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1 Introduction

It is well-known that superstring n-point color-ordered disk amplitudes satisfy monodromy
relations which imply that the number of linearly independent amplitudes is (n− 3)!, for all
α′ corrections [1, 2]. These relations involve coefficients that depend on Mandelstam vari-
ables [3] and are famously related to the Bern-Carrasco-Johansson (BCJ) color-kinematics
amplitude relations in the field-theory limit. In this paper we investigate a weaker set of
relations, called KK-like relations [4], of higher α′ corrections to disk amplitudes refined
by their MZV content [5–7]. More precisely, writing the superstring color-ordered disk
amplitude as a series of MZV disk amplitudes

Astring(1, 2, . . . , n) = ASYM(1, 2, . . . , n) +
∞∑
m=0

∑
M

Aζm2 ζM (1, 2, . . . , n) (1.1)

where M runs over all MZV basis elements [8] that do not contain factors of ζ2, we will
focus on relations of the form ∑

σ

cσAζm2 ζM (σ) = 0, (1.2)

where the coefficients cσ are rational numbers independent of Mandelstam invariants.
It is well-known that (1.1) is cyclically symmetric and satisfies Astring(1, 2, . . . , n) =
(−1)nAstring(n, n − 1, . . . , 1), so the basis dimensions of all MZV disk amplitudes is at
most 1

2(n− 1)!. When the superstring amplitude (1.1) is restricted to its field-theory limit
ASYM, the KK-like relations correspond to the famous Kleiss-Kuijf (KK) relations [9], under
which there are only (n − 2)! independent amplitudes. However, it is not yet known in
general the form of the KK-like relations and the corresponding basis dimensions for the
ζm2 ζM components of (1.1) with m ≥ 2. For instance, a brute-force search indicates that
the upper bound 1

2(n− 1)! is saturated for Aζ2
2ζM

(1, 2, . . . , n) when n = 4, 5, 6 and 7, but
the n = 8 case is different. In fact,

#
(
Aζ2

2ζM
(1, 2, . . . , 8)

)
= 2519 = 1

2 7!− 1. (1.3)

In this paper, this result and its generalization will be obtained as

#
(
AζM (1, 2, . . . , n)

)
=
[
n− 1

1

]
= (n− 2)! (1.4)

#
(
Aζ2ζM (1, 2, . . . , n)

)
=
[
n− 1

3

]

#
(
Aζm2 ζM (1, 2, . . . , n)

)
=
[
n− 1

1

]
+
[
n− 1

3

]
+ · · ·+

[
n− 1

2m+ 1

]
, m ≥ 2 .

We will see that the general KK-like relations are closely related to the mathematical
framework of the Solomon descent algebra [10–16]. To see this we will define the color-
dressed permutation

Pn =
∑

σ∈Sn,σ(1)=1
Tr(T σ)σ , T σ := T σ(1)T σ(2) · · ·T σ(n) (1.5)

– 1 –
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which is inspired by the expression of the color-dressed disk amplitudes, where T i := T ai

denotes a Chan-Paton factor. When the closed formula from [17] for the color-trace
decomposition [18] is plugged into (1.5), the permutations appearing as coefficients with
respect to a basis of color factors define what we call BRST invariant permutations γ1|P1,...,Pk

with 1 ≤ k ≤ n−1. We conjecture the following closed formula

γ1|P1,...,Pk = 1.E(P1)�E(P2)� . . .�E(Pk) (1.6)

where E(P ) satisfying E(R�S) = 0 for R,S 6= ∅ is the Berends-Giele idempotent, defined
in section 2.2 from mapping the permutations of the Solomon idempotent [19] into their
inverses. Then in section 3.1 we will find evidence that these BRST-invariant permutations
encode the general KK-like relations as

AζM (γ1|P1,...,Pk) = 0, k 6= 1, (1.7)
Aζ2ζM (γ1|P1,...,Pk) = 0, k 6= 3
Aζm2 ζM (γ1|P1,...,Pk) = 0, k 6= 1, 3, 5, . . . , 2m+ 1, m ≥ 2.

Studying the color-dressed string disk amplitude we will obtain, following the results of [20],
a correspondence between the above permutations and kinematics from the string disk
amplitudes. More precisely, the duality from [20] is generalized to

ASYM(1, 2, . . . , n) ←→ γ
(1)
123...n , Aζ2(1, 2, . . . , n) ←→ γ

(3)
123...n , (1.8)

where γ(1) and γ(3) are orthogonal idempotents of the (inverse) descent algebra constructed
from linear combinations of γ1|P1,...,Pk with k = 1 and k = 3 respectively. This interpretation
is important because we can use a theorem from the work of Garsia and Reutenauer [11] to
prove results conjectured in [20].

In section 3.3, the BRST-invariant permutations will be used to define higher-mass
BRST-invariant superfields via

γ1|P1,P2,...,Pk ↔ Astring(γ1|P1,P2,...,Pk) , Aζm2 ζM (γ1|P1,...,Pk) = k!Cζ
m
2 ζM

1|P1,...,Pk
. (1.9)

As shown in section 3.4, the case for ζ2 reduces to the BRST-invariants studied in [20, 21].
In the appendices we review the descent algebra and collect various proofs and explicit
expansions omitted from the main text.

1.1 Conventions

Words from the alphabet N = {1, 2, . . .} will be denoted either by capital Latin letters or,
especially when viewed as elements of the permutation group, by lower case Greek letters.
The symmetric group Sn acts on words of length n via the right-action multiplication [16]

P ◦ σ = pσ(1)pσ(2) . . . pσ(n), (1.10)

where pi denotes the ith letter of P . For example abcd ◦ 3124 = cabd. The inverse σ−1

of a permutation σ of length n is such that σ ◦ σ−1 = σ−1 ◦ σ = 12 . . . n. For example,
(2314)−1 = 3124. For typographical convenience, we write a permutation σ as Wσ.

– 2 –



J
H
E
P
0
3
(
2
0
2
2
)
0
1
2

2 The combinatorics of color-dressed permutations

2.1 Color-dressed permutations

In this section we will investigate the combinatorics of the color-dressed permutations Pn

Pn =
∑

σ∈Sn,σ(1)=1
Tr(T σ)Wσ , T σ := T σ(1)T σ(2) · · ·T σ(n) , (2.1)

arising from decomposing [18] the traces of color factors into symmetrized traces d12...k and
structure constants fabc of the gauge group [17]

Tr(T 0T 1 · · ·Tn−1) =
∑

Sn−13σ=σ1···σk

in−1−kκσ1 · · ·κσkd
0a1···akF σ1

a1 · · ·F
σk
ak
, (2.2)

where σ = σ1 · σ2 · . . . · σk denotes the decreasing Lyndon factorization of σ to be defined
below, F σa for a word σ and a letter a is defined recursively by FPja = FPb f

bja with base
case F ia = δia. The coefficients κσ are defined in (A.20). In addition, the symmetrized trace
and the structure constant are given by

d12...k := 1
k!
∑
σ∈Sk

Tr(T σ), d12 := 1
2δ

12, [T a, T b] = ifabcT c. (2.3)

The decreasing Lyndon factorization (dLf) of σ is defined as [11, 22] σ = σ1.σ2 . . . σk
representing the unique deconcatenation of σ into Lyndon subwords σ1, . . . , σk such that
σ1 > · · · > σk in the lexicographical order of the alphabet N = {1, 2, . . . , }. Representing
the concatenation by a dot to distinguish the subwords σi in the dLF factorization of σ, we
have, for example 1432 = 1432, 2134 = 2.134, 54132 = 5.4.132, 42671835 = 4.267.1835.

Definition (BRST-invariant permutations). The BRST-invariant permutations are
the coefficients with respect to the basis of color factors d1a1...akF σ1

a1 . . . F
σk
ak

, where σ1 · · ·σk
is the decreasing Lyndon factorization of σ, in the color-dressed permutation (2.1), i.e.

Pn =
∑

σ∈Sn−1

in−1−kd1a1...akF σ1
a1 · · ·F

σk
ak
γ1|σ1,...,σk , (2.4)

The reason for this terminology will become clear in (3.23) when γ1|σ1,σ2,σ3 will be
associated to BRST invariants superfields in the pure spinor formalism. For example,
plugging Tr(T 1T 2T 3) = d1a1a2F 2

a1F
3
a2 + i

2d
1aF 23

a into (2.1) yields

P3 = d1abF 2
aF

3
b γ1|2,3 + id1aF 23

a γ1|23 , (2.5)

with
γ1|2,3 = W123 +W132 , γ1|23 = 1

2W123 −
1
2W132 . (2.6)

Repeating the same exercise for n = 4 using (2.2) we obtain

P4 = d1abcF 2
aF

3
b F

4
c γ1|2,3,4 (2.7)

+ id1abF 23
a F 4

b γ1|23,4 + id1abF 24
a F 3

b γ1|24,3 + id1abF 2
aF

34
b γ1|2,34

+ i2d1aF 234
a γ1|234 + i2d1aF 243

a γ1|243

– 3 –
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where the BRST-invariant permutations are given by

γ1|2,3,4 = W1234 +W1243 +W1324 +W1342 +W1423 +W1432 , (2.8)

γ1|23,4 = 1
2W1234 + 1

2W1243 −
1
2W1324 −

1
2W1342 + 1

2W1423 −
1
2W1432 ,

γ1|2,34 = 1
2W1234 −

1
2W1243 + 1

2W1324 + 1
2W1342 −

1
2W1423 −

1
2W1432 ,

γ1|24,3 = 1
2W1234 + 1

2W1243 + 1
2W1324 −

1
2W1342 −

1
2W1423 −

1
2W1432 ,

γ1|234 = 1
3W1234 −

1
6W1243 −

1
6W1324 −

1
6W1342 −

1
6W1423 + 1

3W1432 ,

γ1|243 = −1
6W1234 + 1

3W1243 −
1
6W1324 + 1

3W1342 −
1
6W1423 −

1
6W1432 .

For n = 5 we obtain

P5 = d1abcdF 2
aF

3
b F

4
c F

5
d γ1|2,3,4,5 (2.9)

+ id1abcF 23
a F 4

b F
5
c γ1|23,4,5 + id1abcF 24

a F 3
b F

5
c γ1|24,3,5 + id1abcF 25

a F 3
b F

4
c γ1|25,3,4

+ id1abcF 2
aF

34
b F 5

c γ1|2,34,5 + id1abcF 2
aF

35
b F 4

c γ1|2,35,4 + id1abcF 2
aF

3
b F

45
c γ1|2,3,45

+ i2d1abF 234
a F 5

b γ1|234,5 + i2d1abF 243
a F 5

b γ1|243,5 + i2d1abF 235
a F 4

b γ1|235,4

+ i2d1abF 245
a F 3

b γ1|245,3 + i2d1abF 253
a F 4

b γ1|253,4 + i2d1abF 254
a F 3

b γ1|254,3

+ i2d1abF 345
a F 2

b γ1|345,2 + i2d1abF 354
a F 2

b γ1|354,2

+ i2d1abF 23
a F 45

b γ1|23,45 + i2d1abF 24
a F 35

b γ1|24,35 + i2d1abF 25
a F 34

b γ1|25,34

+ i3d1aF 2345
a γ1|2345 + i3d1aF 2354

a γ1|2354 + i3d1aF 2435
a γ1|2435

+ i3d1aF 2453
a γ1|2453 + i3d1aF 2534

a γ1|2534 + i3d1aF 2543
a γ1|2543

where the various γ1|A1,A2,...,Ak are listed in the appendix C.

2.1.1 Relating the BRST-invariant permutations with the descent algebra
The permutations in each γ1|A1,A2,...,Ak turn out to be related to the descent algebra reviewed
in the appendix A. To see this consider γ1|23,4 from (2.8), relabel i→ i− 1 and strip off the
leading “0” (denoted by ×) to obtain

γ×|12,3 = 1
2 W123︸ ︷︷ ︸
∈D∅

+1
2 W132︸ ︷︷ ︸
∈D{2}

−1
2 W213︸ ︷︷ ︸
∈D{1}

−1
2 W231︸ ︷︷ ︸
∈D{2}

+1
2 W312︸ ︷︷ ︸
∈D{1}

−1
2 W321︸ ︷︷ ︸
∈D{1,2}

. (2.10)

The above permutations are not in the descent algebra D3 since permutations in the same
descent class have different coefficients (see also proposition 2.1 from [23]). However, the
inverse permutations in θ(γ×|12,3) do belong to the same descent classes:

θ
(
γ×|12,3

)
= 1

2 W123︸ ︷︷ ︸
∈D∅

+1
2 W132︸ ︷︷ ︸
∈D{2}

−1
2 W213︸ ︷︷ ︸
∈D{1}

−1
2 W312︸ ︷︷ ︸
∈D{1}

+1
2 W231︸ ︷︷ ︸
∈D{2}

−1
2 W321︸ ︷︷ ︸
∈D{1,2}

(2.11)

= 1
2D∅ −

1
2D{1} + 1

2D{2} −
1
2D{1,2} ,

as can be verified using (A.3). This suggests that the BRST-invariant permutations belong
to the inverse descent algebra D′n := θ(Dn). To find an algorithm that generates these
permutations, we will consider the inverse of the Eulerian idempotent (A.20).

– 4 –
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2.2 The Berends-Giele idempotent

Define the Berends-Giele idempotent1 En as the inverse of the Eulerian idempotent (A.20):

En =
∑
σ∈Sn

κσ−1σ , E(P ) = EP := P ◦ En , |P | = n . (2.12)

The reason for this terminology is the correspondence with the standard Berends-Giele
current of Yang-Mills theory [24], see section 3.2. A few examples of (2.12) are

E(1) = W1, E(12) = 1
2(W12 −W21) , (2.13)

E(123) = 1
3W123 −

1
6W132 −

1
6W213 −

1
6W231 −

1
6W312 + 1

3W321 ,

while the expansion of E(1234) can be found in the appendix C.1.

Proposition (Shuffle Symmetry). The Berends-Giele idempotent (2.12) satisfies

E(R�S) = 0 . (2.14)

Proof.2 Since the sum in (2.12) is over all permutations we rename P ◦ σ = τ and sum
over τ . Notice that σ−1 = τ−1 ◦ P , so E(P ) =

∑
σ κσ−1P ◦ σ =

∑
τ κ(τ−1◦P )τ and therefore

E(R�S) =
∑
τ

κ(τ−1◦(R�S))τ =
∑
τ

κ(τ−1(R)�τ−1(S))τ = 0 (2.15)

where the last equality follows from (A.22) and the crucial observation in (1.5) of [11] that
σ−1 ◦ (R�S) = σ−1(R)�σ−1(S), where σ−1(R) denotes the word obtained by replacing
each letter in R by its image under σ−1.

2.3 Inverse idempotent basis and BRST-invariant permutations

Following the realization in section 2.1.1 that the BRST-invariant permutations are related
to the inverse of the descent algebra, we define the inverse of the idempotent basis Ip as

Ip1p2...pk(P1, P2, . . . , Pk) := θ(Ip1p2...pk)(P ) , |Pi| = pi , P1P2 . . . Pk = P (2.16)

where the map θ is defined in (A.14). For example I21(12, 3) = 1
2
(
W123 +W132 −W213 −

W231 +W312 −W321
)
. See (B.4) for the explicit permutations in I22(12, 34).

An alternative representation is proven in the appendix B

Ip1p2...pk(P1, P2, . . . , Pk) = E(P1)�E(P2)� . . .�E(Pk) , |Pi| = pi , (2.17)

from which it follows that (P̃ denotes the reversal3 of P )

I...pi...(. . . , R�S, . . .) = 0, R, S 6= ∅, |R|+ |S| = pi , (2.18)
I...pi...pj ...(. . . , Pi, . . . , Pj , . . .) = I...pj ...pi...(. . . , Pj , . . . , Pi, . . .) ,

Ĩp1...pk(P1, . . . , Pk) = (−1)#even(p)Ip1...pk(P1, . . . , Pk) , (2.19)
1The inverse of an idempotent is also idempotent.
2We know from [25] that any Lie polynomial can be expanded as

∑
σ
Mσσ with MR�S = 0 for nonempty

R,S, so it follows that if Γ is a Lie polynomial then the word function F(P ) := P ◦ θ(Γ) satisfies the shuffle
symmetry F(R�S) = 0 for R,S 6= ∅.

3If Q = q1 . . . qn then its reversal is the word Q̃ := qn . . . q1.
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where #even(p) denotes the number of even parts in the composition p. To see this note
that if a function satisfies the shuffle symmetry or, in other words, belongs to the dual space
of Lie polynomials [26], then F̃ (P ) = (−1)|P|−1F (P ) and (2.19) follows from (2.17).

Finally, based on multiple examples we conjecture that

γ1|P1,...,Pk = 1.Ip1...pk(P1, . . . , Pk) = 1.E(P1)�E(P2)� . . .�E(Pk) , pi = |Pi| . (2.20)

The shuffle symmetry of E(Pi) can be used to fix the first letter of Pi and the commutativity
of the shuffle product implies total symmetry in word exchanges, so the basis dimension of
γ1|P1,...,Pk with n letters is given by the Stirling cycle numbers [27]

#
(
γ1|P1,P2,...,Pk

)
=
[
n− 1
k

]
,

k∑
i=1
|Pi| = n− 1 , (2.21)

which explains the total number of terms in Pn as
∑n−1
k=1

[n−1
k

]
= (n− 1)!.

2.4 BRST-invariant permutations and orthogonal idempotents

Since the BRST-invariant permutations have been related to the idempotent basis of the
(inverse) descent algebra in (2.20) we may construct orthogonal idempotents as in section A.3
by taking the inverse of the Reutenauer idempotents (A.32) γ(i)

12...n := 1.θ
(
E(i)), where the

labels in θ
(
E(i)) must be shifted as i→ i+ 1 prior to the left concatenation with the letter

1. Equivalently, from (A.30), (A.32), and (2.20) we obtain

γ
(k)
12...n =

∑
23...n=P1...Pk

1
k!γ1|P1,...,Pk . (2.22)

From the discussion of section A.3 it follows that (2.22) are orthogonal idempotents in the
inverse descent algebra D′n satisfying (δij is the Kronecker delta)

n−1∑
k=1

γ
(k)
12...n = W12...n , γ

(i)
12...n ◦ γ

(j)
12...n = δijγ

(i)
12...n (2.23)

For example, from the BRST-invariant permutations in (2.6) we get

γ
(1)
123 ≡ γ1|23 = 1

2W123 −
1
2W132, γ

(2)
123 ≡

1
2γ1|2,3 = 1

2W123 + 1
2W132 , (2.24)

which clearly satisfies (2.23). Similarly, at multiplicity four the definition (2.22)

γ
(1)
1234 = γ1|234 , γ

(2)
1234 = 1

2
(
γ1|23,4 + γ1|2,34

)
, γ

(3)
1234 = 1

3!γ1|2,3,4 , (2.25)

yields

γ
(1)
1234 = 1

3W1234 −
1
6W1243 −

1
6W1324 −

1
6W1342 −

1
6W1423 + 1

3W1432 , (2.26)

γ
(2)
1234 = 1

2W1234 −
1
2W1432 ,

γ
(3)
1234 = 1

6W1234 + 1
6W1243 + 1

6W1324 + 1
6W1342 + 1

6W1423 + 1
6W1432 .

– 6 –
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It is straightforward but tedious [28] to check that the above satisfy (2.23). At multiplicity
five, the orthogonal idempotents are given by

γ
(1)
12345 = γ1|2345 , γ

(3)
12345 = 1

3!
(
γ1|23,4,5 + γ1|2,34,5 + γ1|2,3,45

)
,

γ
(2)
12345 = 1

2
(
γ1|234,5 + γ1|23,45 + γ1|2,345

)
, γ

(4)
12345 = 1

4!γ1|2,3,4,5 , (2.27)

whose expansions can be found in the appendix C and can be checked to obey (2.23).

3 The descent algebra and string disk amplitudes

3.1 KK-like relations of α′ corrections to disk amplitudes

The color-dressed string disk amplitude

Mn =
∑

σ∈Sn−1

Tr
(
T 1T σ(2) · · ·T σ(n))Astring(1, σ(2), . . . , σ(n)) , (3.1)

is a sum over disk orderings of the open string color-ordered amplitude weighted by traces
of Chan-Paton factors. The explicit form of the disk amplitudes is a linear combination of
field-theory amplitudes ASYM of ten-dimensional super-Yang-Mills [29] given by [30, 31]

Astring(P ) =
∑

Q,R∈Sn−3

Z(P |1, R, n, n−1)S[R|Q]1ASYM(1, Q, n−1, n) (3.2)

where S(P |Q)1 is the field-theory KLT kernel [32–34] conveniently computed recursively by
S[A, j|B, j, C]i = (kiB · kj)S[A|B,C]i, with S[∅|∅]i := 1 [26, 35, 36]. In addition, Z(P |Q)
are the non-abelian Z-theory amplitudes of [31, 37]. The color-ordered amplitudes are
decomposed as

Astring(1, 2, . . . , n) = ASYM(1, 2, . . . , n) +
∞∑
m=0

∑
M

Aζm2 ζM (1, 2, . . . , n) (3.3)

where M runs over all MZV basis [8, 38] elements4 not containing factors of ζ2, i.e.
ζM = {ζ3, ζ5, ζ7, ζ3,5, . . .}. From now on we will use the shorthand MZV amplitudes for the
Aζm2 ζM components of (3.3), and we will see below that components with the same α′ but
different MZV content satisfy different relations.

It is well-known that the color-ordered string disk amplitudes are cyclically symmetric
and parity invariant [39]

Astring(1, 2, . . . , n) = Astring(2, 3, . . . , n, 1) (3.4)
Astring(1, 2, . . . , n) = (−1)nAstring(n, n− 1, . . . , 2, 1) .

These relations imply an upper bound on the number of linearly-independent amplitudes
Aζm2 ζM (1, 2, . . . , n) of 1

2(n− 1)!. We want to know whether the different MZV amplitudes
in (3.3) satisfy additional KK-like relations and their corresponding basis dimensions, where:

4This is the same organization of the motivic decomposition of the disk amplitudes [6]. The power of α′

is equal to the weight of the associated MZV, e.g. both Aζ2ζ3 and Aζ5 contain α′5.
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Definition (KK-like relation). An identity of the form∑
σ

cσAζm2 ζM (σ) = 0, (3.5)

where the coefficients cσ are rational numbers is said to be KK-like [4].

For an example KK-like relation, one can verify that the ζ2 amplitudes satisfy [20],

Aζ2(1, 2, 3, 4, 5) + perm(2, 4, 5) = 0 . (3.6)

A central observation of this paper is that the BRST-invariant permutations γ1|P1,...,Pk seem
to encode all the KK-like relations among the α′-correction amplitudes. While the cyclicity
relation in (3.4) was used in the definition (3.1) to fix the label in γ1|..., the parity and
cyclicity relations (3.4) are encoded by compositions of n−1 with even number of parts:

Astring(γ1|P1,...,Pk) = 0, k even. (3.7)

See the appendix D for a proof. The identity
∑
k even

[n−1
k

]
= 1

2(n − 1)! agrees with the
counting of linearly independent amplitudes following from (3.4). Note that (3.7) implies
the parity relation in (3.4) as∑

k even

1
k!A

string(γ1|P1,...,Pk) = Astring(1, 2, . . . , n)− (−1)nAstring(1, n, n−1, . . . , 2) . (3.8)

Based on explicit computations, we find that MZV amplitudes with different ζm2 content5

satisfy the following KK-like relations:

AζM (γ1|P1,...,Pk) = 0, k 6= 1, (3.9)
Aζ2ζM (γ1|P1,...,Pk) = 0, k 6= 3
Aζm2 ζM (γ1|P1,...,Pk) = 0, k 6= 1, 3, 5, . . . , 2m+ 1, m ≥ 2,

which constitute the descent algebra decomposition of KK-like relations. To count the basis
dimensions implied by (3.9) we recall that #

(
γ1|P1,...,Pk

)
=
[n−1
k

]
and

∑n−1
k=1

[n−1
k

]
= (n− 1)!.

Thus, subtracting the dimensions of the BRST-invariant permutations from the number of
cyclically symmetric n-point amplitudes6 leads to

#
(
AζM (γ1|P1,...,Pk)

)
=
[
n− 1

1

]
= (n− 2)! , (3.10)

#
(
Aζ2ζM (γ1|P1,...,Pk)

)
=
[
n− 1

3

]
, (3.11)

#
(
Aζm2 ζM (γ1|P1,...,Pk)

)
=
[
n− 1

1

]
+
[
n− 1

3

]
+ · · ·+

[
n− 1

2m+ 1

]
. (3.12)

5The string monodromy relations [1, 2] give rise to deformations of the field-theory BCJ relations by
powers of α′2mζm2 [5, 35]. Since the BCJ-satisfying ζM components lead to the minimum (n− 3)! dimension,
they are not expected to modify the dimensions within a given ζm2 ζM class.

6Note that 1
2 (n− 1)! is equal to the sum over

[
n−1
k

]
with even k. Since k even is included in (3.9), the

Stirling cycle numbers are subtracted from (n− 1)!.
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k Astring(γ1|P1,...,Pk) = 0 Astring(γ1|P1,...,Pk) 6= 0

7 ζ7, ζ5, ζ3, ζ
2
3 , ζ2, ζ2ζ5, ζ2ζ3, ζ

2
2 , ζ

2
2ζ3 ζ3

2

6 ∀ζM ×

5 ζ7, ζ5, ζ3, ζ
2
3 , ζ2, ζ2ζ5, ζ2ζ3 ζ2

2 , ζ
2
2ζ3, ζ

3
2

4 ∀ζM ×

3 ζ7, ζ5, ζ3, ζ
2
3 ζ2, ζ2ζ5, ζ2ζ3, ζ

2
2 , ζ

2
2ζ3, ζ

3
2

2 ∀ζM ×

1 ζ2, ζ2ζ3, ζ2ζ5 ζ7, ζ5, ζ3, ζ
2
3 , ζ

2
2 , ζ

2
2ζ3, ζ

3
2

Table 1. Overview of the descent algebra symmetries of higher α′ corrections to string disk
amplitudes of up to n = 8 points displayed by their MZV content of weight w ≤ 7. The entries
depend only on the number of parts k of the composition of n−1. However, a partition with k parts
cannot be probed by disk amplitudes with fewer than k+1 points.

The dimension (3.10) corresponds to the number of independent amplitudes under the
Kleiss-Kuijf relations ASYM(P1Q,n)− (−1)|P|ASYM(1, P̃�Q,n) = 0, which is also valid for
the BCJ-satisfying ζM corrections. The dimension (3.11) was obtained in [20] following a
similar discussion of the all-plus one-loop amplitudes of [4] (see also [40]).

The basis dimension formula (3.12) and the corresponding amplitude relations in (3.9)
are new. Interestingly, they imply that the basis dimension of the ζm2 ζM components with
m ≥ 2 is given by 1

2(n− 1)! only when n ≤ 2m+ 3. More explicitly,

#
(
Aζm2 ζM (1, 2, . . . , n)

)
= 1

2(n− 1)!, n = 4, 5, . . . , 2m+ 3 . (3.13)

For a deviation from the 1
2(n− 1)! dimension, we have, for example with m = 2

#
(
Aζ2

2ζM
(1, 2, . . . , 8)

)
=
[
7
1

]
+
[
7
3

]
+
[
7
5

]
= 2519 = 1

27!− 1 , (3.14)

which was confirmed by a long brute-force search using FORM [28]. The additional relation
on top of (3.7) is seen to be Aζ2

2
(γ1|2,3,4,5,6,7,8) = Aζ2

2
(1, 2�3� . . .�8) = 0, in agreement

with the analysis of [35, 41]. At nine points and m = 2, the formula (3.12) predicts a
mismatch due to

[8
7
]

= 28 additional relations etc.
The evidence for the descent algebra decomposition of KK-like relations in (3.9)

was collected from explicit calculations of Aζn2 ζM (γ1|P1,...,Pk) for various compositions
p = (p1, . . . , pk) |= n− 1 with |Pi| = pi. The results are summarized in table 1.7 The
number of checks of Aζm2 ζM (γ1|P1,...,Pk) at n points would appear to grow exponentially, but
luckily a vanishing outcome was observed to depend only on the number of parts k of the
composition, independently of n (with data up to n = 8). Thus it suffices to test the single
case k = n−1 for each additional external leg. Since γ1|2,3,...,n = 1.(2�3� . . .�n) by (2.20),

7The data in table 1 was collected using the α′ corrections to disk amplitudes obtained in [30, 31, 42, 43]
(see also [44–48] and references therein for earlier work).
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we get a sum over all cyclic orderings of the n-point string disk amplitude (3.2), leading
to the α′-corrected abelian Z-theory amplitudes Astring(γ1|2,3,...,n) ∼ ANLSM(1, 2, . . . , n)
of [35, 41]. As a consistency check, the proof (D.1) implying that Aζm2 ζM (γ1|2,...,k) vanishes
when k is even (so n is odd) agrees with the vanishing of NLSM odd-point amplitudes.

3.2 The field-theory and α′2 corrections

The SYM amplitudes are computed in pure spinor superspace from the expression M1EP ,
where EP is a superfield satisfying the same shuffle symmetry ER�S = 0 for R,S 6= ∅ of
the standard Berends-Giele current JmP [49, 50]. The Aζ2 amplitudes [51] can be computed
in pure spinor superspace [20] using BRST-closed combinations of superfields C1|X,Y,Z
symmetric under exchanges of any pairs X ↔ Y,Z and satisfying C1|R�S,Y,Z = 0 for
R,S 6= ∅. For convenience, define the BRST-closed combination C1|P := M1EP so that8

ASYM(1, 2, . . . , n) = 〈C1|2...n〉 , (3.15)

Aζ2(1, 2, . . . , n) =
∑
2...n
〈C1|X,Y,Z〉 , (3.16)

where
∑

2...n is a shorthand for the sum over the deconcatenations of 2 . . . n = XY Z. In
terms of these BRST invariants, the color-dressed amplitudes at four and five points can be
written as [20]

M4 = 6ζ2α
′2d1234C1|2,3,4 (3.17)

+ i2d1aF 234
a C1|234 + i2d1aF 243

a C1|243 +O(α′3) ,

M5 = 6ζ2α
′2 id1abc

(
F 23
a F 4

b F
5
c C1|23,4,5 + F 24

a F 3
b F

5
c C1|24,3,5 + F 25

a F 3
b F

4
c C1|25,3,4

+ F 2
aF

34
b F 5

c C1|2,34,5 + F 2
aF

35
b F 4

c C1|2,35,4 + F 2
aF

3
b F

45
c C1|2,3,45

)
+ i3d1aF 2345

a C1|2345 + i3d1aF 2354
a C1|2354 + i3d1aF 2435

a C1|2435

+ i3d1aF 2453
a C1|2453 + i3d1aF 2534

a C1|2534 + i3d1aF 2543
a C1|2543 +O(α′3) ,

with similar expansions at higher points. Comparing (3.17) with the color-dressed permuta-
tions P4 and P5 in (2.7) and (2.9) implies the correspondences9 at the given α′ order,

C1|X ←→ γ1|X , C1|X,Y,Z ←→ 1
6γ1|X,Y,Z . (3.18)

So the ASYM and Aζ2 amplitudes correspond to idempotents of the descent algebra

ASYM(1, 2, . . . , n) ←→ γ
(1)
123...n , Aζ2(1, 2, . . . , n) ←→ γ

(3)
123...n , (3.19)

where the deconcatenations (3.16) and (2.22) have been used in the last line. The corre-
spondences in (3.19) can be used to justify the first two relations in (3.4) from the theorem

8The angular brackets 〈. . .〉 denotes the pure spinor zero-mode integration of [52], but it plays no role in
the subsequent discussions.

9The first correspondence in (3.18) implies M1EP ↔ 1 · EP and suggests the duality EP ↔ EP (EP here is
the superfield of [53], not the Eulerian idempotent). Since the superfield EP is related to the Berends-Giele
current MP [53], this motivates the terminology of EP in (2.12).

– 10 –



J
H
E
P
0
3
(
2
0
2
2
)
0
1
2

4.2 of [11], namely Eµ ◦ Ip = 0 if λ(p) 6= µ, where Eµ for a partition µ is reviewed in (A.30),
p is a composition and λ(p) is its shape as defined in the beginning of section A.3. Under
the dualities (3.19) this identity implies the relations10

ASYM(γ1|P1,...,Pk

)
= 0 , k 6= 1 , Aζ2

(
γ1|P1,...,Pk

)
= 0 , k 6= 3 . (3.20)

3.3 BRST-invariant permutations and BRST-invariant superfields

The linearity condition Mn = Astring(Pn) implies that BRST-invariant permutations in Pn
are mapped to kinematics in Mn leading to a correspondence between the BRST-invariant
permutations (2.4) and a series of MZV (or α′) corrections from the string disk amplitude

γ1|P1,P2,...,Pk ↔ Astring(γ1|P1,P2,...,Pk) , (3.21)

whose precise content follows from table 1 and (3.2). For example,

γ1|234 ↔ ASYM(1, 2, 3, 4) + ζ3α
′3s12s23(s12 + s23)ASYM(1, 2, 3, 4) + · · · (3.22)

γ1|2,3,4 ↔ − 6ζ2α
′2s12s23A

SYM(1, 2, 3, 4)

− 3ζ2
2α
′4(s3

12s23 + s2
12s

2
23 + s12s

3
23)ASYM(1, 2, 3, 4) + · · ·

with similar expansions at higher points. The data presented in table 1 and the discussion
in section 3.2 suggest that the BRST-invariant permutations can be associated to a series
of higher-mass BRST-invariant superfields by defining

Aζm2 ζM (γ1|P1,...,Pk) = k!Cζ
m
2 ζM

1|P1,...,Pk
. (3.23)

The MZV amplitudes then follow from

Aζm2 ζM (1, 2, 3, . . . , n) =
2m+1∑
k=1

∑
23...n

C
ζm2 ζM
1|P1,...,Pk

, (3.24)

where
∑

23...n is a shorthand notation for the deconcatenations of P1P2 . . . Pk = 23 . . . n.
For example,

Aζ2
2
(1,2,3,4) =C

ζ2
2

1|234+Cζ
2
2

1|2,3,4 =−2
5

(
s12s

3
23+ 1

4s
2
12s

2
23+s3

12s23

)
ASYM(1,2,3,4) , (3.25)

where the BRST invariants Cζ
2
2

1|234 = 1/10(s12s
3
23 + 4s2

12s
2
23 + s3

12s23)ASYM(1, 2, 3, 4) and

C
ζ2

2
1|2,3,4 = −1/2(s12s

3
23 + s2

12s
2
23 + s3

12s23)ASYM(1, 2, 3, 4) were used. The superfield rep-
resentation of the above BRST invariants is known only for the two simplest cases,
C1|P = M1EP [53] and Cζ2

1|P1,P2,P3
[21, 54]. Note that C1|P1 = ASYM(1, P1) while the

S-map algorithm of [21] gives rise to a purely combinatorial translation between Cζ2
1|P1,P2,P3

and sums of s2
ijA

SYM. It remains to be seen whether there exists a general algorithm to
rewrite Cζm2 ζM in terms of SYM amplitudes.

10To see this we use that P · (σ ◦ τ) =
(
(P · σ) ◦ (P · τ)

)
if P has no common letters with σ and τ and

θ(σ ◦ τ) = θ(τ) ◦ θ(σ) to show that the theorem 4.2 of [11] implies (1 · Ip) ◦ (1 ·Eθµ) = 0 for λ(p) 6= µ leading
to (3.20) since Aζ2 corresponds to a sum of θ(Eµ) with partitions with three parts k(µ) = 3 and ASYM to
θ(Eµ) with k(µ) = 1.
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3.4 BRST invariants from Aζ2

Another consequence of the duality (3.18) is that the representation of Aζ2 in terms of
C1|P1,P2,P3 given in (3.16) is invertible, as argued indirectly in [20]. This follows from
Theorem 4.2 of [11], Eµ ◦ Ip = Ip if λ(p) = µ where λ(p) is the shape of the composition
p and Eµ is defined in (A.30). This implies (1 · Ip) ◦ (1 · θ(Eµ)) = (1 · Ip) for λ(p) = µ or,
using the function interpretation of the right action σ ◦ F := F (σ) with a partition with
three parts k(µ) = 3

Aζ2

(
γ1|P1,P2,P3

)
= 6C1|P1,P2,P3 , |Pi| = pi , P1P2P3 = 23 . . . n , (3.26)

where we used the identifications (2.20), (2.22) and duality (3.19) on the left-hand side and
the duality (3.18) on the right-hand side. For example, from γ1|23,4,5 of (C.1) we get

6C1|23,4,5 = Aζ2
12345 +Aζ2

12354 +Aζ2
12435 +Aζ2

12453 +Aζ2
12534 +Aζ2

12543 (3.27)

−Aζ2
13245 −A

ζ2
13254 −A

ζ2
13425 −A

ζ2
13524 +Aζ2

14235 −A
ζ2
14325 ,

where we used the parity relation (3.4) in the r.h.s.

3.5 The superfield expansion of C1|P,Q,R from BRST-invariant permutations

The so-called BRST invariants C1|P,Q,R of the pure spinor formalism [52] play an important
role in the mapping between BRST-invariant permutations and kinematics, see section 3.3.
They were firstly derived at low multiplicities in [20] and were subsequently studied in
different contexts and given general recursive algorithms, see [21, 54, 55]. Their superfield
expansions in terms of Berends-Giele currents follow from

Ci|P,Q,R = MiMP,Q,R +Mi ·
[
Cp1|p2...p|P|,Q,R − Cp|P||p1...p|P|−1,Q,R + (P ↔ Q,R)

]
(3.28)

starting from Ci|j,k,l = MiMj,k,l with the dot representing concatenation, Mi ·MA := MiA.
For example, the first few expansions are given by

C1|2,3,4 = M1M2,3,4 , (3.29)
C1|23,4,5 = M1M23,4,5 +M12M3,4,5 −M13M2,4,5 ,

C1|234,5,6 = M1M234,5,6 +M12M34,5,6 +M123M4,5,6 −M124M3,5,6

−M14M23,5,6 −M142M3,5,6 +M143M2,5,6 ,

C1|23,45,6 = M1M23,45,6 +M12M45,3,6 −M13M45,2,6 +M14M23,5,6 −M15M23,4,6

+M124M3,5,6 −M134M2,5,6 +M142M3,5,6 −M152M3,4,6

−M125M3,4,6 +M135M2,4,6 −M143M2,5,6 +M153M2,4,6 .

These terms can be extracted from the permutations of the BRST-invariant permutations
γ1|P,Q,R of the inverse descent algebra as follows:

1. Sum over the cyclic permutations of all permutations in γ1|P,Q,R:

Wσ →Wσ + cyclic(σ) (3.30)
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2. Decompose Wσ into all possible four-word deconcatenations:

Wσ =
∑

XY ZW=σ
WX .WY .WZ .WW (3.31)

3. Move label 1 to the front by repeatedly commutingWC .WA1B = WA1B.WC if necessary
and write the result in terms of Berends-Giele superfields:

WA1B.WC .WD.WE := 1
4!MA1BMC,D,E (3.32)

The resulting expressions have been explicitly checked11 for all topologies of BRST invariants
up to eight points. In addition, using the descent duality (3.18) one may also derive the
change of basis identities for Ci 6=1|... =

∑
C1|... from [54, 55] by choosing a different label to

be singled-out in the color-dressed permutation (2.1) [56].

4 Conclusion

In this paper we investigated the combinatorial properties of the permutations appearing in
the color-dressed permutations (2.1) using the tools from the descent algebra. In particular,
we defined BRST-invariant permutations, found a closed formula, and related them to
orthogonal idempotents which sum to the identity permutation [11, 12, 57].

We then considered the color-dressed string disk amplitudes within this framework. This
led to the discovery of the relations (3.9) obeyed by the α′ corrections of disk amplitudes
refined by their MZV content, dubbed the descent algebra decomposition of KK-like relations.
The basis dimensions of linearly independent amplitudes at a given α′ order and MZV
content are given by sums of Stirling cycle numbers. These claims have been explicitly
checked using various data points in string theory up to n = 8 and α′7.

Inspired by [20], we proposed a correspondence between the permutations from the
(inverse) descent algebra and kinematics from the string disk amplitudes in terms of
higher-mass BRST invariants. In the particular case of α′2, we exploited a theorem
from the mathematics literature on descent algebra to prove certain claims in [20] and to
systematically express BRST invariants as linear combinations of Aζ2 corrections to disk
amplitudes in (3.26).

And finally, we found an algorithm to extract the superfield content of the BRST in-
variants in the pure spinor formalism from the BRST-invariant permutations in the inverse
descent algebra. It will be interesting to obtain superfield realizations of the higher-mass
BRST invariants defined in section 3.3. They can probably be extracted from a pertur-
biner series of amplitudes at the appropriate mass level. For instance, the superfields in
CSYM

1|P = M1EP are related to the series Tr(VVV) [29, 58]. The superfields in Cζ2
1|P1,P2,P3

are
related to the series Tr(V1(λγmW)(λγnW)Fmn), while the superfields in Cζ3

1|P should follow
from Tr

(
(λγmnpqrλ)(λγsW)FmnFpqFrs

)
. It would also be interesting to find combinatorial

algorithms to directly translate the higher-mass BRST invariants Cζ
m
2 ζM

1|P1,...,Pk
into linear

11The shuffle symmetry AiB = (−1)|A|iÃ�B [23] is needed to rewrite words in a Lyndon basis.
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combinations of super-Yang-Mills amplitudes and powers of Mandelstam invariants, gener-
alizing the S-map algorithm of [21] for Cζ2

1|P1,P2,P3
. This would give rise to a combinatorial

description of the Pn and Mn matrices of [6].
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A The Solomon descent algebra

We review the salient features of the Solomon descent algebra [10–16]. In particular, we
discuss different bases and highlight the orthogonal idempotents discovered by Reutenauer,
as they will be related to α′ corrections to string amplitudes.

A.1 Descent classes and the Solomon descent algebra

The descent set D(σ) and the and the descent number dσ of a permutation σ = σ1σ2 . . . σn
in Sn are defined by

D(σ) = {i ∈ {1, 2, . . . , n− 1} | σi > σi+1} , dσ = #
(
D(σ)

)
. (A.1)

For example, the permutation σ = 546132 has descent set D(σ) = {1, 3, 5} and descent
number dσ = 3. The collection of permutations with a given descent set S is called a descent
class,

DS =
∑

D(σ)=S
σ . (A.2)

For example, the permutations in S3 are distributed into four descent classes,

D∅ = W123, D{1} = W213 +W312, D{2} = W132 +W231, D{1,2} = W321 . (A.3)

In general, the permutations of Sn decompose into 2n−1 distinct descent classes; all the
subsets in the powerset of {1, 2, . . . , n− 1} since the last n-th position is never a descent.
Solomon showed the remarkable property that descent classes are closed under the right
action (1.10)

DS ◦DT =
∑

U⊆{1,2,...,n−1}
cS,T,UDU (A.4)

where the coefficients cS,T,U are non-negative integers [10]. The descent classes therefore
form a 2n−1 dimensional algebra, the so-called Solomon’s descent algebra Dn [10, 11, 13–16].
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As an example of (A.4), consider the permutations in S4. Its 24 elements are organized
into 8 descent classes as follows

D{∅} = W1234 ,

D{1} = W2134 +W3124 +W4123 ,

D{2} = W1324 +W1423 +W2314 +W2413 +W3412 ,

D{1,3} = W2143 +W3142 +W3241 +W4132 +W4231 ,

D{1,2} = W3214 +W4213 +W4312 ,

D{3} = W1243 +W1342 +W2341 ,

D{2,3} = W1432 +W2431 +W3421 ,

D{1,2,3} = W4321 . (A.5)

It is straightforward to multiply the permutations among these descent classes using the
right-action of the symmetric group (1.10). For example,

D{1} ◦D{2} = W1234 +W1243 +W1324 +W1342 +W1423 +W1432 +W2314 (A.6)
+W2341 +W2413 +W2431 +W3214 +W3412 +W3421 +W4213 +W4312

= D{∅} +D{1,2} +D{2} +D{2,3} +D{3} ,

where the last line follows from the remarkable property (A.4) which ensures that the
permutations in (A.6) are themselves a sum of descent classes.

A.2 Bases of the descent algebra

Apart from the descent classes DS indexed by descent sets S, there are other convenient
bases of the descent algebra [11].

A.2.1 Composition basis Bp
The composition p of n, denoted p |= n, is a k-tuple of positive integers with sum n,

p = (p1, p2, . . . , pk), p1 + p2 + · · ·+ pk = n. (A.7)

There is a bijection between compositions p |= n and subsets S of {1, 2, . . . , n− 1}

p = (p1, p2, . . . , pk) 7→ {p1, p1 + p2, . . . , p1 + p2 + · · ·+ pk−1} := S(p) , (A.8)
S = {i1, i2, . . . , ik} 7→ (i1, i2 − i1, . . . , ik − ik−1, n− ik) := Cn(S) . (A.9)

Thus the total number of compositions of n is 2n−1, the cardinality of the powerset of
{1, 2, . . . , n− 1}. Note that the map Cn(S) = p depends on the order n of the permutation
group Sn for C3

(
{1, 2}

)
= (1, 1, 1) but C4

(
{1, 2}

)
= (1, 1, 2). In particular, Cn(∅) = (n).

The basis Bp is indexed by compositions p rather than subsets and is defined by [11]

Bp = D⊆S(p) , (A.10)

with S(p) given by (A.8). For example, the DS basis elements (A.5) become

B1111 = D∅ +D{1} +D{2} +D{3} +D{1,2}

+D{1,3} +D{2,3} +D{1,2,3} ,

B112 = D∅ +D{1} +D{2} +D{1,2} ,

B121 = D∅ +D{1} +D{3} +D{1,3} ,

B211 = D∅ +D{2} +D{3} +D{2,3} ,

B13 = D∅ +D{1} ,

B22 = D∅ +D{2} ,

B31 = D∅ +D{3} ,

B4 = D∅ .

(A.11)

– 15 –



J
H
E
P
0
3
(
2
0
2
2
)
0
1
2

The inverse of (A.10) is given by Lemma 8.18 in [16]

DS =
∑
T⊆S

(−1)|S|−|T|D⊆T . (A.12)

For example (in S4), D{1,2} = B112 −B13 −B22 +B4, D{1} = B13 −B4, D{2} = B22 −B4,
and D∅ = B4, from which we verify that D∅ +D{1} +D{2} +D{1,2} = B112.

The permutations within a basis element Bp can be found via [11, 57]

Bp1p2...pk = θ(X1�X2� . . .�Xk) , 12 . . . n = X1 . . . Xk, |Xi| = pi , (A.13)

where the inverse map θ is given by

θ(σ) 7→ σ−1 . (A.14)

For example, if p = (1, 1, 2) then X1 = 1, X2 = 2 and X3 = 34 and we get

B112 = θ(1�2�34) = W1234 +W1324 +W1423 +W2134 +W2314 +W2413 (A.15)
+W3124 +W3214 +W3412 +W4123 +W4213 +W4312 .

A.2.2 Multiplication table for Bp ◦Bq
There is a closed formula for the multiplication of Bp ◦Bq [11, 14, 59]. Let M be a matrix
with non-negative integer entries mij whose row sum r(M) and column sum c(M) are
vectors defined by

r(M)i :=
∑
j

mij , c(M)j :=
∑
i

mij . (A.16)

Then
Bp ◦Bq =

∑
c(M)=p
r(M)=q

Bco(M) (A.17)

where co(M) denotes the composition obtained by reading the matrix M row by row from
top to bottom while excluding the zero entries mij = 0. This product is associative and Bn
is a multiplicative identity for compositions of n [59].

For example, let us recover the result (A.6) for D{1}◦D{2} using the above multiplication
table (A.17) in S4. Given that D{1} = B13 −B4 and D{2} = B22 −B4, the only non-trivial
product we need is B13 ◦B22 since B4 is the identity for compositions of n = 4. The set of
integer matrices M with c(M) = (1, 3) and r(M) = (2, 2) is given by(

1 1
0 2

)
,

(
0 2
1 1

)
. (A.18)

Thus B13 ◦B22 = B112 +B211 and D{1} ◦D{2} = (B13 −B4) ◦ (B22 −B4) implies

D{1} ◦D{2} =B112 +B211−B13−B22 +B4 =D∅+D{1,2}+D{2}+D{2,3}+D{3} (A.19)

where we used the conversions (A.11).
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A.2.3 The Eulerian idempotent

The Eulerian (or Solomon) idempotent is defined by [12, 19, 57, 60] (see also [61])

En =
∑
σ∈Sn

κσσ, κσ = (−1)dσ

|σ|
(|σ|−1
dσ

) (A.20)

where dσ denotes the descent number (A.1) of the permutation σ. For example,

E2 = 1
2
(
W12−W21

)
, E3 = 1

3W123−
1
6W132−

1
6W213−

1
6W231−

1
6W312 + 1

3W321 . (A.21)

Apart from being an idempotent satisfying En ◦ En = En, the definition (A.20) is also a
Lie polynomial [12]. Therefore its coefficients κσ must satisfy the shuffle symmetry [25]

κR�S = 0, R, S 6= ∅ . (A.22)

As usual, the definition (A.20) in terms of the fixed alphabet N in Sn can be turned into a
function of an arbitrary word P by the right action (1.10) of the symmetric group [16, 62],

E(P ) = EP := P ◦ En, |P | = n . (A.23)

For example, E(i, j, k) = ijk ◦ E3 = 1
3Wijk − 1

6Wikj − 1
6Wjik − 1

6Wjki − 1
6Wkij + 1

3Wkji.

A.2.4 The idempotent basis Ip
The idempotent basis Ip of the descent algebra Dn satisfying Ip ◦ Ip = Ip was introduced
in [11] and it is indexed by the compositions of n

Ip1p2...pk(P ) =
∑

X1,...,Xk
|Xi|=pi

〈P,X1�X2� . . .�Xk〉EX1EX2 . . . EXk , (A.24)

where the sum is constrained by the length of Xi being equal to the corresponding pi in the
composition p and EXi denote the Eulerian idempotent function (A.23). For example, with
canonical P = 12 . . . n we have

I11 = W12 +W21 , I2 = 1
2(W12 −W21) , (A.25)

I111 = W123 +W132 +W213 +W231 +W312 +W321 ,

I21 = 1
2W123 + 1

2W132 −
1
2W213 + 1

2W231 −
1
2W312 −

1
2W321 ,

I12 = 1
2W123 −

1
2W132 + 1

2W213 −
1
2W231 + 1

2W312 −
1
2W321 ,

I3 = 1
3W123 −

1
6W132 −

1
6W213 −

1
6W231 −

1
6W312 + 1

3W321 .

A.2.5 Ip to Bp
The idempotent basis elements Ip for p = p1p2 . . . pk can be expanded in terms of composi-
tions Bq using an algorithm discussed in [11]. First one defines moments em as a polynomial
in non-commuting variables ti for i = 1, 2, . . . from the generating series∑

xnen = log
(
1 +

∑
tix

i
)

(A.26)
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where x is a commuting parameter. For example, from (A.26) it follows that

e1 = t1, e2 = t2 −
1
2 t

2
1, e3 = t3 −

1
2(t1t2 + t2t1) + 1

3 t
3
1 (A.27)

e4 = −1
4 t

4
1 + 1

3 t
2
1t2 + 1

3 t1t2t1 −
1
2 t1t3 + 1

3 t2t
2
1 −

1
2 t

2
2 −

1
2 t3t1 + t4

Then to convert the Ip basis elements to the composition basis Bq one uses [11]

Ip = δ(ep1ep2 . . . epk), with δ(ti1ti2 . . . tik) := Bi1i2...ik . (A.28)

For example,

I4 = −1
4B1111 + 1

3B112 + 1
3B121 −

1
2B13 + 1

3B211 −
1
2B22 −

1
2B31 +B4 . (A.29)

A.3 Reutenauer orthogonal idempotents

A partition λ of n, denoted λ ` n, is a k-tuple of positive integers with sum n satisfying
λ1 ≥ λ2 ≥ . . . ≥ λk. If p |= n is a composition of n, the shape λ(p) of p is the partition of
n obtained by rearranging the parts of p in decreasing order. Also, k(p) is the number of
parts of the composition p. For example, p = (2, 3, 1, 2) implies λ(p) = 3221 and k(p) = 4.

Given a partition λ = (λ1, λ2, . . . , λk) into k parts, theorem 3.1 of [11] shows that

Eλ := 1
k!

∑
λ(p)=λ

Ip ,
∑
λ`n

Eλ = W12...n . (A.30)

Note that when the partition λ of n has only one part, Eλ = In coincides with the Eulerian
idempotent En (A.20), so this notation is not ambiguous. For example, E1 = I1 and

E2 = I2 ,

E11 = 1
2I11 ,

E3 = I3 ,

E21 = 1
2
(
I12 + I21

)
,

E111 = 1
3!I111 ,

E211 = 1
3!
(
I112 + I121 + I211

)
.

(A.31)

one can readily verify E3 +E21 +E111 = W123 using the expansions listed in the appendix C.
The Reutenauer idempotents E(m) are defined in the alphabet {1, 2, . . .} as the sum

over all permutations of Eλ from (A.30) such that λ is a partition of n with m parts, i.e.,

E(m) =
∑
λ`n

k(λ)=m

Eλ (A.32)

For example,

n = 2 E(1) = E2, E(2) = E11

n = 3 E(1) = E3, E(2) = E21, E(3) = E111

n = 4 E(1) = E4, E(2) = E31 + E22, E(3) = E211, E(4) = E1111

(A.33)
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It was shown in [11, 12] that (A.32) are orthogonal idempotents which sum to the identity
permutation

n∑
i=1

E(i) = W123...n , E(i) ◦ E(j) =

E(i) if i=j;
0 otherwise.

(A.34)

An alternative definition of the Reutenauer idempotents in terms of a generating function
can be found in [16].

B The inverse of the idempotent basis

In this appendix we will prove (2.17), that is:

Proposition. The inverse of the idempotent basis (2.16) satisfies

Ip1p2...pk(P1, P2, . . . , Pk) = E(P1)�E(P2)� . . .�E(Pk) , |Pi| = pi (B.1)

where P = P1 . . . Pk is the factorization of P with Pi of length pi.

Proof. The proof will be based on the following observations collected from [16], which
should be consulted for more details as the equation numbers below refer to it. First, the
adjoint of an arbitrary function F (P ) = P ◦ F of a word P is given by θ(F )(P ) = P ◦ θ(F ),
see (3.3.5). Second, the adjoint of Fp1 ? Fp2 . . . ? Fpk is θ(Fp1) ?′ θ(Fp2) . . . ?′ θ(Fpk) where ?
and ?′ are the convolution operators defined in (1.5.7) and (1.5.8) and θ(Fj) is the adjoint
of Fj when viewed as a function by the right-action (1.10), see proof of Lemma 3.13. Third,
for permutations Fpi of length pi one can show (by adapting the proof of Lemma 3.13)(

Fp1 ?
′ . . . ?′ Fpk

)
(P ) = Fp1(P1)� . . .�Fpk(Pk) (B.2)

where the functions are defined via a right action as Fpi(Pi) := Pi ◦ Fpi . The proof of (B.1)
then follows from the observation by (1.5.4) and (1.5.7) that the idempotent basis Ip (A.24)
can be rewritten as a convolution Ip1...pk(P ) =

(
Ep1 ? . . . ?Epk

)(
P
)
where Ep is the Eulerian

idempotent (A.20). Therefore its adjoint θ(Ip1...pk)(P ) is given by

θ(Ip1...pk)(P ) = θ(Ep1)(P1) ?′ . . . ?′ θ(Epk)(Pk), P = P1 . . . Pk, |Pi| = pi

= E(P1)� . . .�E(Pk) (B.3)

where we used (B.2) and E(Pi) = θ(Epi)(Pi).

As a multiplicity-four example of the inverse idempotent basis of (2.16) we have

I22(12, 34) = 1
4W1234 −

1
4W1243 + 1

4W1324 + 1
4W1342 −

1
4W1423 −

1
4W1432 (B.4)

− 1
4W2134 + 1

4W2143 −
1
4W2314 −

1
4W2341 + 1

4W2413 + 1
4W2431

+ 1
4W3124 + 1

4W3142 −
1
4W3214 −

1
4W3241 + 1

4W3412 −
1
4W3421

− 1
4W4123 −

1
4W4132 + 1

4W4213 + 1
4W4231 −

1
4W4312 + 1

4W4321 .
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C Explicit permutations at low multiplicities

The multiplicity-five BRST-invariant permutations (defined in (2.4)) are given by

γ1|2,3,4,5 = W1(2�3�4�5) (C.1)

γ1|23,4,5 = 1
2W12345 + 1

2W12354 + 1
2W12435 + 1

2W12453 + 1
2W12534 + 1

2W12543

− 1
2W13245 −

1
2W13254 −

1
2W13425 −

1
2W13452 −

1
2W13524 −

1
2W13542

+ 1
2W14235 + 1

2W14253 −
1
2W14325 −

1
2W14352 + 1

2W14523 −
1
2W14532

+ 1
2W15234 + 1

2W15243 −
1
2W15324 −

1
2W15342 + 1

2W15423 −
1
2W15432

γ1|234,5 = 1
3W12345 + 1

3W12354 −
1
6W12435 −

1
6W12453 + 1

3W12534 −
1
6W12543

− 1
6W13245 −

1
6W13254 −

1
6W13425 −

1
6W13452 −

1
6W13524 −

1
6W13542

− 1
6W14235 −

1
6W14253 + 1

3W14325 + 1
3W14352 −

1
6W14523 + 1

3W14532

+ 1
3W15234 −

1
6W15243 −

1
6W15324 −

1
6W15342 −

1
6W15423 + 1

3W15432

γ1|23,45 = 1
4W12345 −

1
4W12354 + 1

4W12435 + 1
4W12453 −

1
4W12534 −

1
4W12543

− 1
4W13245 + 1

4W13254 −
1
4W13425 −

1
4W13452 + 1

4W13524 + 1
4W13542

+ 1
4W14235 + 1

4W14253 −
1
4W14325 −

1
4W14352 + 1

4W14523 −
1
4W14532

− 1
4W15234 −

1
4W15243 + 1

4W15324 + 1
4W15342 −

1
4W15423 + 1

4W15432

γ1|2345 = 1
4W12345 −

1
12W12354 −

1
12W12435 −

1
12W12453 −

1
12W12534 + 1

12W12543

− 1
12W13245 + 1

12W13254 −
1
12W13425 −

1
12W13452 + 1

12W13524 + 1
12W13542

− 1
12W14235 −

1
12W14253 + 1

12W14325 + 1
12W14352 −

1
12W14523 + 1

12W14532

− 1
12W15234 + 1

12W15243 + 1
12W15324 + 1

12W15342 + 1
12W15423 −

1
4W15432

According to the deconcatenation (2.22) these BRST-invariant permutations give rise to
the following orthogonal idempotents:

γ
(1)
12345 = 1

4W12345 −
1
12W12354 −

1
12W12435 −

1
12W12453 −

1
12W12534 + 1

12W12543

− 1
12W13245 + 1

12W13254 −
1
12W13425 −

1
12W13452 + 1

12W13524 + 1
12W13542

− 1
12W14235 −

1
12W14253 + 1

12W14325 + 1
12W14352 −

1
12W14523 + 1

12W14532

− 1
12W15234 + 1

12W15243 + 1
12W15324 + 1

12W15342 + 1
12W15423 −

1
4W15432
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γ
(2)
12345 = 11

24W12345 −
1
24W12354 −

1
24W12435 −

1
24W12453 −

1
24W12534 −

1
24W12543

− 1
24W13245 −

1
24W13254 −

1
24W13425 −

1
24W13452 −

1
24W13524 −

1
24W13542

− 1
24W14235 −

1
24W14253 −

1
24W14325 −

1
24W14352 −

1
24W14523 −

1
24W14532

− 1
24W15234 −

1
24W15243 −

1
24W15324 −

1
24W15342 −

1
24W15423 + 11

24W15432

γ
(3)
12345 = 1

4W12345 + 1
12W12354 + 1

12W12435 + 1
12W12453 + 1

12W12534 −
1
12W12543

+ 1
12W13245 −

1
12W13254 + 1

12W13425 + 1
12W13452 −

1
12W13524 −

1
12W13542

+ 1
12W14235 + 1

12W14253 −
1
12W14325 −

1
12W14352 + 1

12W14523 −
1
12W14532

+ 1
12W15234 −

1
12W15243 −

1
12W15324 −

1
12W15342 −

1
12W15423 −

1
4W15432

γ
(4)
12345 = 1

24W1(2�3�4�5)

Here we list the first few expansions of Eλ defined in (A.30):

E2 = 1
2W12 −

1
2W21 , E11 = 1

2W12 + 1
2W21 (C.2)

E3 = 1
3W123 −

1
6W132 −

1
6W213 −

1
6W231 −

1
6W312 + 1

3W321

E21 = 1
2W123 −

1
2W321 , E111 = 1

6W123 + perm(1, 2, 3)

E211 = 1
4W1234 + 1

12W1243 + 1
12W1324 + 1

12W1342 + 1
12W1423 −

1
12W1432

+ 1
12W2134 −

1
12W2143 + 1

12W2314 + 1
12W2341 + 1

12W2413 −
1
12W2431

+ 1
12W3124 −

1
12W3142 −

1
12W3214 −

1
12W3241 + 1

12W3412 −
1
12W3421

+ 1
12W4123 −

1
12W4132 −

1
12W4213 −

1
12W4231 −

1
12W4312 −

1
4W4321

C.1 The Berends-Giele idempotents

The Berends-Giele idempotents E(P ) are defined in section 2.2 as the inverse θ(E(P )) of the
Eulerian idempotent (A.20). Their expansions up to multiplicity three were given in (2.13)
and now we write down the multiplicity four:

E(1234) = 1
4W1234 −

1
12W1243 −

1
12W1324 −

1
12W1342 −

1
12W1423 + 1

12W1432 (C.3)

− 1
12W2134 + 1

12W2143 −
1
12W2314 −

1
12W2341 + 1

12W2413 + 1
12W2431

− 1
12W3124 −

1
12W3142 + 1

12W3214 + 1
12W3241 −

1
12W3412 + 1

12W3421

− 1
12W4123 + 1

12W4132 + 1
12W4213 + 1

12W4231 + 1
12W4312 −

1
4W4321

As a curiosity, noting that E4 = I4 one can derive these permutations using the conver-
sion (A.28) together with (A.13) for the permutations in θ(Bp) (note θ2 = 1). So (A.29)
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yields the permutations in E1234 = θ(I4) as

E(1234) = −1
41�2�3�4 + 1

31�2�34 + 1
31�23�4− 1

21�234 (C.4)

+ 1
312�3�4− 1

212�34− 1
2123�4 + 1234 .

D Parity of the disk amplitude and even partitions

Parity of the amplitude Astring(1, . . . , n) = (−1)nAstring(n, . . . , 1) explains the vanishing of
Aζm2 ζM (γ1|P1,...,Pk) for even k as observed in table 1. A quick counting argument suggests
why this is so as

∑
k

[n−1
2k
]

= 1
2(n− 1)! is the upper bound in the dimension of string disk

amplitudes from properties of the string worldsheet alone [2]. More precisely:

Proposition. If k is even then the n-point disk amplitude satisfies

Astring(γ1|P1,...,Pk) = 0, (D.1)

where γ1|P1,...,Pk is the BRST-invariant permutation (2.4).

Proof. The parity of Astring at n points can be written as Astring(1, σ) = (−1)nAstring(1, σ̃)
by cyclicity. This means, by (2.20), that Astring(γ1|P1,...,Pk) will vanish whenever the parity
of Astring at n points is opposite to the parity of Ip for p |= n−1. To see why this is
true consider the example of Astring(γ1|23,4) with the expression for the BRST-invariant
permutation in (2.8). The terms can be rearranged as

Astring(γ1|23,4) = 1
2
(
Astring

1234 −A
string
1432

)
+ 1

2
(
Astring

1243 −A
string
1342

)
+ 1

2
(
Astring

1423 −A
string
1324

)
= 0 (D.2)

which vanishes by parity Astring
1234 = Astring

1432 . Notice that this happens because the parity of
I21(23, 4) from (2.19) is the opposite of the string disk amplitude; Ĩ21(23, 4) = −I21(23, 4).
The proposition can now be proven by considering the two cases when n is even or odd.

For n even the parity of the n-point disk amplitude is + so Astring(γ1|P1,...,Pk) vanishes
if the parity of Ip is − for a composition p of n−1. By (2.19) this means that there must
be an odd number of even parts in the composition p (which sum to even). But since n−1
is odd, there must be an odd number of odd parts in p (which sum to odd). Therefore the
number of parts k(p) is even (= odd + odd). Similarly, when n is odd the number of parts
k(p) in the composition of p is also even (from even + even). This finishes the proof.
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