
1.  Introduction
An ancient Chinese proverb states: “Don't push the river, it flows by itself.” Scientists and engineers have 
long struggled to fully translate the second part of the proverb into a mathematical description. Leopold 
and Maddock (1953) linked the time-varying measurements of instantaneous river width B, depth H and 
velocity U at a gauging station to the corresponding discharge Q using simple power functions, and termed 
such empirical relationships as at-a-station hydraulic geometry (denoted as “AHG” hereafter). At the same 
time, the authors created downstream hydraulic geometry (denoted as “DHG” hereafter) to describe the hy-
draulic relations with bankfull (or mean annual) B, H, U, and Q downstream along a river. The fundamental 
difference between these two relationships is that AHG deals with temporal variability while DHG focuses 
on spatial variability. In addition, the mean annual or bankfull parameters used in DHG generally have a 
longer returning period than the time-varying parameters of AHG. Despite their conceptual difference, 
both AHG and DHG were expressed by the same well-known functional forms:
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where the coefficients a, c, and k, and the exponents b, f, and m are fitting parameters. Given Q = BHU, it 
can be deduced that ack = 1 and b + f + m = 1. The AHG and DHG parameters will be distinguished by 
subscripts when necessary (i.e., bs, fs, and ms for AHG and bd, fd, and md for DHG).

Many researchers have verified the goodness of fit of such empirical relationships based on the measure-
ments from numerous rivers characterized by different physiographic settings (Ackers,  1964; Andreadis 
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et  al.,  2013; Clifford,  1996; Eaton,  2013; Fahnestock,  1963; Hey & 
Thorne,  1986; Kellerhals,  1967; Leopold & Miller,  1956; Sherwood & 
Huitger,  2005; Stevens,  1989; Williams,  1978; Wolman & Brush,  1961). 
Park  (1977) and Rhodes  (1977,  1987) collated existing observations to 
develop a b-f-m ternary diagram consisting of over 400 AHG exponents 
and 150 DHG exponents (Figure 1). The AHG and DHG exponents oc-
cupy different parts of the ternary diagram with limited overlap. This 
implies that AHG and DHG are intrinsically representative of different 
conditions.

Both the AHG and DHG b-f-m exponents exhibit highly scattered dis-
tributions in the ternary diagram (Figure 1) and no clear trend can be 
observed. Studies usually averaged the fitted b-f-m exponents from differ-
ent systems (Ferguson, 1986; Leopold & Maddock, 1953), or introduced 
additional parameters (e.g., sediment grain size) attempting to construct 
unified power law relationships (Millar, 2005; Parker et al., 2007). Some 
additional insights were provided by Jung et  al.  (2013) and Kim and 
Paik  (2018), who explored the variation in suspended sediment con-
centration for systems characterized by bd > fd and bd < fd, respectively. 
Efforts have also been made to deduce the analytical solutions of b-f-m 
exponents through hydraulic equations (Gleason, 2015). Studies on AHG 
generally concentrate on the variability of the hydraulic variables with the 
short-term rise and fall of water level (Dingman, 2007; Ferguson, 1986). 
For example, Ferguson  (1986) preset a parabolic channel cross section 

and deduced that (bs, fs, ms) = (0.23, 0.46, 0.31), with bs = fs/2. On the other hand, studies on DHG primarily 
emphasize the long-term morphodynamic equilibrium of the channel profiles and the associated bankfull 
geometry and kinematics (Cao & Knight, 1996; Finnegan et al., 2005; Huang et al., 2002; Langbein, 1963; 
Millar, 2005; Savenije, 2003).

In contrast to the extensive attention for b-f-m exponents, researchers have shown much less interests in 
the a-c-k coefficients of AHG or DHG (Equation 1). This might be attributed to the large variability in the 
fitted values of the a-c-k coefficients, ranging from 100 to 103 (Gleason & Smith, 2014; Rhoads, 1991; Stew-
ardson, 2005). A notable progress was provided by Gleason and Smith (2014), who plotted a series of fitted 
AHG parameters along a river in a semilog coefficient-exponent diagram and observed that bs, fs, and ms 
indicate strong linear decrease with log sa , log sc , and log sk , respectively. Gleason and Smith (2014) termed 
this finding as at-many-stations hydraulic geometry (denoted as “AMHG” hereafter) and further developed 
a statistical tool to evaluate the discharge based on channel width data, which can be derived from remote 
sensing images. Barber and Gleason (2018) confirmed that AMHG is a common phenomenon among 191 
natural fluvial systems in the continental United States.

Much of our understanding of hydraulic geometry has so far stemmed from fitting power laws to field meas-
urements. However, such data-driven analyses do not address fundamental questions like: “Why do power 
functions represent these geomorphic relationships?,” “Do b-f-m exponents vary systematically between dif-
ferent systems?,” “Why do AHG and DHG exponents exhibit different distributions in the b-f-m ternary dia-
gram?” and “How are the a-c-k coefficients physically related to b-f-m exponents?” (Gleason & Smith, 2014; 
Park, 1977; Parker et al., 2007; Rhodes, 1977, 1987; Richards, 1973). Existing theoretical approaches often 
preassume the existence of power functions of the discharge (Cao & Knight, 1996; Ferguson, 1986; Finneg-
an et al., 2005; Huang et al., 2002; Langbein, 1963; Millar, 2005; Savenije, 2003) and/or constrain the chan-
nel cross section to be a particular shape, such as a rectangle (e.g., Cao & Knight, 1996; Huang et al., 2002; 
Langbein, 1963), trapezium (e.g., Eaton et al., 2004) or parabola (e.g., Dingman, 2007). Therefore, these are 
still room to develop a general analytical approach to address these underlying questions.

In this study, we attempt to gain some explanatory insights into the use of the power law in hydraulic ge-
ometry. Two hypotheses are proposed in terms of the hydrodynamic and sedimentary processes that may 
be responsible for the power law relationships exhibited by AHG and DHG (see Section 2 for a detailed 
description). The theoretical models are developed attempting to derive the functional forms of AHG and 
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Figure 1.  b-f-m ternary diagram of the at-a-station hydraulic geometry 
(blue dots) and downstream hydraulic geometry (red dots) exponents, 
redrawn from Park (1977) and Rhodes (1977, 1987).
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DHG. Moreover, in addition to the data sets of b-f-m exponents shown in Figure 1, we collate up to 120 sets 
of complete power law relationships with both b-f-m exponents and a-c-k coefficients (see Tables 1 and 2). 
The derived functional forms are compared with the data sets, as a verification of these hypotheses and with 
the previous, related work by Jung et al. (2013). Our objective is to develop a more robust explanation that 
brings new insights into these geomorphic/hydraulic relationships.

2.  Methods
2.1.  Hypotheses

2.1.1.  Hypothesis 1: Fast and Slow Processes

The evolution of a channel cross section depends on two key processes: (a) erosion/deposition of stream bed 
driven by the flow turbulence, and (b) lateral adjustment of the bank (e.g., bank erosion/collapse) induced 
by gravity. The balance between these two processes has been extensively investigated in order to develop 
analytical solutions of the equilibrium channel profile (e.g., Ikeda & Izumi, 1990, 1991; Izumi et al., 1997; 
Parker, 1978a, 1978b). However, it was usually neglected that the turbulent flow tends to shape the channel 
profile slowly (De Vries, 1975), while the width adjustment related to bank erosion/collapse can be much 
faster (Nagata et al., 2000; Zhao et al., 2020). For instance, Simon (1992) observed that the rate of the width 
adjustment can reach up to 50 m/year. This is consistent with the short and long sampling frequencies of 
parameters used in AHG and DHG. This motivated our hypothesis that the different geomorphic relation-
ships represented by AHG and DHG result from the control of lateral adjustment of the bank and flow 
turbulence, respectively.

2.1.2.  Hypothesis 2: Ratio m/f and Frictional Resistance

Eliminating Q in H = cQf and U = kQm (Equation 1), a power law relationship can be deduced between the 
velocity and the water depth characterized by the ratio m/f (i.e.,  /m fU H ). Rhodes (1977, 1987) and Fergu-
son (1986) used this ratio seeking to decipher the scatter in the b-f-m ternary diagram, but only a few values 
were investigated (e.g., m/f = 1/2, m/f = 2/3, and m/f = 1). The large data set available enable us to notice a 
continuous change of b-f-m exponents with m/f (Figure 2). The AHG data approximately distribute within 
the interval 0.2 < m/f < 2.2 and the DHG data mostly concentrate in the interval 0 < m/f < 1.1. Polynomial 
regression is employed to fit the curvilinear trends of the AHG and DHG exponents (the thin lines in Fig-
ure 2). The R-squared values ( 2R ) of the AHG trendlines are 8%, 73%, and 78% for exponents bs, fs, and ms, 
and are 17%, 49%, and 86% for the DHG counterparts. The relatively high R2 values for f and m are largely 
determined by their implicit correlation to m/f. However, these two data sets do show different trends under 
the same operation, which highlights how their systematic variability with m/f differ.

The frictional resistance can be expressed in a quadratic form, say   2
DC U , where ρ is the density of 

water and CD is the drag coefficient. The value of CD is determined by the bed roughness length Z0 and the 

water depth H, and can be evaluated using a power law, say  
2

0 / q
DC z H , where α is a constant coeffi-

cient. It thus can be inferred that the frictional resistance is characterized by the ratio U/Hq, which coincides 
with the geomorphic relationship  /m fU H . This elicits our second hypothesis: the systematic variability 
of the AHG and DHG exponents physically depends on the frictional resistance characterized by the ratio 
m/f (denoted as q hereafter). This hypothesis also resonates with the suggestions of several researchers 
(Ferguson, 1986; Leopold et al., 1964; Richards, 1973) who had attempted to link the hydraulic geometry to 
the frictional resistance.

2.2.  Theoretical Models

An idealized channel cross section is developed to investigate the two hypotheses proposed above. The bed 
shear stress over the cross section is calculated based on a general momentum and continuity equations in 
a Cartesian coordinate system (as e.g., Yu & Knight, 1998):

   
  

 1
0

0,
h

yxgh S dz
y

� (2)
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


 ,hu dy Q� (3)

where x and y are the longitudinal and the lateral coordinates (m), τ is the bed shear stress (Pa), ρ is the 
density of water (kg/m3), g is the gravity (m2/s), h is the water depth (m), S  is the dimensionless hydraulic 
slope,  yx is the turbulent shear stress (Pa), and 1 is a Boolean variables, which allows to include/exclude the 
turbulence term. The momentum balance described by Equation 2 is valid for wide and shallow channels, 
where the lateral bed slope is small. Another commonly used version has been derived based on an orthogo-
nal curvilinear coordinate system, in which the channel cross section is divided by normals perpendicular to 
the bed (e.g., D'Alpaos et al., 2006; Fagherazzi & Furbish, 2001; Lundgren & Jonsson, 1964; Pizzuto, 1990). 
The Cartesian coordinate system employed in this study facilitates the derivations of the theoretical forms.

The bed shear stress is linked to the velocity and the water depth using a general Manning-Strickler formula 
(Parker et al., 2007):

  ,q
gnu

u h
� (4)

where u is the velocity (m/s), n is Manning's coefficient, and q is corresponding to the ratio m/f. The turbu-
lent diffusion is evaluated using an eddy viscosity closure (Falconer, 1993):

   



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Authors Sites/sources

b-f-m exponents a-c-k coefficients

B F m a c k

Lewis (1969) Sana Muerto 0.34 0.23 0.40 9.70 0.33 0.31

Toro Negro 0.14 0.19 0.57 14.70 0.71 0.10

Bauta 0.16 0.24 0.48 9.60 0.58 0.19

Toro Negro-Matrullas 0.16 0.38 0.46 7.60 0.32 0.39

Toro Negro-Capilla del Carmen 0.08 0.38 0.50 33.0 0.18 0.17

Toro Negro-Pesas 0.04 0.30 0.61 33.40 0.33 0.10

Manati-Morovis 0.13 0.43 0.51 24.0 0.18 0.16

Manati-Matacaiia 0.36 0.36 0.34 4.40 0.33 0.54

Manati-Ciales 0.18 0.52 0.32 31.0 0.11 0.26

Manati-Manati 0.07 0.30 0.71 31.20 0.62 0.04

Average values 0.17 0.33 0.49 19.90 0.37 0.23

Brandywine Creek 0.04 0.41 0.55 54.0 0.23 0.10

Ephemeral Streams 0.26 0.33 0.32 10.0 0.10 1.0

Flume Channels 0.33 0.52 0.16 2.02 0.27 1.80

Southwest and Great Plains Streams 0.26 0.40 0.34 26.0 0.15 0.37

White River 0.38 0.33 0.27 4.0 0.22 1.10

Stall and Yang (1970) Dan River at Danville 0.07 0.49 0.45 268.0 0.06 0.06

Harvey (1975) River Ter at Lowley Farm 0.14 0.41 0.44 4.14 0.36 0.73

Wallop Brook at Wallop House 0.13 0.27 0.59 4.94 0.37 0.53

0.09 0.54 0.38 5.27 0.48 0.40

Jowett (1998) River Nar at the Carr 0.18 0.31 0.43 15.80 0.31 0.24

New Zealand Rivers

Table 1 
Values of b-f-m Exponents and a-c-k Coefficients of AHG Data Collated From Previous Research
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Table 1 
Continued

Authors Sites/sources

b-f-m exponents a-c-k coefficients

B F m a c k

Mackey et al. (1998) Massachusetts 0.15 0.31 0.53 25.80 0.34 0.12

0.22 0.30 0.46 15.90 0.36 0.18

0.25 0.22 0.53 6.94 0.67 0.22

0.05 0.30 0.64 13.70 0.38 0.21

0.04 0.34 0.63 79.30 0.31 0.04

0.14 0.28 0.55 11.40 0.39 0.25

0.07 0.29 0.64 22.50 0.48 0.09

0.11 0.34 0.57 7.20 0.40 0.32

0.09 0.43 0.48 20.50 0.27 0.18

0.04 0.39 0.57 28.40 0.34 0.10

0.14 0.24 0.61 20.0 0.75 0.07

0.21 0.38 0.42 14.60 0.21 0.33

0.15 0.29 0.55 11.40 0.39 0.24

0.34 0.19 0.46 8.39 0.59 0.20

0.24 0.30 0.45 14.80 0.30 0.24

0.20 0.29 0.52 26.70 0.29 0.13

0.22 0.18 0.61 13.90 0.62 0.12

0.16 0.30 0.53 9.43 0.42 0.25

0.08 0.21 0.73 61.0 0.55 0.03

0.18 0.36 0.46 28.70 0.28 0.13

0.11 0.39 0.50 30.70 0.20 0.16

0.10 0.25 0.64 56.90 0.44 0.04

0.25 0.26 0.52 13.10 0.39 0.18

0.20 0.31 0.49 16.90 0.30 0.20

Dudley (2004) West Branch Union River at Amherst 0.16 0.32 0.52 28.70 0.34 0.10

Garland Brook near Mariaville 0.31 0.41 0.28 5.89 0.31 0.55

Piscataquis River near Dover-Foxcroft 0.20 0.32 0.48 32.80 0.32 0.10

Passadumkeag River at Lowell 0.16 0.39 0.45 31.80 0.20 0.16

Sheepscot River at North Whitefield 0.10 0.28 0.62 35.20 0.50 0.06

Johnson Brook at South Albion 0.51 0.40 0.09 3.22 0.31 1.0

Togus Stream at Togus 0.22 0.38 0.40 13.50 0.25 0.30

Swift River near Roxbury 0.05 0.27 0.68 95.10 0.73 0.01

Nezinscot River at Turner Center 0.11 0.29 0.60 42.0 0.50 0.05

Royal River at Yarmouth 0.07 0.27 0.66 90.40 0.65 0.02

Stewardson (2005) South-east Australia 0.11 0.28 0.52 16.0 0.49 0.29

Doheny and Fisher (2007) Gwynns Falls at Glyndon 0.33 0.27 0.39 3.16 0.46 0.69

Gwynns Falls near Delight 0.21 0.39 0.41 7.75 0.32 0.41
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where ve is the depth-averaged eddy viscosity coefficient (m2/s) expressed as    *e hu  (Fischer, 1973), in 
which 𝛬 is a dimensionless coefficient and  * /u  is the friction velocity (m/s). The evolution of the 
channel profile is governed by the mass conservation law:

 
 

 2 ,bl
ed

h QQ
t y� (6)

where t is time (s), Qed is the volumetric erosion-deposition rate (m/s), Qbl is the volumetric lateral bed-slope 
sediment flux (m2/s), and 2 is a Boolean variable, which is used to include/exclude the bed-slope term. The 
local erosion/deposition is linearly related to the bed shear stress (Mehta, 1986):



 

   
 

1 ,ed
e

Q M� (7)

where M is a reference erosion/deposition rate (m/s), and  e is the threshold shear stress (Pa). The lateral 
bed-slope sediment flux Qbl, without loss of generality, is determined by the local bed shear stress and the 
bed slope (Parker, 1984):



  

     
1 ,bl

b

hQ N
y

� (8)

where N is a reference sediment flux (m2/s) and b is the threshold shear stress for the lateral movement of 
sediments (Pa). This formula was developed to model the downslope bedload sediment flux of sand (e.g., 
Ikeda, 1989), while Talmon and Wiesemann  (2006) extended its application to total load transport. The 
morphodynamic evolution governed by Equations 2–8 can be simulated numerically (as e.g., Pizzuto, 1990; 
Wobus et al., 2006; Xu et al., 2019), which helps to determine the convergence of the ideal systems. A de-
tailed description of the numerical approach is provided by Xu et al. (2019) and the code is available through 
the https://doi.org/10.5281/zenodo.3825909.

Note that Hypothesis one is invoked into the system through the Boolean values 1 and 2, while the in-
terplay between the fast and slow processes are not explicitly embodied in the simulations or derivations. 
The strategy is to simulate the ideal equilibrium profiles fully determined by the short-term and long-term 
processes, respectively, and then to compare the resultant geomorphic relationships with the AHG and 
DHG data sets, respectively. Hence, two theoretical models are developed with (a)  1 0 and  2 1, namely, 
only bed-slope sediment transport is considered for the lateral adjustment of the profile (denoted as “BS” 
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Table 1 
Continued

Authors Sites/sources

b-f-m exponents a-c-k coefficients

B F m a c k

Alexander et al. (2009) Niobrara River 0.12 0.46 0.42 27.0 0.11 0.34

0.22 0.31 0.39 21.0 0.22 0.31

0.05 0.39 0.57 53.0 0.17 0.11

0.10 0.40 0.51 81.0 0.11 0.11

0.19 0.46 0.35 24.0 0.10 0.41

0.27 0.34 0.39 34.0 0.15 0.19

0.01 0.46 0.53 230.0 0.07 0.07

0.32 0.34 0.34 53.0 0.08 0.23

0.14 0.40 0.45 91.0 0.12 0.20

Singh (2014) Brandywine Creek at Cornong 0.09 0.37 0.54 30.59 0.20 0.16

Brandywine Creek at Lenape 0.08 0.47 0.45 61.20 0.13 0.12

Note. Alexander et al. (2009), Doheny and Fisher (2007), Dudley (2004), Harvey (1975), Jowett (1998), Lewis (1969), 
Mackey et al. (1998), Singh (2014), Stall and Yang (1970), and Stewardsons (2005).
AHG, at-a-station hydraulic geometry.

https://doi.org/10.5281/zenodo.3825909
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Authors Sites/sources

b-f-m exponents a-c-k coefficients

b f m a C k

Leopold and Maddock (1953) Mobile River 0.44 0.29 0.29 8.01 1.05 0.11

Scioto River 0.37 0.43 0.19 16.58 0.38 0.16

Tennessee River 0.58 0.39 0.04 7.95 0.31 0.40

Yellowstone River 0.50 0.32 0.18 8.36 0.27 0.45

Belle Fourche River 0.53 0.24 0.17 8.67 0.20 0.49

Kansas River 0.50 0.43 0.06 11.88 0.19 0.46

Missouri River 0.44 0.52 0.04 12.91 0.10 0.77

Miller (1958) Pecos River 0.59 0.30 0.11 3.0 0.34 0.99

Rio Santa Barbara 0.49 0.39 0.12 3.50 0.31 0.93

Fahnestock (1963) White River 0.38 0.33 0.27 4.72 0.22 0.88

Southwest and Great Plains 0.50 0.40 0.10 7.25 0.63 0.39

Brandywine Creek 0.57 0.40 0.03 13.25 0.24 0.35

Ephemeral streams 0.50 0.28 0.22 9.42 0.09 1.0

Flume channels 0.50 0.39 0.16 7.61 0.22 0.70

Flume channels 0.33 0.52 0.16 1.98 0.53 0.97

Mikhailov (1970) Danube Delta 0.48 0.35 0.17 5.96 0.56 0.30

Emmett (1972) Yukon River 0.50 0.35 0.15 4.33 0.28 0.84

Bray (1973) Alberta 0.53 0.33 0.14 4.75 0.27 0.79

Emmett (1975) Salmon River 0.53 0.42 0.05 3.30 0.20 1.52

Griffiths (1980) New Zealand 0.48 0.43 0.11 7.90 0.21 0.61

Andrews (1984) Colorado 0.60 0.41 0.06 2.71 0.32 1.25

Elliott and Cartier (1986) Colorado 0.36 0.43 0.17 4.48 0.31 0.85

Hey and Thorne (1986) various sites 0.45 0.35 0.20 3.67 0.33 0.83

Rhoads (1991) Missouri River Basin 0.50 0.34 0.16 9.54 0.57 0.18

Andrén (1994) Laitaure Delta 0.39 0.39 0.23 10.0 0.36 0.28

Allen et al. (1994) American Streams 0.56 0.34 0.10 2.71 0.35 1.07

McCandless and Everett (2002) Maryland Piedmont 0.52 0.42 0.06 2.84 0.26 1.36

Moody and Troutman (2002) Clear Creek, Power River & Mississippi River 0.45 0.43 0.12 17.0 0.18 0.33

Sweet and Geratz (2003) Southeastern Plain and Middle Atlantic Coastal Plain 0.41 0.46 0.06 7.22 0.57 0.30

McCandless and Annapolis (2003) Coastal Plain 0.47 0.40 0.13 4.59 0.41 0.54

MD Piedmont 0.52 0.42 0.06 2.84 0.26 1.36

AP/VR 0.47 0.33 0.20 4.31 0.30 0.78

King (2004) Idaho 0.48 0.35 0.15 4.33 0.29 0.93

Dudley (2004) Coastal and central Maine 0.50 0.32 0.18 6.09 0.34 0.48

Xu (2004) Gravel Meandering Rivers 0.46 0.33 0.21 4.08 0.32 0.77

Gravel Braided Rivers 0.67 0.31 0.02 4.02 0.15 1.62

Sand Meandering Rivers 0.57 0.23 0.20 3.13 1.12 0.29

Sand Braided Rivers 0.46 0.44 0.09 21.38 0.07 0.66

Ellis and Church (2005) Lower Fraser River 0.60 0.25 0.16 2.60 0.76 0.51

Eaton and Church (2007) Colorado 0.50 0.36 0.14 4.17 0.26 0.92

Table 2 
Values of b-f-m Exponents and a-c-k Coefficients of DHG Data Collated From Previous Research
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hereafter); and (b)  1 1 and  2 0, which emphasizes the adjustment of the channel profile to the flow 
turbulence (denoted as “FT” hereafter). Note that such either or cases do not exist in natural systems. An ad-
ditional simulation with  1 1 and  2 1 was also performed to demonstrate the functionality of the model. 
Hypothesis 2 is embedded in the Manning-Strickler friction formula (Equation 4). The value of the expo-
nent q in the friction formula is given by the ratio m/f calculated based on the data sets of b-f-m exponents.

3.  Results
3.1.  Numerical Simulations

The equilibrium profiles resulting from the numerical simulations of BS and FT models are shown in Fig-
ure 3. The BS profile is composed of a vertical bank and a curved channel portion (see the blue line in 
Figure 3a). The bed shear stress peaks at the channel axis and thus the convergence of the lateral sediment 
flux is compensated (see the red line in Figure 3a). The channel edge is characterized by the threshold bed 
shear stress for the lateral movement of sediments (i.e.,   b). The FT model results in a smoother shape 
without sharp demarcation between the channel and the bank (see the blue line in Figure 3b). The whole 
profile is characterized by an evenly distributed bed shear stress equal to the threshold value  e (see the 
red line in Figure 3b). This implies a balance of the hydraulic pressure and the lateral turbulent diffusion 
throughout the channel profile (Xu et al., 2020). In particular, the bed resistance is fully compensated by 
the lateral turbulent diffusion at the channel edge, where the hydraulic pressure gSh tends to 0. The sim-
ulation with both processes included (i.e.,  1 1 and  2 1) produces an intermediate equilibrium profile 
(Figure 3c), similar in shape to previous analytical and numerical approaches (e.g., Ikeda & Izumi, 1990; 
Jung et al., 2013; Parker, 1978a; Pizzuto, 1990).
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Table 2 
Continued

Authors Sites/sources

b-f-m exponents a-c-k coefficients

b f m a C k

Rachol and Boley-Morse (2009) Southern Lower Michigan Ecoregion 0.46 0.28 0.25 6.20 0.36 0.45

Southern Michigan Rivers 0.40 0.29 0.27 7.63 0.38 0.41

Magirl and Olsen (2009) Washington 0.45 0.37 0.18 7.35 0.26 0.52

Mulvihill and Baldigo (2012) New York 0.43 0.39 0.19 5.67 0.28 0.62

0.43 0.31 0.26 5.04 0.39 0.51

0.59 0.40 0.01 2.57 0.20 1.93

0.56 0.36 0.09 3.02 0.25 1.30

0.52 0.44 0.04 3.61 0.22 1.24

0.50 0.29 0.21 4.42 0.29 0.78

0.60 0.26 0.14 3.20 0.44 0.71

0.50 0.36 0.14 4.12 0.27 0.88

Bomhof et al., (2015) Canada 0.48 0.33 0.18 4.65 0.36 0.62

Pugh and Redman (2019) Ouachita Mountains 0.49 0.38 0.13 4.40 0.24 0.95

Note. Allen et al. (1994); Andrén (1994); Andrews (1984); Bomhof et al. (2015); Bray (1973); Dudley (2004); Elliott and Cartier (1986); Ellis and Church (2005); 
Emmett  (1972,  1975); Fahnestock  (1963); Griffiths  (1980); Hey and Thorne  (1986); King  (2004); Leopold and Maddock  (1953); Magirl and Olsen  (2009); 
McCandless and Annapolis (2003); McCandless and Everett (2002); Mikhailov (1970); Miller (1958); Moody and Troutman (2002); Mulvihill and Baldigo (2012); 
Pugh and Redman (2019); Rachol and Boley-Morse (2009); Rhoads (1991); Sweet and Geratz (2003); Xu (2004).
DHS, downstream hydraulic geometry.
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3.2.  AHG Parameters (BS Model)

Substituting Equations 2, 7, and 8 into Equation 6 with  1 0, and imposing ∂h/∂t = 0, the equilibrium 
profile reached in the BS model is governed by:

XU ET AL.

10.1029/2020WR029430

9 of 21

Figure 2.  Variability of the collated at-a-station hydraulic geometry (AHG) (points in panel a) and downstream hydraulic geometry (DHG) (points in panel 
b) exponents with the ratio q = m/f, and those predicted by BS (thick lines in panel a) and FT (thick lines in panel b) models, as defined in Section 2.2. The 
thin lines indicate the trends of the scattered data fitted using polynomial regression. Notice that the AHG data approximately distribute within the interval, 
0.2 < q < 2.5, while the DHG data concentrate in a smaller interval, 0 < q < 1.1. Hence, panel a is wider than panel b for clarity. The DHG has been redrawn 
from Xu et al. (2020).

Figure 3.  Equilibrium profile reached numerically in (a) Bed-slope (BS) model, (b) Flow turbulence (FT) model, and 
(c) model with both mechanisms included. The simulations are run with τe = 0.44 Pa, τb = 0.4 Pa, Λ = 0.8 (=0 for BS), 
M = 5 × 10−8 m/s, N = 10−6 m2/s (=0 for FT), q = 1/6 and n = 0.012 s/m1/3. Here the BS profile indicate hax ≈ 0.91 m and 
hed ≈ 0.67 m (panel a), and hax ≈1.39 m for FT (panel b). The width-to-depth ratio of the profiles can cover a broad range 
of values depending on the parameterization.
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and the solution gives a parabolic profile (Figure 3a):
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Based on the criticality at the channel edge (i.e.,   /bh g S  at y = B/2), as confirmed in the numerical 
simulation (see red line Figure 3a), the width of the profile takes the form:
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Then the cross-sectional area and the discharge can be derived by integrations,  
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where    12 , ; ;F z  is a hypergeometric function (Abramowitz & Stegun, 1966), with α, β, γ, and z being 
constant parameters. Note that all the parameters except for the hydraulic slope S  are known values in 
Equations 11–13. Merging these parameters into s , s , and s  leads to:
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which are all power functions of S . Equation 14 demonstrates that the BS profile strictly abides by the pow-
er law formed geomorphic relationships as presented in Equation 1. Eliminating S  in Equation 14 further 
gives the functional forms of b-f-m exponents and a-c-k coefficients:
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3.3.  DHG Parameters (FT Model)

Since  2 0 in Equation 6 for the FT model, the equilibrium state is characterized by the threshold shear 
stress τe over the cross section (see the red line in Figure 3b). Substituting the equilibrium condition τ = τe 
in Equation 2 with  1 1, the governing equation for the equilibrium profile achieved in the FT model is 
obtained:
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2

0
1 0,

qh d dhh
h dy dygn
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where  0 /eh g S  is a reference water depth (m). This nonlinear second-order O.D.E. does not admit an 
explicit solution and implies an infinite number of possible equilibrium profiles. Xu et al. (2019) found that 
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this system converges to a critical solution characterized by the largest width-to-depth ratio, due to eddy 
diffusion of momentum. Then an implicit relationship between the bed slope and the water depth can be 
derived following Xu et al. (2019):
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The functional forms of the width B, the cross-sectional area A and the discharge Q can further be derived 
by integration, as used for the BS model (Section 3.2):
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where 𝔹(α, β) is a Beta function, where α and β are constant parameters. This derivation follows the work of 
Xu et al. (2020), where a steady regime discharge was assumed. Merging the coefficients in Equations 19–21 
to d , d , and d , the geomorphic relationships can be expressed as:
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Similarly, eliminating h0 in Equation 22, the geomorphic scales predicted by the FT model also inherently 
satisfy power law relationships, but with different functional forms of b-f-m exponents and a-c-k coefficients:
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4.  Discussion
4.1.  b-f-m Exponents and a-c-K Coefficients

As shown in Section 3, the BS and FT models lead to explicit functional forms of b-f-m exponents and a-c-k 
coefficients for AHG (Equations 15 and 16) and DHG (Equations 23 and 24). The next step is to compare 
the theoretical expressions to parameters extracted from field measurements, including more than 550 sets 
of b-f-m exponents (Park, 1977; Rhodes, 1977, 1987) and up to 120 sets of complete power law relationships 
giving both b-f-m exponents and a-c-k coefficients (see Tables 1 and 2). The behavior of the hybrid model 
(i.e.,  1 1 and  2 1) depends on the relative influence of the turbulence and the bed-slope term in the FT 
and BS models respectively. This aspect is illustrated in the supporting information.

Both BS and FT models indicate that b-f-m exponents are determined by the ratio q = m/f. The BS model 
(Equation 15) indicates that b and f decrease, and m increases with the ratio m/f (thick lines in Figure 2a), 
which agrees well with the trends indicated in the data set of AHG exponents (thin regression lines in Fig-
ure 2a). In particular, the BS model predicts that bs = 0.5 fs resulting in the parabolic equilibrium profile. 
Similar relationships have also been reported. For instance, Lewis (1969), Mackey et al. (1998), and Morel 
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et al. (2019) proposed that bs ≈ 0.55 fs, bs ≈ 0.533 fs, and bs ≈ 0.467 fs based on averaged AHG exponents meas-
ured from different study sites. The b-f-m exponents suggested by the FT model (Equation 22) are compared 
with the data set of DHG exponents (Figure 2b). The theoretical lines (thick lines in Figure 2b) also shows 
a striking consistency with the regression lines (thin lines in Figure 2b), both exhibiting a decrease in bd, a 
relatively rapid decrease in fd, and an increase in dm  as q increases, bd ≈ fd as q tends to 0, and  d d db f m  
as 0 < q < 1.

Jung et al. (2013) analyzed the variabilities of the suspended sediment concentration (SSC) for two types 
of rivers with DHG d db f  and d db f , respectively. They find that exponent for the concentration as a 
function discharge (C-Q) takes on different values for at-a-station and downstream estimates when d db f  
but very similar values when d db f . The work of Kim and Paik (2018), clarifies this as a convergence, as 
the ratio of b/f gets smaller, rather than a switch based on b being greater or less than f. These studies focus 
on the steady state condition for given hydraulic geometries and infer the stability of the channel based on 
the presence or otherwise of an along-channel gradient in sediment concentration. In contrast, the work 
presented here examines the physical basis of morphological equilibrium and the associated hydraulic ge-
ometry. The derived theoretical relationships suggest the AHG should exhibit s sb f  (see BS model and 
Equation 15), whereas the DHG should exhibit d db f  (see FT model and Equation 23). The majority of 
cases documented in Tables 1 and 2 are in agreement, but eight cases in Table 1 and five rivers in Table 2 do 
not conform. The possible causes for such inconsistency are discussed in Section 4.3.

The derived a-c-k coefficients are determined by several parameters in addition to q, including n, Λ,  e, b, 
M, and N (see Equations 11–13 and 19–21), and thus exhibit larger variability compared to the b-f-m expo-
nents. This is in line with the large variability in a-c-k coefficients observed in natural systems (Gleason & 
Smith, 2014; Rhoads, 1991; Stewardson, 2005). However, this also implies a difficulty when trying to verify 
the theoretical expressions of a-c-k coefficients, since existing data sets usually do not provide the infor-
mation needed to determine those parameters. Therefore, we have endeavored to verify the ranges of the 
derived a-c-k coefficients by imposing rational parameters to the functional forms:

1.	 �The ranges of q = m/f are calculated from the collated b-f-m exponents (Figure 2), which give 0 < q < 2.5 
for BS and 0 < q < 1.1 for FT.

2.	 �The Manning's coefficient is taken as 0.004 s/m1/3 < n < 0.012 s/m1/3.
3.	 �The dimensionless eddy viscosity is taken as 0.1 < Λ < 5 (Shiono & Knight, 1991; Vionnet et al., 2004)
4.	 �The threshold bed shear stress for erosion  e can be calculated based on the Shields' Curve (e.g., Soulsby 

& Whitehouse, 1997). Here a relatively small range is considered, 0.2 Pa < τe < 0.5 Pa. The threshold bed 
shear stress for lateral sediment flux is assumed to be 0.1 Pa < τb < τe

5.	 �The reference erosion/deposition rate M = O(10−7) (as e.g., Lanzoni & D'Alpaos, 2015). The reference 
lateral sediment flux, N, can be evaluated by van Rijn (2007) and Talmon et al. (1995)

  
0.40.9 0.4 0.3 0.2

50
1 1 ,

18
N d g h s� (25)

where 50d  is the medium sediment grain size (m), ν is the kinematic viscosity of water (m2/s), and s is 
the relative density of sediment. Imposing conventional values of the parameters in Equation  25, such 
as     5 4

505 10 5 10d ,  0.1 10h , and    61.36 10 , it can be deduced that    7 510 10N O .  
Since N and M are in symmetric positions in the functional forms (see Equations 10–12), we propose 1 < 
N/M < 50.

The comparison is conducted in a semilog coefficient-exponent diagram following Gleason and 
Smith (2014)'s approach (Figure 4). The complete power law data sets are plotted in a-b, c-f and k-m tuples 
as scattered points, and the predicted ranges are presented as boxes. The boxes enclose most of the cor-
responding data points, which implies that the theoretical models predict close-to-reality width-to-depth 
ratio. The shapes of the boxes are different between BS and FT, while their predictions in the ranges of the 
a-c-k coefficients are similar to each other, both indicating that c ≈ k ≪ a. The points outside the boxes are 
mainly attributed to their b-f-m exponents being higher or lower than the predicted ranges, as constrained 
by Equations 15 and 23. For example, the BS model predicts that  0.125 0.333sb  with 0 < q < 2.5, while 
some of the data points indicate a value larger than 0.5 or smaller than 0.1 (blue circles in Figure 4a). Note 
that a larger ranges parameter would result in larger boxes.
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4.2.  Dynamics and Timescales

The predictions of the BS and FT models both exhibit striking consistencies with the large data sets in terms 
of the systematic variabilities of b-f-m exponents as well as the ranges of the a-c-k coefficients (Figures 2 
and 4). Moreover, a notable improvement is that all these geomorphic relationships are derived based on 
empirical-theoretical formulations of the underlying processes (e.g., bed resistance, eddy turbulence), rath-
er than a priori determining B, H or U as power functions of Q, or restricting the channel profile to a specific 
shape. These advantages enable us to provide an explanation on fundamental issues related to the hydraulic 
geometry.

The ratio m/f expresses how strongly the mean velocity varies with the water depth (i.e.,  /m fU H ) and 
thereby is characterized by the frictional resistance. Hence, the control of m/f on b-f-m exponents indicated 
in both the theoretical models and the data sets (Figure 2) highlights the role of frictional resistance in the 
systematic variability of both AHG and DHG. This is not surprising, since friction participates in almost all 
processes that governs the evolution of the channel profile. For instance, in addition to the bottom resistance 
(Equation 4), friction also affects the lateral momentum exchange resulting from eddy viscosity (   *e hu  
in Equation 5), erosion/deposition (τ, in Equation 7), and bed-slope sediment flux (τ, in Equation 8).

The different relationships exhibited by AHG and DHG also provide an example that reflects the duality 
of morphodynamic systems as change can be driven by different processes operating over different, short 
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Figure 4.  Semilog exponent-coefficient diagram of the data sets (scattered points) and the ranges (boxes) predicted by 
the Bed-slope (BS) model (Equations 15 and 16) and the Flow turbulence (FT) model (Equations 23 and 24) models. 
The specific values of the collated b-f-m exponents and a-c-k coefficients are available in Tables 1 and 2. The ranges of 
the parameters are given as: 0 < q < 2.5 for the BS model and 0 < q < 1.1 for the FT model; Manning's coefficient, 0.004 
s/m1/3 < n < 0.012 s/m1/3; dimensionless eddy viscosity, 0.1 < Λ < 5; threshold bed shear stresses, 0.2 Pa < τe < 0.5 Pa 
and 0.1 Pa < τb < 0.4 Pa; and the ratio of reference erosion/deposition rate and bed-slope sediment flux, 1 < N/M < 50. 
Note that larger ranges of the model parameters can result in bigger boxes.
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and long, timescales. In this context, Baar et al.  (2019) suggested that different calibrations of bed-slope 
sediment flux are needed to model systems over different spatiotemporal scales. Our theoretical approach 
suggests that AHG and DHG are governed by lateral bed-slope sediment transport (BS) and FT, respectively 
(Figures 2 and 4). These two processes can reach an absolute balance with steady boundary conditions as 
proved in many theoretical and numerical studies (e.g., Parker, 1978b; Pizzuto, 1990, see also Figure 3c). 
However, natural variability in the discharge tends to continually perturb the system from such an equilib-
rium configuration. At the same time, BS and FT induce a response to the changing conditions at different 
speeds and their preferred hydraulic relation can be manifested over short and long timescales.

4.3.  Uncertainties in Power Law Relationships

The data sets of AHG or DHG do not exactly conform to the predictions of the theoretical models. The data 
points of b-f-m exponents still show considerable spread around the theoretical lines (Figure 2). Also, the 
predicted ranges of the a-c-k coefficients do not enclose all the data points (Figure 4). These inconsistencies 
may be related to the simplifications in the theoretical models, including neglecting the spatiotemporal in-
homogeneity of bed materials, separating the intertwined processes (i.e., BS and FT), and the assumptions 
of stationary equilibria (Figure 3), which is rarely achieved in natural systems. On the other hand, the data 
sets themselves may also contain uncertainties. The relatively large differences between the fitted trends 
and the theoretical lines of AHG exponents, within the interval 0 < ms/fs < 0.2, may be attributed to the pau-
city of data points (Figure 2b). As pointed out by Richard (1997), the AHG data are usually measured from 
relatively stable channel cross sections, where vertical changes in water level are fast compared to changes 
in width. While this type of channel cross sections improves the accuracy of the flow measurements, it 
might also lead to an underestimation of the exponent bs for AHG. Moreover, we are unable to confirm 
that the collated field data are measured and processed to a uniform standard, or whether the definitions of 
the width and the depth are consistent, as well as the sampling frequency for the time-varying parameters. 
These uncertainties should be considered when interpreting the results.

Moving beyond the parameters and into the underlying controversy of the existence of power law rela-
tionships. The ability of power law relationships to capture the observations for so many systems around 
the world has generated many attempts to invoke various forms of “theoretical” explanation. But the data 
scatter has led to skepticism as to the validity of such relationships and the adequacy of any such theoreti-
cal explanation has also been questioned (Bates, 1990; Richards, 1973; Teleki, 1972). In fact, as long as the 
descriptions of the underlying processes are semiempirical, it is impossible to theoretically demonstrate 
the power law relationships in a strict sense. The present derivation is no exception. For example, if a 
logarithmic expression of friction is used (e.g., Colebrook-White), it can be immediately deduced that the 
geomorphic relationships are not power laws (Julien & Wargadalam, 1995). In fact, the present derivation 
demonstrates that power laws provide a suitable approximation of AHG and DHG using common expres-
sions of the underlying processes (e.g., frictional resistance and eddy viscosity closure). Notice that we do 
not a priori restrict the forms of B, H or U as power functions of Q.

4.4.  Revisiting AMHG: Can It Be Physically Explained by the BS Model?

Gleason and Smith (2014) plotted a series of fitted AHG parameters along a river using a semilog coeffi-
cient-exponent diagram and observed that sb , sf , and sm  generally indicate a strong linear decrease with 
log sa , log sc , and log sk , respectively. They termed this result as AMHG. Gleason and Wang (2015) math-
ematically explained that such linear trends result from imposing each AHG as a power law. Specifically, 
suppose we have K sets of geomorphic relationships,  bi

iB a Q  with i = 1,2,3, … , K. Taking logarithm on 
both sides gives:

 log log log ,i iB b Q a� (26)

which represents K straight lines in a log-log Q-B plot (Figure 5a). Gleason and Wang (2015) proposed that 
such a family of AHG yield a perfect AMHG, if all the AHG curves exactly intersect the same point, say 
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 0B B  and  0Q Q  (e.g., red cross in Figure 5a). In this case, all the ai-bi tuples lie on a decreasing line in the 
semilog coefficient-exponent diagram given by (Figure 5b):

  
0

0 0

log1 log .
log logi i

B
b a

Q Q
� (27)

Gleason and Wang (2015) then suggested that a river is characterized by a strong AMHG, if the intersections 
of the AHG curves are concentrated around a “centroid.” Notice that this explanation essentially is based 
on the superposition of power law fits to the data and does not exclude cases where the Q-B data points 
are poorly represented by a power law. To illustrate this point, we randomly generate 20,000 sets of Q-B 
sequences within an interval centered on  0 0,Q B  (50 < Q < 200 m3/s and 20 < B < 40 m). We then pick 500 
sequences which, have a regression coefficient, 2 50%R , when fitted to a power law. The intersections of 
the resultant 500 straight fitting lines are scattered in the log-log Q-B plot (see the gray lines and blue circles 
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Figure 5.  Interpretation of at-many-stations hydraulic geometry (AMHG) based on manipulating the power function. 
Panel (a) shows a log-log Q-B plot with a family of at-a-station hydraulic geometry (AHG) (red lines) intersecting 
exactly at the centroid (red cross), which yields a perfect AMHG property. Panel (b) shows a semilog plot for the 
variability of a-b tuples with the red “o-” line indicating the perfect AMHG in Panel (a). Panel (c) indicates 500 
randomly generated Q-B sequences, which lead to AHG curves (gray lines in Panel a) with intersections (blue circles) 
deviating from the centroid (red cross). The resultant a-b tuples (gray circles in Panel b) still show a strong linear 
decrease trend (black dashed line in Panel b) close to the perfect AMHG.
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in Figure 5a). However, the corresponding a-b tuples (gray circles in Figure 5b) still show a strong decrease 
trends as the “perfect” AMHG suggests (compare the black dashed line and the red line in Figure 5b).

Notice that a large data set (e.g., 500 Q-B sequences here) is needed to mimic the AMHG trend with random 
data and the fitted a-b tuples exhibit a divergent distribution (see gray circles in Figure 5b). On the contrary, 
the measured Q-B sequences can result in more concentrated patterns and even a small data set can exhibit 
a strong AMHG trend (e.g., less than 20 Q-B sequences as reported by Gleason & Smith, 2014). Gleason 
and Wang (2015) supposed that this might be attributed to the hydraulic self-similarity of the cross sections 
along a river, which promotes the concentration of intersections of the AHG curves (i.e., Equation 26). 
Recently, Brinkerhoff et al. (2019) attempted to confirm the physical existence of AMHG, based on Ding-
man (2007)'s theoretical model of AHG. Here our concern is more specifically on whether such “self-simi-
larity” can be physically explained by the BS model.

The AMHG data (i.e., a series of AHG parameters along a river) of the six rivers reported by Gleason and 
Smith (2014) are compared with the BS model (Figure 6). The consistency in the ranges of a-b, c-f, and k-m 
tuples (Figure 6a) resembles the comparison presented in Section 4.1 (Figure 4a). In terms of the trends, 
the BS model can produce any curve within the predicted range through calibration. Here, we configure 
the BS model taking advantage of Equation 15, in which variations of the b-f-m exponents only depend on 
q. Then each river model is calibrated for hydrodynamic and sedimentary parameters n, M, N,  e and b, 
which are assumed to be constant along the river. The resultant a-b, c-f, and k-m curves approximately show 
linearly decreasing trends, similar to the distribution of the data points (Figure 6). This demonstrates that 
the BS model, as configured, is able to reproduce the trends exhibited by AMHG. Notice that here we do not 
pursue a best fit to the observed data points. The parameters of the model are picked using a simple routine 
that randomly adjusts parameters (within the ranges derived in Section 4.1) until a minimum is found. In 
fact, these parameters may vary spatially in natural systems. For example, bed materials are known to vary 
in a spatially coherent way (Blom et al., 2016). A better elaboration of such coherent variability may further 
improve the explanatory power of the proposed model.

4.5.  Limitations and Suggestions for Future Research

As highlighted in Sections 4.3 and 4.4, uncertainties are implicit in many aspects in the research of hydrau-
lic geometry, including the inhomogeneity of natural systems, the errors in data acquisition, and the usage 
of semiempirical expressions for underlying processes. These limitations can be misleading when determin-
ing the parameters of the hydraulic relations and even the legitimacy of the power laws. Therefore, future 
research should be devoted to eliminating or reducing such uncertainties. Specifically, we consider that the 
following aspects are worthy of in-depth investigation:

1.	 �The Cartesian coordinate system is employed in the description of the momentum balance (Equation 2). 
This approach is valid when the lateral bed slopes of the channel cross sections are generally small. 
However, for the almost vertical bank formed in the BS profile (e.g., Figure 3a), considering only the ver-
tical profiles of the velocity leads to the underestimation of the bed shear stress on the vertical bank and 
hence the channel width. A more accurate momentum balance can be achieved using an orthogonal cur-
vilinear coordinate system (e.g., Fagherazzi & Furbish, 2001; Lundgren & Jonsson, 1964; Pizzuto, 1990).

2.	 �We assume a specific friction formula (Equation  4), an eddy viscosity closure assuming an identical 
turbulent transfer (Equation 5), and a constant threshold shear stress (Equations 7 and 8). Recent works 
have revealed that a river cross section with heterogeneous bed and bank material deviates significant-
ly from such ideal threshold configuration (Dunne & Jerolmack, 2020; Francalanci et al., 2020). The 
present derivation in fact is a simplified abstraction useful to emphasize the overall trends of fluvial 
hydraulic geometry. Future models may improve the predictions with more elaborated description of 
such heterogeneity.

3.	 �The derived theoretical expressions involve several parameters (q, n, Λ,  e, b, M, and N) calibrated using 
short-term laboratory experiments or field measurements (Section 4.1). New approach is needed to ver-
ify the validity of such calibrations over short and long timescales.

4.	 �The analyses of AMHG imply that the parameters used to model the underlying physical processes (e.g., 
n,  e, b, M, and N) may exhibit a spatial coherence as supposed by Gleason and Wang (2015) (see also 
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Section 4.4). This conjecture needs to be confirmed through a careful inspection of the sediment proper-
ties along a river, as well as the associated variability of these parameters.

5.	 �Although timescale is highlighted, the specific timescales characterizing BS or FT are not given, nor is 
the timescale embedded in the derived theoretical expressions. Hence, the variability in the hydraulic re-
lations caused by the interaction of processes operating over different timescales needs further attention.

6.	 �The above suggestions urge us to increase the detail and number of variables measured when testing 
power law relations. Also, developing standards for the definition and measurement of variables will 
reduce this source of uncertainty.

7.	 �We stress that the power law formed AHG and DHG are approximations of natural fluvial channels, and 
that the power law fitting does erase many details relevant to realistic channel geometries. Developing 
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Figure 6.  Semilog coefficient-exponent diagram of the at-many-station hydraulic geometry data extracted from 
Gleason and Smith (2014), and the predictions of bed-slope model. Panel (a) shows the predicted ranges (boxes) and the 
integrated data of all four rivers (points, as Figure 4a). Panels (b)–(e) compare the predicted trends (lines) to the four 
rivers (points) separately using different parameters. Note that the length of each line is limited by the predicted range 
of b-f-m exponents (Equation 23).
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new theoretical descriptions beyond the power law paradigm is a challenging and valuable direction for 
future work.

5.  Conclusions
Theoretical expressions of AHG and DHG have been derived without any a priori assumptions on the form 
of the relationship or the cross-sectional shape. The resulting expressions therefore have dimensionally 
consistent and physically meaningful coefficients. The functional forms of b-f-m exponents and a-c-k co-
efficients have been verified using over 550 b-f-m exponents and 120 power law hydraulic relations from 
rivers around the world. In addition, the predicted AHG a-b, c-f and k-m tuples agree well with the at-many-
stations hydraulic geometry (AMHG) data exhibiting linearly decreasing trends. The main findings of this 
study are summarized as follows:

1.	 �The trends of the AHG and DHG exponents are revealed and they both depend on the frictional 
resistance.

2.	 �The large variability of the a-c-k coefficients results from the number of physical and geometric variables 
present in the theoretical expressions.

3.	 �The different behaviors of AHG and DHG are attributed to the bed-slope sediment transport and the 
flow turbulence, respectively.

4.	 �Finally, the analysis highlights the uncertainties in the power law formed hydraulic geometry possibly 
resulting from data acquisition and/or theoretical assumptions.

Data Availability Statement
The code developed in this study are available through the https://doi.org/10.5281/zenodo.3825909. Data 
sets for this research compiled from the published papers can be downloaded from https://coastalhub.
science/data.
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