is ignored above 1
Å, due to its negligible contributions to the sum and all MCS atoms are ignored in the
first term due to the already imposed hard constraints. Finally, if there are several
MCSs of the same length, those that maximise matching between the same atom types
are prioritised over the others.

Of these, the one with the lowest ϵ is then chosen as the optimal alignment. It has to
be noted that this metric should be used with caution and is only relevant when there
are small deviations from the reference crystallographic binding pose. Otherwise, a
custom binding orientation set by the user is highly recommended.
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4.2.5 Solvation and Simulation

Afterwards, solvation, neutralisation and NaCl addition to the system is performed
using GROMACS. It has to be noted that in each case the resulting structures have to
be minimised before any simulations, since there might be some structural distortions
introduced by the addition of missing amino acids or the constrained ligand mapping.
The resulting output provides files for the complete free energy cycle, which can be
run externally using GROMACS. Alternatively, there are several routines in
ProtoCaller which provide presets for some typical protocols for performing an MD
simulation in GROMACS at some user-specified simulation parameter values. One
can afterwards use external tools to analyse the resulting energy files and obtain a free
energy, such as the native Bennett acceptance ratio (BAR)13 implementation in
GROMACS (gmx bar) or the alchemical analysis script195 available online.196

4.3 Conclusion

ProtoCaller enables the controlled automation of a large number of free energy
calculations in GROMACS. This makes it a central tool to performing the studies
described in Chapters 5 and 6.
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Chapter 5

Sensitivity of Binding Free Energy
Calculations with Respect to Initial
Crystal Structure

5.1 Introduction

As discussed in Chapter 3, the choice of initial protein crystal structure is arguably the
most impactful decision made by the computational chemist, as it can potentially
affect the whole setup process, as well as the subsequent sampling. Although the
magnitude of its effect on alchemical protein–ligand binding free energy calculations
has been hinted at in previous studies,85,88,102 there has not yet been a definitive study
which addresses this problem systematically on a large scale.

This chapter examines the effect of the initial protein crystal structure on a range of
ligand–ligand perturbations systematically and in depth. The crystal structures have
been chosen so that they vary in their resolution, year of deposition, bound ligands
and research groups. The ligand perturbations have generally been kept simple in
order to obtain apparent convergence at short timescales. The test systems
(dihydrofolate reductase [DHFR], protein tyrosine phosphatase 1B [PTP1B] and
coagulation factor Xa [FXa]) have been chosen so that the following commonly
encountered features are covered at least once: cofactors, auxiliary ions, disulfide
bonds, multiple protein chains, and missing residues and atoms. Furthermore, these
proteins are relatively small and shown in previous computational studies2,156,197,198

to compare favourably to experiment, meaning that major force field and efficiency
issues are not expected.

In addition, all of the calculations will be performed in two ways: with and without an
extra 20 ns equilibration. This will enable the verification of the increasingly common
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notion that multiple short simulations are preferable to a single long one.164–166

Analysis of cycle closure errors and comparison to experiment will also be performed
whenever possible.

5.2 Methods

5.2.1 System Preparation

All system preparation in this study was performed using ProtoCaller (Chapter 4).
The following X-ray crystal structures were used: 1OHJ,199 2W3M,200 3GHW,201

4DDR,202 4M6J,203 5HPB,204 6A7E205 and 6DAV206 for DHFR; 1BZJ,207 1NWE,208

2AZR,209 2F71,210 2H4K,211 2NTA,212 2QBP3 and 2ZN7213 for PTP1B; 1EZQ,214

1KSN,215 1LQD,4 1NFW,216 2CJI,217 2J38,218 2J95219 and 4Y71220 for FXa. All protein
crystal structures were obtained from the Protein Data Bank (PDB).181 Some relevant
metrics by which these crystal structures differ are shown in Appendix A (Tables A.1
to A.3). Most importantly, all of the above structures have a root-mean-square
deviation (RMSD) of less than 1 Å after alignment to a reference structure (described
later) and only one of them (4M6J) has an RMSD larger than 0.5 Å, indicating that the
initial structures used can all be considered very similar to one another. In addition,
some of the structures (4M6J, 1NWE, 2NTA, 1EZQ, 1LQD, 1NFW, 2J38, 4Y71) exhibit
slight differences in their reported protein sequence compared to the others and these
differences were kept. None of these differences were near the binding site (within 1.2
nm of the ligand centre of mass).

Where applicable, non-terminal missing residues were added using Modeller182 and
missing atoms were modelled using PDB2PQR.185 All crystal structures were
protonated with PDB2PQR, where all histidine residues were arbitrarily forced to the
ϵ tautomer for FXa for consistency, due to the presence of multiple histidines near the
binding site and the fact that the protonation state and tautomer assignment in
PDB2PQR is dependent on the initial protein coordinates. No equivalent
modifications to tautomer preference were made for DHFR and PTP1B, in some cases
resulting in histidine tautomer differences across structures distal from the binding
site (more than 1.2 nm away from the ligand centre of mass). All amino acids were
assigned their default expected protonation states at pH = 7. All crystal structure
waters were retained. In two of the DHFR structures, there were two copies of the
protein in the asymmetric unit and in these cases only the first chain of the PDB file
was used in the subsequent simulations.

For each crystal structure, the following number of ligand–ligand perturbations were
performed: 8 for DHFR, 9 for PTP1B and 9 for FXa. The ligand scaffolds and
thermodynamic cycles can be seen in Figure 5.2. Some of the ligands have been forced
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FIGURE 5.1: Hydrogen bond interactions between one of the protonated DHFR lig-
ands and Glu30 (PDB code: 5HPB).

into an unnatural protonation state so that no charge perturbation was needed. Such
ligands have only been treated as intermediates and have not been compared to
experiment. The crystal structures whose native ligands most closely matched the
scaffolds of the ligands of interest were used for alignment: 5HPB, 2QBP and 1LQD
for DHFR, PTP1B and FXa, respectively. This initial ligand conformation was enforced
across all other crystal structures based on protein–protein backbone alignment using
PyMOL8 and it was also used during the ligand parametrisation stage in order to
obtain the same partial charges for the same ligand across different crystal structures.
Ligand protonation states were determined manually and were in most cases in
agreement with Open Babel.188 The most notable difference is the addition of an extra
proton to the DHFR ligand at one of the pyrimidine nitrogen atoms (Figure 5.1), which
has been previously suggested221 to take part in ligand-carboxylate interactions
involving a closely related ligand, methotrexate.

All of the following simulations used the AMBER force field. The amino acid residues
were parametrised with ff14SB,25 and GAFF227 was used for the ligands. The TIP3P
water model31 and its associated calcium parameters were also used alongside the
additional NADPH and NADPH parameters,222 available online.35 All ligand charges
were parametrised using AM1-BCC.29,30

All ligand perturbations were performed using a single-topology mapping along an
alchemical coordinate (λ) and alignment to the reference ligands was performed using
ProtoCaller’s default protocol (Chapter 4) by constraining the positions of the
maximum common substructure (MCS) atoms to the reference ones. Whenever
applicable, all perturbations were in the direction of atom annihilation. All dummy
atom equilibrium distances were scaled to half of their initial values in an attempt to
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achieve better phase space overlap between λ windows. All systems were solvated in
cubic periodic boxes with a length of 7 nm in the bound leg and 4 nm in the solvated
leg. NaCl was also added with an ionic concentration of ∼0.154 M.

5.2.2 Simulation

All simulations were performed in GROMACS 2018.4.38 The perturbations were
carried out over 40 λ windows with 10 equally-spaced perturbations of the
electrostatic terms followed by simultaneous scaling of the Lennard-Jones (LJ) and
bonded terms during the other 30 windows. The latter λ windows were also equally
spaced (rounded to two significant figures), except for the final values, which were
more closely spaced in an attempt to increase phase space overlap: 0.95, 0.97, 0.98,
0.99, 0.999 and 1. All interaction parameters were scaled linearly with respect to λ,
except for the LJ interactions, which were perturbed using a soft-core potential43 with
a parameter value α = 0.5.

Each λ window involved 25,000-step steepest descent minimisation, 50 ps of NVT
equilibration followed by 50 ps of NPT equilibration using a 1 fs timestep and 4 ns
NPT production with a 2 fs timestep. In all cases the calculations were repeated after
an additional initial 20 ns NPT equilibration at λ = 0, with this coordinate set being
used to prepare simulations at all λ values. Both the 100 ps and the 20 ns protocols
were repeated in triplicates, where the only difference was the pseudorandom number
seed used for velocity initialisation from the Maxwell–Boltzmann distribution.

All simulations were run at 298 K using the Langevin thermostat58 with τT = 1 ps-1.
Equilibration pressure control at 1 bar was achieved with the Berendsen barostat,54

whereas the production barostat of choice was the Parrinello–Rahman60 barostat with
τP = 1 ps-1. In all cases bonds involving hydrogen were constrained using the 4th

order LINCS algorithm.51 Long-range electrostatics were calculated using particle
mesh Ewald (PME)37 with real space cut-off at 1.2 nm. LJ interactions also had a
cut-off at 1.2 nm with a relevant energy and pressure dispersion correction. A Verlet
cut-off scheme was used for neighbour list updates every 20 integration steps.

Energy difference (∆H) readings were taken every 10 ps and were analysed using the
Bennett acceptance ratio (BAR)13 implementation in Python.195,196 Since in many cases
the perturbations involved constrained atoms, the multistate Bennett acceptance ratio
(MBAR)18 approach was not feasible, since LINCS constraint contributions to free
energy differences in GROMACS 2018.4 are extrapolated from ∂H

∂λ values and are thus
not suitable for non-neighbouring λ windows.



5.2. Methods 49

N

N
H

N
H

H2N

NH2

S

R

(A) DHFR ligand scaffold

Cl Cl

NO2

Br

OMe

3

2 1

74

86

5

A

B

C

(B) DHFR perturbations

S

NH

N

R

BrO

O2C

O2C

(C) PTP1B ligand scaffold

S

O O

OH

OO

O

O

H

O

54

2 3

6

7

89

1

A B

C

D

(D) PTP1B perturbations

N

X
Y

O

HN

R

H2N

H2N

(E) FXa ligand scaffold

Br

ClCl

Cl

OMe

Br

8

7

9

6

5

42

3

1 A

B

C

X=Br, Y=H

X=H, Y=OH

(F) FXa perturbations

FIGURE 5.2: Ligand scaffolds and perturbations for all three systems. The perturbed
ligand pairs are denoted with numbers and thermodynamic cycles are labelled with
letters. In all cases perturbations of R are shown. In Figure 5.2f, the circular ligands are
substituted with X=Br and Y=H, and the rectangular ligands contain X=H and Y=OH.
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5.2.3 Analysis

When analysing results from different replicates, the errors have been assumed to be
approximately normally distributed, and in these cases the sample mean and its
associated standard error were used to describe the data. Normality was not assumed
in all other cases, e.g. when comparing different crystal structures and equilibration
times. In these cases robust statistics, such as the sample median and the interquartile
range, were used.

In accordance with the non-assumption of normality, non-parametric rank-based tests
were used for all comparisons, namely the Mann–Whitney U test7 for comparing two
populations and the Kruskal–Wallis test223 for comparing multiple populations. In
both tests the null hypothesis is that the mean ranks of the populations are the same
and the resulting p-values indicate the probability of observing the data given that the
null hypothesis is correct. Since in all cases the compared populations were sampled
from practically the same distribution, meaning that the null hypothesis was satisfied,
the p-values were not used as a tool for statistical inference but rather as an
approximate measure of apparent sampling quality. Where applicable, correlation
between populations was also measured in a rank-based fashion, using Kendall’s τ.224

Appendix B presents data involving 145 independent Kruskal–Wallis tests. Although
p-values for each test have been reported, no attempt has been made to demonstrate
any statistical significance, since the large number of tests increases the probability of
a type I error. These values have therefore been presented purely for information
purposes.

5.3 Results and Analysis

5.3.1 Variance Between Structures after 100 ps and 20 ns Equilibration

5.3.1.1 Dihydrofolate Reductase (DHFR)

The calculated ∆∆G−◦ values across all perturbed pairs and crystal structures are
shown in Figures 5.3 and 5.4 after 100 ps and an additional 20 ns equilibration,
respectively. It can be seen that the “largest” (i.e. perturbing the highest number of
atoms) perturbation (pair 5) has the highest total variance with 90% of the samples
spanning a confidence interval (CI) of ∼2.0 kcal/mol. Correspondingly, the “smallest”
perturbation (pair 8) has the lowest spread of ∆∆G−◦ values with CI spanning ∼0.5
kcal/mol at the 90% level with all other perturbations exhibiting an approximately
similar variance of ∼1.0 kcal/mol at this CI. This correlation between perturbation
size and total data spread is hardly surprising, since the same computational time was
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dedicated to perturbations of varying difficulty. More notably, inter-replicate variance
is generally low with no crystal structures exhibiting consistently higher variances.
Therefore, the total variance is mostly explained by the inter-structure variance,
meaning that the use of simulation repeats starting from the same coordinates is not
capturing the variance observed when using different but acceptable crystal
structures. This is exemplified by the low p-values shown in Figure 5.3 obtained by
the non-parametric Kruskal–Wallis test. It can be noted that 6DAV is a consistent
outlier in most of the cases—an unsurprising observation which can be readily
explained by the different cofactor in the crystal structure (NADP+, instead of
NADPH). However, most inter-crystal differences are significant at the 10% level even
if we discard 6DAV—a value which is still concerning, since in principle the choice of
initial crystal structure should have little to no effect on the free energy values.

These observations change drastically after 20 ns pre-equilibration at λ = 0. In this
case we observe increased total variances with pairs 5 and 7 exhibiting a spread of
∆∆G−◦ values over ∼3.0 kcal/mol at 90% CI. Even the perturbations with the smallest
variances span a range of ∼1.0 kcal/mol at this CI. This time much larger
inter-replicate standard errors are observed with the largest one being 6DAV in pair 2
with σ∆∆G−◦ ≈ 1.5 kcal/mol. Although it is unsurprising that increased decorrelation
between replicates results in higher variance, the magnitude of this increase after only
20 ns is remarkable. Although 6DAV is still a rather consistent outlier, it is much less
so, resulting in heightened p-values, meaning that there is no significant difference
between the crystal structures. Most p-values are now insignificant at the 10% level,
again demonstrating the increased loss of memory of the starting crystal structure.

5.3.1.2 Protein Tyrosine Phosphatase 1B (PTP1B)

The corresponding data for PTP1B can be seen in Figures 5.5 and 5.6. Similarly to
DHFR, here we observe a total data spread ranging between ∼0.5 kcal/mol at the 90%
CI for the simpler perturbations (pairs 7 and 8) up to ∼1.5 kcal/mol for the most
difficult perturbation (pair 3). Inter-replicate variance is generally higher than for
DHFR for most perturbations with no structures being consistent outliers. This is
illustrated by the generally high p-values for 4 of the pairs. However, the rest of the
pairs exhibit consistent significant differences at the 10% level, similar to the results
obtained with DHFR. Perhaps the most curious perturbation is pair 9, which has a low
p-value and a very low inter-replicate variance, exhibiting a total spread of values of
over ∼1.0 kcal/mol. This behaviour would not have been expected if we had only
used a single crystal structure which exhibits apparent convergence.

The corresponding results after a longer equilibration time are similar to those
obtained for DHFR. It can be seen in Figure 5.6 that the total spread of ∆∆G−◦ values is
generally much larger. The most remarkable example of this is pair 5 with a total
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FIGURE 5.3: Box plots of the ∆∆G−◦ values per perturbation for each of the DHFR crys-
tal structures after 100 ps total equilibration time. Each point represents the average of
three repeats and the associated error bar is its standard error of the mean. The boxes
contain all values between 25th and 75th percentile and the whiskers are based on the
5th and 95th percentile. The p-values have been obtained from the Kruskal–Wallis test
on all samples (pall) and on all samples except for 6DAV (pNADPH). The solid orange
line shows the median value and the dashed red line denotes the measured experi-

mental value,2 if available.
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FIGURE 5.4: Box plots of the ∆∆G−◦ values per perturbation for each of the DHFR
crystal structures after 20 ns total equilibration time. Each point represents the average
of three repeats and the associated error bar is its standard error of the mean. The boxes
contain all values between 25th and 75th percentile and the whiskers are based on the
5th and 95th percentile. The p-values have been obtained from the Kruskal–Wallis
test on all samples (pall) and on all samples except for 6DAV (pNADPH). The solid
orange line shows the median value and the dashed red line denotes the measured

experimental value,2 if available.
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FIGURE 5.5: Box plots of the ∆∆G−◦ values per perturbation for each of the PTP1B crys-
tal structures after 100 ps total equilibration time. Each point represents the average of
three repeats and the associated error bar is its standard error of the mean. The boxes
contain all values between 25th and 75th percentile and the whiskers are based on the
5th and 95th percentile. The p-values have been obtained from the Kruskal–Wallis test
on all samples. The solid orange line shows the median value and the dashed red line

denotes the measured experimental value,3 if available.
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FIGURE 5.6: Box plots of the ∆∆G−◦ values per perturbation for each of the PTP1B
crystal structures after 20 ns total equilibration time. Each point represents the average
of three repeats and the associated error bar is its standard error of the mean. The boxes
contain all values between 25th and 75th percentile and the whiskers are based on the
5th and 95th percentile. The p-values have been obtained from the Kruskal–Wallis test
on all samples. The solid orange line shows the median value and the dashed red line

denotes the measured experimental value,3 if available.
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value range of more than 5.0 kcal/mol at 90% CI. Only the last three pairs exhibit
spread of less than 1.0 kcal/mol, whereas all perturbations involving the sulfonamide
derivative have an uncertainty of ∼3.0 kcal/mol at 90% CI. In all cases the
inter-replicate variance is also markedly higher than the shorter runs with the highest
σ∆∆G−◦ > 1.5 kcal/mol (1NWE, pair 5). Moreover, the new p-values are also on average
higher in comparison, once again showing that longer decorrelation times result in
reduced distinguishability between different crystal structures. Nevertheless, pairs 4,
6 and 9 exhibit significant differences at the 10% level, implying that the initial crystal
structures still influence the obtained free energies. These observations futher
demonstrate that any apparent convergence at shorter timescales is usually deceiving.

5.3.1.3 Coagulation Factor Xa (FXa)

The results for FXa are shown in Figures 5.7 and 5.8. In this case we generally observe
smaller inter-structure variances than the previous systems with the largest spread
being ∼1.0 kcal/mol for the largest perturbation (pair 3) at 90% CI. In some cases this
spread is less than 0.2 kcal/mol, indicating good apparent agreement between initial
crystal structures. However, inter-replicate variance is generally even lower, resulting
in all but two perturbation pairs being significantly different at the 10% level. For
example, in pair 3 one can observe a maximum difference of ∼1.0 kcal/mol for two of
the crystal structures with little apparent variance, once again highlighting the impact
of the choice of initial crystal structure at shorter timescales.

Similarly to previous data, FXa exhibits larger inter-structure variance across all
perturbations after prolonged equilibration ranging from ∼0.5 to ∼1.0 kcal/mol.
Especially curious is pair 9, which shows dramatic relative increase in variance
compared to the short-equilibration results. However, the absolute spread in free
energy values is still unremarkable in light of the previous test cases. In all but two
perturbations, the differences between initial crystal structures are insignificant at the
10% level, once again demonstrating decreasing dependency of ∆∆G−◦ on the choice of
initial crystal structure over time, as expected.

5.3.2 Comparison Between ∆∆G−◦ after 100 ps and 20 ns Equilibration

In addition to the previous analysis, we can compare the distribution of ∆∆G−◦ values
across all crystal structures and replicates after 100 ps and 20 ns equilibration.
Comparison between median ∆∆G−◦ for each pair and system is shown in Figure 5.9
with associated Mann–Whitney U test p-values in Table 5.1. In some cases we see
remarkable median differences in the calculated free energies of approximately 1.0–1.5
kcal/mol (DHFR: pair 2; PTP1B: pairs 1, 2 and 3), whereas most other values,
including all of the FXa perturbations, appear to approximately agree by visual
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FIGURE 5.7: Box plots of the ∆∆G−◦ values per perturbation for each of the FXa crystal
structures after 100 ps total equilibration time. Each point represents the average of
three repeats and the associated error bar is its standard error of the mean. The boxes
contain all values between 25th and 75th percentile and the whiskers are based on the
5th and 95th percentile. The p-values have been obtained from the Kruskal–Wallis test
on all samples. The solid orange line shows the median value and the dashed red line

denotes the measured experimental value,4 if available.
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FIGURE 5.8: Box plots of the ∆∆G−◦ values per perturbation for each of the FXa crystal
structures after 20 ns total equilibration time. Each point represents the average of
three repeats and the associated error bar is its standard error of the mean. The boxes
contain all values between 25th and 75th percentile and the whiskers are based on the
5th and 95th percentile. The p-values have been obtained from the Kruskal–Wallis test
on all samples. The solid orange line shows the median value and the dashed red line

denotes the measured experimental value,4 if available.
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inspection. However, the Mann–Whitney U test indicates significant differences at 2%
CI for: DHFR pairs 1, 2 and 3; PTP1B pairs 1, 2, 3, 7 and 8; FXa pairs 1 and 5, which
constitute more than a third of all perturbations. This indicates that even after
comparing across protein crystal structures and repeats we observe significant
time-dependent sampling changes. Nevertheless, it has to be noted that these
differences could to some extent arise from the sampling bias introduced by
prolonged equilibration at only a single λ value and one should ideally compare
datasets where all λ values have been independently equilibrated for 20 ns. In this
study, this was not feasible due to computational resource limitations.

(A) (B)

(C)

FIGURE 5.9: Comparison of median ∆∆G−◦ values across all initial crystal structures
and replicates after short (100 ps) and long (20 ns) equilibration for DHFR (Figure 5.9a),
PTP1B (Figure 5.9b) and FXa (Figure 5.9c). All error bars indicate 25%–75% CI. The

dashed red line represents the line y = x.
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Pair Number

System 1 2 3 4 5 6 7 8 9

DHFR 0.003 0.000 0.007 0.992 0.140 0.164 0.370 0.177 N/A
PTP1B 0.011 0.000 0.000 0.757 0.370 0.445 0.016 0.016 0.115

FXa 0.000 0.503 0.124 0.045 0.015 0.288 0.307 0.861 0.829

TABLE 5.1: P-values calculated using the two-sided Mann–Whitney U test7 after com-
parison of ∆∆G values obtained across different initial crystal structures and replicates

between 100 ps and 20 ns equilibration.

5.3.3 Cycle Closure Errors

Since the Gibbs free energy G is a state function, any combination of perturbations
which returns to the initial state must yield a net free energy change of zero. Any
deviation from this value indicates insufficient sampling and lack of convergence. It
can be seen (Table 5.2) that in most cases cycle closure errors indicate apparent
convergence (less than 1.0 kcal/mol) after a short equilibration both on a
crystal-by-crystal basis and on average, with the notable exception of all cycles
involving PTP1B and the sulfonamide ligand derivative (cycles A, B and C). However,
this apparent convergence is not observed after longer equilibration with some cycle
closure errors surpassing the 1.0 kcal/mol barrier for some crystal structures.
Nevertheless, all average cycle closures are within 1.0 kcal/mol with the exception of
DHFR, cycle B, which has a magnitude of 1.67 kcal/mol, despite exhibiting apparent
convergence at shorter equilibration times. This is a striking observation, since one
would expect that a net equilibration time of ∼0.5 µs and a total sampling time of ∼4
µs per perturbation to exhibit unconditional convergence, especially for these rather
straightforward perturbations. These results show that any apparent convergence at
shorter timescales can be deceiving even for simple systems and low cycle closure
errors do not necessarily imply sufficient sampling.

5.3.4 Comparison to Experiment

While not the focus of this study, which is concerned with reproducibility and
precision, rather than accuracy, it is nevertheless informative to compare the above
results to experimental ∆∆G−◦ values. Here we only compare direct perturbations
against experiment, as opposed to thermodynamic chains. It is shown in Figure 5.10
that the extensively equilibrated median binding free energies generally move slightly
closer to experimental values over time. The relative ranking, represented by
Kendall’s τ,224 changes insignificantly from 0.09 to 0.13, indicating very weak
correlation to experimental data. The mean absolute deviation (MAD) also improves
weakly with more equilibration from 0.73 to 0.61 kcal/mol. Both of these metrics are
influenced by the low experimental free energy magnitudes (∼1.0 kcal/mol), meaning
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Cycle Closure Errors (kcal/mol)

Minimum Maximum Average

System Cycle 100 ps 20 ns 100 ps 20 ns 100 ps 20 ns

DHFR
A 0.03 0.07 0.97 2.44 0.02 0.30
B 0.08 0.40 0.76 3.35 0.08 1.67
C 0.01 0.03 0.38 1.39 0.06 0.24

PTP1B

A 0.72 0.05 1.31 1.37 1.06 0.47
B 0.58 0.08 2.11 2.50 1.05 0.80
C 0.01 0.00 1.02 2.03 0.18 0.28
D 0.03 0.02 0.60 0.84 0.20 0.11

FXa

A 0.02 0.01 0.30 0.90 0.06 0.12
B 0.01 0.21 0.17 0.53 0.03 0.05
C 0.01 0.01 0.19 0.84 0.03 0.26

TABLE 5.2: Absolute cycle closure errors for all systems after 100 ps and 20 ns equili-
bration. The cycles have been calculated per structure as the average of three replicates
and denoted according to Figure 5.2. The three columns represent the cycle closure er-
rors from the best- and worst-performing crystal structures, as well as the average

cycle closure errors between all structures.

(A) (B)

FIGURE 5.10: Comparison of median ∆∆G−◦ values across all initial crystal structures
and replicates for some of the denoted pairs after short (100 ps, Figure 5.10a) and long
(20 ns, Figure 5.10b) against experiment.2–4 The associated error bars indicate 25%–

75% CI and the dashed red line represents the line y = x.

that the MAD is more likely to appear favourable and the relative ranking is
dominated by noise. Owing to the size of the dataset, the low magnitude of the
experimental free energy values and the high variability between different replicates,
it can be concluded that the achieved improvement in comparison to experiment over
time is not substantial for these test cases.
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5.3.5 The Origin of Long-Timescale Variance

Owing to the complex nature of biomolecular systems, it is difficult to narrow down
the reason for the observed increase in inter-replicate variance with simulation time.
One obvious way to compare different replicates is to quantify the changes which
occur during the 20 ns equilibration based on the final trajectory frame. The most
apparent differences by visual inspection indicate the presence of various rare events
with transition times larger than several nanoseconds, such as rotations of ligand
torsions with high kinetic barriers. The most striking example is the rotation of the
acidic hydrogen in PTP1B, pair 5 (Figure 5.11). Comparison of free energy calculations
starting from the two different rotamers reveal a median difference of more than 4.0
kcal/mol, indicating that this rotation is likely the primary reason for the
extraordinary variance, observed in Figure 5.6. Another conspicuous example of rare
events determining the outcome of a free energy calculation is the sulfonamide bond
rotation in the first three PTP1B perturbations (Figure 5.12), with each rotamer
exhibiting an average of approximately 1.0–2.0 kcal/mol difference to the other
rotamers. Detailed analysis of these and all other rotamers can be found in
Appendix B (Figures B.1 to B.4), revealing the prevalence of this trend in many of the
perturbations involving DHFR and PTP1B. This analysis also shows that such ligand
flexibility is observed to a much lesser extent for FXa, thereby explaining the
comparatively low free energy variance even after extended equilibration.

Naturally, it is expected that the protein backbone also has an impact on the increased
free energy variance over time. However, analysing such a high-dimensional dataset
requires an immense amount of data points in the form of ∆∆G−◦ values. With only 24
∆∆G−◦ values per perturbation, establishing a statistically significant connection
between protein internal degrees of freedom and calculated free energies is not
feasible and we are going to attribute most of the long-timescale variability to slow
ligand motions—a conclusion, which is supported by all of the data presented above.

5.4 Discussion

There are several important lessons to be learned from the above results. Most
strikingly, they show that at short timescales different protein crystal structures can
disagree significantly over the free energy change and these differences can be more
than 1.0 kcal/mol in magnitude. Such short-timescale simulations are commonly used
in practice, most notably in commercial implementations,156,157 making these results
highly relevant to state-of-the-art applications of alchemical methods. More
worryingly, most of these results appear well-converged, as evidenced by the low
inter-replicate variance and the satisfactory cycle closure errors. The issue of using a
single crystal structure is now apparent: this choice can covertly affect the relative
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(A) (B)

FIGURE 5.11: Acidic hydrogen rotation in pair 5 observed in extended PTP1B simula-
tions. Images generated from the final trajectory frame of the extended equilibration

for 1BZJ (Figure 5.11a) and 1NWE (Figure 5.11b).

(A) (B) (C)

FIGURE 5.12: Sulfonamide rotation in pair 3 observed in extended PTP1B simulations.
Images generated from the final trajectory frame of the extended equilibration for 1BZJ

(Figure 5.12a), 2AZR (Figure 5.12b) and 2H4K (Figure 5.12c).

ranking of compounds, even when the free energy changes appear to be too large for
this to be likely to occur.

The above analysis also shows that these inter-structure differences are largely
reduced after a prolonged equilibration time and the inter-triplicate differences
become more representative of their true uncorrelated values. However, even after
∼24 ns of dynamics one can often distinguish between the different initial structures,
meaning that this initial choice has long-term effects on the free energy calculation.
Nevertheless, these results show that the proposition that multiple short simulations
are preferable to a single long simulation does not necessarily capture the full nature
of the problem: replicates are necessary but insufficient for convergence, while many
important long-timescale motions are practically inaccessible at shorter timescales,
regardless of the number of replicates. Therefore, one needs both multiple replicates
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for statistical confidence and longer simulations for physical validity—a requirement
which is rarely practically feasible with current computational capabilities.

One obvious way to practically circumvent this problem is to run short simulations
over more than one crystal structure. While the average of the resulting free energy
values would likely be biased, at least the researcher would be aware of the minimal
uncertainty in their results. However, this approach would result in reduced quality of
ligand sampling, since pure molecular dynamics is not good at exploring multiple
binding modes at short timescales.225 Alternatively, one could run repeats over
several binding poses determined by e.g. docking, but the same problem of
determining the correct weights of each binding pose persists, resulting in biased free
energy differences.

Another possibly more preferable working alternative is running longer simulations
on one crystal structure with enhanced sampling of the ligand degrees of freedom.
The results from longer timescales are typically more sensitive to ligand
conformational changes and the initial crystal structure becomes less influential on the
free energy changes over time. A protocol combining alchemical free energy (AFE)
calculations and replica exchange with solute scaling (REST2)94 has long been used in
commercial implementations, such as FEP+156 and has recently been used over longer
timescales.226–228 Although it is expected that this approach would lead to a much
higher variance due to the number of ligand degrees of freedom and decreased phase
space overlap between neighbouring states due to the Hamiltonian rescaling, this
variance would be more representative of the true result and this approach would be
much less likely to exhibit false convergence. In all cases it is highly recommended to
run at least triplicate simulations.

We also observed that larger perturbations result in much more variable free energy
estimates, a largely expected result. However, even the simplest of perturbations
should be treated with care. More specifically, cycle closure errors can indicate false
convergence and should therefore only be used to demonstrate insufficient sampling.
Indeed, it was shown that extensive sampling usually results in higher and more
realistic cycle closure errors, meaning that this criterion is necessary but not sufficient
for convergence.

Since it was unclear from the above data whether prolonged equilibration affects
comparison to experiment significantly, one might argue that better sampling might
not be necessarily cost-efficient for applications. While this is possible considering the
accuracy provided by current force fields, it has to be remembered that all
computational time saved from less sampling, results in reduced physical and
statistical confidence. Therefore, one should at the very least use timescales and
enhanced sampling techniques providing sufficient ligand conformational sampling
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whenever possible, so that the binding conformation is not completely dependent on
the ligand alignment method and/or the researcher’s intuition.

5.5 Conclusion

This chapter has shown the influence of initial crystal structure and extended
equilibration time on the binding free energy values of three different systems: DHFR,
PTP1B and FXa. The results indicate that at short timescales, initial crystal structure
differences consistently result in statistically, although not necessarily numerically,
significant changes in ∆∆G−◦ , sometimes reaching differences of over 1.0 kcal/mol.
Furthermore, large perturbations result in higher sensitivity to the initial structure at
short timescales.

At longer timescales, there is a marked increase in the inter-replicate variance in
∆∆G−◦ , which makes the results from different initial crystal structures appear more
similar. In many cases, the slow changes in ligand conformation, which become more
common at these timescales, are a significant contributor to this variance. The extent
to which the protein degrees of freedom impact these results is not clear and is to be
investigated in future work. Sometimes this prolonged sampling can significantly
change the expected free energy value. Nevertheless, the extra sampling results in no
significant improvement against experiment. In addition, it has been shown that
thermodynamic cycle closure values can often indicate false convergence at short
timescales, meaning that long-timescale enhanced sampling is needed even for simple
perturbations.

This chapter has emphasised the importance of long-timescale dynamics and
enhanced sampling in AFE calculations, as well as performing multiple repeats with
the same initial configurations. Therefore, an optimal protocol needs to find the
balance between the number of repeats, simulation length, and the number of λ

windows in the general case. One such protocol will be developed in Chapters 8 to 10.
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Chapter 6

Sensitivity of Binding Free Energy
Calculations to Histidine Tautomers
and Rotamers

6.1 Introduction

It was earlier discussed in Section 5.2.1 that the choice of initial protein crystal
structure can significantly affect the whole simulation setup process, most notably the
assignment of amino acid side-chain protonation states. This uncertainty in the
relevant protonation state is amplified in histidine, which has three accessible
protonation/tautomeric (PT) states at physiological pH. Although these can often be
reliably assigned by investigating the protein hydrogen bonding network, these
considerations are not always possible or unambiguous. Moreover, such approaches
hinder the automation of free energy calculations and this setback becomes more
relevant as advances in computational power increase the throughput of alchemical
binding free energy calculations.

The discussion in Section 3.2.1.4 also highlighted some recent studies which
investigate the influence of ligand PT states on alchemical free energy (AFE)
calculations and the impact of histidine PT states on docking results. However, the
impact of histidine PT states on AFE calculations is not currently known and will
therefore be the focus of this chapter.

In this chapter, the influence of changing a single histidine state to one of its
tautomeric states—δ (HID), ϵ (HIE) and its protonated state (HIP)—on the resulting
protein–ligand binding free energies will be explicitly explored. In addition, different
initial imidazole ring rotamers will be investigated in order to shed light on how their
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(A) Trypsin (B) Hsp90

FIGURE 6.1: The trypsin (Figure 6.1a) and Hsp90 (Figure 6.1b) histidine residues stud-
ied in this work. Ligands and histidines shown as stick.

kinetics affect the resulting free energy values. The two systems that will be
considered hereafter are trypsin and heat shock protein 90 (Hsp90).

Trypsin is an ideal system for this study, since it has three histidine residues (His40,
His57 and His91, Figure 6.1a) at different distances from the binding site
(approximately 0.9, 0.4 and 1.6 nm, respectively, Table 6.1), with one of them being
part of a catalytic triad responsible for peptide bond hydrolysis. It has also been
thoroughly explored in the literature, including in free energy studies. In this work a
crystal structure and a perturbation network closely related to a previous study229 will
be used.

In contrast to trypsin, Hsp90 is a more challenging system to study, due to the higher
mobility of its protein backbone.230 Indeed, several types of tertiary structures have
been observed in combination with different ligands, in some cases resulting in a
tertiary structure change between two closely related ligands.6 This behaviour makes
Hsp90 a good target for AFE calculation challenges. In this work we will adhere to a
single tertiary structure and a perturbation network of closely related ligands, which
have again been explored in a previous study.231 Hsp90 has four histidine residues:
His77, His154, His189 and His210 (Figure 6.1b) with distances from the binding site
ranging from 0.7 to 2.3 nm (Table 6.1).
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6.2 Methods

6.2.1 System Preparation
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FIGURE 6.2: Ligand scaffolds and perturbations for trypsin and Hsp90.

All of the system preparation in this study was performed in ProtoCaller (Chapter 4).
The crystal structures used were 3PTB232 for Trypsin and 3FT86 for Hsp90 and were
obtained from the Protein Data Bank.181 The non-terminal missing residues in 3FT8
were added using pdbfixer233 and protonation to the default tautomeric states at
pH = 7 was performed using PDB2PQR.185 Because of the stochasticity of the residue
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Histidine

System Perturbation His40 His57 His91

Trypsin Pairs 1–7 0.9 0.4 1.6

Histidine

System Perturbation His77 His154 His189 His210

Hsp90
Pairs 2, 3 1.7 0.8 1.9 2.2
Pairs 5, 6 1.4 0.7 1.9 2.2
Pairs 1, 4, 7 2.3 1.6 1.8 2.0

TABLE 6.1: Shortest distances in nm between each histidine residue and each per-
turbed ligand group for both trypsin and Hsp90.

addition procedure, it was only performed once for each system and the resulting
structure was used as a starting point for the subsequent setups. In all cases the initial
crystallographic water molecules were retained. Even though Hsp90 is known to be
biologically active as a homodimer,234 only the first chain of its PDB structure was
used for the following simulations in the interest of computational performance.

The histidine protonation, tautomeric and rotameric (PTR) states assigned by
PDB2PQR were in both cases taken as a reference. Afterwards, a series of structures
was generated based on these references where the only difference was a single
histidine PT (HID, HIE and HIP) and/or rotameric state (native, or with ring rotation
of 180◦). This resulted in an additional five structures per histidine, or 16 structures in
total for Trypsin and 21 structures for Hsp90. Each of these structures was used in a
series of ligand–ligand perturbations (7 for both Trypsin and Hsp90), as shown in
Figure 6.2. The binding mode of each ligand was manually generated from the
reference binding mode of the initial crystal structure and was kept consistent across
all simulations. Finally, the structure generating procedure for each combination as
well as the subsequent simulation were repeated three times, in order to account for
stochastic effects during the solvation procedure and the initial velocity generation.

The system parametrisation, ligand alignment and subsequent complex solvation
followed the same system preparation procedure as described in Chapter 5.

6.2.2 Simulation

Each of the simulations described below followed the simulation protocol with a short
100 ps equilibration, described in Chapter 5.
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6.2.3 Analysis

In the following discussion, no assumptions have been made about the underlying
distributions of the resulting free energy values. In all cases, robust estimators such as
the sample median, confidence interval and the mean absolute deviation (MAD) have
been reported. The non-parametric Kruskal–Wallis test223 has been used for statistical
comparisons between all free energy distributions.

The Kruskal–Wallis test verifies the null hypothesis that the mean ranks of the
compared populations are the same. The associated p-values therefore indicate the
probability of observing the data given the correctness of the null hypothesis. In order
to combine p-values testing the same null hypothesis on different datasets, Fisher’s
method235 has been used to report an aggregate p-value (hereafter referred to as
“Fisher average”). In these cases, the separate p-values have only been reported for
information purposes, since a large number of independent tests on the same
hypothesis runs the risk of a type I error (false rejection of the null hypothesis).

Three different types of p-values have been considered during the analysis: PT,
rotamer and total p-values (pprot, prot and ptot). pprot was calculated as the Fisher
average of the Kruskal–Wallis p-values obtained from comparing the free energy
distributions at each pair of histidine PT states (HID–HIE, HIE–HIP and HID–HIP). In
this case, both initial rotamer states for each PT state were used together for each
comparison. prot, on the other hand, was obtained as the Fisher average of the
Kruskal–Wallis p-values resulting from comparing the free energy distributions
corresponding to each pair of different initial rotamers (i.e. one comparison each for
HID, HIE and HIP). ptot is simply the Kruskal–Wallis p-value obtained from
comparing all six groups of free energies.

Similarly, three different types of absolute deviations were calculated: PT, rotamer and
total. Each of these absolute deviation distributions was obtained by considering the
absolute difference of every possible combination of free energy values between
different replicates from the different groups described in the previous paragraph. A
reference, or inter-replicate absolute deviation distribution was also calculated from
the unsigned free energy differences between all separate repeats (i.e. between repeats
1 and 2, 2 and 3, and 1 and 3). The inter-replicate MAD was then used as a baseline for
comparison to the other MADs to determine their effect size relative to the sampling
noise.

6.2.4 Markov State Models (MSMs)

Markov state models (MSMs)71 were also used to analyse the interconversion kinetics
between different histidine rotamers (see Section 2.5 for some background on MSMs).
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To generate these, all trajectories at λ = 0 and λ = 1 across all simulations dedicated
to a particular histidine residue were used to determine an averaged kinetic profile
across different protonation states and ligands. This resulted in a total of 252× 4 ns
trajectories (7 ligands, 6 histidine states, 3 repeats, 2 λ values) with a resolution of 5 ps
being used for estimating the rotation kinetics of each histidine residue.

The χ1 dihedral angles (CA-CB-CG-CD2) were measured for each histidine using
MDTraj 1.9.3236 and were subsequently clustered using Gaussian mixture models
(GMMs),237 as implemented in scikit-learn 0.24.2238 using the default settings. The
number of Gaussian components used was manually determined based on the
observed number of modes for the dihedral distribution of each histidine residue: 3 in
the case of Hsp90 His77 and His210 and 2 in all other cases.

The discretised clusters were then used to fit a Bayesian hidden MSM,72,74 as
implemented in PyEMMA 2.5.9.239 The estimator fitting procedure was performed
using the default settings to generate 100 different transition matrices over a range of
different lag times τ in the range of 5–100 ps. The distributions of the slowest implied
timescales tslowest(τ) from each of these lag times were subsequently obtained using
the formula:77

tslowest(τ) = −
τ

ln λslowest(τ)
(6.1)

where λslowest is the second largest eigenvalue of the corresponding stochastic matrix.
One of the τ values exhibiting satisfactory convergence was afterwards chosen and
the corresponding mean and sample standard deviation of tslowest(τ) at this lag time
were calculated and will be reported later in the text.

6.3 Results and Analysis

6.3.1 Free Energy Calculations at Different Histidine States

6.3.1.1 Trypsin

The calculated ∆∆G−◦ values across different trypsin histidine states for His40, His57
and His91 are presented in Figures 6.3 to 6.5. It can be seen that the highest ∆∆G−◦

variability is observed for His57. For most perturbations in this case the maximum
discrepancies between different histidine states are between 0.5 and 1.0 kcal/mol.
However, the two perturbations involving a nitro group (pairs 6 and 7) show
maximum deviations of ∼1.5 kcal/mol. Interestingly, the other perturbation involving
an amine group (pair 5) shows the lowest discrepancies, even compared to less polar
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perturbations, such as pair 1. On average, the MAD between different PT state with
the same rotamer is 0.48 kcal/mol, while the MAD between different rotamers is 0.38
kcal/mol (Table 6.2). Combined with the fact that both the PT and rotamer Fisher
averaged Kruskal–Wallis p-values (pprot and prot) are much smaller than 0.001, it is
straightforward to conclude that this result is both numerically and statistically
significant.

Although these observations are hardly surprising for a binding site histidine, similar
behaviour is observed for His40, even though it is ∼0.9 nm away from the ligand. In
this case, most maximum free energy deviations between different histidine states are
∼0.5 kcal/mol, reaching ∼1.0 kcal/mol for pair 7. Although the influence of this
histidine is clearly dampened in comparison with His57, the discrepancies are still
highly significant with pprot ≪ 0.001 and prot ≈ 0.001. At a PT MAD of 0.26 kcal/mol
and a rotamer MAD of 0.15 kcal/mol, it can be seen that the free energy discrepancies
between different rotameric states are on average less pronounced compared to His57.

The observed free energy discrepancies are much smaller for His91, which is ∼1.6 nm
away from the binding site, with both PT and rotamer MADs being 0.13 and 0.12
kcal/mol, respectively. However, statistically significant differences between different
PT states can still be observed, reaching an average p-value of <0.001, with the lowest
p-values being observed for pairs 1 and 2. On the other hand, the statistical
significance of the influence of the initial His91 rotamers is substantially diminished,
reaching an average p-value of 0.154.

6.3.1.2 Heat Shock Protein 90 (Hsp90)

The corresponding ∆∆G−◦ values for Hsp90 after changing His77, His154, His189 and
His210 are shown in Figures 6.6 to 6.9. In contrast to Trypsin, the discrepancies
between the free energies obtained from different PTR states are less pronounced: all
PTR MADs are in the range 0.13–0.19 kcal/mol (Table 6.2).

Despite being the second closest histidine residue to the binding site, His77 exhibits
lower PTR MADs than the other histidines at 0.14 and 0.13 kcal/mol, respectively.
While the low magnitude of these can be explained by the relatively large distances
from the binding site (Table 6.1), it is not clear why the absolute deviations are on
average lower than those observed for residues as far as 2.3 nm from the active site.
Nevertheless, this difference is negligibly small and is likely the effect of statistical
noise. Interestingly, the Fisher averaged rotamer p-value for His77 is the most
significant of all histidine residues, despite the lower MAD. This is mainly reflected in
pairs 4 and 5, which show significant rotamer p-values at the 5% level.

His154, being the closest residue to the binding site, shows a much less pronounced
sensitivity to the different histidine states compared to trypsin, with the largest
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FIGURE 6.3: Box plots of the ∆∆G−◦ values for different Trypsin His40 PTR states at
each ligand perturbation. Each point represents the median of three repeats, and the
associated error bar extends between the other two repeats. The boxes contain all
values from the merged dataset between the 25th and 75th percentile and the whiskers
extend to the 5th and 95th percentile. The solid orange line represents the median of
the whole dataset, while the dashed red line shows the experimentally obtained free
energy value,5 if available. The associated p-values obtained from a Kruskal–Wallis
test between different protonation states have been reported as pprot, while the Fisher
averages of the three pairwise rotamer Kruskal–Wallis p-values have been annotated

as prot.
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FIGURE 6.4: Box plots of the ∆∆G−◦ values for different Trypsin His57 PTR states at
each ligand perturbation. Each point represents the median of three repeats, and the
associated error bar extends between the other two repeats. The boxes contain all
values from the merged dataset between the 25th and 75th percentile and the whiskers
extend to the 5th and 95th percentile. The solid orange line represents the median of
the whole dataset, while the dashed red line shows the experimentally obtained free
energy value,5 if available. The associated p-values obtained from a Kruskal–Wallis
test between different protonation states have been reported as pprot, while the Fisher
averages of the three pairwise rotamer Kruskal–Wallis p-values have been annotated

as prot.
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FIGURE 6.5: Box plots of the ∆∆G−◦ values for different Trypsin His91 PTR states at
each ligand perturbation. Each point represents the median of three repeats, and the
associated error bar extends between the other two repeats. The boxes contain all
values from the merged dataset between the 25th and 75th percentile and the whiskers
extend to the 5th and 95th percentile. The solid orange line represents the median of
the whole dataset, while the dashed red line shows the experimentally obtained free
energy value,5 if available. The associated p-values obtained from a Kruskal–Wallis
test between different protonation states have been reported as pprot, while the Fisher
averages of the three pairwise rotamer Kruskal–Wallis p-values have been annotated

as prot.
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Average p-value MAD (kcal/mol)

System Residue PT R Total PT R Total

Trypsin
His40 <0.001 0.014 <0.001 0.26 (0.91) 0.15 (0.59) 0.24 (0.92)
His57 <0.001 <0.001 <0.001 0.48 (1.60) 0.38 (1.00) 0.49 (1.90)
His91 <0.001 0.154 0.003 0.13 (1.10) 0.12 (1.10) 0.13 (1.20)

Hsp90

His77 0.237 0.043 0.118 0.14 (0.46) 0.13 (0.48) 0.14 (0.50)
His154 0.963 0.081 0.257 0.18 (0.69) 0.19 (0.70) 0.12 (0.70)
His189 0.548 0.420 0.417 0.18 (0.81) 0.17 (0.58) 0.11 (0.81)
His210 0.057 0.124 0.042 0.17 (0.71) 0.16 (0.44) 0.12 (0.71)

TABLE 6.2: The average pprot, prot and ptot values obtained by Fisher’s method for each
of the histidine residues and the corresponding mean absolute deviations in kcal/mol

with the maximum absolute deviations given in parentheses.

median discrepancy being observed in pair 3, where the two HIE rotamers differ by
0.33 kcal/mol. This is the main reason His154 has the second lowest cumulative
rotamer p-value of 0.081. However, its cumulative PT p-value is the highest in the
dataset (0.963), implying that the observed free energy differences between the
different PT states are insignificant.

His189 shows the least significant results compared to the other histidine residues,
with pprot = 0.548 and prot = 0.420. Although the highest median free energy
discrepancy is 0.30 kcal/mol (pair 2, HIE), it is overshadowed by the large
inter-replicate variance, thereby losing statistical significance. In most cases, it can be
seen that the free energy discrepancies are numerically negligible, a result which is in
agreement with the long distance from the binding site (1.8–1.9 nm, Table 6.1).

Despite being the furthest histidine from the binding site (2.0–2.2 nm, Table 6.1),
His210 can exhibit significant median discrepancies between different rotamers,
reaching 0.36 kcal/mol (pair 3 HIE). Furthermore, the free energy differences between
pair 5 HID and HIE are observed to be 0.15 kcal/mol, and this result along with pairs
1 and 2 contribute to its comparatively lowest cumulative PT p-value, reaching 0.057.
Interestingly, the rotamer p-value (0.124) is comparable to that of trypsin His91,
despite the latter being 0.4–0.6 nm closer to the binding site.

6.3.2 Histidine Mobility

It is informative to relate the free energy discrepancies between different histidine
rotamers to the mobility of the histidine residues, since it is expected that the residues
with faster kinetics would result in free energy values that are less sensitive to their
initial rotamer. To achieve this, a Bayesian hidden MSM was used after preliminary
clustering in dihedral space using GMMs. Hidden MSMs are crucial for obtaining
meaningful kinetics, because they are highly robust to clustering errors.72 Since the
latter can be prevalent during the clustering of dihedral angles, a regular MSM
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FIGURE 6.6: Box plots of the ∆∆G−◦ values for different Hsp90 His77 PTR states at
each ligand perturbation. Each point represents the median of three repeats, and the
associated error bar extends between the other two repeats. The boxes contain all
values from the merged dataset between the 25th and 75th percentile and the whiskers
extend to the 5th and 95th percentile. The solid orange line represents the median of
the whole dataset, while the dashed red line shows the experimentally obtained free
energy value,6 if available. The associated p-values obtained from a Kruskal–Wallis
test between different protonation states have been reported as pprot, while the Fisher
averages of the three pairwise rotamer Kruskal–Wallis p-values have been annotated

as prot.
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FIGURE 6.7: Box plots of the ∆∆G−◦ values for different Hsp90 His154 PTR states at
each ligand perturbation. Each point represents the median of three repeats, and the
associated error bar extends between the other two repeats. The boxes contain all
values from the merged dataset between the 25th and 75th percentile and the whiskers
extend to the 5th and 95th percentile. The solid orange line represents the median of
the whole dataset, while the dashed red line shows the experimentally obtained free
energy value,6 if available. The associated p-values obtained from a Kruskal–Wallis
test between different protonation states have been reported as pprot, while the Fisher
averages of the three pairwise rotamer Kruskal–Wallis p-values have been annotated

as prot.
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FIGURE 6.8: Box plots of the ∆∆G−◦ values for different Hsp90 His189 PTR states at
each ligand perturbation. Each point represents the median of three repeats, and the
associated error bar extends between the other two repeats. The boxes contain all
values from the merged dataset between the 25th and 75th percentile and the whiskers
extend to the 5th and 95th percentile. The solid orange line represents the median of
the whole dataset, while the dashed red line shows the experimentally obtained free
energy value,6 if available. The associated p-values obtained from a Kruskal–Wallis
test between different protonation states have been reported as pprot, while the Fisher
averages of the three pairwise rotamer Kruskal–Wallis p-values have been annotated

as prot.
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FIGURE 6.9: Box plots of the ∆∆G−◦ values for different Hsp90 His210 PTR states at
each ligand perturbation. Each point represents the median of three repeats, and the
associated error bar extends between the other two repeats. The boxes contain all
values from the merged dataset between the 25th and 75th percentile and the whiskers
extend to the 5th and 95th percentile. The solid orange line represents the median of
the whole dataset, while the dashed red line shows the experimentally obtained free
energy value,6 if available. The associated p-values obtained from a Kruskal–Wallis
test between different protonation states have been reported as pprot, while the Fisher
averages of the three pairwise rotamer Kruskal–Wallis p-values have been annotated

as prot.
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without hidden states is more prone to underestimating the length of the implied
timescales.72 In addition, a Bayesian MSM is vital for outputting a population of
MSMs which enable one to obtain the confidence interval (CI) of the estimated
implied timescales.73,74

As described in Section 6.2.4, the implied timescales were calculated over a range of
lag times τ in the range between 5–100 ps. Since the obtained implied timescales
should be invariant with respect to a change in lag time, calculating them over a range
of τ values enables us to ascertain the validity and the convergence of the MSM.

The results from the MSM analysis show well-converged estimates of the slowest
implied timescale over a range of lag times (Figure 6.10). In the following discussion,
one of the sufficiently converged lag times will be arbitrarily chosen to report the
implied timescales. These implied timescales will enable us to assess the mobility of
each histidine residue—the higher the implied timescale, the lower the mobility.

The least mobile trypsin histidine residue is His40 (Figure 6.10a), which has an
implied timescale of 45± 16 ns. Since this timescale is an order of magnitude larger
than the simulation length of each of the λ windows, this means that in this case it is
practically certain that the choice of initial histidine residue will achieve maximum
possible bias of the resulting free energies. The magnitude of this bias, however, is of
course dependent on the nature of the perturbation and the distance between the
ligand and the histidine residue. As shown in Table 6.2, this translates to a rotamer
MAD of 0.15 kcal/mol over the range of all perturbations considered in this study.

The binding site His57 and the distal His91 show an order-of-magnitude higher
mobility with implied timescales of 4.1± 0.4 ns and 3.4± 0.4 ns, respectively
(Figure 6.10a). Since these timescales are comparable to the simulation time per λ

window, it is again expected that the resulting free energies will be significantly
affected, albeit to a lesser extent, by the choice of initial histidine conformation.
However, Table 6.2 shows that His57 and His91 have significantly different rotamer
MADs, with the more mobile His57 having larger discrepancies than the less mobile
His40. Therefore, the main predictor of the magnitude of these discrepancies in the
case of trypsin is likely the ligand–histidine distance, rather than the histidine
mobility.

His154 is the least mobile histidine residue in Hsp90 with an implied timescale of
475± 167 ns (Figure 6.10b). While this estimate is highly unreliable and implied
timescale estimation at many of the intermediate lag times was not possible due to
undersampling, it is clear that this timescale is several orders of magnitude higher
than the sampling per λ window, making His154 the least mobile histidine residue in
this study. Although this is reflected by His154 having the highest rotamer MAD
(Table 6.2), the statistical significance of the result is lower than that of His77, which is
also further away from the binding site.
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His210 and His189 are residues with limited mobility, similarly to trypsin His57 and
His91, with implied timescales of 3.8± 0.4 ns and 3.4± 0.3 ns, respectively
(Figure 6.10b). Despite these timescales being comparable to the simulation time per λ

value, their rotamer MADs are only 0.02–0.03 kcal/mol lower than His154 (Table 6.2),
showing that in this case mobility is again not a decisive factor in predicting the
magnitude of the free energy discrepancies between different histidine rotamers.

His77 is the most mobile residue in the whole study with an implied timescale of
0.42± 0.03 ns, or an order of magnitude lower than the sampling time per λ window
(Figure 6.10b). Despite this high mobility, it exhibits the most significant free energy
discrepancies with a Kruskal–Wallis p-value of 0.043 (Table 6.2). Nevertheless, it has
the lowest rotamer MAD in Hsp90, indicating that the increased mobility likely has
some role in decreasing it. However, this result shows that even timescales which are
an order of magnitude shorter than the sampling time per λ window are not sufficient
to completely remove the initial rotamer bias, which is observed even at distances
larger than 1.4 nm (Table 6.1).

6.3.3 Total Variability per Perturbation

It is informative to explore the cumulative influence of all histidine residues on each of
the alchemical perturbations. This will provide us with some knowledge on how
sensitive different perturbations are to changes in the histidine PTR states.

As shown in Figure 6.11a, all of the trypsin perturbations exhibit statistically
significant differences between the free energies obtained at different histidine PTR
states with Kruskal–Wallis p-values of at most 0.001. Therefore, most of the differences
in the total ligand variances can be attributed to ligand–histidine interactions.

The trypsin perturbation with highest variability is pair 6, with a 5–95 percentile
difference of ∼1.5 kcal/mol (Figure 6.11a). Pair 7 is a close second with a ∼1.3
kcal/mol uncertainty at the 90% CI. All other perturbations have 5–95 percentile
ranges between ∼0.5 and ∼1.0 kcal/mol, which gives a measure of the PTR
reproducibility limit for trypsin. Since pairs 6 and 7 are the only perturbations
involving the alchemical change of a nitro group, it can be proposed that the partial
charges of the latter interact particularly strongly with the histidines, making them
more sensitive to PTR variations. Even though the rest of the perturbations cover a
range of partial charge changes, with pair 5 involving a charge change of ∼1 e, they all
have lower sensitivity to the histidine residues and no clear pattern can be inferred in
these cases.

On the other hand, the Hsp90 perturbations (Figure 6.11b) exhibit much less
pronounced differences between the free energies obtained at different histidine PTR
states, with only pair 3 having a p-value less than 0.05. Since pair 2 and pair 3 have the
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(A) Trypsin

(B) Hsp90

FIGURE 6.10: Rotation kinetics of the three trypsin histidine residues (Figure 6.10a)
and the four Hsp90 histidine residues (Figure 6.10b) estimated with a hidden state
Bayesian MSM after clustering with GMMs. The y axis represents the slowest implied
timescale at a range of lag times. The blue line represents the mean over 100 different
MSMs, while the shaded blue area represents a 95% confidence interval. The shaded
grey area indicates the precision limit of the MSM given the lag time used for esti-
mation. The green line represents the implied timescale of one of the lag times. The
latter was manually chosen as a sufficiently converged representative of the series of

lag times.
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most significant discrepancies and they are also the only perturbations involving the
perturbation of a carbonyl oxygen to an oxime, it is reasonable to deduce that the
charge distribution change induced by this perturbation interacts significantly with
the histidine residues. However, these effects are still much weaker compared to the
trypsin results.

The total variabilities of each of the Hsp90 perturbations are also markedly lower than
for trypsin, with 5–95 percentile ranges between ∼0.25 and ∼0.5 kcal/mol. Most
perturbations have comparable variability, with the lowest uncertainty exhibited by
pairs 1, 4, 7. Since these are also the pairs involving a hydrogen to a fluorine
perturbation, it can be proposed that the reason for this decrease in variability is the
greater simplicity of the perturbation compared to the other pairs.

6.3.4 Free Energy Discrepancies as a Function of Ligand–Histidine
Distance

It is intuitively expected that the larger the distance between the ligand and the
histidine residue, the smaller the effect of the latter on the estimated free energy
values will be. On the other hand, it is also expected that perturbations involving
large partial charge changes will have stronger long-range interactions and will be
more sensitive to the histidine protonation state. In this section we evaluate the
validity of these notions.

To investigate the influence of the ligand–histidine distance on the observed free
energies, we will define it as the shortest distance between any of the histidine atoms
and any of the atoms of the relevant perturbed ligand group. As shown in Table 6.1,
we will consider three different perturbation groups in Hsp90, since there are three
different ligand sites that are perturbed. The absolute deviations will be calculated as
the absolute differences between all different combinations of samples from the
corresponding groups. We will also distinguish between four types of MADs: the PT,
rotamer, total and inter-replicate MAD. The latter will be used as a reference deviation
limit to which we will compare the other three MADs. The raw calculated PT, rotamer
and total MADs will be referred to as “absolute”, while the same with the
inter-replicate MAD subtracted from them will be denoted as “relative”.

As shown in Figure 6.12a, the MADs corresponding to the trypsin binding site His57
are unsurprisingly significantly higher than the rest of the histidine residues with the
PT MAD being 0.48 kcal/mol, or 0.10 kcal/mol higher than the rotamer MAD. These
MADs are significantly different to the inter-replicate MAD and the relative total
MAD amounts to an extra 0.38 kcal/mol of variability added by the binding site
histidine (Figure 6.12b).
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(A) Trypsin

(B) Hsp90

FIGURE 6.11: Total free energy variability for each of the trypsin (Figure 6.11a) and
Hsp90 (Figure 6.11b) perturbations over all histidine PTR states. The orange lines
represent the median, the boxes include the interquartile range, while the whiskers
extend to the 5th and 95th percentiles. Outliers beyond the whisker range are shown

as empty circles.
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At higher ligand–histidine distances, the absolute free energy discrepancies decrease
considerably and stay relatively constant at ∼0.20 kcal/mol, with the trypsin His40
residue reaching 0.26 kcal/mol. Except for trypsin His40 and His57, the rotamer MAD
is comparable to the PT MAD in all cases. Surprisingly, the Hsp90 His154
perturbations in pairs 2, 3, 5 and 6 show lower MADs than trypsin His40, despite the
shorter ligand–histidine distance.

In Figure 6.12a one can distinguish between two “bands” of MADs at distances over
1.0 nm. The lower MADs correspond to interactions between the Hsp90 histidines
with pairs 1, 4 and 7, while the other data points represent all other interactions.
However, these differences are largely smoothed when the inter-replicate MAD is
subtracted (Figure 6.12b), indicating that the difference in behaviour is related to the
lower inter-replicate MAD for pairs 1, 4, 7, as discussed in the previous section.

Compared to the inter-replicate MADs, the variability introduced by the histidines at
distances over 1.0 nm is in many cases insignificant with most relative MADs being
close to zero (Figure 6.12b). The only exceptions are observed at 1.7 nm (His77, pairs 2
and 3) and 2.2 nm (His210, pairs 2, 3, 5 and 6), with MADs of ∼0.05 kcal/mol. Since
pairs 2 and 3 involve the carbonyl to oxime perturbations, it can be seen that the
partial charge changes associated with these perturbations can result in observable
long-range histidine effects on the free energies. Nevertheless, the magnitude of these
effects is still practically negligible at such long distances.

6.4 Discussion

The above results show two very different types of behaviour. On one hand, trypsin
produces well-converged results which are significantly affected by the histidine PTR
states even at long ligand–histidine distances. On the other hand, Hsp90 results in
more consistent free energies with most free energy discrepancies being insignificant.
It follows that one could regard these two systems as two possible extremes of free
energy sensitivity towards the initial PTR states.

It was shown that the PTR states of an active site histidine (trypsin His57) can
significantly affect the observed free energy values, with most discrepancies being in
the range of ∼0.5 to ∼1.0 kcal/mol. However, perturbations involving nitro groups
can increase these discrepancies to ∼1.5 kcal/mol. This can therefore be regarded as a
“worst” case reproducibility limit.

In practice, however, it is common knowledge to expect such sensitivity and binding
site protonation states are often carefully chosen. In this case, a more realistic
reproducibility limit is ∼0.5 kcal/mol with a worst case scenario of ∼1.0 kcal/mol for
a ligand containing a nitro group interacting with a nearby immobile histidine, as
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(A) Absolute MAD

(B) Relative MAD

FIGURE 6.12: The MADs of the free energy values as a function of distance (Fig-
ure 6.12a). The three types of MADs have been slightly separated in the x axis for vi-
sualisation purposes. In Figure 6.12b, the inter-replicate MADs were subtracted from
the corresponding data points. The error bars represent the standard error of the mean
(Figure 6.12a) or the mean difference (Figure 6.12b). Values below the red line at x = 0

can be regarded as statistical noise.
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observed in trypsin His40. These reproducibility issues persist at distances as long as
1.6 nm and can in these cases reach discrepancies of ∼0.1 kcal/mol.

All of these differences are naturally relative to the observed inter-replicate variance,
which is in turn highly system- and protocol-dependent. As observed in Hsp90, the
discrepancies between different repeats can often overshadow the ones caused by
alternative histidine states. In addition, this inter-replicate variance can also be
affected by more mobile histidine residues. Of course, it is expected that other
comparatively slower events can also affect this variability, meaning that this
consideration is not exclusive to the rotation of histidine residues, but can include
other degrees of freedom as well.

The above results suggest that there are four factors that can have an impact on the
magnitude of the free energy discrepancies: the magnitude of the charge changes, the
ligand–histidine distance, the histidine mobility, and the sampling variance measured
by the different simulation repeats. Of these, it can be argued that the latter is the most
decisive factor, since it sets a repeatability limit for the system which may or may not
be higher than the expected variance induced by the different histidine states. It is also
the most difficult factor to predict, since inter-replicate variance is system-dependent
and can also be affected by all of the other factors.

The second most important factor is arguably the ligand–histidine distance, since it
was shown that the magnitude of the free energy discrepancies rapidly decreases with
increasing distance and these discrepancies are mostly negligible after ∼ 1.0 nm
(Figure 6.12). However, at short distances the initial histidine state can significantly
affect the observed free energy changes regardless of the type of perturbation.

Nevertheless, perturbations involving groups with high partial charges can exhibit
long-range sensitivity towards the initial histidine PTR states, even if the
discrepancies are not necessarily numerically significant, making the nature of the
ligand–ligand perturbation the third most important factor. Although perturbations
involving large partial charge changes have been shown to have comparatively higher
sensitivity towards histidine PTR states even at short distances (nitro groups in
trypsin and oximes in Hsp90), the charge differences are not always predictive of the
magnitude of the variance. For example, the perturbation from an amino group to a
hydrogen atom exhibited the lowest variance of all trypsin perturbations involving a
variation in the active site histidine, including the perturbation of a methyl group to a
hydrogen atom, despite the former involving a highest partial charge change of ∼1 e,
and the latter only involving charge changes up to ∼0.25 e.

Finally, the histidine mobility was the least important factor in this study. One
possible reason for this observation is that only one histidine residue had a slowest
implied timescale significantly lower than the simulation time per λ window (Hsp90
His77), meaning that the other histidine residues could not reliably decrease any free
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energy discrepancies arising from different initial rotamers. However, even the most
mobile histidine residue showed observable free energy discrepancies in some cases.
This can be explained by the large number of λ windows (40), since a complete
removal of the initial rotamer bias can only be achieved if the histidine rotation is
consistently sampled in each of the intermediate λ windows.

It is expected that the above effects will amplify with a higher number of titratable
residues and/or possible residue rotamers, meaning that the initial system setup is a
decisive element in the free energy calculation. Since system preparation can be highly
sensitive to the initial crystal structure (Chapter 5), this poses a significant problem for
reproducible free energy calculations. Therefore, the above results strongly suggest
that enhanced sampling methods are an indispensable element of a robust free energy
workflow.

Since different PT states correspond to different Hamiltonians, one needs an expanded
ensemble enhanced sampling method to explore the Hamiltonian space of the
different protonation states. As explicitly handling every possible combination of
amino acid PT states is not feasible, stochastic approaches, such as constant-pH121

methods will be valuable in removing any implicit free energy biases posed by an
incorrect protonation state. These have been repeatedly shown118,121,123,124,127 to
provide significant improvement in sampling and the results presented above further
showcase the need for their mainstream use in free energy applications.

The enhanced sampling of amino acid rotamers is also important, as in the above
cases two of the seven histidines had unfeasibly long implied timescales of rotation,
while four required several nanoseconds on average for mixing. On the other hand,
only one of the seven histidines exhibited mobility on timescales shorter than 1 ns.
This highlights one significant weakness of alchemical free energy calculations, as
traditionally performed: the relatively short duration of the separate λ windows is not
sufficient to reliably explore all of these motions in all windows, resulting in significant
bias even after 4 ns of sampling per window. One way to mitigate this problem in a
general way is by employing single-trajectory methods, such as simulated tempering
(ST),240 λ-dynamics (λD),241 enveloping distribution sampling (EDS)242 or integrated
tempering sampling (ITS),243 which will reliably sample many of these motions over
long timescales without any extra input. Alternatively, if there are known residue side
chains whose rotations are known to be important but happen on very long time
scales, targeted enhanced sampling methods can help in exploring these. One such
method is nonequilibrium candidate Monte Carlo (NCMC),64 which has been shown
to significantly improve side-chain kinetics of sterically hindered residues.244
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6.5 Conclusion

The influence of histidine PTR states on the calculated relative binding free energy
values was evaluated over a range of alchemical perturbations on two protein
systems: trypsin and Hsp90. The trypsin complexes exhibited a higher sensitivity to
the initial histidine states, with the binding site histidine residue inducing free energy
discrepancies of up to ∼1.5 kcal/mol for a perturbation involving a nitro group. These
discrepancies can be observed at distances as long as 1.6 nm, albeit to a much less
significant extent (∼0.1 kcal/mol).

Hsp90, on the other hand, showed little sensitivity to the alternative histidine states,
compared to trypsin. This was likely caused by a combination of different factors,
such as the increased sampling variance, the large ligand–histidine distances and the
smaller partial charge changes in most of the perturbations. However, even in these
cases discrepancies of up to ∼0.5 kcal/mol can be observed, indicating that both
histidine protonation, tautomeric and rotameric states can have significant impact on
the observed free energies. These are expected to amplify with the number of side
chains with uncertain PTR states.

We have also discussed the necessity for the mainstream adoption of enhanced
sampling methods to improve the robustness of alchemical binding free energy
calculations. It is expected that constant-pH methods can ameliorate the above issues,
while single-trajectory sampling methods, such as ST, λD, EDS and ITS, can help
explore rotamers over long timescales without any system-specific user input. In the
case where a small subset of the side chains exhibits slow kinetics, while participating
in important interactions with the ligand, more targeted enhanced sampling methods
can be useful, such as NCMC.
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Chapter 7

Parameter-Based Enhanced
Sampling Methods: A Review

7.1 Introduction

The results in Chapters 5 and 6 show that rare event exploration is crucial for
performing reliable alchemical free energy (AFE) calculations. Since regular sampling
methods, such as molecular dynamics (MD), are insufficient for exploring such slow
motions at short timescales, enhanced sampling methods are needed.

Central to the idea of each enhanced sampling method is the selection of a nonlinear
function of the system coordinates s⃗(x⃗), which has a much lower dimensionality
(typically 1–3 dimensions) compared to the 3N degrees of freedom for a system
containing N atoms. This function is said to define several “collective variables”
(CVs), which represent the slow degrees of freedom that are of central interest.245

The choice of a CV is specific to the purpose of the simulation and to the studied
system.246 Sometimes this choice is relatively straightforward (e.g. passing of a small
molecule through a cell membrane247), other times it is highly non-trivial and
system-specific (e.g. protein folding245,246). In the latter cases, the prospective
application of enhanced sampling methods on new systems is greatly reduced due to
the significant prior knowledge needed to determine the relevant CVs. Therefore,
general non-specific CVs are highly desirable when such knowledge is not available.

The most natural way to define a general CV is to recognise that at higher
temperatures, all kinetic barriers are universally smoothed, meaning that rare events
are more likely to happen. Therefore, if we extend the notion of a CV to
coordinate-independent parameters as well, we could regard temperature as the most
general CV. This realisation leads us to a class of enhanced sampling methods, which
will be referred to as “tempering” methods. Even more generally, one can introduce
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an arbitrary number of parameters λ⃗ into the dimensionless potential energy function
u(x⃗), such that some values of these parameters correspond to a subset of the kinetic
barriers being smoothed, while others recover the original parameter-free potential
energy function of interest.

In this chapter, enhanced sampling methods, which require coordinate-based CVs
(“restraint-based” methods), and those utilising parameter-based CVs (tempering
methods), will be distinguished. This distinction stems from the fact that since the
parameters are introduced purely out of convenience, they could be defined in any
way, as long as one set of parameters recovers the original distribution. This allows us
to explore discrete sequences of parameter values, in contrast to restraint-based
methods, which are restricted to continuous spaces. This ability of tempering methods
to explore discretised CV spaces is directly relevant to alchemical free energy
calculations, which use a set of discrete values of an alchemical variable λ to define the
transformation between two ligands and calculate the free energy difference between
them. This means that tempering methods can be used to address the sampling
problem and the free energy calculation problem in the same manner.

Some of the more well-known restraint-based methods are: multicanonical
sampling,248 Wang–Landau sampling,249 metadynamics,97,250,251 umbrella
sampling,252 accelerated MD,253,254 adaptive biasing force,255 targeted MD,256 steered
MD,257 conformational flooding258 and blue moon sampling.259 Although many of
these methods have significant similarities to and/or could be used in conjunction
with tempering methods, they will not be discussed in this chapter, which focuses on
parameter-based CVs, and a detailed review of these methods can be found
elsewhere.260

The aim of this chapter is to present a wide range of tempering enhanced sampling
methods and compare their similarities and differences, as well as their advantages
and disadvantages. This will allow us to rationalise the choices made in the following
method development chapters and highlight the relevance of the methodologies
presented there.

7.2 Tempering Methods

The two most important distributions defined in a tempering method are the
distribution of interest and the distribution with maximally smoothed kinetic barriers.
The former provides us with the information that we seek from the computational
experiment, while the latter increases the quality of sampling. The introduction of
samples from one distribution into another can be visualised through the framework
of importance sampling, where any expectation value of an observable ⟨O⟩ over a
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particular distribution p(x⃗) can be related to any other distribution q(x⃗) in the
following manner:

⟨O⟩ =
∫

O(x⃗)p(x⃗)dx⃗ =
∫

O(x⃗)
p(x⃗)
q(x⃗)

q(x⃗)dx⃗ (7.1)

If we regard p(x⃗)
q(x⃗) as effective weights, this essentially means that we can generate

samples from any arbitrary q(x⃗) and we can determine the expectation of any
observable over any other distribution p(x⃗), as long as we reweight the samples by a
factor proportional to p(x⃗)

q(x⃗) .

The main issue with importance sampling is its quickly diminishing efficiency as p(x⃗)
and q(x⃗) diverge in terms of their probability densities. In such cases, the variance of
the weights becomes very high, meaning that only a small subset of the samples is
used in the final estimate. This in turn results in high uncertainty of the estimated
average.

There are three possible ways to circumvent this problem. The first involves defining a
reversible transformation T⃗(x⃗) which maps each sample generated by q(x⃗) onto a
similarly favourable sample from p(x⃗). Unfortunately, this method can only be
applied to very specific or trivial cases and is not generally possible in most practical
situations. The second approach involves smoothing both probability distributions
using another parameter, which results in sufficient overlap. The final approach is the
introduction of intermediate distributions, such that each neighbour pair achieves
sufficient overlap, enabling the use of sequential importance sampling. This is the
approach used by most of the following methods.

7.2.1 Replica Exchange Molecular Dynamics (REMD)

The most widely used tempering method is parallel tempering,261 more widely
known in the field of computational chemistry as replica exchange molecular
dynamics (REMD). In REMD, the following expanded probability distribution πmix(x⃗)
is explored:

πmix(x⃗) =
N

∏
i=1

π(⃗λi, x⃗) (7.2)

where x⃗ is the set of coordinates and λ⃗ is an arbitrarily large number of parameters
with N different combinations of values. In addition, it will be here and henceforth
assumed that π(⃗λ1, x⃗) is the distribution providing the most sampling, while π(⃗λN , x⃗)
is the distribution of interest. In practice, this is done by collecting samples from each
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of the distributions in parallel, resulting in N concurrent simulations. Each simulation
samples from its corresponding distribution using MD.

Sample enrichment is achieved by periodically attempting to swap a number of
replica pairs. This can be done in many ways,262 one of the most widely used of which
is attempting to swap all even replicas with all odd replicas in a reversible manner
obeying detailed balance. In this case, the acceptance criterion pacc(x⃗j, x⃗i |⃗xi, x⃗j) for
swapping two sets of coordinates x⃗i and x⃗j sampled at λ⃗i and λ⃗j, respectively, is:

pacc(x⃗j, x⃗i |⃗xi, x⃗j) = min

[
1,

π(⃗λi, x⃗j)π(⃗λj, x⃗i)

π(⃗λi, x⃗i)π(⃗λj, x⃗j)

]
(7.3)

In contrast to many of the methods discussed later, this acceptance criterion does not
require any knowledge of normalisation constants, since they cancel out. Therefore,
one only needs to calculate the relative probabilities, given by the instantaneous
energies, and no further estimations are needed. This ease of use has contributed to
the widespread adoption of this method.

The most general type of REMD is Hamiltonian replica exchange (H-REMD),263,264

where any set of parameters λ⃗ can be used to define the intermediate distributions.
More specific variations of H-REMD involve the original temperature-based
method,265 methods involving the effective local temperature of a subset of the
system: replica exchange with solute tempering (REST)86 and replica exchange with
solute scaling (REST2),94 alchemical transformations,266 protonation states,267 and
water networks.268 Various combinations of these methods exist, including concurrent
alchemical and tempering transformations95,269 and simultaneous alchemical and
water network exploration.111 Alchemical free energy (AFE) methods in particular
benefit greatly from REMD, since free energy calculations already involve simulations
at multiple intermediate states and an additional exchange procedure incurs a
negligible computational overhead in return for a significant sampling enhancement.

7.2.2 Simulated Tempering (ST)

Simulated tempering (ST)240,270 is an expanded ensemble method, which can be
regarded as the single-replica version of REMD. Here, the mixture distribution πmix(x⃗)
is a weighted sum of the underlying probability distributions, rather than a product::

πmix(x⃗) =
N

∑
i=1

wiπ(⃗λi, x⃗) (7.4)
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where wi is the corresponding weight of the i-th distribution. While the assignment of
these weights is arbitrary, they are commonly set to unity, so that all of the
distributions are sampled with equal probability.

The single replica then traverses this set of λ⃗ states. Exploration in parameter space is
commonly done in a Gibbs sampling fashion,262 where a change is attempted after a
fixed amount of MD steps. As in REMD, multiple ways of choosing the proposal
probabilities pprop (⃗λj |⃗λi) are possible262 but a common way of defining the Markov
chain is by only attempting transitions between nearest neighbours, with equal
proposal probabilities:

pprop(λ⃗j|λ⃗i) =

 1
2 δ|i−j|,1 λ⃗i /∈ {1, N}

δ|i−j|,1 λ⃗i ∈ {1, N}
(7.5)

with δ being the Kronecker delta. The acceptance criterion pacc (⃗λj |⃗λi, x⃗) is then related
to the importance sampling weight of the configuration x⃗, and is commonly chosen to
satisfy detailed balance:

pacc (⃗λj |⃗λi, x⃗) = min

[
1,

wjπ(⃗λj, x⃗)pprop (⃗λi |⃗λj)

wiπ(⃗λi, x⃗)pprop (⃗λj |⃗λi)

]
(7.6)

Unlike the acceptance criterion used in REMD, it can be seen that the normalisation
constant ratios, or equivalently, the free energy differences between the two
distributions need to be known. This apparent setback of the method has contributed
to its underutilisation compared to REMD.271 Since such knowledge is rarely available
in advance, commonly used approaches obtain these free energies either by
approximate heuristics,271,272 maximum likelihood free energy estimators,273,274 or
on-the-fly learning.273,275

While the original ST algorithm uses the total system temperature as a
parameter,240,270 the method has been further generalised to an arbitrary Hamiltonian
parameter dependence similarly to H-REMD.276 ST has been used in a variety of
applications, including studying phase transitions,277 exploring molecular
conformations271,274,278 and performing solvation free energy calculations.274,279

7.2.3 Integrated Tempering Sampling (ITS)

Integrated tempering sampling (ITS)243 is another expanded ensemble method which
is conceptually very similar to ST. One of the main differences is that in ITS the
sampled distribution πmix(x⃗) is not a sum of discrete distributions, but is instead an
integral over a continuum of distribution parameters:
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πmix(x⃗) =
∫

w(⃗λ)π(⃗λ, x⃗)d⃗λ (7.7)

This makes ITS a generalisation of ST.280 Nevertheless, to calculate the integral in
Equation 7.7, the mixture distribution is still discretised in practice
(Equation 7.4),243,281,282 although the number of intermediates is usually higher than
those typically used in ST simulations. The main difference with ST then lies in the
way this distribution is explored. While in ST this is done by a Monte Carlo (MC)
walk in λ⃗ space, ITS treats πmix(x⃗) as a distribution with an effective potential energy
Ue f f (⃗λ, x⃗), such that:

Ue f f (x⃗) = − 1
β

ln πmix(x⃗) (7.8)

This potential energy function can then be straightforwardly used in the classical
equations of motion (Equation 2.28). In this setting, all of the underlying distributions
contribute their associated forces to the effective force F⃗e f f (x⃗) at each timestep.

As with ST, knowledge of the relative free energies of the underlying distributions is
critical in ensuring satisfactory performance of the method. These can be obtained
with estimation approaches similar to those used in ST.243,281,282

Similarly to REMD and ST, there are a few published variations of ITS depending on
the way the parameters are used to define the intermediate states. The most general
type approach is Hamiltonian ITS,282 where an arbitrary set of parameters λ⃗ can be
used to define the interpolation between the two final distributions. The more specific
versions are the original tempering method243 and its extension where only parts of
the system are tempered281 (selective ITS).

7.2.4 λ-Dynamics (λD)

λ-Dynamics,241 introduced 12 years before ITS, is another method which explores a
mixture distribution πmix(x⃗) over a continuous set of states (Equation 7.7). The main
conceptual difference with ITS is the exploration of λ⃗ space: instead of extracting an
effective potential energy function from the mixture distribution, λ⃗ is treated as a set
of fictitious particles with their own masses, which can then be evolved using classical
equations of motion (Equation 2.28). However, the continuity in parameter space
means that there is a vanishing probability of λ⃗ being in any single state. Therefore,
the resulting distribution of λ⃗ values needs to be approximately separated into
discrete bins before analysis and/or free energy estimation.

Similarly to ST and ITS, uniform exploration in λ⃗ space needs to be facilitated by
adaptive weight estimation. In the context of λD, this has been achieved by defining a
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family of parameter-dependent restraint-like continuous functions in λ⃗ space and
subsequently optimising them.283,284

Different variations of λD have been published, some of them similar to other
tempering methods. While the original version of the method samples λ⃗ space using
classical equations of motion,241 some of more recent publications use a Gibbs
sampler,285,286 with the latter publication sampling discrete λ⃗ space in a comparable
manner to ST. λD has also been generalised to multiple λ⃗ variables,287 combined with
REMD,283,288 and applied in large-scale free energy studies.289

7.2.5 Enveloping Distribution Sampling (EDS)

Enveloping distribution sampling (EDS)242 is another expanded ensemble method,
originally introduced to sample the two endstates of a relative alchemical free energy
calculation, although it has subsequently been applied in the context of constant-pH
calculations as well.127 In this setting, the same mixture probability distribution as ST
is sampled (Equation 7.4), except that in the original formulation of EDS no
intermediates between the two endpoint distributions were used. This two-state
reference mixture distribution has previously been used to estimate free energy
values.13,290

Instead of using intermediate distributions to increase phase space overlap, as used in
the first publication of the method,242 more recent publications have introduced a
temperature-like smoothing parameter s to improve the overlap between the end
states. One can then surmount the kinetic barriers in the mixture distribution either by
choosing a single value of s which provides high smoothing291,292 or by sampling the s
coordinate using REMD.126,293 In the former case, the simulations need to be
appropriately reweighted, since the πmix(x⃗) no longer corresponds to a sum of the
physical distributions of interest. The latter approach, on the other hand, is
functionally equivalent to using intermediate alchemical states, since multiple values
of s are used to achieve sufficient overlap.

As with other expanded ensemble methods exploring sums of distributions, the
relative free energy values of the distributions need to be estimated to ensure good
performance of the method. Several approaches estimating these, as well as the
smoothing parameter schedule, have been published, including the utilisation of an
orthogonal REMD protocol.291–293

Similarly to the ITS method, first introduced one year after EDS, exploration in
expanded ensemble space is not performed using MC but instead by defining an
effective potential Ue f f (x⃗), as described in Equation 7.8. This makes EDS and
discrete-space ITS conceptually equivalent, where the main difference is the way
intermediate states are introduced.
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7.2.6 Nonequilibrium Candidate Monte Carlo (NCMC)

Nonequilibrium candidate Monte Carlo (NCMC)64 is a sequential importance
sampling method for proposing coordinate transformations pprop(x⃗′ |⃗x) based on a
nonequilibrium MD kernel with time-dependent transformations in parameter space.
The underlying mixture distribution explored by NCMC is the same as for
λ-dynamics in the continuous case (Equation 7.7), or ST in the discrete case
(Equation 7.4), the latter of which is used in computational implementations, and we
are going to focus on it exclusively. However, in contrast to the previous methods,
where changes in parameter space are attempted successively, in NCMC one or more
predetermined sequences of λ⃗ states with intermittent coordinate decorrelation MD
kernels are instead sampled and accepted based on their relative probability of
occurring. Therefore, NCMC does not preserve the balance condition, since it does not
explore the whole ensemble of possible paths in the Markov chain of connected states,
but rather only a particular set of paths in the Markov chain.

The acceptance probability of a particular discrete trajectory consisting of a sequence
of M parameters Λ ≡ (⃗λi1 , ..., λ⃗iM) with corresponding coordinates X ≡ (x⃗i1 , ..., x⃗iM−1)

is then chosen to satisfy detailed balance:

pacc(Λ, X) = min

[
1,

wiM

wi1

pprop(Λ̃|⃗λiM)

pprop(Λ|⃗λi1)

π(⃗λi2 , x⃗i1)

π(⃗λi1 , x⃗i1)
...

π(⃗λiM , x⃗iM−1)

π(⃗λiM−1 , x⃗iM−1)

]
(7.9)

with Λ̃ ≡ (⃗λiM , ..., λ⃗i1) being the reversed parameter trajectory. It has been assumed in
Equation 7.9 that the decorrelated coordinates are proposed by a sequence of
distribution-preserving MD kernels, and the momenta are either flipped or resampled
from the stationary distribution after acceptance to preserve detailed balance. With
this acceptance criterion, only the stationary probability distributions at the protocol
endpoints π(⃗λi1 , x⃗) and π(⃗λiM , x⃗) are preserved, as opposed to the intermediate
distributions which are not sampled correctly (hence “nonequilibrium”). Similarly to
the previously discussed methods, Equation 7.9 clearly shows that the term inside the
min[·] function is proportional to the product of M− 1 importance sampling weights
and reduces to Equation 7.6 when M = 2. It can also be seen that only the
normalisation constants of the two endpoint distributions are needed, since the rest
cancel out. In the special case of a symmetric protocol Λ = Λ̃, these two normalisation
constants cancel out as well.

NCMC has been explored in various contexts, including ligand sampling,65,96 amino
acid side chain sampling,244,294 binding site water sampling113–115 and constant-pH
simulations.123,124
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7.2.7 Sequential Monte Carlo (SMC)

Sequential Monte Carlo (SMC) is another sequential importance sampling method,
which, unlike NCMC, is ensemble based, i.e. it realises multiple trajectories (walkers)
at the same time. Indeed, NCMC can be viewed as a single-walker special case of
SMC. The main difference is that SMC is not usually used as an MC proposal method,
but rather as a distribution approximation method using the ensemble of walkers.
This is done by assigning to the k-th walker a trajectory-dependent weight wk:

wk ∝
π(⃗λi2,k, x⃗i1,k)

π(⃗λi1,k, x⃗i1,k)
...

π(⃗λiM ,k, x⃗iM−1,k)

π(⃗λiM−1,k, x⃗iM−1,k)
(7.10)

As in NCMC, these total trajectory weights are simply proportional to the product of
M− 1 consecutive importance sampling weights. They can be afterwards used to
estimate weighted averages over the final distribution in the sequence π(⃗λiM , x⃗).

In contrast to NCMC, the simultaneous propagation of K walkers over parameter
space permits a special type of weight variance reduction, resulting in the most
commonly used variant of SMC: sequential importance resampling (SIR).295 In this
setting, the walkers are resampled proportionally to their weights after each
consecutive distribution, resulting in uniform final weights. In this way, SIR
automatically assigns more computational time to more probable trajectories.

In physics, SMC has been used to solve solid-state sampling problems,296,297 perform
nonequilibrium free energy calculations,298–300 facilitate polymer growing and protein
folding301–303 and explore peptide conformers.304,305 However, SMC-like algorithms
have been widely used in many other fields, such as statistics,306 meteorology,307

geology308 and robotics.309 SMC variants are known under many different names,
such as: particle filtering,310–312 population annealing,296,297,304,305 diffusion quantum
Monte Carlo (DQMC)313 and Rosenbluth sampling.314,315 The latter appears to be the
first published variant of SMC and one of the first enhanced sampling methods in the
literature.

7.3 Discussion

7.3.1 Critical Comparison between ST, ITS, λD and EDS

The methods outlined above are similar in many ways and this similarity will help us
determine the advantages and disadvantages of each one of them. For instance, let us
consider ST, ITS, λD and EDS. All of these methods involve single-replica simulations
over an expanded ensemble. As such, all of them need a way to determine the relative
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State exploration

Parameter space Consecutive Simultaneous

Discrete ST EDS
Continuous λD ITS

TABLE 7.1: Comparison between single-replica expanded ensemble methods.

normalisation constants between the different components of the distribution in order
to achieve good performance. The main differences lie in the presumed continuity of
parameter space and the way the expanded ensemble is explored (Table 7.1): ST and
EDS explore a discrete sum of underlying distributions, while λD and ITS perform
this exploration over a continuous space of parameters; similarly, ST and λD have a
well-defined value of the parameter at each snapshot of the simulation, while ITS and
EDS perform the integration over an effective potential energy, thereby being in
several states at the same time.

While continuous functions are easier to handle from a theoretical perspective, one
significant disadvantage of using them is the extra difficulty in analysing the resulting
distributions. Since one is often interested in a particular point in parameter space,
which recovers the target distribution of interest, the probability of this point being
observed is vanishingly small in the continuous setting. Therefore, approximate
histogram methods need to be used in practice for analysis. However, it is not obvious
what an appropriate choice for a bin size is: too many bins will result in higher
variance and lower bias in the number of samples per bin, while the opposite is true
for large bin sizes. This can also result in a lack of consistency and impact
reproducibility. For example, in the earlier λD publications any λ > 0.8 was assumed
to be equivalent to λ = 1,283–285,287 while a more recent publication has considered a
much more stringent discretisation cut-off—λ > 0.99.284 Although this inconsistency
can be alleviated in some applications by using generalised Rao-Blackwell estimators
coupled with a Gibbs-sampling approach in continuous λ⃗ space,285 none of these
issues and approximations are present when using discrete states and no extra
post-processing is needed on the resulting parameter distributions, since the
parameter discretisation is performed a priori, rather than a posteriori. As already
mentioned above, these deficiencies have been recognised in the computational
implementation of ITS243,281,282 and the recent changes to λD,286 both of which utilise
a discrete state space, much like ST and EDS.

An additional drawback of λD is the requirement for a suitable potential energy
function which results in dynamics, giving rise to the desired distribution in λ⃗ space.
It is not clear in advance what a good choice for such a function is and although
multi-layered adaptation procedures have been published to address this
problem,283,284 it remains difficult to engineer the motion in parameter space a priori.
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This is not the case when MC is instead used for sampling in parameter space, as in ST
or REMD.

This lack of control over the transitions in parameter space is also present in the
methods which sample from the whole mixture distribution using an effective
potential (ITS and EDS), since they do not utilise MC to achieve the sampling. An
advantage of this methodology, however, is the ability to include multiple
intermediates without slowing down the transitions in parameter space. In contrast,
MC-based methods (ST, REMD) decrease in efficiency at least linearly with respect to
the number of intermediate states.316,317 Although this can be alleviated by attempting
non-neighbour transitions,262 EDS and ITS achieve this behaviour automatically
without any extra modifications.

A more significant disadvantage of ITS and EDS is the need to compute the
contributions from each one of the underlying distributions, even if these
contributions are negligible. This results in a linearly increasing cost in force
computation with respect to the number of underlying distributions. To mitigate this,
one needs to use specific types of parameter schedules which can decrease this
complexity.282,292 However, this also means that these methods are practically less
generally applicable than the single-state approaches of ST and λD. This consideration
is particularly relevant for alchemical perturbations, where nonlinear soft-core
potentials are routinely used and simple linear schedules are rarely feasible.

A unique feature of EDS which circumvents the above issue is the lack of alchemical
intermediates in the mixture distribution, instead replacing them with a scaling factor
s. However, in most practical cases, this does not remove the need for intermediate
states, but rather changes the way they are defined. This approach is advantageous
when exploring multiple simultaneous alchemical perturbations, where instead of a
vector of alchemical parameters λ⃗, there is only one control parameter s. However, a
disadvantage of mapping all of the λ⃗ parameters onto a single one is the different
sensitivity of each of them to s. The unevenly distributed kinetic barriers in λ⃗ space
can therefore decrease the utility of this mapping.

A first conclusion of this chapter is therefore that ST with a sufficient number of
intermediate states is likely to be more advantageous for sampling based on
alchemical changes compared to λD, ITS and EDS, due to the discrete nature of its
parameter space and its lack of need for effective potential energy functions which
limit the use of soft-core potentials. However, an efficient ST algorithm still requires a
suitable definition of its underlying states and proposal probabilities in order to
surpass the other three methods in the alchemical setting. In the next section, we will
concentrate on ST and compare it to the rest of the methods outlined in this chapter.
Nevertheless, many of the following considerations for ST apply to λD, EDS and ITS
as well.
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No. importance sampling iterations

No. replicas/walkers One Multiple

One ST NCMC
Multiple REMD SMC
TABLE 7.2: Comparison between tempering methods.

7.3.2 Critical Comparison between REMD, ST, NCMC and SMC

While REMD, ST, NCMC and SMC are at first glance four significantly different
methods, these differences can be essentially summarised by only two key decisions
made in these algorithms: how many replicas of the procedure are run in parallel, and
how many consecutive importance sampling iterations are performed before a
proposal (Table 7.2). Here the merits and the implications of each one of these choices
are discussed.

The number of consecutive importance sampling iterations is the most significant
difference between the above methods. We can distinguish between single-step
importance sampling methods (REMD and ST) and sequential importance sampling
methods (NCMC and SMC). While the former two methods always sample at
equilibrium, the latter two approaches only explore a particular path in the expanded
ensemble Markov chain, making them inherently nonequilibrium in nature.
Consequently, sequential importance sampling methods are expected to perform
comparatively better to the other methods when there are kinetic traps in parameter
space arising from unfavourable intermediate states. This is due to the larger expected
value of the acceptance criterion for that particular path, stemming from the
nonlinearity of the min[·] function:

min

[
1,

π(⃗λi2 ,⃗xi1 )

π(⃗λi1 ,⃗xi1 )

]
... min

[
1,

π(⃗λiM ,⃗xiM−1 )

π(⃗λiM−1 ,⃗xiM−1 )

]
≤ min

[
1,

π(⃗λi2 ,⃗xi1 )

π(⃗λi1 ,⃗xi1 )
...

π(⃗λiM ,⃗xiM−1 )

π(⃗λiM−1 ,⃗xiM−1 )

]
(7.11)

However, it is evident that the expectation value of the acceptance criterion still
decreases exponentially quickly with respect to the number of required intermediate
states. This can be straightforwardly verified in the special case of the importance
sampling weights being log-normally distributed (Appendix C). Since the average
amount of computational time required to accept a proposal is proportional to 1

⟨pacc⟩ ,
this means that the efficiency of NCMC and SMC decreases exponentially with the
number of intermediate states. While in SMC this is partially alleviated by
resampling, no such procedure is possible for NCMC, making it the most sensitive
method on this list to decreasing endpoint distribution overlap. This sensitivity is
particularly pronounced in dense explicit-solvent systems, such as the ones simulated
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in biomolecular studies.294 In contrast, the relaxation times of the Markov chains
explored by REMD and ST are known to scale in the range between O(N)316,317 and
O(N2),318 depending on the Markov chain used, making single-step importance
sampling methods much more favourable for exploring a large number of states.

Another disadvantage of sequential importance sampling methods is the fact that
rejection (NCMC) or weight degeneracy/pruning (SMC) of unfavourable trajectories
is irreversible, meaning that any computational effort invested towards these
proposals is effectively wasted to no sampling benefit. In contrast, REMD and ST use
all of the available computational time for time-dependent dynamics and there are no
rejected states. Since local sampling without enhancement using MD is still more
desirable than no sampling, this means that the sequential importance sampling
methods could in practice prove less efficient than MD depending on the nature of the
system and the way the parameter space is defined.244,319 This problem is particularly
evident when determining the number of MD steps needed for coordinate
decorrelation, since too low a number of steps results in insufficient relaxation and
thus poor acceptance rate, while too many steps reduce the efficiency of the
algorithm.319 This means that sequential importance sampling methods require
careful parameter tuning, whose optimal values are not known a priori. In contrast,
using short coordinate decorrelation times with single-step importance sampling
methods is always more beneficial for mixing320 and is in practice only limited by the
speed of the energy evaluation (usually much faster than force evaluation) and the
algorithm implementation details.

While sequential importance sampling methods appear to be significantly less
efficient for sampling in the general case compared to the single-step importance
sampling methods, there are still merits to using them. For instance, NCMC only
needs the normalisation constants for the endpoint distributions, meaning that no free
energy estimation is needed for the intermediate states. This is particularly useful in
e.g. constant-pH123 calculations, where the pH of the intermediate states is not a
well-defined quantity and partitioning the pH-dependent sequential importance
sampling acceptance criterion into multiple single-step importance sampling steps is
not trivial and could result in decreased efficiency (c.f. Equation 7.11).

Another potential advantage of NCMC emerges in the commonly used special case of
a symmetric protocol with the initial and final distributions being the same, leading to
their normalisation constants cancelling out in the acceptance criterion. In this case, if
a rare event occurring on a longer timescale than the switching time is observed, this
can lead to an effective shift in all intermediate distributions and their corresponding
free energy values. While such a transition could greatly reduce the round-trip rate of
both ST and REMD, the forward and the reverse NCMC protocols would sample from
the same minimum, thereby decreasing the variance of the trajectory weight.
Nevertheless, NCMC has not yet been applied to such a scenario in the literature.
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The other main difference between the four methods is how many parallel
replicas/walkers are used. While ST and NCMC only require a single replica, REMD
and SMC are based on multiple replicas. An advantage of the latter two methods is
therefore that they are readily parallelisable on e.g. CPU clusters, while the former
two methods benefit less from parallelism. However, a significant disadvantage of
multiple-replica methods is the fact that the simulation time dedicated to a single
replica decreases proportionally to the number of replicas. Since multi-replica
simulations are in practice initialised from a common starting structure, this means
that they are inherently more biased compared to single-replica methods, due to the
decreased decorrelation with respect to their initial coordinates. Indeed, this was
already demonstrated in Chapter 5, where it was shown that multiple short
simulations can result in free energy estimates significantly biased to the starting
structure.

In this regard, ST appears more desirable than REMD. Indeed, it is well-known that ST
is more efficient than REMD at exploring the same Markov chain.321,322 A drawback of
ST, however, is the need for adaptive free energy estimation of each of the
intermediate states. This means that ST is only more efficient than REMD if it operates
in the optimal setting, which is in practice unknown a priori.

Although adaptive free energy estimations can be reliably integrated into ST, as
already discussed, the most significant weakness of all tempering methods is the lack
of prior knowledge of a suitable λ⃗ protocol. This is especially detrimental for ST, since
it is not guaranteed to sample all of its underlying distributions uniformly at finite
timescales, even with adaptive weights, meaning that kinetic barriers in λ⃗ space can
make this non-uniformity even more severe. In contrast, REMD always outputs a
predetermined number of samples, even if no sampling enhancement has been
achieved. This makes REMD a more reliable method if a suboptimal parameter
protocol is used.

Adaptively determining an optimal parameter protocol is therefore a highly desirable
task and has been the focus of many studies, mostly concentrated on REMD.317,323–328

Nevertheless, protocol optimisation is inherently more limited in the case of REMD,
since the number of intermediate states cannot be changed without any loss of sample
diversity. For example, if the number of intermediates is reduced by the optimisation
algorithm, one needs to irreversibly remove one replica from the simulation. On the
other hand, if an extra intermediate is introduced, it needs to be initialised from one of
the other intermediates, leading to correlated structures. In contrast, ST does not
suffer from this difficulty, since only one state is explored at a time and all other states
can be optimised without any drawbacks. Despite the more natural integration of
adaptive algorithms with ST and their higher impact on its performance relative to
REMD, they have been underexplored in the literature and will therefore be the main
focus of Chapters 9 and 10.
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Depending on the optimisation procedure, it is often advantageous to have a
relatively efficient protocol as a starting point before optimisation. In all of the
tempering methods discussed above, these need to be manually selected by the
researcher beforehand. This can in turn lead to a decrease in efficiency and
reproducibility and it is much more desirable to have a method which generates such
a protocol without any prior knowledge. SMC is unique in this regard, because it is
the only method on this list which can sequentially generate these protocols in a
black-box manner, based on distribution-independent overlap metrics (discussed in
more detail in Chapter 8). Therefore, while not as efficient at sampling as the
single-step importance sampling methods, SMC is ideal for initialising any of the
other tempering methods without any prior system knowledge. These can then be
refined by on-the-fly optimisation algorithms.

The second conclusion of this chapter is that, in contrast to REMD, SMC and NCMC,
ST can significantly decrease the initial-structure bias of molecular simulations with
no loss of sampling time, while exhibiting a complexity of at most O(N2) with respect
to the number of intermediate states. This makes it a potentially highly desirable
method to use in enhanced sampling and free energy calculations. However, an
appropriate protocol optimisation procedure needs to be developed to ensure its
robustness and competitiveness with REMD. In the following chapters, this will be
done in a two-step manner, where an initial exploratory SMC procedure generates an
appropriate initial guess (Chapter 8), which is subsequently refined over time
(Chapter 9). In this way, the number of parameters set by the scientist is substantially
decreased, thereby resulting in robust automatable enhanced sampling (Chapter 9)
and free energy calculation (Chapter 10) workflows.
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Chapter 8

Enhanced Ligand Sampling by
Adaptive Alchemical Sequential
Monte Carlo

8.1 Introduction

As discussed in Chapter 7, sequential Monte Carlo (SMC) is the most suitable
tempering method for performing exploratory simulations, mainly due to its directed
ensemble approach. In particular, the adaptive tempered version of SMC was recently
shown to be efficient at exploring peptide conformations using molecular force field
models.304,305 In this chapter, we will extend this methodology to an alchemical
setting, where instead of uniformly increasing the temperature of the whole system, a
small subset of the molecular interactions will be completely decoupled instead. This
approach is particularly suitable for exploring specific molecular degrees of freedom
of interest and has been utilised in other methods, such as Hamiltonian replica
exchange (H-REMD)263,329 and nonequilibrium candidate Monte Carlo (NCMC).64,65

In the next section, one of the most popular SMC algorithms—sequential importance
resampling (SIR)295—will first be presented in more detail, before extending it to the
context of adaptive alchemical sampling and testing it on a variety of examples.

8.2 Fundamentals of SIR

The fundamental assumption behind SIR is that one starts from a distribution which is
trivial to sample from (e.g. a uniform distribution). In most practical examples, where
the distributions have many correlated dimensions, this is not possible and the initial
distribution is chosen so that transitions between a subset of the modes are more likely
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FIGURE 8.1: The three stages of each SIR iteration: sampling, reweighting and resam-
pling. Each unique walker is shown with a different colour and the size of the walker
represents its weight. Here π(0, x⃗) and π(1, x⃗) represent the initial and final distribu-

tions, respectively.

than in the distribution of interest. Afterwards, a population of samples is propagated
over a number of intermediate distributions which connect the initial distribution to
the final distribution of interest.

The main focus of this chapter are Boltzmann-like distributions of the form:

π(λ, x⃗) = e−u(λ,⃗x)+ f (λ) (8.1)

where x⃗ are the system coordinates; λ is an adjustable parameter, such that 0 ≤ λ ≤ 1;
u(λ, x⃗) is the dimensionless potential energy of the system, which can also contain
extra terms, such as a pressure-volume term in the case of an isothermal-isobaric
ensemble; and f (λ) is the dimensionless free energy which normalises the
distribution. The coupling parameter λ is defined to be 0 at the initial distribution and
1 at the final distribution of interest.

Each SIR iteration consists of three steps (Figure 8.1): sampling, reweighting and
resampling. Any valid samplers can be used in the first step, such as Markov chain
Monte Carlo (MCMC) or Langevin molecular dynamics (MD), to generate a
population of N locally decorrelated samples (walkers). The second step determines
the relative transition probability of the j-th walker p(λi+1|λi, x⃗j) between the current
distribution π(λi, x⃗) and the next distribution in the sequence π(λi+1, x⃗),
0 ≤ λi < λi+1 ≤ 1. These relative transition probabilities are normalised and
converted into importance sampling weights wj(λi+1|λi), which are then assigned to
each walker:
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p(λi+1|λi, x⃗j) ∝
π(λi+1, x⃗j)

π(λi, x⃗j)
=

eu(λi ,⃗xj)−u(λi+1 ,⃗xj)

∑N
j=1 eu(λi ,⃗xj)−u(λi+1 ,⃗xj)

≡ wj(λi+1|λi) (8.2)

The final step of an SIR iteration consists of weighted resampling with replacement
based on these weights to generate a new set of equally-weighted N walkers. This
results in the high-weight walkers being copied multiple times and the low-weight
walkers being annihilated. This three-step procedure is then repeated for each
consecutive distribution until the final distribution has been reached.

One can readily see what sets SIR apart from other enhanced sampling methods: the
“survival of the fittest” approach combined with the lack of reversibility, and the fact
that the method does not satisfy the rather restrictive detailed balance condition, mean
that SIR only explores the best paths and that one can “peek into the future” and
adapt the hyperparameters of the method based on this knowledge. This
notwithstanding, SIR satisfies a more general stationarity condition, balance,330 and is
known to be completely rigorous in terms of preserving the target distribution π(1, x⃗)
in the limit of infinite walkers and infinite sampling at π(0, x⃗).331

It can be shown that the expectation value of the unnormalised weights
w̃j(λi+1|λi) ≡ eu(λi ,⃗xj)−u(λi+1 ,⃗xj) of the samples generated from π(λi, x⃗) is an unbiased
estimator of the partition function ratio Z(λi+1)

Z(λi)
= e f (λi)− f (λi+1) (Zwanzig equation12).

This means that Z(1)
Z(0) can also be estimated in an unbiased way from the products of

the consecutive expectation values of the unnormalised weights. If one is interested in
obtaining unbiased expectation values over separate SIR runs, then the final samples

from each run need to be reweighted by the total estimated Ẑ(1)
Z(0) for this run,332 which

can be interpreted as the collective relative weight of the final samples. In effect, the
samples are weighted by their free energies, as reflected in the partition function ratio.
In this case, the unbiased expectation value ⟨O⟩ of an observable O over K
independent SIR simulations each having M walkers is:

⟨O⟩ =
∑K

k=1
Ẑ(1)
Z(0) k

1
M ∑M

i=1 Oik

∑K
k=1

Ẑ(1)
Z(0) k

(8.3)

where Oik is the observable evaluated on the i-th walker in the k-th simulation and
Ẑ(1)
Z(0) k

is the estimated collective walker weight of the k-th simulation.

It is known that this sample reweighting procedure is not in general unbiased for
adaptive SIR, where the strides in λ space depend on the weights at each step.333

Although this condition can be circumvented by running adaptive SIR once and using
the derived protocol for all consecutive repeats,334 this approach is not practical for
running simulation repeats in parallel, and in this study we will apply the reweighting
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procedure during analysis regardless and demonstrate its sufficient precision in a
wide range of test cases.

8.3 Adaptive Alchemical Sequential Monte Carlo

This section highlights some important considerations about performing SMC on a
protein-ligand system, as well as several changes to the base method. Some of these
modifications allow us to substitute the system-dependent hyperparameters (e.g. the
exact sequence of optimal intermediate distributions) with system-independent
hyperparameters (e.g. adaptively choosing the intermediate distributions based on
constant distribution overlap). Here and henceforth, the method presented in this
work will be referred to as adaptive alchemical sequential Monte Carlo (AASMC).

8.3.1 Alchemical Perturbation versus Tempering

Enhancing sampling in temperature space is valuable when one wants to treat all
degrees of freedom equally. However, this approach becomes less feasible for large
systems and enhancing specific degrees of freedom is often more desirable whenever
possible. In this work we consider systems where some degrees of freedom are of
greater interest than others. For example, when calculating solvation or protein-ligand
binding free energies, the small molecule rotamers are expected to influence the result
more than any other degrees of freedom. Therefore, the molecular torsions together
with centre-of-mass (COM) translation and rotation constitute arguably the most
important degrees of freedom for most small molecules. These are also the degrees of
freedom which have multiple minima, often separated by high-energy barriers.

In these cases, one can use an alchemical approach with a coupling parameter λ,
where λ = 0 denotes all relevant interactions turned off, and λ = 1 represents the
target potential energy function of the system (Figure 8.2). In this regime, one can
readily use any knowledge from the alchemical free energy (AFE) literature. Most
notably, an often employed method for deriving the functional form of the
intermediate distributions is to introduce a soft-core potential,44 which disposes of
certain singularities in the potential energy function, thereby improving the statistical
efficiency of any estimators dependent on the intermediate λ states. This will be
invaluable for the systems discussed later, allowing us to make high-energy insertions
and rotations without much of a performance penalty.

There are two common ways to turn on the potential energy interactions: the first is to
use the soft-core potential only on the Lennard-Jones (LJ) part of the perturbation,
followed by a linear coupling of the electrostatics (“split” protocol); the second
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FIGURE 8.2: Exploring conformational degrees of freedom with SMC using an al-
chemical parameter λ. At λ = 0, all of the nonbonded interactions involving the
3-aminophenyl group are fully decoupled and the distribution of the torsional angle
is uniform. At λ = 0.5, the 3-aminophenyl group is partially coupled and at λ = 1 it

is fully interacting, in both cases resulting in two main modes/states.

method involves concurrent introduction of all relevant potential terms (“unified
protocol”), meaning that a soft-core functional form needs to be used for both LJ and
electrostatic interactions. It is expected that a unified protocol is generally less
desirable due to the presence of soft-core electrostatic terms, meaning that
overlapping positive and negative charges are highly energetically favourable and
such unphysical structures can dominate the sampling. On the other hand, the split
protocol is expected to produce structures biased towards steric favourability, since
most of the resampling is expected to take place before introducing the electrostatics.
In this work we will explore and evaluate both protocols.

8.3.2 Adaptively Determining λi+1

One can use the knowledge obtained from the distribution of the transition probability
weights to assess the quality of configurational space overlap between the current
distribution π(λi, x⃗) and the next distribution in the sequence π(λi+1, x⃗). In general,
one can use any measure of distribution overlap to achieve this. In the SMC literature,
an overwhelmingly popular metric is the effective sample size (ESS) estimator RESS:335

RESS(λi+1|λi) =
1

∑N
j=1 wj(λi+1|λi)2

(8.4)
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A general problem with most overlap metrics is the difficulty in defining what value
range can be considered “good”. Although ESS-based measures can be interpreted
intuitively more readily than other measures, it has been suggested336 that RESS is not
necessarily a reliable estimator for the true ESS and should only be seen as a rough
heuristic. Instead, one can use a much more conservative measure Rmin, which acts as
a lower bound for the true ESS:336

Rmin =
1

max[w1(λi+1|λi), ..., wN(λi+1|λi)]
(8.5)

After defining the desired system-independent value of this measure, one can
iteratively305,333,337 determine the next value in the sequence (λi+1) which results in an
overlap metric closest to this threshold with a basic root finding algorithm, such as
bisection. Although each iteration of this adaptive algorithm requires energy
evaluations of each walker, they are in practice much faster to perform than
generating new samples using dynamics, and the speed of this step will likely be
limited by the computational implementation.

The utility of adaptively determining the λ protocol in this way is the guaranteed
constant overlap between sequential distributions and the independence of the
resulting protocol on the nature of the distributions. Furthermore, if one uses the same
overlap metric and value, more dissimilar initial and final distributions will
automatically result in a higher number of intermediate distributions without any
additional system-specific input.

8.3.3 Adaptively Determining Optimal Sampling Time

An overwhelmingly common way to generate new configurations in biomolecular
simulations is MD. This method will be very useful for generating locally decorrelated
samples at each λ value. However, the decorrelation time is typically dependent on
the system and the nature of the alchemical perturbation. Although it is common
practice to choose a value between 1 and 10 ps to achieve local decorrelation, making
this step adaptive as well could help maintain the balance between obtaining valid
locally decorrelated samples independent of the system and spending as little
computational effort as possible.

Since in our typical systems of interest the equilibrium probability of observing a
particular configuration x⃗j at some λ is solely a function of u(λ, x⃗j), a natural way to
measure sample decorrelation is to measure the Pearson correlation coefficient rτ

between the potential energies of all initial walkers (u(λ, x⃗j,0); j = 1, ..., N) and the
walkers decorrelated for τ units (u(λ, x⃗j,τ); j = 1, ..., N). Afterwards, the sampling step
can only be terminated if rτ is within some acceptable range,337 e.g. |rτ| ≤ 0.1. In
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practice this step also requires an energy evaluation for every walker and a
conceivable implementation could for instance involve evaluating these energies
every 1 ps, so as to minimise computational overhead.

8.3.4 Sampling at λ = 0

SMC only converges to the correct distribution at λ = 1 if the initial distribution at
λ = 0 has been sampled exhaustively. In a protein-ligand system, this means running
long-timescale protein dynamics—a task, which itself often requires other
sophisticated enhanced sampling methods to produce satisfactory results. An
additional problem is the fact that a very small fraction of the generated structures at
λ = 0 will typically be relevant at λ = 1, due to diminishing phase space overlap. In
this work, we will not be concerned with long-timescale dynamics and we will instead
explore ligand conformers from a limited set of locally decorrelated equilibrated
starting structures. The aim behind this approximation is being able to quickly
estimate equilibrium populations biased to the initial structure either as a qualitative
tool or as a way to provide information to more expensive methods, such as AFE
calculations. Moving beyond this approximation requires a more sophisticated SMC
algorithm which can achieve adequate sampling over time and is thus beyond the
scope of this work.

Since this initial stage of SIR is the only checkpoint which generates sample diversity,
it is important to take advantage of this. In the test cases we are going to consider,
there are three types of sampling moves, for which we know the underlying
distribution: torsional rotation, COM rotation, and translation. In all of these cases, we
can generate samples typically 1–2 orders of magnitude more than our desired
number of walkers, due to the fact that all translational and rotational distributions of
the noninteracting atoms in these cases are uniform and therefore trivial to sample.

8.3.4.1 Torsional Rotation

If one removes all nonbonded interactions from at least one side of the torsional bond
along with all dihedral terms centred around it, then the initial distribution with
respect to the dihedral angle ϕ is uniform and one can generate configurations by
simply drawing random numbers between 0 and 2π. One can use any valid sampling
method to achieve this and in this work we opt for a low-discrepancy alternative to
pseudo-random number generation, which consists of generating equally-spaced
samples between 0 and 2π with a pseudo-randomly generated offset. In this way, we
can be more certain in the representativeness and quality of our samples.
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8.3.4.2 COM Rotation

COM rotation requires all nonbonded interactions between the molecule and the
environment to be turned off and it needs three degrees of freedom to be defined: two
spherical coordinate angles on the unit sphere, defining the axis of rotation (θ and ϕ)
and the amount of rotation ψ around that axis. To generate uniform rotations on the
unit sphere, both ϕ and ψ need to be uniformly distributed between 0 and 2π, while
θ = arccos(2X− 1) for a uniformly distributed variable X ∈ [0, 1). As in the previous
example, one can use different sampling methods to generate the uniformly
distributed variables and although one can couple the different degrees of freedom to
reduce the multidimensional sample discrepancy (i.e. sample “clumping”), in this
study we opt for shuffled one-dimensional grid-based samples with a pseudo-random
offset for each degree of freedom. Further research will be needed to test alternative
low-discrepancy sampling methods for COM rotation.

8.3.4.3 COM Translation

Much like COM rotation, COM translation requires the molecule of interest to be
decoupled from its environment. The simplest case is COM translation within a
cuboidal region, in which case only three uniformly distributed random numbers
between -1 and 1 are needed to define the new reduced coordinates, which can be then
scaled to the dimensions of the region of interest. Alternatively, one can uniformly
generate points within a sphere with radius R. To achieve this, we can generate the
spherical angles θ and ϕ in the same way as in the previous section, while the radius
can be expressed as r = 3

√
X for a uniformly distributed variable X ∈ [0, 1). Final

scaling by R results in uniform spherical sampling. Similar considerations about
low-discrepancy sampling apply here and we again opt for the same routine for
uniform sample generation as in the previous section.

8.3.4.4 Coupled Moves

Since in all of our examples we generate random samples for each degree of freedom
independently of the others, this procedure is readily extendable to multiple degrees
of freedom. However, the presence of more than a few degrees of freedom can quickly
lead to a combinatorial explosion, thereby reducing sampling efficiency, and in this
case one should consider multidimensional low-discrepancy sampling alternatives.
However, this approach is beyond the scope of this work and we will not be utilising
it.
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Algorithm 1 AASMC

1: Input
2: x⃗0 initial system coordinates
3: N number of walkers
4: rτ,target target decorrelation metric
5: Rtarget target resampling metric

6: Output
7: (x⃗1,..., x⃗N) the walker coordinates at λ = 1
8: procedure AASMC(⃗x0, N, rτ,target, Rtarget)
9: λ = 0 ▷ decouple relevant interactions

10: (x⃗1,..., x⃗N)← Equilibrate(⃗x0) ▷ spawn N walkers
11: (x⃗1,..., x⃗N)← GenerateConformers((x⃗1,..., x⃗N)) ▷ as in Section 8.3.4
12: while λ < 1 do
13: (x⃗1,0,..., x⃗N,0)← (x⃗1,..., x⃗N) ▷ store initial coordinates
14: rτ = 1 ▷ initial decorrelation metric value
15: while rτ > rτ,target do
16: (x⃗1,..., x⃗N)← Sample((x⃗1,..., x⃗N), λ, τ) ▷ τ is the sampling time
17: rτ ← DecorrelationMetric((⃗x1,0,..., x⃗N,0), (⃗x1,..., x⃗N)) ▷ as in Section 8.3.3
18: R = 0 ▷ initial resampling metric value
19: while |R− Rtarget| > ϵ do ▷ ϵ determines the precision
20: λnext ← ProposeLambda() ▷ using bisection, starting from λ = 1
21: w⃗← Reweight(λnext, λ,(⃗x1,..., x⃗N)) ▷ as in Equation 8.2
22: R← ResamplingMetric(w⃗) ▷ as in Section 8.3.2
23: λ← λnext
24: (x⃗1,..., x⃗N)← Resample((x⃗1,..., x⃗N), w⃗) ▷ as in Section 8.3.5

return (x⃗1,..., x⃗N)

8.3.5 Using a Conservative Resampling Method

One drawback of SIR is that any loss of walker diversity is irreversible and in many
cases all of the final samples can be traced to just a few initial samples.338 It is
important, therefore, to minimise unnecessary diversity loss during the resampling
step.

The most obvious way to perform weighted resampling is multinomial resampling
with replacement. In this case one draws each new walker independently from the
others. This is problematic, since there is always a finite, albeit small, probability that
the same sample will be resampled in all cases, resulting in sampling that is
potentially not representative of the true weights.

More conservative resampling methods have been proposed, the most deterministic
and widely used of which being systematic resampling.312 In this case, it is
guaranteed that the number of new samples corresponding to each weight wj(λi+1|λi)

(derived from Equation 8.2) is between the rounded down and and the rounded up
fractional number of walkers Mwj(λi+1|λi), where M is the number of walkers in the
next iteration. For example, if the normalised weight of a particular walker is
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determined to be 0.27 and the total number of walkers in the next iteration is 10, then
the fractional number of copies allotted to this walker is 2.7, meaning that systematic
resampling will have a 70% probability of copying this walker three times and 30%
probability of copying it twice. Because of this certainty, systematic resampling is
highly reliable and will be the algorithm of choice in this study.

8.3.6 An AASMC Workflow in Practice

The first step in describing the problem of interest is identifying the relevant degrees
of freedom to be explored, which in turn define a set of interactions to be decoupled at
λ = 0. One then supplies an initial structure, the desired number of walkers, as well as
target values for the correlation and decorrelation metrics to the procedure, resulting
in an ensemble of structures generated at λ = 1 (Algorithm 1). While the choice of
these hyperparameters is somewhat arbitrary and dependent on the available
computational resources, they can be used on a variety of systems and this is the
approach which will be taken in this work.

8.4 Methods

8.4.1 System Setup and Simulation

All of the following AASMC simulations have been run using OpenMM 7.4.2,233

OpenMMTools339 0.19.0 and OpenMMSLICER 1.0.0, a plugin for OpenMM developed
during the course of this study. All proteins were protonated with PDB2PQR185 and
subsequently parametrised with the ff14SB25 protein force field. GAFF227 with
AM1-BCC charges29,30 was used for all small molecules. All systems were solvated in
cubic boxes of TIP3P31 water with a length of 3 nm for the solvated ligand systems or
7 nm for the protein-ligand systems. Each system was run independently in 6
replicates from the same initial coordinates. Each run consisted of an initial
minimisation, followed by 100 ps of equilibration at λ = 0 before the AASMC run.
During this equilibration, all protein backbone atoms were harmonically restrained
with force constants of 5 kcal/mol/Å2. 500 walkers were used for each replicate with
100 initial conformers generated per walker, where all rotatable bonds between
alchemical atoms were rotated in addition to the main alchemical moves. An energy
decorrelation condition of |rτ,target| ≤ 0.1 alongside a minimum relative
configurational space overlap of Rmin,target

Nwalkers
≥ 1

5 was consistently used throughout the
simulations. These values were arbitrarily chosen with the goal of providing a
reasonable balance between computational cost and sampling quality. Systematic
resampling was performed in all cases and all velocities were resampled from the
Maxwell-Boltzmann distribution after each iteration.
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All short-range nonbonded interactions had a cut-off of 1.2 nm, while long-range
electrostatics were calculated with particle mesh Ewald (PME).37 A BAOAB59

Langevin integrator at 298 K with a 2 fs timestep and a collision rate of 1 ps-1 was
used, where all water molecules were constrained using the SETTLE53 algorithm and
all other bonds containing hydrogen atoms were constrained with the SHAKE50 and
CCMA52 algorithms. A Monte Carlo barostat was used for pressure control at 1 atm
with rescaling attempts every 50 fs. LJ and electrostatic interactions were either
switched on simultaneously (unified protocol), or consecutively from λ = 0 to λ = 0.8
and from λ = 0.8 to λ = 1, respectively (split protocol). A soft-core potential was used
for the LJ interactions in both cases and for the electrostatics during the unified
protocol with α = 0.5, using the following functional form:

rij,e f f = (α(1− λ)σ6
ij + r6

ij)
1
6 (sterics)

rij,e f f = (α(1− λ)σ2
ij + r2

ij)
1
2 (electrostatics)

(8.6)

where all inter-atom distances rij in the potential energy terms involving alchemically
modified atoms are replaced with rij,e f f in the potential energy function and σij is the
“particle size” parameter defined by the LJ potential for the ij-th particle pair. In all
cases nonbonded interactions were completely annihilated, rather than decoupled
from the environment at λ = 0.

AASMC was then validated against established methods in one of two ways. The first
approach involved a H-REMD simulation in λ space between 0 and 1 with multiple
intermediates defined similarly to AASMC. The resulting conformational populations
were afterwards obtained from the averaged samples at λ = 1. The second approach
involved AFE calculations, which were only performed when there were only two
expected rotamers separated by a high kinetic barrier. In this setting, two separate
perturbations were performed in a single-topology fashion from both initial
conformations, where the only difference was the rotation of the relevant torsion by
180 degrees, to the nearest common physical intermediate (i.e. to propene in the case
of butene and to a phenyl group in place of a substituted phenyl group). The
corresponding dihedral terms were not scaled during the AFE calculations, so that no
unwanted transitions between the rotamers of interest would be observed. The
population ratio between both rotamers pstate1

pstate2
was then calculated using the formula

kBT ln pstate1
pstate2

= ∆G−◦state1→intermediate − ∆G−◦state2→intermediate.

Both AFE and Hamiltonian replica exchange (H-REMD) calculations were performed
in sextuplicate in GROMACS38 2018.4, patched with PLUMED340 2.4.3 using
ProtoCaller 1.1 (Chapter 4) from the same initial structures as those used for the
AASMC runs (and in the case of AFE, the relevant manually generated rotameric
states). In all cases, the alchemically decoupled groups in the H-REMD simulations
were the same as those in the AASMC simulations. The only exception were the
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T4-lysozyme/3,5-difluoroaniline simulations, where a single ligand carbon atom
remained coupled at λ = 0 to prevent diffusion away from the (closed) binding site
without the need of extra restraint potentials. In some cases several batches of
H-REMD simulations were run from different starting conformations to investigate
initial structure biasing. These will be indicated later in the text.

The split alchemical protocol was used during both AFE and H-REMD calculations,
with 30 initial λ windows used for co-perturbing the soft-core sterics and the bonded
interactions, and 10 subsequent windows for the electrostatics. All λ values were
equally spaced to two significant figures, except for the initial values, which were
more closely spaced in an attempt to increase phase space overlap: 0.001, 0.01, 0.02,
0.03 and 0.05. The Bennett acceptance ratio (BAR)13 was used for free energy analysis
with snapshots every 5 ps.

The AFE protocol involved an initial 25,000-step steepest descent minimisation,
followed by a 50 ps NVT equilibration and a 50 ps NPT equilibration before a 4 ns
NPT production. The Berendsen barostat54 was used for equilibration in all cases,
while the Parrinello-Rahman barostat was used for the production runs.60 The LINCS
algorithm51 was used to constrain the non-water hydrogen atoms during both stages,
while the rest of the simulation settings matched the ones from the AASMC runs. In
the H-REMD simulations, the above equilibration schedule was only performed at
λ = 1 and the resulting volume was fixed for all replicas. This was followed by an
additional minimisation and equilibration only in the NVT ensemble and subsequent
4 ns simulations at constant volume. During both H-REMD equilibration and
production, adjacent replica swaps were attempted every 1 ps.

8.4.2 Analysis

All of the measured populations in this study were weighted by the estimated

partition function ratio Ẑ(1)
Z(0) for the relevant simulation, as previously described in

Equation 8.3. These were used to report weighted averages and weighted sample
standard deviations. On the other hand, the estimated dimensionless free energies
and the simulation times have been reported as unweighted averages with
unweighted standard deviations in the main text.

To appropriately analyse the relevant kinetically separated states, clustering on the
degrees of freedom of interest was performed. In most cases, this was achieved using
manually defined cluster boundaries determined from the observed multimodal
distributions of the angle of interest. The only exception is the ligand common core
clustering analysis performed for TGF-β, where all trajectories at λ = 1 from the
AASMC and H-REMD simulations were pooled together and aligned against the
protein backbone α-carbon atoms of the initial structure using MDTraj236 and
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MDAnalysis.341,342 Afterwards, the three Euler angles providing the best alignment of
the common core ligand atoms against their initial coordinates were calculated using
the align vectors routine implemented in SciPy.343 The sines and cosines of these
three Euler angles (six degrees of freedom in total) were used to perform
agglomerative clustering with default settings, as implemented in scikit-learn.238 This
analysis resulted in two clusters, whose populations will be reported later in the text
alongside two representative structures corresponding to each cluster.

Where applicable, the number of round trips of the H-REMD simulations have been
reported. These have been calculated as the total number of round trips of all replicas,
where a round trip denotes the transition from λ = 1 to λ = 0 and back of a single
replica.

8.5 Results

8.5.1 Butene in Water

One of the simplest systems involving a high kinetic barrier is the cis-trans
isomerisation of butene solvated in water (Figure 8.3). Although not of significant
practical interest, this test case is a good demonstration of AASMC’s capabilities in an
ideal setting. To explore this kinetic barrier, all atoms on one side of the double bond,
together with all corresponding dihedral terms, were decoupled from their
environment at λ = 0. This enabled us to directly sample this dihedral angle from the
uniform distribution at λ = 0.

The results from AASMC using both the unified and the split protocols are presented
in Figure 8.3e. Both protocols compare favourably to the converged 160 ns AFE results
(70%± 0% trans) with the split protocol resulting in 71%± 5% and the unified
protocol yielding an average of 74%± 5%. In addition, both protocols result in similar
performance, with 16± 1 ns total computational for the adaptive split protocol and
15± 1 ns for the adaptive unified protocol. Finally, both protocols result in
comparable standard deviations of − ln Z1

Z0
(here and henceforth referred to as

“dimensionless free energy”) with values of 4.79± 0.28 and 4.89± 0.15, for the split
and the unified protocol respectively, indicating good convergence in both cases.

8.5.2 Terphenyl in Water

A much more challenging test case with an insurmountable kinetic barrier is the
terphenyl derivative shown in Figure 8.3. It is expected that only alchemical methods
can handle such a system, since approaching the kinetic barrier with all interactions
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(A) trans (B) cis

t-Bu

Cl Cl

Cl Cl
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(C) trans

t-Bu

Cl Cl

Cl Cl
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(D) cis

(E) Butene populations (F) Terphenyl populations

FIGURE 8.3: The two butene stereoisomers (Figures 8.3a and 8.3b) and the two isomers
of the terphenyl derivative (Figures 8.3c and 8.3d) with populations measured by AFE
and AASMC (Figures 8.3e and 8.3f) using the split and unified protocols. The heights
of the bars represent the mean values weighted by the estimated partition function

ratio Ẑ(1)
Z(0) and the error bars represent one weighted standard deviation based on 6

independent runs (shown as individual data points).

turned on will result in large repulsive forces and numerical instability. Moreover,
alchemically decoupling the tert-butylphenyl substituent is also likely to be
challenging, making this system a good example of a difficult enhanced sampling
problem in solution. Similarly to the previous test case, one of the tert-butylphenyl
substituents, as well as all dihedral terms corresponding to the rotatable bond, were
completely decoupled at λ = 0 to facilitate sampling.

Figure 8.3f demonstrates that both the split and the unified protocols yield similar
results for the main cis conformer: 87%± 7% and 83%± 9% compared to 83%± 0%
using 160 ns AFE. Moreover, both methods estimate the dimensionless free energy
very precisely: 35.60± 0.23 for the split protocol and 35.64± 0.19 for the unified
protocol, indicating good sampling consistency between the AASMC alchemical
protocols and repeats. Finally, both methods show similar performance, with the split
protocol being slightly slower on average (42± 2 ns) than the unified protocol (37± 3
ns). The longer average simulation times compared to the butene perturbation show
that the adaptive protocol with the same hyperparameters automatically allocates
more computational time to a more difficult problem, as expected.
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(A) trans (B) gauche(–) (C) gauche(+)

(D) T4-lysozyme Val111 populations

FIGURE 8.4: The three Val111 rotamers (Figures 8.4a to 8.4c) in T4-lysozyme/p-xylene
and the relative populations of all states using split and unified AASMC and H-REMD
from the three different initial rotamers (Figure 8.4d). The heights of the bars represent

the mean values weighted by the estimated partition function ratio Ẑ(1)
Z(0) and the error

bars represent one weighted standard deviation based on 6 independent runs (shown
as individual data points).

8.5.3 T4-lysozyme/p-xylene

A seemingly simple case which nevertheless showcases the inability of regular MD to
provide adequate sampling is the exploration of the active site Val111 rotamers
(Figures 8.4a to 8.4c) in a model T4-lysozyme L99A with bound p-xylene (PDB ID:
187L344). It has previously been shown244 that MD results in highly insufficient
rotamer transitions even at 1 µs, suggesting that enhanced sampling is indispensable
for this system. We can handle this system similarly to the previous test cases by
completely decoupling the Val111 isopropyl group and the corresponding dihedral
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term to facilitate movement at λ = 0. In this setting, the sampling of p-xylene was not
enhanced.

The resulting AASMC protocols are highly efficient, requiring an average of 25± 2 ns
and 21± 2 ns per repeat for the split and the unified protocol, respectively, while
exploring all relevant Val111 rotamers. Although the split protocol results in higher
variance than the unified protocol (Figure 8.4d), both methods result in similar
torsional populations and are qualitatively consistent with one another. This is also
demonstrated by the relatively high precision of the dimensionless free energy:
−43.09± 0.85 and −44.32± 0.72 for the split and the unified protocol, respectively.

To test the accuracy of the results, they were compared against 6 H-REMD simulations
from each initial Val111 conformer (18 simulations in total) with 160 ns per repeat, or 4
ns per replica. As shown in Figure 8.4, even after an average of 252± 13 round trips
per repeat, there is a significant bias in the populations depending on the starting
conformation. This discrepancy can be partially attributed to the fact that the
H-REMD implementation used does not explicitly draw the decoupled dihedral from
the uniform distribution at λ = 0, but instead relies purely on integrator decorrelation
to achieve this, meaning that any Val111 state transitions are effectively slowed down
even when there are no kinetic barriers. In contrast, the AASMC simulations are not
biased towards the initial Val111 conformation, since all simulations start from a
completely decoupled state. Nevertheless, the relative ranking of the populations is
consistent between different starting structures, as well as with the AASMC
simulations using either the split or the unified protocol. Although the predicted
dominant rotamer (trans) does not correspond to that in the crystal structure
(gauche(–)), the agreement between both enhanced sampling methods suggests that
this discrepancy is most likely related to the force field quality and/or long-timescale
populations shifts due to e.g. protein rare events, which are beyond the scope of this
work.

8.5.4 T4-lysozyme/3,5-difluoroaniline

A more difficult test case is coupling the Val111 motion with translational and
rotational movements of the ligand. An example ligand is 3,5-difluoroaniline bound to
a L99A/M102Q T4-lysozyme mutant. In this case the ligand was completely
decoupled in addition to the Val111 isopropyl group and uniformly moved at λ = 0
within a sphere with a radius of 0.5 nm centred on its initial COM, suggested by the
crystal structure (PDB ID: 1LGX345). Since there were two competing ligand binding
modes in the electron density, the one with the higher experimentally determined
occupancy was chosen for the initial COM evaluation.
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(A) State 1 (B) State 2

(C) T4-lysozyme ligand populations (D) T4-lysozyme Val111 populations

FIGURE 8.5: The two 3,5-difluoroaniline binding modes (Figures 8.5a and 8.5b) bound
to T4-lysozyme, the relative populations of both ligand states using the split and uni-
fied AASMC protocols and H-REMD (Figure 8.5c) and the Val111 states from the
same simulations (Figure 8.5d). The heights of the bars represent the mean values

weighted by the estimated partition function ratio Ẑ(1)
Z(0) and the error bars represent

one weighted standard deviation based on 6 independent runs (shown as individual
data points).

(A) Split protocol (B) Unified protocol

FIGURE 8.6: Heat maps of 3,5-difluoroaniline COM angle populations relative to
the initial dominant conformer using the split (Figure 8.6a) and unified (Figure 8.6b)
AASMC protocols taken from a single representative repeat. The data at discrete λ
values have been smoothed in both cases for visual purposes. The solid red line in
Figure 8.6a indicates the alchemical intermediate with fully coupled sterics and fully

decoupled electrostatics.
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The AASMC simulations required an average of 48± 2 ns simulation time for the split
protocol and 40± 2 ns for the unified protocol. Both protocols resulted in two main
binding modes for the ligand, which are shown in Figure 8.5. The states are
approximately equally probable, with acceptable agreement between the split protocol
(57%± 13% : 43%± 13%), the unified protocol (38%± 15% : 62%± 15%) and 160 ns
H-REMD (49%± 5% : 40%± 4%). With the exception of the unified protocol, these
results are also qualitatively consistent with experiment (60%:40%). The
dimensionless free energies are also comparable between both protocols, averaging
−266.32± 3.46 for the split protocol and −266.68± 2.27 for the unified protocol.

It is interesting to note the sampling differences between both AASMC protocols
during the intermediate λ values, as measured by the angle of rotation of the
difluoroaniline ring around its centre of mass relative to its initial state (COM angle).
As shown in Figure 8.6a, the split protocol explores six different binding modes with
approximately equal probabilities during the steric coupling step, before collapsing
into the two main binding modes during the electrostatic coupling step. In contrast,
the unified protocol (Figure 8.6b) collapses almost immediately into the two main
binding modes, indicating that in this case there is higher monotonicity in the
population changes over λ.

The same AASMC protocols were performed on the same mutant using a different
crystal structure (PDB ID: 1LGU345), where only mercaptoethanol (part of the
crystallisation liquor) was bound, making this crystal structure the closest
experimentally available structure to an apo form for this mutant. Little difference in
the results was observed using both the split (70%± 8% : 30%± 8%) and the unified
(65%± 8% : 35%± 8%) protocols, indicating that the method is not strongly
dependent on the initial crystal structure in this case and the results are therefore not
biased in an obvious way.

Larger differences were observed for the Val111 rotamers, where there were
discrepancies between the populations from both AASMC protocols and H-REMD.
Since both the native and the apo structures exhibit significant differences between
both protocols, it can be concluded that the split and the unified protocol results are
not consistent with each other in this case. This can be attributed to the different ways
in which the different λ schedules affect the time-dependent dynamics of each walker.
Since the simulation time for each walker remains very short, the lack of
long-timescale sampling can therefore result in biased populations.

8.5.5 Protein Tyrosine Phosphatase 1B (PTP1B)

Another commonly encountered problem is handling dihedral rotations of flexible
bound ligands, such as the thiophene derivative bound to PTP1B (PDB ID: 2QBS3),
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(A) State 1 (B) State 2 (C) An unphysical state

(D) PTP1B ligand populations

FIGURE 8.7: The two thiophene derivative rotamers bound to PTP1B (Figures 8.7a
and 8.7b), the unphysical interactions between the amino group and a solvent water
molecule commonly observed during the unified protocol (Figure 8.7c, circled in red)
and the relative populations of both states using AASMC and AFE calculations (Fig-
ure 8.7d). The heights of the bars represent the mean values weighted by the estimated

partition function ratio Ẑ(1)
Z(0) and the error bars represent one weighted standard devi-

ation based on 6 independent runs (shown as individual data points).

shown in Figure 8.7. In this case there are two main states of interest (Figures 8.7a
and 8.7b) and we can explore this rotation by completely decoupling the
3-aminophenyl group and the relevant dihedral terms at λ = 0.

Similarly to the previous torsional rotation cases, there is a good agreement between
the dominant conformer in the split protocol (88%± 9%), the unified protocol
(81%± 0%), AFE (88%± 2%) and the experimental crystal structure. However, in this
case the split protocol results in much higher unweighted standard deviation (26%),
mostly caused by a single outlier. Although the split protocol performs apparently
worse than the unified protocol, the latter exhibits extremely poor and variable
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dimensionless free energy differences: 231.73± 20.56, compared to −85.51± 2.30 for
the former. Since the dimensionless free energies correspond to the negative logarithm
of the average relative weight of all walkers sampled from a particular simulation, the
unified protocol has a negligible total weight compared to the split protocol due to its
strikingly high dimensionless free energy. Therefore, even though the dihedral
profiles yielded by the unified protocol appear consistent, the sampling is nevertheless
remarkably poor. This can be explained by an energetically favourable overlap
between one of the ligand nitrogen atoms and a water hydrogen atom, coupled with
an interaction between the aniline hydrogen and the water oxygen (Figure 8.7c). These
unphysical interactions are not forbidden and quite favourable, since introducing a
soft-core potential to both sterics and electrostatics removes all potential energy
singularities at the atom centres. Although these interactions vanish at λ = 1, they
persist for most of the λ schedule, meaning that in this case the split protocol is much
more preferable. This conclusion is also supported by the average simulation times:
42± 2 ns for the split protocol and 55± 1 ns for the unified protocol, indicating that
these unphysical states hinder the short-timescale dynamics as well.

8.5.6 Transforming Growth Factor Beta (TGF-β)

The final test case combines a torsional rotation of a flexible ligand bound to
transforming growth factor beta (TGF-β) and a nearby Ser82 side-chain rotation. In
this case we have used the initial protein coordinates of TGF-β bound to a ligand
containing a related symmetric 4-aminophenyl substituent (PDB ID: 4X2G346)
combined with the initial binding mode of the 3-aminophenyl-substituted ligand of
interest (PDB ID: 4X2J346), so that the potential bias towards a particular conformer in
the initial PDB file has been minimised. It is known from the PDB file that there are
two approximately equally-populated alternative conformations of the ligand
(Figures 8.8a and 8.8b) and the nearby Ser82 residue (Figures 8.9a and 8.9b). As with
the previous examples, this system was handled by decoupling the 3-aminophenyl
ligand group concurrently with the Ser82 hydroxymethyl group.

Similarly to PTP1B, the unified protocol has sampling difficulties related to favourable
unphysical interactions between an alchemically modified amine group and a water
molecule (Figure 8.8c), resulting in large discrepancies between the dimensionless free
energies: −225.51± 6.25 for the split protocol, compared to 200.65± 49.12 for the
unified protocol, showing once again that this type of interaction results in
populations with a negligible total weight compared to those obtained from the split
protocol. Another point of similarity to the previous test case is the higher average
simulation time that is needed by the unified protocol: 90± 3 ns versus 60± 6 ns for
the split protocol.
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(A) State 1 (B) State 2 (C) An unphysical state

(D) TGF-β ligand populations

FIGURE 8.8: The two TGF-β ligand rotamers (Figures 8.8a and 8.8b), the unphysical in-
teractions between the amino group and a solvent water molecule commonly observed
during the unified protocol (Figure 8.8c, circled in red) and the relative populations of
both states using the split and unified protocols and H-REMD starting from either of
the states (Figure 8.8d). The heights of the bars represent the mean values weighted by

the estimated partition function ratio Ẑ(1)
Z(0) and the error bars represent one weighted

standard deviation based on 6 independent runs (shown as individual data points).

In both cases, however, there is a marked increase in the relative weight variance
compared to the previous test cases, indicating poor convergence. This is also
confirmed by the ligand dihedral profiles (Figure 8.8d), which show significant
quantitative and qualitative differences between the results of both protocols. This
observation is reflected by the low efficiency of the 160 ns H-REMD runs, with an
average of only 7± 4 round trips per repeat. Despite the low number of round trips
and the slow convergence, the data from the H-REMD simulations starting from both
ligand rotamers suggest that the first conformer (Figure 8.8a) is likely more stable than
the other, implying that the unified protocol is surprisingly qualitatively consistent



130
Chapter 8. Enhanced Ligand Sampling by Adaptive Alchemical Sequential Monte

Carlo

(A) State 1 (B) State 2 (C) State 3

(D) TGF-β Ser82 populations

FIGURE 8.9: The three TGF-β Ser82 rotamers (Figures 8.9a to 8.9c) and the relative
populations of both states using the split and unified protocols and H-REMD starting
from either of the states (Figure 8.9d). The heights of the bars represent the mean val-

ues weighted by the estimated partition function ratio Ẑ(1)
Z(0) and the error bars represent

one weighted standard deviation based on 6 independent runs (shown as individual
data points).

with H-REMD. The two AASMC protocols and H-REMD do not agree on the Ser82
populations, however (Figure 8.9d), meaning that in both cases there is evidence for
insufficient sampling.

Clustering analysis of the ligand common core at λ = 1 using agglomerative
clustering (as described in Section 8.4) reveals the presence of two distinct, albeit
apparently similar, clusters, which correspond to a concerted translational and
rotational motion of the ligand common core (Figures 8.10a and 8.10b). It can be seen
that the first cluster is overrepresented in the unified protocol structures, as well as the
H-REMD simulations starting from the dominant state (Figure 8.10c). However, the
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second cluster is the one resulting in the highest total relative weights for both the
split and unified AASMC runs. Since both clusters are more equally sampled during
the comparatively longer H-REMD simulations, this behaviour indicates an
insufficient level of decorrelation of the AASMC results from the initial structure,
resulting in significant biasing of the observed ligand dihedral populations. Moreover,
these ligand transitions present an orthogonal rare event which is not adequately
sampled even at longer timescales and thus results in increased population variance
for both AASMC and H-REMD.

8.6 Discussion

The above results show that AASMC is extremely efficient at exploring ligand
conformers in solution, even for alchemical changes that would be considered difficult
to perform in practice. This is not surprising, since this is the ideal setting for the
method: the ligand degrees of freedom are the only ones which require extensive
sampling, while the environment does not need much long-timescale sampling to
respond to the ligand motions. Therefore, AASMC can be a valuable tool in exploring
the degrees of freedom of solvated small molecules and is likely one of the most
robust ways to achieve this.

The T4-lysozyme test cases show that a closed binding pocket exhibiting little
flexibility also constitutes a favourable application of the method. We have shown that
AASMC is unaffected by high kinetic barriers and relatively unbiased towards the
initial ligand structure, while providing efficient protocols which require no
system-specific parameters. These results appear to hold even when exploring
coupled motions between a side chain and a ligand.

Similar observations have been made for PTP1B, where the ligand is strongly bound
to the protein and the rotatable group of interest faces the solvent. In this case, the
efficiency of AASMC is similar to the one observed in the solvated ligand systems.
However, the resulting unweighted population variances from all protein test cases
are much higher compared to the first two test cases and this trend carries to the
dimensionless free energies. This is expected, since protein-ligand systems present a
much more challenging sampling problem compared to solvated ligand systems.

TGF-β presents a more challenging system, where rare motions of the unmodified part
of the ligand contribute to a much higher observed dihedral population variance,
compared to the previous test systems. This behaviour is observed for both AASMC
and H-REMD, meaning that exploring long-timescale motions for this system is
crucial and the short-timescale AASMC runs are not sufficient in this case. It is
therefore important to be able to identify such potentially problematic systems a priori
and this should be addressed in future work.
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(A) Cluster 1 (B) Cluster 2

(C) TGF-β ligand cluster populations

FIGURE 8.10: The two TGF-β ligand clusters, (Figures 8.10a and 8.10b, common core
circled in red) and their relative populations using the split and unified protocols and
H-REMD starting from either of the states (Figure 8.10c). The heights of the bars rep-

resent the mean values weighted by the estimated partition function ratio Ẑ(1)
Z(0) and the

error bars represent one weighted standard deviation based on 6 independent runs
(shown as individual data points).

The above test cases also show the advantages and disadvantages of the split and
unified force field scaling protocols. It has been demonstrated that the unified protocol
can result in unpredictable performance and can suffer from unphysical interactions
between atoms with opposite charges, resulting in them collapsing on top of one
another. This means that while the unified protocol can in many cases be more
efficient than the split protocol, it is also less robust. The split protocol, on the other
hand, has been shown to be extremely consistent both in terms of sampling time and
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free energy estimation, but often results in a larger unweighted variance of the
sampled populations. It is not yet clear how the above protocols will perform in a
system which exhibits a drastic shift in rotamer populations when the electrostatic
interactions are switched on, but the above results strongly suggest that the split
protocol is by far the safer and more conservative choice for most systems.

All of the above results paint a clear picture of the current advantages and limitations
of AASMC. AASMC excels in cases where one is interested in few degrees of freedom
and where the populations of interest remain relatively unchanged over long
timescales. In such systems, one can expect high performance with minimal user
input, meaning that very different systems can be run with the same hyperparameters
without external intervention. Another advantage of AASMC is the lack of need for
supplying an initial conformation of the degree of freedom of interest, thereby
providing an unbiased estimate of the population over this degree of freedom. In
contrast, while H-REMD results in populations with apparently lower variance than
AASMC, it also exhibits long-timescale bias towards the initial conformation. Taking
this bias into account then results in a similar performance to AASMC. Moreover, the

collective estimated AASMC simulation weights Ẑ(1)
Z(0) provide a straightforward way

to measure sampling quality, while investigating bias is not as obvious, meaning that
AASMC is more useful for performing exploratory simulations. On the other hand,
AFE calculations result in significantly lower variance than both AASMC and
H-REMD but their main disadvantage is that a separate simulation is required for
each cluster of interest. These need to be known in advance and this knowledge is not
always available in practice.

AASMC is therefore a valuable qualitative exploratory tool which can quickly provide
initial structures which are unbiased over a particular degree of freedom, as well as
generate an efficient λ schedule for another more computationally expensive method,
such as AFE calculations or H-REMD simulations. The latter methods, on the other
hand, can sample over arbitrarily long timescales, thereby being systematically
improvable while simultaneously reducing their bias towards the initial protein
crystal structure over time. This decorrelation is crucial in, for example, binding free
energy calculations, where the initial protein crystal structure can significantly impact
the calculated free energies (Chapter 5). Therefore, one can use the strengths of both
AASMC and long-timescale methods to minimise the dependence of the sampled
conformations on the choice of initial protein and ligand coordinates.

Owing to the shortness of its simulations, AASMC is so far impractical for sampling
long timescale motions and can suffer from initial structure templating, as well as
kinetic trapping which occurs during the alchemical steps. The latter is a significant
challenge not only for AASMC but for H-REMD as well, and it can be triggered by
orthogonal rare events, such as slow motions of the unmodified part of the ligand,
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which makes this behaviour difficult to predict. These problems will therefore require
key modifications to the AASMC method and will be the subject of future work.

8.7 Conclusion

In this chapter, the adaptive alchemical sequential Monte Carlo (AASMC) method was
presented. AASMC is a directed and irreversible ensemble-based algorithm and can
be used for sampling rare events using adaptive sequential importance resampling.
AASMC combines adaptive sequential Monte Carlo methods with knowledge from
the alchemical free energy (AFE) literature and is thus ideally suited for protein-ligand
and related systems where the requirement for system-specific method parameters
would be highly undesirable.

The performance of AASMC was demonstrated on a variety of test cases where
regular molecular dynamics (MD) is unable to provide adequate sampling, and the
relative efficiencies of a split perturbation protocol and a unified scheme were
compared. It was shown that that AASMC performs best when the results are largely
independent of long-timescale motions and other important orthogonal kinetic
barriers. In these cases, AASMC provides efficient sampling and is unaffected by the
exact nature and size of the system. The most consistent and robust results are also
observed when the split protocol is used, which makes it more desirable in the general
case.

The above results show that AASMC is good at generating unbiased conformations
over a selection of degrees of freedom. Moreover, it provides a good metric for

convergence, the estimated collective weight Ẑ(1)
Z(0) , which can be used to assess the

sampling quality over different simulation repeats. In this setting, methods such as
H-REMD are less useful, due to their long-timescale bias, which is often difficult to
detect. Similarly, AFE calculations require prior knowledge for the conformers of
interest and their cost scales rapidly with the number of possible states for each degree
of freedom. This makes AASMC a good method for performing exploratory
simulations with minimal input. However, in one of the test cases, AASMC exhibits
large variance and poor convergence. This suboptimal performance can be attributed
to high dependence on the initial coordinates, meaning that the method needs to be
extended to long-timescale sampling. The extension of AASMC to longer timescales
will be the subject of Chapter 9.
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Chapter 9

Enhancing Torsional Sampling
Using Fully Adaptive Simulated
Tempering

9.1 Introduction

Since sequential importance sampling methods are expected to be less efficient at
sampling than single-step importance sampling methods (Chapter 7), the optimal
approach for extending adaptive alchemical sequential Monte Carlo (AASMC) to long
timescales is to combine it with methods such as replica exchange molecular dynamics
(REMD) or simulated tempering (ST). Such a hybrid method would then have all of
the advantages of both methods and eliminate most of their disadvantages.

It was discussed in Chapter 7 that REMD is one of the most widely used enhanced
sampling algorithms in computational chemistry. However, despite its widespread
use, the standard REMD algorithm suffers from a number of drawbacks. The most
significant of these is the requirement of having a number of parallel simulations,
which are in practice instantiated with shortly equilibrated (i.e. highly correlated)
structures. This means that given the same total simulation time, more replicas result
in worse exploration of long-timescale motions, thereby diminishing the probability of
unexpected rare events. The second issue is the fact that the original REMD algorithm
is reversible,347 which results in suboptimal diffusive motion in temperature space
with relaxation time complexity of O(N2) with respect to the number of intermediate
temperatures.318 Finally, REMD, as all tempering methods, can be greatly hindered by
suboptimal temperature spacing, meaning that optimal temperature protocols are
needed.
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The first issue is circumvented by the serial version of REMD, ST.240,270 This makes ST
the method of choice in this chapter. In ST, only one replica is simulated and it is
periodically moved in temperature space. Because all of the computational time is
devoted to a single structure, ST achieves higher decorrelation from the supplied
initial coordinates compared to REMD. However, unlike REMD, an efficient ST
algorithm needs precise free energy estimates, even if these are not formally needed to
correctly sample from each temperature. Although there have been several
approaches which solve this problem,271,272,275,279 ST remains sensitive to suboptimal
free energy estimates and temperature protocols, since it is not guaranteed to spend
equal amounts of time at each temperature after a finite number of timesteps. This has
led to ST being underutilised in molecular simulations compared to REMD,271

although exceptions exist.274,278,348,349

The suboptimal O(N2) complexity of tempering methods can be remedied by
modifying the topology of the Markov chain,262 or, more specifically, by using
irreversible Markov chain Monte Carlo (MCMC) methods, which are known to
provide faster state mixing than their reversible counterparts.318,350 A straightforward
way to make reversible algorithms irreversible is to introduce an additional “lifting
coordinate”351 and enforce an antisymmetric balance condition, known as skew
detailed balance.352 One can then devise a suitable expression for the acceptance
criterion which minimises the diffusive motion in temperature space as much as
possible.353 This methodology can be readily applied to a variety of MCMC
methods,350 and irreversible REMD and ST algorithms have been previously
published.316,317,328 The introduction of this irreversibility can substantially improve
the motion in temperature space, which can reach a scaling of O(N) with respect to
the number of intermediate distributions.316

This chapter will describe a general numerical methodology which solves the third
issue described above—obtaining an optimal temperature protocol. While analytical
results exist for reversible REMD,354–356 irreversible REMD317,328 and reversible
ST,356–358 a simple analytical expression is not known for irreversible simulated
tempering (IST). Such a methodology is highly desirable not only because of its
general applicability, but also because of the well-known fact that a well-performing
ST algorithm is more efficient than a well-performing REMD algorithm.321,322 One can
then use this procedure to maximise the sampling quality of the tempering method.

The protocol optimisation process has two layers of adaptation: a preliminary offline
protocol estimation using AASMC, as described in Chapter 8, followed by an iterative
online protocol refinement during the ST procedure. The former approach is similar to
the methodology considered by Syed et al.,317 while the online optimisation algorithm
is the main contribution of this work.
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(A) ST Markov chain

(B) IST Markov chain

FIGURE 9.1: The Markov chains corresponding to simulated tempering (ST) (Fig-
ure 9.1a) and irreversible simulated tempering (IST) (Figure 9.1b).

As in Chapter 8, the primary focus of this chapter is the applicability of enhanced
sampling to the exploration of small molecule rare events. To achieve this, a subset of
the nonbonded interactions will be completely decoupled in a simulated scaling
manner,276 meaning that instead of temperature space, we will be working in
alchemical (λ) space, where the decoupled system will be denoted by λ = 0 and the
fully-interacting system will be denoted by λ = 1. Nevertheless, the adaptive
procedure presented below is generally applicable to any family of distributions
parametrised by a single parameter.

9.2 Theoretical Background

The following discussion builds upon the basic ST algorithm presented in Chapter 7
and employs the same notation as defined there.

9.2.1 Irreversible Simulated Tempering (IST)

Irreversible simulated tempering (IST)316 is a generalisation of ST which relaxes the
condition of detailed balance (Equation 2.34) to that of skew detailed balance.352 To
achieve this, an extra variable σ (“lifting coordinate”) is introduced,351 thereby
creating a mirror image of the irreversible Markov chain of choice (Figure 9.1). In this
way, the Markov chain increases its state space from Nλ states to 2Nλ − 2 states. With
the skew detailed balance condition, the underlying Markov chain can be designed in
any way, as long as all of its states are connected. In IST, the extra variable can be
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thought of as the direction of the flow—“+1” in the direction λ1 → λNλ
and “−1” in

the opposite direction (Figure 9.1b). This extra variable is strictly +1 at λ = λ1, −1 at
λ = λNλ

and can take any value at the intermediate λ values. This changes the
proposal probability pprop(λj|λi) to:

pprop(λj, σj|λi, σi) =


δσiσj λj = λi+σi , λj /∈ {1, Nλ}

1− δσiσj λj = λi+σi , λj ∈ {1, Nλ}

0 otherwise

(9.1)

In IST, the skew detailed balance condition enforces the equality:

π(λi, σi, x⃗)T(λi+σi , σi|λi, σi, x⃗) = π(λi+σi ,−σi, x⃗)T(λi,−σi|λi+σi ,−σi, x⃗) (9.2)

with the transition probability T(·) being the product of the proposal probability
pprop(·) and the acceptance probability pacc(·). In this setting, the probability of
evolving in λ space pacc(λj, σj|λi, σi, x⃗) is similar to the reversible case (Equation 7.6):

pacc(λj, σj|λi, σi, x⃗) = min

[
1,

wjπ(λj, x⃗)pprop(λi, σi|λj, σj)

wiπ(λi, x⃗)pprop(λj, σj|λi, σi)

]
(9.3)

where we have omitted the lifting variable from the probability distributions, since it
is purely a dummy variable which does not change their functional form. In order to
satisfy skew detailed balance, the probability flow in σ space needs to counterbalance
the flow in λ space. This leads to the lifting coordinate being flipped with probability
pacc(−σi|λi, σi, x⃗):

pacc(−σi|λi, σi, x⃗) = max

[
0, ∑σk∈{−1,1} T(λi−σi , σk|λi,−σi, x⃗)− T(λi+σi , σk|λi, σi, x⃗)

]
(9.4)

The term inside the max[·] function is simply the difference between the forward
transition probability at the current state and the backward transition probability at
the mirrored state. This acceptance criterion is not the only one that satisfies skew
detailed balance but is the one that minimises the probability of changing
directions.353 Since the rationale for using IST is precisely the minimisation of
diffusive motion in λ space, this is the acceptance criterion that will be used hereafter.
Finally, the probability of not accepting any λ or σ transitions prej(λi, σi, x⃗) is:

prej(λi, σi, x⃗) = 1− pacc(λj, σj|λi, σi, x⃗)− pacc(−σi|λi, σi, x⃗) (9.5)
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In practice, one of pacc(λj, σj|λi, σi, x⃗), pacc(−σi|λi, σi, x⃗) and prej(λi, σi, x⃗) is chosen
using a pseudo-random number uniformly distributed between 0 and 1, leading to
either a transition in λ space, a σ flip, or no change. Similarly to ST and REMD, the
transitions in λ and σ space are performed completely independently of the evolution
in coordinate (⃗x) and momentum (⃗p) space and can in principle be attempted at any
point in the simulation.

9.2.2 Multistate Bennett Acceptance Ratio (MBAR)

The multistate Bennett acceptance ratio (MBAR)18 is a maximum likelihood free
energy estimation method, which is also known to be statistically optimal, in the sense
of minimising the asymptotic estimator variance. MBAR estimates different
thermodynamic observables by creating a self-consistent expanded ensemble model
π̂mix (⃗λ, x⃗) (here and henceforth, the hat operator denotes an estimated quantity):

π̂mix (⃗λ, x⃗) =
Nλ

∑
i=1

ŵiπ̂(λi, x⃗)

ŵi =
Ni

∑Nλ

k=1 Nk

π̂(λi, x⃗) = e−u(λi ,⃗x)+ f̂ (λi)

f̂ (λi) = − ln

〈
e−u(λi ,⃗x)

π̂mix (⃗λ, x⃗)

〉
π̂mix (⃗λ)

(9.6)

where Ni is the total number of samples from λi, ŵi is the estimated expanded
ensemble weight of the i-th state and f̂ (λi) is the estimated free energy at λi, usually
chosen to be relative to f̂ (λ1). These equations can be solved iteratively using
different approaches.18,20 One can then estimate the expectation value of any
observable of interest O at any intermediate distribution π(λk) using importance
sampling, even if this distribution is not explicitly sampled in the observed data:

〈
O(⃗λ, x⃗)

〉
π(λk)

≈
〈

O(⃗λ, x⃗)
π̂(λk, x⃗)

π̂mix (⃗λ, x⃗)

〉
π̂mix (⃗λ)

(9.7)

where the expectation ⟨·⟩π̂mix (⃗λ)
is obtained by averaging the integrand over each of

the total samples. In this work, the samples will be obtained at the same time as
proposing a move in λ space, or every τsample units, where τsample is the sampling time
between λ change proposals. Afterwards, the resulting MBAR estimator will be used
to predict the expectation values of the acceptance criteria described above and
estimate transition matrices, as discussed in section Section 9.2.3.
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9.2.3 On-the-Fly Protocol Adaptation

The main contribution of this work is the development of a general adaptive
on-the-fly procedure to continuously estimate the optimal protocol
λ⃗opt ≡ (λ1,opt, ..., λNλ,opt). We will define λ⃗opt to be the protocol which minimises the
predicted expected round-trip time τ̂round,pred (⃗λ) between λ1 = 0 and λNλ

= 1
(Figure 9.1). To obtain this, we first use our MBAR model to estimate an expected
transition matrix T̂(⃗λ) connecting all the states in λ and σ space. In the case of IST, this
translates to a (2Nλ − 2) by (2Nλ − 2) matrix (Figure 9.1):

T̂ij (⃗λ) ≈
〈

T̂(λj, σj|λi, σi, x⃗)
π̂(λi, x⃗)

π̂mix (⃗λ, x⃗)

〉
π̂mix (⃗λ)

(9.8)

where each transition probability is calculated using the MBAR free energy estimates
according to Equations 9.3 to 9.5. In all cases π̂mix is estimated from all previous
samples at all λ values, as described in Equation 9.6.

One can then straightforwardly obtain τ̂round,pred (⃗λ) by expressing it as the sum of the
mean first passage times τ̂λ=0→λ=1 + τ̂λ=1→λ=0. More generally, the mean first passage
time τ̂ij from state i to state j can be obtained from the equation:359

τ̂ij = [(I− T̂jj)
−11]iτsample i < j

τ̂ij = [(I− T̂jj)
−11]i−1τsample i > j

(9.9)

where T̂jj is the transition matrix with the j-th column and row removed, I is the
identity matrix, 1 is a column vector of ones and [·]i denotes the i-th vector element.

The key assumption behind this methodology is the instantaneous decorrelation of the
phase space coordinates—a necessary assumption which is not usually satisfied in
real-world applications. Nevertheless, as will be shown later, it is a very useful
assumption which works remarkably well in practice, since even dense
macromolecular systems often exhibit apparent local energy decorrelation at relatively
short timescales (1–10 ps).

The minimisation of τ̂round,pred (⃗λ) with respect to λ⃗ requires an appropriate
derivative-free optimisation method. In this work we opt for the CMA-ES
algorithm,360 which is a global optimisation algorithm that is well-known for its
robust performance at the number of dimensions relevant to alchemical
transformations (typically ≤ 50 in practice).361 In order to keep the sensitivity of each
λ value towards variation relatively constant, we will map the λ protocol onto an
equally-spaced sequence ∈ [0, 1] using a piecewise linear interpolation function and
perform the optimisation in this transformed space. The optimisation procedure
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always keeps three λ values unchanged: the current λ value, 0 and 1. The number of
the optimisable λ variables will be denoted throughout the text as Ñλ.

Once λ⃗opt(Ñλ) corresponding to a particular number of optimisable values Ñλ is
estimated, the final step is to optimise Ñλ. In this work, this will be done using
discrete brute-force optimisation, where λ⃗opt(Ñλ) is first calculated at each of
min[0, Ñλ − 1], Ñλ and Ñλ + 1 dimensions, using the procedure described above.
Afterwards, τ̂round,pred (⃗λopt(Ñλ)) is evaluated at each of these dimensions until a local
minimum is found, in which case the minimisation procedure terminates. In all cases,
the initial protocol guess λ⃗0(Ñλ) will either be interpolated in transformed space from
the previous minimisation result with the closest (preferably larger) number of
dimensions, or taken from the initial AASMC run.

Even though the procedure outlined above is theoretically exact and likely to return a
globally optimal protocol at infinite sampling, there are still some practical
considerations in order for this method to be viable in practice. These will be
described below.

9.2.4 Interpolation

The functional form of the alchemical interpolation scheme between the two endpoint
distributions π(0, x⃗) and π(1, x⃗) does not theoretically influence the sampling at the
distribution of interest. Practically, however, the interpolation procedure needs to be
carefully chosen to ensure good phase space overlap between all intermediate λ

windows. To achieve this, soft-core potentials are commonly used for interpolation of
Lennard-Jones (LJ) interactions in place of simple linear decoupling. While this results
in more efficient sampling, energy evaluations at each λ window have to be
performed using the whole Hamiltonian and cannot be simply interpolated from the
energies at the endpoints. On the other hand, the MBAR estimator uses the evaluated
energy of each sample at each previously sampled λ value and each iteration of the
above protocol optimisation algorithm requires energy evaluations at arbitrary λ

values chosen by the minimiser as well. Therefore, one would incur unfeasibly high
computational expense if full Hamiltonian evaluation was performed throughout
these algorithms.

In this chapter, two different approaches will be compared. The first is always exact
and uses a recently developed linearly interpolatable soft-core potential,362 where only
three expensive energy evaluations are needed per sample, which can be afterwards
stored in memory and readily interpolated as needed. The second approach utilises a
commonly used soft-core potential,44 where expensive energy evaluations will be
made at each λ value of the protocol used to generate this structure. These will then
be interpolated linearly in order to approximate intermediate energies for the MBAR
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estimator and protocol minimiser. Since protocol convergence is asymptotically
guaranteed (discussed in Section 9.2.7), the energy interpolation error resulting from
this procedure at the protocol λ values will always tend to zero. This also means that
the fraction of samples at the past suboptimal λ values diminishes over time, meaning
that the second approach also results in asymptotically exact free energy values of the
converged λ protocol, despite being approximate at finite sampling. However, the
energy and free energy errors at all other λ values will remain finite, meaning that the
protocol optimisation procedure is always approximate in this setting and is therefore
not guaranteed to converge to the true asymptotically optimal protocol.

9.2.5 Improving MBAR Estimation

Although MBAR is an asymptotically optimal estimator, it is known to produce biased
estimates at finite sampling.363 These can then adversely influence the adaptation
process, resulting in local trapping of the free energy and/or protocol estimates and
therefore highly suboptimal efficiency. To help tackle this problem, one can use an
ensemble of MBAR estimators, using bootstrap aggregation (“bagging”)—a technique
often used in machine learning applications to increase the robustness of the
estimation.364 In the current setting, the process consists of simply bootstrapping all
available trajectory frames Nbootstrap times and fitting an MBAR estimator to each
bootstrapped dataset, resulting in Nbootstrap different, but equally valid, estimators.
One can then use the average of the predictions from these models to obtain any
observable of interest. In this work, bagging will be used when calculating the
Metropolis acceptance criterion and the transition matrix, both of which are dependent
on all estimated free energy values ⃗̂f provided by the corresponding MBAR model:

p̂acc(λj, σj, f̂ j|λi, σi, f̂i, x⃗) 7→
〈

p̂acc(λj, σj, f̂ j|λi, σi, f̂i, x⃗)
〉

bootstrap

T̂(⃗λ, ⃗̂f ) 7→
〈
T̂(⃗λ, ⃗̂f )

〉
bootstrap

(9.10)

In order for bootstrapping to generate a correct distribution of the estimators of
interest, one needs to supply it with decorrelated samples. Although, as previously
discussed, the instant decorrelation assumption is often sufficiently satisfied in
practice for timescales on the order of 1–10 ps, it is still essential to obtain a reliable
estimate of the effective decorrelation time τdecorr for more challenging systems. While
a method for estimating τdecorr has been previously published,163 its applicability to
FAST is limited due to the constant changes in the λ protocol, meaning that an
alternative approach needs to be taken.

To obtain an estimate of τdecorr, we first note that the round trip time τ̂round,pred (⃗λ)

predicted by the transition matrix T̂(⃗λ) is directly proportional to the sampling time
τsample between λ proposals (Equation 9.9), where it is assumed that τsample provides



9.2. Theoretical Background 143

complete decorrelation at each λ value. However, since the transition matrix T̂(⃗λ) is
independent of τsample, one can also regard the true observed round trip time τ̂round,true

as being predicted by the same transition matrix T̂(⃗λ), with the only difference being
the effective sampling time between λ proposals. We now propose that this effective
sampling time be equal to an effective decorrelation time τdecorr, which can be
estimated using the following equation:

τ̂decorr =
τ̂round,true

τ̂round,pred (⃗λ)
τsample (9.11)

It should be noted that the ratio τ̂round,true

τ̂round,pred (⃗λ)
may not necessarily be independent of

τsample in practice. Therefore, τ̂decorr is best viewed not as a physical autocorrelation
time, but rather as an effective deviation from the instantly decorrelated transition
matrix model. In this chapter, the rounded dimensionless Ndecorr ≡ max[1, ⌊ τ̂decorr

τsample
⌉]

will be used to remove the correlated samples. This will be achieved by starting from
an initial sample pseudo-randomly chosen from the most recent Ndecorr samples and
then keeping only every Ndecorr-th previous sample. The resulting effective number of
samples Nsamples,e f f will afterwards be bootstrapped and used for MBAR estimation.
Finally, if no round trips have yet been observed, τ̂decorr will be estimated from the
expected transition time of the longest transition so far observed, instead of the
round-trip time.

9.2.6 Computational Footprint of FAST

Since the computational power required to handle both the estimation of the
transition matrix and the free energies scales linearly with respect to the total number
of samples Nsamples, performing these calculations at a fixed frequency will result in a
total computational cost of O(N2

samples). To alleviate this, these calculations will in
practice be performed at an exponentially diminishing frequency, reducing the
complexity to O(Nsamples log Nsamples). If the implementation is parallelised, written in
a compiled language, and/or run in the background on the central processing unit
(CPU) while the MD simulation is run on the graphics processing unit (GPU), the
computational overhead from adaptation can become negligible with suitably chosen
frequency parameters. In this work, the free energies will be calculated every
⌊1 + 0.01Nsamples,e f f ⌉ steps, while protocol optimisation will be performed every
⌊100 + 0.1Nsamples,e f f ⌉ steps, meaning that the number of steps between subsequent
optimisations increases linearly with respect to the effective number of samples in
both cases.

On the other hand, the memory consumption of the energy matrices required for the
MBAR calculations always increases linearly over time, meaning that depending on
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the system and the simulation length one might run into memory limitations. In this
work, however, matrices with ∼1.6× 105 samples (over 160 ns) were routinely
handled with memory usage of less than one gigabyte, which is well within the
capability of an average computer. Therefore, these considerations are reserved for
more computationally intensive cases, where memory requirements could potentially
be alleviated by limiting the number of samples used for adaptation, using stochastic
approximations of MBAR,365–367 and/or offloading the matrices to the hard drive
using specialised libraries.368

The CPU and memory requirements of the free energy estimation procedure are not
only dependent on Nsamples, but also on the total λ value history, which also grows
over time (linearly or logarithmically, depending on the adaptation frequency). This
means that exploring a space of continuous (or very high-precision) λ values will
likely result in unfeasibly high computational requirements and in this chapter all λ

values will be preliminarily rounded to two decimal places, meaning that only a
maximum of 101 λ values can be present in the energy matrix. In most practical cases,
it is expected that two to three significant figures are completely sufficient for
achieving near-optimal performance, while using a relatively low amount of memory.

9.2.7 Convergence

The algorithm described above is highly adaptive and includes the following
non-Markovian steps:

• Observable estimation from the MBAR model (free energies and acceptance rates)

• Protocol minimisation

• Estimation of τdecorr

Using general results from the literature, it can be shown that the algorithm is
asymptotically convergent, despite the multiple layers of adaptation. To demonstrate
this, we first state the two sufficient conditions for asymptotic convergence:
containment and diminishing adaptation.369 The former condition means that if
adaptation is stopped at any point, the convergence to the corresponding stationary
distribution is guaranteed. This condition is readily satisfied, since all of the above
procedures produce finite quantities and non-adaptive IST is still an ergodic sampling
algorithm which satisfies skew detailed balance (Equation 9.2), even if suboptimal
weights and/or λ values are used. The second condition can be trivially enforced by
using all generated samples for the adaptation, since the variance of any
sample-dependent quantity diminishes at infinite sampling. If τ̂decorr is used to remove
correlated samples, it also needs to converge to a finite value in order for the above
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Algorithm 2 FAST

1: Input
2: {x⃗history} initial set of all previously sampled system coordinates and λ val-

ues
3: λ⃗ initial λ protocol
4: Niter number of FAST iterations
5: Output
6: {x⃗history} the final set of all system coordinates and λ values

7: procedure FAST({x⃗history}, λ⃗, Niter)
8: tMBAR = 0 ▷ Number of iterations before MBAR update
9: topt = 100 ▷ Number of iterations before protocol update

10: i = 0
11: while i < Niter do
12: if tMBAR >= i then
13: f⃗ , model, tMBAR ←MBAR({x⃗history}) ▷ as in Section 9.2.2

14: if topt >= i then
15: λ⃗, topt ← OptimiseProtocol(model, λ⃗, {x⃗history}) ▷ as in Section 9.2.3

16: x⃗ ← Sample(⃗x, λcurr, τsample) ▷ τsample is the sampling time
17: {x⃗history} = {x⃗history} ∪ {(x⃗, λcurr)}
18: λcurr, σcurr ← AttemptISTMove(λcurr, σcurr, λ⃗, f⃗ ) ▷ as in Section 9.2.1
19: i = i + 1
20: return {x⃗history}

assertion to hold. As can be seen from Equation 9.11, this convergence is guaranteed
as long as the expected round-trip time is finite—a condition which is also satisfied for
the IST Markov chain considered hereafter due to its ergodicity (Figure 9.1b).

9.2.8 Summary of the Method

The full FAST algorithm is shown in Algorithm 2 and Figure 9.2. The only required
input is a set of samples generated at a range of λ values with sufficiently good
overlap. These can be readily generated by an adaptive SMC algorithm, such the
AASMC algorithm presented in Chapter 8. Although AASMC requires a number of
input parameters, they are all system-independent and only affect the efficiency of the
initial stages of the simulation, since FAST eventually converges to an asymptotically
optimal protocol regardless of the initial input. In addition, all of the parameters
required by the FAST algorithm are related to free energy and/or protocol estimation
frequency and quality. Therefore, apart from the degrees of freedom to enhance, all
input given to FAST is effectively system-independent, making FAST a nearly
black-box enhanced sampling method.

In the following discussion, we will validate FAST on a range of protein-bound and
solvated ligand systems, where we will enhance the motions of certain torsional
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FIGURE 9.2: A summary of the FAST workflow.

degrees of freedom by decoupling one side of the rotatable bond of interest from the
rest of the system at λ = 0, analogous to the approach taken in Chapter 8. In all cases,
the same AASMC and FAST parameters will be used, to demonstrate the wide
applicability of the method with minimal prior knowledge.

9.3 Methods

9.3.1 System Setup and Simulation

The FAST protocol was validated on four of the systems considered in Chapter 8. All
of these following systems were initially protonated using PDB2PQR185 without any
additional pKa calculations. The ff14SB25 force field was used for the proteins, while
GAFF227 with AM1-BCC29,30 charges was used for the ligands. All systems were
solvated in a TIP3P31 periodic cubic box with a length of 4 nm (solvated) or 7 nm
(bound). Sodium chloride counterions with TIP3P–compatible parameters were also
added for neutralisation up to a concentration of ∼0.154 M.

All FAST simulations were performed using OpenMM 7.4.2,233 OpenMMTools339

0.19.0 and OpenMMSLICER 2.0.0. All systems were initially minimised and
afterwards equilibrated at λ = 0 (decoupled state) for 100 ps. During the
equilibration, harmonic restraints were used for the protein backbone with a force
constant of 5 kcal/mol/Å2. The equilibrated structure was used as a starting point for
the AASMC process, which was in turn used to obtain an initial λ schedule and free
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(A) CSC decoupling scheme

(B) GSC decoupling scheme

FIGURE 9.3: The main stages of the classical soft-core potential (CSC) (Figure 9.3a) and
the Gaussian soft-core potential (GSC) alchemical schemes (Figure 9.3b).

energy estimates for FAST. Each step in the AASMC algorithm is described in detail in
Chapter 8.

50 walkers were spawned from the equilibrated structure at the beginning of the
AASMC procedure. 100 conformers were generated per walker at λ = 0 and a
decorrelation time of 1 ps was used for each walker before reweighting and
resampling. The expected sample size estimator based on the Metropolis–Hastings
acceptance criterion R̂MH = 0.5 was used for each AASMC iteration to determine the
next λ value in the sequence:

R̂MH =
1
N

N

∑
i

min[Nwi, 1] (9.12)

where the sum is over all N walkers and wi is the corresponding weight of each
walker. The reason for choosing R̂MH over other resampling metrics in this case was
that a constant Metropolis–Hastings criterion expectation value is known to provide
an optimal λ spacing in the case of reversible uniformly-weighted ST,357 making it a
good starting point for IST as well. Finally, systematic resampling was used during
the resampling stage.370

After the final AASMC iteration, one walker was chosen at random and was
subsequently used as a starting point for an irreversible simulated tempering
procedure for a total of 160 ns. Movement in λ space was attempted every 1 ps. New
samples for the MBAR18 estimation were also drawn every 1 ps immediately before
attempting a move in λ space. An ensemble of min[10, Ndecorr] MBAR models using
decorrelated bootstrapped samples was generated with diminishing frequency every
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⌊1 + 0.01Nsamples,e f f ⌉ steps using a robust L-BFGS solving algorithm20 implemented in
SciPy/Numba.343,371,372 Protocol optimisation was performed every
⌊100 + 0.1Nsamples,e f f ⌉ steps using a CMA-ES360 implementation in Python373 using
the default settings up to a maximum of 10Ñλ evaluations and initial minimiser
standard deviation σ0 = 1

max[1,Nλ−2] . During the optimisation of the number of lambda
values Nλ, the initial guesses for the λ protocols of a particular length were either
taken from previous optimisations, if available, or generated using linear interpolation
in the transformed space from the λ protocol of the closest length. The resulting λ

values were rounded to two decimal places.

Each simulation was run in sextuplicates with two different soft-core schedules. The
first schedule used the classical soft-core potential (CSC)44 for the Lennard-Jones (LJ)
interactions with parameters a = 1, b = 1, c = 6 and α = 0.5. In this case, all LJ
interactions were introduced before subsequently turning on all electrostatic
interactions (Figure 9.3a). The second set of simulations utilised the recently published
Gaussian soft-core potential (GSC),362 using the protocol and parameters described in
the original publication (Figure 9.3b).

A BAOAB Langevin integrator59 was used during all simulations at 298 K with a 2 fs
timestep and a collision rate of 1 ps-1. All water molecules were constrained using the
SETTLE algorithm,53 while all other bonds involving hydrogen were constrained with
the SHAKE50 and CCMA52 algorithms. A Monte Carlo barostat was used for pressure
control at 1 atm with rescaling attempts every 50 fs. A cut-off of 1.2 nm was used for
all short-range nonbonded interactions. Long-range electrostatics were calculated
with particle mesh Ewald (PME).37

The FAST simulations were then validated against Hamiltonian replica exchange
(H-REMD) and alchemical free energy (AFE) calculations in GROMACS 2018.4
following the same protocol as described in Chapter 8.

9.3.2 Analysis

All of the following results and metrics have been reported in terms of their arithmetic
averages and standard deviations. The only exception is the ratio of samples between
λ = 1 and λ = 0, N1

N0
, which has been used as a way to measure the deviation of the

number of samples from the ideal N1
N0

= 1. In this case, the geometric mean and
standard deviation have been considered instead, in order to more faithfully represent
the variability when N1 ≫ N0 and N0 ≫ N1. In all cases, these statistics have been
reported as mean± deviation, although one needs to keep in mind that the geometric
standard deviation is multiplicative and the ± sign has only been used for consistency.

Clustering of the resulting conformer populations was performed as described in
Chapter 8. The only exception is the ligand common core clustering analysis
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FIGURE 9.4: The two terphenyl derivative rotamers (Figures 9.4a and 9.4b), the mean
relative populations of these states obtained using FAST, H-REMD and AFE calcula-
tions after 6 runs (Figure 9.4c) and the average number of λ values over time (Fig-

ure 9.4d). The error bars represent one standard sample deviation.

considered in TGF-β, where each FAST trajectory was pre-aligned to its initial
coordinates based on the protein backbone α carbon atoms, before extracting the
centre of geometry of the ten heavy triazanaphthalene ring atoms of the ligand with
MDTraj236 and MDAnalysis.341,342 Agglomerative clustering with default settings in
scikit-learn238 was then performed on these geometric centres using every tenth frame
of the original trajectory, resulting in two clusters. These were then used to train a
k-nearest neighbours classifier,374 which was used to extend the clustered data over
the whole trajectory. This approximation was needed because of the large memory
requirements of the agglomerative clustering algorithm if the whole set of trajectory
frames had been used.

Any other aspects of the analysis follow the same methods as described in Chapter 8.

9.4 Results

9.4.1 Terphenyl in Water

A relatively simple system with an insurmountable kinetic barrier is the terphenyl
derivative shown in Figure 9.4, making it a good test case for alchemical methods. To
sample both conformers, one of the 2-tert-butylphenyl groups was completely
decoupled at λ = 0, as performed in Chapter 8. This large alchemical change makes
this system one of the more challenging test cases involving a solvated system.
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Replicate Total

System Potential 1 2 3 4 5 6 Average St. dev.

Terphenyl
CSC 2.31 2.59 2.44 2.51 2.49 2.51 2.48 0.09
GSC 2.36 2.63 2.57 2.42 2.50 2.62 2.52 0.11

T4-lysozyme
CSC 5.89 6.38 6.59 6.45 5.97 6.09 6.23 0.28
GSC 4.14 3.61 4.03 2.43 3.81 3.96 3.66 0.63

PTP1B
CSC 1.64 2.23 2.34 2.63 2.31 2.56 2.29 0.35
GSC 2.49 1.89 2.21 2.11 2.62 2.12 2.24 0.27

TGF-β
CSC 0.04 0.08 0.06 0.22 0.11 0.03 0.09 0.07
GSC 0.04 0.06 0.02 0.01 0.02 0.05 0.03 0.02

TABLE 9.1: The number of round trips per nanosecond for each of the systems across
different replicates and soft-core potentials. The averages and the corresponding stan-

dard deviations are also given.

Replicate Total

System Potential 1 2 3 4 5 6 Average St. dev.

Terphenyl
CSC 0.93 1.11 2.55 1.92 1.66 2.20 1.63 1.48
GSC 0.86 0.95 0.89 1.03 1.13 1.01 0.97 1.11

T4-lysozyme
CSC 2.13 1.73 1.06 1.72 1.58 1.52 1.59 1.26
GSC 1.19 0.91 0.74 1.35 0.75 0.79 0.93 1.29

PTP1B
CSC 2.38 0.83 1.22 1.36 0.93 2.11 1.36 1.53
GSC 0.65 0.90 0.96 0.79 0.94 1.48 0.92 1.32

TGF-β
CSC 0.24 9.21 56.77 4.94 3.16 7.16 4.91 5.94
GSC 195.14 4.50 15.60 0.18 276.28 0.12 6.59 27.84

TABLE 9.2: The fraction of total samples between λ = 1 and λ = 0 for each of the
systems across different replicates and soft-core potentials. The geometric averages

and the corresponding geometric standard deviations are also given.

Replicate Total

System Potential 1 2 3 4 5 6 Average St. dev.

Terphenyl
CSC 1.38 1.34 1.40 1.31 1.40 1.38 1.37 0.04
GSC 1.57 1.47 1.40 1.46 1.52 1.39 1.47 0.07

T4-lysozyme
CSC 1.64 1.64 1.56 1.59 1.70 1.63 1.63 0.05
GSC 2.08 2.23 2.13 3.15 2.17 2.13 2.31 0.28

PTP1B
CSC 2.78 2.15 1.96 1.85 2.03 1.80 2.10 0.36
GSC 2.05 2.37 2.13 2.22 1.83 2.36 2.24 0.27

TGF-β
CSC 80.51 36.80 47.29 13.36 27.42 92.78 49.69 24.63
GSC 78.06 46.94 161.32 249.92 173.82 60.98 128.51 66.51

TABLE 9.3: The final measured τ̂decorr in ps for each of the systems across different
replicates and soft-core potentials. The averages and the corresponding standard de-

viations are also given.
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The relative rotamer populations, shown in Figure 9.4c, are well-converged for both
the CSC and the GSC soft-core potentials, with the dominant conformer being the cis
state at 84%± 2% and 83%± 3%, respectively. These results are in excellent agreement
with the populations obtained from AFE calculations (83%± 0%), indicating that both
FAST protocols are able to handle this system without any issues.

As shown in Table 9.1, both the CSC and the GSC protocols result in a similar number
of round trips—∼2.5 per nanosecond. This is reflected by the final observed protocol
lengths, with an average of 11± 2 total λ values for CSC and 10± 1 for GSC. These
final protocols are approximately 4 λ windows shorter on average than the protocol
obtained by the initial AASMC run (∼14 for both CSC and GSC). This not only
showcases the increased efficiency of sampling in λ space but also demonstrates the
independence of this method on the initial protocol generated by AASMC.

These short final protocol lengths present a somewhat surprising result, because one
would expect to need a higher number of intermediate windows for an alchemical
perturbation of this size. Indeed, many reported free energy protocols use a higher
number of intermediate λ windows for arguably simpler alchemical changes.140,162,169

The advantage of using FAST over conventional wisdom is therefore not only the
increased robustness and reproducibility of the method compared to manual tuning,
but also the increased relative amount of sampling time at λ = 1.

The main potential weakness of ST-based methods is the non-uniform sampling in λ

space. In this chapter we will consider the sampling ratio between λ = 1 and λ = 0,
N1
N0

, and the final relative effective decorrelation time, τ̂decorr (Equation 9.11), to gauge
the sampling reliability of FAST. As shown in Table 9.2, the CSC protocol results in a
less uniform sampling ratio between the two terminal λ values with N1

N0
= 1.63± 1.48,

compared to N1
N0

= 0.97± 1.11 for GSC. τ̂decorr is on the other hand comparable
between both potentials, with an average value of 1.37± 0.04 ps for CSC and
1.47± 0.07 ps for GSC (Table 9.3). Nevertheless, both protocols result in satisfactory
sampling ratios and effective decorrelation times, making FAST suitable for the
conformational exploration of this system.

9.4.2 T4-lysozyme

Another application of FAST is protein side-chain exploration. One such test case is
the Val111 rotation in T4-lysozyme L99A with bound p-xylene (PDB ID: 187L344),
which has been previously explored with other enhanced sampling methods95,244,269

and was also investigated in Chapter 8. Although this is a relatively simple test case, it
is a good way to compare the maximum efficiency of both soft-core potentials in this
setting.
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(A) trans (B) gauche(–) (C) gauche(+)

(D) Relative rotamer populations (E) Number of λ values over time

FIGURE 9.5: The three T4-lysozyme Val111 rotamers (Figures 9.5a to 9.5c), the mean
relative populations of these states obtained using FAST and H-REMD after 6 runs
(Figure 9.5d) and the average number of λ values over time (Figure 9.5e). The error

bars represent one standard deviation.

There are three characteristic conformers for Val111, shown in Figures 9.5a to 9.5c.
These have previously proven difficult to sample with regular MD,244 and therefore
enhanced sampling methods are needed. In this setting we can achieve this sampling
simply by completely alchemically decoupling the Val111 isopropyl group at λ = 0
with both FAST and H-REMD, as performed in Chapter 8.

As shown in Figure 9.5d, both the CSC and GSC protocols result in statistically
equivalent populations after 160 ns of sampling, with the dominant conformer being
the trans state at 72%± 7% and 77%± 9%, respectively. These results show that the
CSC protocol is slightly better converged in this case, similarly to the previous system.

Although both FAST protocols result in variances that are apparently higher than the
H-REMD ones, the initial H-REMD state can significantly affect the final populations
even after 160 ns of cumulative sampling over 40 λ values. For instance, the trans
conformer populations are 76%± 5% and 53%± 5%, if one starts from the trans and
gauche(–) states, respectively. Therefore, H-REMD results in a significant bias towards
the initial supplied conformer, meaning that there is insufficient decorrelation from
the initial coordinates. This problem is in contrast not observed when FAST is used,
since all of the sampling time is dedicated to a single replica. It follows that despite
the lower apparent H-REMD variance, there is a higher bias in the resulting
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population, and if all H-REMD simulations are considered together, their cumulative
standard deviation becomes 12%, which is higher than either of the FAST protocols.

The resulting round trips per nanosecond are 6.23± 0.25 for CSC and 3.88± 0.38 for
GSC, as shown in Table 9.1, suggesting that the CSC protocol is significantly more
efficient compared to GSC. In comparison, the H-REMD protocol results in only
1.57± 0.08 round trips, indicating that the worse-performing FAST protocol is still
more than twice as efficient as the unoptimised H-REMD protocol. This is evidenced
by the low final number of λ values: ∼6 in both cases compared to 9± 0 and 11± 1
initial λ values for CSC and GSC, respectively (Figure 9.5e), again showing that the
FAST procedure is largely independent of the initial protocol estimated by AASMC.

Similarly to the previous test case, the GSC protocol results in more uniform N1
N0

ratios
with an average of 0.93± 1.29 compared to 1.59± 1.26 for CSC (Table 9.2). However, a
higher τ̂decorr is observed for GSC: 2.31± 0.28 ps compared to 1.63± 0.05 ps for CSC
(Table 9.3). It can be therefore concluded that FAST with CSC is more efficient for this
test case than FAST with GSC, while H-REMD has a very low comparative efficiency
to both of the FAST protocols.

9.4.3 Protein Tyrosine Phosphatase 1B (PTP1B)

A practically important use case for enhanced sampling methods is bound ligand
conformer sampling. One such test case is PTP1B bound to a thiophene derivative
(PDB ID: 2QBS3). The rotation of the ligand 3-aminophenyl ring is a rare event whose
exploration would be desirable in e.g. binding free energy calculations. This results in
two alternative ligand conformers, shown in Figures 9.6a and 9.6b. Similarly to
Chapter 8, here we achieve this exploration by completely turning off the
3-aminophenyl ring at λ = 0.

As in the previous test cases, the CSC and GSC protocols result in statistically
equivalent populations (Figure 9.6c): 90%± 3% : 10%± 3% and 87%± 7% : 13%± 7%
with higher variance observed for the GSC protocol. Similar populations are observed
for H-REMD starting from state 1 and state 2: 91%± 4% : 9%± 4% and
89%± 3% : 11%± 3%, respectively, showing that in this case H-REMD provides
results of equivalent quality to the CSC protocol. All of these populations agree with
the AFE calculations, which result in populations of 88%± 2% : 12%± 2%. Similarly
to the terphenyl test case, AFE results in lower variance compared to the FAST—an
expected behaviour for a low number of conformers. As this number increases,
however, AFE calculations become increasingly more impractical. Furthermore,
obtaining conformational populations using AFE methods requires prior knowledge
of the conformers of interest—knowledge, which is not required by FAST and
H-REMD.
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(A) State 1 (B) State 2

(C) Relative rotamer populations (D) Number of λ values over time

FIGURE 9.6: The two thiophene derivative rotamers bound to PTP1B (Figures 9.5a
to 9.5c), the mean relative populations of these states obtained using FAST, H-REMD
and AFE calculations after 6 runs (Figure 9.6c) and the average number of λ values

over time (Figure 9.6d). The error bars represent one standard sample deviation.

Both FAST protocols result in a similar number of round trips per nanosecond:
2.29± 0.35 for CSC and 2.24± 0.27 for GSC (Table 9.1). These can be compared to
0.64± 0.08 for H-REMD, meaning that both FAST protocols result in a nearly fourfold
increase in efficiency. This behaviour is again explained by both CSC and GSC
resulting in an unexpectedly low total number of λ windows (Figure 9.6d): 8 in both
cases. This presents a significant improvement over the initial 13 (CSC) and 12 (GSC)
λ values obtained by AASMC and shows that decoupling a whole phenyl ring does
not necessarily require a large number of intermediate steps, as long as the decoupling
is performed optimally.

As in the previous systems, the N1
N0

ratio is less optimal for the CSC protocol, with a
mean value of 1.36± 1.53, compared to 0.92± 1.32 for GSC (Table 9.2). The average
τ̂decorr is statistically equivalent in both cases: 2.10± 0.36 ps for CSC versus 2.16± 0.21
ps for GSC. (Table 9.3). Therefore, both protocols have comparable performance for
this system, with the CSC protocol resulting in lower population variance and the
GSC protocol having more consistent N1

N0
ratios.
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(A) State 1 (B) State 2

(C) Ligand populations

FIGURE 9.7: The two TGF-β ligand rotamers (Figures 9.7a and 9.7b) and the mean
relative populations of these states obtained using the FAST and H-REMD after 6 runs

(Figure 9.7c). The error bars represent one standard sample deviation.

9.4.4 Transforming Growth Factor Beta (TGF-β)

The final test case combines the exploration of a torsional degree of freedom of a
ligand bound to transforming growth factor beta (TGF-β) and the nearby Ser82
rotamers. It is experimentally known (PDB ID: 4X2J346) that the 4-aminophenyl group
of the ligand occupies two alternative states with approximately equal occupancy
(Figures 9.7a and 9.7b) and that the Ser82 group has two alternative conformations
(Figures 9.8a and 9.8b). However, a related PDB structure of a more symmetric
3-aminophenyl ligand derivative (PDB ID: 4X2G346) was instead used to keep the
procedure consistent with the results in Chapter 8. As in Chapter 8, sampling
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(A) State 1 (B) State 2 (C) State 3

(D) Ser82 populations

FIGURE 9.8: The three TGF-β Ser82 rotamers (Figures 9.7a and 9.7b) and the mean
relative populations of these states obtained using FAST and H-REMD after 6 runs

(Figure 9.7c). The error bars represent one standard sample deviation.

enhancement was achieved by decoupling both the 3-aminophenyl ligand group and
the Ser82 hydroxymethyl group at λ = 0.

Both FAST protocols result in highly variable ligand populations (Figure 9.7c), with
state 1 being occupied at 21%± 35% using the CSC protocol and at 76%± 26% using
the GSC protocol. This high uncertainty is partially observed in the H-REMD runs,
where the simulations starting from state 1 stayed in it 95%± 6% of the time,
compared to 34%± 19% if state 2 is used as an intial state. Similarly to the
T4-lysozyme test case, we can see that initial structure biasing is an issue when
H-REMD is used and the cumulative variance of all H-REMD results over both initial
conformers is 34%, which is comparable to the CSC results.

The Ser82 populations are better converged for GSC than CSC (Figure 9.8d), with state
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(A) Cluster 1 (B) Cluster 2

(C) TGF-β ligand cluster populations (D) Number of λ values over time

FIGURE 9.9: The two TGF-β ligand clusters (Figures 9.9a and 9.9b), their transitions
over time (Figure 9.9c) and the average number of λ values over time (Figure 9.9d).

3 being occupied at 94± 3% and 82%± 25%, respectively. Although these results are
consistent between both protocols, they differ significantly from the H-REMD
simulations, where a higher variance is observed when both ligand state 1 and state 2
are simulated with Ser82 state 1.

These insufficiently converged results can be related to the low number of round trips:
only 0.09± 0.07 per nanosecond using the CSC protocol compared to 0.03± 0.02 with
the GSC protocol (Table 9.1). The H-REMD simulations result in similarly low
efficiency with 0.05± 0.03 round trips per nanosecond. Since the effective correlation
time was estimated to be 50± 25 ps (CSC) and 129± 67 ps (GSC), as shown in
(Table 9.3), it is clear that the instantaneous decorrelation assumption breaks down in
this case and kinetic barriers in λ space decrease the efficiency of the simulations.

Clustering analysis of the ligand triazanaphthalene ring centre of geometry relative to
the initial structure reveals the presence of two main ligand clusters, shown in
Figures 9.9a and 9.9b. When plotted over time for one of the FAST CSC simulations
(Figure 9.9c), it is revealed that the trappings in λ space are correlated with the
observed cluster: cluster 1 is more favourable at the lower λ values, while cluster 2 is
preferred at the fully coupled λ values. This behaviour readily explains the low
number of round trips, and it can be concluded a slow orthogonal rare event indeed
limits the mobility in λ space and results in a high effective decorrelation time.
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Unfortunately, determining orthogonal rare events a priori is not a straightforward
task, meaning that systems exhibiting such behaviour are likely to prove challenging
for FAST, since the low number of round trips inevitably implies low uniformity of
sampling. This is evidenced by the highly inconsistent N1

N0
ratios at 4.91± 5.94 for CSC

and 6.59± 27.84 for GSC (Table 9.2). Nevertheless, the optimisation procedure still
results in a relative increase of efficiency, where the initial AASMC λ values are
consistently decreased from ∼16 to 11 for CSC and 10 for GSC (Figure 9.9d). However,
this increase is completely overshadowed by the slow binding mode change.

9.5 Discussion

The above results show that FAST is an efficient general-purpose enhanced sampling
method of specific internal degrees of freedom, which readily extends the
functionality of AASMC to longer timescales. In all of the above test cases, FAST
significantly decreases the size of the initial alchemical protocols provided by AASMC,
resulting in a higher proportion of samples being drawn from λ = 1. This results in a
better reproducibility of the method, since manual protocol tuning is not required.

However, the choice of the functional form of the interpolation procedure is still a
factor which can impact reproducibility. We have shown that although both the CSC
and GSC protocols result in similar populations, they exhibit different efficiencies,
with GSC consistently resulting in higher dihedral population variance. Moreover, the
T4-lysozyme test case demonstrates that GSC can result in a significantly lower round
trip rate than CSC. The reason for this is likely suboptimal long-range phase space
overlap, which can be explained by the fact that the GSC potential does not always
accurately reproduce the real LJ potential, resulting in higher kinetic barriers in λ

space. This is also evidenced by the PTP1B test case, where the GSC protocol
produced populations with higher variance than the H-REMD protocol, even though
the number of round trips in the former setting was almost four times higher than the
latter.

Interestingly, however, GSC consistently produces more optimal N1
N0

ratios (i.e. closer
to unity) with lower standard deviations than CSC, where the latter consistently
produced samples more highly biased towards λ = 1. This is a surprising result, since
with infinite sampling and converged free energy values one would expect these
ratios to approach unity and there is no obvious reason why the sampling should be
biased in one direction in favour of another. Nevertheless, it appears that GSC is more
reliable in this regard, presumably due to its often smoother free energy profiles.362

It has also been demonstrated τdecorr appears to be a very useful metric for
determining unexpected kinetic barriers. For instance, it expectedly produces values
close to 1 ps in the solvated terphenyl test case, meaning that there is low effective
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correlation in a homogeneous environment. On the other hand, τdecorr is extremely
high in the case of TGF-β, which immediately hints at orthogonal slow degrees of
freedom which impact the sampling negatively. Therefore, τdecorr can be monitored in
real time to gauge the performance of the FAST sampler if needed.

TGF-β is a particularly interesting test case, since it results in a significantly higher
variance between different repeats compared to the other systems. Even though the
nature of the transformation is similar to the other test cases, a substantial increase in
τdecorr indicates that local exploration of phase space and λ space is not as efficient as
in the other test cases. As shown in the previous section, this is readily explained by
the several alternative binding modes the ligand adopts throughout the simulations.
Some of these modes are favourable only in a particular range of λ windows, resulting
in significant kinetic trapping and drastic decrease in sampling efficiency. Moreover,
any kinetic trapping due to binding modes away from λ = 1 indicates that these new
modes are not physically relevant and only decrease sampling efficiency to no benefit.
This demonstrates the undesirable impact of alchemical decoupling on sampling—it
can significantly affect the relative populations in an unexpected way.

Despite the high robustness of FAST on a range of systems, the above test cases show
the main weaknesses of the method: unexpected kinetic barriers in λ space, as well as
slow orthogonal degrees of freedom can significantly affect the sampling efficiency.
However, this is a problem which is not unique to FAST, but is more generally
relevant to all alchemical/tempering methods using a family of intermediate
distributions. Since the slow degrees of freedom are not always known in advance, it
will be therefore useful to develop a more general framework to improve long-range
phase space overlap either by optimising the functional form of the soft-core potential,
or by using e.g. restraint potentials which can help smooth the kinetic barriers in λ

space. Future work addressing these can therefore help alleviate suboptimal effective
decorrelation times.

9.6 Conclusion

A fully adaptive version of irreversible simulated tempering has been presented
(FAST), where the intermediate distribution protocol is adaptively optimised in real
time alongside the relative weights of the distributions. Validation on a variety of
systems containing small molecules shows that this method is highly efficient and
requires little prior knowledge.

We have also compared two soft-core interpolation methods: classical soft-core
potential (CSC) and Gaussian soft-core potential (GSC). In all of the test cases CSC
resulted in lower final distribution variance. Moreover, CSC exhibited higher round
trip rates in most cases, as well as lower effective decorrelation times. Nevertheless,
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more consistent sampling across λ values was observed for GSC, while CSC
consistently produced more samples at the distribution of interest (λ = 1) during the
160 ns of total simulation time.

Unforeseen kinetic barriers in the alchemical/temperature space and phase space
have been shown to be the main weakness of FAST, and, more generally,
alchemical/tempering methods. These have been observed in a protein-ligand system
with a slow binding mode transition (TGF-β). Future research will need to improve
the robustness of FAST towards orthogonal slow modes.

We now proceed to Chapter 10, where we will extend FAST to binding free energy
calculations with enhanced ligand sampling.
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Chapter 10

Fully Automatable Relative Binding
Free Energy Calculations with
Enhanced Sampling using
FAST/MBAR

10.1 Introduction

The fully adaptive framework presented in Chapter 9 has been described in the
context of sampling over several distributions, where one is typically interested in
only one reference distribution, with the other distributions providing increased
mobility of the degrees of freedom of interest. However, FAST is a very general
procedure which can be readily applied in a broader context to any ergodic discrete
Markov chain of states.

This chapter will show how this framework generalises to the context of relative
binding free energy calculations. Afterwards, these calculations will be combined with
the enhanced sampling protocol presented in Chapter 9, resulting in a hybrid
algorithm: FAST/MBAR. This will allow us to not only explicitly address the
sampling of certain degrees of freedom during free energy calculations, but also to
minimise the correlation of the resulting free energy difference to the initial crystal
structure. To do this, we will start with several preliminary theoretical considerations
which extend the methodology presented in Chapter 9 before applying the
FAST/MBAR algorithm on test cases of interest.
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(A) Ergodic Markov chain

(B) Non-ergodic Markov chain

FIGURE 10.1: An example of an ergodic/connected (Figure 10.1a) and a non-
ergodic/disconnected (Figure 10.1b) Markov chain.

10.2 Theoretical Considerations

10.2.1 Constructing the Markov Chain

The FAST method, described in Chapter 9, can be regarded as a black-box procedure
which automatically determines an interpolative mapping between two user-specified
fixed states. In the context of enhanced sampling, these two states were defined to
represent the Hamiltonian of interest and a Hamiltonian where a subset of the
interactions is completely decoupled. However, these states could also correspond to
two different ligands, as in the context of relative binding free energy calculations.
Furthermore, this framework can be readily generalised to the case of N states of
interest connected in an arbitrary way, the only requirement being that there are no
disconnected “islands” of states, i.e. the Markov chain is ergodic (Figure 10.1).

There are multiple ways to define the fixed states and their connectivity in a suitable
manner for a relative binding free energy calculation with enhanced sampling
(Figure 10.2). The simplest way to achieve this is by adding a single reference
decoupled state and connecting it to one of the ligands (Figure 10.2a). However, one
could conceivably add another reference state and connect it to the other ligand as
well (Figure 10.2b). Another scenario arises when both of these reference states have
the same Hamiltonian, in which case the corresponding Markov chain can form a
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(A) One linearly connected core

(B) Two linearly connected cores

(C) One cyclically connected core

(D) Multiple linearly connected cores

FIGURE 10.2: Examples of different Markov chains combining enhanced sampling
and ligand–ligand perturbations.

closed loop (Figure 10.2c). Finally, one can partition the enhanced sampling of many
degrees of freedom into several stages of increasing decoupling (Figure 10.2d).

In this chapter, we will opt for the simplest type of Markov chain, where a single
connection is made between the decoupled state and the ligand containing dummy
atoms, while the two perturbed ligands will be connected in a single-topology fashion
(Figure 10.2a). We will not consider cases where both ligands have dummy atoms, as
these can be always decomposed into two separate alchemical perturbations. In this
way, if the simulation starts at the decoupled state, the phase space volume relevant to
the next states is always strictly decreasing, since there are more configurational states
accessible to the noninteracting dummy atoms than to the fully coupled ones. This is
especially relevant for the initial adaptive alchemical sequential Monte Carlo
(AASMC) procedure, where it is important to minimise the sample diversity loss as
the simulation progresses. Moreover, this type of Markov chain minimises the number
of state connections, thereby minimising the computational effort dedicated to
adaptation and energy evaluation over all intermediate states.

Even though we only focus on a maximum of three fixed states, this framework can be
conceptually applied to an arbitrarily large amount of states. These could conceivably



164
Chapter 10. Fully Automatable Relative Binding Free Energy Calculations with

Enhanced Sampling using FAST/MBAR

represent different alchemical regions, effective temperatures, ligands, protonation
states, or hydration levels. While all of these considerations are of potential interest for
future work, they will not be addressed in this chapter.

10.2.2 Perturbing Harmonic Bonds

The FAST protocol presented in Chapter 9 only involved the perturbation of
nonbonded interactions and dihedral terms. While these considerations are sufficient
in the context of enhanced sampling, a single-topology relative binding free energy
calculation often requires at least one change in the harmonic bond and angle terms as
well. Of particular interest to us will be the harmonic bond terms Ubond, which are of
the form:

Ubond(r) = kr(r− req)
2 (10.1)

where r is the bond length, req is the equilibrium bond length and kr is the hamonic
force constant.

In practice, oscillations about the equilibrium bond length req have low amplitudes
caused by stiff force constants. This results in highly localised distributions,
reminiscent of their asymptotic limit, the Dirac delta distribution375 (corresponding to
fully constrained bond lengths). While perturbing the force field parameters is still a
valid procedure in this scenario, the high localisation of the distributions means that a
large number of intermediate states will be needed to interpolate between the two
endpoint equilibrium bond lengths. This can be particularly problematic when small
atoms are perturbed to large atoms. For example, changing a carbon-bonded
hydrogen to a bromine atom involves a bond length change as large as 0.85Å27 and
will as such require multiple intermediate states for sufficient overlap, thereby
reducing the efficiency of the FAST procedure.

Fortunately, one can take advantage of the high stiffness of kr, since in practice it
means that the remainder of the other much weaker forces do not significantly affect
the probability distribution of the bond length. This is a prime setting for using
specifically tailored MC moves to transform the bond distance independently of the
other degrees of freedom. Such transformations, if possible, are much more desirable,
since they can provide a direct mapping between two distributions (e.g. two normal
distributions, as shown in Appendix D) without much loss in information.

Although the probability distributions defined by the harmonic bond terms are not as
simple as the example in Appendix D, we can still use this intuition to construct a
reversible transformation which will enable us to reduce the number of alchemical
intermediates. In this context, we define reversible transformations T⃗i→j(x⃗i) of a
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sample x⃗i drawn from a probability distribution π(λi, x⃗) to obey the following identity
with respect to another probability distribution π(λj, x⃗):

x⃗j = T⃗i→j(x⃗i)

x⃗i = T⃗j→i(x⃗j)
(10.2)

This condition simply means that there is a one-to-one mapping between x⃗i and x⃗j,
given by T⃗(·). The subscripts will be omitted in the following discussion for
conciseness.

In practice, this requirement confines us to simple linear transformations in
configuration space, such as translation and rotation. For such transformations, we
can impose a type of detailed balance which relates concerted moves in configuration
and λ space:

π(λi, x⃗)pacc(λj, T⃗(x⃗)|λi, x⃗)dx⃗ = π(λj, T⃗(x⃗))pacc(λi, x⃗|λj, T⃗(x⃗))dT⃗(x⃗) (10.3)

where we have assumed equal proposal probabilities pprop(λj|λi) = pprop(λi|λj) for
brevity. This equation is also directly applicable to the case of skew detailed balance
(Equation 9.2).352 The corresponding Metropolis acceptance criterion
pacc(λj, T(x⃗)|λi, x⃗) is then:

pacc(λj, T⃗(x⃗)|λi, x⃗) = min

[
1,

π(λj, T⃗(x⃗))
π(λi, x⃗)

dT⃗(x⃗)
dx⃗

]

= min

[
1,

π(λj, T⃗(x⃗))
π(λi, x⃗)

|JT⃗(x⃗)|
] (10.4)

where |JT⃗(x⃗)| denotes the Jacobian determinant corresponding to the transformation
T⃗(x⃗). The usefulness of Equation 10.3 comes from the fact that the evaluation of the
potentially unfavourable π(λj, x⃗) is circumvented and is instead replaced by the more
favourable π(λj, T⃗(x⃗)). For a bond rescaling transformation, this means that the bond
length is changed to a more favourable value before evaluating π(λj, T⃗(x⃗)) and is
reverted back to the original bond length if the transition attempt is rejected.

In this chapter, the simplest type of bond rescaling transformation will be considered,
where the bond length is scaled by a constant scaling factor s, which is determined by
the ratio of the parameter-dependent equilibrium bond distances req at λi and λj:

s ≡
req(λj)

req(λi)
(10.5)
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In this scenario, it can be shown that |JT⃗(x⃗)| is equal to s3 (Appendix E). In practice,
one of the bond atoms will be chosen to be stationary, while the other atoms and the
rest of the molecule will be moved by this transformation. While this type of scaling is
obviously reversible, it is not expected to be useful in the case of ring bond
perturbations, since one cannot change the bond length without affecting the other
internal degrees of freedom, and thus the other energy terms. Therefore, this
procedure will only be used for rescaling bonds outside of rings, while any other
degrees of freedom will not be changed.

10.3 Methods

10.3.1 System Preparation and Simulation

All system preparation and simulation methods are identical to those described in
Chapter 9, where only the split protocol utilising the classical soft-core potential
(CSC)44 potential (Figure 9.3a) was used for all simulations with parameters a = 1,
b = 1, c = 6 and α = 0.5. All simulations were performed in triplicate. Two different
types of protocols were investigated for all of the systems: FAST with only two fixed
states corresponding to the fully-coupled ligands A and B, and FAST with enhanced
sampling, with the corresponding Markov chain shown in Figure 10.2a. In the case of
non-ring bond perturbations, all λ transitions were facilitated with bond rescaling, as
described in Section 10.2.2. During the bond rescaling procedure, the side of the bond
connected only to alchemically modified atoms was chosen to be mobile, while the
other side was kept static.

The FAST simulation procedure was the same as described in Chapter 9 using
OpenMMSLICER 3.0.0. The main difference was that all λ values were discretised to
three significant figures instead of two. The reason for this choice was the expected
increased number of intermediate λ values for the alchemical changes explored in this
chapter. In addition, harmonic restraints with force constants of 5 kcal/mol/Å2 each
were added to all non-perturbed ligand atoms during the equilibration stage of the
extended heat shock protein 90 (Hsp90) FAST/MBAR protocol in order to prevent a
ligand binding mode change. These procedures were repeated for both the bound and
solvated legs of the free energy calculations.

In the case of protein tyrosine phosphatase 1B (PTP1B), one of the ligand
perturbations investigated in Chapter 5 was used for FAST/MBAR validation. In this
case, an additional set of triplicate FAST/MBAR simulations was performed, where
each starting structure was taken from the 20 ns equilibrated structures reported in
Chapter 5.
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To compare FAST/MBAR to regular methods, triplicate alchemical free energy (AFE)
calculations were run for each system in both legs in GROMACS 2018.4 using the
same procedure described in Chapter 8. The free energy values corresponding to the
PTP1B system with and without equilibration were directly taken from Chapter 5.

10.3.2 Topology

All alchemical transformations were performed in a single-topology fashion. The
implementation of these topologies in OpenMM used code from Perses,300,376

subsequently modified for the purposes of this study and included in
OpenMMSLICER. In the implementation used hereafter, five different types of
alchemical variables λ are used, each associated with a particular type of interaction:
λbonds, λangles, λdihedrals, λsterics and λelectrostatics. In all cases, the force field parameters
(force constants, equilibrium distances and charges) are linearly interpolated between
the two end values as a function of the relevant alchemical variable. The only
exception are the dihedral terms, where their corresponding energies, rather than the
associated parameters, are linearly interpolated. Finally, the parameters of the
nonbonded 1–4 interactions (force constants, equilibrium distances and charge
products) are also interpolated in a linear fashion. All dummy atoms assume the
equilibrium bonded values of their interacting counterparts, meaning that only the
force constants and charges/charge products are scaled in these cases. They are then
introduced into the system using a nonbonded soft-core potential with the same
functional form as described in [44].

In the following simulations, λbonds, λangles, λdihedrals and λsterics were always changed
simultaneously and independently of λelectrostatics (split protocol, Figure 9.3a).
However, a generalised alchemical variable λ will be instead reported in the text for
brevity, following the convention in Chapter 9. For the three-state FAST/MBAR
protocols, λ corresponds to the common core at λ = 0 and to the fully coupled ligands
A and B at λ = 0.5 and λ = 1 respectively. Any interpolation between these states is
then performed identically to the two-state protocols.

10.3.3 Analysis

All reported time-dependent free energy distributions were obtained after 10-fold
bootstrapping of the decorrelated samples as described in Chapter 9. The effective
decorrelation time τdecorr used for removing correlated samples was obtained from its
last estimate during the FAST/MBAR run. This procedure was repeated for both the
bound and solvated legs. The median of all final bootstrapped free energy values over
all replicates of the enhanced solvated leg FAST/MBAR protocol was then
consistently subtracted from all bound legs for this system in order to report relative
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binding free energy values. Since in all cases the solvated legs displayed an order of
magnitude lower variability than the bound legs, all of the observed variance has been
attributed to the much more practically interesting bound legs.

To determine the dependence of the calculated ∆∆G−◦ values on different ligand
conformers, dihedral clustering was performed on the marginal distributions of each
relevant ligand torsion at all λ values. All cluster boundaries were defined manually
before extracting only the relevant simulation frames belonging to a particular cluster.
If more than one relevant mode was observed, these were then used to obtain
bootstrapped cluster-dependent free energies as described in the previous paragraph.
The kinetics and the slowest implied timescales obtained from Markov state models
(MSMs) followed the same procedure described in detail in Chapter 6. In almost all
cases the lag time for reporting the implied timescales was chosen to be 50 ps. The
only exception was the kinetic analysis corresponding to the ligand ethyl group
rotation in Hsp90, where a lag time of 20 ps was instead used due to the fast
substituent motion and poor MSM accuracy at longer lag times.

In two cases (Hsp90 and PTP1B) clustering of the ligand common core was performed
to investigate the dynamics of some unenhanced rare events over time. The method
used to perform this clustering followed the procedure used on the transforming
growth factor beta (TGF-β) ligand common core described in Chapter 9. The atoms
used to obtain the centre of geometry were chosen to be the six dihydroxybenzene
ring atoms (Hsp90) and the five thiophene ring atoms (PTP1B).

In some cases, the Kruskal–Wallis rank-based test of statistical significance was used
to compare several groups of ∆∆G−◦ values. This test verified the null hypothesis that
the mean ranks of the samples drawn from each of the groups are the same, and the
resulting p-values obtained using SciPy343 were accordingly reported. All other
aspects of the analysis, such as the efficiency metrics followed the same procedures
described in Chapter 9.

10.4 Results

10.4.1 Coagulation Factor Xa (FXa)

The first test case for validating FAST/MBAR is coagulation factor Xa (FXa) bound to
a medium-sized ligand (PDB ID: 1LQD4), where a fluoride group is perturbed to a
methyl group (Figures 10.3b and 10.3c). In the enhanced FAST/MBAR protocol, the
two torsions closest to the perturbed group, as well as an additional distal hydroxide
torsion, were explicitly decoupled as well (Figure 10.3a). The latter torsion was added
purely for demonstrative purposes, as it is expected to be straightforward to sample
with alchemical methods without much performance penalty.
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Replicate Total

System Enhanced 1 2 3 Average St. dev.

FXa
No 35.99 35.48 36.77 36.08 0.65
Yes 0.33 0.38 0.36 0.35 0.02

Thrombin
No 20.41 21.23 17.05 19.56 2.21
Yes 0.16 0.13 0.20 0.16 0.04

Hsp90
No 3.00 4.51 3.04 3.52 0.86
Yes 0.12 0.06 0.13 0.10 0.04

PTP1B w/o
Equilibration

No 1.51 2.01 1.11 1.55 0.45
Yes 0.11 0.07 0.07 0.08 0.02

PTP1B w/
Equilibration

No 0.84 2.13 1.66 1.54 0.65
Yes 0.06 0.04 0.11 0.07 0.04

TABLE 10.1: The number of round trips per nanosecond for each of the systems across
different replicates and FAST/MBAR protocols. The averages and the corresponding

standard deviations are also given.

Replicate Total

System Enhanced 1 2 3 Average St. dev.

FXa
No 0.93 0.76 0.76 0.81 1.12
Yes 3.30 1.26 2.81 2.27 1.68

Thrombin
No 1.47 2.68 1.92 1.96 1.35
Yes 2.36 6.36 1.83 3.02 1.93

Hsp90
No 2.24 0.89 1.62 1.48 1.60
Yes 3.56 0.27 3.50 1.51 4.36

PTP1B w/o
Equilibration

No 0.41 0.75 1.08 0.69 1.64
Yes 0.37 0.81 2.09 0.86 2.38

PTP1B w/
Equilibration

No 3.76 0.82 0.58 1.22 2.70
Yes 1.66 3.85 2.21 2.42 1.53

TABLE 10.2: The fraction of total samples between λ = 1 and λ = 0 for each of the
systems across different replicates and FAST/MBAR protocols. The geometric aver-

ages and the corresponding geometric standard deviations are also given.

Replicate Total

System Enhanced 1 2 3 Average St. dev.

FXa
No 1.14 1.15 1.14 1.15 0.01
Yes 5.45 5.45 6.30 5.73 0.49

Thrombin
No 1.32 1.29 1.34 1.32 0.02
Yes 14.62 13.91 11.13 13.22 1.84

Hsp90
No 3.25 2.34 3.16 2.92 0.50
Yes 9.38 21.80 8.97 13.38 7.29

PTP1B w/o
Equilibration

No 2.71 1.97 3.76 2.81 0.90
Yes 5.03 8.63 7.85 7.17 1.90

PTP1B w/
Equilibration

No 4.82 1.87 2.50 3.06 1.56
Yes 2.98 3.49 1.87 2.78 0.83

TABLE 10.3: The final measured τ̂decorr in ps for each of the systems across different
replicates and FAST/MBAR protocols. The averages and the corresponding standard

deviations are also given.
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FIGURE 10.3: The common core of the FXa ligand with dummy atoms and bonds
in red (Figure 10.3a), the two ligands constituting the relative free energy perturbation
(Figures 10.3b and 10.3c) and the bootstrapped ∆∆G−◦ estimates corresponding to both
FAST/MBAR protocols over time (Figure 10.3d). In Figure 10.3d, the median ∆∆G−◦

is plotted over a range of timesteps with an associated error bar determined by the
bootstrapped mean absolute deviation (MAD), while ∆∆G−◦ determined by each AFE

repeat is shown as a separate red line.

The behaviour of the FAST/MBAR protocol with and without enhanced sampling
shows a clear time-dependent trend (Figure 10.3d). At short timescales (20 ns), the
median free energy discrepancy between both protocols is 0.67 kcal/mol, while at
longer timescales (160 ns), this difference decreases to 0.12 kcal/mol. In addition, the
values obtained by AFE calculations are comparable to the FAST/MBAR protocol
without extra sampling after 20 ns, with median difference of 0.00 kcal/mol. In this
way, the unenhanced FAST/MBAR protocol outputs free energy values consistent
with AFE calculations, before slowly converging to the values predicted by the
enhanced FAST/MBAR protocol. This suggests that the rare events explicitly sampled
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(A) Cluster 1 (B) Cluster 2 (C) Cluster 3

(D) Cluster ∆∆G−◦ for torsion 2

FIGURE 10.4: Three different clusters corresponding to torsion 2 in the FXa lig-
and (Figures 10.4a to 10.4c) and their respective ∆∆G−◦ values obtained from both
FAST/MBAR protocols (Figure 10.4d). The orange lines represent the median of the
total dataset, the boxes include the interquartile range, while the whiskers extend
to the 5th and 95th percentiles. Each data point represents the median bootstrapped
value, and the error bars extend between the minimum and maximum bootstrapped

values.

by the enhanced protocol are explored by the unenhanced one simply by virtue of
long-timescale molecular dynamics (MD) sampling.

Analysis of the obtained ∆∆G−◦ values from different ligand conformers reveals that
torsion 2, shown in Figure 10.3a, results in the highest free energy discrepancies. Its
three different modes (Figures 10.4a to 10.4c) result in significant free energy
differences (Kruskal–Wallis p-value≪ 0.001) with median values of -0.08, 0.29 and
-0.35 kcal/mol, respectively (Figure 10.4d), indicating that an unfavourable starting
conformer can result in a significant free energy bias if the ligand sampling is poor, as
is often the case for short-timescale AFE simulations. MSM analysis of torsion 2
reveals that explicit enhancement results in an approximately 5-fold decrease of its
slowest implied timescale of the transition (from 4.29± 0.65 ns to 0.86± 0.08 ps),
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indeed confirming that this torsion is the main source of short-timescale discrepancies
between the two protocols. While implied timescales of ∼4 ns are not accessible to the
AFE protocol used in this study, they can still be readily explored by the unenhanced
FAST/MBAR protocol over 160 ns, which is why the two FAST/MBAR protocols have
a significantly better agreement at these longer timescales.

Both FAST/MBAR protocols require a small number of λ values, with the unenhanced
protocol converging to only 3± 0 final values, compared to 5± 0 values generated by
the initial AASMC procedure. In contrast, the optimal enhanced FAST/MBAR
protocol has 13± 3 λ values compared to 21± 1 windows generated by AASMC.
Similarly to the results in Chapter 9, it can be seen that the adaptive protocol
optimisation procedure is independent of the initial AASMC protocol and generates
the shortest possible λ schedules, with the perturbation of a fluoride to a methyl
group only requiring one intermediate λ window. This also shows that the bond
rescaling routine is also extremely efficient at reducing the number of intermediates
when the bond length is changed.

The efficiency of the protocols is reflected by the round-trip rates per nanosecond:
36± 1 for the unenhanced protocol and 0.35± 0.02 for the enhanced protocol,
respectively (Table 10.1). Despite the former protocol being 100 times less efficient
than the latter, this round-trip rate is still satisfactory over the timescales studied (160
ns). While this 100-fold difference in efficiency can be largely attributed to the longer λ

protocols when some of the torsions are explicitly enhanced, the effective
decorrelation time τ̂decorr for the enhanced protocol is still ∼5 times higher: 5.73± 0.49
ps compared to 1.15± 0.01 ps for the unenhanced one (Table 10.3). Therefore, the
addition of extra sampling creates an additional kinetic barrier in λ space which
increases τdecorr. This observation is also supported by the higher deviation from unity
of the ratio of samples between λ = 1 and λ = 0, N1

N0
, for the enhanced protocol:

2.27± 1.68 versus 0.81± 1.12 for the unenhanced protocol (Table 10.2).

10.4.2 Thrombin

Thrombin bound to a medium-sized ligand is another system which constitutes a
practically relevant test case for FAST/MBAR (PDB ID: 2ZFF377). Let us consider the
simple perturbation of a methyl group to an ethyl group, where the enhanced
FAST/MBAR protocol explicitly handles the rotation of the two torsions closest to the
alchemical perturbation (Figures 10.5a to 10.5c). In this way we will be able to compare
the quality of sampling of the tolyl ring between both FAST/MBAR protocols.

The free energy results from both FAST/MBAR protocols closely follow the behaviour
observed in the FXa test case. Here, the median free energy difference between both
protocols after only 20 ns of sampling is 0.81 kcal/mol, decreasing to 0.13 kcal/mol
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FIGURE 10.5: The common core of the thrombin ligand with dummy atoms and bonds
in red (Figure 10.5a), the two ligands constituting the relative free energy perturbation
(Figures 10.5b and 10.5c) and the bootstrapped ∆∆G−◦ estimates corresponding to both
FAST/MBAR protocols over time (Figure 10.5d). In Figure 10.5d, the median ∆∆G−◦ is
plotted over a range of timesteps with an associated error bar determined by the boot-
strapped MAD, while ∆∆G−◦ determined by each AFE repeat is shown as a separate

red line.

after 160 ns (Figure 10.5d). Similarly, the AFE results agree well with the unenhanced
FAST/MBAR protocol after 20 ns with a median difference of 0.07 kcal/mol. In this
way, it can again be seen that FAST/MBAR at shorter timescales closely follows the
AFE results before eventually approaching the free energy value obtained by the
enhanced protocol. This again suggests the presence of a slow transition to a more
thermodynamically relevant state which is not captured by short-timescale sampling.

The main source of these free energy discrepancies torsion 1 in Figure 10.5a, which has
two modes (Figures 10.6a and 10.6b) with associated median ∆∆G−◦ values of 1.00 and
0.01 kcal/mol, respectively (Figure 10.6c). This significant difference (Kruskal–Wallis
p-value≪ 0.001) once again shows that the choice of initial conformer introduces
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(A) Cluster 1 (B) Cluster 2

(C) Cluster ∆∆G−◦ for torsion 1

FIGURE 10.6: Two different clusters corresponding to torsion 1 in the thrombin lig-
and (Figures 10.6a and 10.6b) and their respective ∆∆G−◦ values obtained from both
FAST/MBAR protocols (Figure 10.6c). The orange lines represent the median of the to-
tal dataset, the boxes include the interquartile range, while the whiskers extend to the
5th and 95th percentiles. Each data point represents the median bootstrapped value,
and the error bars extend between the minimum and maximum bootstrapped values.

non-negligible bias and adequate sampling is required for reliable free energy
calculations. Similarly to FXa, the kinetics of this torsion are substantially accelerated
by explicit sampling, with the slowest implied timescale being 26.04± 9.27 ns and
0.94± 0.11 ns for the unenhanced and enhanced FAST/MBAR protocols, respectively.
Despite the much higher torsional kinetic barrier compared to the one observed for
FXa, it is clear that this long implied timescale can still be explored by the unenhanced
160 ns FAST/MBAR protocol, even if the sampling is not as efficient as in the
explicitly enhanced protocol. In this way, this test case once again demonstrates the
sampling advantage of FAST/MBAR over conventional AFE calculations.
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The protocol efficiency of both FAST/MBAR schedules is again demonstrably higher
than the initial protocols output by AASMC. For FAST/MBAR without explicit
sampling enhancement, the final average protocol length is 4± 0 λ windows,
compared to 7± 1 initial λ values. Similarly, the enhanced FAST/MBAR protocol only
needs an average of 12± 2 λ windows, as opposed to 18± 1 intermediates output by
AASMC. This behaviour is comparable to FXa, once again demonstrating the
parsimony of the protocol optimisation procedure.

As expected, the shorter protocols of the unenhanced FAST/MBAR algorithm result in
high round-trip rates per nanosecond: 20± 2, versus 0.16± 0.04 for the enhanced
FAST/MBAR protocol (Table 10.1), again showing a two orders of magnitude
difference in efficiency. Although the average round-trip time of the FAST/MBAR
protocol without explicit sampling enhancement is close to the one predicted by the
protocol optimisation procedure with an average τ̂decorr of only 1.32± 0.02 ps, the
enhanced protocol exhibits a much higher effective correlation with τ̂decorr of
13.22± 1.84 (Table 10.3), indicating the presence of substantial kinetic barriers in λ

space introduced by the extra sampling. Unsurprisingly, the less efficient protocol also
exhibits a larger N1

N0
with a geometric mean of 3.02± 1.93 compared to 1.96± 1.35 for

the unenhanced protocol (Table 10.2).

10.4.3 Heat Shock Protein 90 (Hsp90)

The next test case for FAST/MBAR is Hsp90 bound to a ligand containing three rings
(PDB ID: 5J64378). Here we consider the perturbation of a fluoride group to an ethyl
substituent, with the enhanced FAST/MBAR protocol exploring the torsion closest to
the perturbation, as well as the simple dihedral rotations of two hydroxyl groups
(Figures 10.7a to 10.7c). This system has been previously considered in the context of
nonequilibrium free energy calculations, where it was found that rare binding site
events can drastically hinder the sampling efficiency thereof.379

In contrast to the previous test cases, the behaviour of the free energy estimates of
both FAST/MBAR protocols over time shows poor convergence, with a final free
energy MAD of 1.30 and 0.60 for the enhanced and unenhanced protocols,
respectively (Figure 10.7d). In this case, the median free energy deviation between
both protocols is 0.55 kcal/mol after 20 ns, increasing to 0.70 kcal/mol after 160 ns.
Nevertheless, the free energy estimates by AFE calculations yield values closer to the
unenhanced protocol (0.21–0.23 kcal/mol) at both timescales—behaviour which is
consistent with the previous test cases.

The main source of the increased variability in the estimated free energies is one of the
enhanced FAST/MBAR simulations, which results in a final free energy difference of
-1.78 kcal/mol. Correlated with this behaviour is the kinetic trapping of this
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FIGURE 10.7: The common core of the Hsp90 ligand with dummy atoms and bonds
in red (Figure 10.7a), the two ligands constituting the relative free energy perturbation
(Figures 10.7b and 10.7c) and the bootstrapped ∆∆G−◦ estimates corresponding to both
FAST/MBAR protocols over time (Figure 10.7d). In Figure 10.7d, the median ∆∆G−◦ is
plotted over a range of timesteps with an associated error bar determined by the boot-
strapped MAD, while ∆∆G−◦ determined by each AFE repeat is shown as a separate

red line.

simulation in λ space which deteriorates the sampling quality (Figure 10.9). These
kinetic barriers are caused by slow transitions of the common core, observed at
decoupled λ values (0 ≤ λ ≤ 0.5), resulting in three main common-core conformers
(Figures 10.9a to 10.9c). Since these binding modes are not observed at higher λ

values, it can be deduced that these transitions are promoted by the increased mobility
at lower λ values, resulting in kinetically trapped physically irrelevant states which
create a bottleneck in the simulation. Since the states relevant for the free energy
estimation (0.5 ≤ λ ≤ 1.0) are not sampled after ∼50 ns, it can be conjectured that the
anomalous free energy behaviour of this simulation is primarily caused by these rare
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(A) Cluster 1 (B) Cluster 2

(C) Cluster ∆∆G−◦ for torsion 1

FIGURE 10.8: Two different clusters corresponding to torsion 1 in the Hsp90 lig-
and (Figures 10.8a and 10.8b) and their respective ∆∆G−◦ values obtained from both
FAST/MBAR protocols (Figure 10.8c). The orange lines represent the median of the to-
tal dataset, the boxes include the interquartile range, while the whiskers extend to the
5th and 95th percentiles. Each data point represents the median bootstrapped value,
and the error bars extend between the minimum and maximum bootstrapped values.

events. These observations are consistent with those in [379], where the authors
describe concerted ligand transitions and binding site hydration changes to be the
main source of the decreased efficiency of the free energy estimation for this
protein–ligand system.

In contrast to the previous test cases, not much mobility in the torsional ligand
degrees of freedom is observed during the unenhanced protocol, with only the ethyl
group torsion (Figure 10.7a) exhibiting transitions with implied timescales of
0.10± 0.02 ns and 0.92± 0.26 ns for the unenhanced and the enhanced FAST/MBAR
protocols, respectively. Although the two modes of this torsion (Figures 10.8a
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(A) Cluster 1 (B) Cluster 2 (C) Cluster 3

(D) Hsp90 ligand cluster populations

FIGURE 10.9: The three ligand common core clusters (Figures 10.9a to 10.9c) and their
transitions in λ space over time (Figure 10.9d) during the outlier simulation in Fig-

ure 10.7d.

and 10.8b) have significantly different median ∆∆G−◦ values of 0.93 and -0.18
kcal/mol, respectively (Figure 10.8c), much of the variance is still unexplained by this
transition and likely related to various nonbonded interactions between the ligand
and the solvated protein. While the enhanced protocol also promotes the rotation of
the fluorophenyl ring (Figure 10.7a) and results in observable transitions with an
implied timescale of 0.66± 0.04 ns, no reliable cluster-based free energy analysis can
be performed in this case due to the low populations of this conformer at λ = 1.
Because of these low populations, the extra sampling provided by the enhanced
protocol does not significantly improve the quality of the estimated ∆∆G−◦ values over
the unenhanced FAST/MBAR protocol for this system.

Despite the observed decrease in the efficiency of FAST/MBAR compared to the
previous test cases, the alchemical protocols are of similar quality to FXa and
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thrombin, with the unenhanced FAST/MBAR protocol containing 5± 0 λ values in
total, compared to 10± 0 λ values output by the AASMC routine. Similarly, the
enhanced FAST/MBAR protocol reduces the λ values from 26± 1 to 17± 4, which
behaviour is also comparable to the previous test cases.

The observed round-trip rate per nanosecond is 3.52± 0.86 for the unenhanced
protocol, compared to an average of 0.10± 0.04 for the enhanced one (Table 10.1).
These values are consistent with τ̂decorr: 2.92± 0.50 ps and 13.38± 7.29 ps for the
unenhanced and enhanced protocol, respectively (Table 10.3). While the added extra
sampling decreases the efficiency substantially, these results are still consistent with
the previous test cases. The main exception is the kinetically trapped outlier described
above, which has a much higher τ̂decorr of 21.80 ps. A more interesting difference is the
lower efficiency of the unenhanced protocol compared to the previous test cases.
Although this difference can be partially explained by the slightly higher complexity
of the alchemical perturbation compared to the previous test cases, it is also likely
influenced by the kinetic trapping in λ space discussed above. Nevertheless, the N1

N0

ratios are comparable to the previous systems with values of 1.48± 1.60 and
1.51± 4.36 for the unenhanced and enhanced FAST/MBAR protocols, respectively.

10.4.4 Protein Tyrosine Phosphatase 1B (PTP1B)

The final test case is taken from Chapter 5, where it was demonstrated that
significantly different ∆∆G−◦ values can be observed after an AFE calculation with a
short (100 ps) or a long (20 ns) equilibration protocol. The perturbation of choice
(PTP1B, pair 2, PDB ID: 2QBP3), shown in Figures 10.10b and 10.10c, exhibits large
median differences between both equilibration protocols (larger than 2 kcal/mol). To
investigate the sensitivity of FAST/MBAR to the equilibration length, two groups of
simulations were run: a triplicate run starting from the unequilibrated structure and a
separate simulation starting from each of the three pre-equilibrated structures
generated in Chapter 5. In both scenarios, the enhanced FAST/MBAR protocol was
designed to improve the sampling of the four closest torsions to the perturbed groups.
To achieve this, the larger part of the ligand was alchemically decoupled from the rest
of the system at λ = 0 (Figure 10.10a).

Interestingly, the FAST/MBAR protocol without enhanced sampling results in less
variable free energy values for the pre-equilibrated structures, compared to the
unequilibrated ones, with a MAD of 0.25 kcal/mol and 0.80 kcal/mol, respectively
(Figures 10.10d and 10.10e). Furthermore, this difference in MAD is significant at the
5% level with a Kruskal–Wallis p-value of 0.05 when comparing the two respective
populations of inter-replicate absolute deviations. This is a surprising result, since the
extra decorrelation provided by the additional equilibration is expected to introduce
uncertainty into the free energy estimates, instead of reducing it. Nevertheless,
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FIGURE 10.10: The common core of the PTP1B ligand with dummy atoms and bonds
in red (Figure 10.10a), the two ligands constituting the relative free energy perturba-
tion (Figures 10.10b and 10.10c) and the bootstrapped ∆∆G−◦ estimates corresponding
to both FAST/MBAR protocols over time for the unequilibrated (Figure 10.10d) and
the equilibrated (Figure 10.10e) structures. In Figure 10.10d, the median ∆∆G−◦ is plot-
ted over a range of timesteps with an associated error bar determined by the boot-
strapped MAD, while ∆∆G−◦ determined by each AFE repeat is shown as a separate

red line.

comparison between the results obtained from the unequilibrated and the equilibrated
protocol yields a high Kruskal–Wallis p-value of 0.28, due to the large inter-replicate
MAD, meaning that the two sets of free energy values are statistically
indistinguishable. After 160 ns, both types of unenhanced FAST/MBAR simulations
result in comparable MAD of 0.19 kcal/mol (unequilibrated) and 0.21 kcal/mol
(equilibrated), respectively and a Kruskal–Wallis p-value of 0.83, again indicating the
statistical indistinguishability of both sets of simulations.

The enhanced FAST/MBAR protocol results in similar behaviour, with the
unequilibrated structures resulting in higher variability than the equilibrated ones
after 20 ns of simulation (0.90 kcal/mol versus 0.40 kcal/mol MAD). The trend is
again reversed after 160 ns, with inter-replicate MADs of 0.24 and 0.64 kcal/mol for
the unequilibrated and the equilibrated simulations, respectively (Figures 10.10d
and 10.10e). However, in this case the difference can be explained by a single outlier,
which reaches values as low as -4 kcal/mol during the course of the simulation, or ∼2
kcal/mol less than the lowest free energy observed in any of the other simulations.
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(A) Cluster 1 (B) Cluster 2 (C) Cluster 3

(D) Unequilibrated cluster ∆∆G−◦ for torsion 4 (E) Equilibrated cluster ∆∆G−◦ for torsion 4

FIGURE 10.11: Three different clusters corresponding to torsion 4 in the PTP1B lig-
and (Figures 10.11a to 10.11c) and their respective ∆∆G−◦ values obtained from both
FAST/MBAR protocols for the unequilibrated (Figure 10.11d) and the equilibrated
(Figure 10.11e) structures. The orange lines represent the median of the total dataset,
the boxes include the interquartile range, while the whiskers extend to the 5th and 95th

percentiles. Each data point represents the median bootstrapped value, and the error
bars extend between the minimum and maximum bootstrapped values.

This behaviour is reminiscent of the Hsp90 outlier discussed in the previous section
and is analogously expected to be caused by an unenhanced rare event.

As with the Hsp90 test case, this outlier is kinetically trapped in λ space, thereby
reducing the reliability of the estimated free energies (Figure 10.12). The kinetic
barriers are again correlated with three main common-core conformers (Figures 10.12a
to 10.12c), whose transitions are again observed at highly decoupled states. In this
case, however, the conformers are significantly sampled at λ = 0.5, which corresponds
to the fully coupled carbonyl derivative. Therefore, these conformers are much more
energetically favourable for one of the ligands, thereby creating a bottleneck in the
part of the protocol responsible for the relative free energy calculation (0.5 ≤ λ ≤ 1.0).

Analysis of the free energy values as a function of the torsional degrees of freedom is
difficult for this highly flexible ligand (Figure 10.10a), due to the large number of
possible conformers, leading to a large uncertainty in the estimated ∆∆G−◦ values. The
degree of freedom showing the highest per-cluster free energy convergence is torsion
4 (Figure 10.10a), which has three associated modes (Figures 10.11a to 10.11c). These
three clusters have significantly different respective ∆∆G−◦ values of 0.08, -0.20 and
0.58 kcal/mol for the unequilibrated protocol, and 0.44, -0.27 and 1.44 kcal/mol for
the equilibrated protocol (Figures 10.11d and 10.11e). There is large uncertainty in all
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(A) Cluster 1 (B) Cluster 2 (C) Cluster 3

(D) PTP1B ligand cluster populations

FIGURE 10.12: The three PTP1B ligand common core clusters (Figures 10.12a to 10.12c)
and their transitions in λ space over time (Figure 10.12d) during the outlier simulation

in Figure 10.10e.

per-cluster ∆∆G−◦ values, primarily caused by undersampling of this particular degree
of freedom (cluster 3) and increased sampling of orthogonal degrees of freedom
(clusters 1 and 2, enhanced protocol). Nevertheless, comparison between the median
∆∆G−◦ values of cluster 1 and cluster 2 for both the unequilibrated and equilibrated
FAST/MBAR protocols without sampling enhancement yields differences of 0.31 and
0.41 kcal/mol, respectively (Kruskal–Wallis p-value≪ 0.001), showing that even this
distal degree of freedom can have a significant effect on the obtained free energy
values. The slowest and most significantly enhanced degree of freedom, however, is
torsion 3, with an implied timescale of 0.53± 0.04 ns after enhancement, compared to
9.56± 5.39 ns without enhancement (unequilibrated protocol), as determined by the
MSM analysis. These results again show that even high kinetic barriers with implied
timescales on the order of 10 ns can be readily explored by the unenhanced protocol
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over the range of 160 ns, thereby demonstrating the robustness of FAST/MBAR
towards the initial conformer used compared to standard AFE calculation methods.

This test case is significantly more challenging than the previous test cases, as
evidenced by the high number of required λ windows. Their initial number can be as
high as 34 for the enhanced protocol and 13 for the unenhanced protocol. This large
number of intermediates is caused by a combination of a challenging decoupling
procedure of a large part of the ligand and a relative perturbation involving
transformations in five of the bonded terms, arising from the atom type change of the
sulfonamide sulfur and nitrogen atoms. Although the FAST protocol optimisation
procedure reduces the average number of λ windows to 9–11 for the unenhanced
protocol in both the pre-equilibrated and unequilibrated simulations, a more peculiar
behaviour is observed for the enhanced protocol. In this case, the λ values of the
simulations starting from the equilibrated structures are reduced to 25± 2, while all of
the unequilibrated simulations retain the same protocol as the initial AASMC
procedure throughout the simulations, resulting in longer protocols (33± 2 λ values).
While this observation is clearly caused by the inability of the optimiser to find a more
favourable protocol and it can be partially explained by the high complexity of the
protocols, it is not obvious why the optimisation procedure is successful for all of the
pre-equilibrated simulations. A possible explanation is that the unequilibrated
structures result in more unfavourable AASMC protocols, which makes finding a new
minimum easier for the protocol optimisation procedure.

Similarly to the previous test cases, the increased complexity of the protocols is
reflected by the reduced round-trip rate per nanosecond: 0.08± 0.03 and 1.61± 0.45
for the enhanced and unenhanced FAST/MBAR protocols, respectively (Table 10.1).
The effective decorrelation time is comparable to the previous test cases with
8.64± 4.70 ps for the protocol with extra sampling and 2.75± 0.69 ps for the
unenhanced protocol (Table 10.3). In all cases the values are comparable between the
equilibrated and unequilibrated simulations, with the sole exception of the previously
discussed outlier in Figure 10.10e, which exhibits τ̂decorr of 17.62 ps. As in the previous
systems, the N1

N0
ratios are satisfactory for both protocols, with values of 0.92± 2.15 for

the unenhanced protocol and 1.44± 2.31 for the enhanced protocol and (Table 10.2).

10.5 Discussion

The above test cases demonstrate that the FAST framework is not only capable of
enhancing the sampling of specific degrees of freedom, as shown in Chapter 9, but can
also be readily employed in the context of binding free energy calculations with or
without extra targeted sampling. This makes FAST/MBAR a robust, flexible, highly
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reproducible and fully automatable alternative to standard free energy calculation
methods.

Comparing the behaviour between FAST/MBAR free energy calculations with and
without enhanced sampling is of particular interest, since it can directly show the
impact of enhanced sampling on the efficiency and quality of the free energy
calculations. The FXa and thrombin results show a somewhat expected trend: at
relatively short timescales (∼20 ns), the free energy values obtained from the FAST
simulations without extra sampling are similar to the short AFE calculations, while at
longer timescales, they tend towards the values predicted by the enhanced protocol.
This observation is readily explained by the fact that at longer timescales even higher
torsional kinetic barriers can be surmounted with regular MD.

In contrast to FXa and thrombin, the Hsp90 results show large variance in the
obtained free energy values and this variance increases over time, particularly for the
enhanced protocol. Normally this would be an unexpected result, since the apparent
complexity of the ligand is comparable to the other better-behaved test cases.
However, it is well-known that Hsp90 can be a problematic system for molecular
simulations, due its high mobility and its closed binding site which makes binding site
ligand and water sampling significantly more challenging.114,230,379 Indeed, it was
shown above that the main free energy outlier is caused by slow transitions of the
common core at highly decoupled λ values—an observation which is reminiscent of
the kinetically trapped TGF-β system considered in Chapters 8 and 9. In addition, the
extra conformers provided by the enhanced FAST/MBAR are not very stable at the
fully coupled ligand states, resulting in increased effective correlation and further
reduced efficiency. These two manifestations of kinetic trapping in λ space make
Hsp90 a much more challenging system to study than FXa and thrombin.

The PTP1B test case shows that even highly flexible large ligands can be handled by
FAST/MBAR. However, turning off the nonbonded interactions of a large part of the
ligand can lead to the same problem of common core transition at more decoupled
states, as observed in Hsp90 and TGF-β. Despite this challenge, the robustness of
FAST/MBAR with respect to the initial coordinates was shown to be very high and
FAST/MBAR provides significant improvement over traditional AFE calculations.

It is therefore clear that both FAST/MBAR protocols have advantages and
disadvantages and the superiority of one of them over the other is not obvious. On
one hand, FAST/MBAR without extra sampling results in a large number of round
trips, which in turn yields a higher amount of sampling at the states of interest and
therefore higher confidence in the calculated free energies. On the other hand, extra
sampling of the relevant degrees of freedom can provide a higher consistency of the
free energy values over time, as well as output a better converged distribution of
conformers, if these are of interest. Indeed, the above results show that the free energy
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differences associated with a particular conformer can differ by more than 1 kcal/mol,
meaning that sampling different conformers as efficiently as possible is crucial for
minimising the initial-structure bias of the free energy calculation. It is equally as
important that the enhanced region is carefully selected, however, as large regions can
significantly decrease the efficiency of the algorithm by creating kinetic barriers in λ

space. Similarly, enhancing the sampling of an unimportant degree of freedom will
simply result in increased computational expense to no benefit. As this information is
usually not known in advance, it follows that enhanced sampling of the ligand
degrees of freedom should be done sparingly on only several key degrees of freedom,
such as torsions that are close to the perturbed group, or ones that are expected to
have very high kinetic barriers. The sampling of the other degrees of freedom can then
be handled by the MD integrator, especially since the single-trajectory nature of FAST
provides maximum decorrelation from the initial coordinates.

The above results also demonstrate the utility of the bond rescaling procedure in
handling perturbations of harmonic bond potentials. For example, the addition of an
extra methyl group required only 1–2 intermediate states for both FXa and thrombin,
while Hsp90 needed 3 intermediate λ windows for the addition of an ethyl group. In
cases where the bond rescaling procedure could not be used to handle all bonds, the
number of required intermediates can be significantly higher—e.g. between 9 and 11
for PTP1B. In any case, however, the number of these intermediates is always optimal,
as determined by the FAST protocol optimisation procedure. In this way, FAST
maximises the mobility in λ space, as well as the amount of sampling at the endstates.
The only case where the optimisation procedure failed to provide improvement was
for the very long explicitly enhanced PTP1B protocols, which had over 30 starting
intermediate λ values predicted by the initial AASMC routine. Alternative
optimisation algorithms might need to be considered in the future for such
challenging cases.

The significant advantages of FAST/MBAR over conventional AFE calculation
methods are clear: the completely automated procedure which does not depend on a
provided alchemical protocol guarantees the optimality of the free energy calculation,
while the single-trajectory nature of the method provides maximum long-timescale
decorrelation and thus robustness to the choice of initial coordinates. In contrast, there
is always a trade-off between the number of λ values and the simulation time per
intermediate in regular AFE calculations—too few intermediates will lead to poor free
energy estimation due to insufficient phase space overlap, while too many of them
will result in decreased computational time per λ window, and therefore increased
correlation and bias to their initial coordinates.

While FAST/MBAR eliminates the most significant weakness of traditional AFE
methods, it is important to note that this comes at a price. Firstly, FAST/MBAR does
not result in equal sampling over λ space at a finite number of samples, meaning that
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the amount of time spent in a particular λ state is not known a priori. This also means
that FAST/MBAR is particularly sensitive to kinetic barriers in λ space or slow events
which can shift the free energy profile over time. Finally, there is an extra
computational cost associated with the protocol optimisation procedure, as well as the
need to estimate free energy values during the simulation.

Arguably the most significant of these weakness is the sensitivity towards kinetic
barriers in λ space, since addressing it would significantly improve the sampling
homogeneity in λ space, as the free energy values start converging. Similarly, the extra
computational cost can be either tackled by performing protocol and free energy
updates less frequently, or by using an implementation which performs these in the
background on the central processing unit (CPU), while the simulation is running on
the graphics processing unit (GPU). Since GPUs are becoming increasingly more
widely used in molecular simulations,162,233,380,381 this effectively means that the extra
CPU overhead posed by FAST could be made practically negligible with a sufficiently
optimised implementation.

Future work should therefore focus on improving the robustness of the algorithm
towards systems exhibiting high kinetic barriers in λ space. Nevertheless, such
barriers are not expected for relatively simple alchemical perturbations, meaning that
FAST/MBAR is already a suitable method for performing automated and robust free
energy calculations. In addition to its black-box nature, FAST/MBAR is also extremely
general and can be readily extended to more sophisticated applications, such as
combining free energy calculations with several types of enhanced sampling over
different amino acid protonation states. This is another promising avenue for future
research which will increase the reliability of free energy calculations performed by
FAST/MBAR even further.

10.6 Conclusion

In this chapter the fully adaptive simulated tempering (FAST) method presented in
Chapter 9 was extended to the context of relative free energy calculations. The
resulting method, FAST/MBAR, is highly efficient and enables the automation of
alchemical free energy calculations in a robust way, as demonstrated on four different
protein–ligand systems.

It was shown that combining FAST/MBAR with enhanced sampling can decrease the
short-timescale bias of the free energy values towards the initial structure at the cost of
reduced mobility in λ space. On the other hand, free energy protocols without extra
sampling retain this bias at longer timescales. In both cases, however, many ligand
rare events can be readily explored due to the single-trajectory nature of the method.
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In conjunction with its black-box nature, this makes FAST/MBAR a more reliable
alternative to standard AFE calculation methods.

The above results also illustrate how large perturbations and/or orthogonal slow
motions can have a detrimental effect on the efficiency of FAST/MBAR in λ space, as
well as the convergence of the free energies. Although this consideration is not
exclusive to FAST/MBAR, and is instead applicable to all alchemical/tempering
methods, it is still an important topic to address in future work. In addition, the
flexibility of the FAST framework can be used for enhancing the sampling of many
different parts of the system over different protonation states. Combining this with
free energy calculations is another area of interest for further research.
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Chapter 11

Conclusions and Further Directions

The original aim of this thesis was to investigate the robustness of alchemical binding
free energy calculations and their sensitivity to various choices made by the
researcher. After exploring the impact of some of these decisions in the first half of the
project, however, it became clear that incorporating enhanced sampling algorithms
into free energy calculations is not an option, but rather a necessity for performing
reproducible free energy calculations. Therefore, the second part of the project focused
on the development of maximally automatable and robust enhanced sampling
methods which can be naturally incorporated into free energy workflows. In this way,
many of the implicit biases made by the researcher can be converted into observable
variance, which in turn improves the validity of any successive statistical analysis.

In Chapter 2, the theoretical underpinnings of molecular simulations relevant to all of
the following chapters were presented in a concise manner. This chapter focused on
the most fundamental concepts in statistical mechanics, molecular dynamics and
alchemical free energy (AFE) calculations. Further chapter-specific theoretical
considerations were then presented in each of the following chapters, as required.

The review in Chapter 3 presented the current state of the literature regarding the
reproducibility of AFE calculations. It showed that a multitude of factors and
decisions present in both system setup and the subsequent simulation and analysis
can significantly influence the outcome of the calculated free energy values. Many of
these discrepancies have been shown to be dampened by the appropriate use of
enhanced sampling methods, giving the reader a first glimpse of their importance in
molecular dynamics (MD) simulations.

In Chapter 4, a free energy automation software, ProtoCaller, was developed and
presented. This library was central to performing the high-throughput free energy
benchmarking work in Chapters 5 and 6 by both saving researcher time and
eliminating random human errors. Moreover, it allowed the fine control of many parts
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of the workflow, thereby enabling the robust experimental design of these studies. In
this way, ProtoCaller can be straightforwardly used for other similar studies in the
future without much additional manual manipulation.

The study presented in Chapter 5 was the first in the literature to explore the influence
of the initial coordinates on protein-ligand binding free energies in such detail and it
demonstrated that even highly similar protein crystal structures can require a
significant amount of time to decorrelate, thereby influencing any calculated
observables. It also unambiguously shows that long-timescale dynamics, primarily in
the form of rare ligand transitions, are crucial in binding free energy calculations—a
reality which is often ignored in the field for the sake of practicality. As a result,
Chapter 5 justifies the use of enhanced sampling methods in free energy calculations
and highlights the necessity of a robust automatable enhanced sampling algorithm of
specific degrees of freedom.

Chapter 6 expanded on the observation in Chapter 5 that the system preparation
procedure is also dependent on the initial crystal structure used. This can have
knock-on effects on the automatic assignment of protonation, tautomeric and
rotameric (PTR) states of the side chains. The study performed in this chapter shows
that different PTR states can visibly affect the free energy calculation even at large
distances (longer than 2.0 nm). However, the magnitude of these discrepancies is
dependent on four competing factors: inter-replicate variance, side-chain mobility, the
polarity of the alchemically perturbed group and ligand–histidine distance. Although
the discrepancies arising from different PTR states appear to be less significant than
those observed in Chapter 5, it is expected that multiple ambiguous residues can have
an amplifying effect on the free energy inconsistencies. Therefore, this chapter once
again showed the importance of long-timescale decorrelation in free energy
calculations, as well as the utility of expanded ensemble methods in handling multiple
Hamiltonians at the same time.

Chapter 7 gave a concise overview of the main classes of tempering-based enhanced
sampling methods developed over the years and summarised the basic elements of
each of seven different enhanced sampling methods. These were then critically
compared by discussing their most significant differences between them and their
applicability in the enhanced sampling of specific degrees of freedom in the context of
AFE calculations. In this chapter, it was concluded that simulated tempering (ST) and
replica exchange molecular dynamics (REMD) are likely to be the most generally
applicable enhanced sampling methods, especially in the case of alchemical
transformations, while sequential Monte Carlo (SMC) is best used for exploratory
sampling simulations without any initial system-specific knowledge. It was also
discussed that ST is also much better suited to on-the-fly optimisation than REMD,
while also providing maximum long-timescale decorrelation, thereby justifying the
focus of the following chapters on SMC and ST.
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The adaptive explorative sampling of a relevant subset of the torsional and
centre-of-mass (COM) degrees of freedom using adaptive alchemical sequential
Monte Carlo (AASMC) was presented in Chapter 8. The method, which is a
combination of recent statistical literature and AFE calculation practices, readily
outputs a population of states, an intermediate alchemical protocol and a free energy
estimate between the intermediate states without requiring any system-specific input.
All of its hyperparameters are system-independent and they have proven to be
applicable to a range of systems of practical interest. However, as discussed in
Chapter 7, the irreversible sequential nature of the method hinders its use as a
sampling method and in these settings single-step importance sampling methods,
such as REMD and ST are more desirable.

The obvious way to improve on the weaknesses of both SMC and long-timescale
sampling methods is to combine them, so that the advantages of both methods
synergise to create a robust enhanced sampling method. This idea was explored in
Chapter 9, where an initial exploratory AASMC run was shown to give sufficiently
good intermediate protocols and free energy estimates, which can be improved in an
on-the-fly fashion during the course of the simulation. This procedure is best suited to
ST, due to the dynamic nature of the adaptation in alchemical space, resulting in fully
adaptive simulated tempering (FAST). The novel approach used to iteratively
optimise round-trip times using a model based on the multistate Bennett acceptance
ratio (MBAR) results in the asymptotic optimality of the method regardless of the
hyperparameters used to initialise the preliminary AASMC run. This makes FAST a
practically parameter-free method, where the only impactful decision made by the
researcher is the nature and connectivity of the Markov chain explored by the method.
This is of course dependent on the purpose of the simulation, meaning that FAST is as
close as possible to a “black-box” enhanced sampling method.

The automatable nature of FAST makes it a general-purpose method for exploring an
arbitrary Markov chain of states of interest. This notion has far-reaching implications,
which were partially explored in Chapter 10, where relative binding free energy
calculations were combined with enhanced sampling in an automated fashion using
the methodology presented in Chapter 9. This chapter showed that the optimal
number of intermediate states can be as low as one intermediate state for the simplest
of alchemical perturbations, showing that protocols employing a higher number of
intermediates are significantly less efficient. Similarly, more complex perturbations are
automatically assigned more intermediate states without any prior information,
thereby removing the need of any validation of the alchemical protocol before the
simulation. This makes FAST a powerful procedure not only for improving sampling,
but also for automatically determining a sufficiently overlapping sequence of
distributions which can be used to perform AFE calculations.



192 Chapter 11. Conclusions and Further Directions

Chapter 10 also showed that although enhanced sampling naturally decreases the bias
of the initial coordinates both by means of targeted softening of particular energy
terms and natural long-timescale decorrelation provided by MD, much of this bias is
converted into variance, which can be observed by running multiple repeats.
Although this increase in variance is not desirable, it showcases the propensity of AFE
calculations, as commonly performed, for exhibiting false convergence. This can have
the unwanted effect of obtaining wrong results from any subsequent statistical
analysis due to the significant underestimation of the variance. Since variance is much
easier to detect than bias without any prior knowledge, it therefore follows that even
when convergence is apparently worsened by the addition of enhanced sampling, it is
preferable to employ an automatable enhanced sampling method.

The results from Chapter 10 immediately suggest the possibility for combining any of:
AFE perturbations of a ligand network, enhanced sampling of ligand and side-chain
degrees of freedom, exploring multiple tautomeric and protonation states, and
sampling water networks. Apart from the technical challenges involved in
implementing these ideas, the main point of consideration for the design of such a
general sampling protocol is the construction of the underlying Markov chain, whose
structure will have a direct impact on the viability of the method. Since each
connection in this Markov chain corresponds to a separate FAST procedure, the
complexity of such a method will quickly increase with the number of connected
states. Reducing this complexity will likely involve different approaches, such as
minimising the number of these connections, as well as employing approximate
optimisation procedures, where several connections are forced to employ the same
alchemical protocol. Nevertheless, this is a promising venture which will tackle many
of the implicit biases during system setup, including the ones investigated in
Chapter 6, thereby improving the reproducibility and reliability of AFE calculations.

Chapters 9 and 10 also showed that even an adaptive alchemical protocol can exhibit a
very low efficiency, caused by kinetic barriers in alchemical space. These can result
from orthogonal slow modes, as well as a suboptimal functional form of the
interpolative potential. This warrants further research into the viability of different
soft-core potentials, as well as different types of alchemical protocols. In a more
general sense, phase space overlap can be further improved by combining the other
major class of enhanced sampling methods, namely restraint-based methods, with the
FAST procedure. While an appropriate restraint potential should significantly
improve the mobility in alchemical space of kinetically trapped systems, it is very
likely that these biases will be highly system-dependent. Therefore, further research
into adaptive restraint-based methods and their combination with FAST could also
help improve the reliability of FAST and tempering methods in general.
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Chapter 5: Initial Crystal Structures

A.1 Dihydrofolate Reductase (DHFR)

PDB ID

Metric 1OHJ 2W3M 3GHW 4DDR 4M6J 5HPB 6A7E 6DAV

RMSD (Å) 0.568 0.483 0.253 0.230 0.806 0.000 0.210 0.298

Resolution (Å) 2.5 1.6 1.24 2.05 1.201 1.65 1.85 1.55
Year of

deposition 1997 2008 2009 2012 2013 2016 2018 2018

Clashscore 38 4 8 9 4 11 4 3
Ramachandran

outliers 2.2% 0% 0% 0.5% 0% 0% 0% 0%

Side-chain
outliers 14.7% 0.6% 2.4% 1.8% 0% 3.6% 0.6% 0.3%

No. of chains 1 2 1 1 1 1 1 2
Total no. of

residues
186 374 186 186 187 186 186 374

Cofactor NADPH NADPH NADPH NADPH NADPH NADPH NADPH NADP+

TABLE A.1: The different crystal structures used alongside with some metrics: root-
mean-square deviation (RMSD) after alignment to 5HPB using PyMOL,8 resolution
(lower is better), year of deposition, clashscore (lower is better), Ramachandran out-
liers (lower is better), side-chain outliers (lower is better), number of chains, total num-

ber of residues and cofactor used.
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A.2 Protein Tyrosine Phosphatase 1B (PTP1B)

PDB ID

Metric 1BZJ 1NWE 2AZR 2F71 2H4K 2NTA 2QBP 2ZN7

RMSD (Å) 0.257 0.303 0.196 0.232 0.224 0.223 0.000 0.211

Resolution (Å) 2.25 3.1 2 1.55 2.3 2.1 2.5 2.1
Year of

deposition 1998 2003 2005 2005 2006 2006 2007 2008

Clashscore 6 6 1 9 5 9 12 4
Ramachandran

outliers 0.3% 0.3% 0.3% 1.0% 0.3% 0.3% 0.7% 0.7%

Side-chain
outliers 1.9% 4.7% 0% 1.1% 2.2% 1.5% 6.7% 2.2%

No. of chains 1 1 1 1 1 1 1 1
Total no. of

residues
297 298 299 298 299 299 299 299

TABLE A.2: The different crystal structures used alongside with some metrics: RMSD
after alignment to 2QBP using PyMOL, resolution (lower is better), year of deposition,
clashscore (lower is better), Ramachandran outliers (lower is better), side-chain out-

liers (lower is better), number of chains and total number of residues.

A.3 Coagulation Factor Xa (FXa)

PDB ID

Metric 1EZQ 1KSN 1LQD 1NFW 2CJI 2J38 2J95 4Y71

RMSD (Å) 0.249 0.264 0.000 0.260 0.289 0.321 0.304 0.240

Resolution (Å) 2.2 2.1 2.7 2.1 2.1 2.1 2.01 1.8
Year of

deposition 2000 2002 2002 2002 2006 2006 2006 2015

Clashscore 17 16 11 10 1 2 1 3
Ramachandran

outliers 0% 0.4% 0.7% 0.4% 0% 0% 0% 0%

Side-chain
outliers 15.3% 9.1% 8.6% 12% 0.5% 1.7% 1.2% 0.8%

No. of chains 2 2 2 2 2 2 2 2
Total no. of

residues
388 388 388 388 388 388 388 388

TABLE A.3: The different crystal structures used alongside with some metrics: RMSD
after alignment to 1LQD using PyMOL, resolution (lower is better), year of deposi-
tion, clashscore (lower is better), Ramachandran outliers (lower is better), side-chain

outliers (lower is better), number of chains and total number of residues.
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Chapter 5: Long-Timescale Torsional
Analysis

In this section we perform dihedral angle clustering of every relevant rotatable bond
of each ligand in Chapter 5 at the final frame of the 20 ns equilibration (Figure B.1).
Each of the following bar plots represents a single rotatable bond (“Rotamer”) and
each bar represents a cluster of the torsional profile (“State”). The height of each bar
represents the median free energy across all protein crystal structures and repeats, and
the error bars represent the 25th and the 75th percentile of these values. The clustering
method in all cases is the mean shift algorithm382 with a bandwidth automatically
determined from the 30th percentile using the estimate bandwidth routine in
scikit-learn.238 The non-parametric Kruskal–Wallis223 method has been used for
testing the null hypothesis that all clusters produce free energy values drawn from the
same distribution and the corresponding p-value has been shown on each plot as “p”.
Any inter-cluster transitions at a transition time of 0.5 ns have also been measured and
the average number of transitions per nanosecond has been shown on each plot as
“n”. In some cases there are observed transitions but all final states correspond to a
single cluster. These have been included solely for completion purposes.
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(A) DHFR (B) PTP1B (C) FXa

FIGURE B.1: The relevant rotatable bonds for each ligand across all three protein sys-
tems. Most of these represent torsional rotations, except for the following: DHFR, No.
4—slight asymmetric ring puckering due to suboptimal force field parameters; PTP1B,
No. 1—a concerted twist of two dihedrals inside the binding pocket; PTP1B, No. 5—a
ring flip. Rotations within the substituent are referred to as: No. 5 (DHFR); No. 7
(PTP1B); No. 6/7, depending on the presence of a hydroxyl group at substituent Y

(FXa).
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FIGURE B.2: Dihedral profiles of DHFR. All analysis has been performed as described
in the main text.
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FIGURE B.3: Dihedral profiles of PTP1B. All analysis has been performed as described
in the main text.
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FIGURE B.4: Dihedral profiles of FXa. All analysis has been performed as described in
the main text.
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Appendix C

Chapter 7: Asymptotic Complexity
of Sequential Importance Sampling

Let us assume that the single-step importance sampling ratio
π(⃗λi2 ,⃗xi1 )

π(⃗λi1 ,⃗xi1 )
can be

expressed as a log-normally distributed variable with a mean µ and a variance σ2.
Since its expectation value over π(⃗λi1 , x⃗i1) is equal to unity, this imposes the constraint
µ = − 1

2 σ2. This follows from the well-known expression for the average of a
log-normally distributed random variable eX:

〈
eX
〉
=

1
σ
√

2π

∫ ∞

−∞
eXe−

(X−µ)2

2σ2 dX = eµ+ 1
2 σ2

(C.1)

Assuming independence, the logarithm of the sequential importance sampling ratio of
N log-normally distributed single-step importance sampling ratios with the same
parameters µ and σ2 is also a normal variable Y with a variance of Nσ2 and a mean of
Nµ = − 1

2 Nσ2. The expectation value of the acceptance criterion
〈
min[1, eY]

〉
is then:
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2Nσ2 dY +
1

σ
√

2πN

∫ ∞

0
e−

(Y+ 1
2 Nσ2)2

2Nσ2 dY

= 1− erf

(
σ
√

N
2
√

2

) (C.2)

where erf denotes the error function.

The expected transition time per number of transition attempts τ is inversely
proportional to

〈
min[1, eY]

〉
:
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(A)

FIGURE C.1: ln τ expressed as a function of Nσ2.

τ =
1

⟨min[1, eY]⟩ (C.3)

Expressing ln τ = − ln
[
1− erf

(
σ
√

N
2
√

2

)]
as a function of Nσ2 results in an

asymptotically linear relationship (Figure C.1). Therefore, in this simplified case the
expected transition time τ increases exponentially with respect to the number of
distributions.
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Appendix D

Chapter 10: Importance Sampling
between Two Normal Distributions

It was stated in Chapter 10 that, when possible, sample transformation can be
significantly more efficient in the context of importance sampling than using a series
of intermediate distributions without any modifications to the generated samples. A
simple example illustrating this argument is the case of two unidimensional normal
distributions π0(x) ≡ N (µ0, σ0) and π1(x) ≡ N (µ1, σ1), where we are interested in
drawing samples from π1(x) based on samples from π0(x). In this case, one can
measure the dissimilarity of these two distributions using the Kullback–Leibler (KL)
divergence K(p0, π0):383,384

K(π0, π1) = log
σ1

σ0
+

σ2
0 + (µ0 − µ1)

2

2σ2
1

− 1
2

(D.1)

It is evident that K(π0, π1) is unbounded with respect to the distance between the two
means µ0 and µ1. In this setting, sequential importance sampling using a smooth
perturbation of the parameters will require an increasingly large number of
intermediates directly dependent on |µ0 − µ1|. In contrast, we can sample directly
from π1(x) given a sample X0 ∼ N (µ0, σ0) without any loss of information if we
transform X0 in the following way:

X1 =
σ1

σ0
(X0 − µ0 + µ1) (D.2)

This approach is independent of the parameters µ0, µ1, σ0 and σ1 and requires no
intermediate distributions, making it much more efficient than the regular importance
sampling method. Moreover, this transformation is reversible, thereby making it
compatible with detailed balance.
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Appendix E

Chapter 10: Derivation of the Bond
Rescaling Jacobian

The elements of the Jacobian matrix JT⃗(x⃗) corresponding to a transformation T⃗ are
defined as follows:

Jij,T⃗(x⃗) =
∂Ti(x⃗)

∂xj
(E.1)

A bond rescaling move between two atoms with coordinates r⃗0 and r⃗1 by a scaling
factor s can be considered as a translation of r⃗1 and all atoms bonded to it r⃗movable by
(s− 1)(r⃗1 − r⃗0):

T⃗(⃗rmovable) = r⃗movable + (s− 1)(r⃗1 − r⃗0) (E.2)

To calculate the determinant |JT⃗(x⃗)|, we first note that Jij,T⃗(x⃗) = 0 for all row elements
i ̸= j corresponding to the stationary atoms, since their coordinates remain
unchanged. Afterwards, we use the following well-known identity for the
determinant of a block matrix M =

(
A B
C D

)
:

|M| = |A− BD−1C||D| (E.3)

If either B or C have only zero elements, the determinant reduces to:

|M| = |A||D| (E.4)

Therefore, all off-diagonal column elements corresponding to the stationary atoms do
not contribute to the Jacobian determinant, even if they are not zero. This argument
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can be then iteratively applied to conclude that in our setting only the diagonal
elements of each atom contribute to the determinant. For the transformation shown in
Equation E.2, all diagonal terms are unity except for the three coordinates
corresponding to r⃗1, where each element is equal to s. Therefore, the Jacobian
determinant for a bond rescaling transformation by a scaling factor s is:

|JT⃗(x⃗)| = s3 (E.5)

This procedure can be straightforwardly generalised to multiple concurrent reversible
bond rescaling transformations with scaling factors s1, ..., sN , in which case the
Jacobian determinant is:

|JT⃗(x⃗)| =
N

∏
i=1

s3
i (E.6)
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K. Schulten, International Journal of High Performance Computing Applications,
1996, 10, 251–268.

[40] D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham,
S. DeBolt, D. Ferguson, G. Seibel and P. Kollman, Computer Physics
Communications, 1995, 91, 1–41.

[41] S. Liu, L. Wang and D. L. Mobley, Journal of Chemical Information and Modeling,
2015, 55, 727–735.

[42] A. J. Clark, C. Negron, K. Hauser, M. Sun, L. Wang, R. Abel and R. A. Friesner,
Journal of Molecular Biology, 2019, 431, 1481–1493.

[43] T. C. Beutler, A. E. Mark, R. C. van Schaik, P. R. Gerber and W. F. van Gunsteren,
Chemical Physics Letters, 1994, 222, 529–539.

[44] T. T. Pham and M. R. Shirts, The Journal of Chemical Physics, 2011, 135, 034114.

[45] M. Betancourt, 2017, arXiv:1701.02434.

https://amber.manchester.ac.uk


214 REFERENCES

[46] D. Szász, in Hard Ball Systems and the Lorentz Gas, ed. L. A. Bunimovich,
D. Burago, N. Chernov, E. G. D. Cohen, C. P. Dettmann, J. R. Dorfman,
S. Ferleger, R. Hirschl, A. Kononenko, J. L. Lebowitz, C. Liverani, T. J. Murphy,
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E. Bengoetxea, Springer, Berlin, Heidelberg, 2006, pp. 75–102.

[361] N. Hansen, A. Auger, R. Ros, S. Finck and P. Pošı́k, Proceedings of the 12th
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