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Abstract—Millimeter-wave communication is regarded as a
promising technology for the next generation communication
system, where beamforming and beam training are essential
for power concentration and coverage extension. In this paper,
we propose an angular domain separation based multi-beam
training (ADS-MBT) scheme and an angular domain separation
based hierarchical multi-beam training (ADS-HMBT) scheme,
which enable simultaneous multi-beam training under the single
data stream constraint. We provide theoretical analysis on the
performance of the proposed schemes and optimize the non-
orthogonal codebook used in the proposed schemes accordingly.
With this appropriate design, our proposed ADS-MBT scheme
can achieve almost the same beamforming gain as the exhaustive
scheme but only imposing half or less time slot consumption.
The proposed ADS-HMBT scheme further reduces the training
overhead, and it outperforms the existing two-layer hierarchical
search, in terms of training overhead and beamforming gain
in the multiple feedback beam training case. Simulation results
show the effectiveness and superior performance of our both
proposed schemes over the existing state-of-the-arts.

Index Terms—Millimeter-wave, beam training, initial access,
angular domain separation.

I. INTRODUCTION

Due to the shortage of available sub-6GHz spectrum,

millimeter-wave (mmWave) band has attracted considerable

attention. With abundant spectrum resources, mmWave has

the potential to support communication of gigabits-per-second

data rates [1]–[4]. However, mmWave wireless communication

suffers high path loss and molecular absorption [5], [6].

Therefore, large-scale antenna arrays are required for power

concentration and capacity improvement [7].

To optimize the beamforming gains of large-scale array,

base station (BS) and user equipment (UE) need to perform

beam training procedure, in which BS and UE search for

the best pair of transmitting and receiving beamforming vec-

tors, respectively. In practical implementation, codebook-based

beam training is preferred, where UE measures several refer-

ence signals corresponding to several beams in a predefined
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codebook and feeds back the index of the selected beam.

Generally, codebook size is proportional to antenna number

to ensure spatial coverage. Therefore, for large-scale array in

mmWave communication, exhaustive search as illustrated in

Fig. 1 (a), although guaranteeing to select the optimal beam,

introduces unacceptable beam training overhead.

To reduce beam training overhead, many improved beam

training schemes have been proposed. One common solu-

tion is to perform hierarchical search with multi-resolution

beamforming codebook [8]–[13]. Specifically, as illustrated in

Fig. 1 (b), BS exhaustively activates wide beams to identify

a coarse direction of UE, and then gradually narrows down

the range of UE direction according to UE’s feedback until

UE selects the optimal narrow beam. Under these hierarchical

search schemes, however, the beam refinement process cannot

be shared by the UE of different wide beam ranges. Generally,

BS needs to perform beam refinement for each UE individu-

ally, which introduces extra overhead. Moreover, increasing

the number of layers increases feedback overhead, which

introduces large delay and makes this scheme inapplicable

for initial access stage (see Appendix). Hence, only two-layer

hierarchical search is accepted in practice, but this degrades the

performance in terms of training overhead and beamforming

gains. Another popular solution is to exploit the measurements

on wide beams to estimate the optimal narrow beam [14],

[15]. However, these works are prone to errors in practical

noisy multipath channel due to under-exploration of the beam

space. Additionally, machine learning assisted beam training

Fig. 1. Illustrations of different beam training schemes. (a) Exhaustive search:
BS sequentially activates all the beams one by one, and UE selects the optimal
beam. (b) Hierarchical search: BS first activates wide beams and then performs
narrow beam refinement. (c) Proposed ADS-MBT scheme: BS divide beams
into several groups and transmits merged beams with different coefficients for
several times. UE firstly selects the candidate optimal beam in each group,
and then compare all the candidate beams to select the optimal one.
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also offers a potential solution for the optimal beam decision

[16]–[18]. However, a machine learning trained model is only

valid to the specific channel that it was trained for, and it

cannot be easily applied or transported to other environments.

In addition to the aforementioned sequential single beam

search schemes [8]–[19], some researchers investigated the

possibility of simultaneously training multiple beams [20]–

[22]. Specifically, in [20], both BS and UE are equipped with

multiple radio frequency (RF) chains to support multi-stream

transmission, and hence multiple beams can be simultaneously

measured via parallel multi-stream transmissions. The works

[21], [22] proposed bisection search schemes to conduct

parallel beam training among UE group. However, on one

hand, these schemes can support simultaneous multiple beams

training only when there are multiple data streams (links)

between BS and UE. In a more practical case where UE has

only one RF chain, UE can only receive single data stream.

Under this condition, these beam training schemes still sweep

one beam in each time slot, and beam training overhead

is not reduced. On the other hand, these bisection search

schemes perform well only in single-path scenario, and suffer

serious performance degradation in multipath environment.

Some other schemes use Bayes posterior probability updating

to simultaneously evaluate all the beams and select the optimal

one [23], [24]. But the Bayes updating process is intensively

feedback-based, which also introduces large feedback delay.

It can be seen that the existing beam training schemes have

some shortcomings and they are not suitable for practical

initial access. Specifically, hierarchical search [8]–[13] and

Bayesian philosophy [23], [24] based beam training schemes

introduce large feedback delay, since multiple rounds of UE

feedback are required. Meanwhile, the machine learning as-

sisted beam training schemes [16]–[18] are sensitive to envi-

ronment and are computational expensive. To perform robust

beam training in practical initial access while reducing the

overhead, in this paper, we propose an angular domain sepa-

ration (ADS) based multi-beam training (ADS-MBT) scheme,

to support simultaneously multi-beam training under the single

data stream constraint. Our basic idea is illustrated in Fig. 1 (c).

Specifically, the proposed ADS-MBT scheme divides beams

into several angular-domain separated beam groups. Due to

angular concentration of mmWave channel, at most one beam

in each group has high beamforming gain. In the merged beam

sweeping stage, beams in each group are activated simultane-

ously with different coefficient combinations for several times.

At UE side, UE performs maximum likelihood (ML) detection

to recognize the candidate optimal beam in each group and

estimates its beamforming gain. Then UE compares all the

candidate beams to select the optimal beam. Moreover, we

extend the ADS-MBT to a multiple feedback scheme, called

ADS-hierarchical multi-beam training (ADS-HMBT), to fur-

ther reduce training overhead at the cost of introducing extra

feedback. The proposed ADS-MBT and ADS-HMBT schemes

can achieve desired and flexible tradeoffs between beam train-

ing performance and overhead by simply adjusting merged

beam sweeping times. Additionally, we provide theoretical

analysis on the performance of the proposed schemes and

accordingly optimize the non-orthogonal merging coefficient

matrix (MCM) design. Numerical simulation results show that

our schemes outperform existing beam training counterparts

in terms of training overhead and/or beamforming gains. Our

main contributions are summarized as follows.

• Two multi-beam training schemes, ADS-MBT and ADS-

HMBT, are proposed. The both schemes support si-

multaneously multi-beam training under the single data

stream constraint, thus significantly reducing the training

overhead. Our schemes outperform the exhaustive search

and hierarchical search schemes as well as other existing

state-of-the-art schemes.

• In theoretical analysis, we derive beam misalignment

probability approximation, and accordingly provide two

alternative MCM designs, which ensures that our pro-

posed schemes perform well under different channel

conditions.

• In addition to reduce training overhead significantly, our

proposed schemes can flexibly set the desired tradeoff

between training performance and overhead according

to different application scenarios, which enhances the

quality of service and spectral efficiency.

The rest of the paper is organized as follows. In Sec-

tion II, the geometrical mmWave channel model is given

and the codebook based beam training is formulated as an

optimization problem. Section III details our ADS-MBT beam

training scheme and its extension the ADS-HMBT scheme.

Theoretic performance analysis is provided in Section IV,

while the MCM design is derived in Section V. Section VI

offers numerical simulation results to demonstrate the superior

performance of our proposed schemes. Our conclusions are

drawn in Section VII.

Throughout our discussion, the following notation conven-

tions are adopted. Boldface capital and lower-case letters

stand for matrices and vectors, respectively, e.g., A and a.

The transpose, Hermitian transpose and inverse operators are

denoted by (·)T, (·)H and (·)−1, respectively, while A(i, j),
A(i, :) and A(:, j) denote the (i, j)-th element of A, the i-th
row vector of A and the j-th column vector of A, respectively.

Two-norm of a is denoted by ‖a‖2, and |a| denotes amplitude

of a. Cursive capital letters denote sets, e.g., A, and |A|
denotes the cardinality of set A, while en denotes the unit

vector whose n-th element is 1 and all the other elements are

zero. The M ×M identity matrix is denoted as IM , and ⊗ is

the Kronecker-product operator.

Fig. 2. Typical mmWave multi-path channel with one LoS path and multiple
NLoS paths, where θAS denotes the angular spread.



3

II. SYSTEM MODEL

A. MmWave Multipath Channel

We consider a typical multipath channel with single UE

receiver, where BS and UE are equipped with NT and

NR antennas, respectively. Furthermore, uniform linear array

(ULA) with half-wavelength element spacing are utilized. In

consideration of power consumption, hybrid architecture with

limited RF chains is preferred, and Subsection V-A shows that

even single-RF-chain fully analog architecture is applicable

with appropriate design. The channel can be assumed invariant

since the beam training duration is short. The downlink

channel matrix H∈C
NR×NT is the composition of one line-

of-sight (LoS) path and P non-line-of-sight (NLoS) paths as

shown in Fig. 2, which is expressed as [25], [26]

H =
P∑

p=0

γpHp, (1)

where H0 ∈ C
NR×NT represents the LoS path, and Hp ∈

C
NR×NT , 1 ≤ p ≤ P , are the P NLoS paths, while γp ∈

C, p = 0, 1, · · · , P , are the complex gains for these paths.

In a typical LoS dominated scenario, the LoS path will be

much stronger than all the NLoS paths, which suggests that

|γ0| ≫ |γp|, 1 ≤ p ≤ P , while in a typical multipath scenario,

|γ0| and |γp|, 1 ≤ p ≤ P , are comparable. Denoting θ
(AoD)
p

and θ
(AoA)
p as the angle of departure (AoD) and the angle of

arrival (AoA) of the p-th path, respectively, then Hp can be

expressed as

Hp =
√
NTNRaR

(
θ(AoA)
p

)
aH
T

(
θ(AoD)
p

)
, (2)

where aT

(
θ(AoD)

)
∈ C

NT and aR

(
θ(AoA)

)
∈ C

NR denote

the transmitting and receiving antenna response vectors with

azimuth angles θ(AoD) and θ(AoA), respectively, which are

given by

aT (θ) =
1√
NT

[
1 e−jπ cos θ · · · e−(NT−1)jπ cos θ

]T
, (3)

aR(θ) =
1√
NR

[
1 e−jπ cos θ · · · e−(NR−1)jπ cos θ

]T
. (4)

Generally, since BS commonly locates at high position, the

multipath effect mainly arises due to obstacles around UE.

Therefore, the multi-path components exhibit angular concen-

tration, i.e., the AoDs of the NLoS paths are closed to the AoD

of the LoS path. Denoting θAS as the angular spread, which

is the root mean square (RMS) of angle difference between

LoS and NLoS AoDs, we have

θAS =

√√√√ 1

P

P∑

p=1

(
θ
(AoD)
p − θ

(AoD)
0

)2
. (5)

Generally, θAS is smaller than 10◦ for mmWave channels [27],

[28]. Due to the angular concentration property, the BS beam

with direction far away from θ
(AoD)
0 has low beamforming

gain.

With the above mmWave channel model, single data stream

transmission is formulated as

y =
√

βwHHfs+wHn, (6)

where s ∈ C is the transmitted symbol with β denoting the

transmission power, f ∈ C
NT×1 with ‖f‖2 = 1 represents

the transmitter beamforming vector, and n ∈ C
NR×1 is

the additive Gaussian white noise (AWGN) vector at UE,

while w ∈ C
NR×1 with ‖w‖2 = 1 represents the receiver

beamforming or combining vector, and y is the output of the

UE receiving beamformer, which is the sufficient statistic for

detecting s.

B. Codebook Based Beam Training

Denoting the effective channel heff = wHHf , (6) can be

rewritten as

y =
√

βheffs+ ñ, (7)

where ñ = wHn is the equivalent noise and
∣∣heff

∣∣2 can be

regarded as the beamforming gain. In beam training procedure,

BS and UE jointly select the appropriate beamforming vectors

f and w to achieve the optimal beamforming gain, which can

be formulated as

{
f⋆,w⋆

}
= arg max

‖f‖2=1,‖w‖2=1

∣∣wHHf
∣∣ . (8)

Based on singular value decomposition (SVD), the best trans-

mitting and receiving beamforming vectors are given by the

principle right and left singular vectors of the channel matrix

H [29], respectively. Specifically, let the SVD of H be

H=UΣV H with the singular values arranged in decreasing

order. Then the best beamforming vectors are f⋆ = V (:, 1)

and
(
w⋆
)T

=U(:, 1).
However, the acquisition of the full channel state informa-

tion, i.e., the channel matrix H , requires high pilot overhead

and feedback overhead. Hence codebook based beam training

is introduced to facilitate practical application of beamforming

before channel estimation. Specifically, f and w are selected

from the predefined codebook sets F and W ,

{
f⋆,w⋆

}
= arg max

f∈F,w∈W

∣∣wHHf
∣∣ . (9)

We consider the most widely used DFT codebook in our

discussions. For other beam codebook, our proposed schemes

are still applicable as long as the beam grouping satisfies ADS

property. In the standard DFT codebook without oversampling,

the number of orthogonal beams equal to the number of

antennas which cover the entire angular space. the DFT

codebook can be expressed as

F=

{
aT

(
θTk
)∣∣ cos θTk =

2k− 1−NT

NT
, k=1, 2, · · · , NT

}
,

(10)

W=

{
aR

(
θRk
)∣∣ cos θRk =

2k−1−NR

NR
, k=1, 2, · · · , NR

}
.

(11)

III. PROPOSED SCHEMES

This section derives our proposed ADS-MBT scheme and

the multiple feedback aided ADS-HMBT scheme. We start

with a discussion on UE receiving beam.
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A. UE Receiving Beam

In general case, UE is equipped with antenna array and

it also needs to perform beam selection. But it is sufficient

to consider only single-antenna UE. IEEE 802.11ad [30]

specifications utilize two schemes, UE exhaustive search and

interactive search [31], to separate UE beamforming and BS

beamforming. In the UE exhaustive search scheme, the beam

training at BS side repeats for |W| times, and in each time

UE uses a different beam to receive. In the interactive search

scheme, UE first activates only one antenna to perform BS

side beam training, and then BS fixes the optimal beam and

perform UE side beam training, which can be formulated as

f⋆ =argmax
f∈F

|H(1, :)f |, (12)

w⋆ =arg max
w∈W

|wHHf⋆|. (13)

Since the both schemes in the specifications [30] imply that

UE side beam can be assumed fixed when focusing on BS

side beam training, our beam training optimization problem

can be deduced to be

f⋆ = argmax
f∈F

∣∣hH
efff

∣∣, (14)

where heff = HHw is the equivalent channel with the

fixed UE beam w. We note that (14) is equivalent to the

single-antenna (NR = 1) UE case. Therefore, without loss of

generality, single-antenna UE is considered in our derivations

and discussions. The degenerated channel vector with NR = 1
h ∈ C

NT×1 is given by

h =
P∑

p=0

γp
√

NTaT

(
θ(AoD)
p

)
. (15)

B. ADS-MBT

The proposed ADS-MBT scheme consists of the three steps:

beam merging, repeated transmission and beam recognition.

In the beam merging stage, BS divides all the NT beams into

several groups to satisfy the ADS property. In the repeated

transmission stage, BS sends each beam group with different

beam merging coefficients for several times. Finally, in the

beam recognition stage, UE uses the ML detection to rec-

ognizes the candidate optimal beam in each group, and then

compares all the candidate beams to select the optimal narrow

beam.

1) Beam Merging: BS divides all the NT beams into sev-

eral groups and merges the beams in each group into a merged

beam. To utilize the AoD concentration of mmWave multi-

path channel and facilitate the subsequent beam recognition,

the beams in each group should be far away from each other.

Let the NT beams be divided into G groups, and the g-th

group consists of Ng beams, 1 ≤ g ≤ G. Denote the beams

in the g-th group by Fg =
{
fg,1,fg,2, · · · ,fg,Ng

}
⊂ F ,

where the beamforming vectors fg,ng
= aT

(
θTg,ng

)
, ng =

1, 2, · · · , Ng , and further define the g-th merged beam matrix

as Fg =
[
fg,1 fg,2 · · ·fg,Ng

]
∈ C

NT×Ng , 1 ≤ g ≤ G.

Obviously, we have

Fi

⋂
Fj = ∅, 1 ≤ i < j ≤ G, (16)

G⋃

g=1

Fg = F . (17)

A reasonable grouping method is to choose

Fg =
{
aT

(
θTk
)∣∣k ≡ g (mod G)

}
. (18)

Note that we have

∣∣θTg,i − θTg,j
∣∣ ≥ 2G arcsin

(
1

NT

)
≥ 2G

NT
. (19)

When G ≥ θASNT , the grouping method (18) satisfies the

following ADS property
∣∣θTg,i − θTg,j

∣∣ ≥ 2θAS , 1 ≤ i < j ≤ Ng, 1 ≤ g ≤ G. (20)

With this ADS property and the angular concentration property

of AoDs, at most one beam in each group has high beamform-

ing gain, while the beamforming gains of all the other beams

are much lower and negligible. Therefore, UE can exploit this

property to distinguish the optimal beam from simultaneously

transmitted beams.

Denote the optimal beam in the g-th group by fg,n⋆
g
, i.e.,

n⋆
g = arg max

1≤ng≤Ng

∣∣hHfg,ng

∣∣, 1 ≤ g ≤ G. (21)

If fg,n⋆
g

has high beamforming gain, we have the following

approximation according to the ADS property

hHFg ≈ qg,n⋆
g
eTn⋆

g
, 1 ≤ g ≤ G, (22)

where qg,n⋆
g
= hHfg,n⋆

g
. If all the beams in the g-th group

have low gains, then qg,n⋆
g

≈ 0, (22) is still a suitable

approximation.

After the beam merging stage, BS obtains the G merged

beam matrices {Fg}Gg=1. The merged beam for Fg realization

can be formulated as

f̄g =

Ng∑

i=1

fg,isi = Fgsg, (23)

where sg ∈ C
Ng×1 is the beam merging coefficient vector

with ‖sg‖2 = 1, and f̄g ∈ C
NT×1 is the merged beamforming

vector. Fig. 3 shows an example for NT = 8 and G = 2.

All the 8 beams are divided into the yellow group and the

blue group, and in each slot, the beams in one group will be

activated simultaneously to form a wide beam.

2) Repeated Transmission: By single measurement of a

merged beam, the beams in a group are indistinguishable to

UE. To recognize the optimal narrow beam in a group, BS

needs to send the same merged beam set with different beam

merging coefficients for several times. Specifically, let the g-th

merged beam group Fg be transmitted for Mg times, with the

beam merging coefficients sg,1, sg,2, · · · , sg,Mg
, respectively.

Then the received signals at UE are given by

yg,k=
√

βhHFgsg,k + nk=
√
βqT

g sg,k + nk, 1 ≤ k ≤ Mg,
(24)
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Fig. 3. Beam merging example with NT = 8 and G = 2. BS merges 8
narrow beams into 2 wide (merged) beams and activates merged beam in
each slot.

where nk denotes the link’s AWGN with power σ2
n in the k-th

transmission,

qg =
[
qg,1 qg,2 · · · qg,Ng

]T
=
(
hHFg

)T ∈ C
Ng×1 (25)

is a vector representing the beamforming gains of the beams

in Fg with qg,ng
= hHfg,ng

, 1 ≤ ng ≤ Ng . The cor-

responding vector form of the Mg received signals yg =[
yg,1 yg,2 · · · yg,Mg

]T
can be expressed as

yg =
√

β
(
qT
g Sg

)T
+ n, 1 ≤ g ≤ G, (26)

where Sg=
[
sg,1 sg,2 · · · sg,Mg

]∈C
Ng×Mg is the beam merg-

ing coefficient matrix (MCM) containing the Mg beam merg-

ing coefficient vectors, and n is the corresponding AWGN

vector.

According to the ADS principle given in (22), the receiving

signals can be approximated as

yg ≈
√
βqg,n⋆

g

(
Sg

(
n⋆
g, :
))T

+ n, (27)

where S(ng, :) can be regarded as a merging coefficient vector

corresponding to beam fg,ng
. Without prior information, we

assume
∥∥S(ng, :)

∥∥
2
=
√

Mg

Ng
, 1 ≤ ng ≤ Ng . According to

(27), UE is capable of recognizing the best narrow beam from

the receiving merged beam signals via a well-designed Sg.

An example of repeated transmission is illustrated in Fig. 4,

where we have G = 2, M1 = M2 = 2, and S1 = S2 = S ∈
C

4×2. It can be seen that the number of time slots required

for this repeated transmission is
∑G

g=1 Mg = 4.

3) Beam Recognition: In the beam recognition stage, based

on the collected received signals {y1,y2, · · · ,yG}, UE needs

to recognize the beam set index and intra-group beam index of

the optimal beam with the highest beamforming gain, which

can be formulated as
{
g⋆, n⋆

g⋆

}
= arg max

1≤ng≤Ng,1≤g≤G

∣∣qg,ng

∣∣, (28)

Fig. 4. Repeated transmission example with M1=M2=2 and S1=S2=S.
BS activates each merged beam for 2 times with different merging coefficients.

where g⋆ is the best merged beam group index, and n⋆
g⋆ is the

optimal intra-group beam index. In other words, UE needs to

select the optimal narrow beam fg⋆,n⋆
g⋆

. We derive the optimal

intra-group recognition strategy from the ML principle and

the optimal beam set recognition strategy from the maximum

estimated gain principle. In the intra-group recognition step,

UE selects the optimal beam in each group as a candidate

beam and estimates its beamforming gain. In the beam set

recognition step, UE compares the estimated gains of all the

candidate beams and select the optimal beam.

3.1) Intra-group recognition step: For group Fg, (27) im-

plies that the beamforming gain of fg,n⋆
g

determines the

received signals. The index and beamforming gain of the

optimal beam are given as
{
n⋆
g, q̂

⋆
g

}
= arg min

q∈C,1≤ng≤Ng

∥∥yg − q
(
Sg(ng, :)

)T∥∥
2
. (29)

For a fixed ng , the optimal qg can be derived by

q̂⋆g =
Ng

Mg
yT
g

(
Sg(ng, :)

)H
. (30)

By denoting q̂g,ng
=

Ng

Mg
yT
g

(
Sg(ng, :)

)H
, the ML evaluation

(29) is equivalent to

n⋆
g=arg max

1≤ng≤Ng

∣∣yT
g

(
Sg(ng, :)

)H∣∣2= arg max
1≤ng≤Ng

∣∣q̂g,ng

∣∣,
(31)

q̂⋆g =
Ng

Mg
yT
g

(
Sg(n

⋆
g, :)
)H

= q̂g,n⋆
g
. (32)

fg,n⋆
g

is the candidate beam from the g-th group and q̂⋆g is the

estimated beamforming gain, where 1 ≤ g ≤ G.

3.2) Beam set recognition step: UE selects the best beam

fg⋆,n⋆
g⋆

according to

g⋆= arg max
1≤g≤G

∣∣q̂⋆g
∣∣= arg max

1≤g≤G

∣∣∣∣
Ng

Mg
yT
g

(
Sg(n

⋆
g, :)
)H
∣∣∣∣.
(33)

In the proposed recognition strategy, Sg needs to satisfy

the single transmission constraint ‖Sg(:,m)‖2 = 1, 1 ≤ m ≤
Mg , and the beam power fairness constraint ‖Sg(n, :)‖2 =√

Mg

Ng
, 1 ≤ n ≤ Ng . This recognition strategy computes the

correlation coefficients q̂g,ng
of all the NT beams and selects

the optimal beam with the highest correlation.

Algorithm 1 Proposed ADS-MBT scheme

Input: G, {Fg}Gg=1, {Ng}Gg=1, {Mg}Gg=1, {Sg}Gg=1;

Output: The optimal beam index
{
g⋆, n⋆

g⋆

}
;

1: for g = 1 to G do

2: for k = 1 to Mg do

3: BS transmits merged beam f̄g,k = FgSg(:, k);
4: UE receives signal yg,k;

5: end for

6: end for

7: UE computes (31), (32) and selects the optimal beam for

each group;

8: UE selects the optimal group g⋆ according to (33);

9: UE feeds back g⋆, n⋆
g⋆ to BS;

10: BS uses fg⋆,n⋆
g⋆

for downlink transmission;
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4) Summary of ADS-MBT scheme: Our proposed ADS-

MBT scheme is summarized in Algorithm 1, where it can

be seen that
∑G

g=1 Mg transmissions and only one feedback

are needed. Since calculating each q̂g,ng
requires Ng complex

multiplications, the computational complexity of the ADS-

MBT scheme is on the order of O
(∑G

g=1 NgMg

)
.

C. Multiple Feedback Aided ADS-HMBT Scheme

In this subsection, we extend our ADS-MBT scheme to

a multiple feedback aided scheme, called the ADS-HMBT,

to further reduce beam training overhead at a cost of extra

feedback delay. The beam merging in the ADS-HMBT re-

mains the same as in the ADS-MBT, and only BS repeated

transmission and UE recognition are modified so that they

become interactive, linked by one feedback. More specifically,

BS first activates only part of the merged beams, and UE first

recognizes the optimal beam set based on the received signals.

After UE feeds back the optimal beam set index, BS only

activates the remaining merged beams in the optimal group,

and UE then recognizes the optimal narrow beam based on

the previous and these further received signals.

1) BS repeated transmission: For the ADS-MBT scheme,

signals for a non-optimal group (g 6= g⋆) is only used for the

optimal beam set selection. Therefore, with the aid of multiple

feedback, time slot consumption may be reduced if the optimal

beam set can be selected with fewer measurements.

First, for 1 ≤ g ≤ G, BS repeatedly transmits the

merged beams of group Fg for Kg times with the MCM

S
(1)
g =

[
sg,1 sg,2 · · · sg,Kg

] ∈ C
Ng×Kg , where Kg < Mg .

This is for UE to recognize the optimal beam set. After UE

feeds back the optimal group index g⋆, BS then only transmits

the remaining
(
Mg⋆ −Kg⋆) merged beams of group Fg⋆ , that

is, BS ignores the merged beams in all the other non-optimal

groups and only repeatedly transmits the merged beams of the

optimal group Fg⋆ for
(
Mg⋆ − Kg⋆) times with the MCM

S
(2)
g⋆ =

[
sg⋆,K⋆

g+1 · · · sg⋆,M⋆
g
] ∈ C

Ng⋆×(Mg⋆−Kg⋆ ). This is to

further aid UE to recognize the optimal narrow beam.

2) UE top-down recognition: Accordingly, UE needs to

modify its beam recognition strategy to a top-down recognition

one, in which UE firstly selects the best beam group, and then

selects the best narrow beam from the selected group.

With fewer transmissions from BS, the correlations of

merging coefficients for different beams are higher, which

makes it harder to select the candidate optimal beam in

each group according to (31). However, we note that the

beamforming gain can still be accurately estimated according

to (32), which makes it possible to select the optimal beam

set based on the reduced received signals. Specifically, for

group Fg, BS only activates the first Kg merged beams

Fgsg,1, · · · ,Fgsg,Kg
, and the corresponding received signals

at UE are y
(1)
g =

[
yg,1 · · · yg,Kg

]T
. The beamforming gain

for the optimal beam fg,n⋆
g

in group Fg can be estimated

according to

q̂⋆g =
Ng

Kg

(
y(1)
g

)T(
S(1)
g (n⋆

g, :)
)H

, (34)

Algorithm 2 Proposed ADS-HMBT scheme

Input: G, {Fg}Gg=1, {Ng}Gg=1, {Kg}Gg=1, {Mg}Gg=1, {Sg}Gg=1;

Output: The optimal beam index {g⋆, n⋆
g⋆};

1: for g = 1 to G do

2: for k = 1 to Kg do

3: BS transmits merged beam f̄g,k = FgSg(:, k);
4: UE receives signal yg,k;

5: end for

6: UE computes beamforming gain q̂⋆g for Fg using (34);

7: end for

8: UE determines optimal group index g⋆ using (36);

9: UE feeds back g⋆ to BS;

10: for k = Kg⋆ + 1 to Mg⋆ do

11: BS transmits merged beam f̄g⋆,k = Fg⋆Sg⋆(:, k),
12: UE receives signal yg⋆,k;

13: end for

14: UE determines optimal narrow beam using (37) and feeds

back n⋆
g⋆ to BS;

15: BS uses fg⋆,n⋆
g⋆

for downlink transmission;

where

n⋆
g = arg max

1≤ng≤Ng

∣∣∣
(
y(1)
g

)T(
S(1)
g (ng, :)

)H∣∣∣
2

. (35)

The index of the optimal group can then be recognized as

g⋆ = arg max
1≤g≤G

∣∣q̂⋆g
∣∣. (36)

UE feeds back this optimal group index g⋆ to BS. After

receiving the optimal group index from UE, BS activates the

remaining (Mg∗ −Kg∗) merged beams of the optimal group

Fg⋆ with the MCM S
(2)
g⋆ . This help UE to obtain the further

(Mg∗ −Kg∗) measurements y
(2)
g⋆ =

[
yg⋆,Kg⋆+1 · · · yg⋆,Mg⋆

]T
.

With more merged beams measurements, the correlations

of merging coefficients for different beams are decreased.

Hence, with the full Mg⋆ measurement yg⋆ , UE recognizes

the optimal narrow beam according to

n⋆
g⋆ = arg max

1≤ng⋆≤Ng⋆

∣∣∣yT
g⋆

(
Sg⋆

(
ng⋆ , :

))H∣∣∣
2

. (37)

3) Discussions: The proposed ADS-HMBT scheme is sum-

marized in Algorithm 2, where it can be seen that only∑G
g=1Kg+

(
Mg⋆−Kg⋆

)
transmissions and two feedback are

needed. The computational complexity of the ADS-HMBT is

on the order of O
(∑G

g=1NgKg+Ng⋆

(
Mg⋆−Kg⋆

))
. There-

fore, by utilizing one more UE feedback information to

perform beam training, the ADS-HMBT further reduces the

beam training overhead over the ADS-HMBT. Therefore,

the ADS-MBT scheme is more suitable for delay-sensitive

scenarios, while the ADS-HMBT scheme is more suitable for

delay-tolerant scenarios. BS can choose an appropriate scheme

according to different situations.

IV. PERFORMANCE ANALYSIS

Beam misalignment can occur due to multipath and noise.

This section provides theoretic beam misalignment probability
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analysis on the proposed ADS-MBT scheme. Since the analy-

sis for the ADS-MBT can also be applied to the ADS-HMBT,

it is sufficient to just consider the ADS-MBT. In our ADS-

MBT scheme, there are two kinds of misalignment, namely,

group misrecognition and intra-group beam misrecognition.

A. Group Misrecognition Probability

Group misrecognition happens when the estimated beam-

forming gain of a non-optimal group Fg is higher than that of

the optimal group Fg⋆ . Denote a group misrecognition event

as Fg⋆ → Fg . Then

Fg⋆ → Fg : ∃g 6= g⋆, s.t.
∣∣q̂⋆g
∣∣ >

∣∣q̂⋆g⋆

∣∣. (38)

By combining (26) and (32), the beamforming gain estimation

can be rewritten as

q̂⋆g =
√

βqg,n⋆
g
+
√

β
∑

ng 6=n⋆
g

qg,ng

Sg(ng, :)
(
Sg(n

⋆
g, :)
)H

∣∣Sg(n⋆
g, :)
(
Sg(n⋆

g, :)
)H∣∣

+
nT
(
Sg(n

⋆
g, :)
)H

∣∣Sg(n⋆
g, :)
(
Sg(n⋆

g, :)
)H∣∣ , (39)

wherein the second term is the interference and is denoted as

Ig , while the third term is the noise and is denoted as Ξg .

As for Ig , we mainly consider the interferences from

neighboring beams, as they typically are the strongest. Hence,

for ng = n⋆
g ± 1, we have

qg,n⋆
g±1=

√
NT

P∑

p=0

γpa
H
T

(
θ(AoD)
p

)
aT

(
θTg,n⋆

g±1

)
. (40)

Since fg,n⋆
g

has high beamforming gain, it is reasonable to

assume that θ
(AoD)
0 is close to θTg,n⋆

g
. By defining

∆(g, ng, i) = cos
(
θTg,ng

)
− cos

(
θ
(AoD)
i

)
, 1 ≤ i ≤ P, (41)

we have

aH
T

(
θ(AoD)
p

)
aT

(
θTg,n⋆

g±1

)
=

sin
(

πNT∆(g,n⋆
g,i)

2 + πG
)

NT sin
(

π∆(g,ng,i)
2

)

≈
sin
(

πNT∆(g,n⋆
g,i)

2 + πG
)

NT sin
(

πG
NT

) . (42)

When NT is large, (42) approximately follows the uniform

distribution in the interval

[
− 1

NT sin
(

πG
NT

) , 1

NT sin
(

πG
NT

)
]

,

denoted as U
(

− 1

NT sin
(

πG
NT

) , 1

NT sin
(

πG
NT

)
)

. Now use the

approximation (42) in (40) and consider all the P paths. Since

P is typically large, by the central limit theorem, qg,n⋆
g±1

follows approximately the complex Gaussian distribution with

zero mean and the power

σ2
qg,n⋆

g±1
=

1

3NT

∑P
p=0 |γ2

p |
sin2

(
πG
NT

) , (43)

that is,

qg,n⋆
g±1 ∼ CN

(
0, σ2

qg,n⋆
g±1

)
. (44)

Let δ(Sg) be the maximum interference coefficient of Sg , i.e.,

δ(Sg) = max
∀i,j, i6=j

∣∣∣∣∣
Sg(i, :)

(
Sg(j, :)

)H

Sg(i, :)
(
Sg(i, :)

)H

∣∣∣∣∣ . (45)

Then the interference Ig ∼ CN
(
0, σ2

Ig

)
with the power

σ2
Ig =

βNeδ
2(Sg)

3NT

∑P
p=0 |γ2

p |
sin2

(
πG
NT

) , (46)

where

Ne=
1

δ2(Sg)

∑

k=±1




∣∣∣Sg

(
n⋆
g+k, :

)(
Sg

(
n⋆
g, :
))H∣∣∣

∣∣∣Sg

(
n⋆
g, :
)(
Sg

(
n⋆
g, :
))H∣∣∣




2

. (47)

Clearly, the noise term Ξg ∼ CN
(
0, σ2

Ξg

)
with the power

σ2
Ξg

=
σ2
n∥∥Sg(n⋆
g, :)
∥∥2
2

. (48)

Let σ2
in,g be the power of interference plus noise, i.e., σ2

in,g =
σ2
Ig

+ σ2
Ξg

. Due to high beamforming gain provided by large-

scale array, we have
√
β
∣∣qg,n⋆

g

∣∣≫ σin,g , and consequently the

beamforming gain
∣∣q̂⋆g
∣∣ follows the real Gaussian distribution

with mean
√
β
∣∣qg,n⋆

g

∣∣ and variance
σ2

in,g

2 , that is,

∣∣q̂⋆g
∣∣ ∼ N

(
√
β
∣∣qg,n⋆

g

∣∣,
σ2
in,g

2

)
. (49)

Therefore, the probability of misrecognizing Fg as the optimal

group is given by

Pe

(
Fg⋆ → Fg

)
≈ Q



√
β
(∣∣qg⋆,n⋆

g⋆

∣∣−
∣∣qg,n⋆

g

∣∣)
√

σ2

in,g⋆
+σ2

in,g

2


 , (50)

where Q(·) is the complementary cumulative function of Gaus-

sian distribution. The total group misrecognition probability is

Pe

(
Fg⋆

)
≤
∑

g 6=g⋆

Pe

(
Fg⋆ → Fg

)
. (51)

B. Intra-group Beam Misrecognition Probability

Within the group Fg , UE may misrecognize the optimal

beam due to sidelobe effect. Intra-group beam misrecognition

happens when the estimated beamforming gain of another

beam is higher than that of the optimal beam, i.e.,

fg,n⋆
g
→ fg,ng

: ∃ng 6= n⋆
g, s.t.

∣∣q̂g,ng

∣∣ >
∣∣q̂g,n⋆

g

∣∣. (52)

Since the distribution of
∣∣q̂g,n⋆

g

∣∣ is given in (49), we only need

to concentrate on
∣∣q̂g,ng

∣∣, ng 6=n⋆
g . Similar to (39) to (44), the

beamforming gain estimation for qg,ng
can be expressed as

q̂g,ng
≈
√
βqg,n⋆

g

Sg(ng, :)
(
Sg(n

⋆
g, :)
)H

∣∣Sg(ng, :)
(
Sg(ng, :)

)H∣∣ + I
′

g + Ξ
′

g, (53)

where I
′

g is the interference term, and Ξ
′

g is the noise term.

Obviously, the noise Ξ
′

g ∼ CN
(
0, σ2

Ξ′

g

)
with the power

σ2
Ξ′

g

=
σ2

n∥∥Sg(ng,:)
∥∥2

2

. As for I
′

g , due to the strong directivity
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of beam, we can only consider the spatial neighboring beams

(ng = n⋆
g ± 1). By defining

R(i, j) =
Sg(i, :)

(
Sg(j, :)

)H
∣∣∣Sg(i, :)

(
Sg(i, :)

)H∣∣∣
, (54)

we have

I
′

g =R
(
ng, n

⋆
g − 1

)
qg,n⋆

g−1 +R
(
ng, n

⋆
g + 1

)
qg,n⋆

g+1. (55)

Noting (43) and (44) leads to I
′

g∼CN
(
0, σ2

I′

g

)
with the power

σ2
I′

g

=
β
∑

k=±1

∣∣R
(
ng, n

⋆
g + k

)∣∣2

3NT

∑P
p=0

∣∣γ2
p

∣∣
sin2

(
πG
NT

) . (56)

Thus the distribution of the amplitude
∣∣q̂g,ng

∣∣ is approximately

Gaussian, specifically,

∣∣q̂g,ng

∣∣ ∼ N
(
√
β
∣∣R
(
ng, n

⋆
g

)∣∣∣∣qg,n⋆
g

∣∣,
σ2
in

′
,g

2

)
, (57)

wherein σ2
in

′
,g

= σ2
I′

g

+ σ2
Ξ′

g

. The pairwise misrecognition

probability is given by

Pe

(
fg,n⋆

g
→ fg,ng

)
≈Q




√
β
∣∣qg,n⋆

g

∣∣(1−
∣∣R(ng, n

⋆
g)
∣∣)

√
σ2

in,g
+σ2

in
′
,g

2


, (58)

and the total intra-beam misrecognition probability is given by

Pe

(
fg,n⋆

g

)
≤
∑

ng 6=n⋆
g

Pe

(
fg,n⋆

g
→ fg,ng

)
. (59)

C. Discussions

Including the group and intra-group beam misrecognition,

the total misrecognition probability is

Pe =1−
(
1− Pe

(
Fg⋆

))(
1− Pe

(
fg⋆,n⋆

g⋆

))

≈Pe

(
Fg⋆

)
+ Pe

(
fg⋆,n⋆

g⋆

)
. (60)

The above two misrecognition influence the performance of

the proposed scheme differently. When group misrecognition

Fg⋆ → Fg occurs, UE selects a suboptimal1 beam fg,n⋆
g

with beamforming gain qg,n⋆
g
, which will not cause severe

beamforming gain degradation. However, when intra-group

beam recognition happens, UE will select a beam with almost

no gain, which causes severe performance degradation. From

(58) and (59), it can be seen that the MCM Sg significantly

influences the performance of the scheme.

The aforementioned beam misrecognition analysis for the

ADS-MBT scheme is equally applicable to the ADS-HMBT

scheme. Specifically, the first part of the ADS-HMBT selects

the optimal group, and to analyze the group misrecognition

probability of the ADS-HMBT, we only need to replace Sg

with S
(1)
g in Subsection IV-A. The second part of the ADS-

HMBT selects the optimal beam within the chosen optimal

group, and we can analyze the intra-optimal-group beam

1A beam is ‘suboptimal’ if it is not the optimal beam but still has high
beamforming gain.

misrecognition probability of the ADS-HMBT by applying the

results of Subsection IV-B to the selected optimal group Fg⋆ .

Remark 1: For multi-antenna UE, the interactive search also

causes beam misalignment. Further taking into account UE

side beam training, the total misalignment probability of the

beam training for multi-antenna UE can be expressed as

Pe ≈Pe,BS + Pe,ia + Pe,UE

≈Pe

(
Fg⋆

)
+ Pe

(
fg⋆,n⋆

g⋆

)
+ Pe,ia + Pe,UE , (61)

where Pe,BS is the misalignment probability for BS beam,

which is given in (60), Pe,ia is the misalignment probability

by interactive search, i.e., the probability that interactive search

((12) and (13)) cannot obtain the best beam pair, and Pe,UE

is the misalignment probability for UE beam. Define

Pe,ma =Pe,ia + Pe,UE (62)

as the beam misalignment probability introduced by multi-

antenna UE. Obviosuly, as the number of UE antennas in-

creases, the size of UE codebook increases, which increases

the probability of selecting the neighboring suboptimal beam,

and this increases Pe,ma. In addition, as the effect of channel

multi-path increases, Pe,ma also increases.

V. MERGING COEFFICIENT MATRIX DESIGN

We now discuss how to optimize the MCM design so as

to improve the beam misalignment performance. According

to the analysis presented in the previous section, specifically,

(38) to (60), our aim is to find an Ng × Mg matrix Sg that

minimizes δ(Sg). If Mg ≥ Ng , Sg can always be designed

with orthogonal rows to minimize δ(Sg), i.e., SgS
H
g = INg

and δ(Sg)=0. However, in this case, training overhead cannot

be reduced compared to the exhaustive search.

To reduce the training overhead, in our design, we set

Mg<Ng , which implies that the rows in Sg cannot be made

completely orthogonal to each other. Intuitively, by increasing

Mg , the row vectors of Sg can be selected to be closer to

orthogonal and the power accumulated for each narrow beam

increases, hence improving the performance. By contrast, in-

creasing Ng makes Sg further away from the orthogonality and

decreases the power accumulated for each narrow beam, which

degrades the performance. Our simulation results (Figs. 7 and

9 in Section VI) show that Mg/Ng≈1/2 achieves good per-

formance between training overhead and beamforming gain,

while the parameter configuration (Mg, Ng) = (3, 8) suffers

serious performance degradation.

Given Mg and Ng , we can carefully design the MCM

to make Sg as close to orthogonal as possible in order

to improve the performance. We omit the subscript g for

notational simplicity in our discussion. The design of MCM

can be formulated as the following optimization problem

min
S∈CN×M

δ(S),

s.t. ‖S(:,m)‖2 = 1, 1 ≤ m ≤ M.
(63)
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This problem is equivalent to Grassmannian line packing and

it has been studied by many researchers. The Rankin lower

bound [32], [33] is given by

δ(S) ≥
√

1− (M − 1)N

M(N − 1)
. (64)

For example, for M = 2 and N = 4, an optimal design of

MCM reaching the lower bound δ(S) = 1√
3

is given by

S=
1√
2




cosϕ sinϕ
sinϕ j cosϕ
cosϕ − sinϕ
sinϕ −j cosϕ


 , ϕ = arctan

√
6−

√
2

2
. (65)

But for general M and N with M < N , the optimal design

is hard to solve [34]. To simplify this problem, a popular way

is to introduce an equal gain transmission (EGT) constraint

[35]–[37], which requires every element of S has the same

modulus. This leads to

min
S∈CN×M

δ(S),

s.t. |S(n,m)| = 1√
N
, 1 ≤ n ≤ N, 1 ≤ m ≤ M.

(66)

In the following, we introduce a quantized EGT (QEGT)

MCM design [38] and a random EGT MCM design.

A. QEGT MCM Design

The authors of [38] propose to choose a set of M columns

from the N×N discrete Fourier transform (DFT) matrix, i.e.,

S(n,m)=
1√
N

ej 2π
N

um(n−1), 1 ≤ m ≤ M, 1 ≤ n ≤ N, (67)

where 0 ≤ u1, · · · , uM ≤ N − 1. The correlation coefficient

between the n-th row and the n′-th row is

R(n, n′) =
1

M

M∑

m=1

ej 2π
N

um(n−n′), (68)

which depends only on ∆n = (n − n′)modN . The problem

is then converted into the following optimization

min
0≤u1,··· ,uM≤N−1

max
∆n=1,··· ,N−1

1

M

∣∣∣∣∣

M∑

m=1

ej 2π
N

um∆n

∣∣∣∣∣. (69)

To solve for the optimal u⋆
1, · · · , u⋆

M , one can use an exhaus-

tive search for small M and N , or performs a random search

for large M and N to get a satisfactory solution. Generally, M
and N are not large, and

(
M
N

)
exhaustive search complexity

is acceptable. For M=2 and N=4, a QEGT MCM design is

S =
1

2




1 1
1 j
1 −1
1 −j


 , δ(S) =

1√
2
. (70)

Remark 2: When combining this QEGT MCM design with

the merging principle (18), the beam vector f̄ has NT /N
elements with gain 1√

NT /N
, and the rest of the elements are

exactly 0. Hence BS can shape the merged beam with single

RF chain by only activating the corresponding antennas.

B. Random EGT MCM Design

For large M and N , we show that random matrix is a

feasible design [39]. We choose S(n,m) = 1√
N
ejθn,m , where

∀n,m, θn,m follow the independent uniform distribution in

the interval [0, 2π), i.e., θn,m ∼ U(0, 2π). The correlation

coefficient between the n-th row and n′-th row is

R(n, n′) =
1

M

M∑

m=1

ej(θn,m−θn′,m), (71)

For large M , using the central limit theorem, we have

R(n, n′)
M→∞∼ CN

(
0,

1

M

)
. (72)

Let z = |R(n, n′)|. The cumulative distribution function of z
can be expressed as

F (z) = 1− e−Mz2

, z ≥ 0. (73)

For a randomly generated matrix, the probability of

|R(n, n′)| < ξ, ∀1 ≤ n < n′ ≤ N , is given by

Pr(δ(S) < ξ) =1− Pr
(⋃

1≤n<n′≤N
|R(n, n′)| > ξ

)

≤1−
∑

1≤n<n′≤N

Pr(|R(n, n′)| > ξ)

= = 1− N(N − 1)

2
e−Mξ2 . (74)

For fixed ξ, when M,N → ∞ with fixed M/N , δ(S) < ξ
holds with probability Pr → 1. One can randomly generate

several matrices until the condition δ(S) < ξ is met.

C. A View of Beam Splitting

From the viewpoint of beam splitting, we can provide some

insights on our proposed ADS-MBT scheme. From (29)-(33),

we see that our ADS-MBT scheme estimates beamforming

gain for fg,ng
as q̂g,ng

, ∀g, ng , and selects the beam with the

highest estimated beamforming gain. For a beam fg,ng
∈Fg ,

we simplify fg,ng
as fn by omitting the subscript g again.

Combining (24) to (26) and (29) to (33), the beamforming

gain estimation can be expressed as

q̂n =
yT(S(n, :))H

S(n, :)(S(n, :))H

=
√

βhH FS(S(n, :))H

S(n, :)(S(n, :))H
+

nT(S(n, :))H

S(n, :)(S(n, :))H

=
√

βhHfeq,n + neq,n, 1 ≤ n ≤ N, (75)

in which feq,n = FS(S(n,:))H

S(n,:)(S(n,:))H can be regarded as the n-th

equivalent transmission beam.

For UE, M repeatedly transmissions of the merged beams

are equivalent to N transmissions of the equivalent beams. UE

uses the beamforming gain of feq,n as the approximation to

that of fn. As for the equivalent beam feq,n, we have

feq,n =fn +
∑

n′ 6=n

S(n′, :)(S(n, :))H

S(n, :)(S(n, :))H
fn′ , (76)
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where the second term can be regarded as the interference side-

lobes. Hence δ(S) represents the upper bound of the strength

of sidelobes. Small δ(S) means small sidelobe interference.

Fig. 5 (a) shows a beam group example consisting 4 beams,

and Fig. 5 (b) and (c) show the merged beam patterns and

split equivalent beam patterns. In Fig. 5 (b) and (c), 4 beams

are merged to f̃1 and f̃2 according to the two different MCM

S. From the viewpoint of beam splitting, the merged beams

are split into 4 equivalent beams. Compared with the original

beam patterns shown in Fig. 5 (a), an equivalent beam has one

(a)

(b)

(c)

Fig. 5. Beam splitting pattern examples with different MCM S. (a) Beam
patterns before beam merging. (b) Beam splitting pattern for MCM (65).
(c) Beam splitting pattern for MCM (70). From the viewpoint of beam
splitting, M merged beam transmissions are split into N beams. Splitting
beams have one main lobe and several side lobes.

original beam pattern as the mainlobe and the other patterns

as sidelobes, and the correlation coefficient
S(n′,:)(S(n,:))H

S(n,:)(S(n,:))H

represents the strength of sidelobe. For different MCM S,

sidelobe patterns may be different. In Fig. 5 (b) with the MCM

(65), each equivalent beam has 3 small sidelobes, while in

Fig. 5 (c) with the MCM (65), each equivalent beam has only

2 but larger sidelobes.

VI. NUMERIC SIMULATIONS

In our simulation system, BS employs half-wavelength

spaced ULA and uses the DFT codebook based beamforming

with the number of antennas NT = 64. For the main part

of the simulation study, UE is equipped with single antenna

(NR = 1), As for the channel vector h, its complex gains

γ0 ∼ CN
(
0, σ2

LoS

)
and γp ∼ CN

(
0, σ2

NLoS

)
, 1 ≤ p ≤ P .

The power ratio of the LoS path to the NLoS paths is

denoted as ρ= σ2
LoS/σ

2
NLoS, and the angular spread is set to

θAS=15◦. The system’s signal to noise ratio (SNR) is defined

as SNR=β/σ2
n. In all the simulations, we adopt the grouping

principle (18) and obtain the MCM S from the QEGT design

of Subection V-A. We present the numeric simulation results to

evaluate the performance of our ADS-MBT and ADS-HMBT.

Additionally, we also validate our proposed schemes for the

multi-antenna UE case in the simulation study.

A. ADS-MBT Performance Evaluation

We compare the performance of our ADS-MBT scheme

with the exhaustive search (ES) scheme and the calibrate beam

training scheme [14]. The default beam merging parameters

are set to G = NT /4, Ng = N = 4 and Mg = M = 2. All

these schemes require single feedback in beam training. The

ES scheme requires NT time slots to sweep all the beams,

while the scheme of [14] and our ADS-MBT scheme require

only NT

2 time slots. In terms of computational complexity, the

ES compares the receiving powers of the NT beams, and its

complexity is on the order of O(NT ). The scheme [14] com-

pares the receiving powers of NT /2 wide beams and computes

the power differences between the optimal wide beam and its

adjacent beams, and hence its complexity is O(NT /2+2). As

mentioned in Subsection III-B, the complexity of our ADS-

MBT is O (2NT ). All these schemes have linear complexity in

NT . The performance of these methods are evaluated, in terms

of beam misalignment probability and beamforming gain.

Fig. 6 (a) compares the beam misalignment probability

performance of the ADS-MBT under different multipath con-

ditions with those of other schemes. The theoretical results

of the ADS-MBT are calculated according to the analytical

results of Section IV, while the simulation results are obtained

by Monte Carlo method. From Fig. 6 (a), it can be seen that

the theoretical results closely match the simulation results,

indicating that the analysis of Section IV gives a very good

approximation to the true beam misalignment probability.

As expected, the ES achieves the lower beam misalignment

probability, since it attains the true optimal solution. Our ADS-

MBT outperforms the scheme [14] considerably, especially

when multipath effect is serious. Observe from Fig. 6 (a)

that the performance of our ADS-MBT is close to that of
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Fig. 6. Performance comparison under different multipath conditions for
various schemes with SNR= 10 dB. All these schemes utilize single feed-
back in beam training. (a) Beam misalignment probability comparison, and
(b) Beamforming gain comparison.

the ES. Also as ρ increases and/or P decreases, the LoS

path dominates the beamforming gain, and the performance

gap between the ADS-MBT and the ES reduces. As pointed

out in Section IV, beam misalignment does not necessarily

result in serious performance degradation, and intra-group

beam misalignment often results in selecting a suboptimal

beam. This is supported by the beamforming gain comparison

depicted in Fig. 6 (b), where it is seen that the beamforming

gain achieved by our ADS-MBT is very close to the optimal

ES scheme. Specifically, our scheme achieves around 99%

gain of the ES, under various multi-path conditions.

Fig. 7 (a) and (b) provide the performance comparison at

different SNR with the multipath parameters of P =3 as well

as ρ=0 and ρ=10. In this experiment, we experience various

merging parameters for the ADS-MBT. As can be observed

from Fig. 7 (b), our ADS-MBT attains a beamforming gain

close to that of the optimal ES scheme, particularly in the high

SNR scenario (SNR > 10 dB) or when M/N is sufficiently

large (M/N≥1/2). Essentially, when the equivalent receiving

power for each narrow beam at UE is sufficiently high, the

proposed method can approach the performance of the optimal

ES very well. Also observe that our ADS-MBT outperforms

the scheme [14] considerably in all the scenarios.
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Fig. 7. Performance comparison under different SNR for various schemes
with P = 3 and two different ρ. All these schemes utilize single feedback in
beam training. (a) Beam misalignment probability comparison, and (b) Beam-
forming gain comparison.

B. ADS-HMBT Performance Evaluation

We compare the performance of our ADS-HMBT scheme

with the 2-resolution hierarchical search (two stage search for

short) [10] and the subarray-based beam training scheme [21].

For fairness, appropriate parameters are set to ensure that all

these schemes use two feedback. The default parameters of the

ADS-HMBT are set to G=NT /4, Ng=N=4, Mg=M=2,

and Kg = 1, 1 ≤ g ≤ G. For the two stage search and

subarray-base beam training, each wide beam contains N = 4
narrow beams, so that the number of wide beams equals to

G = NT

4 . For the above parameter settings, the two-stage

search and subarray-based search require G + N = NT

4 + 4
beam sweeping time slots, while our ADS-HMBT requires

G + Kg⋆ = NT

4 + 1 beam sweeping time slots. The com-

putational complexity of the ADS-HMBT is on the order of

O
(∑G

g=1NgKg+Ng⋆

(
Mg⋆−Kg⋆

))
=O(NT +N). Both the

two-stage search [10] and the subarray-based scheme [21]

need to scan all the wide beams and the narrow beams in

the optimal wide beam range, and hence their complexity

are on the order of O(NT /N + N). Clearly, all the three

schemes has linear complexity in NT . Similarly, we evaluate

the performance in terms of beam misalignment probability

and beamforming gain.

Fig. 8 (a) and (b) compare the beam misalignment prob-
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Fig. 8. Performance comparison under different multipath conditions for
various schemes with SNR = 10 dB. All these schemes use two feedback in
beam training. (a) Beam misalignment probability comparison, and (b) Beam-
forming gain comparison.

ability and beamforming gain performance, respectively, for

the schemes under different multipath conditions. The results

of Fig. 8 demonstrate that our ADS-HMBT outperforms the

two-stage search [10] and the subarray-based benchmark [21],

especially when multipath effect is prominent (ρ ≤ 5dB and

P ≥ 3). More specifically, Fig. 8 (a) shows that our ADS-

HMBT reduces the beam misalignment probability by more

than 50%, compared to the two benchmark schemes, while

Fig. 8 (b) shows that our ADS-HMBT scheme improves the

beamforming gain by 0.5 dB to 0.8 dB under various multipath

conditions, over the two benchmark schemes. The performance

improvement mainly comes from the ADS merging principle.

Specifically, in our ADS-HMBT, the optimal merged (wide)

beam is more easily selected due to the ADS property (22),

and the gain gap of narrow beams in a group is larger, which

makes it easier to distinguish the optimal narrow beam from

others.

Fig. 9 (a) and (b) depict the beam misalignment probability

and beamforming gain performance, respectively, at different

SNR for our ADS-HMBT with different emerging parameters
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Fig. 9. Performance comparison under different SNR for various schemes
with P = 3 and two different ρ. All these schemes use two feedback in beam
training. (a) Beam misalignment probability comparison, and (b) Beamform-
ing gain comparison.

and the two benchmarks. It can be seen from Fig. 9 (a) that

the misalignment probability of our ADS-HMBT decreases

rapidly with the increase of SNR. Under both LoS-dominant

and multipath scenarios, the ADS-HMBT outperforms the

two benchmark schemes. It can be seen from Fig. 9 (b)

that the beamforming gain obtained by the ADS-HMBT is

higher than those of the two benchmarks when SNR ≥ 4 dB

or M/N is sufficient large (M/N ≥ 1/2). Basically, the

ADS-HMBT makes better use of the channel angular domain

property, compared to the two-stage search and subarray-based

beam training, which enables it to achieve better performance

both in training overhead and beamforming gain. The only

situation that our ADS-HMBT performs poorer than the two

benchmarks is for the merging parameters of N = 8, M = 3
and K=2 as well as SNR< 4 dB. If M/N is too small, the

narrow beams in a group may be difficult to distinguish under

poor SNR condition, leading to performance degradation.

C. Beam Training Overhead Comparison

Thirdly we compare the beam training overhead among var-

ious beam training schemes in Fig. 10 (a) and (b), in terms of

time slots required. The training overhead and computational

complexity comparison are summarized in Table I. The ES, the

calibrated beam training [14] and our ADS-MBT only require

one feedback, while the two stage search [10], the subarray-

based beam training [21] and our ADS-HMBT require two

feedback. Generally, time slots overhead is proportion to the
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TABLE I
THE TRAINING OVERHEAD AND COMPUTATIONAL COMPLEXITY COMPARISON

Exhaustive Baseline [14] Hierarchical [10], [21] ADS-MBT ADS-HMBT

Required transmissions NT NT /2 NT /N +N MNT /N KNT /N + (M −K)
Required feedback 1 1 2 1 2

Computational complexity O(NT ) O(NT /2) O(NT /N +N) O(MNT ) O(KNT +MN)

number of beams. It can be seen from Fig. 10 (a) that our

ADS-MBT significantly reduces time slot overhead, compared

with the optimal ES. Depending on merging parameters, our

ADS-MBT imposes the same or lower number of time slots,

compared to the calibrate beam training [14]. Compared with

the two stage search and the subarray-based beam training

[21], Fig. 10 (b) shows that our ADS-HMBT imposes lower

time slot overhead. The results also confirm that our ADS-

HMBT further reduces time slot overhead over our ADS-MBT,

at the expense of an extra feedback.

The results of Fig. 10 (a) and (b) indicate that in terms of

beam training overhead, our proposed schemes have clearly

advantage over the ES and the existing beam training schemes.

In terms of beamforming performance, as shown in Sub-

section VI-A, our ADS-MBT closely approaches the opti-
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Fig. 10. Time slot overhead comparison among various beam training
schemes. (a) Overhead comparison for one feedback beam training schemes,
and (b) Overhead comparison for two feedback beam training schemes.

mal beamforming gain of the ES, and it significantly out-

performs the calibrate beam training [14]. As can be seen

in Subsection VI-B, our ADS-HMBT scheme significantly

improves the achievable beam training performance over the

two stage search [10] and the subarray-base beam training

[21]. Furthermore, all these schemes compared have com-

putational complexity on the order of NT . The numerical

simulation results therefore demonstrate that our proposed

schemes achieve better tradeoff between beaming training

overhead and beamforming gain.

D. Performance Comparison for Multi-Antenna UE

Finally, we validate the effectiveness of our proposed

schemes for multi-antenna UE. According to IEEE 802.11ad

specifications [30], interactive-search is adopted to decou-
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Fig. 11. Performance comparison among various beam training schemes
in multi-antenna UE case with SNR = 5 dB and ρ = 10 dB. (a) Beam
misalignment probability comparison, and (b) Beamforming gain comparison.
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ple UE beamforming and BS beamforming. Our proposed

schemes are applied to BS side beam training. The beam

merging parameters of our proposed schemes are set to M=2,

N = 4 and K = 1, while SNR is set to 5 dB and ρ is set to

10 dB. Fig. 11 (a) presents the beam misalignment probability

comparison. As the number of UE antenna increases, the size

of UE codebook increases, which increases the probability of

selecting the neighboring suboptimal beam. Hence, the beam

misalignment probability increases with the number of UE

antennas. Nevertheless, it can be seen from Fig. 11 (b) that

the beamforming gain degradation of our proposed schemes

compared to the optimal ES scheme is very small. Specif-

ically, our proposed schemes can still achieve 99% gain of

the ES. Moreover, our proposed schemes outperform other

benchmark schemes in terms of both misalignment probability

and beamforming gain, which demonstrates the effectiveness

of our proposed schemes in the multi-antenna UE case.

VII. CONCLUSIONS

In this paper, we have proposed the ADS-MBT and ADS-

HMBT schemes to support multiple beam simultaneously

training with substantially reduced beam training overhead

in the one data stream application. We have carried out the

detailed theoretical analysis of beam misrecognition for our

proposed schemes, which has further guided the design of

MCM. Moreover, numerical results have shown the effective-

ness and superiority of our proposed beam training schemes.

More specifically, like the optimal exhaustive search, our

ADS-MBT only requires one feedback but it is capable of

achieving almost the same beamforming gain as the exhaus-

tive search with significantly lower beam training overhead.

Moreover, compared with the calibrate beam training scheme

which has the same beam training overhead, the beamforming

gain of our ADS-MBT is significantly better. Our ADS-HMBT

exploits two feedback to further reduce the beam training

overhead. Compared with the existing two stage search scheme

and the subarray-based beam training scheme, which also

require two feedback, our ADS-HMBT achieves considerably

better beam training performance while imposing lower beam

training overhead.

In this work, we focus on the single-stream transmission

in angular concentrated channels. Multi-stream transmission

is often considered in the rich-scattering environment, where

the angular concentration property may not hold. If there are

multiple high-gain beams in different groups, our proposed

schemes still work. However, if there are multiple high-

gain beams in one group, the beamforming gain estimation

accuracy may be affected. Hence, our proposed schemes may

suffer from performance degradation. Our future work will

investigate the robust extension of our proposed schemes to

the multi-stream transmission.

APPENDIX

UE FEED BACK PROCEDURE IN INITIAL ACCESS

In the initial access beam training procedure, the purpose of

UE feedback is to inform BS the optimal beam selected by UE.

When UE feeds back, BS does not know which beamforming

vector should be used to receive the feedback. In other words,

uplink has not been established.

Therefore, the existing initial access feedback process [30]

relies on a contention procedure. Specifically, BS divides the

time-frequency resources into blocks. Each block is associated

with a beam, and in each block, BS uses the corresponding

beam to receive signal.

UE feedback is constituted by sending a contention based

preamble in the block corresponding to its selected optimal

beam (or the optimal wide beam), so that BS can reliably

receive the preamble using the optimal beam with high beam-

forming gain. Thus, BS knows the selected optimal beam

by UE. In other words, UE successfully provided the beam

information feedback. This information will enable BS to

establish its downlink for transmission to UE.
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