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Networks

by Stella Louise Harrison

The semiconductor-microcavity polariton is the resulting quasi-particle from strong
coupling between a quantum well exciton and cavity photon. With the cavity
wavelength similar to that of the photon, the exciton-polariton (herein polariton)
eigenstates come into play. Due to their light effective mass alongside the particle’s
bosonic nature, polaritons undergo Bose-Einstein condensation (BEC) at high densities
when below the critical condensation temperature. Unlike the traditional BEC phase
transition of an atomic gas, the BEC of polaritons can be attained at much higher
temperatures of 4 K up to room temperature. The work in this thesis specifically
studies polariton condensates formed in inorganic semiconductor microcavities
optically imprinted with ring or elliptical shaped traps. Such an excitation profile
creates a potential minimum at the centre which is radially fed by polaritons. The
polaritons build in population and undergo a quantum phase transition to form a
polariton condensate spatially separated from the excitation profile.

In this thesis, optically trapped polariton condensates are used to create a
synchronised condensate network, which is initially characterised using two ground
state condensates to map out regions of in-phase and anti-phase synchronisation, and
through describing the system as a Stuart-Landau network, the system presents as a
robust optical analogue simulator of the XY Hamiltonian. The system is then used to
approximately solve the NP-hard max-3-cut graph problem through minimising the
XY Hamiltonian, and the minor embedding technique is explored and characterised by
mapping arbitrarily connected dense graphs to experimentally-achievable planar
networks of Stuart-Landau oscillators. Next, the optically trapped first excited state
polariton condensate is explored via a rotating quasi-elliptical trap where quantised
vortices are observed with a deterministic rotation direction, as well as a continuous
chain of excited-state condensates which exhibit geometric frustration described using
Bloch’s theorem and likened to twisted states from the Kuramoto model, where the
network of excited state condensates has potential as a 4D analogue simulator.
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the century. Completing a PhD during a global pandemic has definitely had its
hurdles. From going in to an office full of other PhD students and postdocs everyday
for the first year and a half of my PhD journey, sharing ideas over coffee breaks, having
group trips out for lunch or to the pub, to working from home and legally not being
allowed to leave the house for anything more than exercise or essential groceries. This
for sure has taken its toll both scientifically and emotionally. Seeing my first paper get
published in the first few weeks of lockdown really motivated me to press on with the
next project, which certainly took longer than expected and in fact has only just been
published. Without the bustle of colleagues around you when working from home,
there is no yardstick to compare if you’re working long enough or hard enough and
there were times in the depths of lockdown where I felt so detached from the research
group, but also like I should be working at all times, as my desk was sitting pride of
place in the living room. Having spoken to others about their lockdown experiences, it
is clear that these feelings were pretty widespread and for me they are definitely
dissipating now that we are able to meet in-person again.

I am very fortunate that as a numerical modeller and theoretician, my ability to work
has not physically been hindered by working from home, as I know has been the case
for so many friends and colleagues. That being said, research is a group activity that
thrives on continuous conversation which without the water cooler (or rather coffee
machine) chat, we have all missed out on scientific advances in our fields. Now in
March 2022, compulsory mask wearing has been dropped, but we are still swabbing
our nose and throat out of fear of spreading the virus to the vulnerable. This month I
have also had my first in-person meeting with Pavlos and the Southampton group in
two years, though I am still working from home despite these occasional trips to
Southampton. The world is slowly re-setting to its new-normal, but for sure, these are
still “strange times”.
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Chapter 1

Introduction to Polaritonics

1.1 Exciton-Polaritons

In 1972, Charles H. Henry worked on the fabrication of optical circuits and integrated
chips, a field in which waveguides were commonly used. At this time, waveguides were
a purely optical tool until Henry made the discovery that a sandwich of
semiconductors (or “heterostructure”) was not only a waveguide for light, but also for
electrons. Drawing upon the principles of quantum mechanics, he made the complete
analogy between the confinement of light by a waveguide and the confinement of
electrons by the potential well formed by the difference in bandgap energies of the
different heterostructure layers [5]. The electron wavefunction also showed discrete
unique energy modes, as seen with confined light, with observable energy level splitting
when the heterostructure active layer was just a few tens of nanometres thick [5]. This
structure is now known as a “quantum well”, and although Henry developed the first
patented quantum effect heterostructure [6], it was in fact simultaneously first
proposed in 1963 by Herbert Kroemer (in Proceedings of the IEEE [7]) as well as
Zhores Alferov and Rudolf Kazarinov (for the USSR [8]), where both Kroemer and
Alferov received a Nobel Prize in 2000 for this invention [9].

Semiconductor heterostructures are common place in modern day solid state physics
and underpin many modern technologies such as laser-based communication, LEDs
and bipolar transistors. In fact, in Alferov’s Nobel, he pointed out that at turn of the
century, semiconductor heterostructures made up two-thirds of the research matter in
semiconductor physics [10]. When quantum wells (QWs) are sandwiched within a
miniature Fabry-Pérot cavity, such that the cavity spacer confinement length is
equivalent to the wavelength of light (less than 100 µm [1]), the resulting ‘microcavity’
leads to the formation of the exciton-polariton (herein polariton) quasi-particle [1]. Due
to the strong coupling of the cavity photon and QW exciton, both confined within the
microcavity, the two particles undergo normal mode splitting and result in the upper
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and lower polariton eigenstates. Each are displaced in energy by ±h̄Ω respectively
from the bare exciton and cavity photon modes, where Ω is the Rabi frequency of the
energy splitting [11]. This chapter sets out the building blocks of microcavity
polaritonics starting from the confinement of the quasi-particle’s constituent parts, to
the 2D Bose-Einstein condensation of planar microcavity polaritons.

1.1.1 Electrons in a Solid

The energy of electrons within an ideal crystaline solid with a periodic atom
arrangement is described by a Hamiltonian that includes the kinetic energy of every
electron and nucleus, plus the potential energy of all electron-electron interactions,
electron-nucleus interactions and nucleus-nucleus interactions following [12],

H = −
∑
i

h̄2

2me
∇2
i −

∑
a

h̄2

2M∇2
a+

1
2
∑
i 6=j

U1(ri−rj)+
∑
i,a
U2(ri−R)+

1
2
∑
a6=b

U3(Ra−Rb)

(1.1)

where Un for n ∈ {1, 2, 3} are the three respective potentials mentioned above. For the
electron and nucleus respectively, their masses are me and M with position vectors r
and R and particle labels i, j and a, b. Note that the factor of 1/2 in the terms
containing U1 and U3 is simply to counteract the fact that each inter-particle
interaction is counted twice in the sum of each term.

Clearly, it is not possible to solve Equation 1.1 for macroscopic quantities of a crystal
(around N ' 1023 atoms), as the dimension of the Hilbert space of the electrons grows
O(2N ) (compared to O(N) for classical interacting bodies). However, by applying the
Born-Oppenheimer approximation [13] and the Hartree-Fock method of the
self-consistent field approximation [14, 15], this reduces to1:

− h̄2

2me
∇2ψ+ U(r)ψ = Eψ (1.2)

where U(r) is some periodic potential with height U0 that results from the interaction
of each valent electron with every other valent electron and every ion in the crystal
lattice.

Considering a 1D structure, due to the periodic potential of U(x) with lattice constant
a, the potential satisfies the translation x → x+ a, such that U(x) = U(x+ a) [12], as

1The Born-Oppenheimer approximation gives the assumption that the mass of the nucleus is much
larger than the mass of the electron such that the nuclei are considered to be stationary. The self-
consistent field approximation assumes that under certain conditions, a problem containing many par-
ticles can be reduced to a set of single particle problems.
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shown in blue in Figure 1.1. The Schrödinger equation under this translation becomes:

− h̄2

2me
∇2ψ(x+ a) + U(x)ψ(x+ a) = Eψ(x+ a) (1.3)

where the solutions of Equation 1.3 and Equation 1.2 satisfy the same Schrödinger
equation with the same eigenvalues E. If the eigenvalues are non-degenerate, then
ψ(x) and ψ(a+ x) can only differ by some constant coefficient ψ(x+ a) = cψ(x),
which when both wavefunction are normalised becomes |c|2 = 1. That is to say, the
probability of finding a particle at some position ∆x from x is the same as finding a
particle at position ∆x from x+ a, therefore the spatial distribution of particles is
periodic with the same lattice constant a [12].

Considering now two translations of a, we have:

ψ(x+ a1 + a2) = c1c2ψ(x) = c1+2ψ(x) (1.4)

as an = na and a1 + a2 = a3. This gives the solution cn = eikan , where k can take any
value. In other words, the eigenfunction of a Hamiltonian with periodic potential is a
plane wave modulated by the same lattice constant a (Bloch’s theorem) [1, 12, 16, 17].

In reciprocal space, the lattice periodicity is given by the reciprocal lattice vector
g = 2π

a . Due to the system’s translational symmetry, if any two wavevectors in
reciprocal space differ by ki − kj =

2π
a n (where n is an integer), then they are

equivalent. Therefore, any interval of k with width 2π
a contains the full set of

non-equivalent wavevectors and is known as the “Brillouin zone” [12, 16, 17]. This is
shown by the grey region in Figure 1.2. Typically the Brillouin zone is chosen such
that the ion cores are at the zone boundaries (k = ±π

a ), at which point the electron
wave propagations are reflected. In turn, the electron wavefunction is a standing wave
due to the many forwards and backwards propagating electrons from the many
reflections in the periodic structure [17].

To solve the Schrödinger equation for this periodic potential, the wavefunction can no
longer be treated as a plane wave, but instead a sum of plane waves with a set of
amplitudes {c−∞, · · · , c0, c1, c2, · · · , c∞},

ψ =
∞∑

p=−∞
cpe

ipx (1.5)

where the amplitudes cp and the corresponding energies for each of the allowed
wavefunctions of the periodic lattice can be calculated. By substituting Equation 1.5
into Equation 1.2 and by multiplying by

∫
e−ikxdx, through orthogonality of plane

waves we see that wave k is now coupled to the waves k± g with coupling strength U0
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(the height of the periodic potential) [17],

Eck =
h̄2k2

2m ck + U0(ck−g + ck+g). (1.6)

For the forward propagating wave (k) and back reflected wave (k− g), their energies
are the same at the edge of the Brillouin zone [17]. The wave energies are described by
the Schödinger equations, (

h̄2k2

2m −E

)
ck + U0ck−g = 0, (1.7)

(
h̄2(k− g)2

2m −E

)
ck−g + U0ck = 0, (1.8)

which in matrix form are written as

 h̄2k2

2m −E U0

U0
h̄2(k−g)2

2m −E

( ck

ck−g

)
= 0 (1.9)

with eigenenergies,

E =
1
2

(
h̄2k2

2m +
h̄2(k− g)2

2m

)
±

√√√√( h̄2k2

2m − h̄2(k− g)2

2m

)2

+ U2
0 . (1.10)

If the two bare wave energies are equal, such as at the Brillouin zone edges with
h̄2k2

2m = h̄2(k−g)2

2m , their eigenenergies become E± = h̄2k2

2m ± U0 with k = g
2 = π

a . That is
to say, two free electrons with the same kinetic energy will undergo an energy splitting
of ±U0 at the Brillouin zone boundaries in the bulk structure due to the steep periodic
potential from the ion cores. This leads to a forbidden zone of height 2U0 in energy at
the Brillouin zone edges in which no propagating waves can exist. These two energy

+ + + +
2

a

Figure 1.1: Schematic of a 1D crystal with lattice constant (nuclei spacing) a showing
the periodic ionic potential (blue), and the spatial wavefunctions of the electron bands

ψ+ (green) and ψ− (red) that are split in energy by 2U0.
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states correspond to the standing waves with electrons most probable at the ion cores
(ψ−), or in-between the ions (ψ+), as shown in Figure 1.1. The former is lower in
energy as the electrons see a larger electrostatic potential attraction, whereas the latter
leaves the electrons feeling a weaker attraction leading to a higher energy [17].

The electron energy spectrum consists of bands separated by forbidden zone gaps (see
Figure 1.2). Depending on the electron occupancy in each band, different material
properties are achieved. For a partially filled band, the material has metallic
properties. For a fully occupied or completely free band, the material has dielectric
properties as electrons cannot provide conductivity due to the Pauli exclusion principal
(one electron per state) [12, 17]. If such a dielectric material is excited with energy
≥ 2U0 (e.g. from thermal or photonic excitation), an electron can be removed from the
lower band and excited to the higher energy band, leaving behind an electron “hole”
characterised by a positive charge +e. In this case, the material is classed as a
semiconductor. In a semiconductor, the highest energy fully occupied band is labelled
as the valence band, and the lowest energy band that is not fully occupied is the
conduction band. The interval between the top of the valence band, Ev, and bottom of
the conduction band, Ec, is labelled as the bandgap energy Eg. If Ev,c occur at the
same k, the material is said to have a direct-bandgap [12].

Brillouin zone

Energy

kx
Valence band

Conduction band

Eg = 2Forbidden zone

Figure 1.2: Dispersion of the valence band (blue) and conduction band (red) within
the Brillouin zone (light grey region), which are split away from the bare electron disper-
sions (dashed black parabolas) by 2U0 at the edges of the Brillouin zone, corresponding
to the bandgap energy of a semiconductor, Eg. The forbidden zone is shown in dark
grey and maps out the region where no electron branch exists between the top of the

valence band and bottom of the conduction band.

1.1.2 Excitons

In order to study the dynamics of large many particle systems more easily, ensembles
of interacting particles are often replaced with a smaller number of non-interacting
quasi-particles [12]. In semiconductor physics, the exciton is a quasi-particle formed
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from the Coulomb coupling of a conduction band electron and valence band hole
within a semiconductor, where the classification of an exciton is further made
depending on the strength of the Coulomb interaction.

In the case of strong Coulomb coupling between the electron and hole (binding energy
typically 0.1 - 1 eV), the quasi-particle is classed as a “Frenkel Exciton” [18]. This
strong coupling results in a tightly bound exciton with a radius comparable to the
atomic spacing of the semiconductor lattice. Frenkel excitons are common in ionically
bonded compounds, halides or organic semiconductors [1]. “Wannier-Mott excitons”
on the other hand have a binding energy much less than that of a hydrogen atom (on
the order of 0.01 eV) and span across multiple lattice sites [19, 20]. As the exciton is
not localised it can propagate across a lattice [1]. In turn, the Wannier-Mott exciton
corresponds to a Hydrogen-like bound state with a comparable Hamiltonian [12]:

H = − h̄2

2m∗
e

∇2
e − h̄2

2m∗
h

∇2
h − e2

ε|re − rh|
(1.11)

with effective electron and hole masses m∗
e,h, electron and hole separation distance

|re − rh| and dielectric constant ε 6= 1. Drawing a further comparison to the Hydrogen
atom, the exciton can be described by a Bohr-like radius αB =

(m∗
e+m

∗
h)

2

m∗2
e m

∗2
h

εh̄2

e2 and

Rydberg energy (minimum energy required to ionise the exciton) Rχ = e2

2εaB [12, 1].
Due to the neutral charge of the exciton, the free motion of the quasi-particle with
effective mass mχ = m∗

e +m∗
h follows:

Eχn(k) = Eg − Rχ
n2 +

h̄2k2

2mχ
, (1.12)

where k is the momentum of the propagating exciton through the bulk semiconductor.

1.1.2.1 Excitons in Quantum Wells

As mentioned at the start of this chapter, QWs are heterostructure consisting of a thin
semiconductor layer sandwiched within a higher bandgap material in order to confine
carriers perpendicular to the slice, but allowing free propagation in the 2D plane of the
QW. The bulk structure of GaAs (a semiconductor material commonly used in
inorganic polaritonics with a direct bandgap) leads to an exciton Bohr radius of
∼12.5 nm, making it possible to create a periodic potential of a similar size, thus
confining excitons in three dimensions. For a GaAs QW however, there are two main
excitonic differences to the bulk structure. Firstly, size. The GaAs exciton diameter is
smaller when confined within a QW of a few tens of nanometres. Interestingly, the
exciton is in fact smaller in the plane of the QW too, as this requires a lower kinetic
energy than a pancake-shaped exciton [21]. Taking the 2D limit of the hydrogen atom
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and assuming infinitely high potential confinement in the QW, the resulting exciton
diameter is reduced by a half [1, 22]. Secondly, due to the close proximity of the
electron and hole in 2D, the binding energy of the 2D exciton is four times stronger
than in 3D [1, 22]. This results in an exciton wavefunction that has a tighter overlap
between the electron and hole counterparts, leading to a well-defined exciton
resonance [21].

1.1.2.2 Exciton Spin-Orbit Coupling

For zincblende semiconductors (2 face-centred cubic structures displaced by a
4 (x̂, ŷ, ẑ))

with a direct bandgap near the centre of the Brillouin zone [1, 21], such is the case for
a GaAs QW, the electrons form an S-like conduction band and the holes configure into
two P-like valence bands with azimuthal quantum numbers ` = 0 and 1 for the S-like
and P-like bands respectively, where both electrons and holes have the same spin
s = 1/2. Considering first the conduction band, the total angular momentum of the
electrons is j = |`+ s| = |`− s| = 1/2, with the projection along the z-axis of
mj = ±1/2. Taking into account the spin orbit coupling of the valence bands, the
resulting total angular momenta of the electron holes are j = 3/2 and j = 1/2 with
mj = {±3/2, ±1/2} and mj = {±1/2} respectively. The states |j;mj〉 = |1/2; ±1/2〉
(known as the “split off” band) are at a lower energy so have negligible interaction with
the conduction band and will be neglected for the rest of the discussion on excitons.
The states |3/2; ±3/2, ±1/2〉, (labelled as heavy holes (hh) with mj = {±3/2} and
light holes (lh) with mj = {±1/2}) do however interact with the conduction band and
play a vital role in exciton formation. Each |j;mj〉 state of the conduction and valence
bands interacts (see Figure 1.3), where the resulting state is given by the sum of the
mj components of each particle. However only the resulting states with mj = {±1}
can be excited by light or can recombine by emitting a photon (mj = ±1) and thus are
labelled “bright excitons” (coloured arrows in Figure 1.3). The other states
(mj = {0, ±2}) are categorised as “dark excitons” as they are optically inactive and do
not efficiently couple to light [23, 24] (black arrows in Figure 1.3).

For example, the coupling of lh state |3/2; 1/2〉 with electron state |1/2; 1/2〉 leads to
the lh exciton state |3/2;+1〉, which can couple to right-circularly polarised light with
mj = +1. Alternatively, hh state |3/2; −3/2〉 and electron state |1/2; −1/2〉 lead to
the hh exciton state |3/2; −2〉. As mj = −2, it is not able to couple to a photon (with
mj = ±1), and so we label it as a “dark exciton”. As a result, these states will also be
neglected for rest of this discussion, as in subsection 1.1.4 we will be considering the
coupling of excitons with microcavity photons. Note that the resulting spin projections
are integers for both dark and bright excitons, indicating that the strong dipole
coupling of the fermionic electron and hole (characterised by half-integer spin) results
in a quasi-particle that is bosonic in nature.
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At k = 0 in the dispersion, within a bulk material the hh states (with mj = {±3/2})
and lh states (with mj = {±1/2}) are degenerate [21, 25, 26]. However in the 2D
limit, such is the case with QWs, the degeneracy is lifted due to the quantum
confinement in the growth direction and the band mixing between the two states
results in a hh-lh energy splitting ∆hh−lh, where the lh band drops below the hh band
in energy. The system undergoes the phenomenon of “mass reversal” where the hh and
lh characteristics are reversed, in other words the hh states have a smaller effective
mass of in-plane motion compared to the lh states [25, 26, 27]. As such, only the hh
band is occupied as it is closer to the conduction band in energy [27], i.e. only the hh
exciton states |3/2; ±1〉 make up the optically-active exciton spectrum.

Figure 1.3: QW transition between conduction band electrons (e) in top row with
valence band heavy holes (hh) and light holes (lh) in lower row with total angular
momentum j and angular momentum projected along the z-axis mj . Optically active
exciton quasi-particles (i.e. with mj = ±1) are indicated by red and blue arrows
respectively, with a corresponding ability to couple with σ± polarised light. Dark
excitons shown by black arrows, where solid and dashed lines represent mj = 0 and

|mj | = 2 respectively.

1.1.3 Cavity Photons

This work concerns 1D confinement within a Fabry-Pérot cavity, although confinement
is possible in up to three dimensions [1]. The Fabry-Pérot cavity is an optical
resonator where the cavity length is equivalent to its confinement wavelength. In order
to have a high level of confinement, the reflectivity of the cavity walls must be
maximised where silver mirrors, which are used for standard reflection processes, are
not sufficient. Instead distributed Bragg reflectors (DBRs) are used and consist of
stacked pairs of thin layers of material alternating in relatively high and low refractive
indices (nh,l) in order to maximise the magnitude of the reflection coefficient at the
layer interfaces (see Figure 1.4(d)), where each layer has an optical thickness of λBragg

4 .
Here, λBragg is the central wavelength that the DBRs are designed to confine and the
whole region of wavelengths that experience high reflectivity from the DBR is known
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as the photonic stopband (central ∼100 nm region at centre of Figure 1.4(a-c)). Light
of wavelength λBragg will reflect at each DBR boundary, where at the interfaces of
high-to-low refractive indices it will gain a π phase shift (interpreted as a negative
reflection coefficient, as shown in Figure 1.4(c)). Therefore, the round-trip of the light
through one DBR layer is λBragg

2 where the reflection of each stacked DBR layer
interferes constructively and the overall reflectivity can be increased to nearly 100% if
many DBRs are stacked together, as shown in Figure 1.4(a).

By bringing two DBR stacks together, separated by a cavity spacer with optical length
Lc = ncdc, refractive index nc and thickness dc, certain wavelengths will resonate
within the cavity. These resonant cavity modes, defined by λm = 2Lc/m (m ∈ Z+),
will experience strong suppression in reflectivity within the cavity stopband, as shown
by the sharp dip at 807nm in Figure 1.4(b). The energy gap between the resonant
modes is inversely proportional to the cavities optical length following ∆ωc = cπ/Lc,
therefore the use of cavities with a small optical length, or “microcavities”, ensures
that only one resonant mode is present within the DBR stopband [1]. The width of the
resonance peak is defined by Q-factor Q = ωc/δωc where δωc is the FWHM of the
mode. Although this microcavity structure confines quantised wavevectors at a normal
to the DBR surface (k⊥), a continuous range of wave vectors are accessible in-plane to
the microcavity (k‖ =

√
k2
x + k2

y) and map out a parabolic dispersion with varying k‖,
which indicates that the cavity photons have gained an effective mass due to the
confinement in the microcavity’s growth direction.

(a)

(b)

(c)

(d)

12

Figure 1.4: Reflectivity spectra of (a) DBR of 20 pairs of GaAs and AlAs layers with
λBragg = 807nm, (b) 5λBragg

2 GaAs Fabry-Pérot cavity confined by two stacks of the 20
DBR pairs, and (c) same cavity as (b) with an InGaAs QW at the centre. (d) Amplitude
reflection coefficient, r12, at interface of materials transferring from refractive index n1

to n2, where r12 = n1−n2
n1+n2

[1].

The reflectivity spectra in Figure 1.4 are calculated using the transfer matrix method
[1, 28] by multiplying the reflection matrices from each interface of material i to j (Tij)
and propagation matrices through each layer of material i (Ti) following [29]:
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Tij =
1

1 + rij

(
1 rij

rij 1

)
(1.13)

Ti =

(
eiφi 0
0 e−iφi

)
(1.14)

where r is the amplitude-reflection coefficient giving the ratio of reflected and incident
amplitudes of light, and φi =

2πdni
λ is the phase rotation gained by the light with

wavelength λ propagating over distance d through material i with refractive index ni.
The effective transfer matrix TM is the resultant product of all the matrices across all
N layers and N − 1 interfaces:

TM =

(
t11 t12

t21 t22

)
= TNTN−1,N , · · · ,T1,2T1 (1.15)

giving the final reflectivity R = |r|2 =
∣∣∣ t21
t22

∣∣∣2 at wavelength λ [1, 29].

1.1.4 Light Matter Coupling

So far we have studied the one-dimensional confinement of excitons in a QW and the
confinement of cavity photons in a Fabry-Pérot microcavity separately. By bringing
both components together through placing QWs inside the microcavity, the exciton
and cavity photon interact and light-matter coupling comes into play. The exciton and
cavity photon couple with a coupling strength [30],

κ =

√√√√1 +
√
R√

R

cΓχ
ncavLeff

(1.16)

where R is the total reflectivity power of the microcavity [1], Γχ is the radiative
exciton decay rate at kx = 0 in a single QW, ncav is the refractive index of the cavity
spacer and Leff = Lcav + LDBR is the effective cavity length including the penetration
depth into DBR mirrors given by LDBR =

λBraggnlnh
2(nh−nl)

[1, 30, 31].

Due to this coupling, the system can be described by the two-coupled oscillator
problem with a non-Hermitian Hamiltonian (describing a classical oscillator coupling)
and characteristic polynomial [1, 30]:

H = h̄

(
ωχ − iγχ κ

κ ωc − iγc

)
(1.17)
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=⇒ (ωχ − iγχ − ω)(ωc − iγc − ω) = κ2 (1.18)

where h̄(ωc,χ − iγc,χ) are the complex eigenenergies of the cavity photon and QW
exciton (in the absence of exciton-photon coupling) with photon and exciton decay
rates γc,χ respectively. The eigenfrequencies, ω±, can be solved using the quadratic
formula,

ω± =
ωχ + ωc

2 − i(γχ − γc)

2 ±

√√√√κ2 +

(
ωχ − ωc

2

)2

−
(
γχ − γc

2

)2

+
i

2 (ωχ − ωc)(γχ − γc).

(1.19)

When ωc − iγc = ωχ − iγχ, this gives an energy splitting of Ω = ±
√

4κ2 − (γχ − γc)2

from the bare exciton and cavity photon modes. Ω is considered as a vacuum-field
Rabi splitting that can reach 4-15 meV in GaAs-based QW microcavities [1, 31].

However, Ω can only be real if

κ >

∣∣∣∣∣γχ − γc
2

∣∣∣∣∣. (1.20)

Equation 1.20 is in fact the requirement for strong coupling, such that mode splitting
will only occur if and when the coupling rate is much faster than the decay channels of
the system. In the weak coupling regime, the imaginary valued Ω corresponds to
system losses and will not result in an energy splitting. In the strong coupling regime,
two distinct modes manifest labelled as the upper polariton (UP) and lower polariton
(LP) branches and are evidenced by two sharp resonances in the QW microcavitie’s
reflectivity spectrum shifted from the bare cavity mode by ±Ω respectively [1], as
shown in Figure 1.4(c). Explicitly, the strong coupling regime gives rise to the
polariton quasi-particle resulting from the Rabi oscillation of energy between a QW
exciton and cavity photon confined within a QW semiconductor microcavity.

Considering just the real components of the eigenfrequencies and using
Ec,χ = h̄ωc,χ =

h̄2k2
‖

2mc,χ
, we can define the UP and LP eigenenergies from Equation 1.19:

EUP ,LP (k‖) =
Eχ(k‖) +Ec(k‖)

2 ± 1
2

√√√√(Eχ(k‖) −Ec(k‖)

)2

+ 4h̄2Ω2 (1.21)

which correspond to the UP and LP dispersions plot in Figure 1.5(a-c). Depending on
the difference in energy between the bare cavity photon and QW exciton modes at
k‖ = 0 (known as cavity detuning, δ) and the resulting difference in exciton and cavity
photon bare energies at any k‖ given by ∆E(k‖) = Eχ(k‖) −Ec(k‖), the photonic and
excitonic fractions of the lower-branch polaritons are defined by the Hopfield
coefficients respectively (as shown in Figure 1.5(d-f)):
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Figure 1.5: Dispersions of QW exciton (χ), cavity photon (c), UP and LP branches
at a cavity detuning of (a) -5 meV, (b) 0 meV and (c) +5 meV, with (d-f) respective
excitonic and photonic Hopfield coefficients |X|2, |C|2 for a single GaAs QW sandwiched

within a 5λBragg
2 microcavity with λBragg = 807 nm.

|C(k‖)|2 =
1
2

(
1 +

∆E(k‖)√
∆E(k‖)2 + 4h̄2Ω2

)
(1.22)

|X(k‖)|2 =
1
2

(
1 −

∆E(k‖)√
∆E(k‖)2 + 4h̄2Ω2

)
. (1.23)

|C|2 and |X|2 give the fraction of the quasi-particle from the photon and exciton
respectively, and can also be thought of as the probability of observing an LP branch
polariton in the photonic or excitonic state, where |C|2 + |X|2 = 1. Note how the LP
dispersion has a steeper gradient around k‖ = 0 with negative cavity detuning,
indicating that the effective LP mass is reduced. This makes a negative detuning more
desirable for studying polariton condensates, and the critical temperature of
condensation will increase, which is discussed further in section 1.2. Additionally, the
negatively detuned microcavity gives rise to a larger photonic component around
k‖ = 0, which results in a larger photon emission thus making it easier to measure
experimental observables of the system.

In order to efficiently access a variety of cavity detunings in experiment, the QW
microcavity sample is grown with a wedge-shaped cavity spacer, thus altering the
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photonic confinement wavelength depending on the location at which it is optically
excited. The work in thesis concerns non-resonant laser excitation, which rather than
exciting the microcavity sample at its confinement wavelength, the laser is instead
tuned to the first minimum energetically above the reflectivity stopband [1].

1.2 Bose-Einstein Condensation

Following on from the work of Bose on the distribution of quantum particles [32],
Einstein made the proposition that an ideal gas of non-interacting bosons could
experience a quantum phase transition, characterised by a build up in occupation at
the ground state of a bosonic system. This macroscopic population of coherent bosons
in the same quantum state has since been coined a “Bose-Einstein condensate” (BEC)
[33]. For this phase transition to occur, particle separation must be at most
comparable to the particle de Broglie wavelength, such that the particle wavefunctions
overlap. It wasn’t until 1995 that the first BECs were experimentally realised using
rubidium-87 [34], sodium [35] and Lithium-7 [36] as dilute atomic gasses cooled below
the critical condensation temperature.

This section discusses the BEC of an ideal quantum gas and makes comparisons to the
2D condensation of polaritons in a QW microcavity.

1.2.1 Ideal Gas of BECs

Identical quantum particles are indistinguishable within an ensemble. That is, if two
particles labelled 1 and 2 were swapped, there would be no change to any measured
observable of the system. For example, the energy of the system under this particle
exchange stays the same:

Ĥψ(1, 2) = Eψ(1, 2) and Ĥψ(2, 1) = Eψ(2, 1), (1.24)

where E is the same energy in both equations. This swapping can be written as an
exchange operator, P̂12ψ(1, 2) = ψ(2, 1). P̂12 has two possible eigenvalues, λ = ±1, as
applying the operator twice gives back the original wavefunction following
ψ(1, 2) = λ2ψ(1, 2). These two outcomes correspond to the respective symmetric and
antisymmetric wavefunctions, with single-particle wavefunctions ua,b swapping between
states 1, 2 (e.g. swapping position or spin):

ψ+(1, 2) = ua(1)ub(2) + ua(2)ub(1)√
2

→ Symmetric (1.25)

ψ−(1, 2) = ua(1)ub(2) − ua(2)ub(1)√
2

→ Antisymmetric. (1.26)
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Figure 1.6: Trend in density of states ρd as a function of energy ε in (a) 1, (b) 2 and
(c) 3 dimensions.

The wavefunction describing two identical particles can exist in only one of these two
states. Specifically, particles with symmetric wavefunctions are bosons and particles
with anti-symmetric wavefunctions are fermions. This is verified when considering two
particles in the same quantum state ua = ub, then the antisymmetric wavefunction
vanishes (a mathematical statement of the Pauli exclusion principle), whereas the
symmetric wavefunction does not, thus showing that multiple bosons can share the
same quantum state [37].

Each single particle quantum state has a possible occupation number of
n = {0, 1, · · · , ∞} for bosons and n = {0, 1} for fermions and depends on the energy ε,
temperature T and chemical potential µ of the state, where the occupation number of
fermions and bosons follow the Fermi-Dirac and Bose-Einstein distributions
respectively for the ±1 in the denominator:

n(ε,T ,µ) = 1
eβ(ε−µ) ± 1

(1.27)

where β = 1
kBT

and kB is Boltzmann’s constant. As this section concerns the
condensation of bosons, fermions will no longer be discussed. The total number of
particles in the system N can be determined by integrating the product of n with the
density of states in 3D, ρ3, over all energies from the ground state, ε0, upwards:

N =
∫ ∞

ε0
n(ε)ρ3(ε)dε. (1.28)

The trend between ρd(ε) and ε changes over d = {1, 2, 3} dimensions, as shown in
Figure 1.6, but for d = 3 it is defined for particles with mass mp and system volume V
as [38],

ρ3(ε) =
√
ε
V

4π2

(
2mp

h̄2

) 3
2

. (1.29)

For BECs, we consider the occupation in the ground state n0 = 1
eβ(ε0−µ)−1 . If the

chemical potential does not follow µ < ε0, then n0 will be negative and the occupation
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n0 grows with µ up to an asymptote at µ = ε0. The definition of the critical
temperature for 3D condensation requires that the number of particles in excited
states Nex (i.e. particles with ε > ε0) is equal to the total number of particles N when
ε0 = 0(= µ):

N = Nex =
V

4π2

(
2mp

h̄2

) 3
2 ∫ ∞

ε0+δε

1
eβε − 1dε (1.30)

where ε0 + δε ' ε0 as δε is infinitesimally small [38]. Note that in Figure 1.6(c), the
3D density of states converges to 0 as ε → 0, whereas the 2D and 1D cases remain
constant and tend to ∞ respectively. The consequence of this behaviour is that a finite
BEC threshold temperature exists for a 3D system only. By using the known relation

1
ex−1 =

∑∞
n=1 e

−nx with x = βε, and introducing the Riemann zeta and Gamma
functions ζ( 3

2 ) =
∑∞
n=1 n

− 3
2 and Γ( 3

2 ) =
∫∞

0 e−t√tdt, we can evaluate the integral in
Equation 1.30:

N =
V

4π2

(
2mp

βh̄2

) 3
2

ζ

(
3
2

)
Γ

(
3
2

)
. (1.31)

The particles can be considered as a wave with a thermal de Broglie wavelength λdB.
This can be derived by evaluating the partition function of the system and relating it
to V

λdB
to get λdB =

√
2πh̄2

mpkBT
[39]. Therefore, the BEC critical density is,

nc =
N

V
' 2.612

λ3
dB

. (1.32)

Since n− 1
3

c corresponds to the average spacing between particles, qualitatively the BEC
phase transition occurs when the particle separation distance is equivalent to the
de Broglie wavelength [38]. The condensation threshold condition can thus be
re-written in terms of a critical temperature following,

Tc =
2πh̄2

mpkB

(
1

2.612
N

V

) 2
3

. (1.33)

When the density is above nc or equivalently the temperature below Tc, the population
of particles at ε0 grows to form a BEC alongside the population of thermal particles
with ε > 0:

N = N0 +Nex. (1.34)

For Nex at T < Tc, the relation in Equation 1.32 holds following nexλdB(T )3 = 2.612,
but there is no integral that represents N0. Given that at the critical temperature,
n = nc and by equating nexλdB(T )3 to Equation 1.32, the fractional number density of
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particles in the excited state can be expressed as,

nex
n

=
λdB(Tc)

λdB(T )
=

(
T

Tc

) 3
2

(1.35)

giving the fractional number density of the ground state,

n0
n

=
n− nex

n
= 1 −

(
T

Tc

) 3
2

(1.36)

where n0 → n as T → Tc, i.e. below critical temperature, the majority of particles
occupy the ground state resulting in a Bose-Einstein condensate [37].

1.2.2 BECs in Two-Dimensions

In a 2D system of an ideal non-interacting bosonic gas, the density of states does not
converge to zero as ε → 0 (Figure 1.6(b)), therefore in the 2D limit, the integral in
Equation 1.28 diverges. The maximum number of particles in the excited state is
therefore infinite and it is not possible to reach the condensation threshold for finite Tc,
even if the particle separation distance is comparable to λdB. This is also the case for
the ideal interacting Bose gas as long range order cannot appear in a 2D ideal Bose gas.

However, in the presence of a trapping potential, the density of states drastically
changes and 2D BECs can indeed exist [1, 40]. For example, with a symmetric
harmonic trapping potential U(x, y) = mpω2

2 (x2 + y2) = 2mpπ2c2

λ2 (x2 + y2), the density
of states becomes ρ2(ε) =

ε
h̄2ω2 , which converges to zero as ε → 0. The corresponding

critical temperature is calculated following the same method as the 3D case to give [40],

Tc =

√
6N
π2 h̄ωc (1.37)

and the fractional number density of particles in the ground state follows,

n0
n

=
n− n1
n

= 1 −
(
T

Tc

)2

. (1.38)

With bosonic condensation now proved to be possible in a finite 2D system of a weakly
interacting Bose gas confined by a harmonic potential, the QW microcavity polariton
offers to be an ideal system for experimentally observing such a phase transition. Due
to the polariton’s relatively light effective mass (typically ∼ 10−5me [1]) compared to a
dilute atomic gas, the critical temperature of a QW microcavity polariton is typically a
few Kelvin, which is experimentally far easier to maintain than the micro-Kelvin
temperatures required by atomic condensates.
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The original experiments in search of the Bose-Einstein condensation of polaritons
were mainly held back by the cavity photon lifetime of the samples, where clouds of
polaritons were unable to thermalise within the cavity lifetime. It was not until 2006
that Kasprzak et al. [41] reported experimental observations of a coherence build-up
across a cloud of polaritons, thus demonstrating long range order, marking the first
official sighting of polariton Bose-Einstein condensates.

There is some contention within the condensate community whether this coherence
build up in polariton systems qualifies as a BEC, as a condensate of polaritons varies
from a traditional BEC in a number of ways. The points of contention include:

• Polariton condensates are in two dimensions. As discussed above, both
the cavity photons and QW excitons are confined in a 2D plane, thus the
resulting condensate is also two dimensional;

• Polaritons require continuous pumping. Due to the relatively short lifetime
of the cavity photon, polaritons are in quasi-equilibrium of continuous decay and
formation;

• Excitons undergo a Mott transition. At high densities, excitons dissociate
and become a metallic plasma of electrons and holes as the constituent exciton
components experience repulsion and attraction from the neighbouring particles.
Due to the now fermionic characteristics of the system, coherence deteriorates
across the exciton cloud. This issue is overcome by placing multiple QWs around
the anti-nodes of the microcavity, such that each QW produces excitons below
the Mott transition density, but the overall contribution of excitons is high [1];

• Polaritons are blue-shifted from LP branch. Due to the strong
polariton-polariton repulsion at high densities, condensed polaritons are shifted
from the LP branch to a slightly higher energy, which increases with the
excitonic fraction of the polaritons |X|2 [11].

However, with the system showing long range order (first predicted in 1956 [42] and
demonstrated in 2006 [41]) and a non-linear emission in response to varying pump
power [1], the community has settled on the nomenclature of “polariton condensate”
and will be refereed to as such herein.

1.2.3 Polariton Condensate or Laser?

Although the structure of the QW microcavity is identical to that of a vertical-cavity
surface emitting laser (VCSEL), the behaviour is intrinsically very different. In a
VCSEL, lasing occurs via population inversion, where many pairs of electrons and
holes are optically excited. The light is amplified by the recombination of electron-hole
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pairs, where the coherence of emitted light comes directly from the relaxation from the
inverted state. Polaritons however undergo stimulated cooling from a hot exciton
reservoir through many phonon emissions down the LP branch, losing all phase
information from the initial optical stimulation. Coherence builds spontaneously for
particles at the bottom of the LP branch, below the exciton energy of the VCSEL [11].

Optical excitation

Optical phonon 
emission

Acoustic phonon relaxation

Condensate

E
ne

rg
y

k
∥

Optically InactiveOptically Inactive

Exciton 
bottleneck

Electron-hole plasma

Polariton-polariton 
scattering

Optically Active

Figure 1.7: Schematic of the polariton condensation process in terms of the energy dis-
persion, with (blue) exciton dispersion, (red) cavity photon dispersion, (dashed black)
UP branch, (solid black) LP branch, (purple arrows) dynamics of the condensation
process in the (grey background) optically inactive and (white background) optically
active regions. The optical excitations creates a relatively high energy hot electron-hole
plasma that, through optical phonon emission, forms high energy optically inactive ex-
citons at with large |k‖| on the LP branch. These excitons reduce in energy via many
small acoustic phonon relaxations, thus losing all phase properties of the initial optical
excitation. As the excitons become optically active and couple to photons, an exciton
bottleneck builds up, from which the polaritons undergo polariton-polariton scattering
and relax into the LP ground state, gaining a global phase coherence thus forming the

polariton condensate.

1.2.4 Non-resonant Excitation

A population of polaritons are introduced into the microcavity through optical
excitation, typically using a laser. When a microcavity is excited by a non-resonant
pump laser, a high energy (∼ 100 meV above the bottom of the LP branch)
electron-hole plasma is injected into the sample at high momenta on the LP branch.
This plasma dissipates energy first through longitudinal-optical phonon emission in the
first picosecond to form excitons, followed by acoustic phonon relaxation after ∼1 ns
[43]. As acoustic phonon interactions are inefficient, it requires many emissions for the
excitons to relax down the LP branch towards the edge of the light cone, in turn losing
all original phase of the laser. Once the difference between the exciton and photon
momentum is comparable to the Rabi splitting energy, the phonon density of states
reduces considerably making cooling less efficient and excitons are then able to couple
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to cavity photons. This introduces radiative decay into the system such that a
bottleneck of incoherent excitons builds to a macroscopic population and stimulated
cooling (polariton-polariton scattering) takes over as the dominant cooling process.
For two polaritons in the bottleneck region, one scatters to twice the bottleneck
momentum, whilst the other scatters to k‖ = 0 (where population builds up). The
polaritons spontaneously occupy the same quantum state above condensation density
[11]. Figure 1.7 is a schematic representation of this condensation mechanism in the
view of the system’s dispersion.

As the exciton diffusion length is so small at cryogenic temperatures, the resulting
potential landscape that confines the polariton condensate follows the spatial geometry
of the hot exciton reservoir, as dictated by the incident laser excitation profile. This
gives rise to two optical confinement regimes, the first being optically pumped
ballistically expanding condensates, which form at the spatial location of the pumping
profile (e.g. using a profile consisting of Gaussian spots), as depicted in
Figure 1.8(left) [41, 44, 45]. The steep potential formed by the pump profile causes
condensed polaritons to ballistically propagate away from the condensate centre in a
radial direction with non-zero momentum on the free LP dispersion. The other regime
creates optically trapped condensates, where the condensate is spatially displaced from
the excitation profile as polaritons ballistically propagate down the potential landscape
and build in density at a potential minima to above the condensation threshold, as
shown in Figure 1.8(right). Optically trapped condensates are excited using a tight
profile that prevents polaritons from radially propagating away using pump geometries
such as an annulus (ring) or a tightly packed lattice of Gaussian spots
[46, 47, 48, 49, 50, 51, 52]. The system of an optically trapped condensate can be

E

x

y

Figure 1.8: Pumping schematics for the (left) ballistically expanding and (right) op-
tically trapped polariton condensates, showing the (purple) Gaussian spot and ring
shaped pump profiles, (rainbow landscape) the corresponding potential landscape
mapped out by the active exciton reservoir and (silver balls) the ballistically prop-
agating polaritons (left) at the Gaussian pump site and (right) trapped within the
centre of the annular (ring-shaped) pump profile. White arrows indicate the flow of

polaritons.



20 Chapter 1. Introduction to Polaritonics

interpreted as a particle in a finite box, where the allowed energy modes are
comparable to Hermite-Gaussian modes [46, 47, 50], such that the lowest threshold
mode has the highest gain from having the largest overlap with the exciton reservoir.
The resulting condensate has a momentum around k‖ = 0, such that the condensed
state is not on the free LP dispersion, but rather within the U-shaped slope of the
dispersion. If the optical trap is of high enough intensity, multiple energy modes can
be occupied, such that the resulting condensate is given by the superposition of the
condensed trap modes.

1.3 Interacting Polariton Condensates

When two optically pumped polariton condensates are brought together, the
ballistically propagating polaritons expanding from each condensate centre interact
and interference fringes form between them, as schematically depicted in Figure 1.9.
These interference modes take the form of symmetric (bright fringe at centre) and
antisymmetric (dark fringe at centre) modes, likened to the ferromagnetic (even
parity) and antiferromagnetic (odd parity) states in classical magnetism [44]. As the
distance between the two condensates is scanned, the coupling contributions cycle
between a dominant odd and even parity mode [45], such that the relative phase
difference between the condensate centres is 0 or π radians for a dominant even or odd
parity coupling respectively.

As the condensate excitation profile is much smaller than the total size of the
propagating condensate, the polariton density is very low away from the excitation
site. Thus, polaritons no longer experience a strong repulsion and the cylindrically
symmetric outflow of polaritons from a single condensate centre can be analytically

Figure 1.9: Schematic to show the dissipative coupling mechanism between two op-
tically trapped polariton condensates. The two condensates, labelled ψ1 and ψ2, opti-
cally trapped by annular pumping profiles (shown by purple rings) dissipate polaritons
(shown by silver balls) which ballistically propagate away from the condensate centres
and interfere with the neighbouring condensate. The superposition of ψ1 and ψ2 leads
to interference fringes as a result of this dissipative coupling mechanism. The 3D real-

space profile is taken from Figure 3.2(a).
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described by the 0-order Hankel function of the first kind2 ψn(r) = H
(1)
0 (kcr) [53],

such that the coupling strength Jnm between a pair of polariton condensates n and m

is described by the Bessel function of the first kind2 dependent on the product of
condensate separation distance dnm and complex outflow polariton wavenumber kc
[54]. The complex wavevector encompassing the real energy blue shift of the
condensate from the LP branch and the imaginary gain from the confinement potential
[53], leads to a complex inter-condensate coupling strength where positive Jnm
corresponds to purely ferromagnetic dissipative coupling and negative Jnm to purely
antiferromagnetic dissipative coupling, such that if a system of condensates are
ferromagnetically coupled to nearest neighbours, the condensates will arrange to have
the same phase. Inversely, if antiferromagnetically coupled, the neighbouring
condensates will not have the same phase where, depending on the connectivity, a
non-trivial frustrated state can occcur [44].

As the polaritons ballistically propagate down the potential landscape mapped out by
the cloud of hot excitons to an energy minimum, the relative phase of the resulting
network of M condensates minimises the energy of the XY Hamiltonian given by
[54, 55, 56, 57],

HXY = −
N∑

n=1,n<m
Jnm cos(θn − θm) (1.39)

where θn is the phase of the nth condensate centre. The minimised solution of the XY
Hamiltonian is given by the condensate state with a phase configuration that carries
the highest number of particles (N0 is maximised, as discussed in section 1.2), where in
order to reach the global XY minimum value, all condensates must have the same
energy and polariton density. This is achieved through gain feedback, where the
optical pump intensity exciting each condensate is adjusted in order to balance the
intensities of all the condensates in the system [56]. This technique is discussed
further, and numerically implemented in subsection 5.4.3.

Maximising the particle number leads to the minimisation of the XY Hamiltonian
following on from the definition of the maximum particle number in real-space or
Fourier space [44, 54]:

N =
∫

|Ψ̃(r)|2d2r =
1

(2π)2

∫
|Ψ̂(k)|2d2k (1.40)

2The Bessel function is given by the solutions of the Bessel equation: x2y′′ + xy′ + (x2 − a2)y = 0.
The solutions to which can take two forms. The first kind, denoted Ja(x), is finite at the origin (x = 0)
for a ∈ Z+, or diverges for negative non-integers of a. The second kind, denoted Ya(x), has a singularity
at x = 0. The Hankel function is given by the a linear summation of the Bessel function of the first
and second kinds, where the Hankel function of the first and second kinds are respectively given by
H

(1,2)
a (x) = Ja(x)︸ ︷︷ ︸

Real

± iYa(x)︸ ︷︷ ︸
Imaginary

.
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where Ψ̃(r) is the total condensate wavefunction in real-space and the hat ( ˆ ) denotes
the Fourier transform. In the case of M condensates located at r = rn, Ψ̃(r) can be
approximately described by the sum of the individual condensate wavefunctions ψn(r)
with phase θn at the condensate centres,

Ψ̃(r) =
M∑
n=1

ψn(r − rn)eiθn . (1.41)

All condensates are continuously pumped and produce a radial outflow of polaritons
from the condensate centres at rn, where constructive and destructive interference of
propagating polaritons results in interference fringes between the condensate centres,
visible in real-space and Fourier-space. By writing the separation distance between any
two condensates as dnm = rm − rn with a relative phase difference θnm = θm − θn, the
total number of polaritons is then given by:

N =
1

(2π)2

∫ M∑
n=1

|ψ̂n(k)|2 +
M∑

n<m=1
ψ̂∗
n · ψ̂mei(k·dnm+θnm)d2k (1.42)

=
M∑
n=1

Nn +
1

(2π)2

∫ M∑
n<m=1

ψ̂∗
n · ψ̂mei(k·dnm+θnm)d2k (1.43)

where Nn is the total number of polaritons in a bare un-coupled condensate ψn, and the
second term corresponds to the polaritons in the interference fringes. Assuming that
ψn(r) is cylindrically symmetric, we can describe the complex outflow of polaritons
from the condensate centres using the 0-order Hankel function [53]. The corresponding
Fourier-space wavefunction (which is also cylindrically symmetric) can then be written
as ψ̂n(k) = |ψ̂n(k)|eiφn(k) where ψ̂n(k) = 2π

∫∞
0 ψn(r− rn)eiθnJ0(krn)rdr [44, 54],

then the total number of polaritons becomes:

N =
M∑
n=1

Nn +
M∑

n<m=1

1
π

∫ ∞

0
|ψ̂∗
n(k) · ψ̂m(k)|J0(kdnm)k cos(θnm + φnm)dk. (1.44)

Here, J0 is the Bessel function of the first kind and φnm = φm − φn is the k-dependent
phase difference between ψ̂n,m. In the limit of equally pumped condensates,
ψ̂n = ψ̂m → ψ̂, this can be simplified further to give:

N =MN0 +
M∑

n<m=1

1
π

∫ ∞

0
|ψ̂|2J0(kdnm)kdk︸ ︷︷ ︸

Jnm

cos(θnm) (1.45)
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which shows that the state containing the maximum number of particles corresponds
to the XY Hamiltonian ground state [54].

By assuming that all condensates have the same natural frequency and the energy
line-width of the system is infinitesimal such that |ψ̂|2 ' kc|ψ̂(kc)|2δ(k− kc), the
coupling strength Jnm between condensates ψn,m follows the Bessel function with
Jnm ' kc|ψ̂(kc)|2

π J0(kcdnm) when solved analytically [44, 54]. This assumption removes
the integral in Equation 1.45:

N =MN0 +
M∑

n<m=1

kc|ψ̂(kc)|2

π
J0(kcdnm) cos(θnm). (1.46)

As the separation distance between two optically pumped condensates is scanned, the
spectral weight of an even and odd parity modes oscillates, where each have a distinct
unique energy (see Figure 3 in [45]). By the above definition, the minimisation of the
XY Hamiltonian is achieved through a system of single-energy condensate interactions,
which corresponds to a purely imaginary inter-condensate coupling strength [45].
However, the separation distances corresponding to single energy states are not equal
in energy, thus a system with grater than two optically pumped coupled condensates
does not in general minimise the XY Hamiltonian. Luckily we have not reached a dead
end as this dilemma is tackled in the work of chapter 3 (and published in [2]).
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Figure 1.10: Schematic to show the different classes of computational complexity,
where P and NP-complete are subsets at opposite ends of the complexity spectrum of
the NP class (shown by the blue ring), and NP-hard is at least as complex as NP-
complete, where the upper limit corresponds to intractable problems. Note that in

general, it is accepted that P 6=NP.
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1.4 Computational Complexity

The complexity of computational problems is measured by its dependence on time
compared to the size of a problem or the number of operations required to solve it.
Starting at the simplest end of the spectrum building upwards, this dependence could
be linear, quadratic, higher order polynomial, exponential or even factorial in time as
the problem grows in size. At the extreme complex end of the spectrum lies the
computationally intractable problems, which cannot be tackled (or an algorithm
cannot be applied) in an efficient way in order to find a solution. It is for this reason
that there is a keen interest among many scientific disciplines to seek out heuristic
algorithms to solve complex problems in a reasonable timescale, whereby heuristic
solvers use a practical method to approximate solutions through the inherent physical
property of the system - for example, the network of coupled condensates minimising
the XY Hamiltonian.

The complexity class P corresponds to the problems for which there exists a
polynomial time algorithm for finding a solution. If there exists a polynomial time
algorithm to verify a solution to a problem with binary decision variables (i.e. “yes” or
“no” answers), but not solve it, then it belongs to the non-deterministic
polynomial-time class, NP. It is generally believed that P 6=NP, however this still
remains an unsolved problem. The hardest set of problems that belong to NP are
labelled as NP-complete, for which it’s possible to reduce any NP-complete problem to
another NP problem in polynomial time, such that if a deterministic polynomial time
algorithm exists to solve an NP-complete problem, then every NP class problem can be
solved in polynomial time.

NP-hard is used to describe the set of problems that are at least as hard as the
NP-complete class, where instead of a simple binary result, the solution takes a specific
value. For example, the task of answering “is the XY ground state of this condensate
network less than -3 (in arbitrary units of energy)?” is NP-complete, but “what is the
XY ground state of this polariton graph” is NP-hard. A diagram of complexity classes
is shown in Figure 1.10.
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Chapter 2

Techniques in Simulation and
Experiment

2.1 Numerical Modelling

At low temperatures, the polariton condensate contains thousands of weakly
interacting polaritons where the global energy is described by the Hamiltonian
containing the kinetic and potential energy of every polariton, plus the interactions
with every other polariton on the system. It is impossible to analytically solve the
individual polariton energies in the system. In the cold temperature limit T → 0, all
particles are assumed to be in the ground state, i.e. the condensate, such that a mean
field approximation (system average) can be applied. This approximation allows us to
describe all the polaritons in a coherent quantum state by a single wave, known as the
order parameter. This treatment results in a differential equation known as the
generalised Gross-Pitaevskii equation (GPE) or nonlinear Schrödinger equation, which
through numerical integration can be used to simulate the dynamics of polariton
condensates.

For over 70 years, this model has existed where the equation was first proposed by
Vitaly Ginzburg and Lev Landau in 1950 in order to describe type-I semiconductors
without having to probe their microscopic properties. As such it was named the
complex Ginzberg-Landau equation (cGLE) [58]. The superfluid counterpart was first
proposed in 1961 the form of the GPE [59, 60]. Note that the cGLE and GPE give
analogous results when adapted for driven-dissipative polariton condensate systems
[61]. In order to extract steady state solutions of the polariton condensate system, a
quasi-equilibrium between the pumping rate and polariton decay rate must be
maintained. The GPE only considers particles within the condensate and so is not able
to simulate the phase transition of polaritons into the condensate [62, 63].
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2.1.1 Gross-Pitaevskii Equation

A dilute weakly interacting Bose gas can be described by the Hamiltonian
[62, 63, 64, 65]

Ĥ =
∫

Ψ̂†(r, t)Ĥ0(r)Ψ̂(r, t)dr + 1
2

∫ ∫
Ψ̂†(r, t)Ψ̂†(r′, t)V̂int(r − r′)Ψ̂(r′, t)Ψ̂(r, t)drdr′

(2.1)

which is written in the occupation number representation of the Schrödinger picture1,
exploiting the indistinguishability of the particles [65]. The Bose field operators
Ψ̂(r′, t) and Ψ̂†(r′, t) represent the creation and annihilation operators of the field at
some position r and time t and the operator Ĥ0(r) represents the single-particle
Hamiltonian of a non-interacting particle following Ĥ0(r) = − h̄2∇2

2mp + V̂ext(r), where
mp is the particle mass and V̂ext(r) is the external confining potential of the system.
V̂int(r − r′) is the two-body inter-particle potential, assuming that the likelihood of a
collision between more than two particles is negligible. The factor of 1

2 at the start of
the second ensures that each inter-particle interaction is only counted once.

At the low temperature limit in a weakly interacting Bose gas, the two-body potential
can be replaced by a perfectly elastic collision term [64, 65]:

V̂int(r − r′) = αδ(r − r′) (2.2)

where α is the effective interaction strength between two particles given by the
scattering energy within the condensate [62] and δ is the Kronecker-Delta function
such that binary collisions occur at r = r′. The Hamiltonian Equation 2.1 then follows:

Ĥ =
∫

Ψ̂†(r, t)Ĥ0(r)Ψ̂(r, t)dr + α

2

∫
Ψ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t)dr. (2.3)

The system dynamics can be explored through the standard commutation relation of
the Hamiltonian operator with a general operator Ô, where the general equation of
motion in the Heisenberg picture1 obeys,

ih̄
∂Ô

∂t
= [Ô(t), Ĥ ]. (2.4)

1Two formulations of quantum mechanical states considered here are called the “Schödinger repre-
sentation” (or picture) and the “Heisenberg representation” (or picture). In the Schrödinger picture,
time evolution exists within the state vector |ψ(t)〉, where some operator Ω̂ has no dependence on time.
In contrast, the Heisenberg picture assumes that the state vector is independent of time, where the time
evolution is solely contained by the operator. Here, time evolution can be considered as a rotation in
the Hilbert space due to a unitary time evolution operator Û(t) =

∑
j |Ej〉〈Ej |e−iEjt/h̄, where |Ej〉 is

the eigenvector of state j with an eigenenergy of Ej . If both the the state vectors and the operators are
both time dependent, then the system is being analysed in the “interaction representation” [65]
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Equation 2.4 can be expanded with the creation Bose field operator, and by using the
commutation relations [Ψ̂(r, t), Ψ̂†(r′, t)] = δ(r − r′) this becomes [65]:

ih̄
dΨ̂(r, t)
dt

= [Ψ̂(r, t), Ĥ(r′)] = Ψ̂(r, t)Ĥ(r′) − Ĥ(r′)Ψ̂(r, t) (2.5)

= Ψ̂(r)
(∫

Ψ̂†(r′)Ĥ0(r′)Ψ̂(r′)dr′
)

−
(∫

Ψ̂†(r′)Ĥ0(r′)Ψ̂(r′)dr′
)

Ψ̂(r)

+
α

2

[
Ψ̂(r)

(∫
Ψ̂†(r′)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r′)dr′

)
−
(∫

Ψ̂†(r′)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r′)dr′
)

Ψ̂(r)
]

(2.6)

=
∫
[Ψ̂(r), Ψ̂†(r′)]Ĥ0(r′)Ψ̂(r′)dr′ +

α

2

∫
[Ψ̂(r), Ψ̂†(r′)Ψ̂†(r′)]Ψ̂(r′)Ψ̂(r′)dr′ (2.7)

ih̄
dΨ̂(r, t)
dt

=

(
Ĥ0(r) + α

∣∣∣Ψ̂(r, t)
∣∣∣2)Ψ̂(r, t). (2.8)

Note that the time dependence is dropped in the interim equations for compactness
and readability only. It is now that we consider the definition of the creation
(annihilation) Bose field operator as Ψ̂(†)(r) =

∑
i φ

(∗)
i (r)â(†)i , where φi are the single

particle states and â
(†)
i is the creation (annihilation) operator of a single particle. In

other words, the field operator can be split into the condensed particles and thermal
fluctuations (non-condensed particles) following,

Ψ̂(r, t) = ψ̂(r, t) + δ̂(r, t) (2.9)

where ψ̂(r, t) = φ0(r, t)â0 is the condensate operator corresponding to the particles in
the condensed ground state of the system and δ̂(r, t) = ∑

i 6=0 φi(r, t)âi is the
non-condensed particle operator. In the low temperature limit for a system with many
particles, most particles are assumed to be in the condensed state, i.e. N0 ' N , such
that the creation and annihilation of a particle has no effect on the system (known as
the “Bogoliubov approximation” [66]) which implies that that the states
|N〉, |N − 1〉, |N + 1〉 are equivalent. This assumption allows us to perform the
Bogoliubov replacement of â0 '

√
N0 [1], which replaces the condensate operator

ψ̂(r, t) with the complex number ψ(r, t) =
√
Nφ0(r, t) [65]. As such, all operator

dependence of the Bose field operator is governed by the fluctuation term δ̂(r, t).

We can substitute Ψ̂(r, t) =
√
Nφ0(r, t) + δ̂(r, t) into Equation 2.8, where in the T = 0

limit all the particles are in the condensate such that δ̂(r, t) = δ̂†(r, t) = 0 and
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Ψ̂(†)(r, t) → ψ(∗)(r, t). This leads to the Gross-Pitaevskii equation (GPE), describing
the mean-field dynamics of the condensed particles:

ih̄
∂ψ(r, t)
∂t

=

[
− h̄2∇2

2m + V̂ext(r, t) + α|ψ(r, t)|2
]
ψ(r, t). (2.10)

In order to simulate the dynamics of polariton condensates, the GPE has been adapted
to better match the system’s open-dissipative nature, due to the polariton’s finite
lifetime, as continuous pumping is required in order to reach a steady state. This
generalised GPE was first adapted in 2007 to include the continuous pumping and
decay, as well as coupling to a pairs of rate equations describing the active and inactive
reservoirs of uncondensed particles that feed the condensate [67]:

ih̄
∂ψ

∂t
=

[
− h̄2∇2

2m + V̂ext(r) +G(nA + nI) + α|ψ|2 + ih̄

2 (RnA − γ)

]
ψ(r, t), (2.11)

∂nA
∂t

= −(ΓA +R|ψ|2)nA +WnI , (2.12)

∂nI
∂t

= −(ΓI +W )nI + P (r, t). (2.13)

Here nA(r, t) is reservoir of active exciton that experience bosonic stimulated
scattering into the condensate. These excitons have low momentum and are inside the
light cone of the cavity, thus couple to light and form polaritons. The active reservoir
is maintained by nI(r, t), the inactive exciton reservoir and consist of a cloud of higher
momentum excitons that are outside the lightcone so do not couple to light, hence
“inactive”. These excitons are still classified as bright excitons due to their projected
spin mj = ±1 and are still physically able to couple with light when relaxed to a lower
momentum. Additionally, G is the polariton-reservoir interaction strength, R is the
rate of stimulated scattering of polaritons in to the condensate from nA, γ is the
polariton decay rate, ΓA,I are radiative and nonradiative exciton reservoir decay rates,
W is the conversion rate between inactive and active reservoir excitons, and P (r, t) is
the non-resonant pump profile that both feeds and traps the condensate.

In polaritonics, V̂ext(r) represents any potential patterning on the microcavity, but will
be neglected for the remained of this thesis where only plain cavities are studied. The
condensate wavefunction ψ, plus both of the exciton reservoirs nA,I , depend on
position and time, which have been dropped in the above equations for compactness.
Due to the confinement of polaritons in the z-direction of the microcavity, the position
vector r refers to the x, y-coordinates of in-plane location to the microcavity.

To model the condensate dynamics under a specific pumping regime P (r, t), Equations
2.11-2.13 are numerically integrated in time using a linear multistep method. The
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polariton occupation number of the condensate at a given time is defined as
N =

∫
|ψ(r, t)|2d2r. At the start of the simulation N ' 0 and over some integration

period this should grow until the system reaches a quasi-equilibrium of polariton
creation and decay. At which point, ψ(r, t) represents a steady state solution of the
condensate system. However, if the pumping profile does not supply sufficient gain to
the system, a condensate will not form as the polariton density is below condensation
threshold, where the threshold for condensation is given by the pump intensity that
creates a steady state condensate with an occupation number of 1.

2.1.1.1 Choosing the GPE Parameters

The parameters for the numerical integration of Equations 2.11-2.13 are chosen to
match the properties of the 2λ microcavity used in the corresponding experiments [3].
Using the best of our current understanding of the microcavity system, the parameters
are enumerated with G = 2g|X|2 and α = g|X|4, where g is the exciton-exciton dipole
interaction strength, which is typically g ' 1 µeV µm2 in GaAs-type quantum wells.
The polariton mass it taken to be mp = 5.64×10−5m0 ' 0.288 meV ps2, where m0 is
the mass of a free electron. As |X|2 is the excitonic Hopfield coefficient of polaritons at
the bottom of the LP branch, it depends on the cavity detuning which is matched to
the experimental value. In this thesis, the experimental range of cavity detuning is
-5 meV to -3.2 meV. From these values, |X|2 can be calculated following Equation 1.23,
using the sample’s Rabi splitting of 2h̄Ω = 8 meV [3]. The polariton lifetime follows
the cavity lifetime of the sample, where with a cavity reflectivity > 99.9% [54], we use
1
γ = 5.5 ps [3, 68]. Due to the photonic component of the polariton, the quasi-particles
undergo fast thermalisation and decay from the condensate to the exciton background
at a rate of γ [53]. However, the optically inactive exciton recombination rate is taken
to be much smaller than the condensate decay rate, with ΓI = 0.01γ. The rate of
optical coupling of the nonradiative exciton reservoir, W , and the rate of stimulated
scattering of radiative excitons to the condensate, R, are not directly measurable, but
are calculated through fitting the GPE results to experimental data, where
R < W < γ. As the understanding of the exact values of these parameters is
continually improving, some simulations in this thesis use slightly different parameter
values. However, these minor changes do not affect the general results of the
condensate system.

2.1.2 Stuart-Landau Model

In the case of many interacting polariton condensates, equations 2.11-2.13 can be
simplified and generalised to a discretised version fo the driven-dissipative GPE that
does not depend on complicated degrees of freedom. Instead, only the weak nonlinear
effects on the condensate saturation are considered assuming that the characteristic
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reservoir lifetimes are much shorter that those of the condensate [69]. Under these
assumption, the condensate wavefunction can be written as ψ(r, t) = ∑

n ϕn(r)ψn(t),
where ϕn(r) vary little from the particle interactions, such that each condensate is
described by a complex single point value that varies over time and equation n is
coupled to each other equation m by coupling strength Jnm.

This model describes a Stuart-Landau network [70, 71, 72] of dissipative non-linear
coupled oscillators ψn(t),

dψn
dt

=

[
Pn − iωn − (Rs + ig)|ψn|2

]
ψn +

N∑
m=1

Jnmψm (2.14)

where Pn denotes the net gain of each oscillator, e.g. for polariton condensates this is
given by the non-resonant pumping of the microcavity at each condensate centre, ωn is
the natural frequency of oscillator n, Rs is the particle saturation rate and g is the real
energy shift due to the nonlinear interactions of the system, such that α = g− iRs in
polariton condensate systems corresponds to the polariton-polariton interaction
strength. Jnm is the coupling strength between each pair of oscillators, which for
polaritons is a function of the propagating particle momentum and condensate
separation distance [54].

The Stuart-Landau model describes a plethora of nonlinear oscillator networks (not
only polariton condensate systems) and can be derived from the normal form of the
Hopf bifurcation [73, 74]. The Hopf bifurcation describes a dynamical transition in
nonlinear oscillating systems where the stable solutions transition from a fixed point to
a limit cycle, or equivalently, the eigenvalues cross the imaginary axis. For example, if
we consider a nonlinear oscillating system in polar coordinates with the following
equations of motion:

ṙ = r(µ− r2) (2.15)

θ̇ = ω+ br2 (2.16)

where µ, ω and b are free parameters. From the Jacobian matrix of the Cartesian form
of these equations, we can easily calculate that the eigenvalues are λ = µ± iω. Clearly,
r = 0 is a fixed point solution of this system and marks the origin of the dynamics. If
µ < 0, then r = 0 is a stable attracting fixed point and all trajectories in the system
will spiral towards it (Figure 2.1(a)). However if µ > 0, then the fixed point is unstable
and the trajectories instead converge to the limit cycle centred at r = 0 with an
amplitude of r = √

µ (Figure 2.1(b)). For small µ, this limit cycle will have an
oscillation period close to 2π

ω . This drastic change in the system dynamics is labelled as
a Hopf bifurcation, where the bifurcation point in this example is at µ = 0. If we
instead look at the eigenvalue picture of this transition (Figure 2.1(c)), we can see that
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Figure 2.1: Figure to show (a) µ < 0 and (b) µ > 0, corresponding to a stable fixed
point (unstable limit cycle) and unstable fixed point (stable limit cycle) respectively.
The transition between these two behaviours is called the “Hopf bifurcation”. The
eigenvalues for µ < 0 and µ > 0 are shown in the complex plane by the red and blue
crosses in (c) respectively, which uniformly approach and cross the imaginary axis in
turn reaching the bifurcation point at µ = 0 (green crosses) where the bifurcation

occurs.

as µ is increased from a negative to positive value (red crosses to blue crosses), the two
eigenvalues symmetrically approach and cross the imaginary axis, where the point at
which they cross the imaginary axis marks the bifurcation point (green crosses with
µ = 0), in turn shifting the system trajectory from a real focus to a closed limit cycle
[75, 76].

For the case of a network of coupled oscillators, the dynamics follow the general form:

ẋn = fn(xn) + εngn(x1, . . . ,xN , ε, t), n = 1, 2, . . . ,N , (2.17)

where N is the number of oscillators, xn is the state of the nth oscillators, making
x = {x1,x2, . . . ,xN} the state vector of the whole network. Here, fn is a smooth
function describing the dynamics of uncoupled oscillator n, but now we include the
coupling strength and dynamical interactions with the other oscillators in the system
with the addition of εn and smooth function gn respectively.

When approaching the bifurcation point, the combination of functions fj and gn for
each oscillator can be approximated using a pair of equations [73, 74, 77]:

ẋn = anxn − bnyn ∓ (cnxn − dnyn)(x
2
n + y2

n) +
N∑
m=1

Jnmxm (2.18)

ẏn = anyn + bnxn ∓ (cnyn + dnxn)(x
2
n + y2

n) +
N∑
m=1

Jnmym (2.19)

where the last term in each equation corresponds to gn and all prior terms to fn. Here,
Jnm is the coupling strength between oscillators n and m. These equations follow the
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Jacobian matrix

A =

(
a −b
b a

)
(2.20)

with eigenvalues λ1,2 = a± ib, similarly to the example of Equations 2.15−2.16. Here,
aj , bj , cj , dj are all nonnegative coefficients. The ∓ symbols determine whether the
bifurcation is supercritical (stable limit cycle, unstable fixed point) or subcritical
(unstable limit cycle, stable fixed point) respectively. In this thesis, the networks of
dissipative coupled oscillators (such as polariton condensates) undergo a supercritical
bifurcation, and from now on only the negative sign will be considered. By introducing
complex parameter z = x+ iy = ρeiθ, we can re-write Equation 2.18 and
Equation 2.19 as a single complex function,

żn =
[
(an + ibn) − (cn + idn)|zn|2

]
zn +

N∑
m=1

Jnmzm, (2.21)

Clearly Equation 2.21 is equivalent to Equation 2.14 with an → Pn, bn → ωn, cn → Rs

and dn → g. In polar coordinates this becomes,

ρ̇n = (Pn −Rs|ρn|2)ρn +
N∑
m=1

Jnmρmρn cos(θm − θn) (2.22)

θ̇n = ωn − g|ρn|2 +
N∑
m=1

Jnm
ρm
ρn

sin(θm − θn). (2.23)

And so, the Stuart-Landau equation is derived from the normal form of the Hopf
bifurcation. Interestingly, the phase dynamics fo the Stuart-Landau oscillators
(Equation 2.23) is the generalisation of the well-known Kuramoto model when
ρn = ρm = ρ (i.e. oscillator densities are uniform) and Equation 2.22 have reached a
steady state.

It is worth noting that the Stuart-Landau model can always be scaled in time and
amplitude in order to reduce the equation by up to two parameters. This is beneficial
when numerically simulating the Stuart-Landau equation over a large parameter space,
as removing two parameters drastically reduces the number of simulations that need to
be run. For example, with the scaling of t 7→ τ/Pn and ψ 7→ ψ̃

√
Pn/Rs, parameters Rs

and Pn can be removed from the equation with the additional redefinitions
ω̃n 7→ ωn/Pn, g̃ 7→ g/Rs and J̃nm 7→ Jnm/Pn, to give,

˙̃ψn = [1 − iω̃n − (1 + ig̃)|ψ̃n|2]ψ̃+
N∑
m=1

J̃nmψ̃m. (2.24)
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The Stuart-Landau model results into two classes of solutions, the stationary state
with ρn = 0 (i.e. the trivial solution) and the oscillatory state with ρn 6= 0. In the case
of polariton systems, the latter corresponds to above threshold condensates such that
the particle number Nn =

∑N
n |ψn|2 > 0. If we consider just some uniform pumping

parameter Pn = Pm = P and coupling terms Jnm following,

ψ̇n = Pψn +
∑
nm

Jnmψm (2.25)

then the network Hamiltonian is simply,

Ĥ = PI + Ĵ (2.26)

with I representing the N ×N identity matrix and operator Ĵ describing the coupling
matrix between all the oscillators. Let the eigenvalues of Ĵ be {λ1,λ2, . . . ,λN}, then
the eigenvalues of Ĥ are simply {λ1 + P ,λ2 + P , . . . ,λN + P} = {h1,h2, . . . ,hN}.

If all hn < 0, then the system is below condensation threshold (P < Pth), however P
can be increased until one of the eigenvalues hn becomes positive. At this point,
P = Pth and ρn = 0 is not the steady state, but instead the oscillatory state comes
into play, characterised by a particle number N =

∑
n |ψn|2 > 0. Additionally, we

could consider Pn 6= Pm, where P is a row vector containing all Pn, which physically
corresponds to non-uniform pumping across the condensates. This may be considered
when balancing the condensate PL across a lattice or condensate network [56, 78].

2.2 Experiment

Before commencing this section, I would like to clarify that although I undertook the
experimental work of [2], the optical setup was designed and built by former
experimentalists of the Hybrid Photonics Group in Southampton. By the end of my
first year as a PhD student, my research had become solely theoretical and I have not
set foot in the laboratory since July 2019. This section sets out the fundamental
aspect of the experimental work of this thesis, although this was not a key aspect of
my PhD journey.

2.2.1 Sample

The microcavity used in the experimental work of this thesis has a 2λBragg
confinement length with a central confinement wavelength of λBragg = 854 nm. The
microcavity Q-factor is high enough (∼ 1.2 × 104) to ensure that multiple absorbtions
and emissions occur before the photon escapes, which is achieved through using 23 and
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26 GaAs/AlAs DBR pairs at the top and bottom of the microcavity respectively. Due
to the lattice constant mismatch between the two DBR materials, strain can build up
during the growth process from the stacking of many DBR layers and can lead to
defects in the sample structure. To avoid this, strain compensation is achieved by
using GaAs/AlAs0.98P0.02 DBR layers, where the phosphorous doping compensates for
the lattice constant mismatch. The cavity spacer contains three pairs of InGaAs QWs
around the antinodes of the confined light, plus an additional QW at each of the outer
confined nodes, and results in a Rabi splitting of 8 meV. This placing ensures that each
QW produces excitons below the Mott transition density, but with many QWs a large
population of excitons is achieved. This sample is described in detail in the work of
Cilibrizzi et al. [3].

2.2.2 Beam Sculpting

Throughout the research in this thesis, the polariton condensate trapping geometries
are controlled through non-resonant laser excitation (as described in subsection 1.2.4),
in order to shape the hot exciton reservoir into a potential landscape following the
incident laser geometry. Other than using an optical pump, the condensate
confinement potential can also be mapped out using chemically etched pillars, strips
and 2D lattices [79, 80, 81, 82, 83, 84], piezo electric acoustic lattices [85] or thin metal
film deposition [86, 87]. However, the etching and metal films permanently fix the
potential landscape so do not allow for the continuous arbitrary control of the trapping
potential, and the acoustic excitation is restricted to confining condensate lattices. On
the other hand, an optical pump is fully controllable and can map out any arbitrary
confinement potential.

In 2D simulations of the condensate system, the pump profile can take any arbitrary
shape dictated by P (r, t) in Equation 2.13. In experiment, this arbitrary control is
achieved using a spatial light modulator (SLM). An SLM is a computer controlled
device that can either modulate the amplitude or phase of an incident beam using a
programmable translucent liquid crystal display (LCD) of reflective liquid crystals on
silicon (LCOS). An amplitude modulating SLM masks the beam profile in transmission
whereas phase modulating SLM imprints a specific phase pattern onto the wavefront in
Fourier-space, which in turn gives full control of the real-space patterning without
masking out a substantial portion of the beam intensity. As used in the experimental
work of this thesis, a reflective SLM connects to a computer like any ordinary screen
where each pixel is assigned an 8-bit grey level, corresponding to the voltage applied to
the liquid crystal cell (which has a horizontal director axis). As the voltage is ramped
from 0 V to Vmax, the long-axis orientation of the liquid crystal molecules rotate from
parallel to perpendicular to the screen surface (rotation in the x-z plane), in turn
creating a varying optical thickness to incident light that is horizontally polarised
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Figure 2.2: Schematic of an SLM, showing that as a voltage is applied to each pixel
electrode between 0 volts and Vmax volts, the liquid crystals rotate in to an angle
in the plane of the electric field, relative to the horizontal plane of the pixels (x-z
plane). This is achieved from inducing a variable-voltage electric field through the
liquid crystal layer. The crystal rotation is proportional to the applied voltage, which
in-turn controls the applied phase-shift of the reflected beam. Here, the darkness of
the electrodes represents the magnitude of the applied voltage, the liquid crystals are
shown by blue ovals, the incident beam to the SLM screen is shown in red and the
reflected beam in a lighter shade of red. The height difference between the incident
and reflected beam arrows at the top of the figure represents the phase shift applied
to the beam due to the liquid crystal rotation. All components of the SLM follow the

labelling on the right of the figure.

(linear polarisation parallel to the director axis), thus applying a phase delay to the
reflected beam in 256 linear steps between 0 and 2π radians. This process is
schematically depicted in Figure 2.2 [88]. The imprinted beam then diffracts off the
SLM, such that the first-order diffraction is the highest intensity sculpted beam, and so
the higher orders and zeroth-order diffracted (a.k.a. reflected) beams are blocked off
with an iris.

2.2.2.1 Kinoform Calculation

Although the SLM in principle allows for complete arbitrary control of the pumping
profile, in practice it is a complex task to calculate the exact phase map that needs to
be imprinted onto the laser profile in order to achieve the desired spatial sculpting.
The image that is displayed on the SLM screen to impose a specific phase map is
called a kinoform, and this can be calculated using two possible methods.

More simple beam structures can be shaped using an analytically solvable kinoform,
which consists of a single analytical solution or a sum of multiple solutions modulated
between 0 and 2π. For example, applying a horizontal or vertical phase grating to a
Gaussian laser beam will shift the beam in the vertical or horizontal direction
respectively. So, a desired Gaussian beam geometry can be achieved through the
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Figure 2.3: Flow chart showing the iterative steps of the MRAF algorithm. The
loop is stopped when the real-space picture of the algorithmically calculated hologram

image, F−1(E
(k+1)
in (x, y)), converges to the target image amplitude, Atarg(x, y).

summation of linear gratings each corresponding to the steered beam location of the
individual spot sites. Additionally, if a phase delay is radially applied from the centre
of an incident Gaussian beam (i.e. a continuous-phase diffractive axicon), an
annulus-shaped profile is sculpted in real-space, where the inverse of the radial phase
period corresponds to the annulus diameter [89]. If the continuous-phase axicon is
binarised to 0 and π radians phase delay, the resulting annulus is more uniform and
symmetric in intensity. As analytical kinoform solutions can be combined, the
summation of the axicon and the vertical gratings that horizontally displace the beam
by differing amounts will shape a Gaussian laser beam into two spatially separated
annuli. This exact kinoform was used in the experiments of chapter 3.

For more complex beam patterns, an iterative algorithm is used to approximate the
kinoform based on the incident beam profile and a target image depicting the desired
beam profile. The most commonly used approximation methods are the Gerchberg
Saxton algorithm (GS), which was first developed for electron microscopy in 1971 [90],
and the mixed-region amplitude freedom algorithm (MRAF), which uses the same
approach as GS but by splitting the target image into a signal region (SR) (region of
interest) and a noise region (NR) (the background) more complex profiles can be
formed (albeit more slowly) [91]. In the MRAF technique, the weighting of the signal
and noise regions in each loop of the iteration is controlled by the mixing parameter m,
where by setting m = 1, MRAF makes an equivalent kinoform approximation to GS.
For a target image that is not a simple array of Gaussian spots, the MRAF algorithm
produces a smoother more uniform beam profile than the GS method, however the
MRAF algorithm takes longer to converge to the target image and results in a lower
optical efficiency. The detailed steps of the MRAF iterative algorithm are mapped out
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as a flow chart in Figure 2.3, following the procedure discussed in [91]. The MRAF
algorithm is the method used for creating the kinoform for the work in chapter 4, there
the target laser profile was five annuli arranged into a house configuration, and in
chapter 7 where the target image consisted of two spatially separated ellipses.

Additionally, first order Zernike polynomials are applied to both analytically and
iteratively solved kinoforms to act as a grating in order to displace the first-order
diffracted beam from the reflected zeroth-order beam.

2.2.2.2 Temporal Sculpting

The sample is sensitive to extreme heat and is prone to burning if a highly focussed
laser is held on the sample surface for too long. In order to avoid such overheating, the
continuous wave (CW) monomode laser with a narrow linewidth, which is used to
excite the microcavity, is passed through an acousto-optic modulator (AOM). This
chops the beam, creating a pulse at a repetition rate of 10 kHz and duty cycle of a few
percent, thus creating a ≈ 1 µs pulse every 100 µs. These timescales are many orders
of magnitude longer than the polariton lifetime and dynamics of the polariton system,
and so the this excitation is still considered to be CW, although it is often classed as
quasi-CW or quasi-pulsed.

2.2.2.3 Intensity Stabilisation

Due to the non-uniformities in the sample structure and the incident beam profile, plus
any small misalignment of the optics, the calculated kinoform will never create
condensates with the ideal relative intensities of the target image. As all project in this
thesis that study multiple coupled condensates rely on the system to minimise the XY
Hamiltonian, it is important that the network of condensates experimentally produced
are equal in intensity and in energy. This is achieved through an intensity stabilisation
procedure, whereby the pumping profile of each condensate is adjusted in order to
compensate for any deviation between the relative integrated intensity of condensates
and the target image pump sites. A new kinoform based on the adjusted target image
is iteratively approximated and displayed on the SLM.

By repeating this intensity correction iteratively, it is possible to create a lattice of
over 100 optically pumped polariton condensates with a relative standard deviation in
intensity of less than 1% [78].
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Figure 2.4: Schematic of (top) real-space an (bottom) Fourier-space imaging of the
sample PL using a microscope objective with focal length fO and lenses 1, 2 with focal
lengths f1,2 respectively. The vertical dashed and dot-dashed black lines represent the

real and imaginary planes respectively.

2.3 Measurements

As the radiated photoluminescence (PL) from the microcavity sample encodes the
state of the condensed polaritons from before they decayed, a variety of measurements
can be carried out in order to fully analyse the condensate system. The emitted
condensate PL is a propagating beam of photons that carries both phase an amplitude
information from the now decayed polaritons. The direct detection of these photons
when focussed at the real or imaginary plane of a lens only shows the spatial
distribution of the polariton intensity within the sample (or “real-space” profile) or the
intensity of the momentum distribution (or “Fourier-space” profile), respectively.
However, by manipulating the PL before detection opens up the measurement of other
condensate parameters. This section will discuss the variety of measurements
considered throughout the work of this thesis both in experiment and in simulation.

2.3.1 Real-space and Fourier-space

As mentioned above, “real-space” imaging refers to the spatial intensity distribution of
condensate PL, as emitted from the surface of the sample. This is a achieved
experimentally using a microscope objective to focus the PL emitted from the sample
surface at infinity, followed by a lens to focus the collimated beam at its focal length,
as shown in the top row of Figure 2.4. In simulations, the same profile corresponds to
the intensity of the condensate order parameter, |ψ|2.

“Fourier-space” imaging, also known as “k-space” imaging, corresponds to the beam
profiles when the real-space is focussed at infinity and maps out the Fourier transform
of the real-space wavefront. In polaritonics, it is often labelled as k-space as instead of
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mapping out the spatial x, y profile of the condensate PL, it maps out the wavevectors
kx and ky with kx ≡ ky = 0 at the centre. Thus, the Fourier-plane of the PL encodes
the energy information of the condensates in terms of the distribution in polariton
momentum. Experimentally, this is imaged using an additional lens to real-space PL
imaging, placed between the microscope objective and lens 1 following a 4f optical
alignment depicted in the bottom schematic of Figure 2.4. In simulation, the k-space
profile is given by |ψ̂|2, where ψ̂ is the Fourier transform of the condensate
wavefunction ψ.

2.3.2 Phase-space

As the condensate wavefunction is complex, it is possible to measure both the real and
Fourier space. When the real-space is measured experimentally, the camera/detector
maps out the PL intensity while the phase information is lost. However, the argument
of the real-space condensate wavefunction maps out the phase-space of the condensate
system. In simulation it is simple to define arg(ψ), but in experiment a more complex
optical setup is required.

Experimentally, interferometric analysis is required to reconstruct the condensate
phase-map. As discussed above, a network of condensates are pumped and confined by
a quasi-CW beam shaped using an SLM, but in addition to this, a second low-intensity
narrow-linewidth “seed” laser is used, focussed to a Gaussian spot with 2 µm FWHM.
The seed laser is resonant with the condensate PL and is chopped synchronously to
form an identical quasi-pulse to the condensate pump profile. It is then focussed
through the same microscope objective onto the sample surface, such that the seed
spatially overlaps with one of the condensates. This in turn fixes the phase of one of
the condensates. The condensate PL is then collected and interfered with the
expanded seed beam (used as a reference) using a Mach-Zehnder interferometer, which
is then detected using a 2D detector. The recorded data is analysed using off-axis
digital holograph [92, 93], whereby the first diffraction order of the interference pattern
in the Fourier plane is filtered and the inverse Fourier transform is digitally performed.
From this analysis, the expanded reference beam is subtracted and results in the
reconstructed condensate phase-map [94].

2.3.3 Spectroscopy

The PL is spectrally resolved using a high resolution 750 mm spectrometer with a 1800
grooves per mm grating. By focussing the PL Fourier-space onto the horizontal
spectrometer slit, a near linear profile about kx = 0 is spectrally resolved and the
polariton dispersion is directly measurable. If the real-space is focussed onto the slit, a
vertical narrow profile of real-space is spectrally resolved. In simulations, by taking a
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line profile in real-space (or k-space) at each integration time step, the Fourier
transform of the temporal stack leads to the polariton dispersion (or
spectrally-resolved real-space).
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Chapter 3

Synchronisation in Polariton
Stuart-Landau Networks

By bringing two optically trapped polariton condensates together, we demonstrate
tunable dissipative interactions between them. The condensates are both pumped and
confined using annular shaped non-resonant optical traps. The coupling between the
pair is realised through the finite escape rate of polaritons which ballistically propagate
from the condensate centres, such that phase locking is observed, akin to what is
observed with optically pumped condensates in the work of Ohadi et al. [44]. Through
tuning the condensate separation distance, we map out regions of strong and weak
dissipative coupling, where the strong coupling regimes are characterised by clear
in-phase or anti-phase synchronisation. The condensate trapping potential is used to
finely tune the bare condensate energies, such that robust single energy is maintained
within the condensate system irrespective of the condensate coupling, as governed by
the dissipative coupling of the optically trapped polariton condensates. As a result, we
present a system that offers a potential optical platform for the minimisation of both
sparse and dense randomly connected XY Hamiltonians. The work presented in this
chapter follows the findings published in Physical Review B [2] and is the combined
research effort of myself, Helgi Sigurdsson and Pavlos Lagoudakis. In the undertaking
of the experiment, I was offered technical support from Julian Töpfer and Giannis
Chatzopoulos. I carried out all experiments and simulations throughout this chapter,
except for the Hankel function fitting in Figure 3.4 which was performed by Helgi. The
initial discussion of controlling the natural frequencies of ballistically expanding
condensates took place between Pavlos Lagoudakis and Nikolay A. Gippius and was
important to the development of this research project.
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3.1 Introduction

Limit cycle oscillators are dynamical systems with two dimensional phase (which can
be described by a rotating phasor) with an isolated closed phase trajectory, such that
at least one other phase trajectory spirals into it over time [95]. If neighbouring
trajectories spiral into the same limit cycle as t → ∞, they are said to be stable or
attracting.

Dynamical systems in nature generally come about from dissipative oscillators, where
without a driving force, motion would cease. System dissipation can arise from
friction, heat loss, emission of particle or electromagnetic radiation or even material
degradation. Dissipation and driving forces tend to reach an equilibrium irrelevant of
the initial system transients and the system settles into a typical dynamical behaviour.
The set of states in phase-space towards which the system evolves for a wide variety of
initial states are labelled as attractors, where stable limit cycles are a specific example
[96]. Attractors are characterised by self-sustained oscillations with perfectly periodic
trajectories and can return to the limit cycle trajectory should a small perturbation
occur. Real-world examples of a limit cycle are all around us, such as the cycle of day
to night, moon cycles, seasons, tides, the beating of a wing, as well as the pendulum
[97]. However, the ideal pendulum is not a limit cycle oscillator as there exist multiple
concentric limit cycles in the system each with a different period, as such the orbits are
not attractors. The physical pendulum experiences damping from friction and
air-resistance making the stationary state of the pendulum a fixed-point attractor [98].

Many disciplines study instabilities, synchronisation and pattern formation in systems
of limit cycle oscillators, such as hydrodynamics, biological ensembles, neural networks,
nonlinear optics, Josephson junctions and coupled BECs [99, 100, 101]. Condensates of
microcavity polaritons [102] are found to follow similar oscillatory dynamics due to
their dissipative nature and give rise to a powerful experimental platform to study
nonlinear and out-of-equilibrium dynamics at the macroscopic quantum level [1] even
at room temperature [103].

The dynamics between multiple coupled polariton condensates can be described using
a discretised version of the driven-dissipative Gross-Pitaevskii equation (dGPE)
[104, 105, 106],

i
dψn
dt

= [Ωn + α|ψn|2]ψn +
∑

〈nm〉
Jnmψm (3.1)

where ψn is a complex number describing the density and phase of oscillator n, with
complex self energy Ωn = ωn + i(pn − γn), nonlinearity α = g− iRs and coupling to
neighbouring condensate Jnm. Physically, γn, pn > 0 denote the linear losses and gain
of the condensate respectively, g and Rs correspond to the real energy of the
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condensate from the exciton dipole interaction strength and polariton saturation rate,
and ωn is the natural frequency of the oscillator. For a single condensate, the oscillator
density |ψ|2 coincides with that of the Landau equation, describing the dynamics of
disturbances in the smooth laminar flow of fluids following ∂|ψ|2

∂t = k1|ψ|2 + k2|ψ|4,
where k1,2 are real constants [107, 72]. When condensates are coupled, i.e. Jnm 6= 0,
Equation 3.1 can be regarded as the discretised form of the complex Ginzberg-Landau
equation [108] to describe a system of coupled limit-cycle oscillators labelled as a
Stuart-Landau networks. It is worth noting that the complex Ginzberg-Landau
equation differs from the dGPE only in its historical origin and intent [61].

Recent studies of dissipative optical networks of limit cycle oscillators have shown
regimes with strong phase-space attractors in systems of limit-cycle oscillators, where
the relative phase arguments between stable oscillator pairs, θnm = arg(ψ∗

nψm),
correspond to the ground state of the XY Hamiltonian [54, 55, 56] and the Ising
Hamiltonian [109, 110, 111]. However, in order for the system of optical oscillators to
reach this minimum energy fixed point attractor, the oscillator natural frequencies ωn
need to be resonant with each other (ωn = ωm), and the coupling strengths Jnm need
to be imaginary in value in order to ensure dissipative coupling between oscillators
resulting in a fixed definite phase relationship [57]. The relative phase arguments of a
desynchronised system are meaningless, as the steady state attractor does not
correspond to a spin Hamiltonian. From an experimental stand point, it is paramount
to possess enough control over the network parameters (such as the trapping potential
and condensate separation distance) for the system to remain in the synchronised
regime in order to extract relative condensate phases, particularly in the case of time
averaged experiments.

In this chapter, limit-cycle oscillators within an optical platform are experimentally
demonstrated and analysed through controlling Jnm and fixing the global oscillator
natural frequencies ωn = ωm=̇ω using optically trapping polariton condensates. We
demonstrate regimes of clear synchronisation and map the couplings to weights of the
XY Hamiltonian. The experimental results are corroborated by numerical simulations
of both the continuous and discrete dGPE, for which we benchmark the performances
at finding the XY ground state.

In studies of optically pumped ballistically expanding polariton condensates, it was
revealed that a strong re-normalisation of condensate energies occurs when coupled
together, where two energy branches of the condensate system are populated
simultaneously [45]. We show that this multimodal behaviour can be quenched by
optically confining the polariton condensates within an annular trap [46, 47, 50], thus
limiting their state space and favouring synchronisation. Optically trapped condensates
have a relatively lower pump intensity at condensate threshold, compared to the
ballistically expanding state, as the condensate does not form at the spatial location of
the pump, but instead non-condensed polaritons propagate away from the pump
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location such that a population of polaritons builds at the centre of the annular trap,
where above some critical density they form a polariton condensate. This trapping
process is described in more detail in subsection 1.2.4. Due to their non-equilibrium
behaviour, polaritons can diffuse away from their pumping spots through transferring
their potential energy into kinetic energy [45, 112, 113], where such a flow of coherent
polaritons with tunable cavity in-plane momentum results in interference and robust
phase locking between spatially separated condensates [53, 114, 115, 116, 44].

The phase locking of the condensates can be detected through the observation of
interference fringes in the cavity real-space and reciprocal-space photoluminescence
(PL), which has been achieved over a condensate separation distance greater than
100 µm [45, 78, 117]. More importantly, optically trapped polariton condensates show
a coherence time of several nanoseconds [52], which is an increase by a factor of 100
compared to ballistically expanding condensate [118, 119], thus allowing for greater
scalability of the system compared to optically pumped polariton condensates.
Through scaling the a network of polariton condensates intercalated with optical
potential barriers [94], we propose a robust platform on which to imprint arbitrary
weights of an XY Hamiltonian into a polariton condensate system for heuristic
computation of the XY ground state.

3.2 Experimental Method

A pair of optically trapped polariton condensates are realised using a
strain-compensated 2λ sample outlined in subsection 2.2.1 and characterised in [3].
The sample is held in a cold finger cryostat, supplying a continuous flow of liquid
helium to cool the sample to a few Kelvin and is nonresonantly pumped at a cavity
detuning of around -5 meV by right-circularly-polarised light from a CW monomode
laser, tuned to the first minimum in reflectivity energetically above the stopband
(λ = 780 nm). To avoid sample heating, the CW laser is modulated to a quasi-CW
beam through the use of an AOM at a repetition rate of 10 KHz and duty cycle of 5%.
The annular shape of the beam is achieved by focussing the Gaussian beam onto the
surface of a phase-modulating SLM, displaying an analytically solved phase kinoform
(see subsubsection 2.2.2.1 for details). The resulting pump profiles consist of two
annular traps, each described by P (r) = P0e

−(r−r0)2/2σ2 , where P0 denotes the pump
amplitude, r scans the radial distance from each trap centre, r0 marks the individual
trap radius of 9.4 µm, and σ corresponds to the 2 µm diffraction-limited full width at
half-maximum of each annulus (or the “thickness” of each ring). An example of a
single laser profile used to optically trap the condensates is shown in Figure 3.2(d).
The rings are adjusted in relative intensity in order to balance the height and energy of
the resulting condensate pair [120], where a knife edge is used to cut the excitation
profile of each ring in turn in order to characterise the individual bare condensates.
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Figure 3.1: Schematic to show the optical setup of this experiment, where horizontally
polarised light is focussed in the Fourier-plane on the surface of the SLM, which imprints
a phase profile onto the beam, thus sculpting it in real-space into two rings. The beam
is focussed in real-space on the surface of the sample cooled to ∼4 K using a liquid
helium cryostat. The resulting condensate PL is emitted from the sample with circular
polarisation and is imaged simultaneously in real-space and Fourier-space (k-space).
The vertically polarised component of the PL is focussed on the vertical spectrometer
grating and the beam is imaged as energy-resolved k-space and energy-resolved real-
space through the addition or removal of the penultimate lens. All optical components

are labelled or shown in the boxed key.

The modulated and balanced beam is then focussed on the surface of the sample using
two lenses and a high numerical aperture microscope objective (NA = 0.4). The PL
emission is collected through the same objective and passes through an 808 nm long
pass filter, in order to cut out the excitation laser beam. As well as being measured in
real-space and reciprocal-space, the PL is spectrally resolved with an 1800 grooves/mm
grating in a 750 mm spectrometer, centred at 875 nm. The schematic for this optical
setup is shown in Figure 3.1.

3.3 Numerical Spatiotemporal Simulations

The condensate dynamics are also modelled using the mean-field theory approach,
where by the condensate order parameter Ψ(r, t) is described as a two-dimensional
semi-classical wave equation, known as the generalised GPE, whose derivation is
outlined in section 2.1, coupled to an active and inactive exciton reservoir [67],
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i
∂ψ

∂t
=

[
− h̄∇2

2mp
+G(nA + nI) + α|ψ|2 + i

2 (RnA − γ)

]
ψ(r, t), (3.2)

∂nA
∂t

= −(ΓA +R|ψ|2)nA +WnI , (3.3)

∂nI
∂t

= −(ΓI +W )nI + P (r, t). (3.4)

Here, the active reservoir describes the density of excitons nA that experience bosonic
scattering into the condensate and the inactive reservoir describes the density of
excitons nI that sustain the active reservoir [104, 121]. mp is the effective polariton
mass in the LP branch, α describes the system’s non-linearity as a result of the
inter-particle interaction strength, R is the rate of stimulated scattering of polaritons
into the condensate from the active reservoir, γ is the polariton decay rate, ΓA,I are
the active and inactive reservoir exciton decay rates, W is the conversion rate between
the inactive and active exciton reservoirs and P (r) describes the nonresonant CW
pump profile which, which in this case is two spatially separated annular traps.

Eqs. (3.2 - 3.4) are numerically integrated using a linear multistep method in time and
spectrally resolved. Many parameters used in these simulations are based off the
sample properties with mp = 0.28 meV ps2, γ = 1

5.5 ps−1, h̄α = 3.5 µeV µm2 and
G = 10α. The nonradiative recombination rate of inactive reservoir excitons is taken
to be much smaller than the condensate decay rate such that ΓI = 0.01γ, as opposed
the the active reservoir decay rate which is considered to be comparable to the
condensate decay rate, ΓA = γ, due to the fast themalisation to the exciton
background [53]. The remaining parameters are determined through fitting to
experimental data, where we use the values h̄R = 99 µeV µm2 and W = 0.035 ps−1.

The pump profile used to trap the condensates consists of two rings each with a
diameter of 7 µm and FWHM of 2 µm, pumped with a height to induce condensation
just above threshold and scanned over a range of separation distances from 20 µm to
80 µm.

3.4 Results and Discussion

In experiment, above threshold power the condensates form at the centre of the optical
traps as a single Gaussian ground state mode. In Figure 3.2(a,b), we show the
real-space and reciprocal-space condensate PL with visible interference fringes in both,
as evidenced in the white line profiles, thus indicating that the condensates are
phase-locked. The faint outer ring in the reciprocal-space realisation corresponds to
the radial outflow of coherent polaritons from the pump sites, where the bright centre
is a result of the polaritons localised within the traps. Figure 3.2 is created by stacking
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Figure 3.2: (a) Real-space and (b) Fourier-space experimentally realised condensate
PL from two annular traps with d = 50 µm separation, with logarithmic and linear
integrated line profiles shown in white. (c) Horizontal line profiles from Fourier-space
PL (i.e., at ky = 0) for varying trap separation, with dashed white line to mark kx = 0.
(d) Laser profile of annular pump with 12 µm diameter, used to trap each condensate.
(e) Energies of the condensates with varying trap separation, with red triangles and
green squares corresponding to the uncoupled left and right condensates and black
circles corresponding the coupled condensate system respectively. Error bars shown
the FWHM of the energy linewidth and zero energy corresponds to 0.796 meV above
the bottom of the lower polariton branch. White scale-bars represent (a) 10 µm, (b,c)

0.5 µm−1 and (d) 5 µm. The same linear colour scale is used in (a-d).

the reciprocal space slices through ky = 0 over a range of condensate separation
distances between 15 µm and 35 µm. As the separation distance is increased, addition
fringes appear, where a bright or dark central fringe indicates even (in-phase) and odd
(anti-phase) parity respectively. Such phase-locking means that the coupling between
optically trapped condensates is finite and therefore normal mode splitting is to be
expected, such that the energy modes of the coupled system are shifted from the bare
modes. Surprisingly, due to the system’s dissipative behaviour, this is not what we
observe. For optically trapped condensates, the coupled condensates remain
synchronised with the same observed energy as the bare condensates [shown in
Figure 3.2(e)]. This observation can be understood by considering the interacting
condensates at a zero-detuned two-level system in the linear regime, with states |ψ1〉
and |ψ2〉 and energy ω1 = ω2=̇ω. The coupling is then realised as an operator of the
form Ĵ = Jeiβσ̂1 with J > 0 and the non-Hermitian classical Hamiltonian,

H = ωσ̂0 + Ĵ =

(
ω Jeiβ

Jeiβ ω

)
. (3.5)

Here, σ̂n are the 2×2 Hermitian unitary Pauli matrices, with n = 0 corresponding to
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the identity matrix. The even-parity and odd-parity eigenmodes of Equation 3.5
(corresponding to in-phase and anti-phase configurations) are written as
Ψ = (1, ±1)T/

√
2 and have the eigenfrequencies ωA,B = ω± Jeiβ. However, as we

experimentally observe a monomode state in the coupled condensate system, we
consider the case where the modes are degenerate in real frequency, which occurs when
β = ±π/2, but the imaginary frequency is split by ∆ = i2J . This imaginary frequency
splitting corresponds to different linewidths of the two degenerate modes, where the
parity state will follow the eigenstate with the largest imaginary energy component,
which physically corresponds to increased scattering from the reservoir of uncondensed
polaritons, thus gains population during the condensation process. Therefore, although
the real energy splitting is within the system linewidth, the dissipative splitting still
has great impact on the parity forming process, as evidenced by the clear interference
fringes of definite parity in Figure 3.2(a-c).

Between the regions of clear parity in Figure 3.2(c), there are separation distances that
result in blurred regions with no clear parity. These appear periodically with
separation distance (as do the regions fo clear parity), which stems from the fact that
the polariton outflow is dictated by the time-independent cylindrical wave equation
(Helmholtz equation) outside of the annular pumps, whose solutions follows the Hankel
function [53]. This results in Jnm spiralling in the complex plane as a function of
polariton outflow momentum and condensate separation distance [55, 54]. In the cases
where the coupling is predominantly imaginary with β = ±π/2, the fringes and parity
become clear due to the deterministic condensation into the highest gain modes.
However, in the inverse case with β = [0,π], both parity modes are degenerate in gain
and so are occupied stochastically with each realisation in either even or odd parity.
As the experimental realisations are time integrated over many realisations, the regions
of stochastic parity occupation average out and result in the periodic “blurred” regions
in Figure 3.2(c).

These findings are corroborated with numerical simulations using the 2DGPE, where
in agreement with experiment, the energy of the simulated optically trapped
condensate wavefunction maintains an energy of ∼0.782 meV above the bottom of the
LP branch, where parity switching is also observed as a function of condensate
separation distance in both real- and reciprocal-space. The steady state example of an
even and odd parity realisation are shown in Figure 3.3(a-d). Again, we stack the
ky = 0 line profiles over a range of condensate separation distances and averaged over
20 independent simulation realisations, where in agreement to the experimental
findings, we see periodic regions of clear and smeared-out parity corresponding to
strong and weak dissipative coupling [Figure 3.3(e)].
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Figure 3.3: Numerically simulated (a,b) real-space PL and pump profiles (black con-
tours) and (c-d) Fourier-space PL from two annular pump profiles with 7 µm diameter
with (a,c) 23.2 µm and (b,d) 26.6 µm trap separation. White lines in (b,c) show the
horizontal line profiles at ky = 0. (e) Horizontal line profiles from Fourier-space PL
(i.e., at ky = 0) for varying trap separation, with dashed white line to mark kx = 0. All
plots shown on the same normalised linear colourscale and whote scale-bars to shown

(a,c) 10 µm and (b,d,e) 0.5 µm−1.

3.4.1 Hankel Function Polariton Outflow

In order to determine the inter-condensate coupling strength between neighbouring
condensates, we first plot the steady state solution of Eqs. (3.2 - 3.4) trapped by an
annular shaped pump profile for the wavefunction outside of the trapping potential.
By fitting this data with the zeroth-order Hankel function of the first kind, we see that
the steady-state condensate follows the same solution of the Helmholtz equation as
expected [53] [Figure 3.4(a)].

To determine the coupling strength between two optically trapped condensates, we
write a Hamiltonian to describe the two individual condensates following the
condensate order parameters ψ1,2(r) = c1,2ϕ1,2(r),

Ec1ϕ1(r) =
[

− h̄2∇2

2mp
+ V1(r)

]
c1ϕ1(r), (3.6)

Ec2ϕ2(r) =
[

− h̄2∇2

2mp
+ V2(r)

]
c2ϕ2(r), (3.7)

such that 〈ϕ1|ϕ2〉 ' 0 and 〈ϕ1|ϕ1〉 = 〈ϕ2|ϕ2〉 = 1 with a total wavefunction
Ψ(r) = c1ϕ1 + c2ϕ2. The global Hamiltonian becomes

ih̄
dΨ
dt

=

[
− h̄2∇2

2mp
+ V1 + V2

]
Ψ. (3.8)
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Figure 3.4: (a) Cross section of nonresonant pump profile (black dotted line), real
part of the numerically obtained condensate wavefunction (green), and a fitted zeroth-
order Hankel function of the first kind, ψ(r) = AeiφH

(1)
0 [k(r− r0)], where A and φ are

real fitting parameters. Radial coordinates correspond to r. r0 = 11 µm is adjusted to
where the particles escape the trap. (b) Real (blue line) and imaginary (red line) part of
Equation 3.16 for wavefunctions separated by d = |d|. As the magnitude of the distance
is increased, the integral expectedly decreases as the overlap diminishes. The circle and
square markers are a fit to the data using a Hankel function J = J0eiφH

(1)
0 [k(d−dtrap)].

dtrap = 10 µm is the diameter of the trap used in this simulation. For (a,b) k = kc+ iκ,
where kc = 0.96 µm−1 and κ = mpγ/2h̄kc.

By multiplying through by
∫
ϕ∗

1, this becomes

∫
ϕ∗

1ih̄
dΨ
dt
dr = ih̄

dc1
dt

∫
|ϕ1|2dr︸ ︷︷ ︸
=1

+ih̄
dc2
dt

∫
ϕ∗

1ϕ2dr︸ ︷︷ ︸
'0

(3.9)

=
∫
ϕ∗

1

[
− h̄2∇2

2mp
+ V1 + V2

]
(c1ϕ1 + c2ϕ2)dr. (3.10)

By grouping together the kinetic and potential energies of each condensate, this can be
written as,

ih̄
dc1
dt

=
∫
ϕ∗

1

[
− h̄2∇2

2mp
+ V1

]
c1ϕ1dr +

∫
ϕ∗

2

[
− h̄2∇2

2mp
+ V2

]
c2ϕ2dr

+ c1

∫
ϕ∗

1V2ϕ1dr + c2

∫
ϕ∗

1V2ϕ2dr
(3.11)



3.4. Results and Discussion 51

Figure 3.5: Experimental reciprocal-space PL as shown in Figure 3.2(d), with a
dashed white line to show k = 0 µm−1. (b) The colourmap shows the spectral in-
tensity (real energy) from simulation of two condensates as a function of distance d
using Equation 3.1 and with coupling as defined by Equation 3.17. Blue crosses show
the steady-state relative phase θ12 from the simulation. Solid and dashed white lines
correspond to the real and imaginary parts of Equation 3.17 respectively. Parameters:
kc = 1.04 µm−1, dtrap = 9.4 µm, mp = 0.28 meV ps−2 µm−2, ωn = 0, γ−1

n = 5.5 ps,
pn/γn = 1.65, Rs = 0.005 ps−1, and g/Rs = 0.02.

= c1E

∫
|ϕ1|2dr︸ ︷︷ ︸
=1

+c2E

∫
ϕ∗

1ϕ2dr︸ ︷︷ ︸
'0

+c1

∫
V2|ϕ1|2dr︸ ︷︷ ︸

'0

+c2

∫
ϕ∗

1V1ϕ2dr (3.12)

= Ec1 + c2

∫
ϕ∗

1V1ϕ2dr. (3.13)

As the equivalent expression exists for the other condensate through simply swapping
the labels 1 and 2 in Equation 3.13, this result can be written in matrix form with the
diagonal term corresponding to the condensate self energies and off-diagonal terms to
the inter-condensate interactions,

ih̄
dc
dt

= ih̄
d

dt

(
c1

c2

)
=

(
E J12

J21 E

)(
c1

c2

)
, (3.14)

and thus the definitions of the inter-condensate coupling strengths become

J = J12 = J21 =
∫
ϕ∗

1V1ϕ2dr =
∫
ϕ∗

2V2ϕ1dr. (3.15)

We then use this result to calculate the coupling strength between two condensates
with the overlap integral of the 2DGPE steady-state solution of a single condensate
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wavefunction (ψ(r)) with its itself displaced over a range of spatial displacements d
(ψ(r − d)) and a single trapping potential V (r),

J =
∫
ψ∗(r)V (r)ψ(r − d)dr. (3.16)

The resulting integration of Equation 3.16 as a function of condensate separation
distance d = |d| is shown in Figure 3.4(b) as separate components of real and
imaginary coupling strength, which are fit with the Hankel function of the first kind as
shown by the overlayed red circles and blue squares respectively. This result confirms
that the precise pump shape does not play a significant role on the coupling strength,
where the qualitative analytical form can be obtained from considering the wave
function outside of the pumping potential only. We use this result to describe these
findings using Equation 3.1 through adiabatically eliminating the dynamics of the
exciton reservoirs feeding the condensates [122] and applying a tight-binding method
on the localised dissipative condensates [123, 106]. Using the notation of the coupling
strength used in the coupling operator combined with the Hankel function behaviour
we can write,

Jnm = |Jnm|eiβnm = J0e
iφH

(1)
0 [k(d− dtrap)]. (3.17)

Here J0 is the magnitude of the coupling strength, φ is the phase adjustment
parameter to match the coupling strength with the experiment results, k = kc +

impγ
2h̄kc ,

where kc is the outflow polariton momentum [53], mp is the effective polariton mass
and dtrap is the trap diameter. Two interacting polariton condensates are then
modelled using Equation 3.1 for pn > γn and the resulting real energies are plot in
Figure 3.5(b) across the condensate separation distances of 15 µm to 40 µm. The
overlayed blue crosses correspond to the relative condensate phases θ12 = arg(ψ∗

1ψ2)

and show a step-function transition from in-phase to anti-phase locking. Figure 3.5(a)
shows a section from Figure 3.2(c) for ease of simple comparison between theory and
experiment. The spectrum shows discontinuous jumps where the imaginary
(dissipative) component of Jnm changes sign and corresponds to the parity switching of
the lowest threshold mode of the condensates. This result shows that a system of two
coupled optically trapped polariton condensates robustly occupy the highest gain
energy mode dictated by the imaginary part of Jnm.

3.4.2 Sparsely Connected Chains

The relative phase between two condensates can be controlled experimentally using an
optical potential barrier between the condensate pair [94], such that Jnm can be
programmed to nearly arbitrary values, with phases chosen as βnm ' ±π/2. This
makes it possible to create a randomly connected network of dissipatively coupled
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Figure 3.6: (a-c) Average ratio of minimised XY Hamiltonian energy between the
dGPE and BH method, η = EGPE/EBH, for 20 random realisations of couplings Jnm.
Performance is shown for different network sizes N , values of g/Rs and σ. Part (d)
shows a schematic of the randomly connected continuous-chain lattice tested with dGPE
and BH methods. (e) Elapsed computation time taken to find a local minimum energy

phase configuration using the dGPE and BH methods.

polariton Stuart-Landau oscillators for the simulation of an arbitrary XY Hamiltonian
[55, 54, 57]. The idea is to numerically integrate Equation 3.2 initially with pn − γn

negative enough such that ψn = 0 is the only stable solutions, corresponding to
pumping below the condensation threshold density. Then, by adiabatically increasing
pn, the trivial solution of ψn becomes unstable and the system undergoes a non-linear
transient process know as a Hopf bifurcation into the condensed steady state with
|ψn| > 0 and whose phase configuration correlates to that of the XY ground state.

Using a similar technique to [124, 57], we verify the performance of Equation 3.1 and
test its ability to find the XY Hamiltonian ground state against a global classical
optimiser, the basin hopping (BH) method [125] for randomly connected closed chains
of dissipative coupled oscillators [see schematic in Figure 3.6(d)], following
HXY = −

∑
nm Im(Jnm) cos(θnm). Since no cavity system is ideal, we additionally test

the dGPE over values of βnm deviated from the ideal ±π/2. Additionally, we
investigate the ratio of the two nonlineatities g/Rs, where g dictates the real energy
shift of each condensate and Rs corresponds to the polariton saturation rate.

For each set of undirected couplings Jnm, the energy found using the BH method and
the dGPE are denoted as EBH and EGPE , where in Figs. 3.6(a-c), we plot
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η = EGPE/EBH averaged over 20 random coupling configurations of the closed chains
over various numbers of oscillators N . The ideal case of βnm = ±π/2 is shown in
Figure 3.6(a), whereas Figure 3.6(b,c) correspond to Jnm = |Jnm|(e±iπ/2) ± σ, where
σ > 0 introduces a small real component to the coupling strength. With g/Rs = 10−4,
the performance does not drop below η = 0.96, and we see that while g ≤ Rs, the
energy ratio η remains above 0.78 and does not vary significantly with σ. However,
increasing g below this value considerably reduces the accuracy of the dGPE at
minimising the XY Hamiltonian. The time taken to compute the XY energies for the
BH and dGPE methods over a range of N is shown in Figure 3.6(e), where the
classical solver takes non-polynomial time to compute the solution. Each minimisation
method is considered using a single coupling configuration for each graph on a single
core of the same Intel(R) Xeon(R) W3520 @ 2.67 GHz CPU. The computation time of
the dGPE increases by just 2.5 s as the system scales in size by a factor of 10, whereas
the time taken by classical BH method grows by more than three orders of magnitude
over the same scaling of size.

To summarise, this investigation shows that the XY Hamiltonian of randomly weighted
chains of dissipatively-coupled Stuart-Landau oscillators is approximately minimised to
within 96% of the ground state when using physically realistic values of g/Rs for
dissipative polariton systems. The performance of this polaritonic optimiser also does
not significantly vary when a small component of weakly-dissipative coupling is
introduced.

3.4.3 Densely Connected Graph

In addition to spare chains of oscillators, we also compare the robustness of the dGPE
against the BH method for random all-to-all connected polariton graphs of N
condensates, where again we plot η = EGPE/EBH over a range of realistic and
unrealistic polariton-polariton interaction strengths and a small real coupling strength
contribution. These results are shown in Figs. 3.7(a-c), which show that the dGPE of
Stuart-Landau oscillators is able to minimise the XY energy of any lattice
configuration, although some configurations are not experimentally realistic. The
phases of a chain of 10 all-to-all randomly connected oscillators after finding the XY
ground state is illustrated as phasors in Figure 3.8 for both the dGPE and BH methods
and shows that both methods are able to locate the same ground state configuration.

The average standard deviation between the dGPE and BH methods is written as

∆ =
1
M

M∑
m=1

min
√

1
2N (xdGPE − x(±)

BH )†(xdGPE − x(±)
BH ), (3.18)
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Figure 3.7: (a-c) Measure of η = EdGPE/EBH for a range of polariton-polariton
interaction strengths g/Rs, and a fraction of nondissipative coupling strength σ = 0%,
5% and 10% respectively for a range of N densely and randomly coupled spins. (d-f)
Average standard deviation ∆ (M = 20) between minimised spins using the dGPE and
BH methods for and σ = 0%, 5% and 10% respectively, for varying g/Rs and N . Grey
horizontal lines represent the standard deviation in Euclidean distances corresponding

to the relative phases of π
8 , π

4 and π
2 .

where xdGPE = {eiθn}Nn=1 and x(±)
BH = {e±iθ′

n}Nn=1 are the complex state vectors coming
from each method with phases θn and θ′

n respectively. The global gauge is fixed by
rotating the state vectors such that θ1, θ′

1 = 0 in each method. The “min” operation is
added since the XY Hamiltonian is invariant by an overall sign factor, i.e.,
HXY = −

∑
nm Im(Jnm) cos [±(θn − θm)]. The integer M denotes the number of

different networks tested. For M = 20, we plot ∆ over a range of N in Figs. 3.7(d-f).
The coupling strengths are defined as Jnm = |Jnm|(e±iπ/2±σ) such that the choice of ±
is chosen randomly for each coupling, where in Figure 3.7(d) σ = 0 (describing the
ideal case) but for Figs. 3.7(e,f), a real coupling component is included (i.e. σ > 0).

Figure 3.8: Relative phases of 10 randomly and densely connected spins minimising
the XY Hamiltonian achieved by (top) the dGPE and (bottom) the basin hopping

method. In the minimisation shown, g/Rs = 1 × 10−4 and σ = 0%.



56 Chapter 3. Synchronisation in Polariton Stuart-Landau Networks

Overall, these results show that the XY energies solved using the BH and dGPE
method deviate as both g and σ increase and correspond to the desynchronisation of
the Stuart-Landau oscillators.

3.5 Conclusions

The work in this chapter demonstrates the robust synchronisation between optically
trapped polariton condensates, a phenomenon attributed to the dissipative mechanism
from the mutual condensate interference. The coupled condensates do not exhibit
noticeable normal mode splitting in experiment due to the linewidth of the polaritons,
yet at the same time the system is able to synchronise over a range of separation
distances where dissipative coupling is dominant. The single-mode operation of the
polariton condensate system is paramount in order to read out the relative phase
configurations between steady-state condensates, particularly in time averaged
measurements. This result offers up the system of synchronised polariton condensate
networks as an optical platform for physically realising the recently proposed
gain-dissipative Stuart-Landau oscillators, which can be used to heuristically solve
dense randomly connected spin Hamiltonians on the ultrafast timescale.
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Chapter 4

Solving the Max-3-Cut Problem
with Coherent Networks

There exist many computational problems that are intractable through classical
computing and, as transistors cannot be miniaturised any further (or in other words,
Moore’s law is drawing to a halt), will remain unsolved unless a new computational
solving technique is developed. This has led to a growing demand for alternative and
unconventional computing techniques to tackle these complete and intractable
problems. In this chapter, a liquid light machine is used to approximate solutions to
the NP-hard max-3-cut problem based on networks of synchronised exciton-polaritons.
Through using the continuous phase degree of freedom of polariton condensates, we
overcome the binary limitations of the decision variable in Ising machines. As the
dynamical transients of the condensate network provide fast annealing of the XY
Hamiltonian, we can apply the Goemans and Williamson random hyperplane
technique to discretise the steady-state phases of the condensates to ternary spins that
serve as decision variables for an approximate optimal solution of the max-3-cut
problem, for which we shown successful results in theory and experiment. In addition
to applying this phase binning and spin mapping, we present applications of this
technique to the tasks of image segmentation and circuit design using coherent
networks of polariton condensates.

The work presented in this chapter is published in Physical Review Applied [4], and is
the joint work of myself, Helgi Sigurdsson, Sergey Alyatkin, Julian Töpfer and Pavlos
Lagoudakis. The simulations in this chapter were performed by me, following the
guidance of Helgi, who carried out the statistical benchmarking of Figure 4.5, and
Pavlos. The experiments were carried out by Sergey, using an optical setup developed
by him and Julian.



58 Chapter 4. Solving the Max-3-Cut Problem with Coherent Networks

4.1 Introduction

In nature, complexity is as widespread as it is diverse. With the turn of the computing
age, there has been a rapid rise in non-Boolean strategies designed to tackle complex
computational problems that are simply too cumbersome for conventional
Turing-based computers. Such computing architecture cannot simultaneously process
an instruction fetch and data operation due to having a common bus, thus restricting
and limiting the performance of a computer, labelled as the Von-Neumann bottleneck
as coined by John Backus in 1978 [126, 127]. In addition to the bottleneck, CMOS
architectures are reaching their limits as transistors cannot be made any smaller
without introducing quantum effects.

Many scientific fields depend on the development of more powerful computing
platforms and a new method of computing in order to tackle intractable problems such
as climate change [128, 129], drug design [130], and the development of new materials
and batteries [131] (to name a few). These types of problems are often approached
using approximation algorithms or heuristic non-conventional solvers such as
semidefinite programming [132, 133], genetic algorithms [134], and nature inspired
heuristic algorithms [135, 136]. As opposed to building an optimiser for the
minimisation of some cost function, instead a problem can be mapped to the
Hamiltonian of a physical system that relaxes to the ground state of its energy
landscape corresponding to the global minimisation of the Hamiltonian, thus implicitly
optimising the cost function. Coherent networks are widely considered as the next
possible generation of quantum [137] and classical computational devices [138], and
have gained much interest in the field of photonic-based classical annealers, which have
been realised for both Ising [109, 110, 139, 140, 141, 142, 143, 144, 145] and XY spin
Hamiltonians [54, 55, 146, 147, 148], waveguide networks for the subset sum
problem [149], and digital degenerate cavity lasers for the phase retrieval problem [150].

Here, we test a liquid light machine based on a planar network of exciton-polariton
condensates and demonstrate its ability to optimise the maximum-3-cut (a.k.a.
max-3-cut and M3C) computational problem compared to the brute force method, with
a focus on two applications of image segmentation and constrained-via-minimisation in
circuit design. Through applying the recent developments of connecting the dissipative
nature of condensate dynamics to the minimisation of the XY
Hamiltonian [54, 55, 57, 2] we apply a random hyperplane technique to bin the
continuous condensate phases (corresponding to the XY ground state) to ternary
decision variables [132, 151]. In the following steps, we map the NP-hard M3C
optimisation problem [152] to the minimisation of a ternary phase-discretised XY
Hamiltonian, which is near-optimally solved using the decision variables extracted from
the standard XY model. Max-cut based problems have many real-world applications
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such as in social network modelling [153], statistical physics [154], portfolio risk
analysis [155], circuit design [156], image-segmentation [157], and more [158, 159, 160].

Unlike Ising machines which are limited to binary decision variables and thus restricted
to just the max-2-cut problem [154, 109], the continuous degree of freedom of the
variables (spins) of the XY model makes it possible to bin their phases into higher
dimension decision variables, where a direct mapping exists for the max-2-cut and
max-3-cut problems. However, the continuous phases of the XY model give new
perspectives on whether the higher order max-k-cut problems can be approximated
through discretising the phases to k decision variables. The discussed method can be
applied to any system of interacting oscillators such as electronic circuits, laser systems
and condensates. However, polariton condensate systems have a potential advantage
over other optical optimisers [161, 162, 148, 163, 164, 111] due to the
continuous-phase-locking capabilities of the condensates, strong nonlinearities, the
ability to arbitrarily control polariton graph geometries and coupling strengths [94],
their long coherence length (reported up to 120 µm [78]), their robust network
synchronization resulting from the ballistic nature of the condensate interaction
mechanism [44, 45], plus the robustness of the inorganic semiconductor microcavity [3].

4.2 Mapping the M3C Problem to the Ternary XY
Model

The M3C problem is as follows: given an undirected graph G = (V, E), the M3C is the
partition of vertices V into three subsets, such that the sum of all edge weights E that
connect between different subsets is maximised. We denote the number of vertices with
|V|. Following similar arguments presented by Barahona for an Ising spin system [156]
we will show a map from minimising the energy of a ternary XY spin system to the
maximisation of a M3C problem. The ternary spin system is written as follows,

s =

(
cos(θ)
sin(θ)

)
, θ ∈

{
0, 2π

3 , 4π
3

}
. (4.1)

Here, s ∈ R2 is a vector that can pick up three distinct orientations. We can label
these vectors as “spins” in analogy to Ising spin systems which are binary in
comparison (i.e., θ ∈ {0,π}). For a set of spins and a set of couplings Jij = Jji ∈ R we
define a Hamiltonian,

H = −
∑
ij

Jijsi · sj . (4.2)

Here, si · sj is the dot product between the spins. It is easy to see that, in our ternary
system, for any two spins we have si · sj = cos(θi − θj) ∈

{
1, −1

2

}
(for comparison, the

spins in an Ising system would be binary in orientation with θ ∈ {0,π}, resulting in
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si · sj ∈ {−1, 1}). This model is also known as the q = 3 vector Potts model which has
been studied in statistical mechanics and quite recently in the context of
exciton-polariton condensates [56]. When θi ∈ [−π,π) then Equation 4.2 is just the
standard XY model,

HXY = −
∑
ij

Jij cos (θi − θj), θi ∈ [−π,π). (4.3)

Let us now define an undirected graph G = (V, E) with edges E connecting vertices V,
where V contains the ternary spins s from Equation 4.1. Each edge connecting vertex
Vi and Vj , with corresponding spins si and sj , is assigned a weight Jij . We define three
sets of spins corresponding to the three orientations of θi,

Vn =

{
i ∈ V | si =

2πn
3

}
, n = 0, 1, 2. (4.4)

Let us define En as the set of edges connecting spins within each set Vn and δE as the
set of edges connecting spins between different sets of vertices. We can then rewrite
Equation 4.2 in the following manner,

H = −
∑

i,j,∈En
Jij +

1
2
∑
i,j∈δE

Jij . (4.5)

By defining the sum total of all the edges C =
∑
ij∈E Jij , we then have,

H +C =
3
2
∑
i,j∈δE

Jij . (4.6)

Figure 4.1: (a) Schematic of a chosen binning boundary (dashed white lines) project-
ing spins into the corners of the circumscribed triangle. (b) The XY ground state of the
house configuration with numbers representing the angles (phases) θi of the vertices in

radians; (c) the ternary mapping of the phases in (b).
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Since C is invariant on the spin configuration, it can be seen that minimising
Equation 4.2 is the same as maximising a M3C problem by redefining Jij = −Wij ,
where Wij is the weight of the edge connecting Vi and Vj ,

min

−
∑
ij

Jijsi · sj

 ↔ max

 ∑
i,j∈δE

Wij

. (4.7)

In the polariton network, the interacting quantities in question are nonlinear oscillators
(the condensates) each characterised by a complex-valued number ψi = ρie

iθi , where ρi
gives the condensate particle density and θi defines the phase of the condensate. In
this sense, the phasors of the condensates then take the role of interacting
two-dimensional pseudospins s which dynamically experience a gradient descent
towards the ground state of HXY [54].

As pointed out by Frieze and Jerrum [165], a mapping exists between a max-k-cut
problem and the ground state of a system of spins residing at the vertices of an
equilateral simplex in Rk−1. For the max-2-cut problem the corresponding simplex is a
line with vertices θ = {0,π} which is the reason an Ising system ground state maps
directly to the max-2-cut [154]. For the M3C problem the simplex is an equilateral
triangle inscribed by the unit circle like in Equation 4.2 and shown in Figure 4.1(a).
For the max-4-cut the problem maps to the ground state of the Heisenberg spin system
where the simplex is an equilateral tetrahedron inscribed by the unit sphere, and so
on. To reiterate, this means that the continuous-phase XY ground state can be binned
to binary and ternary decision variables, which directly map to solutions of the
max-2-cut and max-3-cut graph problems respectively.

4.2.1 The random hyperplane technique

In order to approach the ground state of the ternary Hamiltonian of Equation 4.2, the
spins in the XY Hamiltonian of Equation 4.3 that correspond to the ground state
configuration {s1, s2, . . . } are projected onto their closest ternary counterpart through
binning the phases to the unit complex triangle, as inscribed on Figure 4.1(a). This
technique of discretising the continuous phases onto binary or ternary decision
variables creates a semidefinite relaxation program1 which has previously been studied

1Semidefinite programming refers to an area of optimisation mathematics following a linear objective
(cost) function that is subject to convex constraints. Semidefinite programs are the name given to
optimisation problems consisting of a linear function of a variable x ∈ Rm following:
min

(
cT x
)

subject to F (x) ≥ 0, where F (x) = F0 +
∑M

i=1 xiFi.

The problem data is given by c ∈ Rm and the m+ 1 symmetric matrices F0, ...Fm ∈ Rn×n, where
F (x) is positive semidefinite meaning that it is Hermitian (it is its own conjugate transpose) and has
non-negative eigenvalues. Many real-world problems can be approximated as a semidefinite program,
where a mathematical program (or algorithm) is used to optimise the problem, which is in general NP-
hard [166].
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by Goemans and Williamson [151, 132] and is referred to at the random hyperplane
technique in mathematical computer science.

In this project, we focus on the M3C problem, for which the ternary decision variables
are selected through discretising the phases following the binning boundary depicted in
Figure 4.1(a) (similarly to [151]). An approximate solution to Equation 4.2 is obtained
through the random sampling of many different orientations of the triangular binning
boundary, with respect to one of the XY phases (hence the label of “random”
hyperplane technique). We point out that the minimisation of the ternary Hamiltonian
(Equation 4.2) and continuous Hamiltonian (Equation 4.3) following the same
relaxation procedure as a semidefinite program, thus underpinning the common point
of finding the ground state of both systems [132, 133].

4.2.2 The house graph

The procedure of this technique is shown for the example of the anti-ferromagnetic
(AFM) house graph in the XY ground state (Figure 4.1(b)), which is binned to ternary
spins (Figure 4.1(c)), thus obtaining the M3C solution with a weight of cut equal to 6,
as all adjacent graph vertices belong to a non-similar subset (depicted by the different
colours). The AFM house graph has also been recently studied using degenerate laser
cavities to find the XY ground state energy [148]. Here, AFM refers to a negative
value coupling strength Jij < 0 in Equation 4.2 and Equation 4.3, giving a preferential
spin alignment of θi − θj = π between a pair of condensates or dissipative coupled
oscillators. On the contrary, ferromagnetic (FM) coupling strengths following Jij > 0
lead to a preferential phase alignment of θi − θj = 0 for a pair of coupled oscillators.
For brevity, we use J = −1 in dimensionless units. We first calculate the ground state
XY energy of the AFM house graph using the basin hopping method (a classical
optimiser) [125], with angles (phases) θi given in radians inside the discs. A variety of
binning boundary rotations are tested to find the orientations that gives the minimal
XY energy. From which, the phases are binned to their ternary counterparts
(Figure 4.1(c)) in order to calculate the subsets for the encoded max-3-cut problem,
where the ternary energy of the cuts gives the “weight of cut”.

To illustrate that the maximum cut weight has been obtained, in Figure 4.2(a) we plot
the M3C weight (dashed black line) against the distribution of possible cut weights
(blue bars) from 100 random samplings of θi each tested over 100 random hyperplane
orientation. This shows that the random stochastic sampling gives a wide spread of
weights with a modal cut weight of 5, maximum cut weight of 6 and minimum cut
weight of 2. This result underlines that even when many different boundaries are
tested, the M3C cannot be found from random data. Additionally, the XY energy of
these random stochastic realisations are shown by the blue bars in Figure 4.2.
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4.3 Polariton Dynamics

4.3.1 Polariton Theory

To investigate the applicability of our method to polariton condensate networks, we
start by performing numerical simulations of the generalised 2DGPE coupled to an
(active) exciton reservoir n(r, t), which experiences bosonic scattering into the
condensate:

i
∂Ψ
∂t

=

[
− h̄∇2

2mp
+G

(
n+

P (r)
W

)
+ α|Ψ|2 + i

2 (Rn− γ)

]
Ψ, (4.8)

∂n

∂t
= −

(
Γ +R|Ψ|2

)
n+ P (r). (4.9)

Here, mp is the effective mass of a polariton in the lower dispersion branch, α is the
interaction strength of two polaritons in the condensate, G is the polariton-reservoir
interaction strength, R is the rate of stimulated scattering of polaritons into the
condensate from the reservoir, γ is the polariton decay rate, Γ is the decay rate of the
reservoir excitons, W quantifies the population ratio between low-momentum excitons
that scatter into the condensate and those which reside at higher momenta (so called
inactive excitons), and P (r) is the non-resonant continuous wave (CW) pump profile.

The condensates are pumped using five synchronised annular optical traps in the AFM
house configuration, as shown in Figure 4.3(a), where the coupling to first nearest
neighbours is purely imaginary following the techniques described in chapter 3 [2]. The
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Figure 4.2: (a,b) histograms of the M3C weights and XY energies respectively from
the corresponding house graph of (blue) 1000 random samples of partitioning, (yellow)
2DGPE simulations and (purple) experiment. Dashed black lines show the XY ground
state on spectra, not discretized to the histogram bins (white and gray background
stripes). Weight of cuts in (a) represent the optimum cut for each data set sampled
across 100 uniformally spaced binning boundaries (different rotations of the unit trian-

gle).
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cluster of annular rings making up the pump profile of P (r) is given by

P (r) = P0
∑
i

p(r − ri). (4.10)

Here, P0 denotes the laser power density and the function p(r) corresponds to the 2D
annular shaped profile of a single laser incident to the microcavity plane and the
coordinates ri are the locations of the vertices in the polariton graph. The annular
shaped pump profiles optically trap each condensate, yet allow for coherent transport
of particles between nearest neighbours, consistent with those described in [2].

In the 2DGPE simulations, the parameters are taken such that the polariton mass and
lifetime are based on the properties of a laboratory InGaAs microcavity sample:
mp = 0.28 meV ps2 µm−2 and γ = 1

5.5 ps−1. We choose values of interaction strengths
typical of InGaAs based systems: h̄α = 3.5 µeV µm2, G = 10α. The reservoir decay
rate is taken comparable to the condensate decay rate Γ = γ due to fast thermalisation
to the exciton background. Although physically the loss rate of optically active
excitons in the polariton bottleneck is comparable to the condensed polariton decay
rate, there is an argument that Γ should be chosen to more effectively model the rapid
relaxation of the exciton reservoir dynamics [67, 53]. However, as the numerical
simulations consider only the steady state of the condensate system, we stick with the
definition of Γ = γ. The final two parameters are then found by fitting to experimental
results where we use the values h̄R = 98.9 µeV µm2, and W = 0.035 ps−1.

The laser driven condensate system is simulated close to, but above, condensation
density threshold where the interacting condensates (optically trapped by each annular
pump) spontaneously self-organise in phase in order to maximise particle number,
which in turn minimises the XY Hamiltonian (see section 1.3) [54, 55].

For each steady state realisation of the AFM polariton house graph, 100 random
binning boundaries are tested in order to find the M3C. The weight of cuts and XY
energy are plot as yellow bars in Figure 4.2(a,b), showing that the simulations robustly
give the correct M3C weight = 6, while closely approximating the minimum XY energy
as indicated by the dashed black line.

4.3.2 Experiment

We experimentally inject five exciton-polariton condensates in the AFM house
configurations in a semiconductor microcavity, following a similar technique to
chapter 3 [2], and measure their relative phase configurations using a homodyne
technique [94].
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Figure 4.3: (a, d) Optical pump profile P (r); (b, e) condensate density |Ψ(r)|2, and
(c, f) condensate phase map θ(r) from 2DGPE simulation and experiment, respective to
each row, of optically trapped polariton condensates [2] in the AFM house configuration,

with arrows in (c, f) showing the discretised XY phase into subsets V0,1,2

The GaAs-based microcavity is cooled down to ∼4 K in a closed-cycle helium cryostat
and pumped non-resonantly with a CW single-mode laser at a negative exciton-photon
detuning of -4.2 meV. In order to shape the excitation profile, a programmable
reflective phase-only spatial light modulator (SLM) is used and the SLM kinoform is
calculated using the MRAF iterative algorithm (as detailed Figure 2.3 and
subsubsection 2.2.2.1). The laser pump pattern is focused onto the sample using a 50×
microscope objective with a numerical aperture of 0.42. The separation distance
between pumping rings (20.5 µm) and their diameter (7.8 µm) is chosen such that any
pair of the nearest trapped polariton condensates in a square geometry demonstrates
AFM coupling [see Figure 4.4(a,b)]. The excitation geometry defines the range of the
excitation intensity per single pumping ring, where the trapped condensates maintain
AFM coupling. Therefore for the house configuration, the excitation power is
proportionally increased to ensure AFM coupling between nearest condensates. The
results presented in Figure 4.3(e,f) correspond to excitation conditions supporting only
single energy (i.e. stationary) states above condensation threshold. Time-averaged
measurements of real-space condensate PL are performed under CW excitation,
acousto-optically modulated in time with square pulses at a frequency of 5 kHz and
duty cycle of 1%. To implement the relative phase readout between the nodes in the
house configuration we utilize a homodyne interferometric technique [94], which is
discussed in more detail in subsection 6.3.3. Each reconstructed phase map is
extracted from a single-shot measurement in a Mach-Zenhder interferometer. The
excitation pulse-width in all single-shot measurements is 100 µs.
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Using this technique, we record 60 experimental realisations of the AFM house graph
of polariton condensates. Each time, we extract the XY energy from the condensate
phases, giving the distribution shown in Figure 4.2(b) by the purple bars. This result
confirms that polariton condensates favour the phase configurations corresponding to
the small XY energies, as pointed out by [54], but not necessarily the XY ground
states as the system can relax to a local energy minima of the potential landscape, or
even a non-stationary stationary state of θi whose XY energy has no physical meaning.
Despite this energy discrepancy however, the resulting M3C weights from the
experiment (purple bars in Figure 4.3(a)) indicate very good performance, implying
that the approximate solutions to the continuous variable problem of minimising the
XY Hamiltonian can indeed give good results to the M3C problem. This is an
important result that emphasises that coherent networks of dissipatively coupled
oscillators, such as polariton condensates, can potentially perform as heuristic solvers
for the NP-hard M3C problem.

In Figure 4.3(a,d) we show the real-space map of the theoretical and experimental
excitation profiles respectively. The coupled strength between nearest neighbour
condensates is selected to be uniform across the graph and FM, such that Jij = J < 0,
where the condensate separation distance is chosen to correspond to a single-mode
occupation of the system, as discussed in chapter 3 [2]. In Figure 4.3(b,e) and
Figure 4.3(c,f) the theoretically and experimentally realised condensate densities
|Ψ(r)|2 and corresponding phase maps arg(Ψ(r)) are shown for their condensate
wavefunctions Ψ(r), respectively. In Figure 4.3(e), the polariton density is averaged
over many condensate realisations to improve the visibility of the inter-condensate
interference fringes, but we also show the equivalent “single-shot” plot in Figure 4.4(c)
for consistency with the single shot theoretical density map. The clear interference
fringes between the condensates in both theory and experiment show that the
condensates are synchronised, meaning we can extract their phases such that
θ(ri) = θi. The presented phase-maps in Figure 4.3(c,f) both give the ternary phase
configurations that matches the M3C, shown in Figure 4.1(c).

(a) (b) (c)

Figure 4.4: Time integrated (a) real-space and (b) reciprocal-space polariton PL
for the square cell of trapped condensates sustaining AFM coupling. (c) Single shot

realization of the polariton PL in real space for the AFM house graph.
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4.3.3 Benchmarking phase-and-amplitude oscillators

In the previous subsection, we showed results that underscore the potential of
dissipative coupled oscillator systems to solve graph problems, such as the M3C. But
to understand the quantitative ability of this method, we look into the statistics by
many different all-to-all connected graph configurations G with randomly chosen edge
weights Wij . We test the performance of our method to solve the M3C by comparing
the maximum weight of cut solved using brute force compared to networks of
Stuart-Landau (SL) phase-and-amplitude dissipative coupled oscillators (for speediness
compared to the classical basin hopping optimisation method [2, 125]). This SL model
is simpler and more general than the GPE as it does not depend on the spatial degree
of freedom, but rather the inter-oscillator coupling strength. It describes the
dissipative coupling between non-linear oscillators ψn = ρne

iθn , with density ρn and
phase θn. The dynamics of these oscillators follow the SL model,

dψn
dt

=
[
P − |ψn|2

]
ψn +

∑
m

Jnmψm (4.11)

where P denotes the oscillator “gain” and Jnm is the inter-oscillator coupling strength.
In chapter 3, we saw that such networks show good performance at minimising the
dense and sparse randomly connected XY Hamiltonian [2]. These simulations start
with initial background noise as we numerically integrate Equation 4.11 in time using a
linear multistep method and once the oscillators reach a steady state, we extract their
phases θn = arg(ψn) in order to obtain the approximate ground state of Equation 4.3.

We then compare the weight-of-cuts obtained from these phase configurations of SL
oscillators WSL against the correct minimum (maximum) cut weights obtained using
brute force Wmin(max)

BF , where we define the normalised error as,

SW =
Wmax

BF −WSL
Wmax

BF −Wmin
BF

. (4.12)

For this metric, SW = 0 means that the oscillator system has found the best cut,
whereas SW = 1 is the worst possible cut. In Figure 4.5, we use 1000 random all-to-all
connected graphs, with Wij selected from a normal distribution centred at zero, we
numerically model the SL network dynamics and extract SW from the synchronised
steady state solutions corresponding to the fixed points of ψ∗

nψm. By increasing the
number of binning boundaries tested (different binning orientations), we see an
intuitive increase in performance, understood from the fact that Equation 4.3 is
independent of a global rotation in phase θi → θi + φ such that the procedure of
binning the XY spins to evaluate Equation 4.2 is not. This is because the continuous
phases are always binned to {0, 2π/3, 4π/3} irrespective of φ, where varying φ can
lead to an alternative (non-maximum) weight of cut. This is why several binning
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orientations need to be tested in order to minimise the XY energy in order to
successfully solve the M3C thus minimising SW . The results in Figure 4.5(a-c) show
very good performance with mean errors of S̄W = 0.53%, 1.38% and 1.86% for graphs
containing |V| = 6,12 and 18 vertices, which is well below today’s best error guarantree
of 16.40% in [151] and 19.98% in [165]. For reference, the average errors for the
theoretically and experimentally calculated M3C weights of the AFM house graph in
Figure 4.2(a) are S̄W = 0 and S̄W = 0.83% respectively.

We additionally investigate whether the performance of the system depends on the
energy gap between the ground states of the ternary spin system and continuous XY
spin system, i.e. min(HXY ) − min(HT ). Results in Figure 4.5(d) show the mean error
for different energy gaps, indicating good performance with no significant dependence
on the ground state energy gap between the two Hamiltonians.

Figure 4.5: (a,b,c) Performance of |V| = 6, 12, 18 vertex graphs, respectively, showing
an expected drop with graph size yet still maintaining peak probability around zero
error (SW = 0). The mean errors are S̄W = 0.53%, 1.38%, and 1.86%. With more
random binning boundaries tested [different rotations of the triangle in Figure 4.1(a)]
the probability of finding the correct solution increases. (d) Mean error S̄W (whole lines)
plotted against the ground state energy gap, min(HXY ) − min(HT ), indicating weak
dependence when the energies between the ternary and continuous spin systems are
different. Shaded area denotes the standard deviation. Here, min(HXY ) is estimated
using the Stuart Landau network (as opposed to e.g. the basin hopping method) for
computational speediness, whereas min(HT ) is found using brute force. Horizontal axis

is given in units of |V|σ where σ is the standard deviation of Wij .
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Figure 4.6: (a) Each small square represents a pixel in a colored image with i labelled
and the surrounding patch colored according to RGB color layer. Radius r shows the
maximum distance of pixel connectivity where only pixels within the ring have an edge
weight connecting Vi and Vj , otherwise Wij = 0; (b) m = 12 random pixels are selected

and transformed into a graph (c).

4.4 Applications

4.4.1 Image Segmentation

The M3C problem can be used to segment an image into 3 objects or regions [40].
When formulating a graph from an image, the vertices and edges represent pixels and
their relative similarity respectively. When selecting vertices, all pixels or a smaller
sample can be included, with connectivity to neighbours within a given radius. To
define the edge weights, a weighted average is taken over properties such as colour,
brightness, texture, spatial proximity and number of sharp edges between pixels, in
addition to setting a threshold weight [40, 167, 168, 169]. In this work, we consider
colour, brightness and spatial proximity using a variety of procedures to enumerate the
edge weights for the M3C problem.

For a coloured image, we randomly sample m pixels. For each colour layer (formed by
separating an image into the three RGB layers), we consider each sampled pixel i and
define a local “patch” encompassing it and its (up to) eight nearest neighbours, as
depicted in Figure 4.6. We define the total brightness of the N pixels in a patch as,

pi =
N∑
i=1

i, (4.13)

where pi is calculated for all pixels in the image and are normalised over each colour
layer [170]. In addition to this local weight, we assign a global colour weight,
ci =MA/M , to each pixel according to its colour frequency in the image, where A is
the colour of pixel i, MA is the number of pixels with colour A, and M is the total
number of pixels. We define the edge weight connecting pixels i and j as Wij , which is
equal to 0 if the pixel separation is greater than r. Otherwise, we define five methods
for enumerating Wij based on a variety of techniques described in
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literature [171, 170, 172, 173, 174, 175],

Method 1: Wij = exp
(

|pi − pj |q

σ

)
; (4.14)

Method 2: Wij = exp
(

|cipi − cjpj |q

σ

)
; (4.15)

Method 3: Wij = exp
(

|ci − cj |q

σ

)
; (4.16)

Method 4: Wij = exp
(

|i− j|q

σ

)
; (4.17)

Method 5: Wij = exp
(

|ici − jcj |q

σ

)
. (4.18)

Here, σ is the standard deviation in brightness across each patch, q is a free parameter
and Wij is averaged over each colour layer. To find the results of the image
segmentation, we find the M3C of the graph G = (V, W), with |V| = m vertices
representing the sampled pixels with weights Wij connecting vertices i and j. We will
show that the partition of the continuous phases in a polariton condensate graph (just
as we demonstrated in Figure 4.1 for the house graph) into a ternary phase
configuration, acting as decision variables for the M3C, can segment different objects
within an image. Figure 4.8 shows a schematic of the mapping process from an image
to a graph.

We show 3-region image segmentation, using simple pictures of an apple and a tree,
performed by solving the M3C problem for each graph using the same procedure as
described in Figure 4.1. This time however, the XY ground state is approximated
using the Stuart-Landau model detailed in Equation 4.11. In order to approach the
ground state phase configuration, we use a bottom-up approach [55] to physically
replicate a slow pump-up in laser power beyond polariton condensate threshold in
order to produce measurable PL from the system. This is achieved through increasing
P linearly in time from P (t = 0) = −λmax to P (t = T ) = λmax, where T is the total
integration time needed to reach a steady state and λmax > 0 is the largest eigenvalue
of the coupling matrix J = {Jnm} ∈ RN×N .

The apple and tree images are shown in Figure 4.7, overlaid with the resulting ternary
spins using each of the five methods of enumerating Wij . By eye, it is clear that each
subset of spins of the M3C correctly locate objects and regions within each of the
images. The weight enumeration methods that combine both local (relative pixel or
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Figure 4.7: Images of an apple and a tree, with image segmentation results (a-e, f-j)
using the Stuart-Landau network for methods (Equation 4.14-4.18) respectively, with
m = 200, r = 400, q = 0.1 for (a-e) and q = 0.2 for (f-j). The cyan, magenta and

yellow arrows represent the subsets V0,1,2 respectively.

patch brightness) and global properties (colour frequency in the image), whose results
are shown in Figure 4.7(b,e,g,j), best locate a single object and a background by
predominantly cutting the graph into just two spin subsets. In the apple image for
example, this is a result of the similar-valued edge weights between pixels within the
red, black and green regions.

However, the methods that only consider local pixel values (relative patch and pixel
values, with results shown in Figure 4.7(a,d,f,i)) segment the images into multiple same
spin regions. This is seen most clearly for the simpler apple image, where the local
methods are able to correctly locate the white background, red apple, green leaf and
black outline. As this figure consists of mainly four block colours, a single spin subset
must represent two image regions as there are only three subsets in the M3C problem,
such is the case for V0 in Figure 4.7(a) which represents both the red and black regions
in the image.

Finally, by considering just the global properties (colour frequency) as shown in
Figure 4.7(c,h), the images are again segmented into an object and background, but
this time through locating the dominant colours in the image, as Method 3 only
includes the global weighting of each colour in the image when enumerating the edge
weights (Equation 4.16). Here, some objects are located by multiple subsets. Again,
this is an artefact from having only three subsets with which to segment an image
containing additional colour regions or objects. In Figure 4.7(c) for example, the red
part of the apple is represented by both V0 and V2 which indicates that the steady
state phases of the oscillators lies close to the binning boundary between these two
segmentations.
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Figure 4.8: Simple colored image (a,b) showing image-segmentation using the Stuart-
Landau network for the phase-discretised XY ground state of the graphs following
Eq. (4.17), with r = 4, q = 0.01 for (a) m = 25 and (b) m = 5. (c) Shows the
condensate phase map arg (Ψ(r)) obtained from 2DGPE simulation solving the set of
pixels given by (b) with transparency proportional to the polariton density |Ψ(r)|2.
Projecting the phase of each condensate into its ternary counterpart is given by the
cyan, magenta and yellow arrows, representing the subsets V0,1,2 respectively. Solid
and dashed black lines represent Wij = 1.0 and Wij = 0.8 (rounded to 1 decimal

place) respectively.

Through adjusting the segmentation parameters (m, r, q,σ) and choosing different
methods (Equation 4.14-4.18), image segmentation using dissipative coupled oscillators
can be achieved to match a wide range of image segmentation requirements.

We additionally consider a much simpler coloured image containing 25 pixels (shown in
Figure 4.8) to demonstrate image segmentation using a planar graph. We first find the
image segmentation using the SL network, with all-to-all coupling (i.e. r ≥ 5

√
2)

between all pixels (Figure 4.7) and a subset of sampled pixels (Figure 4.7), where both
cases correctly locate the different block colours in the image.

4.4.2 Constrained Via Minimisation

In this section, we discus the application of the M3C (solved using coherent networks)
to constrained-via-minimisation (CVM) in circuit design. In order to optimise space in
commercial electronic devices, often components are split over multiple layers of circuit
board. For example, circuits in the average smart phone are often split over 12 layers
and professional circuit board manufacturers boast to produce multilayer circuit
boards with close to 100 layers [176]. Multiple layers are achieved through drilling
holes, known as “vias”, that are lined with an electrically conductive coating to allow
the connectivity of the components to span many layers of board. However, the
addition of vias increases fabrication time, complexity and cost, making it desirable to
minimise the number of vias in the design of each multilayer circuit board.

For CVM, the circuit board components are already laid out and split into clusters
called “cells” (sections of fixed circuit layout, shown as grey areas in Figure 4.9(a)),
which are pre-placed with vertical and horizontal tracks already routed under the
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assumption that all pin connections are bipartite (i.e. a single track connects two
pins), but layer assignment is not yet performed. Segments of track that overlap are
labelled as critical segments (solid lines in Figure 4.9(a)) which cannot be on the same
layer of circuit board. Free segments of track (dashed lines in Figure 4.9(a)) have no
overlaps with other tracks and these are the regions of track on which a via can be
placed. We demonstrate CVM through reducing the task to a M3C problem [156],
which we then solve through simulation of coherent networks of polariton condensate.
We demonstrate CVM on up to 3 layers, where the max-k-cut corresponds to CVM
with up to k layers of circuit board. It is worth noting that the exact CVM problem
we tackle has previously been studied in the work of [156] with the max-2-cut problem,
so we have prior knowledge that the minimum number of vias for the circuit board in
Figure 4.9(a) requires just two layers of circuit board, such that the solution to the
M3C problem will only incorporate two out of the three possible spin subsets.

For the circuit in Figure 4.9(a), we define the layout graph G = (V, E). Each critical
segment is represented by a vertex V, where pairs of vertices are connected by either a
conflict edge A (when a pair of critical segments cross paths) or by a continuation edge
B (when a pair of critical segments are connected by a free segment), such that
E = A ∪ B, where the layout graph of the example circuit is shown in Figure 4.9(b).
The reduced layout graph V = (S, T ) arbitrarily selects a vertex vi in Vi to represent
critical region i, such that S = {vi, . . . , vz}. T contains the edges linking vi and vj for
i 6= j, if and only if G contains a continuous edge connecting some vertex in Vi to some
vertex in Vj (i.e. connecting different cells).

The edges of R in Figure 4.9(c) have weights (αij ,βij), as contained in T , such that:

αij = Minimum number of vias needed between Vi and Vj should vi and vj

be assigned the same layer, i.e. sum of all free segments between Vi and
Vj that connect a pair of critical segments with different orientations
(horizontal and vertical);

βij = Minimum number of vias needed between Vi and Vj should vi and vj be
assigned different layers, i.e. sum of all free segments between Vi and
Vj that connect a pair of critical segments with the same orientation.

The partition of this graph into Sn, n = 0, 1, 2, corresponds to the assignment of each
critical region to layer n. For such a partition, the number of vias required is:

VIA(Sn) =
∑

vivj∈Tn
αij +

∑
vivj∈δT

βij (4.19)

where edges Tn connect critical regions assigned the same layer and δT connect critical
regions assigned different layers. By defining A =

∑
vivj∈T αij , then
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VIA(Sn) −A =
∑

vivj∈δT
(βij − αij). (4.20)

As A is invariant on the layer assignment, and by redefining the edge weights
Wij = αij − βij as in Figure 4.9(d), we see that this problem follows the same form as
Equation 4.6. Thus, the constrained via minimisation problem is reduced to the M3C
problem of Equation 4.7,

max
∑

vivj∈δT
Wij . (4.21)

The phase-discretised XY solution coming from the polariton network for our example
reduced layout graph [see Figure 4.9(e,f)] partitions the vertices into just two subsets,
showing that the minimum via configurations only requires two layers of circuit board.
In this example, the minimised number of vias is 2, as

A−
∑

vivj∈δT
Wij = 2 − 0

and thus a correct solution has been found by the polariton network.

4.5 Other Maximum Cuts

It is worth noting that the continuous-phase spins of the XY model can be projected
into binary decision variables with θi = [0,π] (i.e. to 1-dimensional spins) which leads
to an Ising energy function whose ground state corresponds to the max-2-cut (M2C)
problem [156]. This binary projection strategy has been explored previously with
coherent photonic Ising machines [139, 140, 109, 110, 141, 142, 145]. However, to the
best of our knowledge, the mapping between the continuous-phase oscillator ground
state to the ternary spins with θi ∈ {0, 2π/3, 4π/3} has not previously been studied.

We show the weight of cuts solved using the SL model compared to the brute force
method for the M2C and M3C in Figure 4.10(a,b), where the error between WSL and
WBF is negligible for M2C. This is due to the M2C only having two possible values for
the decision variables, such that every oscillator has a window of 180◦ in which to be
correctly binarised. In the case of the M3C however, the window is reduced to 120◦,
giving less room for error in the binning process thus leading to an increased error
between WSL and WBH .

Furthermore, as we point out in section 4.2, the direct mapping of the ground state
configuration of a spin Hamiltonian to the max-k-cut problem requires spins to belong
to corners of the equilateral complex unit simplex in Rk−1 dimensions. In other words,
for the first few values of k, the spins must be at the corners of the unit line (M2C),
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Figure 4.9: (a) A circuit with routing between pre-placed cells (gray areas), with
critical segments of tracks numbered and shown in solid black line and free segments
showed in gray dashes; (b) the layout graph of circuit (a) with critical edges shown in
solid black and continuation edges in gray dashes; (c) the reduced layout graph of (b)
with edges labelled (αij ,βij); (d) the reduced layout graph of (b) with edge weights
wij = αij − βij , and (e,f) ground state discretized XY phase for the M3C of graph
(d), solved using the Stuart-Landau network and 2DGPEs respectively, with black
numbers representing the graph edge weights wij . The cyan, magenta and yellow arrows
represent the subsets V0,1,2 respectively and in (f) the transparency is proportional to

the polariton density |Ψ(r)|2.

triangle (M3C) and tetrahedron (M4C), where the mutual angles between any two
spins is either 0 or a constant (which for the line is 180◦, the triangle 120◦ and
tetrahedron ∼70.53◦). For this reason, projecting the two-dimensional XY ground
state phases onto the quaternary decision variable with angles θi ∈ {0,π/2,π, 3π/2}
about the unit circle is not the direct mapping for the M4C problem, but however is an
approximation of the solution (though we expect a worse performance). In
Figure 4.10(c) we do indeed see a greater spread in cut weights from the SL networks
compared to the M4C solved using brute force.

The difference between the max-k-cut errors for k = 2, 3, 4 becomes more apparent in
Figure 4.10(d), as the normalised mean error for k = 2, 3 remains constant as a
function of graph size, as opposed to the growing error of the M4C with graph size.
Interestingly, the error for the M2C stays practically negligible, indicating that SL
systems can compete with photonic Ising machines, through the binarising of oscillator
steady-state phases. The larger error of the M3C is expected due to the high partition
complexity to three decision variables. We finally point out that the mean error of the
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M4C remains relatively small with S̄W < 0.05 for |V| = 14, despite its growth with
system size.

As a result, this leads to an exciting perspective into using condensate phase dynamics
to go beyond the M3C, even if a direct mapping no longer exists. We also plot the
mean error of the different max-k-cut problems while scanning the number of tested
binning boundaries (each with a different rotation relative to the steady-state oscillator
phases) as plot in Figure 4.10(e), which shows that the error approaches some
asymptotic minimum with the increase of tested binning boundaries at a similar rate,
regardless of k. Notably, the asymptotic error does however increase with k.

4.6 Conclusions

Both in theory and in experiment we have shown the potential of nonlinear optical
oscillators, with a focus on polariton condensates, at approximating solutions to the
NP-hard max-3-cut optimisation problem. This study was prompted by recent works

Figure 4.10: Obtained weights of (a) max-2-cut, (b) max-3-cut and (c) max-4-cut
from 160 random graphs using the Stuart-Landau model (WSL) with |V| = 10 and 100
unique binning boundaries and the brute force method (WBF ). Black line indicates
WSL = WBF . Comparison of the mean error S̄W obtained by averaging over 160
random graphs of different max-k-cut tasks as a function of (d) network size |V| (tested
for 100 unique binning boundaries) and (e) number of binning boundaries with |V| = 10.
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showing the gradient decent of exciton-polariton networks towards the equilibria of
synchronised states with phasor configurations correlating to the XY ground state
[2, 54, 56, 57].

In this work, we exploit this feature of the dynamical system in order to approximate
solutions to the max-3-cut problem via two methods: Firstly, we apply the semidefinite
relaxation program of Goemans and Williamson (known as the random hyperplane
technique) [132, 151] which bins (projects) oscillator phasors into equally-distributed
ternary decision variables. Secondly, we use the direct mapping between the q=3
vector Potts model (which we label as the “ternary XY model” in Equation 4.2) and
the max-3-cut, as originally presented by Frieze and Jerrum [165], which we obtain
using the aforementioned ternary decision variables.

This study provides the first experimental evidence that polariton condensate networks
can potentially serve as optical annealers for the max-3-cut problem, thus opening up a
new perspective for coherent nonlinear optical networks as approximate analogue
solvers for complex graph-based problems, where the condensate networks arrange in
phase to the XY ground state on time scales on the order of hundreds of picoseconds
(dependent on system size). Although polariton interactions are restricted to
inherently two-dimensional networks, there are studies beginning to investigate
all-to-all connectivity [177, 178]. This dilemma will be addressed in the following
chapter. Additionally, we have studied complex applications of this technique to image
segmentation and CVM in circuit design, which we heuristically solve using our
proposed method and simulations on both Stuart-Landau oscillator networks and
polariton condensate networks.

Our technique goes beyond the previously studied Ising networks to solve the
max-2-cut problem, [109, 162], by exploiting the continuous phase degree-of-freedom in
oscillatory systems. Their natural ability to minimise the XY Hamiltonian can be
applied to solve the M3C problem through the Goemans and Williamson inspired
semidefinite programming, and applying a phase binning between k equidistant
boundaries leads to the approximate solution of the max-k-cut problem, where we
further explore the max-2-cut and max-4-cut.

This technique can be applied to any system of dissipative coupled nonlinear
oscillators, such as laser networks and photonics condensates, but in this study we
have taken a step towards realising a liquid light machine of interacting polariton
condensates as a practical coherent network platform for a heuristic computational
device through exploiting the ultrafast temporal dynamics, parallel interactive nature,
and continuous degree of freedom that can now be accessed in state-of-the-art
experiments in polariton lattices [94, 78].
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Chapter 5

Solving Dense Graph Problems
with Stuart-Landau Networks

In this chapter, we implement the technique of minor embedding from quantum
annealing in order to simulate networks of dissipative coupled oscillators following the
Stuart-Landau model for instances of all-to-all connected networks mathematically
labelled as “complete graphs”. Where many physical oscillator systems depend on
two-dimensional networks, particularly in photonic systems, it becomes impossible to
practically control all coupling strengths of a complete graph beyond a handful of
nodes. By building off the triad structure minor embedding originally proposed by
Choi [179, 180], which expands the densely connected complete graph to a sparse
graph of nodes, we present a potential hardware layout for realising a dense graph
solver using future on-ship solid state devices. Our analysis reveals that minor
embedding allows for the simulation of the XY Hamiltonian of an arbitrary complete
graph using the two-dimensional triad graph structure. The work in this chapter is
currently under review as a journal submission with Communications Physics, and is
available as a pre-print article on arXiv [181], authored by myself, Helgi Sigurdsson
and Pavlos Lagoudakis. Pavlos came up with the idea to read into how graph problems
are mapped to 2D networks in the field of quantum computing, but I came up with the
idea to apply the triad minor embedding technique to dissipative nonlinear oscillator
networks. All simulations were carried out by me under the guidance of Helgi, except
from the benchmarking of the Stuart-Landau model’s performance against the
commercially available optimisers and the Kuramoto model (subsection 5.2.1), which
was performed by Helgi.
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5.1 Introduction

Dense graph combinational problems have been tackled using quantum annealing
systems for over a decade, where qubits and their relative coupling strengths represent
graph vertices and edge weights respectively. In order to solve such dense graph
problems, the graph vertices must first be mapped onto the qubit architecture, which
in general is not as densely connected as the graph problem at hand. This hurdle is
overcome through a technique called minor embedding, where by the dense graph
problem is expanded to match the connectivity of the qubit architecture
[180, 182, 183, 184, 185, 162]. However, finding the simplest minor embedding of an
arbitrary graph is in general an NP-hard problem, where the computational
complexity grows with the number of graph vertices [182, 186]. Luckily, a standardised
embedding of a complete graph has been realised, which expands the complete graph
onto a sparse network based on the square lattice, labelled the triad graph
[180, 179, 187]. An alternative embedding scheme has been developed for quantum
annealers that embeds spins to fewer qubits than the triad graph [188], where each
qubit represents a coupling edge between spins and has been successfully implemented
with Kerr-nonlinear resonators [189] and superconducting circuits [190, 191]. However,
by using qubits to represent the system interactions rather than the spin states
themselves, this technique applies only to binary spin systems.

In this study, we minimise the classical XY Hamiltonian using coherent networks of
Stuart-Landau oscillators of randomly-weighted complete graphs embedded to the
triad structure and demonstrate through dynamical annealing that the dynamics of
the triad graph can be used to solve for the XY ground state of the encoded complete
graph [57, 2]. Stuart-Landau oscillators represent the graph vertices, where each
oscillator is described by a complex number ψn = ρne

iθn , and the graph edges map to
the inter-oscillator coupling strength Jnm. Recently, there have been multiple studies
investigating the Start-Landau network dynamics as their fixed point attractors
correlate with the minimisation of the XY Hamiltonian [57, 124, 2, 192]. This offers
perspectives into realising an analogue computer based on networks of coherent
oscillators to heuristically solve complex graph problems, such as the NP-hard
max-3-cut problem [4] and the phase retrieval problem [193]. There are a group of
optical dissipative coupled oscillator platforms that make for an ideal candidate to
experimentally realise such a solvers such as polariton condensates [4, 54], photon
condensates [164], non-degenerate optical parametric oscillators [194, 147], and coupled
laser arrays [148]; where these optical coherent networks take advantage of the systems
photonic parallelism, ultrafast computation timescales, low power consumption and
their continuous-phase degree of freedom. However, many hurdles arise when
experimentally realising such systems.
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In order for optical coherent networks to approximate a graph problem, the coupling
strength between each pair of oscillators must be tuned to match the corresponding
graph edge weight. From a standard computer simulation point of view, this is not an
issue [195, 143]. For the case of polariton condensate systems [54, 178, 2] (and optical
coherent networks in general), tuning the inter-condensate coupling strengths has been
demonstrated previously by applying a below-threshold Gaussian spot on the
microcavity sample between a pair of polariton condensates [94], where this spot acts
as a potential barrier to the propagating polaritons, resulting in a tunable relative
phase between condensates. However, for a densely connected graph, this technique
becomes impossible as there is not enough space in the system to include a tunable
optical barrier between every pair of coupled condensates. Additionally, as the
magnitude of the coupling strength between neighbouring condensates decays
exponentially with separation distance [2], the coupling strength to condensates
beyond first nearest neighbour becomes negligible, making it impossible to represent a
high-weight graph edge with polariton condensates separated by a large distance. This
means that beyond a handful of vertices, it becomes impossible to experimentally
realise an optical heuristic solver. We tackle this problem through minor embedding
all-to-all connected graph problems to the triad graph in order to overcome this
connectivity issue and demonstrate the feasibility of the triad structure at numerically
simulating the dynamics of its encoded complete graph for systems of nonlinear optical
oscillators.

5.2 The Stuart-Landau Model

The Stuart-Landau model describes a wide variety of oscillatory systems and is
formally derived from the Hopf bifurcation (see subsection 2.1.2). We apply the model
to networks of dissipative coupled oscillators representing vertices of a graph problem
following

ψ̇n = −[iωn + |ψn|2]ψn +
N∑
m=1

Jnmψm, (5.1)

where ψn ∈ C gives the dynamics of oscillator n which depends on the oscillator’s
natural frequency ωn, some nonlinear interaction (second term) and its coupling to all
other oscillators in the system with coupling strength Jnm to oscillator m. Note that in
Equation 5.1, the pump P is eliminated following the rescaling of Equation 2.14 and
the real energy shift from nonlinear interactions is set to g = 0 as the dynamics of ψ̇n
are topologically invariant to g = 0 and g 6= 0 [77], thus eliminating g keeps the model
more general and simple.
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In polar coordinates, with ψn = ρne
iθn , the density and phase dynamics can be

extracted through separating the real and imaginary terms to arrive at,

ρ̇n = −ρ3
n +

N∑
m=1

Jnmρnρm cos(θm − θn) (5.2)

θ̇n = ωn +
N∑
m=1

ρm
ρn

sin(θm − θn) (5.3)

We see that in the last term of Equation 5.3, the phase of oscillators with small
amplitudes are strongly affected by those with a greater amplitude. Notably, when all
amplitudes are static and uniform, θn describes the generalised Kuramoto model
[196, 197]. In fact, in the limit of ρn = ρ0 and ωn = 0, the phase-locked states of the
Kuramoto model are described by the energy minima of the Lyaponov potential [100],

L = −
N∑

n,m=1
Jnm cos(θm − θn) (5.4)

which is equivalent to the well-known (and highly discussed in this thesis) XY
Hamiltonian. Therefore, phase oscillators experience a gradient descent towards the
minima of the XY Hamiltonian with θ̇n = −∂L/∂θn. It has been shown that the
performance of Stuart-Landau networks can be improved through the addition of an
dynamic gain-feedback mechanism [57]. As such, we too investigate the addition of
such a mechanism in subsection 5.4.3. However, we do not employ such a mechanism
in the main study of this chapter, as we observe that the minor embedding technique
itself helps the oscillator amplitudes to converge without the use of a complex dynamic
pumping mechanism. There is no guarantee however that the Stuart-Landau network
will relax into the XY ground state, though surprisingly, impressive results have been
obtained numerically through direct simulation of Equation 5.1 [57, 2, 124]. In fact,
when we compare the performance of randomly-weighted and all-to-all connected
Stuart-Landau networks to two commercial optimisers at their ability to minimise the
XY Hamiltonian, the Stuart-Landau model outperforms them all.

5.2.1 Benchmarking the performance of Stuart-Landau Oscillators

For this benchmarking, we investigate graphs of N > 50 spins (oscillators) using the
commercially available GlobalSearch1 optimiser from the Global Optimisation
Toolbox2 of MatlabTM. This algorithm uses a scatter search method to generate

1https://uk.mathworks.com/help/gads/how-globalsearch-and-multistart-work.html
2https://uk.mathworks.com/help/gads/

https://uk.mathworks.com/help/gads/how-globalsearch-and-multistart-work.html
https://uk.mathworks.com/help/gads/
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possible trial points that are evaluated using a chosen optimisation method to find
local minima.

The algorithm then iteratively analyses points that converge using a score function
which continuously updates and rejects points that are unlikely to improve upon the
best minimum found so far. We have decided to use two well known optimisation
methods for the Global Search algorithm. (1) The trust region method since we can
easily compute both the gradient and the Hessian matrix of the XY Hamiltonian (i.e.,
the objective function) making it quite fast and accurate and thus an appropriate
choice. (2) The sequential quadratic programming (SQP) gradient descent method
since it also benefits from knowing the gradient of the objective function. Our search
region is bounded on θn ∈ [−4, 4] which is taken larger than the periodic range [−π,π]
in order to more efficiently find minima that might be close to values around θn = ±π.
All other options of the gradient descent algorithm were set to default as they did not
considerably improve the efficiency of the optimiser.

We then extract the resulting XY energy from each optimisation technique and
quantify the performance between the Stuart-Landau model (with XY energy given by
ESL) to the Global Search algorithm (with XY energies EGS respectively), using the
ratio of their energy difference,

Energy Difference =
EGS −ESL

2EGS
(5.5)

Here, the factor of 1/2 scales the Energy Difference to ensure that if ESL = −EGS ,
then the difference is exactly unity. The results of such analysis are shown in
Figure 5.1, where we have averaged over 1000 randomly connected dense graphs. The
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Figure 5.1: (a) Average energy difference between the Global Search algorithm and
the SL model according to Eq. (5.5) with the GS algorithm using two different opti-
miser approaches, trust region and SQP. The SL model outperforms the Global Search
algorithm around N ≈ 30 spins. (b) Time taken for different methods to arrive at
an answer for the XY energy. (c) Energy difference between the Kuramoto and the
Stuart-Landau models [i.e., EGS is replaced with EKM in Eq. (5.5)]. The SL model
outperforms the KM model in finding low energy values to the XY Hamiltonian at

around N ≈ 30.
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edge weights are chosen on the interval of [−1, 1] and up to N = 200 spins are
considered. Amazingly, even after supplying knowledge of the gradient and the Hessian
of the objective function for the commercial optimisers, the Stuart-Landau model
starts to outperform the Global Search algorithm around N ' 30 spins. In Figure 5.1,
we plot the computational time taken for the two algorithms to provide a solution and
for the Stuart-Landau model to reach a steady state. This shows that the
Stuart-Landau model is vastly more efficient as an optimisation method than the
Global Search algorithm at enumerating the XY Hamiltonian.

We additionally consider the performance of the Stuart-Landau model compared to
the Kuramoto model (Equation 5.3 with ρn = ρm) at minimising the XY Hamiltonian.
In Figure 5.1(c), we show the average energy difference between the two models over
1000 randomly connected dense graphs. Amazingly, around N ' 30 spins (oscillators),
the Stuart-Landau model starts to outperform the Kuramoto model - a known
heuristic solver that directly maps to the minimisation of the XY energy [55]. This
demonstrates that Stuart-Landau oscillators are more efficient at exploring their state
space during the transient growth phase (period of small t in numerical integration
where |ψn| rapidly grows) from the initial vacuum state |ψn(t = 0)| ' 0, as opposed to
the Kuramoto oscillators which are fixed to the complex unit circle.

5.3 Minor Embedding

5.3.1 Triad Graph

In order to create the triad graph, we must first consider the undirected all-to-all
coupled graph, known mathematically as the complete graph, which is labelled as KN

in the case of N vertices. A schematic is shown in Figure 5.2(a) for the K5 graph. The
complete graph consists of vertex set V (KN ) connected by edge set J(KN ). Each
vertex Vn, with assignment index n, is connected symmetrically to all other vertices in
the graph, such that any two vertices Vn and Vm are connected by an edge with weight
Jnm = Jmn.

In the process of minor embedding, we map KN to the triad graph Kemb
N

(Figure 5.2(c)) through expanding each vertex Vn ∈ V (KN ) to a chain of uniformly
coupled vertices of length N − 1, with an intra-chain edge weight of

J intra = Jc, (coloured edges). (5.6)

Each vertex of the chain is adjacent to a single vertex of a another chain with
inter-chain edge weights,

J inter
n,m = Jn,m, ∀ Jn,m ∈ J(KN ), (black edges). (5.7)
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Figure 5.2: (a) K5 graph mapped through minor embedding to (b) the Kemb
5 triad

graph, (c) the mathematical layout of Kemb
5 and (d) when including N additional edges

to loop the chains. In (b-d), the FM chain couplings are shown by coloured edges
J intra = Jc and the encoded coupling strength of K5 are shown by black edges, such
that J inter

n,m = Jn,m. The blue solid and dashed boxes overlayed on (a,b) demonstrate
two possible phase extraction methods for the unembedded and embedded XY energies

from the triad graph respectively.

The resulting triad graph consists of vertex set V emb(Kemb
N ) containing N(N − 1)

vertices labelled V emb
n , connected by edges in the set Jemb(Kemb

N ) containing N(N−1)
2

inter-chain edges labelled J internm and N(N − 1) intra-chain edges J intranm . Physically,
Jc > 0 gives precedence to in-phase locking within each chain, which in the context of
spin Hamiltonians is considered as an FM coupling, where the oscillator phasors
sn = [cos(θn), sin(θn)]T take the role of 2D spins. The aim of the FM intra-chain
coupling is to minimise the deviation of phase within each chain in order to best mimic
the dynamics of complete graph KN [162], and reduce the spread of oscillator
amplitudes across the chain. In other words, the red vertex of K5 indicated by the
solid blue box in Figure 5.2(a) (described by ψ1 in Equation 5.1) is represented by the
average dynamics of the phase and amplitude oscillators making up the chain of 4 red
oscillators in the triad graph (blue box in Figure 5.2(c)). Note, the number of black
edges in the complete and triad graphs are the same, as they are equivalent.

In building the triad structure from a complete graph, it can be easier to visualise the
process in the mathematical layout (Figure 5.2(b)), where each vertex of the complete
graph is expanded to a chain of length N − 1 about its original vertex site. The triad
graph is then formed through simply rearranging the vertices onto a square lattice,
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which we label as the hardware layout, as the adjacency of the mathematical layout
(Figure 5.2(b)) and hardware layout (Figure 5.2(c)) are equivalent. We also consider
the addition of an edge between the first and last vertices in each chain, thus “looping”
the chains such that every vertex (Figure 5.2(d)) has a uniform degree of connectivity.
Experimentally, this is difficult to realise in most oscillator platforms, but we
theoretically compare the unlooped and looped triad graphs’ synchronisation dynamics
and ability to minimises the XY Hamiltonian of the encoded complete graph in order
to discern how the more “symmetric” connectivity affects the performance of the triad
structure.

This study works close to the system’s bifurcation that separates the normal states
ρn = 0 from the oscillatory states ρn 6= 0, thus we are interested in the average
oscillator phase across each chain, written as

θ̄n =
1

N − 1

N−1∑
n′∈chain

θn,n′ (5.8)

where n is the index of the chain and n′ denotes the location within a given chain.

We refer to the phase averaging as “unembedding”, as the act of doing so reduces the
minor embedded graph back down to the original KN structure [198, 199].

5.3.2 XY Energy Extraction

Each oscillator of the complete graph is associated with some complex parameter ψn,
which contains the state information of the nth oscillator. From this, we can define the
state vector ψ = [ψ1,ψ2, . . . ,ψN ]T and corresponding phasors θ = [θ1, θ2, . . . , θN ]T .
The XY energy associated with complete graph KN is written:

HXY = −
N∑
n,m

Jnm cos(θm − θn). (5.9)

However, for the triad graph, we can extract the XY energy for its encoded complete
graph using two methods. The first takes the average phase across each triad chain to
unembed the triad graph back down to the complete graph, following Equation 5.8, as
shown by the solid blue boxes in Figure 5.2(a,c). We refer to this as the “unembedded
energy” and define it as,

Hunemb
XY = −

N∑
n,m

Jnm cos(θ̄m − θ̄n). (5.10)
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The second method uses the relative phase ∆θinternm between each pair of oscillators
connected by a black edge, akin to θm − θn in Equation 5.9 (see dashed blue boxes in
Figure 5.2(a,c)). This is labelled as the “embedded energy” as the vertices are still in
the triad structure and is written as,

Hemb
XY = −

N∑
n,m

Jnm cos ∆θinternm . (5.11)

If Jc = 0, the minimisation of Hemb
XY is trivial, as the graph formed is a set of individual

oscillator pairs connected by Jnm.

The aim of this study it to compare the triad graph to its encoded complete graph at
synchronisation dynamics and ability to minimise the complete graph XY Hamiltonian
in order to find the parameter space for which the triad structure correctly represents
its encoded complete graph.

5.4 Results

5.4.1 Coherence Properties

We numerically investigate the degree of coherence in oscillator dynamical networks in
complete and triad graph structures in order to compare their ability to synchronise to
inphase spin configurations. We consider the FM graph of oscillators coupled equally
to all others with Jnm = J > 0. Oscillator frequencies ωn are chosen randomly from a
normal distribution g(ω̄), with a dimensionless standard deviation of σ = 1. Naturally,
we choose a rotating frame with frequency ω̄ such that ω̄ = 0 without loss of
generality. The oscillator coupling matrix J = (Jnm) ∈ RN×N always has at least one
positive eigenvalue for all graphs considered in this study, which means that the trivial
ρn = 0 steady state is never stable (see subsection 2.1.2 for detailed explanation), thus
the phases θn are well defined at all times.

In order to quantify the emergent coherence properties we define a phase order
parameter, commonly used in the analysis of such oscillatory systems [100], which
captures the degree of coherence between the oscillators. For the complete graph, we
define this order parameter as,

rcomplete =
1
N

∣∣∣∣∣
N∑
n=1

eiθn

∣∣∣∣∣ . (5.12)
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Figure 5.3: Coherence of (a) 〈rcomplete〉 for uniform FM coupled complete graphs with
coupling strength J , (b) 〈rinter〉 and (c) 〈rintra〉 for the corresponding triad graphs. All
results are averaged over 160 instances of ωn and random initial conditions. Example
steady state phases of N = 5 oscillators in the (d,g) complete and triad structures with
(e,h) Jc = 1 and (f,i) Jc = 10 for a single instance. (d-f) J = 1 and (g-i) J = 10, where

the phases are indicated by vertex colour.

If all oscillators have the same phase θn = θm, then rcomplete = 1. Alternatively, for
infinitely many uniformly randomly-distributed phases on the interval [0, 2π), then
rcomplete = 0.

We numerically integrate the Stuart-Landau model (Equation 5.1) of the FM complete
graph from t = 0 → T � J−1, J−1

c and calculate the average coherence 〈rcomplete〉 at
the final time t = T over 160 random realisations of ωn and initial conditions (Monte
Carlo sampling). We repeat these calculations over a range of coupling strengths J
(show in Figure 5.3(a)) and observe the gradual transition from an incoherent to
coherent state with increasing J .

This build up in coherence is reminiscent of the coherence bifurcation characteristic to
the Kuramoto model [197, 100], where rcomplete = 0 (the incoherent state) is stable
below some critical coupling strength Jcrit, defined in the limit of N → ∞. As J is
increased through and above Jcrit, the system reaches a partially synchronised state
with 0 < rcomplete < 1, for which oscillators at the centre of g(ω̄) are synchronised,
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while those at the tails of the distribution remain incoherent, such that the system is
split into two dynamical groups [200]. As J is increased further, more oscillators join
the synchronised group until the entire system becomes coherent [196, 201], as we too
observe with the Stuart-Landau oscillators. Finite size effects are clearly observed in
Figure 5.3(a) with changing N . Notably, larger J is required in order for the system to
synchronise smaller networks and leads to a finite minimum coherence as J tends to 0,
which gradually decreases as N gets larger.

Now we move on to the triad graph. Similarly to the complete graph coherence defined
in Equation 5.12, we define the phase order parameter to quantify the degree of
coherence between the unembedded (chain-averaged) phases of the triad graph,

rinter =
1
N

∣∣∣∣∣∣
N∑
n=1

eiθ̄n

∣∣∣∣∣∣, (5.13)

and the average phase coherence within each chain of the triad,

rintra =
1
N

N∑
n=1

1
N − 1

∣∣∣∣∣∣
N−1∑

n′∈chain
eiθn,n′

∣∣∣∣∣∣︸ ︷︷ ︸
rintra
n

. (5.14)

All three degrees of coherence are visually presented in Figure 5.4, where the chain
averaging is again represented by a blue box on the complete and triad graph and the
red box indicates a chain for which we calculate its coherence in the first sum of

rcomplete =
1
N

∣∣∣∣∣∣
N∑
n=1

eiθn

∣∣∣∣∣∣ rinter =
1
N

∣∣∣∣∣∣
N∑
n=1

eiθ̄n

∣∣∣∣∣∣ rintra =
1
N

N∑
n=1

1
N − 1

∣∣∣∣∣∣
N−1∑

n′∈chain
eiθn,n′

∣∣∣∣∣∣︸ ︷︷ ︸
rintra
n

.

Figure 5.4: (a) Coherence extracted over all oscillators in the complete graph, (b)
the unembedded triad coherence between the N average chain phases, plus (c) the
average chain coherence. All schematics represent the K5 and Kemb

5 graphs with the
blue boxes in (a,b) and red box in (c) representing the extraction of the average phase

and coherence across chain 5 respectively.
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Equation 5.14. The triad graph coherence parameters are also averaged over 160
realisations, denoted by 〈·〉.

We consider two embedding parameters Jc = {1, 10} and investigate the triad graph
coherence in relation to the complete graph. Lower and higher values of Jc did not
qualitatively change the findings. Oscillator frequencies ωn are chosen randomly from
g(ω̄) across all oscillators in order to best represent the experimental reality, such that
there is no single energy across each triad chain. As seen in Figure 5.3(b,c), for smaller
Jc the inter-chain and intra-chain coherences are low and show a weak dependence on
coupling strength. However, for larger Jc we observe a fast inter-chain coherence
transition in Figure 5.3(b), which indicates that the triad graph has managed to
correctly represent the embedded complete graph under the conditions of J/Jc < 0.1.
This figure of merit will be useful in future experimental design requirements.
Interestingly, for larger J , the inter-chain coherence is smaller for larger graphs, as
opposed to the smaller coherence of smaller complete graphs seen in Figure 5.3(a) (i.e.
the order of the lines has flipped). This is attributed to the fact that chains themselves
need to be coherent in order to correctly represent their embedded complete graphs,
and as longer chains struggle to settle into a coherent phase configuration
(Figure 5.3(c)), the coherence reduces with increased N for the triad graph. Overall,
we see that as J and Jc are increased, both the inter-chain and intra-chain degrees of
coherence converge to unity. Figure 5.3(d-i) schematically shows the simulation results
of varying J and Jc, where vertex colours correspond to the steady state oscillator
phases. By eye, it is plain to see that the spread of oscillator phases does reduce with
increasing Jc, but is effected more significantly by the increase in J .

We repeat this study, but his time with looped triad chains (depicted in Figure 5.2(d)),
where the results are shown in Figure 5.5. In comparison to the unlooped triad chains,
there is a slight increase in rinter and rintra across varying N , which is particularly

Figure 5.5: Coherence (a) 〈rinter〉 and (b) 〈rintra〉 of triad graphs corresponding to
uniform FM complete graphs with looped chains and Jc = 1 and 10. All scanned over a
range of coupling strengths J and averaged over 160 instances with standard deviation

in oscillator frequencies σ = 1.
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noticeable for Jc = 10 and larger J . Overall however, looping the triad chains
introduces very minor changes to the system’s coherence.

5.4.2 XY Energy

Here, we investigate the feasibility of minor embedding the complete graph to the triad
graph of Stuart-Landau oscillators at optimising the XY Hamiltonian. We compare the
unembedded and embedded complete graph XY energies (Equation 5.10 and
Equation 5.11) extracted from the triad graph, to the ground state energy calculated
using the classical basin hopping method [125]. We define the performance of the
Stuart-Landau system as the normalised difference in extracted XY energies of the
triad or complete graphs of Stuart-Landau oscillators, ESL, compared to the complete
graph XY energy solved using the basin hopping technique, EBH ,

Error = EBH −ESL
EBH

. (5.15)

(b)(a)

(c)

Figure 5.6: (a) Error between the Stuart-Landau model and the classical-basin hop-
ping method in minimising the XY Hamiltonian on a randomly connected complete
graph with σ = 0. (b) The phase dynamics of the triad graph oscillators for a single
random graph with Jc = 10. (c) Distribution of oscillator energies with unlooped triad
chains and the complete graph, with translucent surfaces to represent the standard

deviation in error of the unembedded energies.
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We perform this benchmarking over 160 unique complete graphs where each edge
weight is randomly and independently selected from a uniform distribution
Jnm ∈ [−1, 1]. Note that there is no qualitative difference in using a normal
distribution with the same variance. To find the optimum embedding, we first consider
N = 10 over a range of embedding parameters Jc with both unlooped and looped triad
chains. These initial results are shown in Figure 5.6(a), where all oscillators are given
the same natural frequency (i.e. σ = 0). Clearly, the error reduces with increasing Jc,
with the unembedded energy error converging to 0 faster than the embedded error,
suggesting that taking the average phase across each chain allows the triad structure to
best mimic its encoded complete graph dynamics. This is an expected result, as larger
Jc reduces the distribution of phase across each chain, thus achieving a better
representation of the complete graph and corroborates with Figure 5.3(b).
Interestingly, with the addition of looped triad chains the error reduces as a result of
the reduced spread in phase distribution (and increased coherence) that we previously
saw in Figure 5.5. The negative error in Figure 5.6(a) stems from the fact that
min[Hemb

XY ] < min[HXY ] when Jc → 0. In this limit, the triad graph is broken down
into N independent pairs of oscillators connected only with black edges. The sum of
all their XY energies is trivially minimised through setting the relative phases between
oscillator pairs to ∆θnm ∈ {0,π} for positive and negative couplings respectively. As
we see in Figure 5.6(b), the phase dynamics of θn(t) over the N(N − 1) = 90 triad
oscillators split into N moving paths, each corresponding to a different triad chain.

When a random distribution of ωn is included in the oscillator dynamics (σ > 0), the
XY energy error grows with the increase in σ, as shown in Figure 5.6(c). The spread in

Figure 5.7: (a-d) XY energy from a single random K10 graph and extracted embed-
ded and unembedded energies from the corresponding triad graph compared to the XY
energy from 104 random phase configurations. (e-h) XY energy of the Kemb

10 graph
compared to the XY energy of 104 random phase configurations. Each column repre-

senting Jc = 5, 10, 15 and 20 respectively.
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ωn leads to oscillator desynchronisation and loss of the steady state as no well defined
phase relation can enter the XY Hamiltonian. The error becomes non-negligible for
σ ' 0.1 for both the complete and triad graphs of Stuart-Landau oscillators, showing
the limit in ability of Stuart-Landau oscillators at minimising the XY Hamiltonian.
We further compare the complete and triad graph energies to randomly sampled phase
configurations, shown in Figure 5.7. Here, we plot histograms of complete graph XY
energies extracted from K10 and Kemb

10 for 104 random phase realisations alongside the
extracted XY energies from the Stuart-Landau networks of complete and triad graphs
with σ = 0. As Jc increases, the unembedded and embedded triad energies converge to
the complete graph energy (Figure 5.7(a-d)) and the XY Hamiltonian of the entire
triad graph of oscillators is minimised for all Jc (Figure 5.7(e-h)). This confirms that
Stuart-Landau oscillators always minimise the XY energy of the triad graph in the
limit of small σ, but the ground state triad phase dynamics converge to those of the
unembedded triad graph when Jc is maximised.

Lastly, we show the triad graph’s performance as minimising the complete graph XY
Hamiltonian as a function of problem size (network size) N , and embedding parameter
Jc (Figure 5.8). We see that the error converges to zero as Jc increases, with better
performance from the unembedded XY energy. As expected, larger networks struggle
to find the correct global ground state as they instead settle into the growing number
of local minima in the system. Interestingly, the unembedded error from the looped
triad chains (Figure 5.8(b)) plateaus beyond Jc = 10 and indicates that the benefit of
chain looping that we noticed previously is only apparent for N ≤ 10. This puzzling
behaviour implies that looping the chains of the triad graph generates a new family of
state attractors that do not correlate with the optimisation of the XY Hamiltonian.
Such attractors likely correspond to the appearance of twisted states within the looped

E
rr
or

(a) (b)

Figure 5.8: XY energy error from the triad structure of Stuart-Landau oscillators
compared to the complete graph XY energy solved using the basin hopping method for
(a) unlooped and (b) looped triad chains with N = 5 to 50, averaged over 160 random

graphs and σ = 0.
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triad chains, where such states commonly appear in large sparsely connected networks
of oscillators [202].

5.4.3 Dynamic Pumping

Clearly the Stuart-Landau model is an robust heuristic minimiser for the XY
Hamiltonian which can out-perform multiple other optimising algorithms and heuristic
solvers [see subsection 5.2.1], but as the oscillator amplitudes are not equal across the
system, the fixed point attractor of the oscillator steady state is in fact approximated
and not minimised exactly. As a possible improvement, we investigate the addition of
a dynamic pumping mechanism that feeds back the amplitude of each oscillator at
each step in numerical integration in order to adjust the gain of each node respectively.
To explore this feedback mechanism, we adjust Equation 5.1 slightly to follow:

dψn
dt

= [Pn(t) − iωn − |ψn|2]ψn +
M∑
m=1

Jn,mψm. (5.16)

Here, Pn is the pumping rate of oscillator ψn in arbitrary units of time, where initially
all oscillators are injected equally with Pn(0) = 0 for all n. After the initial pumping
in the first time step of integration, we apply a feedback mechanism to balance the
occupation of each oscillator, following:

dPn(t)

dt
= ε (ρt − ρn(t)) (5.17)

where ε is the parameter that controls the rate of change of Pn such that ε = 0 makes
Equation 5.16 identical to Equation 5.1, ρt is the target density of the oscillators and
ρn(t) is the density of oscillator n at time t, given by |ψn(t)|. This approach is similar
to the feedback mechanism of [124]. We numerically integrate Equations 5.16 and 5.17
for 100 randomly-connected complete graphs and corresponding triad graphs with
varying N , with ε = 0 and ε = 0.04. The resulting energy error (as defined by
Equation 5.15) and standard deviation of amplitudes across each oscillator network is
shown for randomly connected triad graphs with Jc = 20 in Figure 5.9, where the
results are averaged over the 100 unique graphs.

We do indeed see a drop in XY energy by less than 1% for all N when ε = 0.04,
compared to ε = 0. From the amplitude dynamics of a K5 random graph and
corresponding Kemb

5 in Figure 5.9, we see that the relative spread of amplitudes
reduces for the triad graph compared to the complete graph when there is no feedback.
Additionally, due to the large coupling strengths from the intra-chain couplings in the
triad graph, the rate of change of ψn is increased and the steady state is reached an
order of magnitude sooner than for the equivalent complete graph. When ε = 0.04, the
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(a) (b)

(c)

(d)

Figure 5.9: (a) Unembedded energy error of randomly connected triad graphs with
(red) ε = 0 and (blue) ε = 0.04 with Jc = 20 over a range of N , averaged over 100
unique random graphs realisations. Oscillator amplitude dynamics for (b) a randomly
connected K5 graph with ε = 0, and the corresponding Jc = 20 triad graph with
N(N − 1) = 20 vertices, for (c) ε = 0 and (d) ε = 0.04. Amplitudes normalised to

max |ψn| and ρt = max |ψn|.

oscillator amplitudes converge with a standard deviation of 3.84×10−5, though the
energy error reduces by less than 1%.

As the inclusion of ε has such a small effect on the XY energy of triad graphs, we
argue that the inclusion of the feedback mechanism is not crucial to this investigation.
The message of this study is that a technique has been found and characterised for
dissipative oscillator systems to map arbitrarily-weighted complete graphs to a simple
and experimentally-practical configuration, where, in practice, applying a feedback
pumping mechanism greatly complicates the experimental method. Instead, this study
shows that the XY energy can be optimised by increasing the intra-chain coupling
strength of the minor embedded graph, which forces the chain of oscillators to follow
the same phase dynamics. To top this off, we also show that the Stuart-Landau
network without a feedback mechanism in fact outperforms two commercial optimisers
and the Kuramoto model (whose fixed point attractor corresponds to the minimised
XY energy) at minimising the XY Hamiltonian for sufficiently large networks (large
N).

To summarise, the minor embedding technique applied to the randomly weighted
complete graph to form the triad graph proves to be a promising method in realising
the XY ground state of a complete graph using 2D optical annealing platforms, such as
polariton condensates. The triad graph has best success at annealing the complete
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graph XY Hamiltonian when the chain coupling strength is taken to be sufficiently
large compared to the complete graph edge weights, where as the number of complete
graph oscillators increases, so does the required chain coupling strength. However, the
inclusion of gain feedback to balance the oscillator intensities has little affect on the
triad graph’s ability to minimise the XY Hamiltonian of its encoded complete graph.

5.5 Conclusions

In this chapter, it was demonstrated that the dynamics of all-to-all coupled
Stuart-Landau networks can be approximated through applying a minor embedding to
the triad graph. This technique is not new, but is in fact regularly used in the field of
quantum annealing [180]. Here, we compare the (dense) complete graph to the (sparse)
triad graph - defined by a single embedding parameter Jc - through their
synchronisation dynamics and ability to minimise the all-to-all connected XY
Hamiltonian. The triad graph managed to represent the encoded complete graph
synchronisation dynamics under the condition of J/Jc < 0.1, however a greater
coupling strength is required in order to fully synchronise the triad graph as the
embedded chains need to first be synchronised in order to see growth in the inter-chain
coherence. We show that the steady state phases in the minor embedded graph can
optimise the XY Hamiltonian of the encoded complete graph and achieve good
performance by simply increasing Jc. By introducing some spread in oscillator
energies, the error of the Stuart-Landau network’s ability to minimise the XY
Hamiltonian grows and becomes non-negligible around σ ' 0.1 for a random uniform
sampling of all Jnm ∈ [−1, 1]. For σ = 0, we compare Stuart-Landau networks to the
classically solved ground state and stochastic random phase configurations.

When the Stuart-Landau model is benchmarked against two commercial optimisers
and the Kuramaoto model at minimising the XY Hamiltonian, amazingly the
Stuart-Landau networks outperformed all other optimisation techniques for sufficiently
large graphs. The convergence of the triad graph dynamics to the complete graph of
Stuart-Landau oscillators offers up the triad graph as a potential test-bed for which to
map dense graph problems using continuous phase oscillators, such as polariton
condensates, photon condensates and coupled laser arrays. This open up perspectives
on designing analogue computing hardware aimed at solving dense graph problems
(such as minimising the XY Hamiltonian) across a wide range of platforms in a similar
spirit to superconductor quantum annealing platforms.
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Chapter 6

Quantised Vortices in Optically
Stirred Polariton Condensates

6.1 Introduction

Quantised vortices are topological objects representing circular motion in a fluid,
characterised by integer (`) multiples of 2π phase rotation about a core, where the
topological charge of a vortex is represented by winding number `. Unlike classical
fluids, such as a cup of tea that rotates like a rigid body when stirred, superfluids of
quantum matter can support these rotational flows when stirred above some critical
velocity [203], where for a small enough rotation frequency, little to no motion of the
fluid is observed; yet above a critical frequency, the phase singularity appears with a
current proportional to its surrounding phase gradient. Such stirred quantum vortices
have been observed in superfluid Helium and atomic gas condensates [204, 205], such
as with 4He contained in a rotating bucket, which lowers the free energy in the system
through spontaneous nucleation of quantum vortices carrying `h̄ orbital angular
momentum (OAM) to match the rotation of the container [206]. However, there has
been little investigation into the rotation (via optical stirring) of driven-dissipative
quantum fluids, which are not dictated by the energy minimisation principles, but the
balance between gain and loss instead.

Vortices have been studied in a myriad of physical systems, such as superconductors
[207, 208, 209, 210], magnetic systems [211, 212] (which has led to the development of
vortex based random access memory (RAM) [213, 214, 212], as controlled vortex
networks can be used for the storage and processing of binary information), atomic
condensates [215, 205, 216] and nonlinear optics [217, 218, 219]. More recently, there
have been many studies of vortices in polariton condensate systems
[220, 122, 221, 222, 223, 224, 225, 226, 227]. Polariton condensates are an ideal
platform for investigating quantum vortices, which have integer phase winding ` and
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carry `h̄ OAM, as the excitonic component of the polariton leads to long coherence
times and the photonic component allows for great dynamic optical control of the
trapping potential using an SLM. Additionally, the excitonic component means that
the particles interact, giving rise to strong nonlinear dynamics.

Polariton condensate vortices are classified into two groups. The first being
spontaneous vortices, which arise from homogeneous or broad pumping profiles and
form from fluctuation in the condensate field due to the random initial conditions in
numerical simulation and optical misalignment or sample defects in experiment
[220, 122, 228, 229, 227]. These spontaneous vortices form in vortex-antivortex pairs,
such that the average OAM across all polaritons in the system cancels out and
converges to zero. The second group corresponds to stimulated vortices which form
from using a spatially inhomogeneous pump such as an annulus
[230, 231, 221, 222, 223, 224, 232], an ellipse [233] or a polygon of tight Gaussian spots
[234]. This group of vortices are not especially sensitive to noise, but instead the
winding number ` and vortex location are determined by the pumping profile.
However, due to pump symmetry, the sign of ` is stochastic with each realisation.
Typically, a single vortex will form at the pump centre, but if the optical trap is
spontaneously adjusted to a broad homogeneous pump, then the imprinted vortex will
spiral about the condensate and potentially leave the system [223].

In this chapter, we break the axial symmetry of the annular pump and investigate a
quasi-elliptical trapping profile that confines a dipole mode ψ10; a ground state
condensate in one direction and first excited state condensate in the perpendicular
direction. This alone does not bring vorticity to the system, but as the pump is
rotated about its centre with increasing rotation frequency F , the imbalance of
positive and negative OAM leads to the formation of a quantised vortex within the
polariton condensate and new energy modes in the system can be described following
Floquet theory. By varying the rotation frequency and trap diameter, we map out
regions of deterministic condensation into a vortex that co-rotates or counter-rotates
with the trap rotation, regions where a quantised vortex can stochastically occupy
either rotation direction and regions where no vortices are observed.

The work in this chapter is currently being collated into a manuscript for submission
to a Nature-group journal and is authored by Ivan Gnusov, myself, Helgi Sigurdsson,
Sergey Alyatkin, Kirill Sitnik, Julian Töpfer and Pavlos Lagoudakis. Ivan built the
optical setup and carried out the experiments with the support of Sergey Alyatkin,
Kirill Sitnik and Julian Töpfer, and I ran the simulations and analysis of the resulting
polariton OAM with guidance from Helgi Sigurdsson, who developed the theory to
describe the deterministic obervation of co-rotating and counter-rotating vortices
compared to the trap rotation (subsection 6.4.3). The manuscript is being written
from the perspective of the experimental work, but this chapter is written from the
simulation point of view and will cover the technical numerical aspects and the criteria
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for confirming a vortex sighting, as well as presenting the key experimental results and
discussing the theory describing these observations.

6.2 Trapping Potential

In this study, we require an optical trapping potential that breaks axial symmetry in
order to stir the condensate when rapidly rotated. The first pump profile that comes
to mind is simply the elliptical ring studied previously with polariton condensates
[235, 233] which is uniform in intensity about the ellipse’s perimeter. However, despite
previously being studied and characterised in the static regime, the experimental
rotation frequency of such an excitation profile is capped by the frame rate of the SLM
(∼60 Hz). The period of such a frequency is many orders of magnitude longer than the
picosecond timescales of the system dynamics, and as such, a 60 Hz trap rotation will
have a negligible effect on the resulting condensate.

Rapid trap rotations have previously been studied in the field of atomic condensates,
where the superposition of two vortical modes modulated with a small frequency offset
and difference in winding number leads to a much faster rotating trap profile [236]. We
employ this technique through the combination of two annular pumps with quantised
phase windings co-propagating with the same polarisation, but with differing winding
numbers `1 and `2 = `1 − ∆`. The recombination of these two beams leads to the
constructive interference at ∆` azimuthal positions, such that ∆` equidistant petals
make up the resulting beam pattern. By fine tuning the laser cavity lengths, it is
possible to produce two beams with frequencies f1 and f2, where the frequency
difference ∆f = f1 − f2 can reach the order of hundreds of GHz. Each SLM produces a
rotating phase front following E1,2 ∝ ei(`1,2θ−ω1,2t), where θ is the angle of the trap
rotation in the plane of the microcavity in the anticlockwise direction and
ω1,2 = 2πf1,2. When both beams are recombined using a beamsplitter, the resulting
profile is made up of |∆`| petals (chosen to be |∆`| = 2 in place on an ellipse) where
the frequency of pump rotation follows the expression [237],

F =
∆f
∆`

=
f1 − f2
`1 − `2

=
1

2π
ω1 − ω2
`1 − `2

(6.1)

where positive and negative F (in turn positive and negative θ) correspond to
anticlockwise and clockwise pump rotations respectively. The superposition of two
annular modes with |∆`| = 2 is depicted in Figure 6.1, where the top row shows a
schematic of the pump profile intensity and phase used in simulation and the middle
row for the experiment. In the latter, the displayed phase maps are given by the
kinoforms displayed on each SLM, clearly depicting a single fork at the centre,
corresponding to a charge-1 vortex core, where SLM1 imprints phase winding (and



100 Chapter 6. Quantised Vortices in Optically Stirred Polariton Condensates

thus OAM) `1 = ±1 and SLM2 imprints `2 = ∓1 to ensure |∆`| = 2. The two
experimental phase maps are flipped vertically form each other, such that each
imprints a vortex with opposite charge. Note how the inner shape of the resulting
pump profile is elliptical, but the intensity is not uniform about the azimuthal angle,
which is why we label this beam shape as a “quasi-ellipse”. The bottom row of
Figure 6.1 schematically depicts the experimental technique where two beams
recombine after being imprinted with the SLM phase profiles, to form a two-petalled
beam that helically rotates in time and is focussed on the surface of the microcavity
sample using a microscope objective. In both experiment and simulation, the trap
diameter is set to 14 µm. This dumbbell shaped excitation profile stirs the polariton
condensate like a paddle, much like the optical Ferris wheel for ultracold atoms [236].
This technique has recently been theoretically considered for polariton systems, but
only for the case fo resonant excitation [238].

Due to the repulsive Coulomb interactions between the polaritons and excitons [239],
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Figure 6.1: Numerical intensity and phase maps of excitation profiles used in (top)
simulation and (middle) experiment created by the addition of two Laguerre Gaussian
(LG) modes with |`1 − `2| = 2, with arrows to show direction of rotation. (Bottom)
experimental schematic of the two LG modes sculpted independently by SLMs and
combined with a beam splitter and focussed on microcavity sample using a micro-
scope objective in order create a rotating quasi-ellipse that optically stirs and traps the
polariton condensate. The window connecting the experimental pump profile and sam-
ple surface depicts (left) experimentally measured real-space condensate PL intensity
containing a vortex at the centre as verified by (right) the corresponding phase-map.
Experimental phase maps in (middle) correspond to the kinoforms displayed on each
SLM. Each intensity profile is normalised independently and the phase profiles scaled

between −π and π radians. The 3D graphic was created by Ivan Gnusov.
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the density gradients in the reservoir lead to an effective force pushing the polaritons
from high to low pump intensity regions, where at critical pumping density, the
excitons undergo stimulated scattering into the condensates [41] until the gain is
clamped and the system stabilises. The ultrafast relaxation in turn allows us to use
this all-optical technique to stir the condensate. If the reservoir responded more slowly
to the excitations, the exciton reservoir would smear out following the time averaged
excitation profile, which would lead to a cylindrically symmetric trapping potential for
the polaritons. Instead, the reservoir excitons quickly thermalise into the bottleneck
region of the polariton dispersion [240], to then undergo scattering into the condensate
before radiatively decaying after a few picoseconds. This means that the reservoir
responds quickly to the rapid changes in the pumping profile, whose dynamics are
transferred to the condensate.

6.3 Methods

6.3.1 Continuous 2DGPE

The effects of the rotating pump profile on the condensate and exciton reservoirs are
modelled using the mean-field theory approach, where the condensate order parameter
Ψ(r, t) describes the condensate density as a two-dimensional semi-classical
wavefunction following the generalised 2DGPE coupled to an active and an inactive
exciton reservoir nA,I(r, t) [67]. The active reservoir excitons undergo bosonic
scattering into the condensate and the inactive reservoir sustains it (see section 2.1 for
further details):

ih̄
∂ψ

∂t
=

[
− h̄2∇2

2mp
+G(nA + nI) + α|ψ|2 + ih̄

2 (RnA − γ)

]
ψ(r, t), (6.2)

∂nA
∂t

= −(ΓA +R|ψ|2)nA +WnI , (6.3)
∂nI
∂t

= −(ΓI +W )nI + P (r, t). (6.4)

Here, mp is the effective polariton mass on the LP branch, G = 2g|X|2 and α = g|X|4

are the polariton-reservoir and polariton-polariton interactions strengths respectively,
where g is the exciton-exciton dipole interaction strength and |X|2 is the excitonic
Hopfield coefficient. Additionally, R is the rate of stimulated scattering of polaritons
into the condensate from the active reservoir, γ is the polariton decay rate (inverse of
polariton lifetime), ΓA,I are the active and inactive reservoir exciton decay rates, W is
the inactive to active reservoir exciton conversion rate and P (r, t) describes the
nonresonant continuous-wave dynamic pumping profile.
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Eqs. (6.2 - 6.4) are numerically integrated in time using a linear multistep method
starting from random initial conditions. The parameters used in these simulations are
based off the sample properties, with mp = 0.30 meV ps2, γ = 1

5.5 ps−1, ΓA = γ due to
the fast thermalisation to the exciton background [53], whereas the nonradiative
recombination rate of inactive reservoir excitons is taken to be much smaller than the
condensate decay rate with ΓI = 0.01γ. The remaining parameters are enumerated
through fitting to experimental data, giving h̄R = 6.67 µeV µm2, W = 0.05 ps−1,
g = 1 µeV µm2, and |X|2 = 0.35.

P (r, t) is the dynamic pumping profile given by the superposition of two rotating
Laguerre-Gaussian (LG) modes with |∆`| = 2, resulting in a two-petalled quasi-ellipse
following

P (r, t) = P(r)
∣∣∣ei(`1θ−ω1t) + ei(`2θ−ω2t)

∣∣∣2 = 4P(r) cos2
[
(`1 − `2)θ

2 − (ω1 − ω2)t

2

]
, (6.5)

where P(r) represents the annular intensity profiles shown in Figure 6.1, θ is the
rotation angle in the plane of the microcavity and ω1,2 = 2πf1,2. The intensity of the
pumping profile remains constant throughout each simulation and is chosen such that
the system operates just above condensation threshold, with the number of polaritons
in the system on the order of 103 for the single condensate over an area of 6.4 mm2 .

6.3.2 Vortex Analysis: Simulations

The 2DGPE is numerically integrated for a trap rotating with a frequency F = 2∆f ,
which is scanned over a large range of F , where the positive and negative signs of F
correspond to anticlockwise and clockwise trap rotation respectively. The probability
current of the resulting condensate wavefunction, which describes the rate of flow of
the condensate, is analysed following

jc =
h̄

2mpi
(Ψ∗∇Ψ − Ψ∇Ψ∗) (6.6)

where the location of the vortex core is attributed to the location of min|jc| = min|Ψ|.
We also look at the projection of the condensate wavefunction onto angular harmonics,
where around each vortex core, the distribution of orbital angular momentum (OAM)
is analysed in order to give the number of polaritons with OAM = `,

N`(t) =
1

2π

∣∣∣∣∣
∫

Ψ∗(r, t)ei`φdr
∣∣∣∣∣
2

. (6.7)

Here, ` ∈ Z and φ is the azimuthal angle in-plane to the microcavity about the vortex
core. Note that in the analysis of the GPE, the range of ` is considered from -3 to 3.
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The expectation value of the angular momentum for a polariton in the condensate is
written as

〈`〉h̄ =
Lz(t)

N(t)
' 1
N(t)

3∑
`=−3

`N`(t) (6.8)

where Lz(t) = −i
∫

Ψ∗(r, t)(x∂y − y∂x)Ψ(r, t)dr is the total angular momentum of the
system at time t with a total number of condensed polaritons defined as
N(t) =

∫
|Ψ(r, t)|2dr [224]. Here, positive ` corresponds to an anticlockwise phase

winding and negative ` to a clockwise phase winding about the vortex core.

6.3.3 Experimental Techniques

In experiment, the polariton condensate is formed in an inorganic 2λ
GaAs/AlAs0.98P0.02 microcavity with embedded InGaAs quantum wells [3]. The
sample is held at a cryogenic temperature of ∼4 K. For the condensate formation, we
use a nonresonant excitation scheme with two frequency detuned Ti-sapphire lasers.
By fine-tuning the cavity of one laser, we can control their frequency detuning such
that both light sources are stabilised with a frequency jitter smaller than 20 MHz. Two
high precision wave-meters allow us to measure the frequency of both lasers in real
time, correcting for the slow thermal frequency drift.

Figure 6.1 schematically depicts the excitation part of the setup. The radiation from
each laser (detuned in frequency by ∆f) separately hits two different SLMs each
displaying the analytical perfect vortex kinoform [241] that shapes each beam into an
annulus with a quantised phase winding of `, such that the annulus diameter and
phase winding number are fully controllable through adjusting the SLM kinoforms.
The resulting optical patterns of each laser are rings with corresponding topological
charges, which are superposed using a beamsplitter. The resulting beating pattern
appears to be rotating in time [236, 238]. The rotating nonresonant laser pattern is
focussed on the surface of the sample at a cavity detuning of -3.2 meV with a diameter
of 14 µm, which acts as a rotating quasi-ellipse that simultaneously confines and stirs
the condensate.

We retrieve the phase of the polariton condensate utilising two interferometric
techniques: the homodyne interferometry and the interference of the condensate with a
retro-reflected copy of itself in Michelson interferometry. The homodyne technique is
described in detail in [94]. To apply this technique, we use an external source laser at
the condensate wavelength as a reference beam and interfere it with the condensate
emission. The reference laser beam is greatly expanded to overlap with the whole
condensate with flat phase front with respect to the condensate. To lock the phases
between them, we use part of the reference beam as a seed on the sample close to the
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condensate. This leads to the observation of interference fringes, thus allowing for
phase retrieval.

For the interferometric technique, we do not use any external light sources but instead
interfere the condensate PL with itself and spatially displace one arm of the
interferometer with respect to the other (retroreflected) to observe the phase
dislocation. As a result, in the interference pattern when the vortex is present, we see
a vortex-antivortex pair singularity, which forms due to the angular momentum
flipping caused by reflections. Given the interferograms, we can extract the phase of
the condensate wavefunction by performing the 2D Fourier transform. In the frequency
domain, we filter the harmonic corresponding to the interference fringes and perform an
inverse Fourier transform. The resultant complex-valued array carries the information
about the phase of the original condensate, given by the argument of this data.

6.3.4 Vortex Analysis: Experiment

For a perfect quantised vortex, all particles must have the same non-zero OAM, have a
dark void (not ridge) in its real-space intensity and have a constant-gradient phase
rotation about the phase singularity. However, it is generally accepted that there exists
a vortex in a condensate system even when the phase gradient is not constant, as
shown in [220, 224, 242, 227, 233]. In order to classify whether or not there exists a
vortex in experiment, we first consider the analytical superposition of vortex and
antivortex modes with varying weightings and analyse the azimuthal phase profile
about the centre of the wavefuction as well as the real-space profile. We create the
perfect vortex and antivortex modes ψv and ψav with an intensity profile that follows a
radially symmetric Hermite polynomial (Figure 6.2(a)) and a phase-map that winds 2π
radians with a constant gradient in an anticlockwise and clockwise direction for the
vortex and antivortex respectively (Figure 6.2(b,c)). ψv and ψav are summed together
with a vortex mode weighting of v, such that the resulting wavefunction is given by
ψ =

√
vψv +

√
1 − vψav. Note that the dipole orientation depends on the relative angle

between the vortex and antivortex phases, where here the antivortex has a π/2
rotation compared to the vortex leading to a dipole aligned diagonally rotated π/4 to
the vortex and antivortex phase jumps.

For a given vortex fraction, we take the phase profile of the azimuthal path about the
centre of the resulting wavefunction (Figure 6.2(d)). This is compared to the perfect
vortex phase profile (dashed black line in Figure 6.2(e)) and the absolute phase
difference between the extracted and perfect vortex phase profiles at N equally spaced
points along the profile, calculated as ∆ = |θψ − θψv |, shown in Figure 6.2(g). The
azimuthal angle zero-point is chosen to be on the phase discontinuity (white/black
boundary in Figure 6.2(d)) and a global phase offset is applied to the extracted phase
profile in order to minimise the normalised root mean squared error (NRMSE) to the
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perfect vortex phase profile. The NRMSE is defined as

NRMSE =
1
M

M∑
m=1

[
1

4N

N∑
n=1

|eiθψ − eiθψv |2
]

, (6.9)

where θψ is the phase at one point in the N -point phase profile around each condensate
vortex and θψv is the phase at one point along the phase profile of the ideal vortex,
where N gives the number fo data points in the extracted phase profile. This error
parameter describes the average normalised euclidean distance between the extracted
and perfect vortex phases. An error of NRMSE = 1 corresponds to the maximum error
where all data points deviate by π radians from the perfect vortex profile.

(a) (b) (c)

(d)

(e)

(f)

(g)

Figure 6.2: Numerical (a) intensity and (b,c) phase for ideal vortex (ψv) and an-
tivortex (ψav) respectively. Example of resulting (d) phase profile and (f) real-space
intensity profile from superposition of vortex and antivortex with fraction of vortex
component v = 0.77 and red loop centred about vortex centre in (d). (e) Solid red line
to show the 100-point phase profile about azimuthal angle of red path in (d) compared
to the ideal phase about a vortex shown by dashed black line and (g) showing ∆ the
absolute phase difference between the red and black lines of (e), with normalised root

mean squared error (NRMSE) of 0.20.
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An example of this analysis in Figure 6.2(d-g) is shown for v = 0.77 with an
N = 100-point phase profile and results in an NRMSE = 0.20. As v is increased or
decreased, the corresponding NRMSE does the opposite. Additionally, we consider the
real-space intensity, where there must be a zero-intensity void at the singularity site,
which is present for NRMSE < 0.20. For example in Figure 6.2(f), there is a dark
centre that is very faintly surrounded by a non-zero intensity perpendicularly to the
dipole mode. As such, we define that if NRMSE ≤ 0.20, then there exists a vortex in
the system. This is the analysis criterion we use to decide which experimental
observations contain a vortex.

6.4 Results & Discussion

6.4.1 Counter-Rotating Polariton Fluid

For each rotation frequency, 40 numerical integrations of Eqs. 6.2-6.4 are performed
using a 14 µm diameter pump profile as described in section 6.2, each starting from
unique random initial conditions. For each F , we plot the intensity distribution of
excitons in the active reservoir, |nA|2, as this both confines and stirs the polaritons in
the system. When the pump profile is stationary, the active exciton reservoir follows
the non-uniform quasi-elliptical profile of the pump (see Figure 6.3(a)). Interestingly,
as |F | increases the active reservoir becomes more uniform in intensity and the slight
ellipticity smears out, where at F = 20 GHz the active reservoir appears completely
circular and uniform in intensity, such that the condensate confined within experiences
a stationary annular trapping potential (shown in Figure 6.3(a-e)).

The corresponding condensate intensity and phase profiles after 0.8 ns of numerical
integration (Figure 6.3(f-j) and Figure 6.3(k-o) respectively) show that the condensate
is strongly effected by the trap rotation. For F = 0 GHz, the condensate forms into a
dipole mode, clearly indicated by the two-lobe intensity, the sharp vertical step in
phase through the centre of the system and a probability current that flows away from
the phase boundary. However, as the magnitude of rotation frequency increases, the
vertical phase jump begins to spiral with its tail at the centre of the system, where the
continuous phase that loops the singularity becomes smoother in gradient about the
azimuthal angle with increasing |F |. Additionally, the probability current gains a
circular flow as the trap is rotated, shown by the cyan arrows in Figure 6.3(f-j). At
F = 2 GHz, the dominant flow of polaritons is still in the radial direction away from
from the dark ridge that runs between the two dipole lobes in real-space, but there is
indeed a rotational flow at the centre of the system, which surprisingly runs in the
opposite direction (clockwise) to the optical pump (anticlockwise), however as this is a
quantum fluid governed by a superposition of vortex and antivortex modes, this
phenomenon is explained using a time periodic discretised dissipative GPE (see
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(a) (b) (e)(d)(c)

(f) (g) (j)(i)(h)

(k) (l) (o)(n)(m)

(p) (q) (t)(s)(r)
800

Figure 6.3: For trap rotation frequencies 0, 2, 5, 10 and 20 GHz, (a-e) active reservoir
intensity, (f-j) real-space condensate PL intensity with superimposed probability current
jc in cyan, (k-o) real-space phase profiles and (p-t) distribution of condensate orbital
angular momentum (OAM) at each time step of the 2DGPE simulations. Profiles (a-o)
all single-shot after 800 ps of numerical integration. Each intensity profile and OAM
distribution is normalised independently and the phase profiles scaled between −π and

π radians. White scale-bar in (a) indicates 5 µm.

subsection 6.4.3). As F is increased further, the central rotational flow becomes
dominant with a weaker radial far-field flow, and the dark ridge vanishes as the
intensity profile forms a single-lobe condensate with a dark core (the vortex).
Interestingly, for large rotation frequencies, such as F = 20 GHz in Figure 6.3, the
phase gradient and polariton flow about the vortex centre can either co-rotate or
counter-rotate with the optical trap rotation. This is a result of the uniform ring-like
trapping potential that presents to be nearly stationary to the polaritons and as such,
the first excited state condensate forms randomly and stochastically with either the
same or opposite phase rotation as the trap.

As the dipole mode (Figure 6.3(f)) is the equally weighted superposition of the
orthogonal vortex and antivortex modes, we analyse the distribution of orbital angular
momentum (OAM) of the polaritons within a 10 µm radius of the condensate centre in
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order to understand what fraction of the system is in each vortex state, where
polaritons with an OAM of ` = 1 are part of the vortex, and ` = −1 belong to the
antivortex state. In Figure 6.3(p-t), we show the normalised OAM distributions for
each 10 ps time-step in the simulation. For the static optical trap, the polaritons
equally occupy ` = ±1, thus confirming that the condensate is in the dipole mode. As
F increases, the occupation in the antivortex mode supersedes the occupation of the
vortex mode, where at F = 10 GHz, all polaritons have ` = −1, thus the condensate
forms a perfect antivortex. The switch in rotation direction of the polariton flow at
F = 20 GHz is also seen in Figure 6.3(t), where all polaritons are in the vortex state in
this realisations. These initial results indicate that a polariton condensate vortex can
indeed be induced through optical stirring, and its existence is evidenced by a dark
void in real-space, a circular flow in probability current, a gradient flow of phase about
a singularity and by a dominant non-zero OAM, where interestingly, the condensate
fluid rotation counter-rotates with the pump dynamics for F ≤ 10 GHz, but
stochastically co-rotates or counter-rotates with the pump for F = 20 GHz. However,
in experiment we only observe co-rotating vortices (shown in Figure 6.4), plus the
condensate populates a single Gaussian ground state lobe for high rotation frequencies
as opposed to the first excited vortex states as we see in these simulations. Although
the 2DGPE models the polariton fluid well, in this instance the numerical pumping

(a) (b)

(c) (d)

Figure 6.4: Experimental condensate phase maps for (a,d) anticlockwise and (b,c)
clockwise pump rotation as a result of (a,c) ∆f = 4.6 GHz and (b,d) ∆f = −3.7 GHz
with ` = ±1 for the top and bottom panels respectively. The circular arrows around
each singularity represent the path from which the phase is extracted in an anticlockwise
direction, where the arrow represents the direction of the vortex phase winding and the
blue dots indicate the point about which the profile is un-wound. The colour scale in
(a) ranges between −π and π, and the white scale bar corresponds to 2 µm, where both

of which apply to all panels.
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profile needs to be adjusted slightly in order to better fit the experimental findings.

6.4.2 Co-Rotating Polariton Fluid

As we do not always observe a co-rotating vortex in the simulations that follow the
same pumping technique experimental pumping technique, nor do we observe a ground
state condensate at high rotation frequencies, we adjust the numerical pump profile
slightly to become more elliptical in shape by both stretching and compressing the
pump in the top right panel of Figure 6.1 in the horizontal and vertical directions
respectively, to form a new quasi-ellipse with a major diameter of 16 µm and a minor
diameter of 12 µm. This ellipticity ensures that a dipole mode condensate forms at
F = 0 GHz, and a ground state mode is trapped for large |F |. The updated pumping
profile is used in the numerical integration of Eqs. 6.2-6.4 for F = 0, 2, 4, 6 GHz, where
now the condensate fluid co-rotates with the pump profile, in agreement with
experiment. Again, the intensity of the active exciton reservoir follows the ellipticity of
the pump profile at F = 0 GHz, but as the pump rotation frequency increases, this
ellipticity smears out and the reservoir intensity becomes more uniform
(Figure 6.5(a-d)). The effect of this smearing is seen in the real-space PL intensity
(Figure 6.5(e-h)), where the circulating polariton current builds with increasing F up
to 4 GHz. However, in the snapshot of F = 6 GHz, we see that the less-elliptical
trapping potential from the exciton reservoir confines the ground state condensate
instead. We locate the centre of each vortex core at the minimum intensity location
within the condensate, around which we take the azimuthal phase profile at a radius of
5 µm (red rings in Figure 6.5(i-l)), which we un-wind about φ, plot in Figure 6.5(m-p)
and calculate the NRMSE. In the cases where there is no vortex core (e.g.
Figure 6.5(a,d)), we take the phase profile about the centre of the trap profile.
Additionally, we plot the energy dispersions for each rotation frequency
(Figure 6.5(q-t)), where we observe a single first-excited-state energy mode at
F = 0 GHz, which splits into two modes as F increases, up until F = 6 GHz where a
single ground state mode is occupied by polaritons.

Using the criterion for a vortex of NRMSE ≤ 0.2 (as discussed in subsection 6.3.4), we
analyse the experimental condensates over 100 unique realisations per rotation
frequency and determine the fraction of realisations that present with a vortex. As we
do not experimentally project the condensate to different angular harmonics, this is
the best way to statistically analyse the experimentally observed vortices, and can
directly compare it in theory (Figure 6.6(a,b)). The experimental data shown in blue
follows a similar distribution to the theoretical data and remarkably, the probability of
experimentally realising a vortex is close to unity over a similar region of F in both
simulation and experiment. From the simulations results, we can project the
condensate wavefunction onto the angular harmonics, so instead of setting some
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arbitrary error threshold for confirming the presence of a vortex in the system, in
Figure 6.6(b) we plot the average OAM per polariton 〈`〉 (again averaged over 40
realisations), where |〈`〉| is maximised at |F | = 4 GHz. The peaks (and troughs) in this
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Figure 6.5: For trap rotation frequencies 0, 2, 4, 6, (a-d) active reservoir intensity,
(e-f) single-shot real-space condensate PL intensity after 2.5 ns of numerical integration
with superimposed probability current jc in cyan and insets to show the time-integrated
condensate intensity, (i-l) real-space phase profiles with a 10 µm diameter red ring
about vortex core (or centre of trap if no condensate present), where (m-p) show the
phase profiles about each red ring un-wound with φ = 0 at arg(ψ) = −π compared
to the perfect vortex profile indicated by dashed black lines. (q-t) Energy dispersion
with vertical red line profiles to shown integrated energy intensity for each rotation
frequency. Profiles (a-p) all single-shot realisations after 2.5 ns of numerical integration,
aside from the insets in (e-h). Each intensity profile and OAM distribution is normalised
independently and the phase profiles scaled between −π and π radians. White scale-bar

in (a) and inset of (e) indicate 10 µm.
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plot are in accordance with the trend of Figure 6.6(a), showing that the criterion of
NRMSE ≤ 0.20 for a vortex observation is appropriate for the experimental analysis.
Additionally, we show the fraction of polartions with ` = 0, ±1 in Figure 6.6(c), were
at F = 0 GHz, the condensate consists of equal weightings of the vortex and antivortex
(as we expected) and at F = ±4 GHz, ` = ±1 is maximised such that N` ' 0.8.
However, even when N` is maximised, still 20% of polaritons are not in the
(anti)vortex harmonic, which is why the average OAM per polariton in Figure 6.6(b)
does not exceed a magnitude of 0.6. In Figure 6.6(d), we also show the energy
spectrum over a range of F where we see that for a stationary trap, the polaritons
dominantly occupy the first excited state of the system at ∼ 37 GHz above the bottom
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Figure 6.6: (a) Fraction of vortex states observed for (blue) in experiment over 100
realisations that display, and (red) in numerical simulation over 40 realisations, as a
function of trap rotation frequency. (b) Average OAM per polaritons averaged at each
rotation frequency averaged over 40 realisations, (c) number of polaritons with OAM
of (red) ` = 1, (blue) ` = −1 and ` = 0 averaged over 40 realisations in simulations at
t = 2.5 ns. (c) Energy spectrum integrated over kx from the dispersion over a range of
F , with the A± (B±) branches shown by dashed and solid blue (green) lines splitting

away from the first excited energy state.
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of the LP dispersion branch. However, as |F | increases, we observe an additional two
energy branches that split away from the bare excited state mode with an energy shift
of ∆ω. As |F | is increased further, polariton population in the ground state (at
∼ 22 GHz) grows in agreement with experiment. We also observe very faintly (note
the logarithmic colourscale) the second excited state of the trap around an energy of
∼ 55 GHz with a minute occupation of polaritons. To investigate this energy splitting,
and to understand why we can observe a co-rotating or a counter-rotating vortex, we
explore the dynamics of the ` = ±1 harmonic modes.

6.4.3 Discretised Gross-Pitaevskii Equation

Through describing the dynamics of this system solely in terms of the vortex and
antivortex rotating components with ` = ±1, we are able to explain the phenomena of
the co-rotating and counter-rotating vortex, relative to the rotating pump. First, we
must consider the linear regime of the Schödinger equation, describing the time
periodic drive and negating the cavity losses,

ih̄
∂ψ

∂t
=
[
Ĥ0 + Û(t)

]
ψ (6.10)

where Ĥ0 is the unperturbed polariton system confined by some harmonic potential
following,

Ĥ0 = − h̄2∇2

2mp
+

1
2mpω

2
‖r

2 (6.11)

and Û(t) is the perturbation potential that follows,

Û(t) = λ cos2
(
(`1 − `2)θ

2 − (ω1 − ω2)t

2

)
. (6.12)

For the unperturbed Hamiltonian (i.e. λ = 0), the solutions are the 2D harmonics
Ĥ0φnx,ny = h̄ωnx,nyφnx,ny , with eigenenergies Ex,y = h̄ωnx,ny = h̄ω(nx + ny + 1) [243].
Here, we assume that the polaritons are trapped deeply enough that they experience
an effective harmonic potential of strength ω‖ determined by the time-independent
term of the exciton reservoir.

In this perturbative approach, λ = λR + iλI is a complex number that satisfies
|λ| � h̄ω‖ such that the Û operator can be treated as a perturbation of the system.
This is a valid assumption for intermediate rotation frequencies where the exciton
reservoirs smear out over time, roughly forming a superposition of a time-independent
unperturbed potential and a time dependent perturbing potential.

By only considering the ` = ±1 angular harmonics, which are mainly all we observe in
simulation and experiment at these intermediary rotation frequencies, the system
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dynamics can be simplified to,

ψ = ξ(r)(c+e
iθ + c−e

−iθ)e−i2ω‖t (6.13)

where ξ(r) = β2
√
π
re−β2r2/2 is the radial solution to the unperturbed Schrödinger

equation with β =
√
mpω‖/h̄. The angular dependence of Û couples the harmonics

that differ by `1 − `2, where `1 − `2 = 2 couples the e±iθ harmonics.

By substituting Equation 6.13 into Equation 6.10 and extracting across the spatial
degrees of freedom, we obtain the coupled system of equations:

ih̄
∂c±
∂t

=
λ

4 c∓ exp
[
∓i(ω1 − ω2)t

`1 − `2
|`1 − `2|

]
. (6.14)

Interestingly, these equations take the same form as those that describe Rabi flopping
in a degenerate two-level system in the rotating wave approximation and have the
exact solutions:

c±(t) = A±e
−i(±∆ω+ΩR)t/2 +B±e

−i(±∆ω−ΩR)t/2 (6.15)

where ∆ω = (ω1 − ω2)(`1 − `2)/|`1 − `2| with a Rabi splitting of
ΩR =

√
∆ω2 + λ2/(4h̄)2. A schematic of the system’s energy structure is shown in

Figure 6.7 and the exponents of Equation 6.15 result in a four-way energy splitting,
which we plot in blue and green on Figure 6.6(d) as frequency-based energy shift
following,

f =
1

2π

[
±∆ω±

√
∆ω2 + λ2/(4h̄2)

]
. (6.16)

Figure 6.7: Energy structure of the system.

The sign of Im(ΩR) follows the sign of λI which determines if the frequency A± or B±

has equal positive or negative imaginary components. If λI > 0, then the higher energy
A± modes have lower losses (or narrower linewidths) and will be populated more
strongly. Conversely, if λI < 0 then B± will have lower losses. Furthermore, the energy
splitting between the pairs is precisely ∆E = ∆f = 2∆F , as we see in Figure 6.6(d).

This simple perturbative analysis shows that although the pump rotates in a definite
direction, the condensates real-space (and phase-space) rotation direction cannot
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simply be determined by the narrowest spectral peak. Instead, the condensate’s
rotation direction is determined by the different stability properties (i.e. nonlinear
dynamics) of these high-gain modes, which we discuss in the following. We can write
the discretised generalised GPE by including standard polariton condensate
nonlinearities into Equation 6.14, which allows us to analyse more transparently
whether the co-rotating or counter-rotating vortices (relative to the direction of F )
stabilise the system, following:

i
dc±
dt

=
[
ip+ (ã− i)(|c±|2 + 2|c∓|2)

]
c± + (1 − iη)c∓e

∓i∆ωt. (6.17)

Here, p describes the net gain of the system, ã gives the renormalised nonlinear energy
shift from removing the spatial dependence. Time is also scale in units of coupling
strength like t → t/λR and defined as η = λI/λR. The condensate intensity and
vorticity from numerically integrating Equation 6.17 are shown in Figure 6.8(a,b)
respectively and indicate that the sign of the dissipative coupling term, η can flip the
vortex rotation relative to the pump. In this figure, we fix ã = 1 and ∆ω = 1,
corresponding to an anticlockwise pump rotation. Interestingly, there is a bending of
the boundary between blue and red regions in (b), which is attributed to the nonlinear
energy term in Equation 6.17 becoming comparable to the linear coupling energy,
making the co-rotating polariton fluid the most favourable macroscopic dynamics.

These results back up the experimental findings, which show a co-rotating polariton
fluid with repulsive polariton interactions and the counter-rotating vortex seen in
simulations with the purely LG-mode trap (Figure 6.3) is described using the
discretised dissipative GPE by a negative dissipative coupling between the ` = ±1
angular modes with that specific trapping potential. But as we have seen throughout
this thesis, condensate dynamics strongly depend on the pumping profile, where minor
changes to the system gain can drastically affect the resulting condensate.

6.4.4 Extracting Experimental Vortex Fractions

Although the ranges in rotation frequency in which a vortex presents itself do align in
theory and experiment for the current definition of a vortex (NRMSE < 0.20), it seems
quite arbitrary to have an error threshold to binarise the sighting of a vortex to “True”
or “False” as the components of ` = ±1 vary smoothly with F . As the system is in a
continuous superposition of a vortex and antivortex state, we can instead compare the
fractions of these modes in experiment too in order to find the average OAM per
polariton and directly compare it to the theory. For future experiments, the optical set
up could include an OAM sorting technique as described [224]. However, as this
information has yet to be experimentally acquired in this investigation, we would need
to numerically extract it by comparing the condensate phase-maps to the analytical
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Figure 6.8: (a) Time-averaged intensity and (b) vorticity of the condensate by numer-
ically solving Equation 6.17 as a function of power p and dissipative coupling strength
η. Other parameters are α̃ = 1 and ∆ω = 1 (pump rotating counterclockwise). This

figure was created by Helgi Sigurdsson.

combination of the vortex and antivortex wavefunctions, ψv and ψav, as well as the
simulated condensate behaviour.

Trivially, the normalised distribution of OAM for ` = ±1 gives exactly the vortex and
antivortex fractions (v and 1 − v) respectively, which means that by characterising the
NRMSE of the analytical condensate wavefunction by varying v, we have the ability to
extract the OAM distribution of ` = ±1 from the experimental phase profiles. Firstly,
we test this out with the analytical wavefunction and plot the mean and standard
deviation of ∆ from the extracted phase profiles about the centre of the system as a
function of v, shown in red in Figure 6.9(e). We then compare this with the statistical
analysis to ∆ extracted from the 2DGPE simulations. An example of this analysis is
shown for a simulation with F = 4 GHz in Figure 6.9(a-d). For each run of the
simulation, we take the single shot phase profile at 10 different timesteps (Figure 6.9(a)
corresponds to t = 2.5 ns), extract the 100-point phase profile at a radius of 5 µm
about the phase singularity (Figure 6.9(b)) and calculate ∆ (Figure 6.9(d)). Again, the
zero-point of the azimuthal angle is chosen at each time step to lie on the phase
discontinuity at arg(ψ) = −π and a global phase offset is chosen to minimise the
NRMSE and 〈∆〉. The location of the phase singularity is given by the minimum
intensity within the condensate and if no vortex exists, then the phase profile is taken
about the centre of the system. Additionally the distribution of OAM in ` = ±1 is
determined using Eqs. (6.7,6.8), as shown in Figure 6.9(c) for t = 2.5 ns.

From this analysis of ∆ and assuming that N1/N−1 ≡ v, the extracted mean, standard
deviation of ∆ is plot as a function of v in Figure 6.9 (blue) to directly compare to the
analytical wavefunction statistics (red). Note that it is not the rotation frequency on
the x-axis here, but rather the fraction of the condensate in the vortex/antivortex
modes. The analytical and numerical error match up closely, showing that the absolute
phase difference and the standard deviation of the 100-point phase profile about a
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F = 4 GHz

(e)

1-v (from OAM)

(a) (b)

(c) (d)

Figure 6.9: 2DGPE simulation results for F = 4 GHz showing (a) phase space at
t = 2.5 ns with (red) 5 µm radius ring about phase singularity, (b) the extracted 100-
point phase profile about ring at 10 different time steps between 2.41 ns to 2.50 ns,
(c) extracted distribution of ` = ±1 at t = 2.5 ns, (d) the absolute phase difference ∆
between the phase profiles in (b) and the perfect vortex phase and (e) the mean and
standard deviation of ∆ as a function of antivortex (` = −1) fraction of the (red) ana-
lytical and (blue) simulated condensate wavefunction. White scale-bar in (a) indicates

5 µm.

vortex centre can be used to infer the vortex fraction of a condensate. A fitting is
applied to the analytical errors of the mean 〈∆〉 and the mean with standard deviation
〈∆〉 ± σ (red data in Figure 6.9(e)) in order to perform such an inference, following:

〈∆〉 = 7.05x3 − 4.89x2 + 2.16x+ 0.04 (6.18)

〈∆〉 + σ = 12.0x3 − 8.04x2 + 3.33x+ 0.06 (6.19)

〈∆〉 − σ = 2.90x3 − 1.74x2 + 0.99x+ 0.02. (6.20)
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The distribution of OAM of the experimental data has yet to be analysed using this
technique, but is simple enough carry out by taking a 100-point phase profile about
each vortex in order to extract ∆ and infer v by setting x = v− 1 when ∆ is compared
to a perfect vortex, and x = v in comparison to the perfect antivortex.

6.4.5 Larger Quasi-Elliptical Pump

We also numerically investigate a larger trap that excites the ψ20 condensate when
stationary (second excited state in x and ground state in y). This is achieved using the
same LG-based trapping potential depicted in the top row of Figure 6.1, but with a
diameter of 16 µm in experiment, and a combined LG-mode quasi-ellipse in simulation
with major and minor diameters of 22 µm and 14 µm respectively. For varying trap
rotation frequencies, the real-space and phase-space profiles of the condensates are
shown in Figure 6.10. Here we see the ψ20 condensate mode in Figure 6.10(a,e), but as
we increase F to 2 GHz and 5 GHz, we observe two vortices that co-rotate with the
pump, as indicated by the probability current and phase-space profiles. However, when

(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Simulation

Figure 6.10: In simulations for trap rotation frequencies 0, 2, 5, 10 and 20 GHz, (a-
d) real-space PL intensity superimposed with probability current jc in cyan and (e-h)
corresponding real-space phase-profiles. Each intensity and phase profile is normalised
independently and the phase profiles scaled between −π and π radians. The white
scale-bar in (f) indicates 10 µm. (i) Average OAM per polariton within a 10 µm radius
of the trap centres in (blue) experiment and (red) 2DGPE simulation using a 16 µm

diameter pump, averaged over 40 realisations.
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F = 10 GHz, the trapping potential becomes more uniform and less elliptical (as we
saw in Figure 6.5(d)) and as a result, a lower mode becomes trapped leading to a
single vortex at the centre of the system. However, as the reservoir is smeared out and
more uniform in intensity, the single vortex at F = 10 GHz appears randomly and
stochastically with ` = ±1, where in Figure 6.10(d,h), we observe a counter-rotating
singularly-charged vortex.

In Figure 6.10(i), we plot the average OAM per polariton (red) as a function of F for
the numerically modelled condensate system, where 〈`〉 is averaged over 40 realisations.
In blue, we also show the fraction of 100 experimental realisations where we observe a
vortex multiplied by the sign of F , which follows the simulated trend of 〈`〉 very
closely, where we observe two vortices in the system in almost every realisation in the
region of roughly |F | =1 GHz to 4 GHz. As the magnitude of F increases beyond
4 GHz, 〈`〉 converges to 0, as each realisation randomly presents with a vortex of
` = ±1, and thus averages out over multiple realisations.

To summarise, single charged vortices can be induced into the polariton condensate
system through optically stirring the condensate using a fast rotating (GHz rotation
frequency) axially asymmetric quasi-elliptical optical pump profile for a small window
of pump rotation frequencies. The winding number of each induced vortex is
deterministically given by the rotation direction of the pump profile. When a larger
pump profile is used (a stretched quasi-ellipse) two single-charged vortices are instead
introduced into the polariton fluid. These results are observed experimentally and are
corroborated by 2DGPE simulations.

6.5 Conclusions

We realise quantised vortices of polariton condensates induced by optical stirring using
a rotating trap with broken axial symmetry. We map out regions where we observe a
single-charged vortex that deterministically either co-rotates or counter-rotates with
the rotating pump profile, where the region of trap rotation frequencies that lead to a
deterministically rotating vortex coincide in simulation and experiment. To analyse
the quantised vortices from the condensates in simulation, we project the condensate
wavefunction onto angular harmonics and extract the number of polaritons with each
value of OAM. We compare the extracted OAM to the phase profile about each vortex
core, using the difference in phase at 100 points along the profile compared to the
perfect vortex as a characterisation parameter. This characterisation allows us to
potentially extract the distribution of the vortex and antivortex states from the
experimentally obtained phase profiles, as ` is not directly measurable in the physical
system.
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Our findings demonstrate an unconventional GHz stirring method for the generation of
stable quantised vortex states with a deterministic rotation direction. This is possible
in the strong light-matter coupling regime due to the interactive nature of the
quantum well excitons and ultrafast response time of polaritons to the excitation beam
(on the order of picoseconds). Our results show that a time-periodic optical pump can
fundamentality affect the condensate dynamics. Notably, we have shown that the
condensate phase and energy spectrum strongly depend on the rotation frequency of
the pump. We describe these phenomena using a discretised dissipative GPE model
that considers only the ` = ±1 angular condensate modes, which offers new
perspectives on periodically driven polariton systems for Floquet engineering [244] in
the strong light-matter coupling regime and spatio-temporal control of liquid light.
With rapid experimental advancements allowing us to create extended coherent
lattices of condensate [94, 78, 181], our technique could be used to engineer arrays of
coupled vortices to study the complex interplay of polarisation, OAM, as well as
explore the multiple phase degrees of freedom in the system in order to develop a
programmable four-dimensional analogue simulator based on quantum fluids.
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Chapter 7

Frustrated Geometries in Excited
State Polariton Chains

7.1 Introduction

Polariton condensate systems have been extensively studied for their ability to
minimise the XY Hamiltonian [54, 124, 106, 178, 2] with applications in solving
graph-based mathematical problems [57, 4]. Although minimising the XY Hamiltonian
is in general an NP-hard problem, there are still limitations in the complexity of a
problem that can be mapped to this two-dimensional spin Hamiltonian characterised
by a single complex number. All the aforementioned studies have considered the
ground state condensate which is azimuthally homogeneous in density and phase and
radially emits polaritons equally in all directions, resulting in a coupling strength
between neighbours that depends solely on separation distance. However by exciting a
system of first excited state condensates, additional degrees of freedom come into play
such that two coupled excited state condensates can be characterised by four complex
numbers. These excited state condensates emit particles anisotropically and as a
results, the coupling strength is dependent on the geometric angle between the two
trapped condensates.

Beyond the work in [2], a pair of annular traps with a larger diameter have been
theoretically studied by Cherotchenko et al. in [235], which confine the first excited
condensate mode in each trap. As the separation distance between the condensates is
scanned, it is observed that the condensates pin to dipole modes either in parallel or
perpendicular (head-to-tail) directions, with both in-phase and anti-phase alignment.
In this chapter, the pair of first excited state condensates are extended to a continuous
chain where the condensates are pinned to the dipole mode, and we observe geometric
frustration in the case of an odd number of condensates, akin to that observed in [242].
This frustration is described by the system’s Bloch mode with non-zero
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quasimomentum, which results in an overall flow of a polariton current around the
chain. Additionally, we investigate the effect on the pair of first excited state
condensates which are pinned to the dipole modes by squeezing the annular trapping
potential to an ellipse, where in both experiment and simulation we observe an energy
splitting when the two dipoles are forced into a perpendicular alignment geometry.

As the first excited state condensate has additional degrees of freedom compared to
the ground state condensate, the energy minimisation of the system goes beyond the
XY Hamiltonian’s two degrees of freedom, as two coupled excited state condensates
are characterised by three relative phase terms, compared to the single term in the XY
model. These additional degrees of freedom are defined in this chapter and are
analysed for a continuous chain of FM and AFM coupled first excited state
condensates. This continuous chain geometry is also studied using a Stuart-Landau
network of dissipative coupled oscillators, where we report the first recorded
observations of a frustrated mode with an even number of ferromagnetically coupled
oscillators. This surprising observation is likened the “twisted state” of the Kuramoto
model [202]. Designing an analogue simulator with these additional degrees of freedom
will allow us to solve complex problems beyond those that are currently solvable using
the XY Hamiltonian and the full characterisation of this complex spin system will put
the excited state polariton simulator at the forefront of all optical heuristic solvers.

In this chapter, both the simulations and experiment were performed by me, although
the optical setup was built by Lucy Pickup and I received assistance with optical
alignment and image acquisition from Lucy Pickup, Julian Töpfer, Tamsin Cookson
and Giannis Chatzopoulos. Additionally, I had regular discussions with the Hybrid
Photonics Group as a whole about the simulation results, and particularly with Helgi
Sigurdsson on the implementation of the GPE.

7.2 Relative Phases Between Two Condensates

The degrees of freedom that describe the first excited state condensate (whether in a
dipole or vortex mode) are captured as the superposition of the ψ10 = xe−x2

2 and
ψ01 = ye− y2

2 Hermite-Gaussian modes. These are scaled by some complex number
cx, cy, which rotates the real-valued Hermite-Gaussian mode about the complex plane
and scales it in amplitude. ψ10 and ψ01 are often referred to as “p-orbitals”, where any
first-excited state condensate can be described as ψ = [Px,Py] from the horizontal and
vertical p-orbital profiles through the condensate centre respectively, defined as:
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(a) (b)

(c) (d)

(e) (f)

Px1 Px2

Py1 Py2
x x

y y

Figure 7.1: Schematic to show the relative phase characterisation between two first-
excited state polariton condensates by analysing the x and y components of the doublet
mode as complex numbers cx and cy respectively. These parameters describe the ro-
tation of the p-orbital mode about the complex plane. Here, (a) shows the doublet
intensity with a purely real px-orbital corresponding to cx1 = 1 + 0i and no amplitude
in the py direction leading to φ1 = 0 rad. (b) shows a dipole mode intensity with

φ2 = arctan(|cy2 |/|cx2 |) = π/4 rotation and phases arg(cx2) = arg(cy2) = π/8.

Px = cxψ10 = |cx|eiθxψ10 (7.1)

Py = cyψ01 = |cy|eiθyψ01 (7.2)

where cx, cy ∈ C and θx(y) = arg(cx(y)). As such, any first excited state condensate can
be described simply by two complex numbers: cx and cy. For example, the real (solid)
and imaginary (dashed) components of Px and Py of the dipole in Figure 7.1(a) are
plot in Figure 7.1(c,e) respectively and show that cx = 1 + 0i (i.e. Px = ψ10) and
cy = 0 as the dipole is aligned along the x-axis. However, the second condensate
(Figure 7.1(b)) is geometrically rotated with an angle φ2 = arctan(|cy2 |/|cx2 |) = π/4
relative to the x-axis. Px2 and Py2 in Figure 7.1(d,f) thus show equal intensity in the x
and y directions with cx = cy =

√
2

2 e
iπ/8.

To describe a system of interacting traps, we can compare each pair of coupled excited
state condensates and project them onto the px and py orbital states giving a bi-spinor
written as

ψ = [Px1 ,Py1 ,Px2 ,Py2 ] (7.3)
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where “1” and “2” denote the different condensates and the information of each state is
encoded by four complex coefficients: cx1 , cy1 , cx2 and cy2 , or equivalently, eight real
numbers governing the amplitude and phase of the complex coefficients. When
comparing two condensates, the relative coefficients are fully described by:

∆θx = θx2 − θx1 (7.4)

∆θy = θy2 − θy1 (7.5)

φ1 = arctan
( |cy1 |

|cx1 |

)
(7.6)

φ2 = arctan
( |cy2 |

|cx2 |

)
(7.7)

c1 =
√
c2
x1 + c2

y1 (7.8)

c2 =
√
c2
x2 + c2

y2 . (7.9)

Without loss of generality, we can scale the system such that the intensity of all
condensates are equal in order to tackle the minimisation of a spin Hamiltonian [57]
and apply a global phase offset, such that a single θ is set to zero (e.g. θx1 = 0). Under
these assumptions, the dipole alignment between a pair of condensates can be fully
described by Eqs. (7.4,7.5) and ∆φ = φ2 − φ1.

7.3 Condensate Pinning

For a single annular trap, uncoupled to any other condensates, the first excited state
will be occupied equally by two orthogonal dipole modes, thus resulting in a vortex
with uniform intensity in a ring shape about a dark vortex core. This core houses a
phase singularity with a phase winding of 2π which randomly and stochastically
appears in a clockwise or anticlockwise direction (see Figure 6.2(a-c) for an example
perfect vortex). However, when a second identical annular trap is introduced to the
system, the density of both condensates orientate into two dipole modes consisting of
the equal super position of the vortex and anti-vortex modes. In general, the
neighbouring dipoles will align head-to-tail along the shortest path between the trap
centres with either same or opposite phase alignment, resulting in destructive and
constructive interference between the two dipoles respectively, analogous to σ-bonding
of molecules in chemistry [235], provided that the system is pumped at or just above
the power threshold. As with the ground state condensate pair in [2], for trap
separation along the x(y) axis, the FM and AFM coupling can be accessed through
scanning the separation distance between the annular traps. Here, FM corresponds
∆θx(y) = 0 which now results in destructive interference between neighbours, and AFM
coupling leads to alternating nearest neighbours being horizontally (vertically) flipped,
such that ∆θx(y) = π which results in constructive interference between neighbours.
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Interestingly, at the midpoint separation distance between the purely FM and AFM
dipole mode coupling, the two condensates can align in parallel with the same or
flipped phase alignment, corresponding to in-phase and anti-phase molecular
π-bonding [235].

The distance scan between two first excited state condensates confined within identical
optical annular traps is performed theoretically using the generalised 2D GPE (see
subsection 7.6.1). The separation distance between the two traps, which we label d, is
considered between 10 µm and 28 µm in steps of 0.2 µm and averaged over 16 unique
realisations. The real-space density and phase of two condensates with d = 12 µm is
depicted in Figure 7.7(a,c). Here, the excited state condensates have pinned to the FM
head-to-tail (σ-bond) configuration, resulting in a dark central interference fringe in
real-space and a π phase jump at the centre of phase space. For each step of d, the
horizontal cross section is taken through the centre of real-space along the line that
connects the two trap centres. These cross sectional line profiles are averaged over 16
realisations and are stacked over all trap separation distances (shown in Figure 7.7(b)).

Here, it appears that the regions of d corresponding to FM condensate coupling
(destructive interference) are twice as large as the regions of d corresponding to AFM
coupling (constructive interference). In this scan, we do not see the π-bond condensate
alignment, however from the power dependence of the system for each trap separation
distance (shown in Figure 7.7(d)), it is interesting that the pump power for threshold
condensation jumps in discrete steps as the system transitions from AFM and FM
coupling (with increasing d). Note that the condensation threshold is defined as the
pump power required for 1 polariton to exist in the condensate. For the ground state
condensate studied in chapter 3, the transition between the AFM and FM regions (and
vice versa) appeared blurred in real space, as both modes were partially occupied and
although only one interference pattern was predominantly observed in real-space, over
many realisations the dominant visible mode stochastically switched and averaged out
forming a blurred region. In the case of the excited state condensate, as there is a
jump in threshold power from the AFM to FM coupling, there exists a sharp clearly
defined step between the two coupling regimes. However, the transition between the
FM to AFM coupling regime share a similar threshold power, but as the FM coupling
regime appears for a smaller separation distance with the same condensation power
threshold, this mode has a slightly increased overlap with the gain and thus is the
dominant visible mode in the transition from FM to AFM coupling.
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7.4 Loop of Condensates

7.4.1 Small Polygon

Beyond two condensates, we expand the system to a loop of N > 2 traps in order to
understand if the condensates still align in the head-to-tail configuration as we saw for
N = 2. The loop is formed by arranging the traps in a regular polygon with a nearest
neighbour separation of d. Interestingly, for a small number of traps, such as N = 5 in
Figure 7.3, the condensates do not align in the head-to-tail configuration about the
polygons perimeter, but in alternative configurations instead. At d = 18 µm for
example, the condensates align in parallel, such that all condensates have the same
phase and density profiles with cy1 = cy2 = cyi . By increasing the nearest neighbour
separation to 20 µm, we do however see radial alignment of the condensates, which is
not observed for N > 5 in these simulations. Here, the inner ring of dipole lobes
interfere with some complex constructive interference pattern, while the outer lobes

x-cross section(a) (b)

(c) (d)

Figure 7.2: Simulations of two coupled optically trapped first-excited state conden-
sates showing (a) real-space and (c) phase-space PL at a trap separation of d = 12 µm,
(b) real-space x-cross section through the centre of the traps as a function of trap sepa-
ration (averaged over 16 unique realisations), (d) the power dependence of the two trap
system where each colour denotes a range in trap separation distances matching up to
the coupling transitions in (b). (a,b) normalised to the same colour scale, with each
cross-section in (b) normalised independently and (c) with sale colour scale ranging
from -π to π radians. The overlayed red rings in (a,c) represent the pump profile. The

white line in (a) corresponds to 10 µm.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.3: PL from N = 5 excited state condensates arranged in a regular pentagon
with a first-nearest-neighbour distance of (a,e) 18 µm, (b,f) 20 µm, (c,g) 24 µm and
(d,h) 27 µm, shown inn (a-d) real-space and (e-h) phase-space. The overlayed red
rings represent the pumping profiles. The same colour scale is used throughout and is
independently normalised in (a-d), and scaled between −π and π in (e-h). The white

line in (a) corresponds to 10 µm.

appear to not significantly interact as their relative separation is significantly greater
than their inner radial counterparts in the limit of N ≤ 5.

It is not surprising that we do not observe azimuthal alignment for N = 5 in this range
of d, as for such a (relatively) small polygon, ∆φ between nearest neighbours would be
0.4π, which is not close to either value of ∆φ for the σ-bond or π-bond arrangement
seen for just two condensates. Additionally, the coupling to condensates beyond first
nearest neighbour is non-negligible for so few traps and affects the alignment of the
condensates. This is indicated by the complex interference patterns at the centre of the
polygons. For this small polygon, we also see the alignment of alternating-charge
vortices with one dipole in Figure 7.3(c,g) and a combination of σ-bonding and
π-bonding between nearest neighbours in Figure 7.3(d,h) as well as radial alignment.
Clearly, such a polygon is not ideal for investigating the alignment between first
nearest neighbours as the condensates are strongly dependent on the geometric angle
between neighbouring traps.

7.4.2 Continuous Chain

In addition to the cross talk beyond first nearest neighbours in a geometric polygon of
traps, it is also more complicated to extract the Px and Py profiles from condensates
that are not arranged axially. In order to study the alignment of a loop of excited state
condensates, the traps are instead aligned in a horizontally-separated chain
configuration with continuous boundary conditions applied in the x-axis (i.e. the



128 Chapter 7. Frustrated Geometries in Excited State Polariton Chains

(a)

(b)

Figure 7.4: (a) Real-space PL intensity and (b) real-space PL phase of 13 condensates
each trapped by an optical annulus (red rings), with a nearest neighbour separation of
d = 14 µm (AFM coupling) and continuous horizontal boundary conditions. Numeri-
cally modelled using the 2DGPE. White scale bar in (a) represents 10 µm. Both follow
the same colour scale but (a) is normalised between 0 and 1, and (b) between −π rad

and π rad.

decaying boundary conditions in the x-direction are removed), thus forming a
continuous chain or “unraveled polygon”. Trivially, FM first nearest neighbour
coupling results in head-to-tail alignment with ∆θx = ∆θy = 0 across the chain.
Additionally, when a chain is considered with an even number of AFM coupled traps,
the condensates align head-to-tail with ∆θx = π between nearest neighbours. The
interesting case that we consider is for AFM nearest neighbour coupling between an
odd number of traps in a continuous chain. For this, we consider N = 13 with
d = 14 µm (AFM coupling) as shown in Figure 7.4. We then extract the relative phase
and amplitude parameters (as defined in Eqs. (7.4-7.9)) between each pair of nearest
neighbours by projecting the condensates onto the p-orbitals with
ψ = [Px1 ,Py1 , . . . ,Px13 ,Py13 ]. Figure 7.5(a) schematically shows the extraction of
θx13 = arg(cx13) from the condensate order parameter and Figure 7.5(b) shows θx(y) for
each condensate, where the negligible opacity of θy indicates σ-bonding across the
chain, in addition to φ ' 0 for all condensates in Figure 7.5(c).

Interestingly, we now see that ∆θx = ±π+ δ with ± alternating for each adjacent pair
of condensates, where δ = ±π/N , and results in a phase winding of 12π about the
continuous loop. This additional phase rotation of δ allows an odd number of AFM
coupled condensates to arrange into a continuous chain and has previously been
experimentally observed in ballistically expanding Gaussian condensates arranged in
an AFM polygon, where the phase winding manifests as a vortex at the centre of the
system [242]. Compared to the even-N FM chain, which exhibits δ = 0, the non-zero
phase shift of δ in the odd-N chain shows that there is a flow of polaritons, or
“polariton current”.

This polariton current around the chain can be interpreted by applying Bloch’s
theorem through describing the condensates in terms of Bloch modes with a
quasimomentum of q = 2π`/L for ` ∈ Z (the phase winding number) with |`| ≤ N/2
and L = Nd (length of the continuous chain) [242]. In terms of the reduced Brillouin
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zone, the ` = 0 mode is occupied at qd = 0 when the condensates are FM coupled with
∆θx = 0 between all condensate pairs. For an even number of AFM coupled
condensates, in general the ` = N/2 mode is occupied at qd = π and results in
∆θx = π. However, when N is odd, there is no Bloch mode at the edge of the Brillouin
zone (qd = π) and so the polaritons condense into the states closest to the edge in
order to maximise the gain with ` = ±(N − 1)/2 giving ∆θx = ±(N − 1)π/N between
adjacent pairs, where ± indicates a polariton current in the ±x direction respectively.

(a) (b)

(c)

(d)

(e)

13

Opacity

(f)

Figure 7.5: (a) Real-space PL intensity of the 13th condensate in an N = 13 chain of
first-excited state condensates separated by d = 14 µm (AFM coupling) with continuous
boundary conditions (i.e. forming a loop) on a normalised linear colour scale, with the x-
line profile plot in red, where the solid and dashed lines represent the real and imaginary
component of the Px-orbital respectively and the corresponding cx values shown in
the bottom left corner. (b) the extracted θx(y)(Px(y)) = arg(cx(y)) and φ(Pxy) =

arctan(|cy|/|cx|) for each condensate in the chain, once the system has converged to
a stable solution. The opacity of θ(Px(y)) is proportional to |cx(y)| respectively. (d-
e) Show the cosine of the relative phases ∆θx and ∆θy between nearest neighbour
condensates, where the opacity is proportional to the amplitude of the corresponding
inter-condensate coupling strength. (f) shows the Fourier-space PL intensity of the
chain with a dominant negative kx corresponding to the current momentum in the −x
direction around the chain, as indicated by the red overlayed line profile. The white

lines in (a,e) corresponds to 2 µm and 1 µm−1 respectively.
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In the instance of Figure 7.5, ` = −6 and ∆θx = −12π/13 ' −2.90 rad. We
additionally show the cosine of the relative phases between nearest neighbours in
Figure 7.5(d,e), which indicates that cos(∆θx) and cos(∆θy) are minimised to
cos(−12π/13) ' −0.97, where this parameter will converge towards -1 with the
increase in N . Between all nearest neighbours, cos(∆φ) ≈ 1 due to the σ-bonding of
the condensates and corresponds to the weighting of the cx component in the system
compared to sin(∆φ) for cy.

As ∆θx between each nearest neighbour pair is constant, the polariton current is also
constant about the chain. In Figure 7.5(f), the brightest peak of Fourier-space shows
that the dominant polariton momentum is in the −x directions with a peak at
kx = −0.68 ± 0.06 µm−1. Using the Bloch analysis, the quasimomentum of the flowing
polaritons is q = 2π`/L = −0.414 meV ps µm−1, which corresponds to a wavenumber
of k = q/h̄ = −0.63 µm−1, thus showing that the dominant k-peak in Figure 7.5(f)

13

(c)

Opacity

(a) (b)

(d) (e) (f)

Figure 7.6: (a) Real-space PL intensity of the 13th condensate in an N = 13 chain of
first-excited state condensates separated by d = 17 µm (FM coupling) with continuous
boundary conditions (i.e. forming a loop) on a normalised linear colour scale, with the x-
line profile plot in red, where the solid and dashed lines represent the real and imaginary
component of the Px-orbital respectively and the corresponding cx values shown in
the bottom left corner. (b) the extracted θx(y)(Px(y)) = arg(cx(y)) and φ(Pxy) =

arctan(|cy|/|cx|) for each condensate in the chain, once the system has converged to
a stable solution. The opacity of θ(Px(y)) is proportional to |cx(y)| respectively. (d-f)
Show the cosine of the relative phases ∆θx, ∆θy and ∆φ between nearest neighbour
condensates, where the opacity is proportional to the amplitude of the corresponding

inter-condensate coupling strength. The white line in (a) corresponds to 2 µm.
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corresponds to the ` = −6 quasimomentum and indicates a group current velocity of
υg = h̄k/mp = −1.51 ± 0.26 µm ps−1. Although |`| = (N − 1)/2 has the highest gain
with odd-N and alternating condensate alignment, it is possible for the condensates to
condense with other non-zero quasimomenta available in the system, as shown in [242]
for a polygon of N = 5 AFM coupled ballistically expanding polariton condensates.
Interestingly, when we adjust the nearest neighbour separation to d = 17 µm (FM
coupling), although in most instances ∆θx = 0 between neighbours, in some cases we
observe a current with |`| = 1, as shown in Figure 7.6(b). Again, cx,y are extracted
from fitting the horizontal and vertical cross sections of each condensate to Px,y

orbitals respectively (Figure 7.6(a)). Here, the phase winds 2π around the continuous
chain such that ∆θx = 2π/13 = 0.48 rad between each neighbour, leading to
cos(∆θx) = 0.89 as shown in Figure 7.6(d). Again, the condensates exhibit σ-bonding
along the chain, such that |cy| is negligible and φ ' 0 for all condensates.

7.4.3 Twisted State

It is not just the cases of odd-N that exhibit |`| 6= 0 , but also for even-N . For
example, networks of identical Kuramoto oscillators have been studied with unit FM
coupling to µ(N − 1) nearest neighbours, where µ > 0.75 guarantees that all oscillators
will converge to a synchronised in-phase configuration with ` = 0 [202]. Below this
threshold however, the loop of oscillators can exhibit a constant relative phase
difference between nearest neighbours of ` = 2π/N , where ` again is the phase winding
number about the continuous loop [202]. These solutions are known as “twisted states”
and correspond exactly with what we observe in the continuous chain of excited state
condensates in Figure 7.5 and Figure 7.6.

In order to understand the distribution of phase windings for condensates arranged in
a chain, we study the system of sparsely connected Stuart-Landau oscillators (see
subsection 7.6.2) to characterise the probability of each winding number occurring in a
large chain of FM coupled oscillators. Here, we consider N = 20, 40, 60, 80, 100 with
unit FM coupling between one to four nearest neighbours and plot the distribution of
each winding number ` observed over 1000 unique realisations in Figure 7.7(a-d). For
larger N , the spread in ` is greater, but reduces quickly as the number of nearest
neighbour connections increases. When N = 20 for example, we observe |`| = 0, 1, 2 for
first nearest neighbour connectivity, but this region decreases to |`| = 0, 1 when second
nearest neighbour coupling is included to the system, as depicted in Figure 7.7(e-i)
where the oscillators (circles) have unit FM coupling following the black graph edges
and their steady-state phases are shown by their colour. In this analysis, |`| = 2
occurred in 0.1% of the cases for N = 20 with first nearest neighbour connectivity, so
it is very unlikely to observe a phase winding greater than 2π in a smaller chain, which
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is why only |`| = 0, 1 is observed for the N = 13 AFM excited state condensate chain
in the GPE simulations.

To our knowledge, these are the first results investigating the twisted state of
Stuart-Landau oscillators and comparing them to the sparse Kuramoto networks
explored in [202]. As the phase winding about a twisted state corresponds to a phase
singularity at the centre of the looped chain, large networks of sparsely connected

N = 20
|  | = 0 |  | = 1 |  | = 2

|  | = 0 |  | = 1

(a) (b)

(c) (d)

(e) (f) (g)

(h) (i)

N = 20

Figure 7.7: Distribution in winding number ` of a continuous chain of Stuart-Landau
oscillators with (a-d) 1-4 nearest neighbour equal FM couplings respectively for N = 20,
40, 60, 80 and 100 shown in red, orange, yellow, green and blue bars respectively, over
1000 unique realisations for each N and number of nearest neighbours. For N = 20,
an example of each stable phase solution is shown in graph format with (e-g) 1 nearest
neighbour and (h,i) 2 nearest neighbour connections, showing all observed values of |`|

over 1000 realisations.
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condensates could be used to investigate high-charge vortices in polariton condensate
systems.

7.5 Coupled Ellipses

As shown in [235], a pair of optically trapped excited state condensates can align with
σ (head-to-tail) or π (parallel dipole) bonding when confined in an annular trapped
over varying separation distances. However, by giving the trap some ellipticity, we can
force an excited state condensates into the dipole mode with the excited state along
the traps major axis. For two dipole modes, we will no longer observe pinning into σ
and π bonds, but rather the dipoles will take on any geometric angle ∆φ dictated by
the relative angle between the trap major axes.

We create two elliptical traps spatially separated by distance d that confine dipole
modes in both simulation and experiment and consider ∆φ = 0 and ∆φ = π rad. The
simulation technique is identical to that used in section 7.3, but now the annular
pumping profile in squeezed in one axis to form an ellipse with a 9.3 µm major axis
and 7.3 µm minor axis and again the simulations are performed using the generalised
2D GPE (see subsection 7.6.1). In experiment, the elliptical pump profiles are formed
using an SLM displaying a phase-modulating hologram calculated using the MRAF
algorithm (see subsubsection 2.2.2.1), where the relative amplitude of the two ellipses
in the target image are adjusted to give a similar PL intensity from each independent
condensate when blocked in-turn with a knife edge. The experimental setup and
technique is identical to section 3.2, other than a slight change in pump profile to form
two elliptical traps, but is summarised again in section 7.7.

First we consider the elliptical traps separated along the x-axis, with their major axes
aligned head-to-tail, through vary the separation between the trap centres d, where the
experimental PL for d = 30 µm is shown in Figure 7.8(a). In both simulation and
experiment, the system maintains a single first-excited state energy mode as d is
scanned from 25µm to 60 µm (Figure 7.8(b)), where fluctuations in the experimental
energy are a result of the fluctuations in total pump power from adjusting the relative
pump intensities for each separation distance. With ∆φ = 0, this is fundamentally the
same as scanning d with the two annular traps as in section 7.3. However, when the
right trap is rotated by π rad such that ∆φ = π between the two condensed dipole
modes as shown in Figure 7.8(c) with d = 30 µm, the system energy splits by
0.09 meV in experiment (averaged over the range in d) and 0.05 meV in simulation
(averaged over 40 realisations for each value of d), as shown in Figure 7.8(d), where the
deviation between these two values is likely down to the slight difference in pumping
geometries and pumping powers. Additionally, when the right trap is rotated by π rad,
an additional interference fringe appears, where in Figure 7.8(a,c) the interference
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between the condensates flips from destructive to constructive as a result of the
increased distance between the closest condensate lobes.

As the dominant polariton flow from a dipole mode is along its major axis (as we saw
previously from the dipole in Figure 6.3(f)), when the condensates are aligned head to
tail, there is an equal flow of polaritons propagating from the left to right condensate
and vice versa. However, when the right condensate is rotated, there is a strong flow of
polaritons from the left to right condensates, as the dominant flow of the polaritons
from the rotated condensate is in the vertical directions. This means the right
condensate has a slightly higher gain than the left condensate and an energy splitting
occurs as a result.

(a) (b)

(c) (d)

Figure 7.8: Experimental real-space condensate PL for two elliptical traps with a
11.2 µm major axis and 8.3 µm minor axis aligned (a) head-to-tail and (c) one trap
rotated by π rad for a trap separation of d = 30 µm along the x-axis, both shown
on a normalised logarithmic colour scale between 0.001 and 1. White line represents
10 µm and red ellipses indicate the shape of the optical traps. The experimental energy,
relative to 1.4463 eV (∼0.8 meV above bottom of LP branch [3]), integrated over all kx
for varying trap separation and a relative trap rotation of (b) 0 rad and (d) π rad. Here
the colour scale is linear and normalised between 0 and 1. The energy peaks from the
equivalent numerical simulations of the GPE are shown by dashed red lines (averaged

over 40 unique realisations), with energy realative to bottom of the LP branch.
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7.6 Polariton Theory

7.6.1 2D GPE

The condensates are modelled using a mean-field theory approach to describe the
condensate order parameter Ψ(r, t) using the generalised 2D GPE coupled to two rate
equations corresponding to the active and inactive exciton reservoirs (see section 2.1
for the derivation and details):

i
∂ψ

∂t
=

[
− h̄∇2

2mp
+G(nA + nI) + α|ψ|2 + i

2 (RnA − γ)

]
ψ(r, t), (7.10)

∂nA
∂t

= −(ΓA +R|ψ|2)nA +WnI , (7.11)
∂nI
∂t

= −(ΓI +W )nI + P (r). (7.12)

Here, mp is the effective polariton mass at the bottom of the LP branch, G is the
polariton-reservoir interaction strength, α is the nonlinear polariton-polariton
interaction strength, R is the rate of stimulated scattering of polaritons from the active
reservoir into the condensates, γ is the polariton decay rate, nA,I give the density of
excitons in the active and inactive exciton reservoirs with decay rates of ΓA,I

respectively, W is the conversion rate of excitons from the inactive to active reservoirs
and P (r) is the pump profile of the optical cavity excitation. In section 7.3 and
section 7.4, the annular trap has a diameter of 9.3 µm and FWHM of 2.3 µm to match
the diffraction limit in experiment. In section 7.5, the elliptical pump profiles have a
9.3 µm major axis and 7.3 µm minor axis, again with a 2.3 µm FWHM. All
condensates are pumped equally in each simulation with a pumping power that excited
the system to just above condensation threshold. A decaying potential is applied to
the outer 10% of the system perimeter to block the continuous boundary conditions of
the fast Fourier transform functions used in the numerics. However, to achieve the
continuous chain (or loop), the decaying boundary conditions are removed in the
x-direction.

The parameters in the GPE are chosen to match the properties of the InGaAs
microcavity sample used in experiment, such that mp = 0.28 meV ps2, γ = 1

5.5 ps−1,
h̄α = 3.5 µeV µm2 and G = 10α. The recombination rate of optically inactive excitons
is taken to be much smaller than the condensate decay rate with ΓI = 0.01γ, whereas
the active reservoir exciton decay rate is comparable to the condensate decay rate
(ΓA = γ) due to the fast thermalisation to the exciton background [53]. Lastly, exciton
feeding rates are found by fitting to experimental results, where we use
h̄R = 98.9 µeV µm2 and W = 0.035 ps−1.
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7.6.2 Stuart-Landau Model

We apply the Stuart-Landau model to the sparsely connected networks of dissipatively
coupled oscillators following:

ψ̇n = −[iωn + |ψn|2]ψn +
N∑
m=1

Jnmψm (7.13)

where ψn ∈ C gives the dynamics of oscillator n as a complex parameter with
amplitude |ψn| and phase arg(ψn). The Stuart-Landau model can be used to describe
the dynamics of ground state polariton condensates [2], but can also more general
describe any system of dissipative coupled nonlinear oscillator networks, where ωn is
the oscillators natural frequency and Jnm is the coupling strength between oscillators n
and m. The simulations in subsection 7.4.3 consider uniform unit FM coupling with
Jnm = 1 and identical Stuart-Landau oscillators, such that ωn = ωm. As such, a
rotating gauge with a frequency of ωn is chosen in order to set ωn = 0 without loss of
generality.

7.7 Experimental Methods

The optically trapped dipole mode condensates are experimentally realised using a
strain-compensated 2λ GaAs planar microcavity sandwiching an InGaAs QW core, as
described in [3]. The sample is held in a cold finger cryostat and cooled to a cryogenic
temperature using liquid helium. The sample is pumped nonresonantly with
right-circularly-polarised light from a CW Ti:sapphire laser with a wavelength of
780 nm to match up with the first minimum in the reflectivity spectrum of the sample
energetically above the reflectivity stopband. The laser is focussed on the surface of
the sample using a high NA microscope objective at a point with a cavity detuning of
∼ −5 meV. The excitation beam is periodically chopped using an AOM with a 5%
duty cycle and 10 KHz repetition rate in order to avoid burning the sample. The PL
emission from the sample is collected though the same objective that focusses the
beam onto the sample and an 808 nm long-pass filter cuts out the excitation beam.
The condensate PL is imaged in real-space and Fourier-space, and is also spectrally
resolved with an 1800 grooves/mm grating in a 750 mm spectrometer centred at
857 nm in order to image the condensate dispersion for Figure 7.8(b,d). The optical
setup is unchanged from Figure 3.1.
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7.8 Next Steps

This project is not fully complete and there are still areas to expand upon and explore.
My next steps are to further explore the alignment between multiple excited state
condensates, and through following similar logic, reason and algebra to other works
that realise spin Hamiltonians using optical annealing
platforms [44, 54, 146, 245, 246, 247], I will realise the higher-order spin Hamiltonian
that is minimised by excited state condensate networks. This will then be tested using
the 2DGPE and a discretised version of the GPE describing each oscillator by its
clockwise and anticlockwise rotating components as single point complex numbers,
such as in Equation 6.17. From this point, I will characterise the system’s ability to
calculate the Hamiltonian’s ground state and test its performance in real-world
applications.

7.9 Conclusions

Through analysing coupled excited states of polariton condensates, we realise a
potential test-bed for a 4D polariton simulator by describing the x and y condensate
components as p-orbitals. Building off the work of Cherotchenko et al. in [235], not
only do we observe σ-bonding between a pair of condensates, but also when we expand
the system to a continuous chain (or loop) of many first excited state condensates with
both FM and AFM nearest neighbour couplings. For an odd number of condensates
that are AFM coupled to their nearest neighbours (i.e. show a flipped alignment in the
case of just N = 2 traps), we observe a polariton current running along the looped
chain, leading to a phase winding about the full loop of condensates. We describe this
polariton flow similarly to the work of Cookson et al. in [242], by using Bloch theory
where the circulating polaritons have a quasimomentum related to the phase winding.

Interestingly, we also observe a polariton current and phase winding around a
continuous chain of FM coupled excited state condensates. In the majority of
realisations, the relative px and py orbital phases are zero, but a small fraction of cases
exhibit this frustrated geometry. We liken this result to the “twisted state” observed in
the Kuramoto model and realise many different phase winding numbers in FM
Stuart-Landau networks coupled only to the first few nearest neighbours.

Finally, we go back to the pair of coupled condensates, but pin the alignment of the
two dipoles through introducing ellipticity to the optical traps. As a result, we observe
both in simulation and in experiment a splitting in spectral energy as one trap is
rotated by 90◦ from the σ-bonding configuration, which we relate to the unbalanced
flow of polaritons axially between the condensate centres.
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All in all, the findings of this chapter map out a potential platform for investigating a
4D polariton simulator using coupled excited state polariton condensates, showing that
the geometry of excited-state condensates plays a significant role in the system’s
energy. Additionally, the twisted states of condensates have a potential use in studying
high-winding number vortex states.
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Chapter 8

Conclusions and Final Remarks

8.1 Conclusions

Exciton-polaritons show to be an ideal platform for analogue computing, where going
beyond the binary limitations of the Ising machine, the liquid light simulator possesses
a continuous phase degree of freedom in two dimensions, where to relative phase
between coupled condensates orientate to maximise the crossover of the condensate
with the optical gain (i.e. maximising the particle number), in turn minimising the XY
Hamiltonian. The work in this thesis explores networks of synchronised ground state
polariton condensates as a platform for the 2D liquid light analogue simulator in
numerical simulation of the 2DGPE and in experiment, but also through describing
the system as dissipative coupled Stuart-Landau oscillators. It is clearly shown how
the optical pump profile plays a vital role in the condensate alignment and spectral
energy of the system, where going beyond the stationary trap, quantum vortices with
deterministic angular momentum are shown to appear in specific regions of pump
rotation.

In chapter 3, it is shown how optically trapping same-energy condensates with
identical pump potentials allows the system to operate in a synchronised regime,
irrespective of the relative coupling strength between neighbouring traps. Here, regions
of purely dissipative coupling are mapped out as a function of separation distance
between two optically trapped condensates, and through describing the system as a
network of dissipative Stuart-Landau oscillators, the system proves to be a robust
analogue simulator for the randomly-coupled all-to-all connected XY Hamiltonian [2].
In chapter 7, the optical pump is expanded to trap the first excited state polariton
condensates, where networks of which again occupy a single energy state and
condensates align with first nearest neighbours along a chain in a head-to-tail
configurations. As ellipticity is applied to the traps however, the condensate alignment
is artificially controlled and an energy splitting occurs in response to the unbalanced
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flow of polaritons. The additional degrees of freedom of the excited state condensates
compared to the ground state studied in chapter 3 map out a new potential analogue
simulator characterised by a 4D spin parameter. In a continuous loop of these excited
state condensates, nontrivial polariton currents are observed and characterised as
quasimomentum following Bloch theory, and are investigated in terms of twisted-states
using Stuart-Landau networks.

In chapter 4, the synchronised network of nonlinear oscillators (which includes
polariton condensates) is used to solve the NP-hard max-3-cut mathematical graph
problem both in the numerical simulation of hundreds of coupled Stuart-Landau
oscillators and in experiment for the AFM house graph of polariton condensates,
through using a technique from semi-definite programming with specific real-world
examples of image segmentation and circuit design. This work further explores how
the coupled dissipative oscillator system can also solve the max-2-cut problem, which
has previously been tackled using Ising machines, as well as approximating higher
order cuts such as the max-4-problem. Experimentally realising an all-to-all connected
polariton graph is a near-impossible task beyond a handful of condensates, which exist
in a 2D planar cavity. To overcome this hurdle, chapter 5 explores the minor
embedding technique from quantum annealing to map any all-to-all connected
undirected graph of dissipative coupled oscillators to a standardised low-connectivity
“triad” graph. The successful implementation of this technique in theory opens up a
potential physical test-bed for an arbitrary XY Hamiltonian solver using continuous
phase oscillators, such as polariton condensates, photon condensates and coupled laser
arrays. These findings offer up the triad graph structure for an on-chip hardware
architecture for robust annealing offer the XY Hamiltonian across a range of optical
oscillator platforms.

In investigating a non-stationary condensate trapping potential, chapter 6 shows the
first observations of inducing quantised vortices into a polariton system through
periodic optical stirring with an axially asymmetric pump profile. Both in simulation
and experiment, regions of rotation frequency are mapped out where deterministic
vortex winding is observed. Interestingly, the system exhibits an energy splitting
directly proportional to the rotation frequency and is described using Floquet theory
and corroborates the our understanding of why we observe vortices both co-rotating
and counter-rotating with the trapping potential.

All-in-all, synchronised polariton condensate networks show to be a promising platform
for minimising the XY Hamiltonian, where the dynamical transients of the coupled
condensate system allows for ultrafast annealing of the encoded XY Hamiltonian, such
that NP-hard graph problems can be solved on the picosecond timescale. The work in
this thesis maps out how the polariton simulator can be realised experimentally with a
potential on-chip architecture and explores real-world mathematical problems that it
can solve.



8.2. Next Steps 141

8.2 Next Steps

I am very fortunate to have received 12 months funding from the EPRSC Doctoral
Prize, with which, I aim to continue researching the polariton analogue simulator as a
postdoctoral researcher. My next project aims to bring together my expertise in
developing the 2D analogue simulator and knowledge of excited state condensates in
order to develop the theory of a 4D liquid light analogue simulator, following the
relative phase parameters mapped out in chapter 7. This will put polariton systems at
the forefront of analogue simulations by presenting the first four-dimensional analogue
simulator. This will have the ability to solve more complex graph problems than those
studied in this thesis, such as the max-5-cut problem. Additionally, by creating a fully
controllable 4D analogue simulator, this platform has the potential to be used in
realising the Yang-Mills theory, which is currently an unsolved problem in mathematics
and is listed as a millennium problem due to its huge impact in physics.

8.3 Final Remarks

Overall, I have enjoyed my time as a PhD student, particularly before the pandemic
when our incredibly sociable research group thrived with constant fruitful discussions
on polaritonics at our many lunchtime and evening socials. However, working from
home during lockdown was not a favourable period of my candidature, although I am
thankful that I was able to continue working with no practical disruption to my
research. As we are adjusting to the new-normal, it is brilliant to meet again in person
for group meetings, and group morale is definitely on the up as we are finally meeting
up socially again. As parting words to any new PhD students reading this thesis, my
advice would be to enjoy yourself! It is so important to have fun alongside (and
during) the hard work of a PhD. Say “yes” to that coffee break with a colleague, or
lunch at Label Food, or the pub trip at the end of the working day, or the QLM social
that you’ve just received an email about. Also, as a Southampton student who has
been a member of five societies over the last eight years, I highly recommend joining a
university society to make like-minded friends who don’t only talk about physics -
trust me, I’m (almost) a doctor! Also, try to avoid a crossover between your
candidature and a global pandemic.
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