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Abstract

Historically the Teukolsky equation corresponding to gravitational perturbations, such as
a point particle in a background Kerr spacetime, is solved for Weyl-like scalars. However,
reconstructing the metric from these scalars involves solving a fourth-order PDE to obtain
the Hertz potential and then acting with a second-order differential operator to construct
the metric perturbation. Solving the (adjoint) Teukolsky equation for the Hertz potential
directly simplifies the metric reconstruction procedure to applying the second-order oper-
ator. We discuss using this method in the time domain with a point particle source and
its foreseeable application in self-force calculations.

Figure 1: An artist’s impression of the spacetime of an extreme-mass-ratio inspiral. Credit: NASA

Vacuum Metric Reconstruction

Consider a metric perturbation h such that it obeys Êh = 0 where the operator Ê is the
linearised Einstein operator. There exists Weyl-like curvature scalars Ψ± which satisfy
Ô±Ψ± = 0, where Ô± is the ±2 Teukolsky operator. These scalars can be obtained from
h using second-order differential operators T̂± such that T̂±h = Ψ±.
However, the conditions above do not constrain the solutions such that h is the physical
metric perturbation. The Hertz potential Φ± is introduced such that the field solves the
adjoint1 Teukolsky equation Ô†±Φ± = Ô∓Φ± = 0.
Let Ŝ± be the operators that take the linearised Einstein’s equations into the Teukolsky
equations with spin ±2 such that Ŝ±Êh = Ô±Ψ±. It can be shown that

h± := Ŝ†±Φ± (1)

are two solutions of the linearised Einstein equations. The form of Ŝ†± returns h+ and h−
in the ingoing radiation gauge (IRG) and outgoing radiation gauge (ORG) respectively. h
can be determined from h± by adding known gauge and completion pieces [1]. In order
for h± to give the original perturbation h, it still has to be true that T̂±h

+ = Ψ± (IRG)
and T̂±h

− = Ψ± (ORG). This leads to the relations

T̂±Ŝ
†
+Φ+ = Ψ± (IRG), (2)

T̂±Ŝ
†
−Φ− = Ψ± (ORG). (3)

These are relations between the Hertz potential and the Weyl-like curvature scalars.
Given a Weyl-like curvature scalar in IRG (or ORG) it is now possible to reconstruct the
metric perturbation. First (2) (or (3)) is used to construct Φ+ (or Φ−) then (1) is used to
construct h+ (or h−). The gauge and completion pieces can then be added to give h.

1 For a linear operator L̂ taking an n-rank tensor field φ to an m-rank tensor field ψ, the adjoint L̂† takes ψ to φ and is

defined via ψ(L̂φ)− (L̂†ψ)φ = sα;α, where sα is an arbitrary vector field.

Point-Particle No-String Solution

If a source is present in the spacetime, the above vacuum procedure can fail to return a
valid metric perturbation solution. If a point particle is present, the reconstructed metric
contains a radial string-like singularity from the particle [2]. These solutions can be radially
inward or outwards (‘half-string’ solutions) or both (‘full-string’ solutions). The singular-
ities can be removed by combining two half-string solutions as shown in Figure 2. The
regular parts of both domains are taken and combined to give a no-string solution which
is regular except for at the particle’s radius r = rp where there are gauge discontinuities.

Figure 2: Pictorial representations of the two half-string (left and centre) and no-string (right) solutions.
The radial string singularities in the reconstructed metric are represented by the red jagged line.

Solving for the Hertz Potential

Solving for the Hertz potential is advantageous as the metric reconstruction procedure
only requires one second-order differential operator whereas the Weyl-like scalars require
an extra fourth-order PDE to be solved.
In Schwarzschild, the Teukolsky equation can be separated into modes using the spin-
weighted spherical harmonics sYlm which contain all the angular dependence of the equa-
tion. The time-radial part of the field φlm can then be solved mode by mode as the equation
has the form

φlm,uv + U(r)φlm,u + V (r)φlm,v + W (l, r)φlm = 0, (4)

where u and v are the double-null Eddington-Finkelstein coordinates [3]. The Kerr case is
more complicated as there is an added coupling term between the different l modes.
The Hertz potential solutions are uniquely determined by the jump conditions across the
particle’s trajectory. The jump conditions are derived from the source of the Teukolsky
equation by considering the differences in the field on either side of r = rp.

Numerical Implementation

Figure 3: The double-null grid in (u, v) coordinates. The vertical dashed line represents the particle’s
worldline for a circular orbit. Initial conditions are present on the slices u = u0 and v = v0.

A numerical code has been implemented in the circular orbit case to solve the spin -2
Teukolsky equation for the Hertz potential on a Schwarzschild background. The code uses
a finite difference scheme on slices of constant u and v as shown in Figure 3. The initial
conditions used are arbitrary as any response from the finite difference scheme to the data
decays sufficiently quickly such that the so-called junk initial data can just be discarded.
The majority of the points in the null grid solve for the vacuum Teukolsky equation but
points near the orbit of the particle require a more careful treatment due to the no-string
solution combining fields from different gauges.

Sample Results

Figure 4: Plots comparing the results of the numerical code for static modes of circular orbits in
Schwarzschild. Left: Data from different l modes with the same grid spacing. Right: Data from the
l = 2 mode with varying grid spacing.

The left plot of Figure 4 shows plots of the field values for static modes (m = 0) with
different values of l. In each case the numerical data converges to the analytic solution
after the decay of the junk data caused by the arbitrary initial conditions. The right plot of
Figure 4 shows the results for numerical runs with different values for the distance between
the grid points h. As h is decreased, there are more points in the grid which means the
calculated value should converge to the true value as shown in the plot.

Future Applications

The code is to be extended to calculate the Hertz potential for generic orbits in
Schwarzschild with an emphasis on scattering orbits. The ultimate goal is to calculate
scattering angles with self-force corrections in Schwarzschild. After this, the method will
be extended to Kerr.
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