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The complexity of scale interactions, arising from the increasing number of dynami-
cally active flow structures, is a well-known problem for the numerical modelling of
high Reynolds number flows. Without doubts, this complexity is the main obstacle
to the development of computationally affordable and physically interpretable models
of complex flows. This research focuses on the nonlinear energy interactions across
modes in reduced order Galerkin models of turbulent flows demonstrating a novel ap-
proach to automatically identify relevant interactions. This work is motivated by the
key observation that, in the dynamics of high Reynolds number flows, not all the in-
teractions have the same contribution to the energy transfer between flow structures.
With the proposed work, we aim to develop a set of techniques to systematically select
the dominant interactions in Galerkin models of turbulent flows, therefore identify-
ing dominant triadic interactions. In the present work, two different approaches have
been developed. First, a regression-based approach where the relevant interactions are
identified a posteriori according to their relative strength. Second, an a priori approach,
where a new set of basis functions, encoding the sparsity features of the flow, is gen-
erated. The key aspect of the latter approach is that the reduced-order model obtained
by Galerkin projection onto the subspace spanned by the basis has sparse matrix co-
efficients without the need for any a posteriori evaluation. Both approaches have been
tested on a set of flow configurations of increasing complexity. Results show that both
approaches can identify the subset of dominant interactions preserving their physics
throughout the sparsification process. In addition, further analysis showed that the a
priori sparsification method preserves better the physics of triadic interactions, result-
ing in a better long term time stability and, therefore, should be preferred. Looking
into the future, to scale up the a priori methodology to a more complex configuration
some aspects need to be further investigated such as the role of the initial guess on the
uniqueness of the result and its properties.
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Chapter 1

Introduction

Many phenomena in science and engineering are characterised by complex nonlinear
interactions between structures at different spatial and temporal scales. In the case of
fluid dynamics, the interactions between triads of fluid structures, called triadic inter-
actions, play a fundamental role and have been shown to directly influence the physics
of a wide range of different phenomena such as, energy cascade, transition to turbu-
lence and many more. More specifically, the multiscale structure of the flow emerges
from the structure of the triadic interactions and has two major implications mainly
related to the study of the physics involved and to the computational efficiency of the
mathematical models used. First, the computational resources required to simulate the
flow grow quickly with the Reynolds number making a complete simulation of real-life
configurations practically unfeasible. Second, the physical complexity influences the
mathematical complexity making a satisfactory understanding of interactions between
coherent structures often elusive. As a result, it is challenging to produce efficient and
physically interpretable computational models of turbulent flows.

A possible solution that has received significant attention in recent years is model order
reduction (MOR). This set of techniques aims to maintain the computational cost low
preserving, at the same time, a good degree of physical fidelity. It consists in gener-
ating a physically meaningful and low dimensional representation of the flow, called
reduced order model (ROM), by projecting the Navier-Stokes equations onto the sub-
space spanned by a suitable modal decomposition. Different methods to generate the
basis vector defining this subspace are possible according to different properties of the
problem considered such as geometry of the domain and physics involved. A com-
plete overview on modal decomposition techniques for fluid dynamics is presented in
Taira et al. (2017). However, one of the most popular approaches consists in projecting
the governing equations onto the subspace spanned by the modes generated by the
Proper-Orthogonal-Decomposition (POD) (Lumley, 1970, 1979). Historically, POD has
been widely used for the generations of reduced order models for its energetic opti-
mality that allows reconstructing a large amount of turbulent kinetic energy with the
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smallest possible number of modes. In addition, from a more physical standpoint, some
authors suggested that POD modes can be a good mathematical approximation of co-
herent structures. Although this correspondence is not rigorous, POD can be a good
tool to study energetic interactions between coherent structures in arbitrarily complex
flows. Alongside several interesting properties, POD based reduced order models have
also some drawbacks. The most relevant is related to the global mathematical nature of
the spatial basis functions. It generates models that are mathematically dense (Noack
et al., 2016), meaning that the evaluation of the dynamics of a single structure requires
knowledge about the evolution of all the other structures in the flow. This feature leads
to two major implications: the computational cost of complex models become quickly
intractable and, consequently, the physical interpretation of the model itself becomes
more and more challenging. These two issues can be mitigated by performing an early
truncation of the modal expansion. However, this approach, equivalent to performing
a coarser approximation of the flow, leads to inaccurate models with temporal stability
issues and it is not a suitable solution. Another possible solution could be using dif-
ferent modal decomposition to perform Galerkin projection. However, only little work
can be found in the literature regarding reduced-order modelling obtained by Galerkin
projection on different subspaces than the POD, since the major effort has been directed
into the mitigation of the issues of the POD based reduced-order models.

1.1 Relevant interactions in turbulence

This work is motivated by the established knowledge of the physics of energetic inter-
actions in flow systems. The classical description of developed turbulent flows (Lum-
ley, 1979; Pope, 2001; Jiménez, 2018) shows that energy is transferred across the hier-
archy of coherent structures via nonlinear triadic interactions. Implicit in this picture
is the fact that not all interactions have the same importance, but energy transfer oc-
curs according to preferential patterns. This suggests that the nonlinear interaction
pattern among coherent structures is sparse. The evolution of structures at a certain
length scale depends predominantly upon a subset of all other structures (Kraichnan,
1971; Ohkitani, 1990; Brasseur and Wei, 1994) and the influence of interactions with
the complementary set of structures can be generally neglected with minor global ef-
fects. This suggests that it would be possible to generate a mathematical model where,
for a given set of flow structures or modes, only the interactions that actively con-
tribute to the dynamics are considered. Sparsity features in triadic interaction are well
documented for two and three-dimensional homogeneous turbulence. In addition, for
three-dimensional configurations, the interactions have also been observed to be local,
i.e. each structure interacts only with structures of commensurable size. Although this
result is rigorously true only for homogeneous flows, some authors showed that quali-
tatively similar results are obtained in flow evolving in more complex geometries. More
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specifically, these features have been observed between coherent structures defined in
a POD-based Galerkin model of a transitional boundary layer over a flat plate (see
Rempfer and Fasel (1994a)). A similar pattern to the one observed for homogeneous
turbulence has been also observed for the separated flow over a backward-facing step,
as shown by Couplet et al. (2003).

The important result is that, regardless of the local/non-local nature of the triadic in-
teractions, a subset of dominant interactions that regulate the energy transfer of the
flow always exists if the reduced-order model has high enough dimensionality. There-
fore, since not all the interactions contribute equally to the energy transfer it should
be possible to generate models containing only the relevant interactions that are either
computationally affordable and at the same time preserve the original physics. In the
light of these physical results, this work aims to develop an automatic procedure to dis-
cern relevant interactions inside large Galerkin models of turbulent flows. The desired
outcome is to obtain models containing a large range of spatial scales (a large number
of modes) but where only the relevant terms for the dynamics need to be evaluated
to temporally advance the model. In addition, because of the high complexity of the
systems taken into consideration, it would be desirable that the procedure would be
completely automatic without requiring any a priori knowledge about the physics of
the system considered or external intervention by the user.

1.2 Model sparsification

Classically, modal basis functions used for model order reduction are generally ob-
tained from considerations about energy optimality or the desired frequency content
in each mode (Rowley and Dawson, 2017). However, they do not exploit the physical
features such as sparsity of the interactions, since no information regarding nonlinear
mechanisms that produce such interactions is utilised in the decomposition. For config-
urations without any particular symmetry when modal decompositions such as POD
are employed, densely-connected models, i.e. models where all the entries of the matri-
ces coefficients are different from zero, are usually obtained. This feature implies that
to evaluate the the time advancement of the model all the possible terms of the model
itself need to be computed. Crucially, the term governing the non-linear interactions
in the Navier-Stokes equations is represented by a third order tensor whose computa-
tional complexity grows as the third power of the number of modes considered. This
introduces some limitations for the application of this methodology to complex flow
configurations. Develop a framework that can reduce this physical and computational
complexity is the key enabler to extend the applicability of reduced-order models to
more complex and relevant problems.
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With model sparsification we intend a mathematical procedure that automatically iden-
tifies, within the reduced-order models, the terms associated with the dominant energy
transfer, generating models where only the interactions that effectively contributes to
the dynamics of the energy transfers are retained. The desired outcome would be to
avoid truncation of the basis functions and obtain models of high accuracy, i.e. contain-
ing a wide range of spatial scales, but keeping, at the same time, the computational cost
low, as only the necessary terms in the model need to be evaluated.

Successful attempts to construct reduced sets of equations, that exploit the sparsity
of the energy interactions, have been made in the past, often for canonical geome-
tries where triadic interactions are conveniently examined in Fourier space and using a
coarse-grained partitioning of the hierarchy of scales. More specifically, this approach
has been successfully applied to canonical flows such as two-dimensional homoge-
neous decaying turbulence and plane Couette flow (see Thomas et al. (2015)) showing
that the reduced models can reproduce the fundamental statistical aspects of the flow.

However, an a priori physics informed approach strongly relies on the knowledge of
physical processes involved. In some configurations, this information is not always
available or could be difficult to extract. Thus, it would be ideal to have a system-
atic procedure to automatically isolate such energy patterns without the need for any
knowledge or assumptions both on flow and geometry. In addition and more inter-
estingly, a formalisation of sparsification techniques in the context of machine learn-
ing can be considered as an extension of the X-AI (eXplainable Artificial Intelligence)
framework. This relatively novel field aims to provide a solid ground to the machine
learning techniques trying to define a systematic methodology to ”explain” the results
of a machine learning algorithm (Roscher et al., 2020). These techniques have received
particular attention in recent times to integrate machine learning algorithms into appli-
cations where a solid understanding of physics involved or an explanation of the deci-
sion taken is required for safe utilisation of the device. These requisites are needed for
a large number of applications ranging from medical diagnosis devices to autonomous
land, sea and flying vehicles.

In the present work two different sparsification approaches have been developed as,
schematically, shown in figure 1.1. First, the a posteriori approach involves an a poste-
riori evaluation of energy interactions between a fixed and immutable set of temporal
and spatial modes used to generated the Galerkin model. Conversely, in the a priori ap-
proach the sparsity is encoded in the basis functions themselves and the sparse system
is obtained directly by Galerkin projection of the Navier-Stokes equations onto the new
basis function. As shown in figure 1.1 the steps corresponding to data collection and
generation of the POD are in common for both approaches. As it will be shown later
on, the choice of the POD as the starting point is not the only possible choice, even if it
is recommended for its properties of orthogonality and energy optimality.
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FIGURE 1.1: Schematic comparison between a posteriori sparsification in the red
frame and a priori sparsification in the blue frame. Figures from Brunton et al. (2016)

1.2.1 A posteriori Sparsification

This technique, belonging to the class of the supervised learning algorithms, aims to
identify the terms of the Galerkin model associated with relevant triadic interactions.
The procedure can be sketched as displayed in figure 1.1 following the red branch. The
first step consists in collecting the data and perform modal decomposition, we chose
POD for later convenience but, as it will be shown later on, other choices are possible.
The a posteriori framework, displayed inside the red frame in figure 1.1, consists in gen-
erating the reduced-order model first and subsequently perform sparsification on the
originally dense models. The cornerstone of this approach is l1-regularised regression
(Tibshirani, 2013), widely used in the statistical community to extract a parsimonious
representation of complex datasets containing a subset of predominant features. The
non-differentiable nature of the l1 regularisation allows transforming the interaction se-
lection problem into a convex optimisation problem that can be efficiently solved, with
a unique solution. Since no knowledge of the dynamics is utilised, the approach is fine-
grained and relevant interactions are identified in a mode-by-mode fashion across the
hierarchy of modes. However, since the sparsification procedure implies a modifica-
tion of the system coefficients while keeping unchanged the spatial modes from which
the coefficients are originated. As observed by Balajewicz et al. (2013) this could make
the link between energy flows and modal structures questionable.

1.2.2 A priori Sparsification

The a priori sparsification technique aims to rigorously generate a set of modal struc-
tures with good energy representation properties such that the resulting interaction
coefficient tensor is a-priori maximally sparse, without the need of subsequent post-
processing or tuning of the model itself (see the blue frame in figure 1.1). For this
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task, we utilise POD as a starting point. Conversely, with respect to the a posteriori ap-
proach, here the sparsification is performed first rotating a set of POD modes within
a POD subspace of larger dimension to obtain a new set of modes such that the re-
sulting reduced-order model has a quadratic coefficient tensor with a sparse structure
after performing Galerkin projection onto the subspace generated by these new modes.
A particular example of this approach, where the subspace where the rotation is per-
formed has the same dimension of the target subspace, is matrix diagonalisation. Here,
through a change of basis, a representation of the same mathematical object where only
the diagonal elements are different from zero is obtained 1.

1.3 Structure of the thesis

This thesis is organised following the progression of work done during the PhD and it
is divided into four main sections. First, in the second chapter, the relevant works in
the field are analysed to identify the main literature gaps and lay down a research plan
and the objectives to be addressed during the research (explained in the third chapter).
The fourth chapter is dedicated to a general discussion of the mathematical tools used
for the generation of Galerkin-based reduced-order models and for evaluating energy
flows within the Galerkin-model itself. Subsequently, in the second half of the chapter,
the optimisation problems resulting from the two different sparsification approaches
are discussed in details. Thus, the following two chapters, containing the body of the
results, are organised into two macro sections, the sixth chapter is dedicated to the a
posteriori approach (developed during the second year) while the seventh describe the
a priori framework to which has been developed during the third and last year of re-
search. The a posteriori methodology has been applied to three test cases of increasing
physical and mathematical complexity. First, the Kuramoto-Sivashinsky equation has
been chosen as a paradigmatic model containing multiscale dynamics. This model is
particularly convenient since, due to the simple symmetry of the domain, the inter-
actions can be conveniently described in Fourier space. This problem is particularly
useful to understand how the sparsification algorithms act on the selection of the co-
efficients and on the reconstruction error of the sparse system. Second, we consider
different two-dimensional problems, with particular attention on the lid-driven cavity
flow. This test case is of particular interest since despite its relatively simplicity of the
domain and of the boundary conditions, allowing an easy generation of the Galerkin
model, it is possible to obtain solutions with arbitrarily complex physics. More specif-
ically, just by increasing the Reynolds number, it is possible to obtain a set of differ-
ent physical phenomena ranging from oscillating shear layer to a fully chaotic regime
where the shear layer is broken down by the detachment of the vortexes generated in

1The code to diagonalise a matrix via subspace rotation is available in the following GitHub reposi-
tory

https://github.com/RiccardoRubini93/SRDiag
https://github.com/RiccardoRubini93/SRDiag
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the corners of the cavity. Lastly, once the framework has been proved effective, we
consider a two-dimensional test case of more engineering interest, namely, the sepa-
rated unsteady flow around a NACA 0012 profile at a high angle of attack. In addition,
this test case is also used to test the computational framework in the case of non-trivial
computational meshes.

The second result section is dedicated to the a priori framework. This novel method-
ology is fist applied to the lid-driven cavity flow with the same flow conditions (Re =

2 × 104) analysed for the a posteriori approach. Similarly to what was done for the a
posteriori sparsification framework, we have first tested the a priori approach on the
cavity flow at the same Reynolds number as considered for the a posteriori methodol-
ogy. The main objective of the cavity flow analysis is to validate the a priori sparsifica-
tion methodology on a canonical test case. More interestingly, we will compare how
these two different methodologies perform on the same flow configuration. Lastly, we
applied the a priori sparsification technique to a more complex test case, namely, the
separated flow over a backward-facing step. This configuration is a challenging test
case for reduced-order modelling and its sparsification, mainly for two reasons. First,
the open inlet and outlet boundary conditions introduce extra pressure term that needs
to be modelled. Second, from the sparsification point of view, the strong convective
nature of this flow generates a particular structure in the triadic interactions. It will be
shown that the a priori formulation is able to capture this structure as opposed to the a
posteriori one.

Lastly, in the closing chapter, we will compare the performance of both approaches
on the common test case, the cavity flow, discussing the analogies and the relative
strengths and weaknesses of both approaches. Finally, the best practices and how to
choose the most suitable sparsification approach according to the problem considered
is discussed. In the final section, possible future research avenues and practical appli-
cations will be debated.
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Chapter 2

Literature Review

This chapter examines the relevant literature laying the groundwork for the present re-
search. First, the advantages of model order reduction for describing high dimensional
multiscale systems are discussed. Then, we introduce the state of the art of modal de-
composition techniques and show how different formulations highlight different phys-
ical features of the flow. Second, energy flow analysis is introduced discussing the ma-
jor results obtained for homogeneous turbulence and some more recent findings for
flows evolving in more complex geometries. Third, some aspects of the large literature
related to reduced order modelling are briefly discussed, explaining advantages and
downsides of such an approach. Further in the chapter, we discuss some more recent
ideas proposed to generate simplified models of turbulent flows such as, sparse regres-
sion methods for dynamical systems and a priori physics informed selection techniques
for reduced-order models. Lastly, we discuss the general idea behind the l1 based reg-
ularisation and why it works for model sparsification.

2.1 Analysis of coherent structures via modal decomposition

The multi-scale nature of turbulence makes a complete dynamical description of all
features a demanding computational task, in addition and more importantly, this phys-
ical and mathematical complexity makes the interpretation of the solution difficult. A
promising approach, receiving significant attention in recent years, is Reduced Order
Modelling (ROM) or Model Order Reduction (MOR). This set of techniques leverages
the idea of rewriting the original mathematical model (Navier-Stokes equations) on a
new basis better representing the flow physics. Generally speaking, we can refer to
modal decomposition as a set of techniques to systematically extract the most relevant
flow features of the flows (Taira et al., 2017). The outputs are called basis functions and
consist of pairs of spatial and temporal modes, generally accompanied by a character-
istic value that can represent the energy, the frequency or the growth rate of the mode
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itself, according to the decomposition chosen. Once the spatial modes are obtained
they can be used as a new basis for the construction of the reduced-order model by
projecting the original model (Navier Stokes equations in the case of fluid dynamics)
onto the subspace generated by a subset of the new modes, this procedure is called
Galerkin-projection. Galerkin-projection results into a set of ordinary differential equa-
tions (ODEs) describing the evolution of the temporal modes and scaling down the
computational cost of the solution with respect to the original Navier-Stokes. Gener-
ally, the new set of basis functions are obtained from geometrical considerations or from
eigen-decomposition of operators associated with the dynamics of the system consid-
ered. According to the procedure chosen for their generations, basis functions can be
classified into three main categories: mathematical, physical or data-based. Usually,
the new basis functions are chosen to optimally represent physical aspects of the flow,
such as energy reconstruction, spectral pureness, growth rate of the instabilities and so
on. Therefore, performing a convenient modal decomposition of the flow field isolates
fundamental flow structures associated with different physical phenomena. In addi-
tion, expanding the flow field onto an optimal modal basis generates more compact
models. The advantages of such representation are twofold: it allows a deeper under-
standing of the flow physics, improving, at the same time, the computational efficiency
of the model itself since fewer terms are considered in the model. We refer to Taira et al.
(2017) for a complete overview of the advantages and drawbacks of the most popular
modal decompositions.

Historically, model order reduction techniques leveraged mathematical modes. These
consist of analytically defined functions and are derived from considerations on the
domain geometry such as homogeneity or/and type of boundary conditions. The most
popular and widely exploited example is Fourier decomposition, where the flow is de-
composed as a finite sum of complex exponential functions. This approach naturally
associates to each mode a well defined length scale making this approach preferable for
the description of scale interactions in case of periodic boundary conditions. For exam-
ple, Fourier modes are still the best choice for the analysis of homogeneous flows Pope
(2001). A different approach consists in using physical modes. These are obtained from
the analysis of a relevant operator derived from the physical model taken into consid-
eration. As an example, in (Noack et al., 2011) the authors observed that it is possible to
construct a complete set of basis functions suitable for describing the linear dynamics,
from the linear global stability analysis of the Navier-Stokes operator. This technique
was shown powerful since it leverages the vast tool-set related to the linear stability
theory. However, it is inherently linear and difficult to extend to nonlinear flows, i.e.
flows where different modes interact not weakly between each other. In this work we
won’t follow this approach since we are mainly interested in the description of statisti-
cally stationary fully developed turbulence. Since, in this flow regime, flow structures
interacts non-linearly some authors (Taira et al., 2017) suggest the use of modal basis



2.1. Analysis of coherent structures via modal decomposition 11

generated from data and/or anlysis of the nonlinear operator involved in the Navier-
Stokes equations. The second example of a physical or operator based approach is
proposed in Gómez et al. (2016). These authors proposed a different approach suitable
to be applied to turbulent flows called resolvent analysis. The resolvent analysis aims
to identify flow structures by using amplification analysis of the Navier-Stokes equa-
tions in the frequency domain. This decomposition allows expressing the velocity field
as a sum of dynamically significant modes. These modes have the interesting property
of being non-empirical and scalable with the Reynolds number, making the approach
more general with respect to a purely data-based one. This technique has been suc-
cessfully used to obtain a low-order representation of a turbulent flow in a channel and
of the lid-driven three-dimensional flow inside a span-wise periodic cavity in Moarref
et al. (2014) and Gómez et al. (2016). Interestingly, for these two configurations, it was
shown that resolvent analysis acts in a very selective way and therefore it is possible
to reproduce the dominant features of the flow with a low dimensional approximation.
Finally, another interesting application of this decomposition has been used in Gómez
et al. (2014). Here, starting from the observation of the presence of a sparsity patterns in
the frequency domain, the authors proved the existence of a link between amplification
and energy of the most energetically relevant flow structures identified by the resolvent
analysis. Results suggest that the ability to successfully identify sparsity patterns in the
frequency domain could be the key enabler to develop efficient reduced-order models
based on selecting only the most energetically relevant modes.

All the aforementioned approaches are limited only to certain types of boundary condi-
tions (see Fourier modes and Chebyshev polynomials) or to the knowledge of the math-
ematical model regulating the dynamics of the system (see resolvent analysis Gómez
et al. (2016)). To fill this gap and extend model order reduction to a larger variety of
problems, data-based modal decompositions have been introduced. This set of tech-
niques, needing only data as input, has the advantage of not requiring any a priori
assumption on the underlying dynamics and/or about the symmetries of the domain.
The main drawback is the difficulty to generalise the results obtained for a certain flow
configuration to another since, as the flow conditions changes, even slightly, a new
modal decomposition has to be generated from scratch. Historically, the first data-
based technique we mention is the Proper Orthogonal Decomposition, introduced by
(Tennekes and Lumley, 1972; Holmes et al., 1997; Lumley, 2007). This technique has
been widely used to analyse coherent structures in turbulent flows evolving in geome-
tries of increasing complexity ranging from flat-plate boundary layer in Rempfer and
Fasel (1994a) to stalled aerofoil in Kitsios et al. (2011). The main advantage of this
technique is that the POD modes are optimal in the sense of capturing the maximum
amount of variance in the data for each mode. For fluid applications this means that,
defined a certain amount of kinetic energy to be reconstructed, the POD can recover
it with the lowest possible number of modes, providing the optimal compression of
the dataset in terms of the mean quadratic error. Energetic optimality, resulting in the
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FIGURE 2.1: Spectral POD (SPOD) modes for turbulent jet. (c-l) Pressure field of the
first (left column) and the second (right column) mode evolving at five different fre-

quencies. Figure from Towne et al. (2018).

orthogonality between the modes both in space and time, makes this basis functions
particularly suitable for generating compact and economic representations of the flow
field and it has been widely utilised for the generation of reduced-order models. The
main drawback is that the underlying mathematical procedure generates modes oscil-
lating in time with spectrally complex time dependence, i.e. each mode contains an
undefined blend of different temporal and spatial scales. As a consequence excluding
particular flow configurations generating periodic flows, such that the vortex shedding
around a cylinder (see Brunton et al. (2016)), it is generally not possible to ensure that a
given POD mode contains only a predefined number of frequencies. As a result, every
temporal POD mode contains an undefined blend of different frequencies associated
with the different scales present in the system. This aspect is thoroughly explained in
Towne et al. (2018) observing that this characteristic could become problematic when
it comes to separate and analyse flow structures with similar energy content but oc-
curring at different spatial scales. As a result, all these different spatial structures are
lumped together in the same POD mode making the interpretation of the flow physics
associated with each phenomenon challenging.

To overcome this issue POD in frequency domain has been developed. This approach
generates a set of basis functions such that each mode contains a single temporal fre-
quency but with the modes still ranked in terms of the energy. This decomposition
is known as Spectral Proper Orthogonal Decomposition (SPOD). In the available lit-
erature, two different implementations have been so far proposed. The first approach
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by Towne et al. (2018) shares similarities with the original formulation proposed by
Lumley in Lumley (1970). This procedure involves the decomposition of the spectral
density tensor and leads to modes that contain only a single frequency. The authors
made a connection between the classical space only POD and the SPOD showing that
each POD mode is made up of several SPOD modes, each of them oscillating at a dif-
ferent frequency. From a physical standpoint, this means that each coherent structure,
represented by a POD mode, is made up by the contribution of many coherent struc-
tures at different frequencies. This idea is shown in figure 2.1, where the first two SPOD
modes for a turbulent jet at Mach = 0.4 are displayed. It can be observed that the first
and most energetic SPOD mode (first column of figure 2.1) is composed by several flow
structures oscillating at a prescribed frequency and then associated to a specific scale
of the flow. The same observation can be done for the second SPOD mode reported in
the second column of figure 2.1 and so on for the least energetic modes. A different

FIGURE 2.2: Magnitude of the frequency spectrum of the first SPOD mode, obtained
with Sieber’s approach, for three different width of the filter N f . Increasing the width
of the filter generates modes with a more pure spectral content. Figure from Sieber

et al. (2016).

approach has been proposed by Sieber et al. (2016) where the authors developed an al-
ternative algorithm to separate scales given the temporal correlation matrix. The main
motivation of the authors is to bridge the gap between the classical energy ranked POD,
the spectrally pure Discrete Fourier Transform (DFT) and the Dynamic Mode Decom-
position (DMD) Schmid (2010), known to be challenging to use for turbulent realisation
(see Taira et al. (2016)). This work was motivated by the observation that for highly tur-
bulent flows coherent structures and intermittency phenomena could occur at similar
frequencies making difficult to clearly separate the different phenomena. This makes
necessary a large number of measurements and averaging procedures to obtain satis-
factory results. The main idea proposed by the authors in Sieber et al. (2016) is to filter
the temporal correlation matrix to force the resulting temporal modes towards a more
clean temporal dynamics, i.e each mode should contain a narrow band of frequencies.
The effects of the filter on the magnitude of the Fourier transform of the first SPOD
mode of a turbulent jet are shown in figure 2.2. It can be observed that, increasing the
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width of the filter, the range of relevant frequencies contained in the temporal coeffi-
cient becomes narrower. Therefore, depending on the filter strength it is possible to
range from the energetically optimal POD to the spectrally pure DFT. This ability to
generate modes selective with respect the energy content comes at the cost of losing
energetic optimality. This means that more SPOD modes are needed to reconstruct the
same amount of energy, with respect to the POD. Moreover, SPOD modes are no longer
orthogonal in space leading to some complexity when these basis functions are used to
perform Galerkin-projection (see Taira et al. (2016); Rempfer and Fasel (1994a). Con-
sequently, Galerkin models generated with SPOD modes will contain additional terms
due to the inner product between different modes being non-zero.

Generally, for homogeneous isotropic turbulence, Fourier modes provide an optimal
representation both in terms of frequency and energy content (Brasseur and Wei, 1994;
Laval et al., 1999). For flows in complex geometries modes identified from data with
Proper Orthogonal Decomposition (POD) and its spectral formulations are usually pre-
ferred (Schmid, 2010; Towne et al., 2018). In addition, we feel to mention a hybrid ap-
proach that aims to bridge POD and SPOD that has been recently proposed by Mendez
et al. (2019). This algorithm, named multiscale POD (mPOD), leverages the idea of
partitioning the spectrum of the correlation matrix, to produce modes that are energy
ranked but containing only a narrow band of selected temporal frequencies.

However, these studies have utilised state-of-the-art modal decomposition methods
that are inherently targeting optimal data representation. Therefore, these are not seek-
ing for an optimal description of physical features such as sparsity of the interactions,
nor include any information regarding the nonlinear structure of the governing equa-
tions that produce such interactions. Work in this direction has been recently done by
Schmidt (2020) proposing a fresh approach aiming to generate modes that optimally
represent flow structures associated with triadic interactions. One of the objective of
this work is to widen the available literature by developing a modal decomposition
with a maximally sparse triadic interaction tensor leveraging information about the
mathematical structure of the equations.

2.2 Energy flow analysis

Energy transfer in turbulent flows has always been a topic of paramount importance
to gain a better understanding of the physics of the process. One of the targets of this
work is to develop a systematic procedure to select the most relevant features of the
dynamics of the coherent structures in turbulent flows. Therefore, energy flow analysis
is then a step of primary importance to understand how to leverage the physics of
turbulent realisations to achieve our goal. Moreover, energy analysis is a fundamental
step to check the physical preservation of the original properties once the model has
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been reconstructed. In this section, we will focus firstly on the results obtained in the
framework of the modal decomposition of turbulent flows. Subsequently, we analyse
some results obtained with different modal decompositons in different geometries.

2.2.1 Modal representation of the flow

The standard and well-tested approach to perform energy analysis of a turbulent flow
makes use of Fourier modes. This mathematical description allows a very elegant rep-
resentation of the spatial scales and offers a deep insight into the energy flow patterns
between different structures. However, it remains confined to the cases of homoge-
neous turbulence. This limitation can be overcome by leveraging a data-based decom-
position such as resolvent analysis or POD and its variants. Once the flow has been
expanded, the evolution of the turbulent kinetic energy of the ith mode can be defined
as ei =

1
2 a2

i (t), leading to the expression describing its temporal evolution:

dei

dt
= Ciai + Lijaiaj + Qijkaiajak + Pi(p, ϕi, ai) (2.1)

Broadly speaking, the terms involved in equation (2.1) represent the work done by the
mean field, the effect of the viscosity, the non linear interaction between the fluctuation
and the work done by the pressure field. In this work we are mainly interested in
the study of the nonlinear transfer term Qijkaiajak. A more complete discussion of the
terms involved in equation (2.1) can be found in section 4.1 and in Noack et al. (2011).
Equation (2.1) is valid regardless the modal decomposition used to perform Galerkin
projection, different basis functions affect the structure of the matrix coefficients.

In the early nineteens, some authors performed an interesting study reported in (Rempfer
and Fasel, 1994a). They aimed to find a connection between the energy flows and the
dynamical behaviour of coherent structures, defined as the POD modes of the flow, in
a transitional boundary layer. The energy analysis suggests that the classical picture of
the energy cascade adopted for homogeneous turbulence is not suitable for describing
the energy fluxes between coherent structures in the considered test case. More specifi-
cally, in the classical energy cascade framework, the energy goes from the largest scales
of the flow to the small ones and it is transferred by the interactions between structures
of comparable size. On the contrary, they observed that energy is not just passed on
from a structure to the nearest to the viscous scales, but rather, all the structures dissi-
pate turbulent kinetic energy received from larger structures in parallel. It is arguable
that this behaviour is mainly due to the presence of the solid wall that interacts with the
flow. An important result is obtained temporal averaging the non linear transfer term
Nijk = Qijkaiajak. The authors have shown that the interactions’ pattern between coher-
ent structures is by no means arbitrary but, on the other hand, has a precise structure.
Crucially, it can be observed that the most relevant interactions are the one grouped
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FIGURE 2.3: Histogram of the average energy flow Nijk for i = 12 and i = 17 in
panels (a) and (b), respectively. It can be observed that the most energetic interactions
are clustered along the line defined by the equation i = j + k and i = |j − k|. Figure

from Rempfer and Fasel (1994a).

around the lines i ∼ j + k and i ∼ |j − k| in modal space, with i, j, k three different
modal indexes. This pattern is plotted in figure 2.5 where the most energetic triadic
interactions, defined as Qijkaiajak, are reported for two different values of i. This result
is a direct consequence of the relation between triadic interaction in Fourier space. The
only difference between this case and the spectral model is that for the present case this
relation is only approximately satisfied by the POD modes. In addition, the authors in
Rempfer and Fasel (1994a) suggest that it is possible to make a connection between the
spatial structures and the indexing of the modes. It appears that the spatial size of a
given mode is connected with the value of the index of the mode itself i.e. the most en-
ergetic modes associated with a low value of the modal index are also associated with
the larger structures while the less energetic modes are associated with the small spa-
tial structures. Therefore, the property of the POD decomposition of ranking the modes
according to the energy content is reflected indirectly into an approximate rank also in
terms of the spatial scales. More recently, in Towne et al. (2018) the authors observed
that the separation between scales is a consequence of ranking the modes according
to their energy content. However, it is important to point out that this property is not
imposed by the mathematical formulation of the decomposition by is an indirect con-
sequence of the energetic optimality. A similar analysis has been performed by Couplet
et al. (2003). The authors performed a quantitative analysis of energy flows involved
in the dynamics of a separated flow configuration past a backward-facing step. To un-
derstand the relative importance of the interactions between coherent structures they
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define the influence of the j-th mode on the i-th as,

Πij =
j

∑
k=1

Qijkaiajak (2.2)

Figure 2.4-(a) shows Πij on a logarithmic scale. Firstly, it can be observed that, in this

FIGURE 2.4: Panel (a) shows the map of log(Π(i|j)), white and black areas corre-
spond lo large positive and negative values of Π(i|j), respectively. Panel (b) shows
horizontal cuts of Π(i|j) as a function of i − j for three different i. Figure from Cou-

plet et al. (2003).

case, as opposed to the Fourier representation all triadic interactions between the triplet
of modes i, j, k, not only the ones satisfying the relation i + j + k = 0, contribute to the
energy transfer. The energetic interactions occur in a local fashion since, as shown in
figure 2.4-(b), the energy transfer between two modes i and j becomes more and more
negligible as the difference between the value of the indexes |i − j| increases. Lastly, it
was observed that the energy transfer behaves qualitatively as observed for the Fourier
decomposition i.e. the mean energy flow is directed from the large scales to the small
ones of the spectrum via a local energy cascade mechanism. In addition, these au-
thors suggested a physical explanation similar to the one provided by Rempfer and
Fasel (1994a) noticing that the energy ranking of the modes is reflected on their spatial
rank. This implies that for the higher indexes the POD modes converge towards the
Fourier modes. This behaviour is qualitatively shown in figure 2.5 where iso-surfaces
of the Q-criterion are displayed for four different modes in the first, mid and rear part
of the spectrum respectively. It can be observed that as the value of the mode’s in-
dex increases, the mode is associated to smaller and smaller structures and becomes
qualitatively more similar to Fourier modes. Results obtained in Rempfer and Fasel
(1994a); Couplet et al. (2003) have shown the complexity involved in the study of the
energy transfer for complex flow configurations. However, it is worth underlining how
for both configurations analysed only a subset of all the possible energetic interaction
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FIGURE 2.5: Iso-surfaces of the Q-criterion for the following POD modes: a) ϕ1 b) ϕ20
c) ϕ42 d) ϕ87. Figure from Couplet et al. (2003).

seems to play a relevant role in modal space. This is an important result confirming
that generally speaking the flow considered are suitable for sparsification.

2.2.2 Homogeneous turbulence

Scales interactions in homogeneous turbulence is a deeply studied topic. Its impor-
tance lays in the fact that in the established picture of turbulence the energy transfer
originated by the nonlinear term is the principal process that affects the evolution of
turbulent flows. Despite the effort endured during the years by several researchers, the
elementary processes involved still remain elusive. However, it is generally accepted
that, at least for homogeneous flows, the energy transfer occurs in a local fashion i.e.
the energy is transferred from the large scales of motion all the way down to the dissi-
pative small scales via interactions between flow structures of similar size. This feature
has been proven indirectly in Tennekes and Lumley (1972) where the authors under-
lined how the inertial subrange in the Kolmogorov spectrum is a direct consequence
of the local interaction between triads. In Brasseur and Wei (1994), using data from
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numerical simulations, the authors observed that there is not appreciable energy trans-
fer between wavenumbers widely separated in the spectrum, i.e. representing different
spatial scales. Similar conclusions have been drawn in Domaradzki and Adams (2002)
where the authors showed that the contribution to the energy budget of a certain scale
comes mainly from scales of comparable size and therefore can be depicted as local.
It is important to underline that all the works previously mentioned have been per-
formed for fairly low Reynolds numbers and cannot be rigorously extended to higher
Reynolds number flows. However, in works such as Rowley et al. (2009); Gómez et al.
(2014); Brasseur and Wei (1994) it has been shown that the same mechanism holds, at
least from a qualitative point of view, also for flows at higher Reynolds number.

In (Tennekes and Lumley, 1972; Brasseur and Wei, 1994) the authors suggest that in the
context of triadic interactions is crucial to distinguish between two different concepts,
i.e. energy transfer and triadic interactions. The energy transfer involves two different
scales of motion. It can be either local if the two scales are similar or non local if it
occurs between scales of different sizes. Triadic interactions represent the interaction
between three different scales of motion. It can be local if all three scales are similar and
non local if one or two of the three scales are bigger of smaller with respect to the other
two. In the context of the triadic interactions, the concept of local or nonlocal energy
transfer is complex. In fact, if local triad interaction always implies local energy trans-
fer the opposite is not always true. It is possible to have local energy transfer caused
by nonlocal triads if the energy is exchanged between two large wavenumbers in the
triad without affecting the small wavenumber. Figure 2.6-(a) shows a local triadic in-
teraction that occurs between modes with legs of similar size. While panel-(b) shows a
distant interaction involving modes widely separated in the spectrum. In panel (b) is
also represented the situation of local energy transfer between distant triads. An inter-

FIGURE 2.6: Schematic qualitative example of : local triadic interaction in panel (a)
and distant triadic interaction with local energy transfer in panel (b).

esting result was found in Domaradzki and Rogallo (1990) where the authors analysed
the transfer term involved in the energy equation. They found out that the energy
transfer in homogeneous, isotropic turbulence is mainly local occurring between simi-
lar scales of motion. However, the triads interactions responsible for this process could
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be non local occurring between separated scales of motions. These results have been
obtained with low Reynolds numbers turbulence but are likely to be extended to higher
Reynolds numbers as well. However, from a global point of view, local energy transfer
seems to dominate the dynamics of turbulent flows. The conclusions of Domaradzki
and Rogallo (1990) are that, although they are unable to give a satisfactory description
of the role played by the bigger scales in the energy transfer, the local energy transfer
plays a predominant role in the energy transfer in particular in the vicinity of the spec-
tral cutoff. The major takeaway of these works is that if this dynamics could be proved
true it could indicate the possibility to simulate the biggest scales independently or
more likely simulate the dynamics of certain scales taking into account only the scales
of commensurate size.

Lastly, it is worth mentioning an analogous work in the field of two-dimensional tur-
bulence performed by Laval et al. (1999). The authors performed the energy analysis of
homogeneous two-dimensional turbulence showing that for the two dimensional case
the energy interactions are non locals and only a small subset of interactions between
large and small scales is actively involved in the energy transfer. In addition, these au-
thors showed that it is possible to generate physically meaningful reduced-order mod-
els just by manually removing the less energetically relevant interactions. Results show
that these manually pruned models reproduce faithfully the original physical features
of the flow such as power spectra and amplitude fluctuation.

2.2.3 Energy interaction in different approaches

To conclude the overview on the energy analysis of reduced order models of turbu-
lent flows it is worth mentioning a slightly different approach exploited by Taira et al.
(2016) Nair and Taira (2015). The authors described the dynamics of two-dimensional
turbulent flow as a network of interacting vortexes. The vortex network representation
allows them to sparsify the system exploiting the well know techniques of network
analysis Newman (2004) to identify the relevant interactions within the network. They
show how to construct a sparse model of the network preserving the physical proper-
ties of the original one. This is an important result for our research since it is a further
confirmation that although the equations describing a turbulent flow are dense they
produce solutions containing an underlying sparse structure. In other words for the
case of turbulent flows, it is possible to find a good sparse approximation of the origi-
nal model.
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2.3 Applications of ROMs

Reduced-order modelling is a powerful set of techniques allowing the generation of
computationally cheap representations of large multiscale systems resulting from the
discretisation of the PDEs. Hence, the affordable computational cost of the ROMs
makes them an essential component to perform real-time simulations and control of
complex PDEs systems. In particular, reduced order model techniques have been pro-
posed by Ravindran (2000) Tonn et al. (2010) in the field of optimal control and optimal
shape design Bui-Thanh et al. (2008) of flow devices. An interesting application in the
field of flow structure interaction has been proposed by Lassila et al. (2012). In this
case, they exploit the computational affordability of the ROM models to compute itera-
tively a large number of fluid solutions and reach the convergence of the fluid-structure
interaction model. Because of the ability of the ROM models to condensate the most im-
portant features of the flow fields in just a few modes, they can also be used to perform
more fundamental studies about the fundamental physics of the flow such as Alizard
and Robinet (2011). These authors have successfully used the ROM approach to per-
form the stability analysis of a flat-plate boundary layer. Similarly, Kitsios et al. (2011)
uses reduced order modelling approach to study the stability of the flow structures
generated by the leading edge separation in NACA 0015 profile. Finally, it is worth
mentioning that the reduced order-model techniques have been applied by Nguyen
et al. (2014) to the framework of the reacting flow models.

Recently Gómez et al. (2016) proposed an interesting work developing a novel reduced
order model for the three-dimensional unsteady lid-driven flow inside a span peri-
odic cavity. This reduced-order model, obtained by resolvent analysis, requires only
the mean flow and a minimal amount of information to be generated. The authors
showed that the model is able to predict the velocity field with a good degree of ac-
curacy using only a few number of modes. The main advantage of this approach is
that resolvent analysis does not require any a priori assumptions about the nature of
the non linearity of the flow and can be used for weakly non linear flow as well as for
fully turbulent ones. Lastly, it is worth mentioning the work performed by Zhang and
Wei (2017). These authors developed a reduced-order model of the vortex shedding be-
hind a cylinder based on the dynamical mode decomposition. These authors introduce
an approach to find the energetically dominant DMD modes enabling the generation
of a set of basis functions suitable for the development of Galerkin based reduced or-
der models while keeping the ability to isolate structures oscillating at a prescribed
frequency. However, as it will be shown later on, the particular structure of the tempo-
ral modes generated by the DFT (coming in sin cos pairs) leads to some difficulties in
mathematical conditioning of the optimisation problem involved in the sparsification
procedure. This aspect will be discussed later on the section dedicated to the sparsifica-
tion of the DFT-based reduced order models. Generally, unless in presence of particular
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flow configurations, for the generation of Galerkin based models, energy based decom-
positions have to be preferred.

2.3.1 POD based ROMs

One of the main goals of a Galerkin model is to construct a model containing the most
important physical features of the original flow but distilled in the lowest number of de-
grees of freedom possible. The canonical approach consists in projecting the governing
equations onto the subspace spanned by the modes generated by the proper orthogo-
nal decomposition (POD). POD modes are computed optimising the average residuals
with respect to the L2 norm of the error between the original fluctuating field and the
field obtained by modal expansion Holmes et al. (1997). This procedure, when applied
to fluid dynamics, produces a set of spatial and temporal modes, ϕi(x) and ai(t), max-
imising the amount of reconstructed turbulent kinetic energy for a given number of
modes N. POD based reduced order models have been largely studied in literature
and they have several advantages and just few drawbacks. In the following sections,
we will briefly discuss the main problems of this approach and the solutions developed
to tackle these issues.

2.3.2 Problematics of ROMs

Once the Galerkin projection of the Navier-Stokes equations is performed a coupled
system of ODEs for the temporal coefficients ai needs to be solved. Crucially, the com-
putational cost of solving the ODEs system is much lower with respect to the one of
solving the original PDEs system. However, it has been observed that the system of
ODEs obtained simply by Galerkin projection produces predictions that are systemat-
ically way off the expected results. This outcome is expected and is a consequence of
the implicit approximation done performing Galerkin projection onto a subspace of di-
mension usually much smaller than the original one. Therefore, some corrections need
to be done to make the model suitable for practical applications.

Pressure Term

A compelling problem in model order reduction is related to the modelling of the pres-
sure term arising from the Galerkin projection of the pressure gradient onto the sub-
space spanned by the POD modes. Generally, this term cannot be simply expressed
as a combination of the POD modes and, except for particular configurations such as
wall-bounded and periodic flows, it remains different from zero and unknown. To the
author knowledge, several approaches have been proposed in the known literature. In
Galletti et al. (2004) the pressure term is modelled as a linear combination of the POD
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modes (u,∇p) = Cijaj(t) and the coefficients of the matrix Cij are found through an op-
timisation procedure aiming to match the predictions of the reduced-order model with
the known dynamics of the flow. A different approach is proposed by Bergmann et al.
(2009), they try to take into account of the pressure term formulating a pressure extend
ROM Bergmann et al. (2008). In this new formulation, a new set of basis functions for
the pressure field are introduced such that the pressure term can be directly evaluated
through the pressure mode. Finally, an analysis of the problems involved by the pres-
sure term and its modelling is provided by Noack et al. (2005). More specifically, the
authors investigate the role of the pressure term in a shear layer configuration. They
show how neglecting the contribution of the pressure term can lead to a non negligi-
ble amplitude errors even for a very low dimensional system. Most importantly, these
errors cannot be compensated by increasing the number of modes taken into consider-
ation.

Underpredicted dissipation

One of the most important features of POD-based ROMs is that, due to the energetic
optimality of the POD, they capture a large amount of the kinetic energy of the flow
in only a few modes. This means that in the reduced-order model only the bigger
and most energetic structures need to be taken into consideration. This results in an
aggressive truncation of the small and low energy scales where the viscous dissipation
takes place. This is particularly true for high Reynolds number flows where a large
number of modes is required to obtain a complete description of all the dynamically
active scales. On the other hand, viscous dissipation is necessary to provide the correct
physical description of the flow. This implies that ROMs built by only a few modes
are not able to dissipate the correct amount of kinetic energy. This extra energy could
lead both to inaccurate results or, in the worst cases, in numerical instabilities. Due
to its direct practical implications, the stabilisation of aggressively truncated reduced-
order models has been widely studied in literature and several approaches have been
proposed to tackle the problem.

Bergmann et al. (2009) proposed two different approaches. In the first, called Residual
Based Stabilisation, the goal is to approximate the fine scales of the flow with some
adapted basis functions. The second method consists in updating the POD database
on the fly during the simulation of the ROM itself. A more classical approach based on
the concept of LES-like eddy viscosity model has been proposed by Östh et al. (2014).
The authors present different formulations of increasing complexity to model the unre-
solved scales in the flow via the introduction of eddy viscosity. Then they tested these
models for describing the flow around an Ahmed body configuration and showing
good predictions capabilities of global features such as aerodynamics coefficients.
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A different approach leverages the idea of automatically calibrating a posteriori the ma-
trix coefficients of the ODEs system to introduce the correct amount of viscous dis-
sipation. Recently, various approaches have been proposed to calibrate and improve
the accuracy of the reduced-order models (Stankiewicz et al., 2011; Cordier et al., 2010;
Amsallem and Farhat, 2008; Perez et al., 2017). They all share the idea of leveraging the
knowledge of the true temporal dynamics of the flow to adjust the numerical value of
the coefficients in the ODEs system through an optimisation procedure. A simple ap-
proach consists in performing least squares regression on the system coefficients. This
approach can provide satisfactory results in the case of small ROMs and good quality
data to train the algorithm. In real life configurations, as observed by (Cordier et al.,
2010; Friedman et al., 2008), small and poor quality datasets are very common. This
makes the use of a pure least squares regression technique, without any regularisa-
tion term, is strongly discouraged. Cordier and coworkers (Cordier et al., 2010; Galletti
et al., 2004) proposed an approach based on a Tikhonov penalisation term to control
the numerical values of the coefficients in the reduced-order model. This approach is
a well established statistical learning technique used to regularise least squares regres-
sion problems where the database or feature matrix has poor numerical conditioning
Hansen (1990); Friedman et al. (2008). Although the Tikhonov regularisation has been
proved successful for relatively small models a possible drawback of this approach is
that the L2 penalisation preserves, in the tuned model, all the coefficients present in the
original one. Since for POD-based Galerkin models the number of coefficients grows as
the third power of the number of modes, the resulting Ridge problem might require a
prohibitive number of snapshots to perform a meaningful regression without incurring
in problems related to the overfitting. In addition, after the a posteriori calibration of the
matrix coefficients, the physical link between spatial modes and ROMs coefficients is
lost resulting in a questionable physical interpretation of the relative strength of the
energetic interactions in the sparse model.

To solve this incoherence and preserve the physical link between the spatial modes
and the ROMs coefficients a conceptually different solution, called subspace rotation
technique, has been proposed by Balajewicz et al. (2013). The authors reproduce the
right amount of dissipation in the model adding an additional constraint to the original
proper orthogonal decomposition algorithm. The main idea of this procedure is to
rotate the original set of basis functions into a new, more dissipative configuration and
introducing the correct amount of viscous dissipation inside a low dimensional ROM
model. The authors then have tested this approach over a high Reynolds number cavity
flow proving its effectiveness. This approach is interesting because it is a very natural
way to impose any constraint on the POD basis that is generated. In addition, subspace
rotation resolves the problem of loss of coherence between the modal structure and new
ODEs coefficients modified by the calibration since as the matrix coefficients are tuned
the corresponding spatial modes are modified as well. This approach will be discussed
in further detail later on and will be used in the a priori sparsification approach.



2.4. Model sparsification 25

2.4 Model sparsification

The idea behind model sparsification relies on the observation that, although the math-
ematical model describing the dynamics of the flow is generally dense, energy flows
between the hierarchy of structures follows preferential patterns. The idea behind
model sparsification is to develop a procedure that automatically identifies these pat-
terns without the need for any action by the user. This is beneficial since retaining in
the model only the interactions that actively contribute to the dynamics allows to con-
sider larger modal expansions including a wider range of flow scales improving the
accuracy of the models and mitigating the effects of the truncation. In addition, a more
compact representation of the triadic interactions can provide an easier interpretation
of the dynamics involved helping to gain insight into the flow physics.

2.4.1 Physics informed sparsification

With the term physics informed sparsification we mean a procedure that exploits any pre-
vious knowledge about the physics of the flow or the geometry, such as symmetries,
to simplify the problem itself. Recently, some authors exploited this idea to generate
compacts model of turbulent flows. As an example in Thomas et al. (2014) the authors
develop a Reduced Nonlinear Model (RNL) of a planar Couette flow modifying a DNS
code retaining in the model only the terms that are supposed to contribute actively to
the dynamics of the flow based on geometric observations. These authors observed that
the restricted model can reproduce with a good degree of accuracy the mean velocity
field and the longitudinal component of the Reynolds stresses. These results proved
that the reduced model can capture the main physical features of self-sustaining tur-
bulence. Most importantly the assumptions done make the model computationally
and analytically tractable. This opens new possibilities of developing a deeper insight
in understanding the dynamics of wall turbulence and developing new flow control
strategies. A similar approach is presented by Gómez et al. (2014). They exploited the
observations of Bourguignon et al. (2014) that near-wall turbulence presents a sparse
representation in the Fourier space, i.e. only large sparse peaks are present in the spec-
trum. The authors suggest that these features are the direct consequence of the finite
length periodic domain and more importantly that this property can be exploited to
generate efficient reduced-order models based on selecting only the dominant frequen-
cies among all the possibilities. Similarly, a physics informed approach have been used
by Laval et al. (1999) exploiting the knowledge of energy fluxes in Fourier space to gen-
erate a minimal model for two-dimensional isotropic turbulence.

These approaches can provide an interesting insight on the physics. However, they still
relies on a priori knowledge of the flow. Our aim is instead to develop a systematic pro-
cedure that can detect the most relevant features of reduced-order models of turbulent
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flows. A promising approach to this goal is the sparse regression technique that recast
the problems of selecting the relevant features in a convex optimisation problem for
which well-established routines exist.

2.4.2 Sparse regression of dynamical systems

Sparsity promoting techniques, alongside with machine learning, have been shown to
be a powerful tool in many fields of engineering and science such as image recognition
and signal analysis Roig et al. (2009); Blum and Langley (1997) . Only recently, these
concepts have been extended to a more physics-related framework. More specifically,
statistical learning techniques have found a promising application in the identification
of dynamical systems from data. Sparsification techniques can be applied to the re-
construction of dynamical systems from data, as explained in figure 2.7, in four main
steps. First, snapshots of the velocity or vorticity field are collected and the correspond-
ing modal coefficients ai(t) are computed. Subsequently, assuming a mathematical
structure of the system, the data are recast in a matrix form suitable to perform linear
regression. Thus, the l1 regression problem is solved to identify only the relevant terms
for the temporal dynamics of the system and ignore the others, whose corresponding
coefficient βi will be set to zero. Mathematically this is done setting to zero the co-
efficients βi whose absolute value goes below a certain threshold proportional to the
value of the regularisation weight λi. Significant efforts in this direction have been re-

FIGURE 2.7: Algorithm to reconstruct dynamical systems from data. It consists in
four steps shown in the blue frames in the figure above. 1) The data are collected
from simulation or experiments. 2) the matrix of the time derivative Ȧ and the li-
brary Θ(A) are constructed. 3) the LASSO is performed. 4) the dynamical system is

identified.

ported in Brunton et al. (2016); Loiseau and Brunton (2018). These authors developed
the SINDy (Sparse Identification of Nonlinear Dynamics) framework that exploits the
sparsity promoting techniques such LASSO (Least Absolute Selection Shrinkage Op-
erator) regression and subset selection to reconstruct nonlinear governing equations
from noisy measurements. The SINDy methodology is schematically explained by the
blocks of figure 2.7. This method has been successfully tested on different nonlinear
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chaotic systems such as the Lorenz attractor and the POD reduced-order model of a
laminar flow around a cylinder. The results reported in Brunton et al. (2016) show how
the LASSO algorithm is able to identify the correct structure of the dynamical system
such as limit cycles and attractors. These works are of key importance for the extension
of the sparsification algorithm to a more physical framework, showing that the spar-
sification algorithm can reconstruct and identify the correct physics of the system. A
further improvement of the SINDy algorithm has been done in Loiseau and Brunton
(2018). In this work, the authors argued that the sparse regression technique is just a
mathematical procedure performed on the dataset but the conservation of the physi-
cal properties of the original system is not automatically granted and must be ensured
during the mathematical procedure. The authors then presented a way to enforce the
energy conservation of the nonlinear term in the ROM representation of the Navier-
Stokes system. To this goal, they formulated the LASSO problem as a convex minimi-
sation problem with additional linear constraints on the system coefficients. Then the
problem has been solved by the optimisation framework cvxpy Diamond and Boyd
(2016). The energy conservation of the nonlinear term of the Navier-Stokes equations
is an important aspect to preserve the numerical stability of the ROM and to ensure
that the physics of the original flow will not be modified once the sparsification is ter-
minated. Both of these issues are considered in Balajewicz et al. (2013) and Jovanović
et al. (2014) where a mathematical reformulation of the POD and DMD is proposed
to obtain a reduced-order model that describes the correct amount of dissipation and
energy transfer between the scales and select only the relevant modes. More interest-
ingly, this approach involves the modification of the basis functions therefore the link
between the flow structure and system coefficients is not lost. A similar idea will be
explored later on in this work when the a priori sparsification approach is discussed.

Although sharing a similar approach our perspective is different and closer to the work
of Taira et al. (2016); Nair and Taira (2015). These authors described the dynamics
of a two-dimensional turbulent flow as a network of vortexes and then applied the
network sparsification techniques. These techniques allow describing the interactions
between the node of the network through the adjacency matrix. Several mathematical
techniques have been set up to sparsify the adjacency matrix of a network Newman
(2004). The result is qualitatively reported in figure 2.8. In figure 2.8-(a) and (b) two
different sparsity patterns for the adjacency matrix are plotted. The colour of the cells
is the absolute value of the weight associated with interactions between two vortexes.
It can be observed how the highest values near the diagonal represent the presence
of a cluster of vortexes. Figure 2.8-(c) shows the eigenvalues of two different graphs
with different sparsification ratios compared with the original ones. It can be observed
that the numerical value of the eigenvalues is slightly affected by the sparsification
procedure. This work showed how it is possible to extract a sparse structure from an
inherently dense system without any a priori knowledge on the structure of the sparsity
structure of the system itself.
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FIGURE 2.8: Panels (a) and (b) show the sparsity pattern of two different networks
of vortexes. The colour represents the absolute value of the weight of the interaction
described by that term, red and blue cells correspond to high and low values, respec-
tively. Panel-(c) Eigenvalues of the spectra of the two sparsified system compared to

the original one. Figure from Taira et al. (2016).

2.4.3 Automatic selection of relevant features

This work heavily relies on Machine and Statistical Learning techniques, in this sec-
tion a brief overview of this set of techniques will be done. In recent years Machine
Learning (ML) started to spread from purely Information technology applications to-
wards more physics and engineering-oriented applications. Since large datasets have
become readily available Machine Learning is a fundamental tool to identify patterns
and relevant features inside datasets whose size would be overwhelming for a person
to analyse. An extensive overview is done in Blum and Langley (1997). The authors
explain at a conceptual and practical level the problem of ”relevance” in the data min-
ing framework. The bottom line is that at a practical level we seek an algorithm that
scales well with domains with many irrelevant features. More specifically, the number
of training samples needed to reach a certain level of accuracy should grow slowly with
respect to the number of features present in the dataset. A good example of a feature
selection model is explained in Roig et al. (2009). A novel point of view to create a
correspondence between two different images is presented. The key point is that the
problem can be reformulated as the optimisation problem of a convex energy function
representing the distance in a certain subspace between the reconstructed image and
the target image. They also apply three different approaches to solve the minimisa-
tion problem showing the superior performances of the approach based on the convex



2.4. Model sparsification 29

quadratic programming.

The previous examples although very interesting have the common property to not
have any clear structure in the original dataset. This is not the case of the reduced-
order model of a flow that we know to have a polynomial dependency from the tem-
poral amplitude of the modes. The particular structure of the data allows us to restrict
the searching area by implementing a linear regression on a function database defined
a priori by the user (see Friedman et al. (2008)). The linear regression framework is
particularly appealing since they have a fairly simple mathematical formulation and
implementation. In addition, these techniques can provide adequate accuracy and in-
terpretability of the results in particular for models where the number of features is
bigger than the number of training samples (situation likely to occur in fluid dynam-
ics applications) they can provide even better results and clearer interpretability that
more complex algorithms. A nice review about Machine Learning techniques applied
to fluid mechanics is provided by Brunton et al. (2019) where the state of the art of ma-
chine learning techniques in fluid dynamics and an overview of the future challenges
are presented.

2.4.4 Role of the regularisation in linear regression

Often times when complex datasets are used in a linear regression framework, the num-
ber of features is smaller than the number of available samples. As pointed out by (Roig
et al., 2009; Cordier et al., 2010) in this scenario a simple least-squares approach will in-
cur into overfitting making the results meaningless. A simple solution is including in
the mathematical formulation of the problem an extra penalisation term in the form of
some norm of the vector coefficients with the aim of regularising the solution making
the optimisation problem well-posed. In addition and more interestingly, the math-
ematical form of the regularisation term is used to enhance different features of the
dataset (Friedman et al., 2008). A good overview of the linear regression techniques

FIGURE 2.9: Iso-contours of ||βi||p for a constant value. The image shows decreasing
values of q moving from left to rigth. Image taken from Friedman et al. (2008)

and data mining is provided by Roig et al. (2009). Generally speaking, it is possible to
define for any real number p > 0 different norms as

||βi||p = (|β0|p + |β1|p + ... + |β I |p)1/p i = 1, ..., I (2.3)
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where I is equal to the number of element of βi. Two limiting cases of this definition
are: the l0 norm that only counts the number of elements of βi different from zero,
also known of carnality, defined as ||βi||0 = card(βi) and the l∞ norm identifying the
largest element of βi, defined as ||βi||∞ = max(|βi|). The effect of different types of
norms can be understood by visualising the contours of constant values of ||βi||p in the
space of the optimisation variables βi. Figure 2.9 shows the values of the contours for
decreasing values of q from left to right. Starting from the very left we have q increasing
leading eventually to the l∞ norm. The regularisation obtained with this norm, called
subset selection, generate a solution that takes into account only the largest element of
βi. The major drawback of this approach is that a feature is either kept or eliminated
from the selected subset. Consequently, very different solutions can be obtained with
a slight change in the training dataset and/or of the hyper-parameters of the regres-
sion. Moving right we have the case q = 2, this is the well known Ridge regression
where the coefficients are shrunk to zero by a quadratic penalisation, although this re-
gression is more stable and provides statistically better results with respect to the pure
least-squares it still produces a dense result and then hardly interpretable. This kind
of regularisation has been used by (Cordier et al., 2010) to tune the predictions of POD
based reduced-order models. Moving further to the right we obtain the case with q = 1.
This configuration correspond to the LASSO regression Tibshirani (1996). We refer to
Friedman et al. (2008) for a more in-depth discussion of the functioning of the l1 norm.
A crucial aspect of the family of sparsity promoting techniques is what happens to the
contours shown in figure 2.9 when crossing the the value q = 1. More specifically, the
sparsity of the solution is promoted by the non-differentiability of the solution on the
axis. This produces non-vanishing gradients near the axis and ”pushes” the small coef-
ficients to be exactly zero. This is equivalent to performing a iterative thresholding pro-
cedure on the coefficients βi. This approach has been used by Brunton et al. (2016) for
system identification. In addition, we refer to Friedman et al. (2008) for a more broad
discussion about the relation between different values of q, type of thresholding and
the resulting coefficients selection strategy. The sparsity is promoted by the presence
of spikes or non differentiable points in the shape of the norm. Therefore every norm
such that q ≤ 1 is, potentially, a sparsity promoting norm. However only for the case
q = 1 the objective function is convex, therefore efficiently solvable. Lastly, as the value
of q decreases, we observe that the non differentiable points become sharper and at the
same time the norm becomes non-convex. The limit configuration is the l0 norm that
simply counts the non-zero elements of the vector βi. From a theoretical point of view,
the l0 norm would be the optimal one to promote sparsity in the solution. However,
as observed by Jovanović et al. (2012, 2014), its non-convex nature makes the solution
of the problem computationally hard and unpractical to solve for systems of already
modest dimensions. For this reason, the best trade-off between sparsity and compu-
tational tractability is offered by the l1 penalisation or LASSO regression. In addition,
it can be shown that the l1 norm is the best convex approximation of the ”optimally”
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sparsity promoting l0 norm (Ramirez et al., 2013). Crucially, the LASSO does not focus
on a certain subset of coefficients but defines a continuous shrinking operation leading
to solutions with coefficients that are exactly zero. This allows defining a whole fam-
ily of sparse reduced order models with different accuracy sparsity trade-off. Due to
its convex and sparsity promoting properties we will use the l1 norm to construct the
sparsity promoting operators that will be introduced in the methodology section. In
addition, the l1 based regression is simple to implement, mathematically robust and its
results are easily interpretable. All these properties are important assets for a machine
learning model.

2.5 Summary and open questions

The literature review has shown that several modal decomposition techniques exist,
each of them aiming to better highlight different physical aspects of the flow. The
choice of the most suitable technique is not straightforward and mainly depend upon
the characteristics of the flow considered. Broadly speaking, modal decompositions
can be divided into two macro-categories. First, energy-based approaches, ideal to ob-
tain a compact representation of the flow, can isolate flow structures with large energy
content. However, they lack the ability to separate events happening at different scales
but having similar energy content, making the interpretation of certain flow config-
urations challenging. The other class of decompositions consists of frequency-based
approaches aiming to decompose the flow into modal structure oscillating at a fixed
frequency. This set of techniques works better in separating events happening at differ-
ent flow scales and describing statistically stationary flows. However, they show some
limitations in configurations with a more complex time behaviour such as high inter-
mittency and transient flows. During the years hybrid approaches, aiming to join these
two categories of modal decompositions, have been proposed. Arguably, the major lim-
itation of the state of the art is that they fundamentally seek an optimal representation
of the dataset without considering neither the physics nor the mathematical structure
of the system considered. Only recently some work in this direction has been done by
Schmidt (2020) formalising a modal decomposition optimally representing structures
associated with triadic interactions.

Once a modal basis, to expand the flow has been chosen, a set of ODEs describing
the evolution of the modal structure can be generated. Generally, these models have a
dense structure, i.e. the evolution of one flow structure depends upon the complemen-
tary set of structures. However, several studies show that triadic interactions do not
have the same importance but that energy flows according to preferential patterns. On
the other hand, when Galerkin-based reduced-order models are generated this sparsity
feature is generally lost.
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Recently some work has been done to integrate statistical learning techniques into fluid
dynamics. More specifically, l1 sparse regression has been successfully employed to
identify dynamical systems from data. Despite the efforts put into the understand-
ing of these methodologies, it is still unclear how they interact with the conservation
properties of the flow, such as energy conservation of the nonlinear term and temporal
stability of the sparse reduced-order model. More specifically, if sparsification tech-
niques can preserve the correct physics of the flow or if it has to be manually enforced.
In addition, to the author’s best knowledge, these techniques have been applied so far
to canonical low dimensional test cases having already a sparse structure embedded in
the mathematical structure of the model and no applications to complex, large Galerkin
models are present in the literature. Some work in this direction has been done in the
context of vortex networks describing the dynamics of a two-dimensional turbulent
flow as a network of vortexes and then applied the network sparsification techniques.
Interestingly, the authors showed how it is possible, starting from a fully connected
network, to remove links between the vortexes affecting only marginally the properties
of the network. This result shows that it might be possible to sparsify an initially dense
model exploiting the sparse nature of the energy flows inside the flow.
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Objectives

The goal of the present research is the development of a systematic methodology to
generate computationally cheap, but yet accurate, numerical models of turbulent flows.
More specifically, one of the major issues in the mathematical description of complex
flows is the intractable number of degrees of freedom needed to resolve all the scales of
the flow. A possible solution consists in projecting the governing equation onto the sub-
space generated by a suitable modal decomposition. In recent years, POD modes have
become a very popular approach to generate the low dimensional subspace. However,
POD-based models are mathematically dense, i.e the matrices involved in the defini-
tion of the reduced-order model have entries different from zeros, leading to a high
computational cost and difficult physical interpretation. The key idea proposed in this
work consists in exploiting the physical observation that non all the flow structures in-
teract with the same strength, this generates a subset of dominant energetic interactions
within the model. To our goal, we aim to develop a data-driven methodology as means
to identify relevant triadic interactions in Galerkin models of turbulent flows. As op-
posed to a mere truncation, where the modes describing less energetic flow structures
are simply ignored, the philosophy of this approach consists in generating reduced or-
der models from a large number of modes and consequently, that can describe a large
range of spatial scales. The computational efficiency is then enhanced by eliminating
the least relevant interactions within the dynamics of the single modes. As a result, the
temporal evolution of a modal structure requires the evaluation of fewer terms with
respect to the original model. The cornerstone of this approach is the l1 based sparse
regression. Its mathematical formulation consists in solving an optimisation problem
composed by a least-squares part and an l1 penalisation term on the matrices coeffi-
cients of the reduced-order model. Crucially, this mathematical formulation translates
the problem of identifying the most relevant interactions into a well posed optimisa-
tion that can be efficiently solved leading to a unique solution. The first part of the
research has focused on a supervised learning-based sparsification technique we will
call a posteriori sparsification. The a posteriori sparsification procedure will be applied
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to large Galerkin reduced-order models of turbulent flows. The first aspect that will
be analysed is the ability of the l1 framework to sparsify initially dense models in ac-
cordance with the pattern of the most relevant triadic interactions. A second crucial
aspect, in the a posteriori sparsification, is to understand whether it is possible to natu-
rally embed this mathematical procedure into the fluid mechanics framework in such a
way the conservation laws and the symmetries implicit in the Navier-Stokes equations
are preserved by the sparsification procedure. In case of a negative answer, we need
to understand how to automatically enforce these properties in the formulation of the
regression. The second contribution of this research is more fundamental in nature.
It concerns the relation between sparsity of energy interactions and the definition of
the modal basis used to generate the Galerkin model. More specifically, the classical
l1 based regression, proposed as our first approach, involves an a posteriori evaluation
of the energy interactions between an immutable set of modes, pruning weak interac-
tions that do not contribute to the dynamics. The downside of this approach is that the
system coefficients are modified by the regression since the minimisation of the error
between the original and the sparse system involves fine-tuning of the nonzero model
coefficients without modifying the basis function. Consequently, the strict link between
spatial structures and projection-based coefficients is lost making the interpretation of
the modal energy transfer questionable. Arguably, an elegant solution is to define a
new set of modal structures such that the corresponding quadratic interaction tensor
obtained by Galerkin projection onto the subspace generated by these new modes is
sparse. The key idea is to obtain the new modal functions as a linear combination of
a preexisting set of modes. This is done by formulating an optimisation problem in
terms of a rotation matrix linking the new to the old basis functions. The properties
of the new basis will be enforced by including additional constraint constraints on the
mathematical structure of the model involved. Classically, modal decompositions are
educed from energetic optimality considerations and no pieces of information about
the physics nor the mathematical structure of the model are considered. Thus, this ap-
proach aims to widen the current literature proposing a methodology able to include
information about the mathematical model considered directly inside the formulation
of the problem. Due to the novelty of the a priori sparsification approach two main goals
have been defined. First, provide a robust mathematical foundation of the a priori spar-
sification method. More specifically, it is of paramount importance to understand how
our objective can be efficiently translated as an optimisation problem. In particular,
due to the mathematical structure of the third order tensor, we expect the optimisa-
tion problem to be not convex. How this aspect impacts the computational cost and the
uniqueness of the solution is an aspect that needs to be analysed. Second, this approach
will be demonstrated on canonical flows of increasing complexity. Here the goal is to
understand how the new basis function is able to capture energy transfer mechanisms
efficiently, i.e. where the quadratic coefficient tensor, regulating triadic interactions, is
as sparse as possible.
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Methodology

This section outlines the mathematical tools required to generate Galerkin based reduced-
order models and analyse energy transfers between modal structures. Subsequently, it
is shown how to recast Galerkin models in a suitable form to perform a posteriori and
a priori sparsification. Finally, these two opposite methodologies are compared dis-
cussing the major advantages and drawbacks of both methodologies.

4.1 Model Order Reduction Techniques

We consider the evolution of an incompressible flow defined by the velocity compo-
nents u(t, x) = (u, v) in a domain Ω of arbitrary shape described by the Cartesian
coordinates x = (x, y) and endowed by the standard inner product

(u, v) =
∫

Ω
u · vdΩ, (4.1)

where u, v are two elements of such space. The resulting L2(Ω) norm is denoted as
||u||2 =

√
(u, u). The equations describing the evolution of the velocity field u in

every point in the domain are

∂tu + u · ∇u = −∇p∗ +
1

Re
∇2u (4.2a)

∇ · u = 0, (4.2b)

where ∂t denotes the derivative with respect to time, ∇ the gradient operator with re-
spect to the spatial directions x and p∗ the reduced pressure. The Reynolds number is
defined as Re = UL/ν, where U,L are reference length and velocity and ν is the kine-
matic viscosity. Once obtained a solution of (4.2), using the time averaged (indicated
with the overbar) velocity field ū(x) as base flow, and denoting by u′(t, x) the velocity
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fluctuations u(t, x)− ū(x), a N-dimensional expansion expressed by the ansatz

u(t, x) = ū(x) + u′(t, x) = ū(x) +
N

∑
i=1

ai(t)ϕi(x), (4.3)

is introduced to describe the space-time fluctuating velocity field, where ai(t) and
ϕi(x), i = 1, . . . N, with ∥ϕi(x)∥ = 1, are the temporal and spatial modes, respectively.
These modes may be computed a posteriori from numerical or experimental data, a pri-
ori from a characteristic operator of the system (Taira et al., 2017) or from completeness
considerations (Noack and Eckelmann, 1994). Reduced order models are then derived
by projecting the residual of the governing equations (4.2) defined as

R(u) = ∂tu − u · ∇u +∇p∗ − 1
Re

∇2u, (4.4)

onto the N-dimensional subspace spanned by (4.3) via the inner product defined in
(4.1). This is done by imposing the error to be normal to the subspace utilised for the
projection

(ϕi, R(u)) =
∫

Ω
ϕi · R(aiϕi)dΩ = 0 i = 1, . . . , N. (4.5)

Restricting our analysis to configurations where the boundaries are either no-slip walls
or periodic, procedure (4.5) results in an autonomous system of coupled nonlinear or-
dinary differential equations (ODEs)

N

∑
j=1

Mij ȧj(t) = C̃i +
N

∑
j=1

L̃ijaj(t) +
N

∑
j=1

N

∑
k=1

Q̃ijkaj(t)ak(t), i = 1 . . . , N, (4.6)

defining the temporal evolution of the coefficients ai(t). For the case of different bound-
ary conditions an extra term involving the scalar product (ϕi,∇p∗) is present in (4.6).As
pointed out by Noack et al. (2005) this term cannot be computed directly in the solu-
tion of (4.6) but needs to be modelled. In addition, as pointed out by (Noack et al.,
2005) increasing the number of modes does not improve the performances of the model.
Therefore, it’s modelling is a crucial step in the development of reduced order models.
In this work two different approaches are used. First, in the testing phase of the algo-
rithm, domains with closed walls are considered where the pressure term is identically
zero. Second, in the case of more complex configurations we did not include any pres-
sure term but we leave up to the sparsification procedure the tuning of the coefficients.
This approach is similar to the one successfully used by (Cordier et al., 2010).

Here, we report the mathematical definitions of the coefficient tensors C̃,L̃ and Q̃ in
system (4.6) whose entries are defined by the expressions:

C̃i = (ϕi, u · ∇u) +
1

Re
(ϕi,∇2u), i = 1, . . . , N, (4.7)
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L̃ij =
1

Re
(ϕi,∇2ϕj) + (ϕi, ϕj · ∇u) + (ϕi, u · ∇ϕj), i, j = 1, . . . , N, (4.8)

Q̃ijk = (ϕi, ϕj · ∇ϕk), i, j, k = 1, . . . , N. (4.9)

The constant term C̃ ∈ RN (4.7) lumps together all the terms that are linear in the ve-
locity fluctuations u′ ∼ ϕi and contains the production/dissipation generated by the
interaction between the fluctuating field and the mean flow. The linear term L̃ ∈ RN×N

(4.8), containing all the terms quadratic in u′, describes the production/dissipation gen-
erated by the interaction of the fluctuations with the mean flow and the viscous dissipa-
tion generated by the interactions of the fluctuation between themselves. Interestingly,
the spectral properties of this term can be used as a proxy of the viscous dissipation
present in the model. This property will play a key role for the temporal stabilisation
of the system in the set up of the a priori sparsification technique. Lastly, the quadratic
term Q̃ ∈ RN×N×N (4.9) describes the nonlinear interactions of pairs of modes and
it is the main responsible of the energy flow between modal structures. The study of
the structure of this term is the main object of our analysis. Finally, the mass matrix
M ∈ RN×N , with entries Mij = (ϕi, ϕj), takes into account the fact that the spatial
modes may not be orthogonal and is introduced here for generality.

If the N modes span collectively an N-dimensional subspace det(M) ̸= 0. Thus M is
invertible and the system (4.6) can be rearranged as

ȧi(t) = Ci +
N

∑
j=1

Lijaj(t) +
N

∑
j=1

N

∑
k=1

Qijkaj(t)ak(t) i = 1 . . . , N, (4.10)

with

Ci =
N

∑
q=1

M−1
iq C̃q, Lij =

N

∑
q=1

M−1
iq L̃qj and Qijk =

N

∑
q=1

M−1
iq Q̃qjk. (4.11)

If the set of modes ϕi are orthonormal, as for the POD. Then, Mij = δij holds, and
equation (4.10) is formally identical to equation (4.6). As observed by Rempfer and
Fasel (1994a), the infinite dimensional matrix M should be first inverted and then trun-
cated to maintain a good prediction accuracy. However, for all the models (POD and
DFT based) considered in this thesis we have observed that the mass matrix M has a
strong diagonal structure. Hence, the error performed by truncating it to size (N, N)

and then inverting it can be reasonably assumed to be small.

Since the spatial modes satisfy automatically the boundary conditions, the expansion
(4.3) provides a suitable foundation to examine interactions between coherent struc-
tures in complex geometries. Here, we follow established approaches (Rempfer and
Fasel, 1994b)) and analyse such interactions by introducing the modal energies ei(t) =
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1
2 ai(t)ai(t), i = 1, . . . , N. The instantaneous rate of change is given by

ėi(t) = Ciai(t) +
N

∑
j=1

Lijai(t)aj(t) +
N

∑
j=1

N

∑
k=1

Qijkai(t)aj(t)ak(t), i = 1, . . . , N, (4.12)

obtained by multiplying (4.10) by ai(t). Note that, in a general case where the modes
do not form an orthonormal set, the domain integral of the kinetic energy of velocity
fluctuations is not the straightforward sum of the terms ei(t) and is given by

E(t) =
1
2

∫
Ω

u′(t, x)2dΩ =
1
2

N

∑
i=1

N

∑
j=1

Mijai(t)aj(t). (4.13)

The right hand side of equation (4.12) is composed of three terms describing energy
transfers between the hierarchy of modes. The first two describe variations of energy
due to production/dissipation arising from interactions with the mean flow and from
viscous effects (Noack et al., 2011). The third term, involving the tensor Q describes the
nonlinear energy flows in modal space regulated by the interactions of triads of modes
ai(t)aj(t)ak(t). How to exploit the structure of this term for turbulent flow realisation
to improve the performances of reduced order models is the main focus of this work.
Additional insight on the long time behaviour of energy flows can be gained taking the
temporal average of equation (4.12). The first term right hand side of the average of
(4.12) is zero since the temporal coefficients ai(t) have zero mean. Similarly, at the left
hand side, the average of the temporal derivative of the density of kinetic energy ė(t)
defined as

ė(t) =
∫ T

0
ė(t)dt =

1
T
(e(T)− e(0)) (4.14)

is zero if the energy of the system remains bounded and the length of the average in-
terval T increases. The resulting time average energy budget of the system is regulated
by

N

∑
j=1

Lijaiaj +
N

∑
j=1

N

∑
k=1

Qijkaiajak = 0, i = 1, . . . , N. (4.15)

If the temporal modes are uncorrelated in time aiaj ∼ δij the first term left hand side
simplifies in Liiaiai. Equation (4.15) shows that in average the energy balance of the
flow is regulated by the production dissipation described in the linear part and by the
nonlinear energy transfer described by the quadratic part. As explained in Balajewicz
et al. (2013) the average total power has to vanish for a model with N → ∞. However,
truncated Galerkin models are expected to predict an excess of kinetic energy making
(4.15) positive. This excess of energy is classically absorbed by a eddy-vicosity model
(Noack et al., 2008, 2005, 2011). More specifically, in the literature two different ap-
proaches have been proposed. First in the framework of the a posteriori stabilisation the
idea proposed by Cordier et al. (2010) of automatically calibrating the coefficients of the
system by means of linear regression. The second approach, proposed by Balajewicz
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et al. (2016), consists in rotating the basis into a more dissipative configuration modify-
ing the eigenvalues of L as a mean to calibrate the correct viscous dissipation.

To systematically analyse triadic interactions we follow Rempfer and Fasel (1994a). Tri-
adic interactions are defined in a time averaged sense by the triadic interaction tensor
N ∈ ℜN×N×N with entries defined as

Nijk = Qijkaiajak, (4.16)

where the overbar denotes temporal averaging. For later convenience we define the
global amount of energy transferred to each mode by the triadic interactions as:

Ti =
N

∑
j=1

N

∑
k=1

Qijkaiajak. (4.17)

This term results from the Galerkin projection of the nonlinear term of the Navier-
Stokes equations, −u · ∇u. It can be shown that,∫

Ω
u · (u · ∇u)dΩ = 0 (4.18)

where the boundary terms resulting from integration by parts are equal to zero in case
of periodic or confined flows. However, as pointed out by (Loiseau and Brunton, 2018),
in several flow configurations this term can be assumed small and neglected for sake
of simplicity. In modal space (4.18) translates in the following energy conservation
property

N

∑
i=1

Ti =
N

∑
i=1

N

∑
j=1

N

∑
k=1

Qijkaiajak = 0. (4.19)

This physically means that, on average, no energy is produced or dissipated in the
system during the cascade process from the large to the small scales of motion. The role
of the nonlinear term in equation (4.12) is to transfer energy between modes describing
different scales. As observed by (Loiseau and Brunton, 2018; Balajewicz et al., 2016) the
conservation of this property throughout the sparsification procedure is of paramount
importance for the physical meaningfulness of the sparse model.

The methodology introduced here is purely mathematical in nature, i.e. no physics is
incorporated in the process. In addition, spatial modes obtained from classical decom-
positions have generally global support over the domain (see e.g. Taira et al. (2017)).
The result is that the evolution equations (4.10) are not strictly sparse in the sense em-
ployed by Brunton et al. (2016). In fact, unless particular symmetries apply, the tensor
Q is generally dense, i.e. most of its entries Qijk are different from zero and the right
hand side of (4.10) contains all monomial terms in the modal amplitudes ai(t) up to
order two. However, the key aspect motivating this work is the observation that in
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turbulent realisations of the Navier-Stokes equations only a subset of all triadic inter-
actions contributes to a significant degree to the overall energy budget (Couplet et al.,
2003; Rempfer and Fasel, 1994b). In this sense, sparsity is a primarily an a posteriori
feature of solutions, i.e. a feature of the quadratic interaction tensor N. The approach
developed in this work uses this observation and aims to generate Galerkin models
with a sparse coefficient tensor Qs. This sparse approximation of the original tensor
Q should preserve information about the original dynamics of the system in the sense
that the mismatch between the original N and the sparse transfer tensor Ns is as small
as possible across the hierarchy of modes. This property ensure that although the coef-
ficients tensor are sparse the relevant dynamics of the flows (contained in N) is retained
throughout the sparsification procedure.

4.2 A posteriori Sparsification

The first sparsification methodology we discuss, involves an a posteriori evaluation of
the relative strength of energy interaction between a predetermined set of flow struc-
tures defined by spatial modes. The sparsification occurs pruning from the right hand
side of the system (4.6) the coefficients that do not contribute significantly to the dy-
namics while modifying the retained ones to keep the reconstruction error, computed
with respect the modal acceleration, as low as possible. To our goal we use a procedure
akin to that utilised in previous work for calibrating Galerkin models from data (Perret
et al. (2006); Cordier et al. (2010); Xie et al. (2018)) and more recently for the identifica-
tion of sparse dynamical systems from data(Brunton et al., 2016).

Starting from a velocity field u(t, x) a Galerkin model (4.6) is generated as shown in fig-
ure 4.1 panels (a) and (b). The main idea is to recast the Galerkin system (4.6), shown in
panel (b), in a matrix from suitable to perform linear regression (as sketched in panel-
(c)). Since Nt snapshots of the velocity field are available from simulation we can ar-
range samples of the temporal coefficients ai(tj), i = 1, . . . , N and j = 1, . . . , Nt, into the
data matrix A ∈ ℜNt×N , with entries Aij = ai(tj). Each column of A contains the time
history of a given temporal mode ai for a time span equal to the simulation time. Sim-
ilarly, we construct the modal acceleration matrix Ȧ ∈ ℜNt×N , each column containing
the time derivative of a given temporal coefficients. Finally, exploiting the polynomial
structure of the Galerkin system (4.10) its terms right hand side can be rearranged in
the database matrix Θ(A) ∈ ℜNt×q

Θ(A) =


1 a1

1 a1
2 . . . a1

N a1
1a1

1 . . . a1
Na1

N
...

...
...

...
...

...
1 aNt

1 aNt
2 . . . aNt

N aNt
1 aNt

1 . . . aNt
N aNt

N

 , (4.20)
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D
Dtu = ν∇2u + f d

dtai(t) = Fi(a)
Ȧi Θ(A) βi

=t

min||Θ(A)βi − Ȧi||22 + γi||βi||1

ε

ρ

(a) (b) (c)

(e) (d)

small γi

large γi
optimal γi

FIGURE 4.1: Schematic idea of the a posteriori sparsification procedure. Starting from
a PDEs system in physical space (panel-(a)), this is transformed in a set of ODEs in
modal space by Galerkin projection (panel-(b)). Once obtained the temporal evolu-
tion of the modes and their derivative the reduced order system (in panel (b)) can be
recast in matrix form as shown in panel (c). Panel-(e) shows the idea of sparsification
i.e. seeking for a sparse approximation of Q, Qs such that Ns ∼ N. Sparsification
is obtained solving the LASSO problem for increasing values of the regularisation
weight γi, obtaining a family of different models plotted on the ρ − ϵ plane as shown

in panel-(e).

called nonlinear feature library in Brunton et al. (2016). The number of columns equal to
q = (N + 1) + N(N + 1)/2 corresponds to number of features, i.e. the sum of constant,
linear and quadratic interactions. Each column contains the temporal evolution of these
interactions. The number of quadratic coefficients is only N(N + 1)/2 instead of N2

because the interaction between mode i and j is considered only once in (4.20). This
avoids the columns of Θ(A) to become linearly dependent, which would in turn result
in numerical stability issues in the solution regression problem (see e.g. Perret et al.
(2006) and Cordier et al. (2010)). As shown in figure 4.1-(c) arranging the projection
coefficients tensors C, L and Q associated to the i-th mode into a coefficient vector
βi ∈ ℜq, the Galerkin system (4.6) can be equivalently expressed as

Ȧi = Θ(A)βi, i = 1, . . . N, (4.21)

where Ȧi is the i−th column of the modal acceleration matrix defined previously. An
important aspect in the set up of (4.21) is the computation of the modal acceleration as
two different approaches are possible. The first consists in computing the acceleration
∂tu inside the CFD solution loop for every time step by backward finite differences. The
acceleration is then written to disk for the prescribed time-steps. A second approach
consists in computing ∂tu as the right hand side of (4.2)-(a). This does not require
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any online computation inside the solution loop but it has been observed to produce
higher reconstruction error with respect to the finite difference based approach. Thus,
we chose to follow the first methodology.

The key idea is that if some nonlinear interactions are more important than others,
then the corresponding entries of the coefficient vector βi, and consequently Q, can be
shrunk to zero with minor effects on the structure of the triadic interaction tensor N
and consequently on the predictive ability of the resulting model. This is conceptually
sketched in figure 4.1-(c) where the matrix form of a Galerkin system (4.21) for the
Lorenz attractor is shown. Since only a small subset of interactions participates to the
dynamics only a small subset of the entries of βi is selected (coloured dots in panel (c)).
This produces a sparse approximation of Q without affecting the properties of N as
sketched in figure 4.1-(d).

The challenge is to find a systematic method to identify the dominant interactions
and prune unnecessary coefficients whilst calibrating the remaining model coefficients
such as to preserve the overall energy budget. In this work the established sparsity-
promoting regression technique known as LASSO regression (Least Absolute Shrink-
age Selection Operator, see Tibshirani (1996)) is employed. This algorithm can be ap-
plied to (4.21) column by column separately leading to a set of N optimisation problems
of the form

min
βi

||Θ(A)βi − Ȧi||22 + γi||βi||1, i = 1, ..., N, (4.22)

one for each mode, where ∥ · ∥p denotes the lp norm of a vector. The first least squares
error term (called also l2 part) in the objective function in (4.22) produces calibrated
models that have minimum prediction error about the dynamics of the system, repre-
sented by the modal acceleration (see discussion in Cordier et al. (2010) and Couplet
et al. (2005)). The second term (called l1 part) penalises large model coefficients, reg-
ularises the regression and encourages sparsity in the solution by shrinking exactly to
zero coefficients in βi, corresponding to columns of Θ(A), with little dynamical influ-
ence. Ideally, to prune unnecessary coefficients, a penalisation term proportional to
the cardinality of βi, card(βi), would formally be more correct (Jovanović et al., 2014).
However, the resulting optimisation problem would be computationally intractable
even for Galerkin models of modest dimensions. In fact, this penalisation is usually
relaxed to the computationally tractable l1 term (Ramirez et al., 2013). Regardless, the
optimisation problems (4.22) are convex and thus have an unique solution. In addition,
the approach lends naturally to parallelisation, since the optimisation problems can be
solved independently for each mode. In initial stages of the research, we have found
approaches based on sequential thresholded least-squares (Brunton et al. (2016); Zhang
and Schaeffer (2019); Loiseau and Brunton (2018)) to be not sufficiently robust. Hence,
solutions of (4.22) have been computed using the sklearn (Pedregosa and Varoquaux
(2011)) library, which implements a sub-gradient descent algorithm to manage the non
differentiability of the l1 norm.
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The weights γi in equation (4.22) are arbitrary and can be tuned to trade prediction
ability (when they are small) for sparsity (when they are large). To formalise these
concepts, we introduce the global reconstruction error ϵ

ϵ =
N

∑
i=1

||Θ(A)βi − Ȧi||22
||Ȧi||22

(4.23)

and the system density ρ

ρ =
1

Nq

N

∑
i=1

card(βi). (4.24)

In equation (4.23), the absolute reconstruction error ||Θ(A)βi − Ȧi||22 is normalised with
the mean squared acceleration ||Ȧi||22 to balance the global reconstruction error across
the hierarchy, which would be otherwise dominated by the most energetic modes. On
the other hand, the density ρ ranges from 0, when all interactions have been pruned, to
1, for a fully connected model. Note that for large models, the density is dominated by
the quadratic tensor Q. As shown in 4.1-(e) solving problem (4.22) for different values
of the regularisation weights γi leads to a one-parameter family of models, producing a
Pareto front (Schmidt and Lipson, 2009) on the ρ–ϵ plane. More specifically, we expect
to obtain systems with large densities and small value of the reconstruction error for
small values of γi and the opposite for large values of γi. Both these two scenarios
have small practical utility since in the first case no sparsification is performed while in
the latter the model is not able to provide accurate predictions. However, since only a
subset of triadic interactions is relevant, the expectation is that a sweet spot appears on
this curve, defining ‘optimal’ penalisation coefficients γi such that it is possible to reach
low values of the density (i.e. several coefficients are eliminated) and, at the same time,
keeping the reconstruction error low.

In addition, we observe that the penalisation coefficient γi can be chosen independently
for each index i, implying that reconstruction error and sparsity can be modulated arbi-
trarily across the spectrum of modes. In our analysis we consider two different modula-
tion strategies. In strategy S1, the weight is constant for all modes, γi = γ. This strategy
sparsifies more aggressively the equations of motion of low-energy modes, because the
l1 penalisation term has a higher importance than the l2 component. We also introduce
strategy S2, where the weight is normalised with respect to the mean squared modal
acceleration as γi = ||Ȧi||22γ. This is equivalent to solving problem (4.22) using the
relative error in (4.23) as least-squares component of the objective function. This strat-
egy results in a more balanced sparsification across the hierarchy of modes and avoids
earlier truncation, i.e. when all coefficients of a high-index mode are set to zero. Other
strategies can be, of course, devised. Here, we mention, for instance, the possibility to
tune the penalisation coefficients to obtain a uniform sparsification across the spectrum
or to obtain a uniform relative reconstruction error. Analysing these strategies is an
interesting avenue for future work.
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One potential modification of this approach is discussed in Loiseau and Brunton (2018),
namely to enforce that the nonlinear term in the sparsified Galerkin model conserves
energy exactly (see e.g. Balajewicz et al. (2013) and Noack et al. (2008) for a formal
definition). In practice, this can be achieved by introducing to the problem (4.22) a set
of constraints between the coefficient vectors βi belonging to different modes.

DB = d. (4.25)

Where the matrix B = vec([β1, . . . , βN ]) is the vectorized form of the sparse ma-
trices of the coefficients βi. The matrices D and d, containing only 0 and 1, describe
linear relations between pairs and triads of coefficients βi belonging to different modes
i. These matrices have a sparse structure and can be efficiently stored in memory with
packages for the management of sparse matrices. More importantly, if linear energy
constraints are added the whole problem made up by (4.22) and (4.25) remains convex
and can be solved using iterative methods. The philosophy of these approach consist
in considering large models made up of dozens of modes. This fact with the addition
of these constraints, coupling together the regression problems of all modes, generates
one optimisation problem of much larger dimension. This makes the solution of the
coupled LASSO problem computationally expensive. As we will demonstrate later in
the paper, the energy conservation error of models obtained from the unconstrained
approach is small in relative terms. This occurs because the temporal coefficients in
the matrix A are originally obtained from an energy conserving nonlinearity, and the
regression ’discovers’ this property from data. Hence, in this work we always solve
problems (4.22) independently, without additional constraints. This confirms the im-
portance of having a training dataset A and Ȧi of good quality.

Finally, one last consideration about the regression set up. One of the key conceptual
aspects of this work is that we aim to sparsify equations that are mathematically dense,
i.e. the entries of the matrices in the system (4.6) are mainly nonzero, but whose re-
alisations (solutions) are sparse, i.e the energy transfer occurs according preferential
patterns. This brings the question whether to perform sparsification on the energy
equation (4.12) or on the momentum equation (4.6). It can be shown (see appendix C)
that the solution of the LASSO problem (4.22) with respect to the momentum equation
or the energy equation leads to the same solution βi. Therefore, there is no need to
reformulate problem (4.22) in the terms of the energy equation to sparsify energy inter-
actions.

4.3 A-priori sparsification

The a posteriori sparsification involves a prune and tune procedure on the coefficients
of (4.6) according to the energy relevance of the corresponding triadic interactions. In
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this approach the modal basis from which the Galerkin model is generated remains
fixed during the sparsification while the numerical value of the triadic interactions is
modified. Consequently, the link between modal structures and energy transfer could
be easily lost in the process leading to a questionable interpretation of the physics of
the modes. The a priori sparsification aims to fill this gap seeking a new modal basis
that automatically generates, by Galerkin projection, models with a sparse triadic in-
teraction tensor Q. Broadly speaking, we follow the idea of looking for this new basis
as linear combination of the original one used to generate the model. In this work the
POD basis will be used as starting point for its good energy reconstruction properties
but other choices are possible.

4.3.1 Subspace Rotation Technique

To identify the new set of modal structures, we utilise the subspace rotation technique
introduced in the context of stabilisation of Galerkin-based reduced order models by
Balajewicz et al. (2013) (see also Amsallem and Farhat (2012)). Geometrically, this con-
sists in seeking a rotation of an N-dimensional POD subspace within a larger POD sub-
space of dimension M. The rotation is defined by a transformation matrix X ∈ ℜM×N ,
satisfying X⊤X = I to ensure that the rotated basis functions remain an orthonormal
set. The rotated basis functions and the associated temporal coefficients, denoted in
what follows with a tilde, are expressed as a linear combination of the original POD
spatial and temporal modes via the rotation matrix Xji as

ϕ̃i(x) =
M

∑
j=1

Xjiϕj(x), (4.26a)

ãi(t) =
M

∑
j=1

Xjiaj(t). (4.26b)

It is worth pointing out that finding a new set of modal structures directly would be a
much higher dimensional optimisation problem to tackle, with size proportional to the
numbers of modes required times the number of degrees of freedom of the problem at
hand (equal to the grid point times the dimension of the problem). Seeking new modal
structures as a linear combination of POD modes represents a significant reduction in
complexity, which can be finely controlled by varying the dimension M. In addition,
using POD modes, under the assumption that a small rotation is sufficient to promote
sparsity , has the advantage of producing a basis inheriting a good energy reconstruc-
tion properties.
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The coefficients of the Galerkin system (4.6) projected in the new subspace are then
defined as

Q̃ijk =
N

∑
i,j,k=1

M

∑
p,q,r=1

QpqrXpiXqjXrk (4.27a)

L̃ = X⊤LX (4.27b)

C̃ = X⊤C. (4.27c)

In equation (4.27), C ∈ ℜM, L ∈ ℜM×M and Q ∈ ℜM×M×M are the Galerkin coefficient
tensors obtained from the M-dimensional set of original POD modes. The goal is to
find a particular rotation for which the rotated quadratic interaction coefficient tensor
Q̃, obtained from (4.9) with the rotated spatial modes ϕ̃i , has a sparse structure, i.e.
where many of quadratic interaction coefficients are identically zero. In reason of the
practical intractability of the zero norm in optimisation (Jovanović et al., 2014), here
we use the l1 norm operator, denoted as ∥ · ∥1, to measure the sparsity of the quadratic
interaction coefficient tensor (Rubini et al., 2020b; Brunton et al., 2016). However, it
is worth noting that any rotation is necessarily accompanied by a loss of fluctuation
kinetic energy reconstructed by the new basis, since the original N POD modes are
optimal in this respect by design. Therefore, it won’t be possible to sparsify the system
without affecting the ability of the new basis of reconstructing kinetic energy but a
sparsity-energy reconstruction trade off will always be present. To quantify the energy
loss associated with the rotation X the fluctuation kinetic energy reconstructed by a P-
dimensional set of POD can be calculated by utilising the modal energies λi = aiai, i =
1, . . . , P. Arranging them into a diagonal matrix ΛP ∈ ℜP×P, the trace Tr(ΛP) defines an
upper bound for the reconstructed energy for any P-dimensional set of basis functions,
due to well-known optimality property of POD. Similarly, the energy reconstructed
by the rotated basis can be expressed the modal energies λ̃i = ãi ãi, i = 1, . . . , N, of
the rotated temporal coefficients (4.27b) and arranging them into the diagonal matrix
Λ̃N = X⊤ΛMX ∈ ℜN×N , where the expression at the right hand side follows directly
from (4.27b). The loss of reconstructed fluctuation kinetic energy with respect to an
N-dimensional POD subspace is then quantified as

J (X) = Tr(ΛN − X⊤ΛMX). (4.28)

As observed in Balajewicz et al. (2013), the quantity J (X) is necessarily non-negative
due to the optimality of the original POD basis, i.e.∫

Ω
∥u′(t, x)∥2dΩ ≥ Tr(ΛN) ≥ Tr(Λ̃N), (4.29)

where the last equality holds if, e.g., X = IM×N resulting in no rotation away the POD
subspace. In addition, the quantity (4.28) is also identically zero when M = N, for any
X, since any linear combination of N POD modes necessarily spans the same original
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N-dimensional subspace. Therefore, in this work only configurations with M > N are
considered.

Mathematically, the trade-off between energy optimality and sparsity is expressed by
formulating the following constrained optimisation problem

min
X

Tr(ΛN − X⊤ΛMX) (4.30a)

subject to ||Q̃||1 ≤ ξ−1||Q||1, (4.30b)

X⊤X = I, (4.30c)

referred to as problem P1 in what follows. The role of the objective function (4.30a)
is to favour small transformation matrices that minimises the loss of energy optimal-
ity, producing a set of basis function with good representation ability, as in Balajewicz
et al. (2016). On the other hand, the constraint (4.30b) encourages sparse solutions, with
ξ an arbitrary penalisation parameter that controls the relative l1 norm of the rotated
quadratic coefficient tensor. Increasing the penalisation weight ξ can thus promote
sparsity, because some entries of Q̃ are shrunk to zero during the solution of (4.30) by
the non-differentiability of the l1 norm Tibshirani (2013); Friedman et al. (2008). As we
will discuss later on, it is worth noting that problem (4.30) might not have any feasi-
ble solution if the penalisation weight is too large, as it might not be possible to find
a transformation matrix that shrinks the l1 norm of the rotated coefficient tensor by
the required amount. This is consequence of the fact that the l1 penalisation is applied
not on the optimisation variables Xji but on the entries of the rotated quadratic inter-
action tensor Q̃ijk. An important characteristic of optimisation problem (4.30) is that
while the objective (4.30a) is convex, the sparsity-promoting constraint (4.30b) is not, as
it involves cubic polynomials in the optimisation variables, the entries of the rotation
matrix Xij. Consequently, the solution might no be unique and several local minima,
corresponding to different sets of basis functions, may be obtained by starting the opti-
misation from different initial guesses. These aspects are problem dependent and they
will be discussed later on when the test cases are introduced.

Assuming a feasible solution of problem (4.30) can be found, the Galerkin model con-
structed from projection onto the optimal rotated basis does not necessarily possess
better long-term temporal stability characteristics than the original POD model. In fact,
it is well-known that POD-Galerkin models exhibit long-term instability because of
the deficit of energy dissipation attributed to the truncation of small dissipative scales
(Noack et al., 2008; Schlegel and Noack, 2015). In the present case, the transformation X
obtained from solution of (4.30) does not necessarily result in an improved description
of dissipative processes. Classically, this issue is cured by introducing, a posteriori, an
eddy-viscosity-type term in the Galerkin model (Galletti et al., 2004; Noack et al., 2005;
Östh et al., 2014). However, an a posteriori correction would not remain in the spirit



48 Chapter 4. Methodology

2 4 6 8 10

0

25

50

75

100

125

150

175

(
)

90x30
60x30
30x30

FIGURE 4.2: Excess of turbulent kinetic energy τ(η) against η.

of the present approach. We thus favour the subspace-rotation-based stabilisation ap-
proach proposed by Balajewicz et al. (2013, 2016), which can be introduced naturally
in the present formulation. In practice, we augment problem (4.30) with the additional
implicit constraint

Tr(L̃) = Tr(X⊤LX) = −η (4.31)

where the auxiliary variable η ∈ ℜ+ is chosen such that

τ(η) =
E(t)− EDNS(t)

EDNS(t)
= 0, (4.32)

i.e. that the relative difference of the average fluctuation kinetic energies from DNS and
from numerical simulation of the new model vanishes. E(t) is computed as the time
average of the turbulent kinetic energy ei(t) after time integration of the model ob-
tained with the new basis functions. Since it is not generally true for quadratic models
this quantity will be independent from the initial condition. In this work we chose as
initial condition for the time integration the first time step of the statistically converged
DNS solution. The variable η controls dissipation mechanisms in the Galerkin model
by altering the eigenvalues of L̃ and ensures long-term stability. Figure 4.2 shows the
effects of η on the excess of kinetic energy (5.12) for three different ratio of M/N. The
flow considered is the lid-driven cavity at Reynolds 2 × 104. It can be observed how
increasing η the excess of kinetic energy converges towards the level obtained by DNS.
More interestingly figure 4.2 shows that a ration M/N > 1 is necessary for the stabilisa-
tion of the system. This is physically explainable with the fact that smaller scales (with
modal index M > N) to introduce the correct amount of dissipation in the system. As
observed by Balajewicz et al. (2013), η is not known a priori, but can be found in an
inner optimisation loop to ensure that the excess of turbulent kinetic energy defined by
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τ(η) is zero. With this additional constraint, problem (4.30) becomes

min
X

Tr(ΛN − X⊤ΛMX) (4.33a)

subject to ||Q̃||1 ≤ ξ−1||Q||1, (4.33b)

Tr(X⊤LX) = −η with τ(η) = 0, (4.33c)

X⊤X = I (4.33d)

In this formulation, denoted as P2 henceforth, there is still only one free parameter, ξ,
which is used to trade sparsity for energy optimality. The solution algorithm, explained
in Algorithm 1 table, can be divided in two main steps. First a reduced problem without
the sparsity constraint (4.35b) to find η such that the excess of kinetic energy (5.12) is
smaller than a certain threshold eTOL. Once this condition on τ(ηm) is satisfied the
stabilisation parameter η = ηm is fixed and the complete problem (4.35) can be solved
for a given value of ξ returning as output the rotation matrix X. If a solution of (5.12) is
not found within the maximum number of iterations Nmax the while loop stops.

To numerically solve the problem (4.35) the procedures implemented in the open-source
package for nonlinear and non-convex optimisation NLopt (Johnson, 2014) were used.
We utilised a solver implementing the Method of Moving Asymptotes (MMA) algo-
rithm (Svanberg, 2014). This requires the gradient of the objective function and of the
constraints. The key element to make the procedure viable is to evaluate the sparsity-
promoting constraint and its gradient as efficiently as possible. An efficient algorithm
to compute these two quantities with costs scaling as O(M3N) +O(M2N2) +O(MN3)

at most (as opposed to a naive implementation which requires O(M3N3) operations for
the computation of Q̃ and its l1 norm and O(M4N4) for the evaluation of its gradient
with respect to the rotation X) can be derived and its discussion is deferred later on in
this chapter.

Once (4.35) is solved, a new set of temporal and spatial modes can be found according
to (4.26) while a new set of coefficients for the reduced order model can be found from
(4.27). Since the value of ξ is arbitrary, it can be varied to obtain models with different
sparsity. To formalise this concept we introduce the model density, defined as

ρ =
||Q̃||0
||Q||0

(4.36)

where the l0 norm ||Q||0 counts the nonzero elements of the tensor Q. This can also be
expressed as the average of the modal densities ρi as:

ρ =
1
N

N

∑
i=1

ρi with ρi =
||Q̃i||0
||Qi||0

. (4.37)
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Algorithm 1 Algorithm for the solution of problem (4.35).
Input : Endpoints values [ηaηb] and [χ0χn]. Convergence tolerance eTOL on (5.12),

maximum number of iterations Nmax, ROM starting and arrival space dimen-
sions (M and N) and Galerkin system matrices associated with the first M
most energetic POD modes Q ∈ ℜM×M×M, L ∈ ℜM×M and C ∈ ℜM.

Output: Rotation matrix X ∈ ℜM×N

while Niter < Nmax do
Fix ξ
Fix a value of ηm = (ηa + ηb)/2
Solve system

min
X

Tr(ΛN − X⊤ΛMX) (4.34a)

subject to Tr(X⊤LX) = −ηm, (4.34b)

X⊤X = I (4.34c)

(4.35) without (4.35b)
Reconstruct system matrices
Integrate numerically the Galerkin system
Calculate the excess of kinetic energy τ(ηm)
if τ(ηm) < ϵ then

fix η = ηm
Solve Complete problem

min
X

Tr(ΛN − X⊤ΛMX) (4.35a)

subject to ||Q̃||1 ≤ ξ−1||Q||1, (4.35b)

Tr(X⊤LX) = −η with τ(η) = 0, (4.35c)

X⊤X = I (4.35d)

Terminate algorithm and return X
if sign(τ(ηc) = sign(τ(ηa)) then

Set ηa = ηc
else

Set ηa = ηb

To express the loss of energy captured by the rotated basis, we also introduce the global
energy reconstruction factor

eN = Tr(Λ̃N)/Tr(Λ∞) (4.38)

where Λ̃ and Λ are the matrices having on the diagonal the modal energies of the
rotated and original basis, respectively. Since, the energetically optimal POD is used as
starting point the global energy reconstruction factor is always strictly lower than 1 by
definition.

The density and reconstruction factor are affected by the dimensions M and N and by



4.3. A-priori sparsification 51

the penalisation weight ξ. To characterise the effects of these parameters, we can dis-
play each system obtained with a different ξ onto the ρ − eN plane. For each value of M
and N, a family of reduced order models with different density/energy reconstruction
trade off can be generated increasing the values of the penalisation parameter in the
constraint (4.35b). The geometrical (size M and N of the subspaces) and the physical
properties of the problem are expected to affect the shape and the slope of these curves.

This visualisation in conceptually similar to the approach used in the a posteriori spar-
sification technique with two expected differences. First, it is not possible to obtain a
flat part decreasing the density since every rotation away from the energetically opti-
mal POD automatically results into a loss in the ability of the decomposition in recon-
structing turbulent kinetic energy. Second, in the case of a posteriori sparsification we
observed that it is possible to reach zero values of density increasing the regularisation
weight γi to arbitrarily large values. We expect this not to be possible with the sub-
space rotation approach since, given M and N, it is not possible to arbitrarly decrease
the value of the density of the triadic interaction tensor Q̃ via a rotation. In addition,
we expect that this will result into sparse systems with generally higher densities with
respect to the ones obtained with the a posteriori approach.

4.3.2 Computational cost of the algorithm

The sparsity promoting constraint involves polynomial functions of the optimisation
variables. An analytical expression of the gradient of this constraint with respect to
the rotation X can be also obtained, enabling fast gradient-based optimisation to be
utilised. In addition, a careful examination of the tensor operations involved in the
computation of the constraint and its gradient shows that a significant reduction of the
scaling of costs can be obtained by reorganising some computations, avoiding repeated
operations (see Pfeifer et al. (2014)). For instance, a naive calculation of the quantity

Q̃ijk =
N

∑
i,j,k=1

M

∑
p,q,r=1

QpqrXpiXqjXrk (4.39)

required in the evaluation of the sparsity-promoting constraint (4.30b) takes O(M3N3)

operations because of the presence of the six (one for each index) nested for loops.
However, a careful evaluation of operation (4.39) shows that it can be expressed as
the sum of three different step each involving only four nested loops. This is done by
introducing the auxiliary variables Aqri ∈ RM×M×N and Brij ∈ RM×N×N defined as
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follows:

Aqri =
N

∑
i=1

M

∑
p,q,r=1

QpqrXpi (4.40a)

Brij =
N

∑
i,j=1

M

∑
p,q=1

AqriXqj (4.40b)

Q̃rij =
N

∑
i,j,k=1

M

∑
r=1

BrijXrk (4.40c)

This operations only takes O(M3N) +O(M2N2) +O(MN3) operations. This results
can be easily inferred from the indexes involved in the evaluations of expression (4.40)(a),(b)
and (c), respectively. The gradient of the sparsity promoting constraint with respect to
the entries Xmn of the rotation matrix X requires the computation of

∂||Q̃||1
∂Xmn

=
N

∑
i,j,k=1

∂Q̃ijk

∂Xmn
sign(Q̃ijk). (4.41)

The gradients ∂Q̃ijk/∂Xmn can be expanded using the Kronecker’s delta δij as

∂Q̃ijk

∂Xmn
=

M

∑
p,q,r=1

Qpqr(XpiXqjδknδrm + XpiXrkδjnδqm + XrkXqjδinδpm). (4.42)

Overall, a naive computation of ∂||Q̃||1/∂X would require O(M4N4) operation, since
the tensor expressions involves a total of eight indices. A similar reorganisation of the
operations leads to tensor operations over four tensor indices only, with computational
costs similar to the one of the rotation of Q.

4.4 Summary

This chapter explained the set up of the mathematical tools used to generate Galerkin
models of turbulent flows, study energy flows between modal structures and perform
model sparsification. To start with, the generation of reduced order models of turbulent
flows is explained and subsequently, the two different sparsification methods are pre-
sented. The first method, called a posteriori sparsification method, belongs to the class
of supervised learning techniques. It consists in recasting the Galerkin model into a
matrix form suitable to perform linear regression. The key idea is leveraging the prop-
erties of the l1 penalisation on the coefficient vector. The non differentiable nature of
this norm allows extracting from large datasets the subset of relevant features. At the
same time, its convex nature allows recasting the interactions selection problem into
a convex optimisation problem that can be solved efficiently. A linear regression ap-
proach is of simple implementation and the results are easily interpretable, both these
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qualities make it a good algorithm to incorporate the existing physical laws in. How-
ever, this methodology has also two main drawbacks, one concerning the sparsification
process and the other the physical interpretability of the results. First, since the value of
the regularisation weight γi is unknown, the sparsification consists in progressively in-
creasing its value obtaining a whole family of models with different sparsity-accuracy
trade offs. Among all these possibilities the user must choose the one that best suits
his/her needs. However, a well known drawback of the supervised learning method-
ologies is the impossibility to know the performance of these models beforehand with-
out evaluating them singularly by temporal integration. Second, the a posteriori spar-
sification technique consists in pruning the least relevant energetic interactions while
tuning the numerical value of the retained ones to minimise the reconstruction error.
Consequently, the numerical value of the triadic interactions is modified while the spa-
tial basis functions from which the model is generated are not. This aspect could lead
to some interpretability issues about the magnitude of the energy transfer and the flow
structures associated with them.

The a priori sparsification technique aims to fill this gap seeking a new modal basis such
that the resulting model obtained by Galerkin projection posses already a sparse struc-
ture. This is accomplished by rotating the original POD basis in a larger subspace. The
rotation matrix is obtained as the solution of an optimisation problem aiming to min-
imise at the same time the energy loss and the l1 norm of the rotated quadratic interac-
tion tensor Q̃. Since both the triadic interactions and the basis functions are modified
this approach resolves the physical inconsistency of the a posteriori one. Moreover, since
the penalisation is not applied directly on the optimisation variable but on the rotated
quadratic interaction tensor we expect it not to be possible to reach arbitrarily low val-
ues of the density but a minimal value of the density exists for each model. This could
remove from the problem the choice of the regularisation weight, that can be chosen as
the one corresponding to the lowest density such that the solution of the optimisation
problem is acceptable. These advantages with respect to the a priori technique come
at the cost of a higher computational cost and loss of uniqueness for the optimisation
problem. However, as it will be shown later in the results section for initial guesses
sufficiently near the identity matrix the solution tends to fall into the same minimum.
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Chapter 5

Results: a posteriori sparsification

In this chapter the a posteriori sparsification technique is applied to different mod-
els of increasing physical complexity. First, the one dimensional PDE describing the
Kuramoto-Sivashinsky system is introduced as a paradigmatic model of multi-scale,
chaotic flows evolving in a periodic domain. This can be conveniently described in
Fourier space. For this model, we focus on the ability of the LASSO of capturing
the relevant interactions between flow scales and on the influence of the definition
of the regularisation weight on the selection of energetic interactions. Second, the
two-dimensional chaotic flow evolving inside a lid-driven square cavity is considered.
This configuration is chosen since the wall-bounded domain and the simple Cartesian
geometry allow a straightforward generation of reduced-order models of increasing
physical complexity. The goal of this analysis is to quantify the capabilities of the sparse
regression of preserving the physics under different flow conditions, such as increasing
Reynolds numbers, and different modal representations. Lastly, a more practical appli-
cation is considered. Namely, the a posteriori sparsification technique is used as a mean
to calibrate reduced order models of separated flows around a NACA 0012 airfoil. This
test case will be also used as a testbed for the library developed to generate reduced
order models from numerical data defined on arbitrary computational grids. With this
last analysis, we intend to evaluate the scalability of the sparsification methodology to
real-life engineering problems.

5.1 One Dimensional PDE: Kuramoto-Sivashinsky equation

To start with, the Kuramoto-Sivashinsky model, as a paradigmatic chaotic system char-
acterised by multi-scale dynamics, is examined. Due to the periodic boundary condi-
tions, scales interaction can be conveniently studied in Fourier space. This system is
used to understand the applicability of the sparse regression framework to high di-
mensional reduced-order models.
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5.1.1 Mathematical model

The Kuramoto-Sivashinsky equation describes the evolution of a zero-mean scalar field
u = u(t, x) on a periodic domain of length L. The mathematical model is given by

∂tu = −uux − uxx − uxxxx

u(t, x) = u(t, x + L)

u(0, x) = u0(x),

where the subscript indicates partial differentiation with respect to the variables x and
t. The dynamics of chaotic solutions of this model is qualitatively similar to the one
of a turbulent flow, where energy is injected at the large scales by the laplacian term
with the inverted sign. Subsequently, energy is transferred towards smaller scales by
the nonlinearity and finally dissipated by the hyper-viscosity, represented by the fourth
derivative term.

Due to the periodic nature of the boundary conditions we can conveniently solve this
model in Fourier space. Introducing α = 2π/L, we decompose the solution field as

u(t, x) =
N

∑
k=−N

uk(t)eiαx (5.1)

where uk = u∗
−k holds (∗ indicates the complex conjugates), since u(t, x) is real. In

Fourier space we obtain the following set of ODEs

u̇k = (α2k2 − α4k4)uk −
1
2

iαk
N

∑
p=−N

upuk−p k = 1, ..., N (5.2)

The set of ODEs (5.2) is formally equivalent to the system (4.6) with the matrix coeffi-
cients computed according the expression (4.7), (4.8) and (4.9). Due to the symmetry
of the domain and the Fourier expansion (5.1) of the velocity field, these matrices have
a compact structure in modal space. More specifically, Ci is identically zero due to the
zero mean field, Lij = (α2k2 − α4k4)δij and Qkpq = i k

2 if p + q = k and zero otherwise.
Interestingly, we observe that the linear term Lij is diagonal with entries defined by
(α2k2 − α4k4) and the amplitude of the mode itself uk. In addition, it can be observed
that (α2k2 − α4k4) > 0 if 0 < k < α−1/2 and smaller than zero otherwise. This generates
a turbulence-like energy cascade where energy is injected at low wave-numbers (large
scales) and dissipated at the higher wave-numbers (small scales). The energy is trans-
ferred by nonlinear interactions between triads of modes satisfying the aforementioned
relation between wave-numbers.

The system (5.2) has been numerically integrated using a fourth order Runge-Kutta
time marching technique, where for the evaluation of the linear term pseudo-spectral
utilities FFT() are appropriate. Figure 5.1-(a) shows u(t, x) of a statistically converged
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FIGURE 5.1: Temporal evolution of a solution of the Kuramoto-Sivashinsky equation
obtained for L = 32 in panel-(a). Panel-(b): power spectrum of three different solu-

tions for L = 32,64 and 96, respectively.

solution obtained for a domain length of L = 32, where we have set N = L = 32 to ob-
tain simulations with a dynamical range spanning several orders of magnitude. It can
be observed the formation of random wave-like structures repeating themselves inside
the domain and evolving in time. In addition, we observe that after a long enough time
interval all information about the initial condition is lost making its choice irrelevant for
the present analysis. Panel (b) shows the power spectrum of three solutions obtained
with different lengths of the domain L and with a number of modes such that N = L
in non-dimensional units. It can be observed that the energy contained at each scale
initially grows, reaching its maximum corresponding to k = 1√

2α
(i.e. the maximum of

the energy production function α2k2 − α4k4 and then decreases exponentially after that.
More importantly, the range of dynamically relevant scales widens when the width of
the domain L is increased. This happens because an elementary flow structure can re-
peat itself more when as the domain widens. Therefore, the parameter L is equivalent
to the Reynolds number, i.e. increasing the length of the domain increases the range
of dynamically active scales in the solution. This makes the model a good test-bed to
evaluate the performances of the sparse regression on systems where the scale sepa-
ration in the system widens as the complexity grows. In addition, to compare results
obtained with different systems we use as a resolution N = L, to resolve similar dy-
namical ranges, for all the three different configurations considered.

To provide a stronger foundation to the sparsification results the sparsity pattern ob-
tained with the LASSO regression is compared with the pattern of energy interaction
inside the model. The kinetic energy of the k-th mode in the Fourier space is defined as

Ek(t) =
1
2

uk(t)u∗
k (t), (5.3)

and its temporal evolution is described by

Ėk = Tk + (α2k2 − α4k4)Ek. (5.4)
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FIGURE 5.2: Visualisation of triadic interactions for wavenumber k = 2 on the p − q
or k − η plane. In addition, green and blue squares show local and distant interac-

tions, respectively.

The second term at the right hand side is a production/dissipation linear term. The
term Tk is defined as

Tk(t) = Im

{
∑

p+q=k
rpqk

}
= Im

{
∑

p
(αk)upuk−pu∗

k

}
, (5.5)

where Im indicates the imaginary part of a complex number, and represents the sum of
all triadic interactions rpqk between wavenumbers k, p, q such that k = p + q. Because
of the periodic boundary conditions Tk satisfies the energy preserving property

N

∑
k=1

Tk = 0. (5.6)

5.1.2 Energy Analysis

When defined in Fourier space, the Kuramoto-Sivashinky equation (5.2) has a sparse
structure. The linear term is diagonal while the nonlinear interactions only include
modes such that the relation p + q = k is satisfied. To aid the understanding, in the
following sections, we visualise all nonlinear interactions (living inside the third order
tensor Qpqr) on a two dimensional plane, as illustrated in figure 5.2. Each point on this
plane, defined by the coordinates (p, q) or (k, η), corresponds to a triadic interaction
rpqk. The axes (k, η) are defined as k = p + q and η = p − q respectively. We distinguish
local and non-local interactions by their distance from the axis k. Points near the axis
k corresponding to p ∼ q ∼ k and small absolute value of η, i.e. the green square is
an example of local interaction, while points such that p >> q ∼ k or p ∼ q >> k,
far from the k axis (large absolute value of η), such as the blue square, are classified as
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FIGURE 5.3: Average absolute value of energy interactions rpqk for systems with
L = 32, 64 and 96 in panels (a),(b) and (c), respectively. Average absolute value of
the relative energy interactions rpqk/Tk for systems with L = 32, 64 and 96 in panels

(d),(e) and (f), respectively

nonlocal interactions. In what follows, large-large scales interactions are identified as
points near the origin of this diagram, and large-small scales interactions as points near
the bottom-right and upper-left corners.

Panels (a, b, c) of figure 5.3 show the base ten logarithm of the average absolute energy
transfer term |rpqk| for three different systems with L = 32,64 and 96, respectively. It
can be observed that the most energetic interactions are large-large scale interactions
located near the origin of the axes. The large-small scales and the small-small scales
interactions have less relevance. This structure of the interactions suggests that a good
sparsification strategy could be based on the elimination of the interactions with high
frequency modes from the low frequency ones and on the complete elimination from
the system of the high frequency low energy modes. Panels (d,e,f) of figure 5.3 show
the average of the absolute energy transfer normalised by the total energy transfer as-
sociated with that mode, the quantity rpqk/|Tk|. This plot illustrates the relative impor-
tance of the interactions within each mode. It can be observed that for the small scales
(large k, away from the main diagonal), all interactions are equally important in rela-
tive terms. This means that energy interactions are non-local for this system since the
dynamics of the small scales depends on all the larger scales and not just those that are
immediately adjacent in Fourier space.
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5.1.3 Effect of the regression on the coefficients

The sparse structure of the Kuramoto-Sivashinsky model in Fourier space allows to
easily analyse the trend of the coefficients as the sparsification algorithm (4.22) is ap-
plied on the system (5.2). In this section, the effects of the l1 penalisation on the model
coefficients are analysed. We consider the behaviour of the coefficients of the nonlin-
ear term for three different Fourier modes located in different parts of the spectrum
having wavenumber k equal to 1,10 and 20, respectively. These coefficients are recon-
structed by solving problem (4.22) for increasing values of the regularisation weight.
The numerical value of the coefficients are shown in panel (a,b,c) of figure 5.4. Due
to the simple structure of this model all the interactions contributing to the dynamics
of a certain wavenumber k live on the pseudo-diagonals of diagram shown in figure
5.2. This structure facilitates the visualisation of Qpqr as a function of η. Each panel of
figure 5.4 shows the effect of the sparsification procedure on the Fourier modes taken
into consideration. The red dashed line corresponds to the analytic value of the coeffi-
cients equal to αk

2 while the black lines are the reconstructed coefficients obtained with
four different increasing values of the regularisation weight γk. Interestingly, it can be
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FIGURE 5.4: Reconstructed Qpqr with L = 32 for k = 1, k = 10 and k = 20 in panels
(a),(b) and (c), respectively. The red line corresponds to the analytical value, αk/2 ,
while the black lines correspond to models obtained with increasing regularisation

weights.

observed how for the modes with low wavenumber (k = 1 and k = 10 in panels (a) and
(b), respectively), describing large and more energetic structures, increasing the regu-
larisation weight shrinks to zero the coefficients corresponding to distant interactions
(high absolute value of η). This is in agreement with the shape of the absolute energetic
interactions rkpq displayed in panels (a,b,c) of figure 5.3, meaning that the dynamics of
the modes with low wavenumbers is not affected by the interactions with modes with
high wavenumber (distant interactions). Conversely, panel-(c) shows the coefficients
of the mode with wavenumber k = 20, located in the mid-rear part of the spectrum
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for the model considered. It can be observed how in this case the coefficients elimi-
nated first are the ones with a low value of η, corresponding to interactions occurring
between modes of similar size, i.e. local interactions. More specifically, as the regular-
isation weight is increased only the interactions between low and high wavenumbers
(i.e. between large and small structures) are retained. This interactions are located near
the p and q axis in the diagram 5.2 and correspond to distant or non-local interactions.
This result is in agreement with the shape of the relative energy interactions shown
in figure 5.3 panels (d) to (f) where the energy transfer in the high-energy modes are
dominated by the nonlocal interactions. More interestingly, it can be observed that
the curves in panel (b), even in the central part, are not perfectly flat, as expected
from the analytical solution, but present a M-like shape where the values of the co-
efficients first decreases in the central part because of the effect of the l1 regularisation
and then slightly increases before dropping to zero. This behaviour is due to the opti-
miser trying to balance the absence of some coefficients through a slight modification
of the remaining ones to keep the reconstruction error flat at least for low regularisation
weights. Arguably, this balancing mechanism is one of the key aspects that makes the
l1 regression-based approach superior in terms of accuracy to a simple truncation or an
”a priori physics informed” approach where the interactions are manually eliminated
with modifying the retained ones. The effect of the modification of the retained coeffi-
cients on the stability and on the energy conservation properties of the sparse system is
an aspect of paramount importance when more complex configurations are considered
later.

5.1.4 Model sparsification

The sparsification procedure consists in solving repeatedly problem (4.22) for increas-
ing values of the regularisation weight γk to obtain systems characterised by different
sparsity patterns. The set-up of the regression problem is totally analogous to what
shown in chapter 4 with the only difference of a modification of the database matrix
according to the mode considered due to the property of the Fourier modes uk = u∗

−k

that can create collinearity between the columns of Θ if all the modes are considered
ad once. To evaluate the prediction accuracy of the sparsified system, we define a re-
construction error based on the difference between the original rate of change u̇k and
the one obtained by the sparsified system ˙̃uk (denoted by a tilde). The quadratic recon-
struction error can be easily defined for Fourier modes as:

ϵ =
∑N

k=1( ˙̃uk − u̇k)2

∑N
k=1 u̇2

k

. (5.7)

To evaluate the sparsification performances of the LASSO applied to this system the
reconstruction error ϵ is displayed as a function of the density of the system ρ. The
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density can be defined as ρ = N!zero/Ntot where N!zero is the number of interactions
different from zero and Ntot is the total number of interactions originally different from
zero. These quantities are mathematically defined as the l0 norm of the coefficients
vector βk restricted on the active set of coefficients of L and Q according to (4.24). We
can also define the density relative to each mode ρk = Ni

!zero/Ni
tot. Both these quantities

range from ρ = 0 (fully sparse system) to ρ = 1 (a fully dense system). To understand
how different definitions of the regularisation weight γk (strategy S1 or S2) affect the
selection of the interactions, it is of interest to monitor the behaviour of ρk as the global
density ρ decreases.

5.1.5 l1-based regression with constant regularisation weight

Figure 5.5 is constructed by varying the regularisation weight uniformly across all
modes (strategy S1). For each value of the regularisation weight, which is defined as
λi = λ̃ we first solve the optimisation problem and then evaluate the reconstruction
error ϵ and density ρ associated with the sparsified model. To better visualise the ef-
fect of the increase of the regularisation weight on the triadic interactions we define the
tensor ϵ whose entries ϵijk are coloured with the value of the reconstruction error ϵ, as
defined in (4.23), obtained when the corresponding interaction coefficient Qpqr is elim-
inated from the system. Due to the compact structure of the Kuramoto-Sivashinsky
equation in Fourier space, we can visualise the tensor on the p − q plane as explained
in figure 5.2. The result is visualised in panels of figure 5.5 showing the tensor ϵ and the
corresponding interactions patterns for systems with L = 32, 64 and L = 96, respec-
tively. Interestingly, regardless of the size of the problem two common trends emerge.

FIGURE 5.5: Sparsity pattern displayed by the contour of the reconstruction error ϵ
obtained with a sparsification approach with regularisation weight λi = λ̃ constant

across i. Panels (a), (b) and (c) show L = 32, 64 and 96, respectively.

First, the most energetic modes are sparsified by removing first the distant interactions,
points located in the upper left and lower right corners of the graph. Therefore, the
LASSO sparsification produces, for the larger structures of the flow, a LES-like trunca-
tion. This means that an LES approach is optimal in the sense of problem (4.22). Second,
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high frequency and low energy modes are completely eliminated from the system as
the regularisation weight increases producing truncation. Interestingly, increasing the
size of the domain L we observe that, at least for the high energy modes, the number of
retained interactions is almost constant moving towards high values of k. This suggests
that, at least for the low wave-number high energy modes, the interactions are local in
modal space, with the bandwidth of the active band dependent on the physics of the
problem.

FIGURE 5.6: Panel-(a): reconstruction error ϵ vs density ρ for the constant regular-
isation weight approach. Panel-(b): plot of the modal density ρi against the global

density ρ for different modes for the model L = 64.

Problem (4.22) contains the free parameter γi. Thus, for the same configuration, a fam-
ily of different systems can be generated by varying the value of the regularisation
weight. To each value of γi corresponds two different values of ρ and ϵ. The corre-
sponding model can be displayed on the ϵ − ρ plane. Figure 5.6-(a) shows the ϵ − ρ

curves for the three systems with different domain lengths previously considered. A
plateau in the right part of the graph can be observed, with a knee point located around
ρ = 0.85. This suggests that it is possible to remove interactions from the system af-
fecting only marginally its predictive accuracy. This occurs because other interaction
coefficients are modified in the optimisation to preserve the overall energy balance. In-
terestingly, we observe that the curves are not much affected by the size of the domain.
This can be also qualitatively observed in figure 5.5, showing that the sparsification
patterns have a self-similar structure on the k − η plane. We argue that this is due to
the self-similar shape of the spectrum (5.1-(b)) and to the constraint N = L leading to
the same energy resolution for all the systems.

As discussed in the methodology section the regularisation weight γk can be also varied
mode by mode leading to different sparsification patterns in modal space. When the
sparsification weight is kept constant the pattern of the selected interactions follows
the one of the absolute energy interactions leading to the sparsification of the most
energetic modes and to the truncation of the least energetic ones. This behaviour can
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be better visualised by plotting the modal density ρk against the global density ρ as
shown in figure 5.6-(b). Here, three modes in different regions of the spectrum for
the system with L = 64 are shown. As expected from a visual analysis of the identified
sparsity pattern shown in figure 5.5 the high energy mode (k = 10) is sparsified without
eliminating all the interactions since ρk never reaches zero. On the other hand, when
considering low energy/high wavenumber modes (k = 30, 60) ρk drops to zero when
the global density reaches ρ ∼ 0.75. This means that the evolution of these modes
is eliminated from the system. In addition, as a consequence of this definition of the
regularisation weight we observe that generally the high index modes can be sparsified
more efficiently than the low index ones. Therefore, this definition of the regularisation
weight results in a trade off between sparsification of the most energetic modes and
truncation of the least energetic ones. This also provides the best result in terms of
the reconstruction error since in the formulation of problem (4.22) the l1 penalisation
term interacts minimally with the least-squares part responsible for the reconstruction
accuracy of the reconstructed system.

However, the main philosophy of a sparsification procedure is to generate a cheaper
model without performing any truncation but only eliminating the least important in-
teractions within the dynamics of each mode.

5.1.6 l1-based regression with variable regularisation weight across modes

To avoid truncating the high-wavenumber, low-energy, modes we vary the value of the
penalisation weight across the spectrum we scale the value of γk in equation (4.22) with

the square root of the average kinetic energy of each mode, i.e. as γk =
√

uku∗
k λ̃, where

λ̃ is an arbitrary constant. We have chosen this approach with the idea of introducing a
penalisation that is proportional to the total average energy transfer. This formulation
is equivalent to solve problem (4.22) with a least-squares component equal to the rela-
tive reconstruction error as defined in (4.23). However, the choice of the scaling of the
regularisation weight is not unique and other choices can be explored.

Figure 5.7 shows the tensor ϵ obtained with this definition of the regularisation weight.
Similarly to figure 5.5 each cell, corresponding to a triad of modes p, q, k is coloured
according to the value of the reconstruction error obtained eliminating that set of in-
teractions from the system. Interestingly, the sparsity pattern identified by the LASSO
with this definition of the regularisation weight resembles the pattern of relative energy
transfers shown in panels (d,e,f) of figure 5.3. With this definition of the regularisation
weight we observe that for the low index high energy modes the distant interactions
are eliminated first. This results is similar to what observed for constant regularisation
weight with the only difference that these modes are sparsified much more aggres-
sively. It will be shown later how this affects the slopes of the sparsification curves.
A different behaviour can be observed for the low energy high wavenumber modes
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FIGURE 5.7: Sparsity pattern displayed by the contour of the reconstruction error
ϵ obtained with a sparsification approach with regularisation weight defined as

λk =
√

uku∗
k λ̃ constant across i. Panels (a),(b) and (c) correspond L = 32,64 and 96,

respectively.

whose interactions are almost completely retained with only the elimination of some
local interactions (located near the k axis). The overall result is a system that is properly
sparsified without truncating any mode originally present in the dense system.

Figure 5.8-(a) shows the reconstruction error as a function of the density. It can be ob-
served that the plateau is small or non existent and the error grows more rapidly than
in the case where the penalisation weight is kept constant across the modes. This is
due to the fact that, for a given target density, it is more convenient to truncate the sys-
tem, i.e. remove completely the small scales, than sparsifying more aggressively large
scale/high energy modes. To analyse the sparsification pattern across modes, figure

FIGURE 5.8: Panel-(a): reconstruction error ϵ vs density ρ for the variable regular-
isation weight approach. Panel-(b): plot of the modal density ρi against the global

density ρ for different modes for the model with L = 64.

5.8-(b) shows the modal density ρk against the global density ρ for the system with
L = 64. As qualitatively observed in figure 5.7-(b) no mode is completely eliminated
from the system during the sparsification. Interestingly, conversely to what observed
in figure 5.8-(b) with this definition of γk the large scales/high energy modes are more
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effectively sparsified. This is in agreement with the shape of relative energetic interac-
tions shown in 5.3-(e) and it is consequence that, in relative terms, only the local inter-
actions are important for the low indexes mode while all the interactions are equally
important for the high indexes modes. Finally, we observe that generally the approach
with constant regularisation weight (strategy S1) produces generally lower reconstruc-
tion error and sparsification curves with a more favourable L-shape with respect to the
approach S2.

5.2 Lid-Driven Cavity flow

We now move on to the analysis of two-dimensional unsteady chaotic flow inside a
lid-driven square cavity. This is an established test case for the development and vali-
dation of model order reduction techniques (Cazemier et al., 1998; Terragni et al., 2011;
Balajewicz et al., 2013; Arbabi and Mezić, 2017; Fick et al., 2018), and we thus consider
it here as an example to demonstrate the ideas discussed in the introduction and to test
the mathematical framework on a more geometrically complex test case with respect to
the Kuramoto-Sivashinsky model. The lid-driven cavity flow is particularly suitable for
our purposes since the simple domain, contoured by no-slip walls, allows a straight-
forward computations of the coefficients matrices of the reduced order-model (4.6). At
the same time, by increasing the Reynolds number, models of arbitrary complexity can
be easily obtained. Results shown in this section have been published in (Rubini et al.,
2020b,a).

5.2.1 Flow field

The Reynolds number is defined as Re = LU/ν, where L and U are, respectively, the
cavity edge and the lid velocity while the kinematic viscosity is denoted by ν. The
edge length and the lid velocity are set equal to 1 in non-dimensional units. There-
fore, different values of the Reynolds number can be easily obtained just by varying
the kinematic viscosity. The domain is defined in nondimensional Cartesian coordi-
nates x = (x, y) and the velocity field is defined by the components u = (u, v). In
this first analysis, we are mainly interested in understanding the capabilities of the l1
sparsification framework to preserve the physical properties of the flow throughout the
sparsification procedure. Thus a flow configuration with Re = 2× 104 where dynamics
is chaotic, as shown by Auteri et al. (2002), was chosen. The simulations are performed
in OpenFOAM using a modified version of the solver icoFOAM that also outputs the snap-
shots of the Eulerian acceleration ∂tu(t, x) to compute the modal acceleration ȧi needed
in (4.22). The convective and viscous terms are spatially discretised with a second order
finite volume technique and the temporal term with a semi-implicit Crank-Nicholson
scheme. Special treatments of the singularities developing at the top corners due to the
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FIGURE 5.9: Vorticity field ω of three different snapshots separated by one non-
dimensional time unit, increasing from left to right.

discontinuity in the velocity boundary conditions (Botella and Peyret, 1998) were not
deemed necessary. Three snapshots of the vorticity field obtained from these simula-
tions are shown in figure 5.9. Most of the dynamically interesting features in this regime
originate at the bottom-right corner of the cavity. Specifically, the secondary vortex in
the recirculation zone is shed erratically, producing wave-like disturbances advected
along the shear layer bounding the primary vortex. The characteristic non-dimensional
frequency of this wave-like motion is f = 0.7. From simulation, we extract Nt = 1500
velocity snapshots using a nondimensional sampling period ∆t = 0.1. These settings
are sufficient to adequately time-resolve the fast scales as well as to include many shed-
ding events at the bottom right corner, making the regression problems (4.22) statisti-
cally reliable.

5.2.2 Modal Decomposition

To examine the role of the subspace used for projection on the sparsity of triadic in-
teractions in modal space, we consider and compare two families of Galerkin models
obtained by projecting the Navier-Stokes equations onto the subspaces generated by
two different modal decompositions. First, we consider models generated using POD
modes. It is well known that POD produces compact reduced order models, but has
the shortcoming of mixing together fluid motions at different temporal/spatial scales
but having similar energy content (Mendez et al., 2019). Second, we consider mod-
els generated from modes oscillating at a single frequency obtained from a procedure
that is equivalent to a Discrete Fourier Transform (DFT) of the velocity snapshots. For
practical convenience, we obtain the two distinct sets of modes using the same compu-
tational technique, based on the approach proposed by Sieber et al. (2016) which only
operates on the temporal correlation matrix. Briefly, the method considers the temporal
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correlation matrix R ∈ RNt×Nt , with entries

Rij =
1

Nt

(
u′(ti, x), u′(tj, x)

)
, (5.8)

and then defines a filtered correlation matrix S, with entries

Sij =
k=N f

∑
k=−N f

gkRi+k,j+k (5.9)

given by the application of the filter coefficient vector g along the diagonals of the
correlation matrix. A set of temporal coefficients, ordered according their energy con-
tent, ai = [ai(t1), . . . , ai(tNt)] and associated mode energies λi is then obtained from the
eigendecomposition of S,

Sai = λiai, (5.10)

so that a⊤i · aj = λiδij. As discussed in Sieber et al. (2016), when the filter is extended
over the entire dataset and in the limit of number of samples tending to infinity, the
filtered correlation matrix converges to a Toeplitz, circulant matrix. Then, its eigenval-
ues trace the power spectral density of the underlying data set. On the other hand,
the eigenvectors ai correspond to the Fourier basis. This procedure generates conju-
gate pairs of modal structures with same energy oscillating at a single frequency. These
can be viewed as a set of modal oscillators exhibiting periodic fluctuations (Taira et al.,
2017) and tracing fluid motion at on a two-dimensional subspace. In practice, for a
finite-length dataset, we filter the temporal correlation matrix assuming periodicity us-
ing a box filter, as suggested in Sieber et al. (2016). Hereafter, we will refer to the modal
structures identified by this procedure as DFT modes.

One important consideration is that, unlike Dynamic Mode Decomposition (see Row-
ley et al. (2009); Schmid (2010); Chen et al. (2012)), DFT lacks the ability to discern and
identify dominant frequency components. Instead, a number of modes equal to the
number of snapshots utilised is produced, oscillating in conjugate pairs at specific fre-
quencies determined by the sampling period ∆t and observation time T (Mendez et al.,
2019). This property, picket fencing, results in frequencies that are integer multiples of
the fundamental frequency f1 = T−1, up to the Nyquist component fNyq = (2∆t)−1.
In addition, unlike for POD, as the length of the dataset is increased, the number of
energy-relevant modes increases and low-frequency modes with little dynamical im-
portance appear. The approach we use here is to divide the dataset into five partition
of thirty time units, covering an average of 20 cycles of the dominant oscillatory compo-
nent, and providing sufficient frequency resolution to distinguish small scale spectral
features. In addition, two possible ways of sorting pairs of modal structures are possi-
ble, i.e. by energy content (using the eigenvalues λi) or by frequency. Models obtained
with the two sorting schemes will be referred to as DFTe and DFT f , respectively.
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n 1 5 10 15 20 26 50 75 80 95 100 300

POD 0.26 0.74 0.85 0.89 0.9 0.95 0.98 0.99 0.995 0.998 0.999 -
DFTe 0.17 0.49 0.62 0.74 0.8 0.88 0.92 0.95 0.97 0.98 1
DFT f 0.02 0.07 0.15 0.39 0.43 0.47 0.91 0.96 0.97 0.98 1

TABLE 5.1: Normalised cumulative energy distribution e(n) for POD and DFT
modes, where the latter are sorted by energy content (DFTe) or by frequency (DFT f ).
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FIGURE 5.10: Panel (a): cumulative sum of the first 100 eigenvalues of Sij for the
three decompositions considered. Panel (b): distribution of the modal energies of

DFT modes sorted by frequency.

We now focus on the characteristics of the modal structures obtained by these two
methods. We denote the normalised cumulative sum of the eigenvalues λi of the (fil-
tered) correlation matrix as

e(n) =
n

∑
i=1

λi/
Nt

∑
i=1

λi, (5.11)

describing the fraction of the fluctuation kinetic energy captured by the first n elements
of the expansion (4.3). This quantity is shown in figure 5.10-(a) for the POD and the
two possible DFT sorting schemes. As expected, a larger energy is captured by the
POD basis. For the DFT decomposition, the energy-based sorting is more efficient at
data compression, although the difference vanishes for large n, since for low energy
POD modes converge towards Fourier modes and the two sorting schemes are equiv-
alent. The modal energies associated to the DFT f modes are shown in figure 5.10-(b)
as a function of the modal index i. The distribution is characterised by a continuous
component, with modal energy decaying with frequency, and a discrete component,
with a fundamental peak for the pair of modes (31, 32) and its first few harmonics. The
peak, at a non-dimensional frequency f = 0.7, is physically originated from the high-
energy structures transported along the shear layer by the rotation of the main vortical
structure.

This can be observed in panels (a) and (b) of figure 5.11, showing the vorticity field ω

of the DFT mode pair (31, 32). This pair of modes describes a vorticity perturbation
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FIGURE 5.11: Vorticity field of the most energetic pair of DFT modes, panels (a) and
(b), and of the first two POD modes, panels (c) and (d).

having the form of a wave travelling along the edge of the main vortex. Hence, the
spatial structure of the two modes is shifted in the direction of the shear layer by half
wave. Travelling-wave structures in cavity flows have already been observed in simu-
lation by Poliashenko and Aidun (1995); Auteri et al. (2002) and characterised by global
stability analysis and Koopman analysis by Boppana and Gajjar (2010) and Arbabi and
Mezić (2017), respectively. The two leading POD modes, reported in panels (c) and (d)
of figure 5.11, have the same energy and capture the same travelling-wave pattern de-
scribed by the leading DFT mode pair.

5.2.3 Energy Analysis

To provide a more robust foundation for the understanding of the sparsification results,
we first focus on the analysis of the average energy interactions defined by the third or-
der tensor (4.16) defined previously. The structure of the interaction tensor N for a
large POD-based model with N = 75, reconstructing more than 99% of the fluctuation
kinetic energy, is reported in figure 5.12, showing the magnitude of the interactions for
three slices for i = 1, 10 and 75, in panels (a), (b) and (c), respectively. It can be observed
that all entries of the tensor N are generally nonzero, although the strength of the in-
teractions varies across several orders of magnitude. This is a combined result of the
projection coefficients tensor Q (shown later), whose entries are typically non zero, and
of the complex spectral structure of the temporal coefficients ai(t), containing a blend
of all the frequencies present in the system. The remarkable feature of figure 5.12 is that
interactions are highly organised and there exists a subset of interactions that are more
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FIGURE 5.12: Magnitude of the average interaction tensor coefficients Nijk for three
POD modes across the spectrum, i = 1, 10 and 75 in panel (a), (b) and (c) respectively,

for a model resolving 99% of the fluctuation kinetic energy.

FIGURE 5.13: Panel (a): coefficient χi(n) as a function of the normalised cutoff n for
the same three modes. Panel (b): sum of the entries of N the four regions defined in

figure 5.12-(a) as a function of the modal index i.

active. Specifically, for any mode i, triadic interactions can be classified, as illustrated in
panel (a), in four different categories by introducing a cutoff modal index n. The subset
of interactions denoted as LL corresponds to nonlinear energy transfer involving pairs
of low index modes, HL and LH denote interactions involving high-low/low-high in-
dex modes, while HH denotes the subset of interactions involving pairs of high index
modes. Consequently, interactions LL, HH are local in modal space while interactions
HL, HL are non-local. We observe that the areas corresponding to LL and HL/LH are
the most active. If we map low/high modal indices to large/small scales, this result
is in agreement with the picture of energy transfer between scales in homogeneous
isotropic two-dimensional turbulence already observed by (Ohkitani, 1990; Laval et al.,
1999), where the large scales interact with the small ones in a non-local fashion. In ad-
dition, interactions are not symmetric with respect to a swap of indices j, k. This feature
can be quantified introducing the parameter

χi(n) =
n

∑
j=1

N

∑
k=1

Nijk/
N

∑
j=1

n

∑
k=1

Nijk, (5.12)
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FIGURE 5.14: Panel (a): magnitude of the average interaction tensor N for i = 100,
with the three characteristics branches, showing that active interactions come in 2 × 2
blocks corresponding to matching triads of modes. The small inset focuses on the
interactions of branches C and U. Panel (b): magnitude of the average interaction
tensor (5.15) where the three branches of panel (a) have been unfolded on a larger
plane spanned by the coordinates l and η. The inset shows details of the interactions

of the branch U in the plane η − l.

representing the relative dynamical importance of the subset of interactions LL + HL
and LL + LH. Figure 5.13-(a) shows χi for i = 1, 10 and 75 as a function of the nor-
malised cutoff n, as defined in figure 5.13-(a). The energy flow associated with the
subset HL is up to four times stronger than the subset LH. This is a consequence of
the asymmetry of the projection coefficients Qijk, which arises from the fact that the
convective transport of structure ϕk(x) operated by the structure ϕj(x) is more intense
when the modal structure ϕj(x) describes large-scale flow features. To show this effect
for all the different slices of Nijk at i fixed we display in figure 5.13-(b) the sum of the
absolute value of the entries of the four different regions of N, as defined in figure 5.12-
(a). Here, we arbitrarily select the split at half of the spectrum (n = 38). Other choices
are possible and do not change qualitatively the result. As expected, the intensity of
the LL interactions is always much larger than the ones contained in the other regions.
In addition, the energy transfer associated with the region LH is always larger than
HL as consequence of the advective transport of the small structures by the large ones.
More interestingly, the ratio LH/HL becomes larger as the modal index i increases. It is
arguable, that this reflects the fact that as the flow structures become smaller the advec-
tive effect of the large structure becomes more important. This has also been observed
more qualitatively in figure 5.13-(a).

We now consider energy analysis of a large, full-resolution DFT f model constructed
from five partitions of thirty time units as discussed in section 5.2.2. The model is
composed of all N = 300 modes, corresponding to 150 distinct frequencies. We per-
form modal decomposition and energy analysis on each partition separately, and then
average the mean energy transfer rate tensor N over the five partitions. Figure 5.14-
(a) shows the mean transfer rate distribution for mode i = 100. Energy interactions
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FIGURE 5.15: Maps of Q1jk for Galerkin models constructed from the POD and the
DFT f decompositions, in panel (a) and (b), respectively. Panel (c) shows the probabil-

ity distribution of all quadratic coefficients for these two models.

in the DFT model are very sparsely distributed on a thin horseshoe-shaped structure
composed of three branches (denoted in the figure as L, C and U) of 2 × 2 blocks,
and all other mean energy transfer rates interactions are identically zero. This pattern
results from the joint effect of the oscillatory nature of the temporal coefficients and
the quadratic nonlinearity of the system (4.6), which can only be satisfied by triads of
modes having matching temporal wavenumbers. A less pronounced horseshoe-shaped
distribution of the energy interactions has been previously observed in energy analy-
sis of POD-based models of three-dimensional transitional boundary layer Rempfer
and Fasel (1994a,b). These authors noticed that low-energy modal structures resemble
Fourier modes in the spanwise direction (justified by the spanwise periodic domain)
and thus coefficients Qijk and energy interactions are nonzero only for specific triads
of modes. In the present case, this pattern is determined exclusively by the temporal
coefficients as the tensor Q constructed from projection modes does not possess any
sparsity structure and its coefficients have a similar statistical distribution to that ob-
tained using the POD modes. This is illustrated in figure 5.15 showing maps of the first
slice of the tensor Q of the largest Galerkin models considered here, constructed from
the POD and the DFT decompositions, in panels (a) and (b), respectively. We observe
that no underlying structure is present except for the asymmetry already observed in
the energy analysis in figure 5.12. This property is confirmed in the probability distri-
bution of the coefficients, shown in panel (c).

To facilitate the interpretation of the energy interaction pattern, we follow Rempfer and
Fasel (1994b) and Arbabi and Mezić (2017) and define oscillatory modal structures

ul(t, x) = a2l−1(t)ϕ2l−1(x) + a2l(t)ϕ2l(x), (5.13)

numbered by the index l and tracing fluid motion at a single frequency on a two-
dimensional subspace. Their modal energy is

el(t) =
1
2
(
a2

2l−1(t) + a2
2l(t)

)
+ a2l−1(t)a2l(t)(ϕ2l−1(x), ϕ2l(x)). (5.14)
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FIGURE 5.16: Panels (a) and (b): absolute and relative strength of the energy interac-
tions between pairs of DFT modes for a model with N = 300 visualised on the plane
m, n, with the additional coordinates l and η. Panels (c): relative energy interactions

for the first and last mode pairs.

Numerical experiments show that, for large number of snapshots, pairs of modes ϕ2l−1(x)
and ϕ2l(x) tend to be orthogonal. Hence, considering the evolution equation for the
modal energy el(t) ∼ 1

2 (a2
2l−1(t) + a2

2l(t)) leads to the condensed triadic interaction ten-
sor N̂ of size (N/2, N/2, N/2) with entries

N̂lmn =
l+1

∑
i=l

m+1

∑
j=m

n+1

∑
k=n

Nijk, (5.15)

lumping together the 2 × 2 blocks of interactions at matching triads of figure 5.14-(a).
In addition, the three branches L, C and U can be unfolded and conveniently visu-
alised on a two-dimensional plane spanned by the coordinate l, the modal structure
index, and η = m − n, representing the distance in modal space between pairs of tem-
poral wavenumbers. This unfolding process is shown in panel (b) of figure 5.14, and
when repeated for all modal structures leads to the distribution shown in figure 5.16-
(a). This diagram is exactly analogous to the ones shown in figures 5.2 and 5.3 with the
only difference that in the case of the Kuramoto-Sivashinsky the complex nature of the
Fourier modes introduces values of the wave-number k in [−kN , kN ]. Conversely, the
DFT modes are real with frequencies in [ω1, ωN ]. In figure 5.16-(b), we report the aver-
age transfer rate N̂lmn normalised with the total average transfer rate for each structure,
the quantity

T̂l =
N/2

∑
m=1

N/2

∑
n=1

N̂lmn, l = 1, . . . , N/2, (5.16)

to illustrate more clearly the relative strength of the interactions. In figure 5.16-(c), the
normalised mean transfer rate for l = 1 and 150 is reported. Interactions between triads
of pairs of DFT modes are organised in agreement with the physics of scale interactions
previously discussed for POD models. In absolute terms, the most relevant interac-
tions are clearly those located near the origin of the coordinates. These correspond to
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low-index modes where nonlinear interactions with other low-index modes dominate,
while interactions with the high-index modes, for larger η, are less important. This
suggests that a sparsification approach based on pruning the interactions involving the
high-index modes, i.e. the small scales, would be effective. By contrast, for high-index
modes, relevant energy interactions are organised in bands along the axes m and n
and involve energy exchange between low-index modes and high-energy, high-index
modes. This suggests that the dynamics of the small scales is driven primarily by non-
local interactions with the largest structures of the flow and not by small-scale/small-
scale quadratic interactions. The slight asymmetry visible in panel (c) arises from the
structure of the coefficients tensor Q and has the same physical origin as that observed
in figure 5.12 for the POD model.

5.2.4 Sparsification of POD-based models

We now apply the a posteriori sparsification to three POD-based models resolving 90%,
95% and 99% of the kinetic energy, respectively (see Table 5.1 for details). Because the
size of the database matrix Θ(A) grows quadratically with the number of modes, the
number of possible interactions q can easily become larger than the number of avail-
able snapshots Nt, resulting in an underdetermined regression problem and overfitting.
This is a well understood issue in data analysis and requires cross validation techniques
to ensure the statistical reliability of the result (Friedman et al., 2008). In this work, we
employed K−fold cross validation, using typically K = 10. Briefly, the database is first
divided into K folds. The model is trained using K − 1 blocks and the reconstruction
error ϵ of equation (4.23) is obtained from the fold that was left out. This procedure is
iterated over all folds, obtaining the mean and the standard deviation of ϵ. Figures 5.17-
(a,b,c) show the sparsification curves on the ρ − ϵ plane for the three POD models con-
sidered. The mean of ϵ across the folds is displayed as a thick black line, while the grey
dashed line indicates plus or minus one standard deviation. These curves have been
obtained by solving problem (4.22) using strategy S1 (i.e. γi = γ̃ is kept constant across
the modes) and progressively increasing the regularisation weight. When low weights
are used, dense systems (ρ near to 1) with good prediction accuracy are obtained, lo-
cated in the right part of the panels. The opposite is true for large weights, identifying
points in the left part of the graph characterised by low density and poor prediction
accuracy. As postulated in the methodology section, the curves show a sweet spot at
around ρ ≈ 0.2, displaying a plateau for ρ ≳ 0.2, while the error ϵ grows quickly when
ρ ≲ 0.2. These results indicate that it is possible to prune about 80% of the quadratic
interactions in model (4.6) without influencing the average prediction accuracy.

Overall, the mean reconstruction error decreases as the resolved energy increases, mov-
ing from panel (a) to panel (c), as more modes participate in capturing the dynamics of
velocity fluctuations. In addition, larger models can be more effectively sparsified, as
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FIGURE 5.17: ρ − ϵ curves for three POD models resolving 90%, 95% and 99% of the
kinetic energy in panels (a), (b) and (c), respectively. The black line represents the
cross-validated error averaged over K = 10 folds. The dashed grey lines represent
plus/minus one standard deviation of the cross-validated error calculated over the
folds. The red dashed line shows the reconstruction error obtained with the greedy
approach. The squares indicate the global reconstruction error of the Galerkin model

obtained directly from projection.

the sparsification curve drops more rapidly. This results from the non-local structure
of energy interactions shown in figure 5.12. When one additional low-energy mode is
included, the number of relevant interactions to be retained in the model grows slower
than O(N2), i.e. all non-local interactions with the rest of the hierarchy denoted as
LL, LH and HL in figure 5.12-(a) need to be considered ignoring the ones belonging
to LH. Since the total number of possible interactions grows as O(N3), larger models
can be more effectively sparsified. This is conceptually in agreement with the obser-
vations of Taira et al. (2016) on the sparsification properties of discrete vortex mod-
els of increasing complexity. We also observe that the mean prediction error does not
necessarily decrease monotonically when the density increases. This phenomenon is
particularly visible for the model in panel (b) but all models reproduce the same be-
haviour. This is a symptom that the number of available snapshots (1500) is potentially
not large enough for the number of coefficients (q = N × (N + 1)/2 + N + 1 = 2926
for the model in panel (c)) and overfitting would have occurred if no cross-validation
had been performed.

5.2.5 Greeedy interaction selection

It can be observed that not all triadic interactions play the same role in the energy trans-
fer of the system. In particular, concerning figure 5.12-(a), one could construct a model
where the interactions labelled as HH are discarded. Hence, the simplest sparsifica-
tion approach consists simply to construct a model where the retained interactions are
manually selected by energetic considerations only without the need for any optimisa-
tion procedure. Here, we will refer to this sparsification technique as Greedy selection
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FIGURE 5.18: Greedy selection technique via Hadamard product between the tensor
Q and the mask H. As a result, only the coefficients in the black shaded area are con-

sidered while the others are set to zero.

approach. More specifically, for this flow configuration, since in the tensor N the most
relevant interactions are the ones belonging to the regions LL, LH and HL, the greedy
sparsified model consists in retaining only the entries of Q corresponding to LL, LH
and HL and setting to zero the complementary set. To practically perform the greedy
sparsification we define a filter dependent on a parameter n, as shown in figure 5.12-
(a), with a L-like shape similar to the contour of the contours of Nijk. Thus, it is possible
to generate different models with increasing values of densities varying the parameter
n/N between 0 and 1. For this choice of the filter, the density can be defined as a func-
tion of n/N as

ρ =
n
N

(
2 − n

N

)
. (5.17)

The filtering procedure is sketched in figure 5.18 and is performed simply by an entry
by entry multiplication of the mask matrix defined as H and the i-th slice of the tensor
Q. In tensorial notation this operation correspond to the Hadamard product defined as
⊙. The sparse representation of the nonlinear interactions tensor Q is then defined as

Qs
ijk = Qijk ⊙ H. (5.18)

The red dashed line in figure 5.17 shows the ρ − ϵ curves is obtained by varying the
ratio n/N. Then, the curves are constructed by computing the value of the acceleration
ȧi as right hand side of the expression (4.6) with the pruned third order tensor Qs

ijk. The
resulting ȧi is then compared with the baseline DNS by the expression 4.23. In addition,
the red square in the rightmost part of panels figure 5.17 displays the reconstruction
error obtained with the dense/un-tuned Galerkin system. As expected from the iso-
contours of the triadic interactions tensor N, the sparsification curves obtained with
the greedy approach have a similar shape to those obtained with the l1 regression. This
is a direct consequence of the existence of a subset of most relevant energy interactions.
However, the reconstruction error obtained from the greedy method is generally higher
than that obtained by the l1 regression, since the optimisation procedure involved in the
l1 approach modulates the strength of the remaining interactions by tuning the active
quadratic coefficients, minimising the prediction error. As we show later, this difference
will have a marked effect on the long-term temporal stability of the models.
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FIGURE 5.19: Value of the density ρ and of the pseudo-density ρl1 as a function of the
regularisation weight γ. Panel (a),(b) and (c) correspond to e(n) = 0.9,0.95 and 0.99,
respectively. The blue vertical dashed lines indicates the optimal density according

the criterion proposed here.

5.2.5.1 Selection of the optimal value of the regularisation weight

The sparsification procedure generates a whole family of models, dependent on the pa-
rameter γi, with different sparsity/reconstruction error trade offs that can be displayed
on the ρ − ϵ plane as in figure 5.17. Models obtained with high or low values of γi must
be ignored since the reconstruction error is too large (leftmost part of the diagram 5.17)
or no sparsification at all is present (rightmost part of the diagram 5.17). However, for
intermediate values of γi, there is a multitude of systems with similar values of the
density/accuracy trade off among which the user can choose. Heuristically, a good
graphical method to select the optimal value of γi is to pick a system in the proximity
of the knee point of the curves 5.17. However, numerical experiments have shown that
a manual choice of the model can be challenging since around the knee point the prop-
erties of the models can improve or deteriorate very quickly with just a small variation
of γi. To address this issue, here, we propose a criterion to choose systematically the
optimal regularisation weight i generating a sparse system with the best sparsity accu-
racy trade off. To our goal we first define a pseudo-density in terms of the l1 norm as

ρl1 = ||β||1/||β f ull ||1, (5.19)

where β f ull is the dense coefficient vector obtained by recasting the coefficients (4.7),(4.8)
and (4.9) in vector form. Thus, we plot the trend of ρ and ρl1 against the regularisation
weight γi kept constant across the spectrum and indicated simply by γ. As expected,
both curves are monotonically decreasing starting from one for very low γ (left) and ap-
proaching zero for large γ (right). Interestingly, we observe the presence of a plateau for
both definitions of the densities for γ ∼ 10−8, in this area, the density ρ remains almost
exactly constant while ρl1 after hitting a sharp knee point keeps decreasing slowing.
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FIGURE 5.20: Distribution of the base ten logarithm of γijk for i = 1, 10 and 75, in
panels (a), (b) and (c), respectively, for the POD model resolving 99% of the fluctua-

tion kinetic energy.

Our interpretation is that, for these intervals of the regularisation weight (grey shaded
area in figure 5.19) no coefficients are eliminated but their values are being tuned. We
argue that the optimal regularisation weight corresponds to the knee point in the ρl1

curve (indicated as a vertical dashed blue line) where all the un-necessary entries of the
matrix coefficients are easily eliminated keeping only the coefficients corresponding to
relevant energy interactions. A further increase of γ results in the elimination or too
large modification of the retained coefficients, including relevant interactions as well,
leading to a system with poor prediction accuracy. Similarly to what is shown in fig-
ure 5.17 we observe that the values of γ corresponding to the optimal density decreases
monotonically as the energy resolution of the model increases. This behaviour has been
already observed in a more qualitative fashion in figure 5.17 this is a consequence of the
increasing complexity of the system due to the structure of the triadic interaction ten-
sor N where the number of irrelevant interactions grows faster in relative terms with
respect to the important ones making the system more easily sparsifiable.

5.2.6 Energy interactions identified by the regression and conservation prop-
erties

To visualise the sparsity pattern identified by the regression as the regularisation weight
in equation (4.22) is increased (constant for all modes in strategy S1), we introduce the
tensor γ with entries γijk defined as the value of the regularisation weight at which the
corresponding coefficient Qijk is shrunk to zero by the LASSO. Figures 5.20-(a,b,c) show
three slices of γ for modes i = 1, 10 and 75, respectively, for the largest POD model con-
sidered, capturing 99% of the total fluctuation kinetic energy. The first interactions to
disappear are the small-scale/small-scale interactions, region HH. Increasing the pe-
nalisation, interactions that are local in modal space are progressively pruned, leaving
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FIGURE 5.21: Value of the modal density ρi against the global density ρ. The inten-
sity of the colour is proportional to the modal index i (low intensities correspond
to low values of i and the opposite is true for high intensities). The sparsification

approaches S1 and S2 are displayed in panel (a) and (b), respectively.

only non-local interactions involving triadic exchanges with the low-index modes for
large penalisations. Interestingly, this pattern does not change qualitatively nor quan-
titatively as the modal index i increases.

To better visualise how the sparsification is distributed across the modes the value of
the modal density ρi is plotted against the global density ρ in figure 5.21. The ap-
proaches S1 and S2 are shown in panels (a) and (b), respectively. The opacity displays
the value of the modal index. Opaque lines correspond to high index low energy modes
while transparent lines correspond to low index high energy modes. It can be observed
that, for a given value of the global density ρ, a comparable number of interactions is
retained across the hierarchy of modes and each modal equation is sparsified by a sim-
ilar amount, this is true for both approaches S1 and S2. Hence, the sparsification has
not produced mode truncation, which would have occurred if all coefficients of some
low-energy modes had been shrunk to zero by the LASSO. Truncation would result in
ρi dropping to zero while being the global ρ different from zero. In addition, it can be
observed that the low index modes (more transparent) are more effectively sparsified
both by the S1 and S2 approach as consequence of the structure of the triadic interaction
tensor shown in figures 5.12 and 5.13. Since, as shown in 5.13-(a), low indexes modes
span larger energy ranges with respect to the modes in the rear part of the spectrum, as
it can be seen in figure 5.13-(c).

In figure 5.22-(a,b,c) the base ten logarithm of the mean energy interaction tensor Ns
ijk

computed as in (4.16) with the sparse coefficient tensor Qs is shown for the same three
modal indices as in figure 5.20. Data refers to sparse models with ρ = 0.3 identified
with the methodology explained in the previous section and located nearby the sweet
spot of the curves in figure 5.17-(c). It can be observed that the sparsified model has
a pattern of interactions resembling that of the dense model in figure 5.12. However,
weak interactions and the associated flow physics have been pruned. It is also clear
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FIGURE 5.22: Base ten logarithm of the sparsified interaction tensor Ns
ijk for i = 1, 10

and 75 in panels (a), (b) and (c), respectively, for a POD model model resolving 99%
of the fluctuation kinetic energy and ρ = 0.3.

that the asymmetry of the interaction pattern observed in figure 5.12 and the physical
mechanism that originates is lost in the regression since the database matrix Θ(A) does
not include any permutation of the modal indexes. Consequently, the interaction pat-
tern in figure 5.22 is now symmetric with respect to a swap of the indices j, k.

Despite the aggressive pruning, the sparse models reproduce fairly accurately the over-
all structure of the intermodal energy budgets. In the present flow configuration, the
convective nonlinearity is energy conserving and Galerkin models should obey the re-
lation ∑N

i=1 Ti = 0 as N → ∞, with Ti = ∑N
j=1 ∑N

k=1 Nijk the time averaged energy trans-
fer rate to/from mode i. For finite-dimensional approximations, this property is not
satisfied exactly and the residual of the summation can be taken as a measure of the
overall energy balance. Figure 5.23-(a) shows such residual for the l1 sparsified models
(empty circles) and for the models obtained with the greedy approach (empty squares),
as a function of the density. The residual is normalised by the root mean square value
of the rate of change of the integral fluctuation energy. Note that the greedy model at
ρ = 1 is the model obtained directly from projection. It can be observed that the energy
conservation error is relatively small, in the order of 10−3 ÷ 10−4. For large densities,
it is larger than that of the projection model, because the regression tunes model co-
efficients to minimise the mean square error on the modal accelerations and does not
enforce this physical constraint directly. The energy conservation residual decreases for
sparser models and is ten times smaller than the projection model, owing to the lower
number of active coefficients that participate in the regression. Figure 5.23-(b) shows
the distribution of the time averaged energy transfer rate associated to mode i for the l1
sparsified model at ρ = 0.3 (red crosses) and the dense model obtained from projection
(empty circles). Data is reported every second mode. For the projection model, the net
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FIGURE 5.23: Panel (a): the normalised energy conservation error as a function of the
density ρ, for the greedy sparsification approach (empty squares) and the l1 based
approach (empty circles). Panel (b): the total net energy transfer rate Ti as a function
of the modal index i for two POD models resolving 99% of the kinetic energy, with
coefficients identified from projection and for a l1 sparse model. One every two data

points is reported.

energy transfer is negative for the first few modes and changes sign at i ∼ 10. Phys-
ically, this trend suggests that the first few modes extract energy from the mean flow
and feed the dissipative high-index modes via triadic interactions. The l1 sparsified
model correctly reproduces this global trend, even though no constraints have been in-
troduced (Loiseau and Brunton, 2018). Generally speaking, as discussed by (Loiseau
and Brunton, 2018) and (Taira et al., 2016), machine learning techniques, purely based
on data, do not automatically include physical invariants. The evidence shown here
and later on in the section dedicated to the a priori approach indicates that physically
consistent results can be obtained if constraints are imposed (i.e. time stability con-
straint for example). However, it can be argued that data-driven techniques relying on
optimisation ideas, such as the LASSO, can naturally reproduce invariants and conser-
vation properties embedded in the data to a level defined by noise levels. Since the
optimisation procedure tends to naturally reproduce the invariants contained in the
original data. For instance, Taira et al. (2016) used network-theoretic ideas to sparsify
connections in a discrete vortex model and observed that sparsification conserves the
invariants of discrete vortex dynamics. The critical aspect is therefore the choice of sen-
sible physics preserving constraints and, at the same time, allowing enough degrees of
freedom to successfully perform the fitting procedure.

Lastly, it is important to underline that, from figure 5.17 seems that the models with
the best trade off between sparsity and accuracy are located near values of ρ = 0.2 cor-
responding to models located nearby the knee point. This analysis shows that models
characterised by a slighter higher value of ρ, identified by the approach defined in fig-
ure 5.19, reproduce better the energy transfer inside the model. This result underlines,
once more, the difficulties in the choice of γ without a posteriori evaluation of the per-
formances of the sparse system obtained by temporal integration.
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5.2.7 Regression set-up for pure frequency modes

Proper Orthogonal Decomposition is a popular and well tested modal decomposition
to generate reduced order models. However, this is not the only choice when it comes
to the modal analysis of flows. An interesting class of modal decompositions, particu-
larly suitable for statistical stationary flows, are the ones generating spatial structures
whose temporal coefficients oscillate at a fixed frequency. Several formulation have
been proposed such as the Spectral POD (see Towne et al. (2018); Sieber et al. (2016))
and the Dynamic Mode Decomposition DMD (Schmid (2010)) particularly suitable for
fully developed flows. In addition, one of the targets of this work is to show how
to sparsify reduced order models preserving the physical features of the original flow
regardless of the set of basis functions used to represent the flow. To prove that the
sparse system is physics preserving we generate a Galerkin-based model using pure
frequency modes obtained by Discrete Fourier Transform (DFT). In this section, we
show the precautions needed to be taken into account before solving problem (4.22)
when pure frequency modes are considered.

5.2.8 Ill-posedness of the problem

As an illustrative example, we consider a small-sized model of the lid driven cavity
flow at Reynolds 2 × 104 constructed with N = 26 modes and perform sparsification
as discussed in the methodology section, with a relatively small regularisation weight
(γ = 10−14) kept constant across the frequency spectrum (strategy S1). The first key
result is that all the entries of the constant and quadratic coefficient tensors C and Q
are immediately set to zero, while the linear tensor L has a characteristic bidiagonal
structure, shown in figure 5.24-(a). The system identified by the regression is equivalent
to a set of N/2 decoupled linear oscillators in the form[

ȧ2l−1

ȧ2l

]
= ωl

[
0 1
−1 0

] [
a2l−1

a2l

]
l = 1, ..., N/2, (5.20)

coupling pairs of temporal coefficient oscillating at the same angular frequency ωl = 2πl/T,
with T being the observation time. The eigendecomposition of the tensor L is trivial.
Eigenvalues are all imaginary and come in pairs that are integer multiples of the fun-
damental frequency ω1 = 2π/T. While this result is consistent with recent ideas on
Koopman operator theory (Mezić, 2013), where nonlinear dynamics are modelled with
a linear system of larger dimension, all information on nonlinear energetic interactions
has been lost in the process since the nonlinear part of the system has been completely
eliminated by the regression. This result is due to the fact that, when temporal coef-
ficients are sine/cosine pairs, there is a column of Θ(A) that is exactly parallel to the
target Ȧi, since time differentiation is equivalent to a permutation of sine/cosine pairs.
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FIGURE 5.24: Panel (a): entries of the linear tensor L identified by the unconstrained
regression. Panel (b): singular values σi of the full database matrix Θ(A) of equation
(4.20) (red circles), and of the reduced matrix (black crosses) obtained by keeping
only the subset of columns corresponding to active interactions on the three active

branches of N. One every five singular values is shown for clarity.

As pointed out in Brunton et al. (2019) incorporating and enforcing known flow physics
is a challenge and opportunity for machine learning algorithms. To address this first
aspect, we introduce a physically-motivated approach based on considerations of the
time averaged energy budget of system (4.12) where only the diagonal elements of
the linear term participates in the mean power budget. Hence, for the sparsification
of DFT-based models we use a modified database matrix that only contains the col-
umn associated to the diagonal part of the linear term. The second aspect is that for
DFT models the database matrix Θ(A) is not full rank. This is direct consequence to
the particular oscillatory structure of the temporal DFT modes ai(t). More specifically,
since ai(t) come into pairs of sin, cos functions and the database matrix Θ(A) contains
only linear and quadratic combinations of ai(t). This results in some of the columns
of this matrix are linearly dependent. In this case, the LASSO is known to select one
column at random (according to the particular ordering of the columns) and sets to
zero regression coefficients of the other linearly dependent columns (Tibshirani, 2013;
Hastie et al., 2015). Machine learning techniques often come without guarantees for
robustness (Brunton et al., 2019), implying that physical insight obtained with these
tools might be questionable. To avoid this problem, we constructed a reduced database
matrix Θ(A) containing only columns corresponding to the entries of Q correspond-
ing to the interactions of N we know being non zero due to the relation between triad
of frequencies such that i + j = k. This features has been observed approximately by
Rempfer and Fasel (1994a) and it is satisfied exactly in this case. Thus, relevant interac-
tions in the constrained problem can be identified via regularised regression (4.22). The
reduced database matrix is full rank, as can be seen in panel (b) of figure 5.24, showing
the singular values of the full database matrix defined by equation (4.20) and of the
reduced matrix. The important consequence is that the solution of the LASSO problem
(4.22) is unique (Tibshirani, 1996), and can be thus compared with the available physical
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FIGURE 5.25: Panel (a): subdivision of the time signal into M partitions. Panel (b):
generation of one LASSO problem for each partition. Panel (c): staking of all M prob-

lems to generate one LASSO problem (4.22) for a longer time interval.

knowledge of scale interactions in turbulent flows. This reduction is not strictly neces-
sary, since the l1 regression identifies this pattern anyway for fairly small regularisation
weights. However, this has the advantage that the computational complexity of spar-
sifying the entire Galerkin model only grows as O(N2) instead of O(N3), as for POD
models, because the reduced database matrix contains a number of interactions equal
to q = 2(N + 1) at most. More importantly, because of the greatly reduced number of
free coefficients cross-validation techniques to avoid over-fitting become unnecessary.

5.2.9 Ambiguity in the definition of the problem

The third aspect to be taken into consideration when considering DFT-based models
is that the number of modes and, consequently, the properties of the spatial and tem-
poral modes ai(t), is not uniquely defined by the energy resolution (as for the POD)
but depends on the observation time T as well. Long observation times would be
beneficial to reach statistical significance in the solution of (4.22) but would result in
low-energy/low-frequency modes that do not contribute significantly to the overall
dynamics adding complexity to the problem. To tackle this issue a methodology based
on the partitioning of the dataset shown in figure 5.25 has been developed. First, we di-
vided the original dataset into M partitions, as shown in figure 5.25-(a), and performed
DFT for each of them separately obtaining M different sets of DTF modes. For each
partition we compute the modal acceleration Ȧm

i and we assemble the corresponding
database matrix Θ(Am). Thus, we assemble M different problems (4.22) one for each
partition, as shown in figure 5.25-(b). Lastly, we stacked vertically the modal accelera-
tion matrices and the reduced database matrices from the partitions and solved (4.22)
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FIGURE 5.26: First temporal DFT mode with the observation time is equal to the
available time span T = 80 in black. First temporal DFT mode when the observation

time is equal to T = 40 and the dataset is divided into four partitions, in red.

for a common coefficients vector βi as displayed in figure 5.25-(c). The result of this
methodology is shown in figure 5.26 showing in black the first temporal mode (with
the lower frequency) a1(t) of the DFT decomposition obtained with an observation
time equal to the available timespan T = 80 time units. Conversely, in red the first DFT
mode obtained with a subdivision of the dataset in four partitions (T = 20) is shown.
It can be observed how the partitioning helps to generate low indexes modes already
containing a considerable amount of kinetic energy and to get rid of low frequency and
low energy physically meaningless modes.

5.2.10 Sparsification of DFT-based models

We now move to the sparsification of DFT-based models. We focus primarily on the
structure of energy interactions identified by the regression and leave long-term tem-
poral stability considerations aside. In fact, the DFT produces modal structures by
assuming a priori their temporal behaviour, i.e. harmonic motion, and the meaning of a
time-domain analysis is thus conceptually unclear.

We introduce the modified density ρDFT spanning the range [0, 1] and representing the
number of active coefficients with respect to the total number of active interactions on
the three branches of figure 5.14. For large models, the approximation ρDFT ≈ 2/3ρN
can be used. In figure 5.27-(a), sparsification curves for three models obtained with
observation times T = 10, 30 and 50 (with M = 15, 5 and 3 partitions of the full
dataset, respectively), at full energy resolution, are reported. Strategy S1, where the
regularisation weight is maintained constant for all modes is used.

Similarly to what observed for the POD-based Galerkin models, the reconstruction er-
ror decreases monotonically with the observation time. This is a consequence of the
larger number of frequencies that interact quadratically to reconstruct the original DNS
acceleration data. For the larger model obtained at T = 50, 70% of the triadic interac-
tions can be pruned with no major effects on the overall prediction error. If the full co-
efficient tensor Q is considered, this correspond to a remarkably low density of 0.0015.
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FIGURE 5.27: Panel (a): sparsification curves for models obtained by three different
observation times and resolving 100% of the kinetic energy. Panel (b): sparsification

performed with T = 30 with three different energy resolutions e(n).

Figure 5.27-(b) shows the sparsification curves for models obtained with observation
time T = 30, for three different energy resolutions, e(n) = 0.9, 0.95 and 0.99. Inter-
estingly, we notice that the curves do not present a large plateau for high densities
as opposed to the full resolution mode shown in panel (a) and the POD sparsification
curves of figure 5.17. This is the combined effect of the dramatic decrease in the number
of modes at lower energy resolutions (see table 5.1) and the inherent efficient descrip-
tion of energy interactions in DFT-based models compared to POD.

We now compare strategies S1 and S2 on the full resolution model obtained with obser-
vation time T = 30. Results of this analysis are reported in figure 5.28. The top/bottom
panels are obtained with the strategy S1/S2, respectively. Panel (a) shows the tensor
γ̂, obtained by processing and visualising the full tensor γ using the same technique
utilised for the interaction tensor N̂ in figure 5.14. Panel (b) shows the density of in-
dividual ordinary differential equations for a selected number of modal structures as
a function of the overall model density ρDFT, while the sparsified interaction tensor N̂s

for ρDFT = 0.7 is shown in panel (c). When the regularisation weight is maintained
constant, the sparsification pattern emerging from the tensor γ̂ follows the distribution
of the mean energy transfer rate of figure 5.16-(a). In particular, despite the signature of
non-locality is still visible in the pattern, the sparsification is highly skewed across the
spectrum because the equations for high-frequency modes are excessively sparsified
for moderate penalisations as opposed to those of low-frequency, high-energy modes.
This behaviour is better seen in the individual density curves in panel (b). Specifically,
the density ρl of the last mode pair (l = 150) drops quite pronouncedly to much lower
density than average at ρDFT ≈ 0.5. Panel (d) shows the sparsification pattern obtained
with the second strategy. We observe that, in this case, the interactions are retained
according to their relative strength producing a sparsification pattern that follows the
relative energy transfer rate reported in figure 5.16-(b). This results in a more balanced
sparsification across the spectrum, where the modal density ρl decreases more uni-
formly for all modes as the global density is decreased, as shown in panel (e). The mean
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FIGURE 5.28: Top panels: strategy S1; bottom panels: strategy S2. Panels (a) and (d)
show the distribution of γ̂. Panels (b) and (e) show the trend of the modal density
ρl against the global density ρDFT for four different modes in different parts of the
spectrum. Panels (c) and (f) show the energy interaction tensor Ns of the sparsified

system.

energy transfer rate of the models sparsified using the two strategies, with ρDFT = 0.7,
is reported in panels (c) and (f). Globally, the structure and intensity of energy interac-
tions is preserved by the LASSO, although strategy S1 has more aggressively sparsified
the high-index modes and truncated the equations of the last five pairs of modes. Al-
though not shown here, all DFT models, regardless the strategy, have similar energy
conservation properties as for POD modes, as illustrated in figure 5.23.

As a final remark, we have observed in sparsification of larger DFT models that, al-
though the LASSO is able to successfully identify the dominant subset of energy inter-
actions, the complexity of the optimisation problem makes an accurate reconstruction
of the numerical values of the system coefficients challenging. This is due to the spec-
tral properties of the database matrix Θ(A) which deteriorate as the number of modes
considered grows (Cordier et al., 2010). A potential solution to this issue would be to
use elastic-net regression (Friedman et al., 2008) which combines an l1 term with an l2
(Tikhonov) penalisation. This would provide a better trade-off between sparsification
and stability of the reconstructed coefficients.
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FIGURE 5.29: Two vorticity snapshots of the cavity flow at Re = 5 × 104 in panels
(a) and (b), respectively. Panel-(c): first 10 POD eigenvalues λi for the three Reynolds

numbers considered.

5.3 Effects of the Reynolds number

To study the effects of the Reynolds number on the l1 sparsification framework other
two flow configurations, at Re = 104 and Re = 5 × 104, of the lid driven cavity flow
are considered. Thus, these additional test cases are integrated with the results ob-
tained with the previously analysed flow at Re = 2 × 104. While the flow dynamics
for Re = 104 is similar to the one of Re = 2 × 104, the flow-field obtained with the
highest Reynolds number displays different features. These are shown in figure 5.29
panels (a) and (b) where two vorticity snapshots for the cavity flow at Re = 5 × 104

are displayed. It can be observed the presence of a strong recirculation vortex in the
lower right corner that sheds erratically breaking the shear layer while being advected
downstream by the mean flow. This phenomenon is accompanied by strong, quasi-
periodic bursts in the turbulent kinetic energy. This feature makes the statistical de-
scription of the phenomenon challenging, requiring a large number of snapshots to
reach convergence of the statistics. Figure 5.29-(c) displays the first 10 POD eigenval-
ues for the three Reynolds numbers considered. It can be observed that for the two
lowest values of the Reynolds numbers the first two eigenvalues come as a pair with
the same energy. This behaviour has been previously previously observed for the cav-
ity flow at Re = 2 × 104 and it is due to the presence of the strong quasi-periodic shear
layer as shown in figure 5.9 and 5.11 for the two lowest Reynolds numbers analysed.
Conversely, for Re = 5 × 104 this feature is not present since the vortex detachment
makes the shear layer unstable, eventually breaking it and no wavelike description of
the phenomenon is possible. Table 5.2 shows the number of POD modes needed to
reach the desired values of energy resolution for the three different Reynolds numbers
considered. It can be observed that the number of modes does not increase linearly
neither with the Reynolds number nor with the energy resolution leading to an im-
practically large number of modes to recover large amounts of kinetic energy for the
highest Reynolds number considered. This result shows the technical difficulties that
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e(n) 0.9 0.95 0.99

Re = 104 8 12 36
Re = 2 × 104 20 35 75
Re = 5 × 104 60 112 290

TABLE 5.2: Number of modes required as a function of Reynolds number and energy
resolution.

need to be tackled while analysing highly resolved models of high Reynolds number
flows.

5.3.1 Sparsification curves

Figure 5.30 summarises the results of the sparsification procedure applied to the models
for the two additional Reynolds numbers alongside the model at Re = 2 × 104 already
considered in figure 5.17. In each panel, the value of the mean cross validated error ϵ is
displayed against the system density ρ. For the sake of clarity each Reynolds numbers
is plotted with different line-styles: continuous,dashed and dotted for Re = 104, 2× 104

and 5 × 104, respectively. The value of the resolved kinetic energy increases from left
to right being e(n) = 0.9, 0.95 and 0.99 in panel (a,b,c), respectively. Similarly to the
previous analysis, when low regularisation weights are used (points in the right part of
the graphs), dense systems with low prediction accuracy are obtained. The opposite is
true for large regularisation weights, identifying points in the left part of the graphs. As
postulated, since a set of coefficients in the tensor N is predominant, the curves present
an initial plateau for high densities where it is possible to remove coefficients from
the system (4.6) without significantly affecting the reconstruction error ϵ. Generally,
the sparsification curves in figure 5.30 show two common emerging trends. First, the
value of the reconstruction error ϵ in correspondence of the plateau decreases mono-
tonically as the energy resolution increases, since more modes participates in capturing
the dynamics of the fluctuations. Second, and more importantly, the optimal density
ρopt decreases as the Reynolds number increases. The value of the optimal density ρopt,
for each model taken into consideration, computed with the procedure explained in
figure 5.19 is displayed in figure 5.31-(a). As expected, it can be observed that ρopt de-
creases monotonically both as the energy resolution increases (moving vertically in the
graph) and as the Reynolds number increases (moving horizontally). This confirms
what already partially observed for Re = 2× 104, i.e. that more complex models can be
more efficiently sparsified. This can also be observed qualitatively in figure 5.30. Cru-
cially, this features has direct effect on the computational cost of the time integration
of the models themselves. It is important to underline that the actual computational
cost, i.e. wall-time taken to advance the model by one time unit, highly depends on a
number of implementation-dependent factors and code optimisations. For instance, for
dense models, one could store the quadratic tensor Q in slices for each i and use BLAS
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FIGURE 5.30: Mean of the cross–validated reconstruction error against the density of
the system, ρ: in (a), e(n) = 0.90; in (b), e(n) = 0.95; and in (c), e(n) = 0.99.
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FIGURE 5.31: Panel-(a): optimal density against the Reynolds number for the sys-
tems considered in figure 5.30. Panel-(b): normalised computational cost against
normalised number of modes for the 9 systems considered as red dots. The panel
displays the asymptotic trend as continuous line and the linear interpolation of the

red dots as dashed lines.

matrix-vector routines. For sparse models, one could use sparse-matrix techniques to
take advantage of the sparsity. In this analysis, to rule out every aspect related to the
implementation we define the computational cost as the number of operations needed
to evaluate the quadratic term in (4.22). Thus, for a dense system composed by N
modes, computational costs must scale with N3. On the other hand, for sparse sys-
tems, computational costs scales with the number of active coefficients, i.e. ρN3. Figure
5.31-(b) shows the computational cost of each model considered against the number of
modes needed to reconstruct the target amount of turbulent kinetic energy. The x and y
axes are scaled to have values in the interval (0, 1]. The the number of modes required
and the value of the computational cost are normalised with respect to the number of
modes and the computational cost for the model at the same Reynolds number and
resolving 99% of the turbulent kinetic energy. These two new quantity are indicated
as N̂ and ĈC, respectively. This allows to plot all the models for different values of
the Reynolds numbers and resolving different amount of kinetic energy on the same
plane. For clarity reasons, different Reynolds numbers are displayed with different
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symbols. In this analysis we are not interested in the absolute value of the computa-
tional cost but in how it scales with the number of degrees of freedom considered in the
system after the sparsification is performed. The continuous black line corresponds to
the computational cost of the dense system scaling as ∼ N3 while the dashed line is the
linear interpolation of the markers. Interestingly, it can be observed that for the sparsi-
fied models the cost of the evaluation of the quadratic interactions in (4.6) scales down
from ∼ N3 to ∼ N2.5. We argue that this could be due to the structure of the energy
interactions in modal space where the the band of the dominant relevant interactions
(see contours of figure 5.20) identified by the regression grows slowly with respect to
the increment of modes needed to keep the energy resolution constant as the Reynolds
number increases.

5.3.2 Temporal behaviour of the sparse systems

We now turn our attention to the behaviour of the sparsified models under temporal
integration. We consider results for models resolving 95% of the turbulent kinetic en-
ergy as an illustrative example, and use the projections of the POD modes onto one
of the DNS snapshots to obtain initial conditions. Results are shown in figure 5.32
showing time histories of the turbulent kinetic energy for the three different Reynolds
numbers considered, DNS data, displayed in red, is used as reference. Two differ-
ent reduced order models are selected from all the possibilities: the optimally sparse
model (black continuous line), and the dense model obtained by Galerkin-projection
(black dotted line). In addition, for the configuration Re = 2 × 104 the time dynamics
of the sparse system obtained with the greedy approach is also displayed as a black
dashed line. As expected, it is found that dense models overestimate the turbulent ki-
netic energy predicted by the DNS by several orders of magnitude. The over-prediction
occurs because the truncation of the small scales in the expression (4.3) leads to a signif-
icant imbalance of the production–dissipation budget within the model, this is a well
known issue of POD based Galerkin systems well documented in literature (Balajew-
icz et al., 2013; Noack et al., 2005, 2008, 2011). A qualitatively similar behaviour, if not
worse, is then necessarily observed for the model sparsified with the greedy approach,
since neglecting weak interactions alone does not cure the original dissipation prob-
lems. Conversely, the l1 model predicts the correct average fluctuation kinetic energy
and has excellent long-term stability properties, despite this being not enforced in the
regression procedure (see Fick et al. (2018)). This improvement of the performances
is due to the fact that the l1 procedure performs an automatic ”prune-then-calibrate”
procedure, where weak interactions are first pruned and the remaining active coef-
ficients are then tuned in the optimisation involved in (4.22) to match the reference
dynamics. This mechanism is totally analogous to the one explained in figure 5.4 for
the Kuramoto-Sivashinsky equation. It is evident from these results that this second
step is key to obtain accurate long-term behaviour. It is worth to be pointed out that:
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FIGURE 5.32: Instantaneous turbulent kinetic energy E(t) for reduced order models
resolving 95% of the turbulent kinetic energy against the DNS (in red). Panel (a),(b)
and (c) correspond to Re = 104,2 × 104 and 5 × 104, respectively. In addition panel (b)
shows the behaviour of model sparsified with the Greedy approach as black dashed

line.

the sparse system (ρ = 0.3) can reproduce the right level of turbulent kinetic energy if
the initial condition is close to the DNS dataset. However, we observed that for initial
conditions far from the DNS the model does not settle on the correct energy level. This
aspect will be discussed later on in this work when the a priori sparsification technique
is introduced. To better visualise how this prune and tune mechanism implicit in the l1
regression affects the modal energies of the Galerkin model we visualise the trajectory
in phase space and the mean quadratic oscillations, defined as λi = aiai for the models
previously considered. In figure 5.33 panels (a) to (c) a shorter segment of state space
trajectory projected onto the subspace spanned by the first pairs of modes a1 and a2 is
shown. Similarly to figure 5.32 the DNS data, the Galerkin model and the l1 sparsified
model are displayed as red, dotted grey and continuous black line, respectively. In ad-
dition, for the configuration at Re = 2 × 104, we show also results from the temporal
integration of the model sparsified with the greedy approach, displayed as blue line
in panels (b) and (e). From figure 5.33 panels (a,b,c) a general trend for all the models
considered emerges. Namely, the trajectories of the l1 model remain in the same vol-
ume of state space occupied by the DNS projections. This is not true for the projections
models drifting away to a different region of state-space, over-predicting the fluctua-
tions amplitude and consequently the integral kinetic energy. This behaviour can be
visualised displaying the average modal energy λi = aiai as a function of the modal
index in panels (d,e,f). The averages have been computed from t ≥ 40, corresponding
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FIGURE 5.33: Orbits in phase space projected on the a1 ad a2 plane for the three
Reynolds numbers considered in panels (a),(b) and (c), respectively. Panel (d),(e)
and (f) show the mean modal amplitude λi = aiai. For each Reynolds number the
DNS (red), the dense system (grey) and the sparse system (black) are displayed. In
addition, for Re = 2 × 104 (panels (b) and (e)), the model sparsified with the greedy

approach is shown in blue.

to the time needed by the solution to reach statistical convergence as can be observed
in figure 5.32. Similarly to the previous analyses DNS data, dense Galerkin model and
sparse system are displayed as red circles, black dashed squares, and black triangles,
respectively. In addition, for the intermediate value of the Reynolds number results
obtained from the integration of the greedy sparsified model is also shown with the
blue symbols. Globally it can be observed that the projection and greedy models pre-
dict, as expected, much larger energies across the entire spectrum. In addition, almost
no or only little decay of the energy is predicted by these models confirming that the
truncation of scales implicit in the Galerkin projection prevents the models from pre-
dicting the correct viscous dissipation mechanism. Conversely, the l1 sparsified models
correctly predicts the correct levels and decay of modal energies.

To visualise how the sparsification affects the predicted average kinetic energy on all
the systems considered, the ratio kr between the average reference kinetic energy and
that predicted by the model is considered. Results are reported in figure 5.34. Each
panel displays data for six models, three dense models obtained by Galerkin projection
(empty triangles), and the corresponding sparse models with ρ = ρopt (full black cir-
cles). The Reynolds number increases moving from panel (a) to panel (c). A common
trend for the three different flow conditions is observed. The models with low energy
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FIGURE 5.34: The ratio kr for models with different energy resolutions e(n). The
empty symbols represent dense systems while the full symbols represent the opti-
mally sparse systems. Results for different Reynolds numbers Re = 104, 2 × 104 and

5 × 104 are shown in panels a), b), and c), respectively

resolution overestimate the fluctuating kinetic energy up to two orders of magnitude.
As the energy resolution of the model increases the value of kr tends to values close to
1. This result is expected since the number of spatial structures included in the model
increases allowing the model to better describe the energy dissipation scales. Interest-
ingly, for all sparsified models, the ratio kr is close to 1. This means that on average
the sparse system predict the right average amount of kinetic energy. In addition, we
observe that the ratio kr is almost constant as the energy resolution increases. This
means that regardless the energy resolution chosen the optimisation problem (4.22) is
able to provide correct predictions on the kinetic energy of the system. This is a direct
consequence to the fact that the target of the sparse regression is the modal accelera-
tions ȧi(t) computed from DNS simulation. These results shown that it is possible to
efficiently use the l1 sparsification framework to tune the temporal predictions of POD
Galerkin reduced order models. The methodology was applied on reduced order mod-
els of increasing physical and mathematical complexity, obtaining good predictions on
the average level and amplitude of the fluctuations of the turbulent kinetic energy at
least for time spans comparable with the training dataset. Crucially, it is, of course,
not possible to guarantee that l1 sparsified models of generic turbulent flows will have
good long-term stability (Schlegel and Noack, 2015), but the present results constitute
evidence that this is realistically possible on a non-trivial problem.

5.3.3 Reconstructed Flow Field

Once a solution of (4.22) is obtained, rearranging the coefficients vector βi into a new
set of matrices Cs

i ,L
s and Qs the sparse representation of (4.6) is obtained. The new

dynamical system can be integrated to obtain the evolution of a new set of ai(t) that are
used to reconstruct the flow field according to (4.3) since the spatial modes remain un-
changed. Figure 5.35 shows the reconstructed vorticity field ω for the optimally sparse
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FIGURE 5.35: Instantaneous snapshots of the vorticity field ω. Each column reports
data for a different Reynolds number (1 × 104, 2 × 104 and 5 × 104, from left to right).
The upper row reports results for the dense reduced order model, while the lower

row for the optimally sparse reduced order model.

models with e(n) = 0.95. Every column contains results for the three considered val-
ues of the Reynolds number, increasing from left to right. The top row shows result of
the time integration of the dense system while the bottom row shows the ones of the
corresponding sparse model. From a visual analysis, we observe that the overshoot of
kinetic energy observed in the dense models in figure 5.32 corresponds to non-physical
large amplitude oscillations in the shear layer, as shown in panels (a,b), similarly for
the model at highest Reynolds number the vortex in the lower right corner is amplified
as well as shown in panel (c). This behaviour is due to an overestimation of the am-
plitude corresponding to modal fluctuation all over the spectrum. Conversely, sparse
models reconstruct quite accurately the topology of the original flow field reproducing
the shear layer and the vortex detachment for the lowest Reynolds numbers considered
in panel (d) and (e). Similarly, for the highest Reynolds number, panel (f), the sparse
model describes the formation of the recirculation vortex in the bottom right corner
of the cavity and its shedding and advection along the shear layer by the mean flow.
A more in depth analysis on the dynamics of the velocity fluctuations can be done
analysing the time average off diagonal Reynolds stress u′v′. This term is particular
relevant for our analysis since the sparsification is performed on the set of equations
(4.6) describing only the fluctuating part of the velocity field, while the mean field is
left unchanged. Figure 5.36 shows the profile of the Reynolds stress, u′v′, along a ver-
tical line passing through the centre of the cavity (x = 0.5) for increasing values of the
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FIGURE 5.36: Profiles of the Reynolds stress u′v′ from simulation and from time inte-
gration of the sparse and dense ROMs along the line x = 0.5: in (a), for Re = 104; in

(b), Re = 2 × 104; and in (c), Re = 5 × 104.

Reynolds numbers, from panel (a) to (c). The grey continuous line is the reference from
DNS while the optimally sparse model is represented as black dashed line. Results of
the dense ROMs are reported as black dotted line in the background as reference. Since
they are orders of magnitude larger than the ones observed in the DNS we chose a
range of values on the x axis in order to better visualise the results of the DNS and the
sparse ROM.

For the two lower Reynolds numbers, panels (a,b), oscillations in the the stress u′v′ can
be observed, becoming more intense as the Reynolds number increases. In addition,
outside the shear layer the stress u′v′ drops to zero except near the cavity lid. This re-
sult is expected since from a visual examination of figure 5.9 and 5.35 we observe that
outside the shear layer the flow is mainly stationary and presents quasi-periodic fluc-
tuations. A different behaviour is shown in panel (c) for the highest Reynolds number.
As already observed in figure 5.9 and 5.35, in this case the shedding of the bottom-right
vortex generates a much more complex flow field, with oscillations extended also near
the central area of the cavity. For this flow configuration we observe that although the
general distribution is reproduced the values are locally more different with respect
to the other two test cases. We argue that this is consequence to the more complex
structure of the flow. In fact, since the regression evaluates which terms are statistically
relevant the overall behaviour of the fluctuations are reproduced but the spatial distri-
bution can be slightly missed by the sparse system.

5.4 A posteriori-l1 sparsification/calibration of a 18◦ AoA NACA
0012

In the present section we apply the l1 sparsification framework to the external flow
around a NACA 0012 at high angle of attack. The aim of this chapter is to use the l1
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FIGURE 5.37: Panel-(a): vortex shedding around the profile shown by the vorticity
field. Time evolution of the drag and lift coefficients in panels (b) and (c), respec-

tively.

framework to tune the coefficients of the reduced order model and test the capabili-
ties of the sparse reduced order model in predicting both local flow parameters, such
as vorticity and pressure field, and global parameters such as the aerodynamics co-
efficients. In addition, due the non trivial geometry it was necessary to develop an
interface between the CFD code and the reduced order modelling framework to extract
from the mesh the information needed to compute the inner products (4.1) to obtain
the matrix coefficients of (4.6). The computational domain has a distance between the
far-field boundary and the airflow roughly 8 times the length of the chord to make the
results independent from the boundaries. In addition, the grid has been refined in the
proximity of the profile with particular attention to the leading and trailing edge areas.
The grid independence has been reached on a multi-blocks structured mesh composed
by roughly 106 elements. An a posteriori check on the solution showed that that the
y+ is smaller than one for every cell in the boundary layer to avoid the introduction
of wall function. The flow conditions have been chosen just below the compressibility
limit with Reynolds and Mach number equal to, Re = 105 and Ma = 0.25, respectively.
Although, not being an easy scenario for applying our methodology, these flow con-
ditions have been chosen to validate the simulations with a test case already analysed
in the research group. In addition, this is a good configuration to test the calibration
framework for flow conditions at the boundaries of the applicability of the reduced or-
der modelling techniques explained in the present work.

Due to the high Reynolds number for this configurations a URANS simulation with the
solver pimpleFOAM has been performed. The k-ω turbulence model has been used. The
solver has been modified to save to disk the Eulerian acceleration field at each saved
timestep. Figure 5.37-(a) shows a snapshots of the out of plane vorticity field ωz around
the NACA airfoil. The high angle of attach causes an early stall on the suction side of
the airfoil, leading to flow separation producing unsteady vortex shedding advected
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n 1 2 3 5 10 20 30 40 50

POD 0.48 0.97 0.976 0.98 0.9 0.95 0.98 0.995 0.998

TABLE 5.3: Normalised cumulative energy distribution e(n) for the POD decomposi-
tion.

by the main flow as shown in panel (a). The vortex shedding generates oscillation
of the pressure field on the surface of the profile resulting in oscillating aerodynamic
forces. Panel (b) and (c) of figure 5.37 show the temporal evolution of the aerodynamic
coefficients Cd and Cl defined as the integral over the profile of the pressure and shear
field in the direction parallel and orthogonal with respect to the freestream. In this work
the aerodynamic coefficients are computed using the OpenFOAM standard libraries for
post-processing libforces.so.

5.4.1 Modal decomposition

To generate the Galerkin model we performed the POD decomposition with a POD
tool directly implemented in the OpenFOAM framework. Table 5.3 shows the cumula-
tive value of POD eigenvalues λi. It can be observed that the first eigenvalues recovers
already 48% of the fluctuating kinetic energy and the first pairs recovers almost 98%.
Note that the first two eigenvalues have the same energy content, meaning that the first
two POD modes describe an oscillating structure. This flow structure is the unsteady
vortex shedding downstream of the airfoil. In addition, we observe that only little en-
ergy is contained in the remaining modes. This is consequence of the conjoint effect
of the strong periodic nature of the flow and the URANS simulation that smears away
the smallest flow features. Since information about the smallest and dissipative scales
of motion is lost the generation of reliable temporally stable reduced order system is
challenging for this configuration. Therefore, the presence of a calibration step abso-
lutely necessary for the stabilisation of the model itself. This is better shown in figure
5.38 displaying the x component u of the velocity field for the first POD mode and its
power spectrum in panel (a) and (b), respectively. The same quantities for the 10-th
POD mode are shows in panels (c) and (d). As expected the most energetic mode is
associated to the large scale structures responsible of the vortex shedding phenomenon
and of the detachment of the separation bubble on the suction side of the profile. In
addition, we expect the second temporal mode to have the exact same frequency con-
tent and describe the same flow structure up to a minus sign. This is due to the strong
periodic nature of the flow forcing the POD to produce a pair of modes with the same
energy content representing the real and complex part of a complex wave. A similar
behaviour was already observed for the POD decomposition of the cavity at the lowest
Reynolds numbers. On the other hand, the 10-th mode, shown in panel (c), describes
much smaller flow structures associated with the interactions between the freestream
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FIGURE 5.38: Horizontal component of the velocity field u for the first and tenth
POD mode in panels (a) and (c), respectively. Panels (b) and (d) show the amplitude

of the Fourier transform of the first and tenth temporal mode.

and the detachment bubble on the suction side of the profile. These small structures
are advected downstream by the larger ones. Therefore, we expect a pattern of triadic
interactions (4.16) qualitatively similar to the one observed for the cavity flow. In addi-
tion, a connection between the frequency of oscillation of the first POD modes and the
oscillation of the lift and drag coefficients can be observed. This supports the idea of
the link between the most energetic flow structure describing the vortex shedding and
the oscillation of pressure around the profile itself. The reduced order model was gen-
erated using the first 10 POD modes. A system formally identical to (4.6) is obtained.
It is important to underline that, unlike the cavity flow, in this case the pressure term
is different from zero. Following the idea proposed by Cordier et al. (2010) we chose
to not include this term in the model and let the sparsification procedure to tune the
model coefficients to include the effect of this term originally neglected. This approach
is, in a sense, similar to the one proposed in Galletti et al. (2004), where the pressure
term is modelled as quadratic combination of the temporal modal coefficients ai(t).

5.4.2 A posteriori tuning and sparsification

In the present case we consider a model composed by N = 10 modes resolving more
than 99% of kinetic energy as shown in table 5.3. Problem (4.22) is solved for increasing
values of the regularisation weight γi obtaining a family of sparse models with differ-
ent accuracy/sparsity trade-off. This work employs the K–fold validation procedure
available in the sklearn library (Pedregosa and Varoquaux, 2011). However due to the
large number of snapshots available with respect to the size of the database Θ(A) the
standard deviation is small and relatively constant along the sparsification curve ρ − ϵ.
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FIGURE 5.39: Panel (a): ρ − ϵ curve obtained with the a posteriori sparsification ap-
proach. Absolute value of the Eulerian acceleration field from CFD and for ρ = 0.6 in

panel (b) and (c), respectively.
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FIGURE 5.40: Time evolution in modal space of the first and second couple of modal
coefficient against the CFD in panel (a) and (b), respectively. Panel (c): shows the
time evolution of a1(t) for the sparse the dense model against the CFD used for the

training.

Therefore, it has been omitted from figure 5.39-(a), showing the ρ − ϵ curves for the
model considered. For this configuration it can be observed the presence of a small
plateau for values of the density in between 0.7 and 1. This is expected and due to
the relatively small size of the model considered. In the continuation of the analysis
we consider a model with ρ ∼ 0.7 where the reconstruction error is still low and only
the non relevant terms have been removed from the system. Panel (b) and (c) shows
the Eulerian acceleration field from CFD and the one reconstructed by the sparse sys-
tem, respectively. Once the new set of coefficients is obtained by solving problem (4.22)
the new dynamical system can be temporal integrated. In the present work we have
integrated the system for T = 200 time units from T = 700. Figure 5.40 panels (a)
and (b) show the orbits in phase space for the first two pairs of modes (a1 − a2 and
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a3 − a4), respectively. We observe that the sparsification procedure tunes the modal
amplitude on the right value up to a small decrease of a3 and a4 due to the effect of the
l1 regularisation that pushes inevitably the numerical values of the coefficients towards
the axes, decreasing their absolute value. Panel (c) shows the temporal evolution of
a1(t) for three different models taken into consideration. Namely, the CFD results, the
sparse system and the dense Galerkin system are displayed as black,red dashed and
blue lines, respectively. Operatively, this graph has been obtained using the data from
CFD to generate the modal decomposition and train the l1 regression. Once the spar-
sification is terminated the sparse system can be used to advance the system in time at
a much lower computational cost. As expected the dense system quickly overshoots
the correct level and subsequently ends up in numerical divergence. Conversely, the
sparse system keeps the right oscillation amplitude and frequency. This confirms that
the sparsification/calibration step is necessary to obtain reduced order models able to
provide reliable long term prediction.

5.4.3 Flow reconstruction

Once the new set of temporal modes are obtained from temporal integration the flow
field can be reconstructed as (4.3). Figure 5.41 shows the vorticity fields for two dif-
ferent snapshots for the dense system panels (a-b) and for the sparse system panels
(c-d). As expected the dense system quickly diverges leading to nonphysical fluctua-
tions in the wake of the profile. Similarly to what observed previously, this behaviour
is direct consequence of inability of the dense system of providing the right amount
of dissipation in the less energetic and smaller scales of the model. Consequently, the
small structures, such as the modes described in figure 5.38 panels (d) and (e), are over-
amplified resulting into an un-physically wiggling flow field leading subsequently to
divergence. This behaviour is also aggravated by the fact the dataset is obtained from
URANS simulation including no or little information about the small scales of the flow.
Conversely, the sparse system generates a stable solution that leads to a flow field co-
herent with the one obtained by CFD. In panels (c) and (d) it can be observed that the
reconstructed solution reproduces faithfully the vortex shedding observed in the CFD
simulation showing much better stability properties for the time interval analysed.

5.4.4 Pressure field reconstruction

Reduced order modelling produces a system of ODEs (4.6) describing the temporal
evolution of ai(t). Thus, the velocity field can be reconstructed according to the modal
expansion (4.3). However, due to the solenoidal nature of the spatial basis functions
ϕi(x) the incompressibility constraint in (4.2) is automatically satisfied and no equation
describing the pressure field is present. Since, for some applications the knowledge
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FIGURE 5.41: Snapshots of the vorticity field for t = 800 and t = 850. Reconstructed
flow field for the dense system in panel (a) and (b). Reconstructed flow field for the

sparse system in panel (c) and (d).

of the pressure field is of paramount importance several approaches to reconstruct the
pressure field a posteriori have been developed (Caiazzo et al., 2014; Noack et al., 2011).

Here, we follow Caiazzo et al. (2014) where the pressure field is reconstructed a posteri-
ori using the sparse ROM velocity solution. The idea is to reconstruct the pressure field
utilising the pressure Poisson equation obtained taking the divergence of the momen-
tum equation (4.2)

∇2 p = ∇ · (u · ∇u) (5.21)

The velocity field at the right hand side is now approximated by the ROM velocity
field ur expressed by the finite series (4.3). Since the basis functions are divergence free
equation (5.21) becomes:

∇2 pr =
N

∑
i=0

N

∑
j=0

ai(t)aj(t)(
d

∑
n=1

d

∑
m=1

∂nϕi∂mϕj) (5.22)
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FIGURE 5.42: Temporal behaviour of Cd and Cl in panels (a) and (b), respectively.

where d is the dimension of the physical space we are working in (d = 2 in this case).
The solution of (5.22) has the form

pr(t, x) = pr0(x)
N

∑
i=0

N

∑
j=0

ai(t)aj(t) (5.23)

with pr0 is obtained solving the following equation

∇2 pr0 =
d

∑
n=1

d

∑
m=1

∂nϕi(x)∂mϕj(x) (5.24)

Since the spatial basis functions are not time dependent pr0 can be computed in a pre-
processing step and then utilised for the solution of (5.23). Subsequently, pr can be com-
puted at each time step once the temporal coefficients ai(t) are available. In the present
case, the reconstructed pressure field is reconstructed at each time step of the velocity
ROM. The pressure and velocity fields are then utilised to compute the aerodynamics
coefficients Cd and Cl through the OpenFOAM standard libraries on the reconstructed
flow field. Figure 5.42 shows the temporal behaviour of the drag and lift coefficients Cd

and Cl in panel (a) and (b), respectively. The black line corresponds to the CFD predic-
tions while the red symbols are the values predicted by the sparse ROM. Since, after the
pre-processing step, only the instantaneous value of ai(t) is needed the spacing of the
reconstructed Cd and Cl can be much wider than to the one obtained from the CFD. In
can be observed that the sparse system reproduces the correct frequency of oscillations
of both Cd and Cl . In addition, in panel (a) we observe that the maximum value of Cd is
predicted quite accurately while the minimum is slightly underestimated leading to a
small over-prediction of the fluctuations amplitude. Similarly, in panel (b) we observe a
good accuracy of both the maximum and minimum value of Cl . We observe a periodic
discrepancy in the rising part of the Cl curve, we argue that this could be due to the
relatively small number of modes chosen to generate the model.
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5.5 Summary: a posteriori sparsification

In this chapter the a posteriori sparsification and tuning of reduced order models have
been discussed and tested on models of increasing physical and mathematical com-
plexity. This section aims to briefly collect all the major results and discuss limitations
and possible improvements of this approach. First, the one dimensional spatially ex-
tended system described by the Kuramoto-Sivashinky equation was considered. The
key outcomes of this study are the followings.

- The quadratic interaction tensor Q, restricted to each mode, has entries of con-
stant intensity k/2. However, the triadic interactions tensor contains a subset of
dominant interactions.

- The l1 framework can successfully identify this subset in accordance with the
strength of the energy interactions reconstructing the correct non locality of tri-
adic interactions observed in the energy analysis.

- Two different approaches for the choice of the regularisation weight γk have been
proposed. One consists in keeping the regularisation weight γk constant across
the modes, the other varies the intensity of the regularisation weight γk according
to the amplitude of the mode itself. Results show that these two choices identify
a pattern of interactions in agreement with the absolute and the relative strength
of the energetic interactions, respectively. In addition, we observed that the first
approach generates the lowest reconstruction error for the same density.

Subsequently, the flow developing inside a lid-driven square cavity has been consid-
ered. This configuration is particularly convenient since the closed domain simplifies
the generation of the model (4.6) getting rid of the pressure term. More importantly,
despite the simple geometry, models of increasing complexity can be easily obtained.
One of the goals was to understand the role of the subspace utilised for projection on
the structure and sparsity of energy interactions between modes. The key findings of
this analysis are the followings.

- The analysis of the average energy transfer rates between modal structures has
shown that, for both the POD and DFT-based models, a subset of most relevant
interactions exists. This is an a-posteriori feature of solutions of the equations and
not an a-priori property of the evolution equations. The model coefficients identi-
fied by the Galerkin projection do not have a particular structure and are typically
different from zero.

- In both cases, there exists a sweet-spot on the ρ − ϵ curve where the sparsification
approach recovers correctly this subset, with little effect on the prediction accu-
racy. The models also preserve to a good degree of accuracy the non-local nature
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of triadic interactions and the conservation properties of the convective term of
the Navier-Stokes equations.

- The effectiveness of the sparsification grows both with the number of modes
utilised in the projection (energy resolution) and with the Reynolds number of
the flow considered. The interesting consequence is that, while the total number
of quadratic interactions grows cubically with the number of modes, the number
of relevant interactions does not grow as quickly as a consequence of the struc-
ture of energy interactions in modal space.

- The sparsity pattern is not invariant under different modal representations of the
flow. Reduced-order models obtained with DFT modes show a different structure
of the triadic interactions tensor with a much higher sparsity. However, the spar-
sification framework can identify the correct non local physics of the interactions,
regardless the modal representation chosen. In addition, this feature suggests
that it might be possible to mathematically define a modal basis that maximises
the sparsity of triadic interactions.

Lastly, a test case of more practical interest was considered. Namely, the separated flow
around a NACA 0012 profile at a high angle of attack. For this flow configuration, we
focus on the ability of the LASSO regression to sparsify and, more importantly, tune
the predictions of the ROM.

- Conversely to what was observed for the dense system the sparse/tuned system
shows good prediction capabilities under temporal integration. The results are in
agreement with the CFD both in time domain and phase space.

- The velocity and the pressure fields have been reconstructed from the temporal
coefficients obtained by integration of the sparse/tuned model. It can be observed
that the main features of the flow are reproduced.

- The behaviour of the aerodynamics coefficients in the reconstructed flow is re-
produced accurately both from the point of view of the amplitude and oscillation
frequency
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Chapter 6

Results: a priori sparsification

The a posteriori sparsification involves a ”prune and tune” procedure applied on the
system coefficients by the LASSO regression. As shown in the previous chapter this
approach could lead to some difficulties in the interpretation of the role of flow struc-
tures in the energy transfer, since triadic interactions are modified while the spatial
basis functions are kept unchanged. Starting from the key observation that the spar-
sity pattern is not invariant with respect to the modal basis chosen to perform Galerkin
projection, a novel sparsification methodology, called a priori sparsification, encoding
the sparsity features of the flow in the modal basis, has been developed. In this chapter,
this methodology is applied to the chaotic two dimensional lid-driven cavity flow. This
configuration, already analysed in the previous chapter, allows a comparison between
the two different sparsification methodologies.

6.1 Two dimensional lid-driven cavity flow

In this section, the a priori sparsification framework has been applied to the two dimen-
sional lid-driven cavity flow at Re = 2 × 104. Before moving on to the results of the
sparsification, in the following sections, some preliminary analyses about the sparsity
promoting effects of the l1 norm and the effect of the initial guess on the solution are
shown. The results shown in this section are currently under consideration for a publi-
cation Rubini et al. (2021).

6.1.1 Sparsity-promoting effect of the l1-based constraint

To understand the role of the l1 norm in the solution of (4.35), a formal discussion
based on the proximity operator theory can be formulated, using the classical LASSO
formulation as a starting point (Friedman et al., 2008). Here, to understand heuristically
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FIGURE 6.1: Map of ||Q̃ijk||1/||Qijk||1 projected on the X12 − X23, panel (a). One
dimensional cut of the same quantity by varying the coordinate X12, panel (b). The
twenty-seven entries Q̃ijk as a function of X12. The six entries that vanish identically

in correspondence of the spikes of ||Q̃ijk||1/||Qijk||1 are highlighted in red.

the role of constraint, as an example, we consider a small reduced-order model of the
lid-driven cavity flow at Re = 2× 104. To easily visualise the effect of the rotation on the
properties of the coefficient tensor Q, we consider a small model with dimensions M =

5 and N = 3 and perform a parametric study on the effects of some of the entries of X
on the quantity ||Q̃||1 without solving (4.35), but simply applying the definition (4.27).
Figure 6.1-(a) shows contours of ||Q̃||1/||Q||1 on the X12 − X23 plane, with all other off-
diagonal entries of X set to zero. Several sharp-bottomed valleys and local minima can
be observed, arising from the non-convex, non-smooth nature of the quantity ||Q̃||1.
Panel (b) shows a cut of ||Q̃||1/||Q||1, shown in panel (a), along the x12 coordinate.
Here too, we observe a similar structure where the minima are identified in the plot
by the dashed vertical lines. More interestingly, each minimum corresponds to a point
with discontinuous first derivative, due to the nature of the l1 norm and some entries
Q̃ijk crossing the zero axis. This behaviour is illustrated in panel (c) where the entries
of Q̃ are shown as a function of X12, with those crossing the zero for some value of
X12 highlighted in red. The general idea is that increasing the penalisation weight ξ in
the sparsity promoting constraint (4.35)-(c) pushes ||Q̃||1 closer and closer to one these
valleys. In practice, some entries Q̃ijk are forced to zero due to the strong gradient at the
point of non-differentiability, resulting in a sparse coefficient tensor Q̃. However, unlike
in the a-posteriori LASSO-based sparsification method, not all quadratic coefficients can
be simultaneously set to zero by an arbitrary rotation, as is clear from panel (c). In fact,
the tensor Q̃ depends nonlinearly on the rotation X, while in the LASSO-based method
the tensor coefficients are directly the optimisation variables of the problem.
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FIGURE 6.2: Panel (a): relation between the value of the perturbation ϵ and the av-
erage rotation angle between sub-spaces θ . Mean values and standard deviation for
the first eigenvalue λ1 and density ρ for the different system obtained, in panel (b)

and (c) respectively.

6.1.2 Dependence of the solution from the initial guess

Problem (4.35) is non-convex due to the constraint (4.35b). This introduces the problem
of characterising the uniqueness and the quality of the solution with respect to other
local minima. To understand how this problem affects the optimisation results, we
considered different sets of initial guesses defined as increasingly larger perturbations
of the identity, i.e. as:

X0 =

[
I
0

]
+ ϵR, (6.1)

with R ∈ ℜM×N a randomly generated rotation matrix, satisfying R⊤R = I, with
I ∈ ℜN×N . We generated ten random rotation matrices for different increasing val-
ues of ϵ in the range [10−8, 10] and solved problem (4.35) keeping ξ = 2 to target an
intermediate density and ensure to fall into the feasibility region of the sparsity con-
straint. Figure 6.1.2-(a) shows the effects of ϵ on the average rotation angle θ between
columns of the initial guess matrix X0 and column of the solution matrix obtained with
increasing values of the perturbation ϵ. Circles and vertical bars identify the average
and standard deviation of this quantity across the ten different samples. In panels (b)
and (c), we show these statistics for the eigenvalue λ1 and the density ρ, respectively,
as a function of the θ. It can be observed that for low values of θ all initial guesses
converge to the same solution, as it can be observed from the low values of the stan-
dard deviation. Conversely, when initial guesses starting from regions further away
from the identity the standard deviation starts growing, as problem 4.35 converges to
different solutions. This result is expected and it is in agreement with the shape of the
sparsity constraint shown in figure 6.1-(a). Crucially, this result supports the initial hy-
pothesis of looking for solutions as small rotations away from the POD basis. Results
shown later on have thus been obtained using this initial hypothesis. This agrees with
our original motivation, i.e. to obtain a basis as close as possible to the energy optimal
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FIGURE 6.3: Panel (a): visualisation of the sparsity-promoting constraint 4.35b on
the plane ξ−1-||Q̃||1/||Q||1. The red region denotes the infeasible set. Panels (b) to
(d): ρ − eN curves for families of models with dimension N = 30, 20, 40 and ratios

M/N = 2, 3 (open squares and open circles, respectively).

POD that leads to a sparser energy interaction pattern. Lastly, we observe that λ1 de-
creases monotonically with the size of the perturbation since the farther is the initial
guess from the identity matrix, the larger is the loss of energetic optimality. A different
behaviour is observed for the density where the average value is comparable for all
initial guesses considered.

6.1.3 Model sparsification

We consider families of models with N = 20, 30 and 40 (see table 5.1 for the energy
resolution), generated from rotations of the original POD basis modes in subspaces of
increasing dimension M. Note that when the starting subspace dimension M is equal
to N, the stability constraint (4.35b) can never be satisfied, i.e. no solution is accept-
able or useful. This behaviour was observed by Balajewicz et al. (2016), who pointed
out that the case M = N must be discarded since no temporal stabilisation can be
achieved. Hence, we show here results for ratios M/N = 2, 3. Because of the definition
of problem (4.35), a family of models with different densities ρ and reconstructed ki-
netic energy can be generated by varying the penalisation parameter ξ. In practice, this
is achieved by progressively increasing ξ starting from 1, where the sparsity-promoting
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constraint is not active, and obtaining η iteratively to ensure long-term temporal ac-
curacy. In addition, has been observed that the optimal value of η is dependent on
the energy resolution N. This was expected since, for larger systems more scales are
considered, consequently more dissipation is introduced in the system and a smaller
correction is required. However, the variation of η between different systems can be
considered to be small.

We first consider models generated with N = 30 basis modes for increasing ratios
M/N. Figure 6.3-(a) displays optimal solutions on the plane ξ−1-||Q̃||1/||Q||1. The red
dashed line separates solutions that satisfy the sparsity-promoting constraint (4.35b)
(white area) from solutions that do not (red area). Note that all solutions satisfy the
stability constraint, so the white region will be referred to as the feasibility region. For
the sake of completeness, we report that also solutions for M/N = 1 have been com-
puted, however due to the square nature of the rotation matrix X, they do not satisfy
the stability constraint and are meaningless for our discussion. Therefore we chose
not to display them in figure 6.3. Considering data points for M/N = 2, for small ξ,
the optimisation problem has feasible solutions generally falling on the boundary of the
feasibility region. However, there exists a thresholds value of ξ above which the optimi-
sation problem terminates unsuccessfully in the unfeasible region. This is manifested
in panel (a) by a sudden turn of the solution traces from the feasible region bound-
ary upwards into the red region. Crucially, this threshold value increases for larger
ratios M/N, i.e., a more pronounced sparsification can be achieved for larger dimen-
sions of the starting subspace. This is arguably a consequence of the fact that higher
ratios M/N correspond to more degrees of freedom available in 4.35 to ensure that the
sparsity constraint is satisfied. From a mathematical point of view, this behaviour is a
direct consequence of the fact that a simple rotation of the basis modes, defined by the
matrix X, cannot shrink to zero an arbitrarily large number of coefficients in the tensor
Q. To better visualise this property we can plot the trend of the entries of the rotated
tensor Q̃ijk as the regularisation weight ξ is increased. Figure 6.4-(a) is analogous to
panel (a) in figure 6.3 and it is reported only for clarity of visualisation. Panel-(b) dis-
plays the entries of Q̃ijk against ξ−1. We observe that while decreasing the values of
||Q̃||1/||Q||1 because of the sparsity promoting constraint the entries of Q̃ijk are contin-
uously decreased as well. More interestingly, we observe that this behaviour does not
continue indefinitely since all the entries become zero. Conversely, at a certain value of
the regularisation weight ξ−1, ||Q̃||1/||Q||1 reaches a plateau. Similar behaviour can be
observed for the entries Q̃ijk, decreasing to a certain value and then remaining approx-
imately constant. This results in some entries shrunk to zero and others not (shown by
the two red lines) and the consequent existence of the minimal value for the density ρ

as discussed previously.

At a first glance, the fact that a minimum value of density different from zero exists for
any given system may appear as a limitation of the present a priori method. However,
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FIGURE 6.4: Evolution of ||Q̃ijk||1/||Qijk||1 and entries of the rotated quadratic
interactions tensor Q̃ijk against the regularisation weight ξ in panels (a) and (b), re-

spectively. The regularisation weight increases from right to left.

this is an advantage with respect to the a posteriori LASSO-based model sparsification
technique. In that case, feasible solutions could always be found for arbitrarily large
regularisation weights, where all system coefficients are shrunk to zero in the limiting
case. These models, however, were observed to have little physical significance. For
instance, in the limiting case with zero density the models would not capture any tem-
poral fluctuation, i.e. resulting in the trivial system ȧi(t) = 0, i = 1, . . . , N. With the
present a-priori sparsification method, all feasible systems are temporally stable and
provide physically consistent predictions. Therefore, there is no ambiguity linked to
the choice of ξ for a given M/N, since the feasible model obtained at the largest ξ

(smaller density) should be selected. In what follows we will adopt this approach.

When the penalisation ξ is increased, sparser models are obtained from the optimisa-
tion through small rotations of the original POD basis. This, however, comes at the cost
of decreasing the energy optimality of the resulting basis. This effect can be visualised
on the ρ − eN plane, as shown in figures 6.3-(b,c,d), for N = 20, 30, 40, respectively. The
horizontal line in each panel corresponds to the fraction of reconstructed energy of the
original dense POD-Galerkin projection model. In these panels, squares are used to
denote data for M/N = 2, while circles denote data for M/N = 3. First, we observe
that systems for ρ = 1 (ξ = 1) do not reconstruct the entire kinetic energy captured
by the original POD basis. This behaviour is because the presence of the stability con-
straint (4.35b), even in the configuration of no sparsification ξ = 1, produces a slight
rotation of the new basis. When ξ is increased lower densities and lower reconstructed
kinetic energy are obtained. However, the model dimension affects the slopes of the
curves, i.e. the larger the model size, the more the model can be sparsified without
affecting the ability of the new basis to reconstruct kinetic energy. This indicates that
the sparsification technique becomes more effective as the model complexity increases.
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FIGURE 6.5: Optimisation results for the case M/N = 3, N = 30, ξ = 3 (with density
ρ = 0.87). Panel (a): magnitude of the entries of the matrix X. Panel (b): distribution
of the modal energies of the original (square) and rotated (circles) basis functions.

Panel (c): cosine of the angle between the modes of the original and rotated basis.

This appears to be a general trend since a similar behaviour was observed using the
LASSO-based a-posteriori sparsification. A second major remark is that when the ratio
M/N is increased, lower densities can be achieved for the same reconstructed energy
whilst remaining within the feasibility region. Alternatively, rotating the original POD
basis into subspaces of much larger dimension M gives increased flexibility to generate
models capturing more energy for the same density.

6.1.4 Analysis of the rotated modal basis

We now move to the analysis of the rotated spatial and temporal basis functions (4.26).
A system with M/N = 3, N = 30, obtained for ξ = 3, soon before the solution falls into
the infeasible region in figure 6.3-(a), is analysed. Figure 6.5-(a) shows the magnitude of
entries of the rotation matrix X, found from the solution of (4.35). Figure 6.5-(b) shows
the amount of kinetic energy λ̃i reconstructed by each mode on the new modal basis
compared against the POD taken as reference. Figure 6.5-(c) shows the cosine of the
angle between the old and new sets of spatial modes, defined as

cos(θi) =
(ϕi, ϕ̃i)

||ϕi||2||ϕ̃i||2
. (6.2)

This quantity is also the diagonal of X, since the relation X⊤X = I holds. A general
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FIGURE 6.6: Vorticiy field for the firs POD mode, the first mode of the new basis
and the absolute value of their difference in panel (a),(b) and (c), respectively. Panels

(d),(e) and (f) same quantities for i = 19

trend can be observed. The high-energy modes are not significantly affected by the
rotation while the opposite is true for the high-index, low-energy modes. More specifi-
cally, the first pair of eigenvalues, corresponding to the dominant fluid oscillation in the
cavity, is virtually unchanged. This is then also observed for the first two spatial modes
which are found to be almost collinear to the original ones, since cos(θ(1,2)) ∼ 0.9. A
closer look at the rotation matrix X shows that, for the first two columns, the elements
on the diagonal are close to 1 while all other entries are close to zero. Conversely, a
different trend emerges when low-energy modes are considered. Figure 6.5-(c) shows
that the angle between the original and rotated modes increases with the modal index.
This behaviour derives from the problem formulation (4.35), constructed to generate a
basis that minimises the energy loss with respect to the energetically optimal POD. As
a result, the optimisation leaves unchanged the large and most energetic modes and
rotates by a larger extent the less energetic modes to gain in sparsity. Figure 6.6 shows
the out of plane vorticity component ω for the original POD mode ϕi, panels (a,d),
and the rotated mode ϕ̃i, panels (b,e), for indices i = 1 and 19, respectively. The third
column, panels (c,f), shows the absolute value of the difference between original and
rotated modes. As expected, the first mode is not considerably affected by X. On the
other hand, mode i = 19 is more pronouncedly affected by the rotation, with small
scale features appearing along the shear layer. We argue that the introduction of small
scale features is a combined effect of the stability constraint 4.35c, which enhances dis-
sipation in the system (Balajewicz et al., 2016), and of the sparsity-promoting constraint
(4.35b) since oscillatory modes are likely more effective in shrinking to zero the spatial
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FIGURE 6.7: Temporal evolution and magnitude of the Fourier transform for a1(t) in
panels (a) and (c), respectively, and for a19(t) in panels (b) and (d). Data is reported
for the original POD temporal modes and for the rotated modes of the sparse system.

averages involved in the projection coefficients (4.9). The temporal modes as defined
in (4.26) are affected similarly. This is illustrated in figure 6.7 showing the temporal
evolution of modes a1(t) and a19(t), panels (a) and (b), and their amplitude spectra in
panels (c) and (d), respectively. Since the first column of X is close to zero, except for
X11, mode a1(t) and its spectral content is not appreciably affected by the rotation, ex-
cept for a small decrease of the amplitude due to decrease in energy content (see figure
6.5-(b)). Conversely, the spectral content of mode a19(t) is modulated by the rotation
by introducing higher energy at high frequency components, consistent with the intro-
duction of small scale features into the spatial mode.

6.1.5 Subset of interactions identified in the sparse model

Even if the modification to the temporal and spatial modes is small in relative terms,
it is sufficient to introduce sparsity in coefficient tensor Q and the average triadic in-
teraction tensor N when the domain integrals (4.9) and the temporal averages (4.16)
are computed. To visualise how the sparsity varies when the penalisation weight ξ is
increased, we introduce the tensor ξ with entries ξijk defined as the value of the penal-
isation parameter ξ in (4.35) when the corresponding coefficient Q̃ijk is first shrunk to
zero. Figure 6.8 shows two slices of ξ for i = 1 and i = 30, for the model obtained at
M/N = 3 and N = 30. Panels (a) and (b) are obtained with the complete formulation
P2 (including both the stability and sparsity promoting constraint), while panels (d)
and (e), are obtained with the formulation P1 that only includes the sparsity promot-
ing constraint. Panels (c) and (f) display the modal density ρi, defined as the density
of the i-th ODE, as a function of the global density ρ, with ξ the curve parameter, for
four modes across the hierarchy. For the complete formulation (P2), we observe that
small-scale/small-scale interactions are the first interactions to disappear for moderate
penalisation ξ. Increasing the penalisation, coefficients corresponding to interactions
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FIGURE 6.8: Distribution of the tensor ξijk for i = 1,30 obtained solving the full
problem P2 in panels (a) and (b), respectively. Panel (c): distribution of the curves
ρi − ρ for the solution of the full model. Distribution of the tensor ξijk for i = 1,30
obtained solving the incomplete problem P1 in panels (d) and (e), respectively. Panel

(f): distribution of the curves ρi − ρ for the solution of the full model.

that are local in modal space are progressively pruned, leaving only coefficients cap-
turing non-local interactions with the low-index modes for large penalisations. The
structure of the sparse coefficient tensor obtained from the procedure is in agreement
with the pattern of triadic energy interactions shown in figure 5.12. Interestingly, figure
6.8(c) indicates that high-index modes can be sparsified more efficiently. This might be
related to the fact that high-index modes are also more modified during the optimi-
sation while the low index modes are left almost unchanged to preserve the energy
optimality imposed by (4.35a).

The key observation on the solution of the optimisation problem P1, bottom panels, is
that the resulting sparsity pattern lacks the structure of the original triadic interaction
tensor obtained with the complete formulation. In fact, even for small penalisations, co-
efficients corresponding to energy-relevant interactions are shrunk to zero. A random,
chessboard-like coefficient distribution appears, even though similar global density is
observed with similar penalisation ξ. It is arguable that this is due to the fact that intro-
ducing a penalisation on the rotated tensor Q̃ without any constraint on the temporal
evolution of the rotated system leads to a uniform reduction of the coefficients Q̃ijk

across all modes, because the strength of the energy interactions are not taken into ac-
count. Instead, since the coefficients Qijk are initially nonzero and do not have a clear
structure (see figure 5.12), a uniform decrease of their magnitude across all modes will
result in a chessboard-like pattern of the retained interactions. This behaviour can also
be noticed in the shape of the ρi − ρ curves, panel (f), where modes are almost equally
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FIGURE 6.9: Temporal evolution of the turbulent kinetic energy E(t). The perfor-
mance of the two sparse models obtained by solving problem P1 and P2 are com-
pared against the DNS and the dense model obtained with Galerkin projection.

Panels-(b,c) show the probability distribution of E(t).

sparsified. This behaviour is a consequence that, for the two formulations P1 and P2 of
the problem, two different minima with similar values of the minimal density but with
a different shape of the retained interactions have been found.

6.1.6 Temporal integration and energy analysis of the sparsified system

In this section, we analyse the properties of the sparse reduced-order model under tem-
poral integration and consider the triadic interactions tensor N and the average energy
budget (see equation (4.15)). The same configuration studied in previous sections, with
M/N = 3, N = 30 and ξ = 3, is considered. Reduced-order models obtained by
solving problems P1 and P2 are considered. These models are integrated forward in
time from an initial condition with an implicit time stepping scheme for a time-span
equal to T = 500 time units, from an initial condition obtained from one of the snap-
shots utilised for the POD. Figure 6.9-(a) shows the first one hundred time unity of the
temporal evolution of the turbulent kinetic energy (4.15) for these two models, com-
pared with the evolution from DNS and from the original POD-Galerkin model. Figure
6.9-(b,c) show the probability density function of the same quantity. As expected, the
kinetic energy from the POD-Galerkin model simulation rapidly overshoots and con-
verges towards energy levels about two orders of magnitude larger than the reference
value from DNS. This behaviour is a well known result (see e.g. Noack et al. (2016);
Östh et al. (2014)). Similarly, the sparse model obtained without any constraint on the
temporal stability (problem P1) reproduce this behaviour. This can also be seen in the
probability distribution functions in panels (b) and (c) of the turbulent kinetic energy
showing that the two former models predict a larger value of the turbulent fluctuations.
Conversely, the prediction of the sparsified and stabilised model (problem P2) matches
well the prediction of the DNS both as average value and amplitude of the fluctuations.
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FIGURE 6.10: Intensity of the average nonlinear energy transfer rate Ñ for mode
i = 1 in models obtained from projection and formulations P2 and P1 in panels
(a), (b) and (c), respectively. Panels (d), (e) and (f) show the same quantity for mode

i = 30.

This result indicates the need for a tie back to the temporal evolution of the system to
obtain meaningful results.

Once obtained the new sets of temporal modes, the triadic interactions tensor N and
linear term ∑N

i=1 L̃ij ãi ãj in (4.15) can be computed. The structure of the nonlinear energy
transfer rate tensor Ñ for the rotated Galerkin models is reported in figure 6.10, show-
ing two slices for i = 1, 30 (first and second row, respectively). Panels (a) and (d) refer to
the model obtained from Galerkin projection onto the original POD subspace and will
be used as reference. Here the temporal coefficients are the projections onto the DNS
snapshots. Data for the model obtained from problem P2 is shown in panels (b) and (e)
while data for the model obtained with the P1 formulation is shown in panels (c) and
(f). For these models, temporal coefficients are obtained from the forward integration
of the Galerkin models. It can be observed that the model from formulation P2 dis-
plays a pattern of interactions consistent with the DNS data projected onto the original
POD modes, both in terms of the organisation across modes as well as in strength. The
organisation of the interactions is similar to that in the dense Galerkin model obtained
using the a-priori stabilisation method of (Balajewicz et al., 2013), although a more ag-
gressive reduction in the strength of the interactions between the high-index modes is
observed. By contrast, energy interactions in the model obtained from the formula-
tion P1 are orders of magnitude more intense, across all triads. This is a manifestation
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FIGURE 6.11: Value of the sum of the absolute value of Nijk for the different models
in the three regions of N defined in figure 5.12-(a). Panel (a),(b) and (c) show the

regions LL,HH and LH, respectively.

of the lack of dissipation and the consequential over-prediction of energy, across all
modes. Interestingly, it can be observed that the HL/LH asymmetry observed in figure
5.13 is preserved throughout the sparsification. Conversely, this physical feature is lost
in the a posteriori approach in the construction of the database matrix to preserve the
mathematical consistency on the regression problem. Arguably, the a priori approach is
preferable for systems with a complex structure of N.

To visualise the overall structure of the tensor N across the hierarchy of modes i =

1, . . . , N, we apply the methodology explained in the energy analysis section. To char-
acterise which regions of N are more active in the average energy transfer, the sum of
the absolute values of the entries Nijk for the four different areas LL,HH and LS as de-
fined in figure 5.12-(a) is computed. Figure 6.11 shows the value of LL,HH and LH in
panel (a),(b) and (c), respectively. Different trends for the two models P1 and P2 with re-
spect to the POD-Galerkin model are observed. First, we consider panel (a) containing
the LL interactions. We observe that the value provided by the P2 formulation is very
similar to the projection model obtained by DNS with the only difference of a slightly
lower value due to the presence of the constraint on Q. In addition, the model obtained
with the P2 approach has the same decay as the projection model (DNS). Conversely,
the P1 model does not present any decay of the energy level across the hierarchy of
modes. This trend of the model obtained with the P1 approach is shown also in the
interactions of the region HH and LH, in panels (b) and (c), respectively. This is conse-
quence of the over prediction in the amplitude of the temporal fluctuations especially
observed for the modes with high modal index i. In addition, in panels (b) and (c)
it can be observed that, on average, the value of the model P2 is lower than the one
obtained by projection, this effect is much weaker with respect to the interaction of
the region LL. This confirms a consistent sparsification where the less relevant inter-
actions, mainly present in the regions HH and HL/LH, are more heavily pruned than
interactions present in the region LL. More interestingly, we observe that the numeri-
cal difference between P2 and the DNS in panel (b) and (c) grows as we move towards



120 Chapter 6. Results: a priori sparsification

-1e-6

0

1e-6

j
L i

ja
ia

j

(a) (b) (c)

1 10 20 30
i

-4e-7

0

4e-7

T i

(d)

1 10 20 30
i

(e)

1 10 20 30
i

(f)

FIGURE 6.12: Value of the linear term in (4.15) for the Galerkin projection, the P2 and
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(f), respectively.

larger values of i showing that high-index modes are more effectively sparsified as al-
ready shown in figure 6.8-(c). To conclude we observe that none of these effects are
present for the P1 model confirming that this approach is not suitable for a physically
consistent sparsification.

We now analyse mode by mode the linear and quadratic energy transfer terms as de-
fined in the mean average energy balance (4.15). In figure 6.12 we consider three differ-
ent systems: the one obtained by Galerkin projection onto the POD subspace in panels
(a) and (d), the one obtained solving the problem P2 in panels (b) and (e) and solving
problem P1 in panels (c) and (f). The model obtained by projection is analysed first. In
panel (a) the linear term in (4.15) obtained by POD-Galerkin projection is shown. We
observe a large production of kinetic energy in the first modes and a moderate dissi-
pation in the last ones. Overall this results in an unbalance between production and
dissipation leading to the over prediction of kinetic energy shown in figure 6.9-(a). The
non linear term Ti shown in panel (d), instead, displays the correct energy cascade from
the large (negative values of for small i) to the small scales (positive values for i large)
already observed for two dimensional turbulent flows. Second, we consider a model
obtained by the solution of the complete optimisation problem (P2) in panels (b) and
(e). Panel (b) shows that for this case the production/dissipation is better balanced with
lower production in the low index modal structure and larger dissipation in the high
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index modes. In addition, the P2 approach also manages to preserve the right shape of
the nonlinear energy transfer between modes as displayed in panel (e).

Conversely, the absence of the constraint in the optimisation problem (formulation P1)
does not provide any balance of the turbulent kinetic energy budget (4.15). Both the
linear and the quadratic terms are off with respect to the value and the shape obtained
from the POD-Galerkin model shown in panels (a) and (d). In addition, the nonlinear
energy transfer appears to be uniformly diminished and reshuffled losing the physics
of the corresponding modal decomposition as shown in panel (f). The largest ampli-
tude of Ti for the high index modes is a consequence of the unphysically large value
of the fluctuations in the high index temporal coefficients. These results show that to
obtain a sparse model that is consistent with the physics of the flow it is of paramount
importance to introduce in the sparsification algorithm some information about the dy-
namics or the physics of the flow. This is consistent with what was observed by Loiseau
and Brunton (2018) that proved the need for additional constraints on the energy con-
servation to en enhance the temporal accuracy of dynamical system reconstructed from
data. These findings are in agreement with the results obtained for the a posteriori spar-
sification framework confirming that including the temporal dynamics ȧi in the sparsi-
fication preserves the correct energy transfer in the sparsified system.

6.1.7 Temporal stability a posteriori vs a priori

In this section, the long term temporal stability of the two different sparsification ap-
proaches is discussed. We consider two models of the lid driven cavity flow, both
resolving 95% of the kinetic energy, obtained with the a posteriori and the a priori ap-
proach, respectively. For the a posteriori approach the optimally sparse system has been
identified with the l1 pseudo-density criterion explained previously. On the other hand,
in the case of the a priori sparsified approach the optimally sparse system has been cho-
sen as the sparser system still satisfying all the optimisation constraints. These choices
are not unique but it is in the author opinion that different choices do not change sen-
sibly the results. Figure 6.13 was generated by integrating the optimally sparse system
from random initial conditions for a time interval three times longer than the DNS
simulation used for generating the decomposition and training the sparsification algo-
rithms. Panels (a) and (b) display an a posteriori and an a priori model, respectively.
The red line is the DNS simulation, used as a reference, while the other continuous
lines represent different initial conditions randomly generated. Panel (a) shows results
of the time integration of the a posteriori sparsified models. Interestingly, two trends
emerge. First, the turbulent kinetic energy seems to keep memory of the initial condi-
tion. This is shown in panel (a) where the blue line, starting from a slightly different
initial condition, although having the correct fluctuation amplitude, keeps the memory
of the initial condition predicting the wrong level of turbulent kinetic energy. Second,
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FIGURE 6.13: Effect of a variation of the initial condition of the long time temporal
integration of the sparse system. Panel (a) and (b) show results for the a posteriori and
a priori sparsified systems, respectively. The reference values of the DNS is displayed
as a red line while simulations obtained with different values of the initial conditions

are shown as continuous black,blue and green lines, respectively.

both sparse solutions (identified by the black and blue lines) tend to drift away from the
correct energy level towards higher ones showing the inception of a long term temporal
instability for time integration intervals longer than the training time-span (T = 100).
This was expected since the model is trained on the data coming from DNS (of length
T = 100), therefore no stability outside the training dataset can be guaranteed. In ad-
dition, it can be observed that as the flow evolves some small scales oscillations are
smeared away, this behaviour is particularly evident for T > 250 times unit where only
the large time scales oscillations are retained. It is arguable that this is a side effect of
the sparsification performed with constant regularisation weight γi that tends to pe-
nalise more the low amplitude fluctuations. Interestingly, both of these behaviours are
not present for the a priori sparsified systems shown in panel (b). It can be observed
that all the simulations, even if starting from different initial conditions after an ini-
tial transient converges towards the correct level of turbulent fluctuations without any
long term stability issue. In addition, no loss of small scales fluctuations is observed in
this model even for times outside the training region. This result shows that the a pri-
ori sparsification technique provide superior performances both for the short and long
time integration of the sparse model. The price to pay is a higher computational cost
of the sparsification procedure and generally the impossibility to reach densities as low
as for the a posteriori. This behaviour is consequence of the mathematical formulation
of the two approaches. In fact, for the a posteriori approach the temporal stability can
be ensured only for times interval equal to the length of Ȧi. Since this quantity is com-
puted projecting the Eulerian acceleration field onto the spatial modes it is available
only for a time span comparable with the length of the numerical simulation. When
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FIGURE 6.14: Instantaneous vorticity field and average of the magnitude of the ve-
locity field in panels (a) and (b), respectively.

complex flows, requiring a large number of snapshots to reach statistical convergence,
are considered, the computation of this quantity can easily become challenging. Con-
versely, for the a priori approach, in the constraint (4.35b) there is no limit on the length
of the time interval over which the mean of the kinetic energy can be computed. Since
the integration of the sparse system has a low computational cost it is possible to extend
the stability for much longer time intervals with respect the length of the data needed
to obtain the POD.

6.2 2D backward facing step

In this section the a priori sparsification technique is applied to the two dimensional
flow evolving over a backward-facing step. The domain is defined in Cartesian coor-
dinates x = (x, y) and the velocity field is defined by the components u = (u, v). The
Reynolds number is defined as Re = HU/ν, where H, U and ν are the step height, the
inlet velocity and the kinematic viscosity, respectively, is set equal to 2 × 104. The DNS
has been performed in OpenFOAM with the icoFOAM solver, without any turbulence
model. Conversely to the cavity flow, there is no need to save the Eulerian acceleration
filed at each time step since the a priori framework does not need this quantity as input.
Therefore, no modification of the solver was deemed necessary. Figure 6.14 shows the
instantaneous out of plane vorticity field ω for a snapshot at a given instant of time
and the magnitude of the average velocity field, defined in terms of the Cartesian co-
ordinates as U =

√
u2 + v2, in panel (a) and (b), respectively. In panel (b) we observe

a large re-circulation area downstream the step and near the upper wall characterised
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by the magnitude of the velocity field reaching zero value. Panel (a) shows these flow
features being strongly linked to the generation of vortices in the shear layer near the
corner of the step (blue flow structures) and on the top wall in correspondence to the
deceleration of the flow (red flow structures in panel (a)). This flow has higher com-
plexity with respect to the cavity flow previously analysed. Thus, more modes will be
required to construct reduced order models describing a meaningful amount of spatial
scales. In addition, the open inlet and outlet boundary conditions make the pressure
term in the Galerkin models not identically zero. Therefore, the sparsification frame-
work must balance also the effects of neglecting this term making the generation of
accurate reduced-order models challenging. Here we considered an initial POD-based
reduced-order model composed by N = 50 POD modes, resolving up to 95% of the tur-
bulent kinetic energy. Similarly to what was done for the NACA test case the pressure
term, different from zero, is not included in the generation of the ROM (4.6). The idea is
to leave to the sparsification framework, in particular to the stability constraint (4.35c)
the task of tuning the model coefficients such that the effects of the pressure term are
taken into consideration. Leveraging both our observations on the sparsification of the
two dimensional lid-driven cavity flow and the results of Balajewicz et al. (2013) about
the stabilisation of reduced order systems, a ratio M/N = 2 has been chosen, corre-
sponding to a dimension M = 100 for the larger subspace. The two values N = 50,
M = 100 corresponds to the limit of the computational resources used in this study.

6.2.1 Energy analysis

We now analyse the properties of the tensors N and Q, using as a reference, the dense
model obtained by Galerkin projection of N = 50 POD modes. Figure 6.15 shows the
base-ten logarithm of the absolute value of the entries Nijk for i = 1,10,50. In addition,
panel (a) shows the subdivision of the interactions governing the dynamics of the i-
th mode into the four regions already defined in figure 5.12-(a). Namely, LL contains
the interactions of large modes between themselves, LH, HL the mixed interactions
between large and small structures and HH the interactions of high index modes. All
the interactions are generally non-zero, this results from the conjoint effect of the ten-
sor Q being generally non-zero and the temporal coefficients ai(t) having a complex
spectral structure. However, a subset of dominant interaction exists. Namely, the in-
teractions belonging to the regions LL,HL and LH are generally stronger with respect
to the ones of the HH region. Similarly to what was discussed in the lid-driven cav-
ity, this results from the strong advective nature of the flow in consideration, where
small structures are transported downstream by larger and more energetic structures.
For better quantify this effect on the triadic interactions, figure 6.16 describes quantita-
tively the asymmetry of the average triadic interactions tensor. Panel (a) displays the
value of the function χ, as previously defined in (5.12), as a function of the normalised
bandwidth n/N as defined in figure 6.15-(a). Panel (a) show that χ > 1 for every n/N
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FIGURE 6.15: Magnitude of the average triadic interactions tensor N for i = 1, 10 and
50 in panel (a),(b) and (c), respectively. In addition, panel (a) shows the four different

regions of N corresponding to interactions of different nature.

FIGURE 6.16: Panel (a) shows the coefficient χ(n) as a function of the normalised
cutoff n/N for the same three modes considered in in figure 6.15. Panel (b) shows the
sum of the entries of N for the four regions defined in figure 6.15 as a function of the

modal index i.

and converge to 1 as n/N → 1. This is consequence of the fact that the region HL is
predominant with respect to the region LH. From a physical standpoint, this means
that the flow is characterised by a strong advection of the small structures by the large
ones. In addition, we observe that χ grows as the modal indexes i grows. This re-
sult is expected and is consequence that as the modal index i grows the corresponding
mode describes spatially smaller structures where the advective effect is stronger. To
characterise energy paths across all the structures we compute the sum of the abso-
lute value of the entries Nijk contained in the four regions defined in 6.15-(a) for each
slice of Nijk corresponding to a modal index. The result is shown in figure 6.16-(b).
First, it can be observed that energy transfers in the regions LL, HL and LH are gener-
ally more intense than those in the region HH. This follows from the observation that
large-scale/large-scale and large-scale/small-scale interactions are more relevant with
respect to the small-scale/small-scale interactions, across the entire hierarchy. In addi-
tion, we observe that the interactions LH are always larger than the HL interactions.
This is consequence of the asymmetry in the tensor Q and not of the temporal coeffi-
cients. This asymmetry is in agreement with the picture of energy transfers between
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FIGURE 6.17: Maps of the entries of the tensor Q, for i = 1,10 and 50,

scales in homogeneous isotropic two-dimensional turbulence (Ohkitani, 1990; Laval
et al., 1999), where the large scales interact with the small ones in a non-local fashion.
Lastly, it can be observed that the structure of the energetic interactions is mainly deter-
mined by the temporal coefficients as the tensor Q constructed from projection modes
does not possess any sparsity structure. Figure 6.17 shows the entries of Q for i = 1,10
and 50 in panel (a),(b) and (c), respectively. We observe that all the coefficients Qijk are
generally different from zero and no sparsity structure is present. Interestingly, despite
being all different from zero the entries Qijk have a structure driven by the advective
nature of the flow. However, it is important to stress that due to the wider range of
numerical values spanned by aiajak with respect to Qijk the shape and the relative mag-
nitude of the average triadic interactions in driven mainly by the temporal coefficients.

6.2.2 A priori Sparsification

Here we applied the a priori sparsification procedure to a model with N = 50 gener-
ated by the rotation of the POD modes in a subspace of larger dimension M = 100.
Because of the definition of the optimisation problem (4.35) a family of different mod-
els can be obtained increasing progressively ξ starting from 1 (where no sparsification
is promoted) to the maximum value of ξ where the solution exits the feasibility region
of the problem. This value of ξ corresponds to the sparser system for two give values
of M and N. In addition, for every value of ξ an external loop to find η to ensure long
time accuracy of the model has been added. For every value of ξ the density ρ and the
energy resolution eN is computed and displayed in figure 6.18. Figure 6.18-(a) shows
the ρ − eN plane for the model considered. As previously observed for the cavity flow
the rightmost point ρ = 1 loses some ability of reconstructing energy with respect the
original basis. This is consequence of the stabilisation constraint that slightly modifies
the POD drifting away the new basis from the energetic optimal POD. Further increas-
ing ξ, we observe that lower values of ρ can be reached. Increasing ξ further, ρ ∼ 0.88 is
reached, here the solution of (4.35) falls outside the feasibility region, i.e. it is not possi-
ble to find a rotation X that decreases further the density and, at the same time, satisfies
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FIGURE 6.18: Panel (a): ρ − eN curve for a model constructed by N = 50 modes.
Panel (b): POD eigenvalues λi for the system with the minimal density ρ = 0.88 (left-

most point in panel (a)) compared with the original POD basis.

both the stability and sparsity constraints. Observing the shape of the ρ − eN curves,
it can be observed that after a sudden decrease of eN it is possible to promote spar-
sification without affecting considerably the ability of the new basis of reconstructing
kinetic energy. It is arguable that this is consequence to higher physical complexity of
the flow considered with respect the lid driven cavity flow. Similarly to what done for
the lid-driven cavity flow, since all the systems obtained have good long term stability
properties we select as sparse system the leftmost system in the ρ − eN plane shown in
panel (a). Panel-(b) shows the eigenvalues λi of the sparse decomposition against the
POD ones. Similarly to what observed for the cavity flow the first pairs of eigenval-
ues are only marginally affected, since the optimisation problem aims to the energetic
optimality with respect to the original POD. Conversely as we move to higher modal
indexes the eigenvalues are more heavily modified.

6.2.3 Interactions identified by the sparsification

The modification of of the temporal and spatial modes induced by X even if small is
sufficient to introduce sparsity in the rotated quadratic interaction tensor Q and con-
sequently in N. To better visualise the sparsity pattern as the regularisation weight ξ

increases, we introduce the tensor ξ with entries ξijk defined as the value of the penal-
isation parameter ξ in (4.35) when the corresponding coefficient Q̃ijk is first shrunk to
zero. Figure 6.19 shows three slices of ξ for i = 1,10 and 50. We observe that small-
scale/small-scale interactions (HH region) are the first interactions to disappear for
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FIGURE 6.19: Distribution of ξ for i = 1, 10 and 50 in panel (a), (b) and (c), respec-
tively.

FIGURE 6.20: Distribution of the sparse interaction tensor Ns for i = 1,10 and 50 in
panel (a),(b) and (c), respectively.

moderate penalisation ξ. Increasing the penalisation, coefficients corresponding to in-
teractions that are local in modal space are progressively pruned, leaving only coef-
ficients capturing non-local interactions with the low-index modes for large penalisa-
tions. The structure of the sparse coefficient tensor obtained from the procedure is in
agreement with the pattern of triadic energy interactions shown in figure 6.15. More
interestingly, the non-symmetry between the HL and LH region is preserved, this is
particularly evident for the mode i = 50 figure 6.19-(c). In figure 6.20 the sparse triadic
interaction tensor Ns computed with the rotated modes is shown for the same three
modes considered in figure 6.19. It can be observed that the sparsified model has a
pattern of interactions resembling that of the dense model in figure 6.15. However,
weak interactions and the associated flow physics have been pruned. It is also clear
that the asymmetry of the interaction pattern observed in figure 6.15 and the physical
mechanism that originates is preserved by the a priori sparsification. This structure can
be more completely visualised in figure 6.21. Panel-(a) displays the structure function
χ, as defined in (5.12), against the non-dimensional bandwidth n/N. The correct trend
observed for the POD reference case shown in figure 6.16-(a) is also preserved in the
sparse system. Panel-(b) shows the sum of the absolute values of the four different
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FIGURE 6.21: Panel (a): coefficient χ(n) as a function of the normalised cutoff n/N
for the same three modes considered in in figure 6.18. Panel (b): sum of the entries
of N for the four regions defined in figure 6.18 as a function of the modal index i. All

the results are computed for the sparse triadic interaction tensor.

regions of Ns
ijk against the modal index i. Qualitatively, the behaviour observed in fig-

ure 6.16-(b) is preserved and the relation LH > HL is true for every i. In addition, it
can be observed that HH are smaller than the original ones as direct consequence to
the fact that the sparsification affects more predominantly the interactions belonging in
this area.

6.2.4 Time integration and flow field reconstruction

Once the optimisation problem (4.35) is solved a new set of matrix coefficients are ob-
tained from (4.27). Here we turn our attention to temporal integration of the sparse
Galerkin system defined in terms of this new modal basis. The model composed by
N = 50 and M/N = 2 is integrated for twice the time-span available from DNS, i.e
T = 2 non dimensional time units. Figure 6.22 displays the time evolution of the pre-
dicted turbulent kinetic energy E(t) (4.13) in red, against the reference value obtained
by DNS displayed as thick grey line in the background. The sparse model is able to
reproduce both the average level and the fluctuation of the turbulent kinetic energy.
More interestingly, the sparse system has good long term accuracy maintaining the
correct level of turbulent fluctuations for longer time interval than the data-set used to
generate the modes. No upwards drift is present as observed for the a posteriori sparsifi-
cation of the cavity flow in figure 6.13. Arguably, the better long time performances are
due to the conservation of the shape of triadic interactions by the a priori sparsification
methodology. Since this particular shape of the triadic interactions can be related to
advective dynamics of the flow, a good conservation of the shape of triadic interactions
in modal space is crucial to obtain model faithfully describing the advective flows.

Once the new temporal ãi(t) and spatial ϕ̃i coefficients are known from (4.26) the flow
field can be reconstructed according to (4.3). Figure 6.23 shows the longitudinal and
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FIGURE 6.22: Temporal evolution of the turbulent kinetic energy E(t), reference
value from DNS against the value predicted by the sparse model.

FIGURE 6.23: u′u′ component of the Reynolds stresses obtained from DNS and from
the sparse system in panel (a) ad (b), respectively. u′v′ component of the Reynolds
stresses obtained from DNS and from the sparse system in panel (c) ad (d), respec-

tively.

traversal Reynolds stresses. The first column, panels (a) and (c), shows the field com-
puted by DNS, while panels (b) and (d) display the results obtained from the temporal
integration of the sparse system. Overall, we observe that the global structure of the
Reynolds stresses is well predicted by the sparse system both in the spatial distribution
and in the numerical value. More specifically, the sparse model is able to reproduce the
correct Reynolds stresses downstream the step and in the boundary layer in the bottom
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and top wall near the separation and the reattachment of the boundary layer. The only
difference appears to be in u′v′ near the top wall where some fluctuations appear. We
argue that this is consequence to the fact that since the optimisation problem (4.35) tries
to preserve the original energetic optimality of the POD, the small scales are modified
more aggressively. This leads to a less accurate description of the evolution of the small
scales with respect to the large ones.
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6.3 Summary: a priori sparsification

This final section aims to collect the major findings obtained from the a priori sparsifica-
tion framework. To begin with, we considered the two-dimensional lid-driven cavity
flow at Reynolds number Re = 2 × 104. The cavity flow is a classical test case already
utilised for the a posteriori framework allowing a comparison between the two method-
ologies to better understand their performances. In addition, we consider the evolution
of the separated flow over a backward facing step. Similarly to what done for the a pos-
teriori framework, sparse models are generated by varying the regularisation weight ξ

in the sparsity promoting constraint (4.35b). Subsequently, different models are visu-
alised onto the reconstructed energy - model density plane. The major outcomes of this
analysis are the followings.

- The model size N and the ratio M/N affect the energy reconstruction - sparsity
trade off. Larger models can be sparsified more with less impact on the energy
reconstruction ability. In addition, lower densities can be obtained by rotating the
original POD basis within larger sub-spaces (a higher ratio M/N).

- The formulation of the sparsity constraint allows the definition of a minimal
reachable density for given values of the parameters N and M/N. This is a clear
advantage with respect to regression based methods, where the regularisation
weight is a free parameter that needs to be carefully chosen by the user after the
evaluation of the performances of the single models.

- From a more physical perspective, it can be observed that the structure of the
inter-modal energy interactions in the rotated model is qualitatively similar to
that of the original POD-Galerkin system. More specifically, coefficients of the
quadratic interaction tensor corresponding to large-scale/large-scale and the large-
scale/small-scale interactions are preserved, but those defining the weak small-
scale/small-scale interactions are pruned during the optimisation. This behaviour
was observed for both the test cases analysed.

- Interestingly, it was also observed that a physically-consistent distribution of the
interactions and a stable long-term behaviour can only be obtained by augment-
ing the sparsification procedure with a temporal stability constraint. In fact, it was
observed that models obtained without such constraint can inherit well-known
temporal stability issues of dense POD-Galerkin model.

- Once the stability constraint has been included in the formulation, this approach
shows better prediction abilities both on short and long time spans with respect
to the regression based a posteriori approach. In addition, good robustness with
respect to perturbations of the initial conditions has been observed.
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Chapter 7

Conclusions and Outlook

This work is motivated by the need of developing a systematic methodology to im-
prove the computational efficiency and physical interpretability of reduced-order mod-
els of chaotic systems. This is achieved by identifying the dominant subset of triadic
interactions in Galerkin models of turbulent flows in such a way only a reduced num-
ber of terms is needed to temporally advance the system. The a posteriori and the a priori
sparsification frameworks proposed here aim to tackle this problem from two different
perspectives. The a posteriori technique follows a more classical approach from data,
where the interactions are pruned based on their relative strength but the modal basis
used to generate the reduced-order model is not modified. A possible drawback of
such an approach is the loss between the modal structures and the energy fluxes due to
the modification of the entries of Q. To fill this conceptual gap the a priori sparsification
approach was proposed. It leverages the key idea of encoding the information about
the sparsity of the triadic interactions directly in the modal basis, such that the system
of ODEs obtained by Galerkin projection has already a sparse structure of the nonlin-
ear interactions tensor. Finally, it is worth citing that a third sparsification approach,
called greedy approach, was proposed. The underlying idea is to select the quadratic
interaction based on their energetic relevance without the need of any a posteriori or a
priori optimisation procedure. However, these models inherit all the temporal stability
issues of the dense models and cannot be used for practical purposes, therefore, this
approach has been discarded. In the following sections, the main similarities and dif-
ferences between the a priori and the a posteriori sparsification methods are presented
discussing possible outlooks and ideas for future research are discussed.

7.1 Similarities

Both approaches have been proved able to recover the correct physics of the energy
interactions. More specifically, the a posteriori sparsification has been shown to identify
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a relevant subset of triadic interactions coherent with the dominant subset of triadic
interactions identified by energy analysis. More interestingly, we observed that the
relevant subset of triadic interactions are successfully identified if the well-posedness
of the regression problem is guaranteed, regardless of the modal basis used to per-
form Galerkin projection. Further analysis of the structure of the sparse systems shows
that the relevant energy pattern is correctly identified by both approaches (see 5.20,6.8
and 5.22, 6.10) and energy conservation properties of the non linear interactions are
preserved. Interestingly, these properties are conserved in the sparse system without
the need for the introduction of specific constraints. Arguably, this information is al-
ready contained in the dynamics of the flow introduced in the sparsification by the
presence of the modal acceleration term. On the other hand, it has been observed that
for the a priori sparsification the presence of the stability constraint is needed to obtain
sparse systems identifying the right pattern of triadic interactions and predicting the
correct temporal evolution. Generally, it has been observed that both sparsification ap-
proaches perform better in case of larger systems (corresponding to a larger amount of
reconstructed turbulent kinetic energy) that can be sparsified more aggressively with
less impact both on the reconstruction error and on the ability of the new basis func-
tions of reconstructing kinetic energy. More specifically, for the a posteriori sparsification
more sparse systems are obtained either when more resolved systems (larger number
of modes) or higher Reynolds numbers are considered. For the a priori method bet-
ter sparsification performances can be obtained by increasing the size of the model N,
reducing the slope of the sparsification curves in the ρ − eN , or the size of subspace
within the rotation is performed M, affecting the minimal value of the density that can
be obtained. Subsequently, the temporal integration performances have been evalu-
ated. As expected, both approaches outperform the dense systems when it comes to
the prediction of fluctuating kinetic energy. This is strictly true for time spans of a
length comparable with the training dataset. This improvement is due to the training
phase targeting the dynamics of the DNS simulation and the presence of the stability
constraint (4.35b) for the a posteriori and the a priori approaches, respectively. This pro-
duces a reconstructed flow field consistent with the results obtained by the numeric
simulations. More specifically, the optimisation procedure implicit in both approaches
eliminates the nonphysical oscillations associated with an excess of predicted turbulent
kinetic energy. Overall, the sparse systems have been shown to provide quite accurate
predictions of the reconstructed flow field for all the systems at the Reynolds numbers
considered. These are interesting results showing that the implicit tuning present in
both approaches can balance both the unresolved physics associated with the smaller
scales and the non-modelled pressure term for open flows.
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7.2 Differences

Although these two approaches generate a sparsification pattern that is coherent with
the energy analysis, some differences between these two approaches remain. First,
comparing the sparsification curves obtained for the lid-driven cavity flow (common
to both approaches), it can be observed that different values of optimal densities are
reached by the two different techniques. Namely, in the a priori formulation we man-
age to reach values of the density as low as ρ ∼ 0.8. Conversely, in the a posteriori
framework value of the as low as ρ ∼ 0.3. In addition, figure 6.3-(b) to (d) shows that
it is not possible to sparsify the system without affecting, even marginally, the ability
of the new set of modes of reconstructing energetic kinetic energy. This behaviour is
not avoidable and is due to theoretical considerations about the energetic optimality of
the POD. On the other hand, in the a posteriori framework, it seems possible to prune
interactions from the system without affecting neither the reconstruction error ϵ nor
the fluctuating amplitude of the temporal modes ai(t). Consequently, the value of the
eigenvalues λi, proportional to the mean fluctuation amplitude of ai(t), is well pre-
served by the sparsification procedure. It is arguable that this difference is due to the
fact that the a priori approach has a stronger tie back to the physics of the flow.

A more important difference between the two methodologies concerns the choice of
the optimally sparse reduced-order model. In fact, for the a posteriori sparsification
approach the regularisation weight can be chosen to be arbitrarily large resulting in a
system where all the coefficients have been pruned (ρ = 0) with no physical meaning
nor practical utility. The choice between all the possible systems obtained with differ-
ent values of the regularisation weight needs a heuristic criterion to identify a system
with a good trade-off between sparsity, accuracy and physical reliability. As an ex-
ample, in this work, we proposed a methodology leveraging the idea of looking for
the inflection point of the l1 based pseudo density. Obviously, other selection criteria
are possible. This highlights the problem of interpretability in classical supervised ma-
chine learning, where the performance of a given model can be quantified only after
temporal integration. On the other hand, for the a priori sparsification technique, due
to its mathematical formulation, the optimally sparse system can be identified as the
system with the lowest density that still satisfies the sparsity and stability constraints
in the optimisation problem. Since all the sparse systems are temporally stable, this
allows to automatically select the optimally sparse system without any need of user in-
tervention and, in the author opinion, is an interesting feature to develop a completely
user-independent sparsification framework.

A crucial difference between the two approaches concerns the long term temporal sta-
bility of the sparse systems and their robustness with respect to perturbations of the
initial conditions. More specifically, it has been observed that the a priori sparsified
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systems have good long term temporal stability and, at the same time, good robust-
ness with respect to the perturbation of the initial condition. Conversely, the systems
obtained with the a posteriori approach seems to produce accurate results only for ini-
tial conditions select inside the dataset used to generate the reduced-order model and
time intervals comparable with the length of the training dataset. In fact, for time in-
tervals longer than the training dataset a progressive drift, away from the correct value
o turbulent kinetic energy is observed. This behaviour shows the inception of time in-
stability restricting the applicability of the sparse system for practical applications.

Lastly, few considerations about the computational complexity of the two algorithms.
One of the key aspects of the a posteriori sparsification consists in recasting the heuristic
problem of selecting the most relevant interactions in Galerkin models into a convex
optimisation problem. Crucially, this problem is characterised by a unique minimum
that can be efficiently found with gradient descent-based techniques. More specifi-
cally, for a model obtained by N modes the computational complexity of solving is
O(N3). This complexity makes the solution of the problem feasible for models of the
size of few hundred of modes. Conversely, the formulation of the a priori sparsifica-
tion framework requires a higher computational effort. More specifically, an analysis
of the operation involved shows that only the evaluation of the derivative of the gradi-
ent requires O(M3N) leading to a much higher computational cost with respect to its a
posteriori counterpart. In the present work, we have been able to sparsify systems up to
fifty modes rotated in a subspace of dimension M = 100. Lastly, while the a posteriori
regression-based approach is based on well known and tested, the a priori approach is,
to the author knowledge, the first attempt to develop such a framework. Therefore it is
reasonable to believe that there is still room for improvement to scale this framework
up to computational performances comparable with regression based techniques.

7.3 Application Guidelines

Overall, both methodologies lead to similar results. We provide here some guidelines
for the application of these two approaches in different situations. Analysing the a pos-
teriori approach first, we feel that this could be a good solution when Galerkin systems
constructed by a large number of modes N are considered and the cost of the solution
of the optimisation problem is relevant. In addition, the a posteriori sparsified systems
are reliable only on time integration spans comparable with the length of the training
dataset. Therefore, an example of a good fit for the application of the a posteriori spar-
sification is the online computation of the sparse model from streaming data to predict
the behaviour of the system for future times. For this application, it is of paramount im-
portance to have a sparsification algorithm that is computationally efficient to compute
the system coefficients faster than the advancement of the CFD solution. Finally, the
a posteriori sparsification framework could be a good solution when Galerkin systems
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are obtained by experimental data and only the values of the temporal modes ai(t) and
their time derivative ȧi(t) are easily obtainable while obtaining a good approximation
of the matrix coefficients Ci,Lij and Qijk is challenging.

Conversely, the a priori approach is computationally more expensive and requires the
knowledge of all the components of the Galerkin system (4.6). At the same time, it pro-
vides a deeper insight into the physics and generates reduced-order models that are
more reliable computationally. Therefore, we feel to suggest the use of this approach
on flows obtained by numerical simulations where the coefficients matrices are easily
obtainable. However, a more complex initial set up results in better performances mak-
ing this approach advisable when it is important to obtain reduced-order model stable
over long time spans. Lastly, one more consideration about the applications of these
methodologies. One of the main targets of the initial phase of this work was to anal-
yse the locality of the interaction in three-dimensional turbulence via sparse regression.
However, it has been observed that the amount of data (more specifically ȧi) to obtain
a reliable regression make the application of the a posteriori methodology not practical.
We suggest that the a priori could be a possible solution to study high complex systems
since only the amount of data needed to obtain a statistically converged modal decom-
position is required.

7.4 Outlook

In this work, we provided a comprehensive description of the application of statisti-
cal learning techniques to reduced-order models of turbulent flows. Interestingly, it
has been shown that different sparsification approaches can recover the correct physics
of the triadic interactions for different flow configurations. Although these techniques
seem to be promising, some avenues still need to be explored to obtain a more complete
understanding and, eventually, apply the sparsification techniques in real-life flow ap-
plications.

From a computational point of view the a posteriori sparsification technique is quite well
understood. The mathematical framework of the l1 based regression is well tested and
computationally efficient algorithms for its solution are available in the vast majority of
machine learning libraries. Conversely, regarding the a priori approach several aspects
deserve further investigation. More specifically, unlike in l1-regression-based sparsifi-
cation methods where the model coefficients are the optimisation variables, here these
coefficients are cubic polynomial functions of the optimisation variables, the entries
of the rotation matrix. The first consequence is that the optimisation problem is non-
convex and many local optima, i.e. many different sets of basis functions, exist. It was
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observed that initial guesses close to the original POD basis, i.e. with good energy rep-
resentation ability, repeatedly converge to the same optimal solution, which has a con-
sistent physical interpretation. However, the lack of strong uniqueness guarantees (as
for many other modal decomposition techniques) may render the approach question-
able. Second, it was shown that it is not possible to shrink to zero an arbitrary number
of coefficients since the link between the basis functions and the Galerkin model must
always be maintained. As a result, the present a priori sparsification technique produces
relatively denser Galerkin models than the a posteriori LASSO-based approach consid-
ered for the same test case. Rotating the original POD basis into higher-dimensional
subspaces, with a ratio M/N higher than that considered in the present work, to fur-
ther increase sparsity is possible, although it would necessarily result in increased com-
putational costs for the optimisation.

From a more physical perspective, it has been shown that for a two-dimensional flow
configuration the sparsification can generate reduced order models with computational
complexity scaling as Na with a < 3 instead of N3, as for the dense models. The inter-
action between sparsification and the physics of the flow is certainly an aspect that de-
serves more investigation. More specifically, it would be of great interest to understand
how the local nature of triadic interactions in three dimensional flows can be used to im-
prove the computational efficiency of Galerkin models affecting only marginally their
prediction capabilities. In addition, it is in the author opinion that the locality of the
interaction in three-dimensional turbulence might be used advantageously to promote
sparsification as the Reynolds number increases making high Reynolds number turbu-
lent flows more prone to sparsification. Due to the complexity of three-dimensional
turbulent flows, this aspect needs to be analysed in a dedicated study but, arguably,
leveraging the flow physics to promote sparsification is the key to develop the next
generation of high Reynolds number flows computational models.

From a more fundamental perspective, the meaning of looking for a sparse basis func-
tion by rotating the original basis function need to be discussed. In this work, it has
been shown that a new basis functions generating Galerkin models with sparse matri-
ces coefficients can be obtained by a small rotation of the original POD basis. However,
it has also been observed that the sparsification is less effective than for the a posteriori
approach. Crucially, the uniqueness of the resulting basis functions cannot be guar-
anteed if the initial guess in the optimisation problem is perturbed enough from the
initial condition. In addition, all the different optimal solutions have been observed to
be only marginally different. This result brings up the question of whether an approach
based on a small modification of an originally dense basis function is the best approach
to promote sparsity in the basis function. A different technique can be developed by
the observation that sparsity of the energetic interactions in modal space results from
flow structure that interacts locally in physical space. Therefore, a possible approach to
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generate a modal basis naturally incorporating the sparsity could be achieved by de-
veloping a methodology that splits up the domain in not-overlapping partitions then
generate a basis function defined only inside these partitions and zero elsewhere. These
locally defined basis functions can naturally incorporate the local nature of flow struc-
ture interactions.

Finally, looking into possible future applications, the author feels to suggest that this
set of methodologies could serve as the key enabler for autonomous air and sea ve-
hicles. Physics–informed models may be integrated into a physical models, for on-
board and real–time applications. In this context, the physical model uses information
derived from a network of sensors embedded in the system, at certain spatial loca-
tions. The measured information drives the reduced-order model which reconstructs
the flow state around the system and feeds the state reconstruction to a mission man-
ager. This type of application is feasible in the near future by integrating commercial
off–the–shelves hardware components into a flying testbed.
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Appendix A

A priori objective function
formulation

This section is dedicated to the formulation of the objective function for the optimisa-
tion problem in the a priori sparsification technique.

A.1 Preliminaries

For sake of generality, we introduce the matrix W containing information about the
mesh (if not uniform) and the space discretisation of the gradient and laplacian opera-
tors. The following relationships hold:

D = UA⊤ (A.1)

I = U⊤WU = AA⊤ (A.2)

Ũ = UX (A.3)

Ã = AX (A.4)

C = D⊤WD = AU⊤WUA⊤ = AA⊤ (A.5)

C̃ = D̃⊤WD̃ = ÃŨ⊤WŨÃ⊤ = ÃX⊤ U⊤WU︸ ︷︷ ︸
I

XÃ⊤ = ÃÃ⊤ (A.6)

A.2 Objective Function Formulation

Recalling that all matrices in the rotated basis are defined with a tilde, we define the
error of the new basis function with respect to the original dataset as E = D − D̃ we
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want to express the mean quadratic error as a function of X. Let’s consider:

Obj =
1

NT
Tr(E⊤WE) =

1
NT

Tr((D − D̃)⊤W(D − D̃)), (A.7)

that can be expanded as follows

Obj =
1

NT
Tr(D⊤WD︸ ︷︷ ︸

I

+ D̃⊤WD̃︸ ︷︷ ︸
I I

−2 D⊤WD̃︸ ︷︷ ︸
I I I

). (A.8)

We break down this expression into three pieces: I,I I and I I I as,

I : D⊤WD = AU⊤WUA⊤ = AA⊤, (A.9)

I I : D̃⊤WD̃ = ÃŨ⊤WŨÃ⊤ = AXX⊤ U⊤WU︸ ︷︷ ︸
I

XX⊤A⊤ = AXX⊤XX⊤A⊤ = AXX⊤A⊤,

(A.10)
I I I : D⊤WD̃ = AU⊤WŨÃ⊤ = AU⊤WUXX⊤A⊤ = AXX⊤A⊤. (A.11)

Exploiting the property of the trace operator of being invariant under circular permu-
tation of its factors we obtain,

Tr(D⊤WD) = Tr(AA⊤) = Tr(A⊤A) = Tr(NTΛ), (A.12)

Tr(D̃⊤WD̃)) = Tr(X⊤A⊤AX), (A.13)

Tr(D⊤WD̃) = Tr(X⊤A⊤AX). (A.14)

Therefore the objective function reads

Obj =
1

NT
(Tr(A⊤A)− Tr(X⊤A⊤AX)), (A.15)

that can be simplified as

Obj =
1

NT
(Tr(A⊤A)− Tr(X⊤A⊤AX)) = Tr(Λ)− Tr(X⊤ΛX)) = Tr(Λ)− Tr(Λ̃).

(A.16)
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Appendix B

Gradients evaluation

B.1 Gradient of the Objective Function

Recalling the definition of the objective function:

Obj = Tr(Λ − X⊤ΛX) (B.1)

Since the eigenvalues matrix is diagonal and Λ⊤ = Λ holds. Its gradient can be easily
computed as:

∂Obj
∂X

= −(Λ⊤ + Λ)X = −2Λ⊤X (B.2)

B.2 Gradient of the stability constraint

The temporal stability constraint is defined as f (X) = 0 where

f (X) = Tr(X⊤LX)− η (B.3)

In the present work the constant η is defined as η = −|tr(L)|η0, with η0 having increas-
ing values starting from 1.

∂ f (X)
∂X

=
∂

∂X
Tr(X⊤LX) =

∂

∂X
(X⊤LX) = (L⊤ + L)X (B.4)

B.3 l1 part of the objective function

The sparsity promoting constraint is defined with the following inequality

g(X) = ||Q̃||1 − c ≤ 0 (B.5)
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The tensor Q̃ is computed as a rotation of the tensor Q as in 4.27. For the sake of
interpretability in the present work we defined the constant c as c = ||Q||1/ξ.

The derivative of the constrain with respect the rotation matrix X is defined as follows

∂g(X)
∂X

=
∂||Q̃ijk||1

∂Xmn
=

∂Q̃ijk

∂Xmn

Q̃ijk

|Q̃ijk|
(B.6)

to compute the derivative of Q̃ijk we proceed computing its variation with respect to a
small variation of X defined as X + dX = X + ϵX

∂Q̃
∂X

= lim
ϵ→0

Q̃(X + ϵX)− Q̃(X)
ϵ

, (B.7)

expanding out this expression in Einstein notation and retaining only the first order
terms in ϵ we obtain:

dQ̃ijk = Qpqr(XpiXqjdXkr + XpiXrkdXjq + XrkXqjdXpi). (B.8)

Exploiting the properties of the Kronecker’s delta dXkr = dXmnδkmδrm to rewrite the
variations with respect the indexes m, n, expression (B.8) can be rewritten as:

dQ̃ijk =
∂Q̃ijk

∂Xmn
dXmn = Qpqr(XpiXqjδkmδrm + XpiXrkδjnδqm + XrkXqjδinδpm)dXmn, (B.9)

that after some algebra becomes,

∂Q̃ijk

∂Xmn
= Qpqr(XpiXqjδknδrm + XpiXrkδjnδqm + XrkXqjδinδpm) (B.10)

Plugging this expression in (B.3) we obtain the analytical expression of the gradient of
the sparsity promoting constraint. Crucially, in this formulation of the a priori sparsi-
fication all the gradients are known and easily evaluating analytically enabling good
scalability of the a priori algorithm to reduced-order models of medium to large sizes.
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Appendix C

Equivalence between momentum
and energy LASSO

In this section, it is shown how to rewrite the LASSO problem in terms of the energy
equation and we will prove that the solutions of the lasso in terms of the energy equa-
tion and of the momentum equation are equivalent. First, we recall the definition of the
momentum and energy equation in modal space.

ȧi(t) = Ci +
N

∑
j=1

Lijaj(t) +
N

∑
j=1

N

∑
k=1

Qijkaj(t)ak(t) i = 1 . . . , N, (C.1)

and

ėi(t) = Ciai(t) +
N

∑
j=1

Lijai(t)aj(t) +
N

∑
j=1

N

∑
k=1

Qijkai(t)aj(t)ak(t), i = 1, . . . , N, (C.2)

with ėi(t) = ai(t)ȧi(t).

We have already shown that (C.1) can be rewritten in matrix form defining the modal
acceleration matrix Ȧ (whose column is defined as Ȧi) and the database matrix Θ(A).
To rewrite (C.2) in a way formally identical to (4.22) we defined the column-wise mul-
tiplication operator ⊠ that given a vector v = [v1 v2 v3] and a matrix M ∈ ℜ3×3

defined as:

v ⊠ M =

v1 0 0
0 v2 0
0 0 v3


m11 m12 m13

m21 m22 m23

m31 m32 m33

 =

v1a11 v1a12 v1a13

v2a21 v2a22 v2a23

v3a31 v3a32 v3a33

 . (C.3)

In the present case, the vector v is the modal oscillating amplitude Ai while the matrix
M is the modal acceleration matrix Ȧi, for the right-hand side, and the database matrix
Θ(A), for the left-hand side, respectively. The energy equation can be rewritten in
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matrix form for each mode exploiting the properties of the operator ⊠ and the matrices
Ȧi and Θ(A).

Ai ⊠ (Ȧi − Θ(A)βi) = 0, i = 1, . . . , N. (C.4)

Therefore the LASSO problem can be formulated as

min
βi

||ΘE(A)βi − Ėi||22 + γi||βi||1, i = 1, ..., N, (C.5)

with Ėi = Ai ⊠ Ȧi and ΘE = Ai ⊠ Θ.

Since the solution of the LASSO can be computed as iteratively thresholded least-
squares we can compute analytically the solution of the least square part as:

∂

∂βi
||ΘE(A)βi − Ėi||22 = 0 (C.6)

since the ⊠ satisfies the distributive property and it is orthogonal with respect to the
∂/∂βi operator, the following relation holds

||Ai||22 ⊠
∂

∂βi
||Θ(A)βi − Ȧi||22 = 0. (C.7)

The former expression has solution βi = (Θ⊤Θ)−1Θ⊤Ȧi. Therefore performing LASSO
regression and on the energy equation bring to the same solution for βi. Geometrically,
it can be shown that, the solution to the LASSO problem for the energy equation is
equivalent to the one of the momentum equation, since the value of the gradient is
scaled mode by mode by the modal amplitude ||Ai||22 but the location of the minima in
βi space is preserved.
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Appendix D

About the definition of the sparsity
promoting constraint

An aspect of paramount importance, in the development of the a priori sparsification
algorithm, is the definition of the sparsity promoting constraint (4.35b). The philoso-
phy of this approach is to obtain a sparse approximation of the tensor Q exploiting the
idea that a set of dominant energy interactions exists in N. To this goal, in the formu-
lation presented in this work, an optimisation problem with an inequality constraint
on the l1 norm of the rotated quadratic interaction tensor Q̃ is solved. However, other
approaches are possible and, in a preliminary phase of this work, a formulation based
on the penalisation of the rotated triadic interaction tensor Ñijk = Q̃ijk ãi ãj ãk was tested.
The formulation of the new problem is totally analogous to the formulation (4.30) with
the only difference of a sparsity promoting constraint defined with respect to the triadic
interaction tensor N instead of Q as

||Ñ||1 ≤ ξ−1||N||1 (D.1)

Analogously, to what was done before to understand the role of this constraint in the
solution of problem (4.35) we consider a small reduced-order model of the lid-driven
cavity flow at Re = 2 × 104. Thus we visualise the effects of the rotation varying two
entries of X without solving the optimisation problem (4.35). Panel (a) in figure D.1
shows the contours of ||Ñ||1/||N||1. Similarly to what observed in figure 6.1 the con-
straint displays several valley of local minima arising from non-convex, non-smooth
nature of the quantity ||Ñ||1. To better visualise this feature in panel (b) two horizontal
and one vertical cut (corresponding to the lines drawn in panel (a)) are displayed. As
observed previously in figure 6.1-(b,c) each minimum has a discontinuous first deriva-
tive corresponding to one of more entries of Ñijk changing sign. The general idea is
completely analogous to the one illustrated in figure 6.1 for the sparsification of Q̃. The
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FIGURE D.1: Panel (a): map of ||Ñijk||1/||Nijk||1 projected on the X12 − X23 plane.
Panel (b): Value of ||Ñijk||1/||Nijk||1 along three different cuts corresponding to the

line drawn in panel (a).
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FIGURE D.2: Panel (a): value of the density defined with respect to the tensor Q and
the tensor N against the inverse of the regularisation weight ξ−1. Panel (b): Value of

the l1 norm for Q̃ijk,Ñijk and Ãijk = ãi ãj ãk.

increase of the penalisation weight ξ−1 pushes ||Ñ||1 closer to its minima and conse-
quently one or more of its entries Ñijk are shrunk to zero due to the non-differentiable
nature of the l1 norm. From the computational point of view all the considerations done
in section 4.3.2 are still valid, since the triadic interaction tensor can be written as ele-
ment to element multiplication of the two tensors Q̃ijk and Ãijk = ãi ãj ãk. The gradient
is the derivative of a product and can be computed as

∂Ñijk

∂Xmn
=

∂Q̃ijk

∂Xmn
ãi ãj ãk + Q̃ijk

∂ãi ãj ãk

∂Xmn
, (D.2)

Consequently, all the operations considered in section 4.3.2 need to be performed twice
since two different third order tensors are involved. Thus, the scaling in the function
of M, N of the computational cost is analogous to the one discussed previously for the
definition of the sparsity constraint in terms of Q. To better understand how the intro-
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duction of this sparsity promoting constraint affects the solution of (4.35), we solved
the problem with the constraint (D.1) with N = 30, M/N = 2 and increasing values
of the penalisation weight ξ. Figure D.2-(a) shows the density ρ as defined in (4.36)
of the tensors Q and N called ρQ and ρN , respectively. It can be observed that only
the tensor Ñ is effectively sparsified while the density of Q̃ does not vary appreciably
while increasing the penalisation ξ−1. Figure D.2-(b) shows the l1 norm of Q̃,Ñ and
Ãijk = ãi ãj ãk normalised with respect to the original value to visualise the decrease in
percentage with respect the starting point X0 = I. Interestingly, we observe that the op-
timisation decreases the value of Ñ affects, in relative terms, considerably Ã and only
marginally Q̃. Arguably, this is the reason why N is much more effectively sparsified
with respect to Q when the optimisation problem is solved. In the light of these results,
it has been chosen not to pursue this formulation since we are aiming to generate a re-
duced order model with a sparse structure of the Q. A sparsification of only the tensor
Nijk would not produce any gain neither for the interpretability of the system nor in
computational costs. Nevertheless, this example shows the flexibility of the subspace
rotation approach and how it can be used to enforce/extract physical features from the
mathematical structure of reduced-order models.
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Pierre Comte, and Gilead Tadmor. A finite-time thermodynamics of unsteady fluid
flows. Journal of Non-Equilibrium Thermodynamics, 33(2):103–148, 2008.

K. Ohkitani. Nonlocality in a forced two-dimensional turbulence. Physics of Fluids A:
Fluid Dynamics, 2(9):1529–1531, 1990.
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