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iv

With such a rich plethora of models to explain the mysteries of modern theoretical
physics, the role of phenomenology is critical in ascertaining the viability of said
models against experimental result. Furthermore, as the ambition and scope of these
models grows, sophisticated data science techniques are more relevant than ever in
handling such models.

In this thesis, I present the work I have done in applying data techniques to extensions
of supersymmetric models which remains one of the most attractive candidates for
physics beyond the Standard Model. In particular, I present the results of my work
developing and applying algorithmic frameworks for analysing high scale parameters
of these models and linking phenomenological tools in order to analyse various
experimental results of these models. In essence, the models presented display two
different approaches to the fine-tuning problems in supersymmetry where in one we
fix parameters to be natural, and in the second we allow for
non-minimal-flavour-violation.

In this manuscript, I first briefly introduce the Standard Model and its shortcomings
as well as supersymmetric extensions to the Standard Model and some alternative
approaches to beyond the Standard Model physics.

I then show the results of a no-scale supergravity model where the universal scalar
mass is zero. We have a particular focus on the recent muon g-2 experimental results
as well as dark matter and the Higgs boson mass. These models naturally arise from
string theory and are also inspired by Starobinsky inflation which places further
phenomenological constraints on the model. We find that certain regions of parameter
space can satisfy these constraints with requisite light sleptons close to the LHC
excluded region.

I also display the work I did in implementing a Markhov chain MonteCarlo scan of a
supersymmetric grand unified theory of flavour. In this analysis, a huge number of
phenomenological constraints were applied to examine the allowed flavour structure.
The model naturally predicted large sleptonic mixing explaining their LHC evation
and light winos and gluinos suggesting the good prospect for discovering these
particles in up-coming collider runs.

This thesis contains work based on two preprint publications with arXiv numbers
arXiv:2111.10199, and arXiv:2111.10199.
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Chapter 1

The Standard Model

1.1 Overview

The rather stalely entitled Standard Model of Particle Physics (SM) was developed
predominantly in the mid-20th century and is still a remarkably powerful theory in
modern physics. Modern science has rarely, if ever, seen such a successful model in
terms of the accuracy and scope of its predictions. It is by far the most powerful
application of quantum field theory (QFT), utilising a number of imposed symmetry
groups in order to describe three of the four fundamental forces of nature and the
constituents of matter that make up the world around us. Indeed, the model makes a
number of astonishingly successful prediction including decay rates, bound states, etc
[1–9]. With the discovery of the Higgs boson in 2012 at the LHC, the final building
blocks of the model fell into place, experimentally confirming and completing the
theory [10, 11].

As alluded to previously, the SM is a QFT. As such, it is a natural framework for
imposing symmetry groups on top of well established quantum physical descriptions.
In particular, special relativity (or the Poincaré group) is combined with the local
symmetry group GSM = SU(3)C × SU(2)L ×U(1)Y. These so-called gauge groups
provides a mechanism for generating the force particles of the Standard Model. Here,
the subscripts C, L, and Y denote the different interactions described by each group.
These shall be delved into further later in this chapter. However, I shall make note of
the critical role of the Higgs boson here as, after spontaneous symmetry breaking,
SU(2)L ×U(1)Y → U(1)em forms the basis for electromagnetic interactions via the
Higgs mechanism. Therefore, the electric charge, Q, is given in terms of the generators
of the broken symmetry groups; Y, the hypercharge associated to U(1)Y and T3, the
third generator of the SU(2)L group, as follows.
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Q = T3 +
Y
2

(1.1)

This peculiar relation is the direct result of the specific breaking pattern of the
symmetry group and of the Higgs mechanism as we shall see later.

Having spoken in such glowing terms about this theory, cracks have emerged in its
previously iron-clad arsenal of experimental successes. There are now a number of
observations that cannot be easily accommodated for in the theory. Furthermore, there
are some aesthetic principals that hint at physics beyond the Standard Model.

As an example of these issues, galaxy rotation curves suggest the presence of some
invisible, weakly interacting source of gravity sitting in the galaxies. The cosmic
microwave background (CMB) contains key features that are only possible with
reference to a similar weakly interacting source of gravity [12]. We call this source
dark matter. Although alternative theories have been suggested, the common
consensus is that this source is a particle. However, no Standard Model particle
represents a good candidate. The CMB also demonstrates the horizon problem, in
which causally disconnected parts fo the universe appear homogenous and isotropic
[13]. Furthermore, the SM has no explanation for the large matter antimatter
asymmetry we observe.

Looking a little closer to home, we find further limitations of the Standard Model.
Recent experiments have shown that the treatments of the different flavours is not
universal as the Standard Model would predict. Indeed, the recent measurement at
brookhaven and fermilab’s have shown a 4.2σ discrepancy between the Standard
Model and experimental results for the muon magnetic moment, muon g− 2 [14–34].
Furthermore, neutrinos have been observed to oscillate between different generations
[35]; such a trick is only possible if neutrinos, previously thought to be massless, have
mass.

On the more theoretical side, one can argue that the Standard Model does not address
the hierarchy problem concerning the vast discrepancy between the electroweak scale
of physics and the scale at which gravitational affects become important on the
quantum level [36]. Indeed, the Standard Model suffers from a further naturalness
problem; the flavour problem. Why do the free parameters of the Standard Model take
the particular values that they do? In the immortal words of Isidor Isaac Rabi, "who
ordered that?".

With these limitations manifest, the Standard Model cannot be the final story, but is an
effective field theory (EFT) of some theory beyond the Standard Model. That is to say,
the extraordinary successes of the Standard Model must re-emerge from our BSM
theory at low energies, once the new physics is "integrated out".
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With this said, I will now endeavour to give a very brief introduction to the Standard
Model in order to give context to the Beyond the Standard Model (BSM) physics I
wish to explore. Furthermore, certain notation and stylistic choices will be made to
give clarity to the following chapters. Having said this, I will not go into detail. Many
excellent works are available to readers of all abilities to get a richer context for the
Standard Model.

1.2 The Fermions

Fermions are particles theorised by a number of phsyicists in the early 20th century.
They have spin half and obey the Pauli exclusion principle. As we impose the above
symmetries on the theory, they are representations of the Poincare group and thus
obey special relativity. Under this condition, the wave function must be
anti-symmetric in order to prevent negative energy eigenstates thus realising the Pauli
exclusion principle. These fermions obey the Dirac equation given by,

(/p −m)ψ = 0 (1.2)

where ψ is the wave function of the fermion, /p is the Dirac operator γµ pµ and γµ are
Dirac matrices. Therefore, the Dirac Lagrangian is given by

L f = ψ(i/∂ −m)ψ (1.3)

where ψ = ψ†γ0. These wave-function include 4-dimensional Dirac spinors. These
can in turn by constructed from two dimensional Weyl spinors. Although this
formalism is not necessary, we will find later (when we consider supersymmetry) that
these objects can be useful. One can define chirality projectors that apply to the Dirac
spinors and pull out the left or right handed parts as follows

PL =
1− γ5

2
, PR =

1 + γ5

2
, (1.4)

where γ5 = iγ0γ1γ2γ3. Therefore PLψ = ηL and PRψ = ηR where ηL is the left handed
Weyl spinor and ηR is its right handed equivalent.

With these in hand, let us return to the aforementioned Poincaré group and, more
specifically, its subgroup, the Lorentz group, SO(1, 3). This group is comprised of both
spatial rotations, and so-called Lorentz boosts. We can therefore split the generators of
the group into the corresponding operators; the boosts, Ki, and the spatial rotations, Ji.
From these, we can define the further operators
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N+
i =

1
2
(Ji + iKi),

N−i =
1
2
(Ji − iKi)

(1.5)

This may seem like a curious definition, but one can use these, and the commutations
relations of Ki and Ji to show that

[N+
i , N+

j ] = εijkN+
k ,

[N−i , N−j ] = εijkN−k ,

[N+
i , N−j ] = 0

(1.6)

This is precisely the commutation relations of the product of two special unitary
groups, SU(2), with generators N+

k and N−k . Therefore, SO(1, 3) ≈ SU(2)× SU(2).

But what is the point of all of this? We can express representations of the Lorentz
group, and therefore construct a theory that inherently obeys special relativity, as
objects transforming under the two SU(2) groups. These are as follows:

Scalar : (0, 0)

Left handed spinor : (
1
2

, 0)

Right handed spinor : (0,
1
2
)

Vector : (
1
2

,
1
2
)

(1.7)

With these four components, we can make the entire Standard Model as our friends,
the Weyl spinors, satisfy this algebra and thus give us a natural framework for the
theory. Therefore, I give the Dirac lagrangian in terms of its constituent Weyl fermions.

L f = iηLσµ∂µηL + iηRσµ∂µηR + (ηLmηR + h.c) (1.8)

where is σ = (I, σi) and σ = (I,−σi), and σi are the Pauli matrices that generate the
SU(2) group, and I is the unitary matrix. Notice that the Dirac mass term inherently
mixes the lift and right spinors while the kinetic term leaves them independent. Here
we can manifestly see that a theory constructed from such creatures cannot maintain
the SU(2)L ×U(1)Y symmetry. This will be addressed explicitly later.

Now with these building blocks defined, we will turn to the content of the Standard
Model itself. There are two instantiations of fermions in the Standard Model; the
leptons and the quarks distinguished by there SU(3)c representations; the leptons are
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colourless and therefore are not affected by the strong force, where as quarks are
charged under this group.

1.2.1 The Leptons

The charged leptons are separated into three different generations; the electron (e), the
muon (µ), and the tauon (τ). Each generation has exactly the same quantum numbers
as the others excepting their masses, which differ vastly (see Figure 1.2). They are
charged under SU(2)L ×U(1)Y and thus interact electromagnetically, and via the
weak gauge bosons.

To compliment this set of three particles, an additional set of brother particles exists
called neutrinos. These neutrinos reflect the same generational structure, electron
neutrino (νe), muon neutrino (νµ), tauon neutrino (ντ). We refer to this structure as the
flavour of the particles.

We combine a given flavour of charged lepton and it’s respective neutrino into an
SU(2)L doublet, denoted by Li, where i ∈ 1, 2, 3 represents the different generations.
This is convenient notation to guarantee that our theory obeys they imposed
symmetries. We can then derive the charge of these particles by using equation 1.1.
The eigenvalue of T3 is −1/2 for the charged leptons and 1/2 for the neutrinos. The
doublets hypercharge is −1 and therefore the electric charge of the neutrino is 0 and
−1 for the charged leptons. As is the case in many families, one brother interacts
magnetically, while the other is shy, only weakly interacting.

The right handed leptons are not charged under SU(2)L and therefore their
eigenvalue fo T3 is 0. The hypercharge of the right handed charged leptons is 2 but
that of the right handed neutrinos is 0. Therefore, the right handed neutrinos are
completely uncharged. For this reason, they have been precluded from the Standard
Model. Furthermore, with reference to equation 1.8 we know that without both right
and left handed states, a particle cannot have a Dirac mass term. Therefore, the
Standard Model predicts massless neutrinos.

All leptons are completely uncharged under SU(3)c making them interesting
candidates to study flavour physics as they are not affected by the powerful physics of
the strong force.

1.2.2 The Quarks

Like the leptons, there are three generations of quarks. They are divided into up-type
and down-type; the three up type quarks are name up (u), charm (c), and top (t) whilst
the down type quarks are named down (d), strange (s), and bottom (b). Again, these



6 Chapter 1. The Standard Model

are perfect copies of each other excepting their vastly varying masses. Again they are
organised into SU(2)L doublets, QLi comprised of up-type and down-type quarks.
However, unlike the leptons, the quarks are charged under SU(3)c forming colour
triplets with three colours; red, green, and blue. As they respond to the strong force,
they cannot be observed on their own but rather form bound states. This is how, so
few particles lead to the great tapestry of mesons and hadrons we observe in modern
experiments.

The charge assignments and representations of the quarks is summarised in Tables 1.2
and 1.2.

1.2.3 Matter Content Summary

For convenience, I give a number of tables here to clarify the matter content of the
Standard Model. Firstly, in Tables 1.2 I give a table summarising the field
representations under each of the Standard Model symmetry groups. We see that the
left handed fields are collected into doublets of SU(2)L and that the quarks are triplets
under SU(3)c. I then give a break down of the charges under key generators and the
resulting electric charge of the Standard Model fermions in Table 1.2.

Field U(1)Y SU(2)L SU(3)c
Li −1 2 1
eRi −2 1 1
QLi 1/3 1 3
uRi 4/3 2 3
dRi −2/3 1 3

TABLE 1.1: The representations under the SM gauge group for the matter content is
presented. QL and LL are the left handed SU(2) doublet represntations.

Particle Y T3 SU(3)c Q
eLi −1 −1/2 1 −1
eRi −2 0 1 −1
νi −1 1/2 1 0

uLi 1/3 1/2 3 2/3
uRi 4/3 0 3 2/3
dLi 1/3 −1/2 3 −1/3
dRi −2/3 0 3 −1/3

TABLE 1.2: The charge under the hypercharge, third isospin component, and SU(3).
The resultant electric charge of each state is also presented.

With this summary in hand, we have described the full matter content of the SM. This
is all well and good, but a theory with all these particles in it but no interactions
between them cannot be the theory I have previously described in such glowing
terms. We will therefore move on to the interactions of the Standard Model by taking
a closer look at the symmetry groups I have been referring to thus far.
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1.3 Symmetries of the Standard Model

The symmetry groups of the Standard Model serve to constrain the overall form of the
theory. They are the key to understanding the fascinating dynamics that play out on
the quantum level. In particular, by promoting symmetry groups to local symmetries,
and thereby enforcing a gauge structure, the fundamental interactions between the
particles can be described.

1.3.1 Local Symmetries

The Standard Model obeys three local symmetry groups, GSM. Local symmetry
groups are a classification of symmetries where by the transformations under this
group can depend on the position in space and time. We will see that, by imposing
these symmetries, we will introduce a new type of particle, the gauge bosons.

Let us continue to consider the Dirac Lagrangian.

L f = ψ(i/∂ −m)ψ (1.9)

Consider a global U(1) symmetry transformation, ψ→ eiαQψ, where Q is the
generator of the U(1) symmetry and alpha parameterises the transformation. Clearly,
the given Lagrangian is symmetric under this transformation. Now let’s promote this
symmetry to a local (gauge) symmetry. Therefore,

ψ→ eiα(x)Qψ (1.10)

Now, there is a problem. Although the mass term will remain unchanged, the
derivative will draw out an extra term leaving the Lagrangian changed. To solve this
problem, we introduce the covariant derivative whose behaviour will change
depending on its position in space time.

Dµψ = (∂µ − igAµ)ψ (1.11)

Here, we have introduced the gauge boson, Aµ. This will transform as,

Aµ → Aµ +
1
g

∂µα(x) (1.12)



8 Chapter 1. The Standard Model

where g is the gauge coupling. With this redefinition, the above Lagrangian becomes
invariant under the local symmetry for both the mass and kinetic terms. We can also
write down kinetic terms for this new field of the form

Lgauge = −
1
4

FµνFµν (1.13)

where Fµν = ∂µ Aν − ∂ν Aµ is the field strength tensor. We have now naturally included
gauge bosons that couple to the fermion fields we have already introduced.

However, what if we want our theory to describe massive gauge bosons? Naively,
including a mass term for the gauge bosons, such as MA Aµ Aµ, leads to the same
problem we had before; our symmetry is again broken under the given
transformations. For the time being our theory must only contain massless gauge
bosons.

Now that we have some understanding of the technical side of these symmetries we
can inspect the practical applications.

1.4 QCD

Although my research, in general does not pertain to the nuances of QCD, for
completeness I include a brief discussion of the theory.

Quantum chromodynamics (QCD) is the theory associated with the non-abelian
SU(3)c gauge group [37] and is responsible for the mechanisms that bind the quarks
into the menagerie of hadrons observed by experimentalists. The force mediators are
called gluons, Ga, come in eight varieties, corresponding to the eight generators of
SU(3). Recalling that leptons are uncharged under SU(3)c and therefore do not feel its
affects, the QCD Lagrangian is given by,

LQCD = ψq(i /D−m)ψq −
1
4

Ga
µνGµν

a (1.14)

where Gµν
a is the field strength tensor associated with this gauge transformation and

ψq represents the quark fields. The field strength tensor, and the covariant derivative
are given by

Dµ = ∂µ − igsGa
µTa

Gµν
a = ∂µGa

ν − ∂νGa
µ + igs f abcGb

µGc
ν

(1.15)
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where f abc are the fine structure constants, Ga
µ are the gluon fields, and gs is the

coupling strength. Indeed, the particular behaviour of the coupling strength in QCD
gives rise to the phenomena of colour confinement, in which SU(3) charged states
cannot be observed alone, instead always appearing bound together into a hadronic
state. However, due to RGE running (a phenomena I will discuss later) this theory is
asymptotically free. That is to say, at high energy scales, the coupling runs such that
the confinement effects wane away leaving a free quarks to stand alone.

1.5 Electroweak Field Theory

Having dealt with the SU(3)c part of GSM, we are left with U(1)Y × SU(2)L. This
combination comprise electroweak (EW) field theory. There are three primary
components to the electroweak Lagrangian

LEW = LKinetic + LYukawa + LHiggs (1.16)

We will start with the kinetic part. The gauge fields for the Electroweak theory are W i
µ

for SU(2)L and Bµ for U(1)Y, where i runs from 1 to 3. Therefore, we can construct our
covariant derivative as follows

Dµ = ∂µ + ig2W i
µTi +

1
2

ig1Bµ (1.17)

where g and g′ are the gauge couplings and Ti are the generators of SU(2)L.
Therefore, the kinetic Lagrangian is given by

LKinetic = ∑
α,β

ψα /Dψβ −
1
4

Wb
µνWµν b − 1

4
BµνBµν

(1.18)

where Wµν and Bµν are the field strength tensors for the gauge bosons, /D = γµDµ, and
α and β represent the different fermion flavours. As there are three SU(2)L generators,
there are three corresponding gauge bosons. Although I have precluded the index that
runs over the three generators to avoid clutter, I will include it in the following
definition so as to explicitly demonstrate the structure of the field strength tensors.

Wb
µν = ∂µWb

ν − ∂νWb
µ + g2εbcdWc

µWd
ν (1.19)

where εbcd is the antisymmetric tensor for SU(2)L.
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With the dynamics of this sector defined, we can take a look a the Yukawa sector. The
LYukawa terms link the Higgs field, φ, with the fermion of the model via dimensionless
Yukawa couplings which control the strength of these interactions.

Before continuing it is import to quickly introduce the Higgs field. The Higgs is a
complex scalar field It is in the fundamental representation of SU(2)L with
hypercharge 1/2. As we will see later, this field is critical for mass generation in the
Standard Model.

The Yukawa sector Lagrangian is then given by

LYukawa = −
√

2(λij
u QLi

φcuRj + λ
ij
d QLi

φdRj + λ
ij
e LiφeRj) + h.c. (1.20)

where i, j represent the usual family indices, λij are the Yukawa couplings and h.c.
stands for hermitian conjugate.

Finally we have the Higgs Lagrangian itself

LHiggs = (Dµφ)†(Dµφ)− µ2|φ|2 − λ|φ|4 (1.21)

introduced by Peter Higgs, François Englert and Robert Brout [38, 39]. We shall see in
the next section how the parameters µ and λ ultimately cause the phenomena of
spontaneous symmetry breaking giving masses to the fermions in the model.

1.5.1 The Higgs Mechanism

In the early universe, the SM symmetry group, GSM was intact and thus, as we have
seen, the fermions were all massless. However, as the universe cooled, the
electroweak symmetry group underwent spontaneous symmetry breaking to the QED
symmetry group. That is to say SU(2)L ×U(1)Y → U(1)Q. This phenomena is driven
by the particular properties of the Higgs field.

The Higgs field is an SU(2)L doublet and can be expressed as follows

φ =

(
φ+

φ0

)
=

(
φ1 + iφ2

φ3 + iφ4

)
(1.22)

where φ1,2,3,4 are the real degrees of freedom. The spontaneous symmetry breaking is
driven by the evolution of the parameters, µ and λ in Equation 1.21. λ must always be
positive in order to bound potential from below. However, as the universe evolves, µ2

transitions from positive to negative. This has the effect of modifying the shape of the
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FIGURE 1.1: On the left is the symmetric Higgs potential where on the right is the
broken Higgs potential where the Higgs potential is given by V(φ) = µ2|φ|2 + λ|φ|4.
The minimum of the potential moves from zero in field space to a non zero value V.

Higgs potential and thereby breaking the electroweak symmetry. Initially the vacuum
expectation value < 0|φ|0 >= 0. Transformations generated by the Standard Model
symmetry group leave this state unchanged. But after symmetry breaking, the effect
of applying such transformation generated by the original symmetry no longer leaves
the vacuum state invariant; thus the symmetry is broken.

From Figure 1.1 above, we can see how the minimum of the potential has shifted to a
non zero value, < 0|φ|0 >= v 6= 0. We can now express the Higgs field as follows

φ =

(
φ+

φ0

)
=

(
φ1 + iφ2

v + h(x) + iφ4

)
(1.23)

where we have chosen the φ3 degree of freedom to take on the vev. Here, v represents
the vacuum expectation value and h(x) is the physical degree of freedom represented
by radial fluctations away from the vev. Due to the rotational symmetry, we are
always free to do this. Now we are left with three non physical degrees of freedom.
We can eliminate these by re-expressing the Higgs field as follows

φ = eiτiφi

(
0

v + h(x)

)
(1.24)

where τi are again the SU(2) generators. This expression is perfectly equivalent to
what we had before, with some redefinition of φi. Now we can use our SU(2) gauge
symmetry to gauge away the extra degrees of freedom and move to the unitary gauge

φ→ e−iτiφi φ =

(
0

v + h(x)

)
(1.25)
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so we now see we are left only with the massive mode, i.e. the physical degree of
freedom h(x), the Higgs field. In the following section we will see what has happened
to these extra degrees of freedom.

The Higgs Boson was ultimately discovered at the large hadron collider by both the
ATLAS and CMS collaborations in 2012 with a mass of 125GeV [10, 11]. This was a
great achievement of particle physics, experimentally confirming a crucial mechanism
of the Standard Model; a mechanism we shall se momentarily.

This whole phenomena is referred to as spontaneous symmetry breaking where we
have broken the Electroweak symmetry group SU(2)L ×U(1)Y → U(1)Q where we
have broken three of the generators of the original symmetry group leaving one in tact
to form the basis of the U(1)Q symmetry group. This symmetry can be seen
manifestly by inspection of the right panel of Figure 1.1 where you can imagine
rotating the diagram about the z-axis where our unbroken generator corresponds to
such a rotation.

1.5.2 Massive Gauge Bosons

Although our trick to gauge away the degrees of freedom in the Higgs doublet was
useful, degrees of freedom cannot simply vanish. So where are they? Goldstone
theorem tells us that for each broken generator after symmetry breaking, there is a so
called "Goldstone Boson". These become extra longitudinal degrees of freedom for the
three gauge bosons corresponding to the broken generators. With these extra degrees
of freedom, they become massive. Lets look at the kinetic term for the Higgs

LKinetic,φ = (Dµφ)†(Dµφ) (1.26)

Sticking with the unitary gauge and precluding kinetic terms for the Higgs and gauge
bosons we are left with mass terms for the gauge bosons.

Lm = [(−ig2Wµ
a τa − i

g1

2
BµY)

(
0
v

)
]†[(−ig2Wµ

a τa − i
g1

2
BµY)

(
0
v

)
] (1.27)

Since the theory will ultimately be U(1)Q invariant, we want to express the theory
such that its invariance is manifest, i.e. in eigenstates of the operator Q. This can be
done using the following redefinitions,
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W±µ ≡
1√
2
(W1

µ ∓ iW2
µ),

Zµ ≡
1√

g2
1 + g2

2

(g2W3
µ − g1Bµ), Aµ ≡

1√
g2

1 + g2
2

(g2W3
µ + g1Bµ),

(1.28)

W±µ and Zµ are the massive gauge bosons of the broken weak symmetry group while
Aµ is the photon associated to the remaining U(1)Q symmetry group. As the Higgs
vev is invariant under the symmetry group Q acting on the vacuum will vanish and
thus Aµ remains massless. We can parameterise the mismatch between the different
bases with the Weinberg angle

(
Zµ

Aµ

)
=

(
cos(θW) −sin(θW)

sin(θW) cos(θW)

)(
W3

µ

Bµ

)
(1.29)

Applying the new definitions we are left with mass terms for the gauge bosons

Lm = v2[
g2

2
4

W+
µ Wµ,− +

g1 + g2

4
(Zµ)

2] (1.30)

and so the masses are given by

MW = vg2/2,

MZ =
v
2

√
g2

1 + g2
2

(1.31)

1.5.3 Fermion Masses

Finally, let’s return to Equation 1.20 and the Yukawa sector. By introducing the Higgs
scalar doublet, the symmetry groups allow us numerous new terms that couple the
doublet to the fermions. The strength of these couplings are determined by three by
three matrices called Yukawa couplings and take the form, λuQuφuR. After
spontaneous symmetry breaking, the higgs field take on a vev. This then acts like a
mass term for all the massive Standard Model fermions. Therefore we have a
Lagrangian of the form

LYukawa = mij
u ui

Luj
R + mij

d d
i
Ldj

R + mij
e ei

Lej
R (1.32)

where mij
f = vYij

f . Notice the lack of a neutrino mass term. This is due to the
underlying symmetry groups of the Standard Model precluding such a Yukawa term
without right handed neutrinos.
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These mass matrices are under no impetus to be diagonal. Indeed, they are not. This is
due to a misalignment between the flavour basis of pure interaction, and the physical
mass basis. This ultimately manifests itself in flavour changing charged currents as we
will see in the following.

1.5.4 The Cabibbo–Kobayashi–Maskawa Matrix

Having constructed these fermion mass matrices, we would like to extract the mass
eigenstates for the fermions. However, there is no reason to expect that these matrices
are diagonal. Therefore, we must move from the purely interacting flavour basis, to
the physical mass basis. This is done by applying a unitary transformation Vf such
that f ′ = Vf f where f ′ is the flavour basis Weyl states, and f denotes the new mass
basis. Therefore

V†
f m f Vf =

m f 1 0 0
0 m f 2 0
0 0 m f 3

 (1.33)

For the vast majority of the terms in the lagrangian, these unitary matrices cancel, as
usually each term conjoins one such matrix to its inverse i.e. m f V†

f Vf f = m f f .
However, this is not the case for the charged currents. W± couples up type quarks
with down type quarks and the respective unitary matrices, Vu and Vd do not
necessarily cancel. Indeed, they do not. It should be noted that as there are no right
handed neutrinos in the SM, the misalignment between the mass basis and flavour
basis does not occur for the Standard Model leptons.

To parameterise this misalignment issue, we introduce the so called
Cabibbo–Kobayashi–Maskawa matrix (VCKM) [40, 41]. This is a generalisation of the
Cabibbo mixing angles to 6 quark fields. The Lagrangian contains terms of the
following form

L ⊃ uiV
ij
CKMγµW+

µ VCKMdj (1.34)

where Vij
CKM = Vi†

u V j
d and ui, di are the left handed fields. The CKM matrix then

parameterises the degree of flavour violation in the SM. In particular, the off-diagonal
elements.

A priori, this matrix will have nine independent parameters. A common
parameterisation is to assign it three angles and six phases. However, by redefining
the quark fields, one can absorb the five of the six phases into the quark fields. This
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leaves us with four parameters; three angles and one phase. We can therefore
construct the CKM matrix by considering three independent rotation matrices

VCKM =

1 0 0
0 c23 s23

0 −s23 c23


 c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13


 c12 s12 0
−s12 c12 0

0 0 1



=

 c12c13 s12s13 s13eiδ

−s12c23 − c12s23s13eiδ c12c23 − s12s13s23eiδ s23c13

−s12s23 − c12c23s13eiδ c12s23 − s12s13c23eiδ c23c13


(1.35)

where sij and cij are the sin and cos of θij, the given angle, and δ is the a-for mentioned
phase. This phase controls the degree of CP violation in these interactions as complex
valued CKM element will imply the biased treatment of a particle vs its antiparticle.
The values of these parameters are very well measured by a number of experiments
generally involving the rare decays of mesons. Now we see that the presence of
off-diagonal elements in this matrix gives couplings between different generations
proportional to that element. For instance, W+cd ∝ s12s13.

Further to this parameterisation, there is also a the Wolfenstein parameterisation.
Although it is an approximation, this formulation is helpful for model building.

VCKM =

 1− λ2/2 λ Aλ3

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) (1.36)

where λ ≈ s12 ≈ 0.22.

As a final note I have already expressed that, in the Standard Model, there is no
equivalent to this matrix for the leptons due to the lack of massive neutrinos. But
experimentally we know that neutrino’s do indeed have masses. Without jumping
ahead of ourselves we should briefly pay lip service to the
Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS) [42]. By introducing right
handed neutrinos we can form a matrix very similar to the CKM matrix. This is
introduced in more detail in Chapter 3.1.

1.6 Global Symmetries

In addition to the gauge symmetries of the SM, there are a number of global
symmetries that can be useful. These correspond to conserved quantities of the SM,
some of which are only conserved under certain interactions; others are conserved
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absolutely. These include the familiar energy and momentum which correspond to the
Poincaré group. I will now give a brief outline of some of these symmetries.

1.6.1 Time Reversal (T)

As the name suggested, time reversal reverses the order of time. In a theory that
respects this symmetry (unlike the SM) switching the final states with the initial states
will leave physical quantities such as the scattering amplitude unchanged. By
reversing the order of time particle states will have the same position but opposite
spin and momentum. Using the co-ordinates x = (x0,−→x ) time reversal has the effect

x → xT = (−x0,−→x ) (1.37)

The precise form of this operator can be complicated; particularly for the fermions.
However, their properties under the transformation are given as follows.

Tψ(x0,−→x )T−1 = γ1γ3ψ(−x0,−→x )

Tφ(x0,−→x )T−1 = φ(−x0,−→x )
(1.38)

where γ1 and γ3 are Dirac matrices.

1.6.2 Charge Conjugation (C)

Charge conjugation turns a particle into its antiparticle. As such, all its charges under
the SM are reversed. This is not a symmetry of the universe as, if it were, there would
be no matter anti-matter asymmetry. Indeed, this symmetry is explicitly broken by the
Weak interaction who does not act upon left handed anti-particles.

We define the charge conjugation transformation as follows.

ψ(x)→ ηC
ψ ψC(x) = ηC

ψ Ĉγ0ψ∗(x)

φ→ ηCφ = ηcφ∗
(1.39)

where ψ is a Dirac fermion and φ is a scalar and ηC = ±1. The form of Ĉ is fixed by the
requirement that the Dirac equation be satisfied under charge conjugation. Therefore,

Ĉ =

(
iσ2 0
0 iσ2

)
(1.40)
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where σ2 is the second Pauli matrix.

The Lagrangian will include QED interaction terms of the form, φγµφAµ. It can be
shown that the combination φγµφ→ −φγµφ under charge conjugation. In order for
the QED Lagrangian to respect this symmetry

ĈAµĈ−1 = −Aµ (1.41)

such that the combination is invariant. Therefore, particles with ηC = 1 such as pions
cannot decay into a final state with an odd number of photons.

1.6.3 Parity Transformation (P)

Parity is in some sense the partner to time reversal where instead of reversing the time
coordinates, we reverse the spacial coordinates. Similarly, parity is not a symmetry of
nature. As with charge conjugation, the weak interactions are the source of this
violation. The weak bosons couple only to the left handed fields. A parity
transformation will reverse the momentum and therefore the chirality. As before, we
define the transformation such that

x → xP = (x0,−−→x ) (1.42)

This has the following properties for the fields.

Pψ(x0,−→x )P−1 = ηPγ0ψ(t,−−→x )

Pφ(x0,−→x )P−1 = ηPφ(t,−−→x )
(1.43)

where ηP is the intrinsic parity of the field.

1.6.4 CP

Having seen that charge conjugation and parity transformations are violated by by
weak interactions, it was thought that their composite transformation was a
symmetry, known as CP-symmetry. After all, charge conjugating and then parity
transforming a left handed fermion does, at least, get you a state that is again charged
under SU(2)L (a right handed antifermion). However, CP violation was discovered in
1964 through some Kaon decays and since then, much more evidence has been
gathered in a range of meson decays.
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The Standard Model parameterises the amount of CP violation in the CKM matrix
with δ phase. CP-violation therefore requires the existence of three generations of
quarks as, with fewer quarks, complex phases can be reabsorbed into field definitions.
CP-violation is crucial in generating baryogenesis, the imbalance in number densities
between matter and antimatter, in the early universe by satisfying the Sakharov
conditions.

1.6.5 CPT

Although CP is violated, the combination of charge conjugation, parity
transformation, and time reversal is a symmetry of the SM. Indeed, CPT theorem
states that CPT must be a symmetry of any theory that is Lorentz invariant [43].
Therefore, such a theory cannot distinguish between a left handed particle travelling
forwards in time, and a right handed antiparticle travelling backwards in time.
Ofcourse, if CPT is a symmetry of the SM but CP isn’t, there must be some time
reversal violation.

1.7 RGEs

Although the technical details of renormalisation group running are beyond the scope
of this document, it is important to discuss them as they have great importance for
any phenomenologically successful model. The quantum field theories of the SM
produce problematic infinite quantities. These must be eradicated in order to make the
theory physical. Renormalisation Group Equations, pioneered by Richard Feynman,
Julian Schwinger and Shinichiro Tomonaga, who ultimately received a Nobel prize for
their contributions in 1965, offer a systematic tool kit for removing these infinities and
therefore, connecting the theory with experiment.

The process of renormalisation has the effect of causing parameters to vary with the
renormalisation scale, µ. The RGEs inform us about the nature of this variation. The
information is contained in the β-function who is calculated by considering a finite set
of loop contributions to the given parameter. They must be valid only up to a scale
called the cut-off scale Λ who parameterises our ignorance. That is to say, we
understand that our theory is not the final answer, and therefore set a scale above
which our theory can no longer be taken seriously as a description of physics. Indeed,
in the case of SM, the plank scale ΛP ≈ 1019GeV is the scale at which gravitational
effects come into play.

These RGE effects are critical to understanding a number of features of the Standard
Model but in particular, the RGE flow causes the strong force to confine all quarks into
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bound states at low scales. But the dependance on µ varies the coupling strength, gc,
such that at high scales the quarks become asymptotically free.

Furthermore RGE effects are critical to understanding models beyond the Standard
Model and connecting their phenomenology to experiment. One must pay careful
attention to the scale at which a given parameter is calculated such that it matches
experimental results.

1.8 Clues of Physics Beyond the Standard Model

Having given a brief introduction to the wonders of the SM, I will now draw your
attention to its short comings. In particular, a number of experimental breakthroughs
have been made demonstrating the weakness of the Standard Model. Here-in I give a
set of such limitations that my work has pertained to. Therefore, this list is by no
means exhaustive. Some critical problems that I do not specifically address here
include matter-antimatter asymmetry [44, 45] and unification with gravity [46].

1.8.1 The Flavour Puzzle

In the SM, there is no natural requirement for 3 generations; I simply postulated the
fermionic states, and wrote down the theory. Furthermore, there is mechanism to
explain the structure of the Yukawa matrices and therefore, the origin of the particular
mass hierarchy between the fermions.

Although experimentally it is clear there are (at least) three generations of fermions,
from a theoretical point of view there is a mystery; why three in particular?
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FIGURE 1.2: The masses of the Standard Model fermions are given in GeV against
their generation. We have assumed normal ordering for the neutrinos masses and do

not give a mass for the lightest neutrino.
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Figure 1.2 is a vivid demonstration of the flavour puzzle. Not only are we confronted
with the vast divergence in masses but also strange ordering within each generation.

The flavour problem can then be summarised with these four questions [47].:

• Why are there three fermionic generations?

• What causes the mass hierachy?

• What is the origin of quark and lepton mixing?

• What causes neutrino masses?

Although this last point pertains to a separate issue with the Standard Model, I
include it here as neutrino masses are fundamentally linked to the mysteries of
flavour hierarchy and perhaps the flavour problem more generally.

1.8.2 The Hierarchy Problem

Upon inspecting the scales of the Standard Model we find a surprise. That is that the
plank scale MP is so so much greater than the electroweak scale MW . Although these
two parameters appear to pertain to completely different physics there is a link. We
know that new physics must exist at the plank scale, if not far before given the orders
of magnitude between the current experimentally observable range and the gravity
scales. If this is the case, the small value of the Higgs mass is a mystery.

h0 h0

S

FIGURE 1.3: New scalar particle loop interactions with the Higgs boson lead to Higgs
mass sensitivity to the mass of the new scalar.

The Higgs boson mass uniquely receives quantum corrections from new physics that
couples to the Higgs. To see this consider a heavy complex scalar particle S that
couples to the Higgs with a term in the Lagrangian like −λS|h|2|S|2. Then the diagram
shown in Figure 1.3 will lead to Higgs mass corrections like

∆m2
h =

λS

16π2 [Λ
2
UV − 2m2

S ln(ΛUV/mS) + ...] (1.44)

where mS is the scalar’s mass [36]. As we can see, this particles will give quadratic
contributions to the Higgs mass corresponding to the ultraviolet cut-off scale of new
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physics. Therefore the Higgs mass should be at the same scale as that of the new
physics and of course, all the masses of the Standard Model are connected to the
Higgs and would thus be perturbed to the new scales too.

Although this problem is unsolved in the standard model, there are many extensions
to the standard model proposed to solve this problem. The one I have focussed on and
will introduce in the coming chapters is supersymmetry.

1.8.3 Neutrino Masses

The experimental discovery of neutrino masses is perhaps the most viscerally striking
evidence that the SM is incomplete. Originally believed to be massless, they were
found to oscillate between mass eigenstates over time. This implies that the physical
mass eigenstates are not the same as the flavour basis and therefore, there must exist a
mass eigenbasis [48, 49].

As we have already seen, the SM has no right handed neutrinos. This means that the
SM cannot accommodate Yukawa terms for the neutrinos and thus does not generate
Dirac type mass terms for the neutrino. One could argue that there is a simple
solution; in the same way that we wrote down fields for all the other fermions, let’s
include right handed fermions. However, the right handed neutrinos cannot be
naturally accommodated into any representation of the SM symmetry group other
than a singlet representation. Although this is a valid possibility, it seems somewhat
ad-hoc and perhaps less aesthetically pleasing.

Unlike the CKM, where the mixing is small, the mixing between the neutrinos is quite
large. Furthermore, the masses are exceptionally small, thus evading experimental
observation for so long. Indeed, the experimentally measuring neutrino masses is a
real challenge. Modern experiments can only measure the probabilities of a given state
transitioning to another. Therefore, they are only sensitive to the mass differences
squared between the states, ∆m2

ij = m2
i −m2

j . Current data is consistent with two
possible orderings; normal ordering, in which the mostly electron mass state is lightest
and the state with the most tauon is heaviest, and inverse ordering [48], where the
highest tauon state is lightest, as can be seen in Figure 1.4.

With the advent of the seesaw mechanism, we have a theoretical framework to
generate neutrino masses, with the inclusion of majorana mass terms, and explain the
vast hierarchy between the other fermionic states and the neutrinos themselves. We
will introduce this mechanism later.
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FIGURE 1.4: The mixing and masses of the neutrinos with thee experimentally deter-
mined mass gaps. On the left, normal ordering is shown, while on the right inverse
ordering is shown. The colour in each bar represents the flavour composition of the

given mass eigenstate. This figure was produced by [47].

1.8.4 Muon g-2

By taking the QED Dirac equation, one finds that, at tree level, the muon magnetic
moment should be g = 2. However, loop corrections contribute to this parameter
slightly perturbing it from this value. The anomalous magnetic moment of the muon
(muon g− 2) refers to these quantum contributions to the magnetic moment of the
muon.

As, classically we expect g = 2, it is useful to define the quantity aµ = g−2
2 to

parameterise the anomalous part. Experimentally this quantity is very difficult to
measure and indeed, theoretically very difficult to calculate. None-the-less, great
efforts have been made to calculate the Standard Model contributions to aµ using
lattice techniques. Furthermore, in the year of writing, experimental break throughs
have been made to measure this quantity. The Fermilab Muon collaboration
announced measurements strengthening the significance of the two original
Brookhaven National Laboratory results. The combined results now give a 4.2σ

discrepancy between the Standard Model (SM) and the experimental value [14–34].

aEXP
µ − aSM

µ = (2.51± 0.59)× 10−9 (1.45)

It seems that nature has picked out the muon for a special role and therefore this result
could play a key role in unwinding the flavour problem. Although there is some
controversy in the physics community about the validity of the Standard Model
calculations that lead to this result, if they are truly robust, this is a clear sign of new
physics as new loop diagrams are needed to explain this inconsistency.
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1.8.5 Motivation for Dark Matter

The discovery of Dark Matter was perhaps some of the most humbling results in
modern physics. Only 5% of the universe is comprised of baryonic matter. Roughly
25% is made up of a mysterious particle known as Dark Matter. It appears that there is
a particle that does not interact with either itself or with light (hence "dark") that
none-the-less has a huge influence on the universe through its gravitational effects. It
should be noted that modified gravity models have also been proposed to explain the
experimental observations. However, these are very difficult to get right and the
scientific consensus at the time of writing is that these phenomena are mostly
naturally explained by a new particle. Certainly, this is what I have focussed on.

After observing the rotation curves of many galaxies, it was found that the angular
velocities of the outer bodies were higher than expected given the amount of visible
matter in the galaxy [50, 51]. In order to explain the anomalously large angular
velocities, there must be invisible sources of gravity distributed amongst the galactic
bodies.

Observations of the famous Bullet Cluster gave further evidence of the existence of
Dark Matter [52, 53]. In this famous example, two galaxy clusters have collided and
passed through each other. However, the distribution of matter is not consistent with
just baryonic matter interactions. Instead, a weakly interacting source of gravity must
have played a role in the collision, silently passing though the cluster collision and
warping the resultant matter distribution.

In order to satisfactorily explain these observations, a stable, neutral, weakly
interacting and cold particle should exist. Although many models exist, a popular
mechanism for Dark Matter production is that it is a relic particle, left over from some
primordial processes, leaving the universe with an abundance of these particles.
Indeed the relic abundance was measured by the Planck satellite [54] as

Ωh2 = 0.1200± 0.0012 (1.46)

where h2 is the Planck constant. This measured is of course made with the assumption
that a cold Dark Matter relic particle is the explanation of the experimental
phenomena previously discussed.

1.8.6 Horizon Problem

Simply put, the Horizon Problem can be listed as follows; why is the universe,
consistent with the cosmological principles, so homogenous and isotropic? On the
face of it this may seem like a strange question. Why wouldn’t it be?
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FIGURE 1.5: The anisotropies of the Cosmic microwave background (CMB) as ob-
served by Planck. The CMB is a snapshot of the oldest light in our Universe, imprinted
on the sky when the Universe was just ≈ 400000 years old. It shows tiny temperature
fluctuations that correspond to regions of slightly different densities, representing the
seeds of all future structure: the stars and galaxies of today. This figure was produced

by ESA and the Planck Collaboration [49].

In some sense, the universe is bigger than it is old. That is to say that, patches of space
are so far apart that they could not possibly have been in causal contact [55]. And yet
the uniformity of the Cosmic Microwave Background (CMB) tells us that these regions
must have been in contact with each other.

The CMB, shown in Figure 1.5, is an imprint of universe 400, 000 years after the Big
Bang [55]. The colour variations correspond to tiny temperature fluctuations
∆T
T = O(10−5). Therefore, the early universe is exceptionally homogenous and

isotropic but showing some minor anisotropies and inhomogeneities that ultimately
lead to all the amazing structure of the universe. One might postulate that there is
only one allowed initial condition of the universe but this cannot explain the small
temperature variations. Although it is possible to simply impose these in the initial
conditions of the universe this is rather artificial. Instead, some mechanism must
explain the common past of these seemingly disparate regions.
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Chapter 2

Supersymmetry

In this Chapter I will give a very brief introduction into Supersymmetry (SUSY) only
to the extent that is required for proper comprehension of the rest of this manuscript.
Therefore, much of the technical detail is precluded. For more on this, many
exceptional references are available.

I begin with a brief motivation for SUSY models followed by a brief introduction into
the symmetry group itself. Having discussed how to build the symmetry, I will then
discuss how to break it. Finally, I will give an introduction to the Minimal
Supersymmetric Standard Model (MSSM); as the name suggests, the most minimal
Supersymmetric extension of the Standard Model.

2.1 Solving the Hierarchy Problem

As we have already seen, mh gets huge corrections from any new physics one tries to
introduce. This is a severe impediment to the introduction of the new physics required
to solve some of the problems previously elucidated. SUSY provides and elegant
solution from this seemingly intractable problem.

We have already seen the contributions one would expect from a new scalar at high
scales in Equation 1.44 diagrammatically represented in Figure 1.3.
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FIGURE 2.1: New fermion particle loop interactions with the Higgs boson lead to
Higgs mass sensitivity to the mass of the new particle. Critically, these are of the

opposite sign to similar scalar contributions.

Consider also the contributions from a high scale fermion in Figure 2.1. This
contribution is given in [36] as

∆m2
h = −

|λ f |2

8π2 Λ2
UV + ... (2.1)

Critically, we notice the sign difference between the two terms. Now, without some
miraculous cancellations, these terms will provide an intractable problem. However,
by enforcing supersymmetry, a symmetry group (that I will more formally introduce
later) that enforces that for every fermionic degree of freedom, there exists two scalar
degrees of freedom, known as SUSY partners, with the same properties (except for
intrinsic spin). Therefore, λs = |λ f |2 providing the miraculous cancellation we
require. Indeed, these cancellations continue beyond one loop level.

With SUSY, any BSM model ones cares to introduce will not suffer form this sensitivity
to new physics. This is the great motivation for supersymmetry as it liberates model
builders to solve problems with out destroying the masses of the Standard Model.

2.2 Extending Spacetime Symmetries

Having discussed the practical motivation of the hierachy problem, there is a further
motivation. Supersymmetry would complete the set of spacetime symmetries obeyed
by physics i.e. it is a natural extension of the Poincaré group. In some sense, if
supersymmnetry were to be realised, it would be very aesthetically pleasing.

SUSY is generated by the generator Q. We note that, in principle, one could add as
many supersymmetries, Qi for i up to N, as you please. However, I will focus on the
case where N = 1. Q is an anticommuting spinor with spin 1

2 . It should transform a
bosonic state to a fermionic one and vice versa. Then we have

Q|Boson > = |Fermion >

Q|Fermion > = |Boson >
(2.2)
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We also have Q†, the hermitian commutator of the generator. In order to recreate the
Standard Model gauge group the algebra of such a commutator is limited. Therefore,
we have the following algebra

{Q, Q†} = Pµ

{Q, Q} = {Q†, Q†} = 0

[Pµ, Q] = [Pµ, Q†] = 0

(2.3)

where Pµ is the 4-momentum generator. As with the SM symmetries, it is useful to
contain the fields inside representations (in this case the irreducible representation) in
order to manifestly produce symmetric Lagrangians. We call these supermultiplets.
They contain any given field, and its sypersymmetric partner. As Pµ commutes with
Q, both members of these multiplets must have the same eigenvalues under this
generator and therefore, must have the same mass. Furthermore, the Standard Model
symmetry group generators also commute with Q and therefore each member of the
multiplet must also have the same charges under the Standard Model.

As we have already seen, it is useful to work with Weyl fermions so as to see the
difference between the left and right handed degrees of freedom. With this in mind
we will construct two types of supermultiplet; the chiral multiplet and the gauge
multiplet. The chiral will contain one Weyl fermionic degree of freedom and its
superpartner, the sfermion, a complex scalar degree of freedom. Typically this will
house the SM fermionic degrees of freedom. As left and right handed fermions are
charged differently under the Standard Model, we have separate mutliplets for each
chirality. The SM gauge bosons belong to the chiral multiplet along with one Weyl
fermionic degree of freedom, known as a gaugino. As the gauge bosons transform in
the adjoint representation, so must the gauginos, and as this represntation is self
conjugate, left and right handed gauginos must have the same properties under the
gauge group. In general, superpartners to Standard Model particles are expressed will
a ˜ to distinguish them and multiplets are denoted with ˆ . Therefore, a chiral mutliplet
would be expressed

Φ̂ =

(
φ

φ̃

)
(2.4)

As the Higgs is a spin zero particle, it must reside in a chiral mutliplet with a
fermionic superpartner. In fact, just one multiplet is not enough; two are required.
There are multiple reasons for this which can be found in [36]. One such reason is that
the partner to the Higgs boson, higgsino, will represent a new source of hypercharge.
This is problematic as the sum of the fermionic hypercharges will no longer be zero (as
it is in the SM). This in turn will cause a gauge anomaly, breaking the gauge
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symmetries of the theory at the loop level. To remedy this, we introduce a second
Higgs doublet with opposite hypercharge. This are refferred to as Hu and Hd.

2.3 Soft SUSY breaking

Having read the previous, the eagle eyed among you may have asked yourself this; "if
these particles have precisely the same properties including mass, where are they?". In
order to explain this phenomenological conundrum, SUSY must be a broken
symmetry. By breaking the symmetry, the SUSY particles will get extra mass terms
such that they are hidden at the energy scales of modern particle accelerators.

Unlike the Standard Model, we cannot dynamically break the symmetry. To see why
we should remind ourselves of the initial motivation for introducing the theory; the
hierarchy problem. In order to cancel the problematic contributions to the higgs mass,
we need λs = |λ f |2. If this relation is not preserved, the Higgs will again receive
radiative corrections. Furthermore, some forms of breaking can lead to colour charge
breaking.

Instead, we must softly break the theory. That is to say that the Lagrangian can be split
into a part respecting the symmetry and some additional part that does not

L = LSUSY + Lso f t (2.5)

where LSUSY respected SUSY and Lso f t does not. Now, from the additional part of the
L we do get some corrections to the Higgs mass of the form,

∆m2
h = m2

so f t[
λ

16π2 ln(ΛUV)] (2.6)

where mso f t is taken to be the largest mass scale associated with the SUSY breaking
Lagrangian. We note that in the limit where mso f t → 0 these corrections vanish. The
existence of these contributions does place something of an upper limit on the masses
of the superpartners as, if we still wish to solve the hierarchy problem, the
contributions cannot be too large, and therefore, mso f t must also be small.

With this in mind, one might wonder, why the SUSY particles are so much larger than
the their Standard Model conterparts. Or rather, is it natural that such a hierarchy
exists. The answer is yes. But for electroweak symmetry breaking, none of the
Standard Model particles would have masses. On the other hand, all the
superpartners have the opposite feature; by the symmetries of the Standard Model
they can have mass terms. The partners to the fermions as well as the Higgs are
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scalars and therefore can have simple mass terms of the form m2φ (as per the
Klein-Gordan Equation). As the gauge bosons must be in the adjoint representation,
their partners must be in a real representation and therefore can accommodate mass
terms without violating the Standard Model symmetries. Therefore, it is quite natural
to expect that the superpartners have larger masses than their SM brothers.

There are many well established mechanisms to accommodate supersymmetry
breaking but its precise nature is unknown. Indeed, the SUSY respecting part of the
Lagrangian is very constrained by the symmetries. However the SUSY breaking part
is still a mystery and in many ways, the subject of my research.

2.4 The MSSM

Having given a minimal introduction to supersymmetry itself, I will now give a
minimal introduction to the minimal supersymmetric Standard Model (MSSM). That
is, the minimal particle content to satisfy supersymmetry and phenomenological
requirements.

2.4.1 The Lagrangian and Particle Content

As seen in equation 2.7, the Lagrangian is split into a SUSY respecting part, and a
non-SUSY respecting part. I will treat each of them individually but first, we must
consider our particle content. To generate the MSSM from the usual SM, one can
simply promote the SM particles to super multiplets. However, as I have already
argued here, there must be a further Higgs doublet. I will now give a brief list of the
set of physical fields involved in the MSSM.

Table 2.1 summarises the particle content of the chiral multiplets as well as their
properties under the SM group. To preserve readability, family and colour indices

Content Representation
Multiplet Spin-0 Spin-1/2 SU(3)c SU(2)L U(1)Y

Q̂ (ũL, d̃L) (uL, dL) 3 2 1/3
Û ũR uR 3 1 4/3
D̂ d̃R dL 3 1 -2/3
L̂ (ẽL, ν̃L) (eL, νL) 1 2 -1
Ê ẽR eR 1 1 -2

Ĥu (H+
u , H0

u) (H̃+
u , H̃0

u) 1 2 1
Ĥd (H0

d , H−d ) (H̃0
d , H̃−d ) 1 2 -1

TABLE 2.1: The particle content belonging to the chiral multiplets of the MSSM are
displayed. Sparticles are spin-0 complex scalars and SM fermions are two component

Weyl spinnors.
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Content Representation
Multiplet Spin-1 Spin-1/2 SU(3)c SU(2)L U(1)Y

Ĝ g g̃ 8 1 0
Ŵ W i W̃ i 1 3 0
B̂ B B̃ 1 1 0

TABLE 2.2: The particle content belonging to the gauge multiplets of the MSSM are
displayed. Gauginos are spin-1/2 Weyl fermions and the SM bosons are spin-1 vector

bosons.

have been suppressed. The additional Higgs doublets are given with subscripts u and
d denoting the opposite hypercharge. This difference ultimately has the affect of
modifying the electric charges of the relevant states. Therefore, the electric charges
have been given in the superscript. Table 2.2 gives the vector multiplets of the MSSM
along with its symmetry group properties where lorentz and colour indices have
again been suppressed.

These two tables summarise the entire MSSM. Now we turn our attention to the
Lagrangian itself.

2.4.1.1 The Superpotential

The superpotential of the SUSY theory contains all the information about the
non-kinetic terms of the SUSY Lagrangian. This includes the Higgs couplings to
matter fields and the Higgs doublet interactions. By conducting the appropriate
integrals over Grassman variables, one can generate the afore mentioned parts of the
Lagrangian using a very succinct notation. The superpotential for the MSSM is given
in [36] as

WMSSM = uYuQHu − dYdQHd − eYeLHd + µHuHd (2.7)

where the fields u, d, Q, e, L, Hu and Hd correspond to the superfields associated with
the previously given supermultiplets. Yu, Yd, and Ye are the 3 by 3 dimensionless
yukawa couplings matrices. Again, I have suppressed the gauge and family indices.
Finally there is the "µ-term". This acts as a mass term or the higgs doublet. This term is
unique in that self coupling terms such as HuH∗u that are used in the regular Standard
Model to give mass to the Higgs are forbidden as the superpotential must be
holomorphic. This is yet another justification for the two Higgs doublet requirement.
This can also be seen in the other terms of the superpotential who also rely on the two
multiplets in order to generate the relevant mass terms.

In addition to the parts of the Lagrangian that can be contained by the superpotential,
there is also a the supersymmetry respecting interaction terms. The explicit content
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and make up of such terms is beyond the scope of this manuscript and has therefore
been excluded.

2.4.1.2 Soft Breaking Part of the MSSM

As mentioned previously, the exact nature of SUSY breaking is unknown. Therefore,
the MSSM has the most general form in order to accommodate the different potential
mechanisms. Thus, we have

Lso f t =−
1
2
(M3 g̃g̃ + M2W̃W̃ + M1B̃B̃ + c.c)−

− (ũAuQ̃Hu + d̃AdQ̃Hd + ẽAe L̃Hd + c.c)−

− Q̃†m2
QQ̃− L̃†m2

L L̃− ũ†m2
uũ− d̃†m2

dd̃− ẽ†m2
e ẽ−

−m2
Hu

H∗u Hu −m2
Hd

H∗d Hd − (B0µHuHd + c.c.)

(2.8)

where I have suppressed the gauge group indices on the gauginos. M1,2,3 are the soft
terms associated with the bino, wino, and gluinos respectively. On the following line,
we have the trilinear terms that link the chiral superpartners with the Higgs doublets.
They are parameterised by the trilinear matrices, Ai, which are 3 by 3 in flavour space.
On the subsequent line, we have soft masses for the squarks and sleptons. Again these
are 3 by 3 in flavour space. Finally, we have the soft mass contributions to the two
Higgs doublet, Hu and Hd, and the bilinear coupling parameterised by B0.

As previously argued, the scale of the new physics cannot be too high in order to
avoid problematic contributions to the Higgs mass. Therefore, all these terms should
be approximately proportional to the general scale mso f t.

Unlike in LSUSY, where all parameters have already been seen in the Standard Model,
an array of new masses, phases, and mixing angles have been introduced; 105 to be
precise. It seems that SUSY breaking introduces a huge set of new parameters. Indeed,
leaving these parameters leads to large flavour and CP violating effects that are very
suppressed by experiment.

In later chapters we will examine two different approaches to understanding this
parameterisation: supergravity in which this huge array of variables are reduced to a
small list of governing parameters that determine the entire breaking scenario; and the
use of Flavour and GUT symmetries to suppress the terms by construction.

2.4.2 Electroweak Symmetry Breaking

Having added the extra Higgs doublet, electroweak symmetry breaking must be
modified in order to accommodate this new state. Ofcourse, our theory must still
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generate mass terms through the usual Yukawa mechanism and give the 125GeV
scalar mass state in accordance with LHC observations [10, 11].

As in traditional electroweak breaking, we minimise the scalar potential such that the
vacuum expectation value of the Higgs fields is non-zero. However, In SUSY we have
many scalars making the potential quite complicated. Fortunately, a number of tricks
are available in order to avoid working with such a bloated animal. Firstly, the
squarks and sleptons have large positive masses and therefore will not get vevs and
therefore can be excluded from our considerations. Furthermore, as in SM EWSB we
can use the SU(2) symmetry to rotate the fields such that one of the directions in field
space, in this case H+

u , is zero at the minimum. As electromagnetism is unbroken we
also know that H+

d = 0. With these tricks in mind, we are left with a scalar potential

V =(|µ|2 + m2
Hu
)|H0

u|2 + (|µ|2 + m2
Hd
)|H0

d |2 − (BµH0
uH0

d + c.c)

+
1
8
(g2

1 + g2
2)(|H0

u|2 − |H0
d |2)2

(2.9)

The B term is the only one that depends on the phase of H0
u and H0

d . We can therefore
absorb the phase by redefining one or other of the neutral Higgses. Furthermore, we
can use the U(1)Y symmetry to rephase H0

u and H0
d such that their vacua are real and

positive. This implies that CP will be unbroken by the vev.

We now require V to be bounded from below. This amounts to the condition

2b < 2|µ|2 + m2
Hu

+ m2
Hd

(2.10)

Then for the vev to appear near H0
u = H0

d = 0 we require

b2 > (|µ|2 + m2
Hu
)(|µ|2 + m2

Hd
) (2.11)

Now that we have stated the conditions required for the scalar potential to take the
requisite shape in phase space, we turn to phenomenology to inform the specific
breaking pattern. Setting < H0

u >,< H0
d >= vu, vd we know that the vevs will be

related to the Z mass by

v2
u + v2

d =
2m2

Z
g2

1 + g2
2

(2.12)

The exact values of the vevs is not determined. Instead, we write the ratio of the vevs
as tan(β) ≡ vu/vd. Now in order for the scalar potential to satisfy these conditions, we
can extract a set of equations required by electroweak symmetry breaking. Therefore,
by requiring that ∂V/∂Hu = ∂V/∂Hd = 0 we have
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sin(2β) =
2µB

m2
Hu

+ m2
Hd

+ 2|µ|2

m2
Z =

|m2
Hu
−m2

Hd
|√

1− sin2(2β)
− (m2

Hu
+ m2

Hd
+ 2|µ|2)

(2.13)

Here we have established the parameter requirements for electroweak symmetry
breaking. These equations will be useful for some of the analysis in later chapters.

As with SM EWSB, this process generates goldstone bosons. As we have two SU(2)L

higgs doublets, we have eight degrees of freedom. Three of these are "eaten" by the
massive electroweak bosons, leaving five massive Higgs states; two oppositely
electrically charged mass eigenstates, two electrically neutral CP-even mass states,
and one neutral CP-odd state. The lightest of the two CP-even, neutral states is the SM
Higgs. At tree level, the mass is bounded from above such that it would have been
discovered long ago. Fortunately, as we have already seen, loop order contributions
come into play to remove this impossibility.

2.4.3 R-Parity

In principle, terms are allowed by supersymmetry that lead to baryon and lepton
number violation. These are rather troubling as they lead to decays that are not
realised in nature; such as a short life time proton decay. To prevent these terms
appearing in our Lagrangian, we introduce a new symmetry to forbid them while
maintaining the benefits of supersymmetry we have already established. This
symmetry is known as R-parity defined as

PR = (−1)3(B−L)+2s (2.14)

where s is the spin of the given state. Here we can see that, for any given mutliplet, the
R-parity eigenstates will be different between the constituents due to the difference in
spin. We say that the Standard Model particles, including the Higgs, have even R
parity, PR = +1, and that the sparticles have odd R-parity, PR = −1.

Taking R-parity to be an exact symmetry we produce three consequences of note,
beyond the motivation we opened this section with.

• The lightest supersymmetric partner particle (odd R-parity) will be stable. In the
case where this particle is uncharged under the Standard Model gauge group (as
with the neutral gauginos, or neutralinos) this particle will interact with the
Standard Model only weakly, and therefore makes for an excellent dark matter
candidate (to be discussed later) [56].
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FIGURE 2.2: Gauge coupling running in the SM and MSSM. The SUSY scale is as-
sumed to be around 3TeV. The Standard Model gauge couplings are marked with solid
lines while the SUSY couplings are marked with dashed lines. The SUSY parameters

almost perfectly converge at approximately 1016GeV.

• Sparticles must decay into a final state with an odd number of sparticles.

• Colliders will produce SUSY partners in even numbers.

In order for the theory to be viable, it is very useful (from a model building
perspective) that the symmetry be imposed. From the theoretical standpoint, this
seems rather artificial, but experimentally it is very well motivated given the long life
of the proton, the lack of collider evidence, and the search for dark matter.

2.4.4 Gauge Coupling Unification

As we have already seen, the couplings run as we change the energy scale. Ofcourse,
the introduction of all these new particles will mean new loop diagrams and therefore
a different RG flow. Interestingly, if we assume the SUSY scale to be O(1TeV), we find
remarkable convergence in the gauge coupling parameters, demonstrated in Figure
2.2, where αi are functions of the U(1), SU(2), and SU(3) gauge group couplings
derived from the renormalisation process.
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This could be a very exciting clue as to the origin of the SM gauge group, perhaps
hinting at the exciting possibility that the symmetry groups are born of one parent
symmetry, who is broken in much the same way we have broken electroweak
symmetry, to give the familiar SM group. Indeed, this is yet another motivation for
SUSY as it helps build models that unify the Standard Model forces. One example of
such a model is studied in detail in subsequent chapters.

2.4.5 Flavour Mixing

By construction, the flavour structure of the SUSY respecting part of the Lagrangian
reflects that of the SM. Therefore, it contains no new sources of flavour violation
beyond that of the CKM. This is referred to as minimal flavour violation (MFV) [57].
However, MFV is broken by the soft masses whose parameters can lead to large
flavour violating effects. This is known as non-minimal flavour violation (NMFV).

Before continuing, it is useful to define the super CKM basis (SCKM). In this basis, we
simply apply the same rotations required to diagonalise the SM masses to the SUSY
flavour basis. This is useful for phenomenological reasons as it allows us to work in
the mass basis of the SM fermions and thereby study the flavour violating effects and
other observables associated with the model. We have defined the rotations necessary
to diagonalise the Yukawa matrices in Equation 1.33. Therefore we have

ũ′L = VuL ũL, ũ′R = VuR ũR, d̃′L = VdL d̃L, d̃′R = VdR d̃R (2.15)

where the primed basis is the mass basis and the unprimed is the SCKM basis.

With the aside in mind, we now return to the issue of flavour violation. In order to
eradicate the strong flavour violating effects, it is often simply assumed that soft
matrices are diagonal in the SCKM basis. Therefore, as the SUSY respecting part of the
Lagrangian has diagonal masses in this basis, the sfermion masses will be completely
diagonal.

Although this strategy is effective in quickly and simply producing viable results, it is
strangely ad hoc. That is, there is no systematic mechanism for setting the off-diagonal
elements to zero and no theoretical motivation. It is motivated only by experiment.

Instead of this approach, one can choose to embrace the NMFV paradigm. This may
seem suicidal from a phenomenological perspective. However, some recent work
[58, 59] has studied this framework with some interesting results. The motivation for
such study is as follows. Firstly, this is the most general framework and doesn’t
involve the artificial suppression of model parameters. Additionally, these
off-diagonal elements lead to large squark and slepton mixing. This can hide the
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sparticles, who otherwise would be accessible at current energy scales, from collider
experiments as new decay channels open up. Finally, these non-minimal flavour
violating models are very well motivated by GUTs with additional flavour symmetry.
In such scenarios, SUSY not only converges the gauge couplings, but the flavour
symmetry can serve to constrain the off-diagonal elements.

Having discussed this NMFV paradigm, I will now give a very brief and very
non-exhaustive introduction to some of the flavour violating constraints. In particular,
I will focus on those that have influenced my research. However, many more are
currently under research. Particularly constraining results come from meson mixing.
In particular, NMFV SUSY gives new diagrams to B and K meson mixing. These
diagrams are proportional to the off-diagonal elements of the soft matrices.
Furthermore, there are new channels that contribute to meson decays. Although these
channels are open in an MFV context, they will be suppressed by the CKM. In Figure
2.3 I give an example SUSY contribution to b→ s γ.

b s
χ̃01

b̃ s̃
s̃

γ

µ e
χ̃01

µ̃ ẽ
ẽ

γ

FIGURE 2.3: Example SUSY loop contribution to b → s γ on the left and µ → e γ on
the right. The dots mark NMFV transitions between different generations of sparticles

controlled by off diagonal elements in soft breaking matrices.

Another source of flavour violating constraints come from leptonic decays. A
particularly stringent experimental limit comes from µ→ e γ in the context of NMFV.
From Figure 2.3, we see that this diagram is proportional to the flavour mixing
transition between µ̃ and ẽ.

2.4.6 Muon g-2 in SUSY

In Chapter 1.8.4 I introduced the experimental breakthrough associated with the
magnetic moment of the muon. Although there is some controversy about this result,
such strong experimental significance is hard to ignore.

Supersymmetry provides an excellent framework for explaining such anomalous
flavour behaviour due to loop corrections. An example Feynman diagram that
contributes to ∆aµ is given in Figure 2.4.
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µ µ

γ

µ̃ µ̃

B̃

FIGURE 2.4: Example SUSY loop contribution to muon g-2. The left handed muon
emits a bino and smuon and ultimately transitions into a right handed muon.

With the right blend of parameters [60] it has been shown that the MSSM can
successfully accommodate the g-2 prediction. In particular, given sufficiently light
electroweak gauginos, smuons, and smuon neutrinos, these contributions will be non
vanishing.
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Chapter 3

Beyond The Standard Model and
Cosmology

Although we have spent quite some time focusing on SUSY, there is, of course, much
more to beyond the Standard Model (BSM) physics than that. In particular, taking just
the most minimal version of supersymmetry leaves a whole host of problems left
unsolved (for a non comprehensive list see Chapter 1.8). Having said this, it is often
true, and is the case in my research, that BSM models are often very well
complimented by SUSY. Therefore, I have given it special consideration in this
manuscript.

I will now explore a small set of further BSM considerations. I have structured the
chapter in such a way that each subsection addresses one or more of the issues raised
in Chapter 1.8.

3.1 Massive Neutrinos

Perhaps the most obvious short coming of the SM is the lack of neutrino masses. The
charged leptons get mass through the usual Yukawa mechanism coupling left and
right handed fields together. This ofcourse cannot apply to the neutrinos who, in the
Standard Model, do not have a right handed field.

By simply including such right handed neutrinos we can introduce a mechanism for
generating neutrino masses [47]. However, in order to predict experimentally viable
masses, we would require Yukawa coupling O(10−11). This raises an issue of
naturalness as there is a huge difference in magnitude between the next smallest
Yukawa coupling; that of the electron, O(10−6).
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As the right handed neutrinos are neutral under the Standard Model gauge group,
charge conjugation has no effect on them. Therefore, they are there own antiparticle
and thus called Majorana fermions. As they are singlets there are no symmetry
constraints controlling their mass scale and they can have their own mass term, called
a Majorana mass term, which is a free parameter of the theory and can therefore be
arbitrarily large.

By utilising both the Yukawa structure for generating mass and the Majorana
structure, we can construct the Seesaw Mechanism [61–65]. This provides a natural
framework for setting the effective mass of the left handed neutrinos to be very light.
There are number of Seesaw mechanisms, the first of which was introduced in [66]. I
will focus on the Type-I seesaw for its relevance to later chapters. However, for a
review of further means of generating neutrinos masses I refer you to [67].

3.1.1 The Seesaw Mechanism

With the introduction fo the right handed majorana neutrinos, we have the following
possible neutrino mass terms

L = −1
2

MRνc
RνR −mDνLνR + H.c. (3.1)

where MR is the right handed Majorana mass matrix and mD is the neutrino mass
matrix arising from the Yulawa coupling −HuYνLνR. Therefore, mD = vuYν where is
the (up-type) Higgs vev.

Combing our terms we can construct the seesaw mass matrix for the neutrino part of
the Lagrangian

(
νL νc

R

)( 0 mD

(mD)
T MR

)(
νc

L

νR

)
(3.2)

As MR is unrestricted we can make the assumption that MR >> mD. Under this
assumption, this matrix can then be diagonalised to give the effective Majorana
Masses as follows

mν = −mD M−1
R (mD)

T (3.3)

Now we can see why this is called the Seesaw mechanism. The effective light
neutrinos are suppressed by the large MR scale where as the right handed neutrinos
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are at the MR scale. This provides a natural explanation as to the smallness of the SM
handed neutrinos.

This model is phenomenologically viable with only two right handed neutrinos [48].
In such a model, one of the light neutrinos will be massless. However, perhaps a more
natural model includes three right handed neutrinos and gives mass to all three light
neutrinos.

3.1.2 The PMNS

As with the quark sector, where the up and down Yukawa matrices don’t perfectly
align, the introduction of neutrino masses means a similar diagonalisation process
must be applied and, yet again, there are two transformations required to diagonalise
the basis. Ye is diagonalised by UeL and mν is diagonalised by Uν. Therefore, we can
define the so-called PMNS matrix [68, 69] as follows.

UPMNS = U†
eL

Uν (3.4)

This matrix describes the mixing in the lepton sector. Indeed, in the mass basis of the
charged leptons the lagrangian will have terms of the form

L ⊃ −g
2

(
e µ τ

)
UPMNSγµWµ

ν1

ν2

ν3

+ H.c. (3.5)

then the PMNS matrix describes the mixing between the flavour states that form the
mass states. Therefore,

νe

νµ

ντ

 =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


ν1

ν2

ν3

 (3.6)

where ν1,2,3 are the mass basis states and νε,µ,τ are the flavour states.

There are only 3 angles and 3 phases on the PMNS as 3 phases associated with the
charged leptons can be absorbed. However, in the case of the Majorana fermions two
phases cannot be eliminated. The PMNS can be parameterised in many different
ways. I give here the parameterisation consistent with the PDG. It has the same
structure as the CKM matrix but with the additional Majorana phases.
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UPMNS =

 c12c13 s12s13 s13eiδ

−s12c23 − c12s23s13eiδ c12c23 − s12s13s23eiδ s23c13

−s12s23 − c12c23s13eiδ c12s23 − s12s13c23eiδ c23c13


eiη1 0 0

e0 iη2 0
0 0 1

 (3.7)

where η1 and η2 are the Majorana phases.

3.1.3 Neutrinoless Double-beta Decay

With the introduction of right handed neutrinos and new terms in the lagrangian, new
decay channels are exposed. In particular, if the right handed neutrinos are majorana
in nature, the process of neutrinoless double beta decay would be allowed [70]. In
such a process, two neutrons could decay into two protons and two electrons without
emitting a neutrino.

The decay rate of this process is of the form

Γ0ν
ββ ∝ |mee| (3.8)

where

|mee| = |∑
i
(Uei

PMNS)
2mi| (3.9)

Although experimentally this process has never been observed, there are mutliple
experiments underway to try to observe this process as it would shed light on, the
nature of the neutrinos and the structure of the PMNS matrix.

3.2 GUTs

We have seen in Chapter 2 that augmenting the Standard Model with supersymmetry
leads to a high degree of convergence. Additionally, the inclusion of right handed
neutrino states could modify the RGEs for even better convergence. Grand Unified
Theories (GUTs) take this curiosity and formalise it.

Physics has a history of unification: electronic forces and magnetic forces were unified
into electromagnetism; space and time were unified into spacetime. Given this history
of success, it seems well motivated to try to unify further. In particular, GUTs aim to
unify the three Standard Model forces into one by embedding the symmetry groups of
the Standard Model, GSM, into a larger group, GGUT.
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SU(3)C × SU(2)L ×U(1)Y ⊂ GGUT (3.10)

This parent force would exist only at very high scales, MGUT, below which the
symmetry is broken.

Although formalising the convergence of the coupling is rather aesthetically
appealing and continuing in a tradition of unification seems like a good strategy for
progressing physics, is this enough to motivate the study of such models? There is
another critical motivation. The electric charges of the proton and the electron,
somewhat miraculously, cancel each other perfectly. Given that the leptons and the
quarks do not belong to the same representation of the U(1)Y group, and the charges
under U(1)Y are not inherently quantised this seems like a strange coincidence.
However, if the entire Standard Model originates from the same representation of
some parent symmetry group the common ancestry of these seemingly disparate
particles would explain their connection.

In order to contain the symmetries of the Standard Model we need a symmetry group
of at least rank 4 (number of commuting generators in a lie algebra). It turns out that
the simplest such representation, introduced with the Georgi-Glashow model, is
SU(5) [71]. Another popular choice is SO(10) which has the additional benefit of
encompassing right handed neutrinos in a non-trivial representation [72]. I will now
give a brief introduction to SU(5) GUTs for their pertinence to later chapters.

3.2.1 SU(5)

SU(5) is the most minimal GUT symmetry. It is composed of five by five unitary
matrices with transformations given by U = ei/2αaλa

where λa are the generators. As
always, the gauge boson must be in the adjoint representation. This has N2 − 1 = 24
degrees of freedom. We can embed the Standard Model bosons into this
representation as follow

1√
2



X1 Y1

[G · 2B√
30
]
β
α X2 Y2

X3 Y3

X1 X2 X3
W3
√

2
+ 3B√

30
W+

Y1 Y2 Y3 W− −W3
√

2
+ 3B√

30


(3.11)

where, α and β run from 1 to 3, G are the gluons, W are the SU(2) bosons, and B is the
U(1) boson. Additionally, we have two new characters, X and Y. These twelve new
gauge bosons are a charged under both SU(2) and SU(3). They can therefore be
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considered a type of leptoquarks. Their presence in the model could serve to induce
baryon and lepton number violation which would thereby predict some proton decay.
This can be solved if they have masses of O(MGUT) thereby suppressing operators
associated with them and giving the nucleons a longer life time.

Then all of the Standard Model fermions can be packed into the antifundamental
representation 5 and the 10 representation.

5 =


dc1

dc2

dc3

e−

−νe

 , 10 =


0 uc3 −uc2 u1 d1

−uc3 0 uc1 u2 d2

uc2 −uc1 0 u3 d3

−u1 −u2 −u3 0 ec

−d1 −d2 −d3 −ec 0

 (3.12)

where the superscript, c, denotes the charge conjugation, 1,2, and 3 superscripts refer
to colour, and all the fermionic states are Weyl fermions. With these representations
we can now understand the charge quantisation in the SM. If we take two of the SU(5)
generators as the hypercharge and third component isospin generators, then applying
them to either of our fermionic representations should be traceless (as can be verified).
But if both the components of Q are traceless, then Q itself must be traceless when
applied to the representations. This, ofcourse, fixes the charges of the electric charges
of the fermions and thus naturally explains the quantised nature of the electric charge
and hypercharge.

Finally, we must consider the Higgs boson. When breaking SU(5) directly to the SM,
we place it in the 5 representation. If SUSY is incorporated in the model then there are
two Higgs doublets, Hu and Hd, that go in the 5 and the 5 respectively.

Now, having constructed our SU(5) GUT symmetry containing all of the Standard
Model (and SUSY) content, we must break it. As with electroweak symmetry
breaking, this is done with the introduction of a new Higgs. In particular, we take the
adjoint 24 representation. This then acquires a vev such that
< H >= v5diag(2, 2, 2− 3,−3) thus leaving SU(2) and SU(3) unbroken. This will
break the SU(5) to the Standard Model leaving us with some extra physical Higgs-like
degrees of freedom; H8 who is an octet under SU(3), H3 who is a triplet under SU(2),
and H0 who is a singlet under both. All of these states have masses, after symmetry
breaking, proportional to v5 and are therefore very massive and hidden from modern
experiment. Additionally there are the twelve goldstone bosons, HX and HY, who are
eaten by the X and Y gauge bosons. Again these masses will be proportional to v5

solving the nucleon decay problem.

It should be noted that there is an important short coming of SU(5). If our model is to
explain neutrino oscillations, then it must include right handed neutrinos. But there is
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FIGURE 3.1: The different effects of the symmetries are represented with the family
symmetry acting intra particle type and the GUT symmetry acting extra particle type.
The re scaled column heights represent the hierarchy of masses. This figure was pro-

duced by [47].

no natural way to accommodate these right handed fields. Instead, one must resort to
the same approach used in the neutrino mass augmented SM and simply include an
additional singlet, in this case a singlet of SU(5), and store the neutrinos there.

3.2.2 Flavoured GUTs

The application of GUT symmetries can be very effective in explaining the differing
relations the quark and lepton types have with the fundamental forces. But these GUT
symmetries do not act within each generation and yet we see greatly diverging masses
and mixing patterns. Indeed, there is no explanation for the existence of the three
generations within each family. Having learned the utility of applying symmetries to
problems in particle physics, applying a similar strategy here is well motivated.
Figure 3.1 shows the utility of a family symmetry in explaining the hierarchy within
each type of fermion.

By applying spontaneous symmetry breaking, it has been shown that one can satisfy
the low scale flavour mixing and CP-violation [59]. In order to achieve this, the
introduction of yet another set of Higgs-like scalar fields must be introduced (known
as flavons) in order to break the symmetry. Again, this occurs at some scale well above
electroweak symmetry breaking.

These models are of particular interest for neutrino mass as leptonic mixing angles are
relatively large and discrete symmetry groups which tend to give large values in the
resultant mixing matrices [47]. In addition, family symmetry can influence flavour
structure in the soft SUSY Lagrangian thus controlling the non-minimal flavour
violating tendencies of SUSY.

There are many choices of GUT symmetries and many choices of family symmetries.
However, I have focussed SU(5)× S4 where S4 is the rigid rotation group of a cube.
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3.3 Cosmic Inflation

As already discussed in Chapter 1, the CMB shows remarkable homogeneity and
isotropy. However, small temperature fluctuations are present. Some dynamical
means of explaining both of these phenomena is required. Inflation provides such a
mechanism.

Inflation, first introduced by Guth [73] is a process in the early universe in which the
universe underwent super rapid expansion some time in the first 10−36s. This process
explains the seeming connection between disparate parts of the CMB. What ever the
initial conditions of causally disconnected regions of the CMB, they appear to be in
equilibrium as the process of inflation smooths out the inhomogeneities and
anisotropies. Furthermore, small quantum fluctuations during the inflationary period
explain the small temperature fluctuations in CMB.

Indeed, inflation does not just address the horizon problem; many problems are
solved by the introduction of this theory. In particular, the "flatness problem" and the
"magnetic monopoles problem". According to modern experiment, the universe is
very close to have the critical density such that the curvature of the universe is flat.
This condition requires fine tuning in the early universe as any curvature is
exaggerated over the evolution of the universe. Inflation dynamically solves this
problem as small curvature in the early universe is inflated away. The magnetic
monopole problem questions the lack of experimental evidence for magnetic
monopoles. If such particles do exist but their mass is above the inflation scale, their
relic density would be washed out during inflation.

In QFT an inflation mechanism is provided by slow-roll inflation [74]. We introduce a
new scalar field, the inflaton. If this inflaton has significantly more potential energy
than kinetic, it will roll down its potential towards the minimum driving the
inflationary expansion. As this is a quantum field theory, it undergoes some quantum
fluctuations in its field value. Therefore, different regions reach the end of their
inflation at different times. This variation causes the temperature fluctuations in the
CMB.

Starobinsky inflation is a special case for inflation [89, 97] which is particularly well
suited to current observed phenomena. It is a modification of general relativity that
gives rise to a characteristic exponential potential leading to predictions consistent
with the latest measurements. Additionally, it can arise from the special case of
"no-scale" supergravity as we shall see later.
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Chapter 4

Muon g-2, Dark Matter and the
Higgs mass in No-Scale
Supergravity

4.1 Introduction

As discussed in Chapter 1.8.4, recent experimental results have propelled the
anomalous muon magnetic moment g− 2 back into the centre stage of particle
physics. Following the original Brookhaven National Laboratory measurements [75],
the Fermilab Muon collaboration has recently affirmed these findings [76], with the
combined results now showing a 4.2σ discrepancy with the Standard Model (SM)
calculation as shown in Equation 1.45. In Chapter 2.4.6 we see the mechanisms SUSY
can supply, due to loops of light sleptons, µ̃, ν̃µ, and light electroweak gauginos [77].
These days such an explanation must be made consistent with the measurement of the
Higgs boson mass, and LHC constraints on superpartners, both of which point
towards rather heavy squarks and gluinos, and such studies have been recently
performed in various SUSY models [78–85].

Here we shall be interested in the phenomenology of no-scale supergravity (SUGRA)
(for a review and early references see [86]), focussing on the interplay between the
muon g− 2, dark matter and the Higgs boson mass in particular. No-scale SUGRA is
an ultraviolet (UV) completion of the minimal supersymmetric standard model
(MSSM), in which the scalar masses are zero at the high scale and are subsequently
generated by renormalisation group (RG) running via couplings to the non-zero
gaugino masses. Apart from its minimality, it is motivated by string theory and more
recently by the fact that the hidden sector contains the ingredients for inflation.
However, its phenomenological viability is not straightforward given the fact that the
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Higgs mass requires large stop masses, while the muon g-2 requires light slepton
masses, and dark matter is known to be non-trivial to achieve in the general MSSM,
and all this must be achieved in no-scale SUGRA starting from zero scalar masses at
the high scale. This provides the main motivation for a detailed phenomenological
study of no-scale SUGRA. In our approach, there will be an important constraint
coming from inflation, to which we now turn.

In Chapter 3.3, we discuss why inflation is one of the key concepts in modern
cosmology [87–92]. Not only does it explain the vast size of the universe (the flatness
problem), it also explains the extreme homogeneity and isotropy of the universe on
cosmological scales (the horizon problem), as well as diluting cosmological relics (the
monopole problem). Furthermore, the slow rolling inflaton provides small quantI
fluctuations which eventually lead to large scale structure [93, 94]. However, despite
its successes, the precise mechanism that causes inflation is unknown. Clues to the
theory behind inflation, may come from current observational data [95], where the
spectral index is measured to be ns ≈ 0.96± 0.007 with a low tensor-to-scalar ratio
r < 0.08. These data exclude the simplest chaotic models with inflaton potentials φ2 or
φ4 [96]. Amongst the successful models which are consistent with these data is
Starobinsky inflation [89, 97], which may have a link to SUSY models [98–100]. Since
inflation is sensitive to ultraviolet (UV) scales, one must also consider SUGRA when
dealing with inflation, and the no-scale SUGRA models [101] in particular are well
suited for maintaining the flatness of the inflaton potential (thereby solving the η

problem), although other approaches have also been discussed [102–106]. Also the
Lyth bound [107] on the tensor-to-scalar ratio also suggests a scale of inflation below
the Planck scale, leading to testable at collider tests of inflation.

Ellis, Nanopoulos, Olive (ENO) have shown that no-scale SUGRA can behave like the
successful Starobinsky inflationary model [108–110]. However, in the ENO approach,
a term with constant modular weight is used to break SUSY, and there is no
connection between inflation and SUSY breaking. Subsequently one of us has
considered the above ENO model, but with a linear Polonyi term added to the
superpotential [111]. The purpose of adding this term was to provide an explicit
mechanism for breaking SUSY in order to provide a link between inflation and SUSY
breaking. Indeed they showed that inflation requires a strict upper bound for the
gravitino mass m3/2 < 103 TeV [111]. It was subsequently shown [112] how the model
in [111] may be generalised to include the fields in the visible sector of the minimal
supersymmetric standard model (MSSM). In such a framework the soft-SUSY
breaking parameters depend on the modular weights in the superpotential and lead to
new phenomenological possibilities for supersymmetry (SUSY) breaking, based on
generalisations of no-scale SUSY breaking and pure gravity mediated SUSY breaking.
The strict upper limit on the gravitino mass m3/2 < 103 TeV provides an important
phenomenological constraint, bearing in mind that the gaugino masses are typically
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suppressed by a loop factor 1/(16π2) in gravity mediated scenarios.

In this chapter, motivated by the desire to relate inflation to collider physics, including
dark matter and the muon g− 2 measurement, I study the phenomenology of the
no-scale SUGRA inflation model in [112]. Although related phenomenological studies
of similar works have been undertaken [108–110] a full phenomenological study of the
model in [112], which is subject to the upper bound on the gravitino mass, has not yet
been undertaken. Here I shall present a phenomenological study of two of the
simplest cases suggested in [112]: the first case consisting of no-scale SUGRA with
zero soft scalar masses m0 = 0 and zero trilinear soft parameter A0 = 0, where the
only source of SUSY breaking in the visible sector is via the gaugino masses Mi; the
second case switches on a small soft trilinear mass A0 6= 0, while maintaining zero soft
scalar masses m0 = 0. In both cases I assume that the gaugino masses Mi (which are
not fixed by the Kahler potential and are therefore independent of the details of
inflation) to arise from a hybrid of anomaly mediated and universal sources [113].
Such gaugino masses Mi at the high scale will act as the seed of all soft squark and
slepton masses at low energy via renormalisation group (RG) running effects. Given
the small number of input parameters, I shall use a Monte Carlo scan over parameter
space, using the SPheno [114, 115] package linked to FeynHiggs [116], MicrOmegas
[117–121] and CheckMATE [122, 123]. For each case above, I display viable regions of
parameter space displaying the results in terms of a Likelihood function, including the
requirement of successful dark matter relic density. I then consider a set of
representative benchmark points from viable regions of parameter space, and discuss
the prospects for discovering the resulting SUSY spectrum at colliders. In particular I
show that the no-scale SUGRA case allows for dark matter while satisfying all
phenomenological constraints, including the correct Higgs mass and dark matter relic
density, leading to the prospect that SUSY may be discovered at the LHC or FCC.

The layout of this Chapter is as follows. In section 4.2, I summarise the basic
parameters of the no-scale SUGRA models that I analyse. In section 4.1 I describe our
calculational approach and numerical tools and algorithms that I employ in the
analysis. In section 4.4 I present our results for non-scale SUGRA case I, with all soft
parameters equal to zero at the high scale apart from the gaugino masses. In section
4.5 I present our results for non-scale SUGRA case II, where I allow in addition (small)
non-zero values of A0, which relaxes the collider constraints somewhat. Section 4.6
concludes the chapter.
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4.2 The no-scale SUGRA model parameters

In the considered model [112], the soft supersymmetry breaking parameters are well
approximated by

m0 = 0
A0

m 3
2

= −6α,

B0

m 3
2

= 2(1− β)

(4.1)

where α, β are undetermined modular weights in the Kähler potential.

Turning to the gauginos, the model does not constrain the gaugino mass parameters.
We therefore examine a general breaking scenario where the gaugino mass parameters
are partly derived from "anomaly mediated" susy breaking giving three mass
parameters. Each one is determined partly by loop corrections given below [124] and
partly by a universal term parameterised below by the dimensionless coefficient k
[125],

M1 = (
33
5

g2
1

16π2 + k)m 3
2
,

M2 = (
g2

2
16π2 + k)m 3

2
,

M3 = (−3
g2

3
16π2 + k)m 3

2

(4.2)

Note that the sign of k plays an important phenomenological role in determining the
gaugino mass spectrum. For small and positive k the electroweak gaugino masses
M1,2 are enhanced while the magnitude of the gluino mass M3 is reduced due to the
partial cancellation against the negative anomaly mediated contribution. This yields a
spectrum with a relatively light gluino and heavy winos and binos. On the other
hand, for small and negative k, the electroweak gaugino masses M1,2 are reduced due
to a partial cancellation, while the magnitude of the gluino mass M3 is increased. This
yields a spectrum with relatively light winos and binos which is more suited to
explaining the muon g− 2.

The supersymmetric theory produced by this model gives a very small set of high
scale parameters; the scalar mass scale, m0, the bilinear coupling, B0, and the trilinear
coupling, A0. In turn the two unified coupling parameters are determined by the
gravitino scale m 3

2
and our choice of the modular weights α and β. Furthermore, m0 is

determined by our choice of Kähler potential [112]. In addition we choose a suitable
value of tan(β) and µ to minimise the broken higgs potential and thus satisfy the
higgs potential minimisation conditions given in [126]. We are therefore left with just
five input parameters; α, β, tan(β), m 3

2
and µ, that must be selected in order to fully

characterise the high scale model and its spontaneously broken characteristics. We
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shall mainly focus on the simplest cases α = 0 and β = 1 which lead to zero soft
parameters A0 = 0 and B0 = 0 at the high scale.

4.3 Method

The aim of this project is to Monte-Carlo scan over the small set of input parameters
for the two cases given above. We do not use the Metropolis-Hastings algorithm [127].
This is simply because the input parameter set is so small that a random scan on the
IRIDIS computer cluster will be suffice to cover the parameter landscape. We then
calculate various experimental outcomes including collider phenomenology, mass
spectrum, and dark matter relic density to calculate a likelihood associated with each
parameter point. The likelihood is defined as follows,

L = e
∑i −

(xi−x′i )
2

2σ2
i

(4.3)

where xi is the calculated value of the constraint, x′i is the experimentally observed
value, and σi is the standard deviation. We assume a Gaussian distribution around the
mean value for our experimental constraints. The relevant constraints can be found in
Table 4.3.

By calculating the likelihood we will gain a greater understanding of the model and
its physical viability by finding the regions that maximise the likelihood. We aim to
place some lower bound on the gravitino mass scale thus constraining the model from
above, via inflation constraints, and below, via Collider phenomenology. Furthermore,
we hope to find some best fit parameter points that might satisfy the latest g− 2
results.

Instead of performing a global fit and maximising the likelihood, we split the
parameter space up into smaller regions. This helps optimise parameter searches with
limited computer resources and helps with our intuition as different cases are
explicitly separated. The different regions we selected are summarised in Table 4.2
and Table 4.1. We start with the simplest possible case, and subsequently increase its
complexity. Therefore, initially we fix α = 0 such that A0 = 0. As B0 is determined by
electroweak symmetry breaking, we leave β and tan(β) as free parameters. SPheno
also requires the sign(µ) to be prescribed. Although previous analyses suggest
positive µ is more in-keeping with modern results, we chose to allow for both signs.
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FIGURE 4.1: Shows the algorithm flow used for this analyses.

Generally speaking, the algorithm works as shown in Fig. 4.1. Four primary open
source softwares were used to perform the calculations. For calculating the SUSY
spectrum, g− 2, and a number of other observables, we chose to use a modified
version of SPheno that printed the value of B0. In brief this program solves RG
equations to two loop numerically and outputs various phenomenological constraints.
Initially it calculates the gauge and Yukawa couplings at tree level at mZ. This are used
as input for the one loop formulas and run to the high scale where the gauge couplings
unify. Here, user defined soft breaking boundary conditions are applied. These are
then run down to the electroweak breaking scale where important electroweak
parameters are calculated as well as the sparticle pole masses. Radiative corrections
are then applied to the gauge and Yukawa couplings which are subsequently run up
to the high scale where this whole process is repeated iteratively until convergence
occurs (the sparticle masses receive corrections smaller than a user defined δ on the
previous iteration. For all of our calculations, we use the default value of δ.

Although for the most part our use of this software was very standard, we
encountered a technical problem regarding the DR renormalisation scheme. Large
values of the gluino mass induce large logs in the top mass that must be re-summed.
This has an effect for the Higgs mass whose value can be vastly inflated. To solve this
we use FeynHiggs to renormalise the top mass on-shell and calculate the Higgs mass.
The FeynHiggs output is then passed to MicrOmegas in order to calculate the relic
density. The SUSY contribution to the anomalous magnetic moment as well as some
other BSM observables are calculated by SPheno.

For post data collection analysis we simulate collider effects using CheckMATE [123].
This software combines a number of subsidiary packages to simulate the events in a
collider and exclude any given model to a 95% confidence level. We chose to use
13TeV and 8TeV pp collision data with the ATLAS detector in a variety of signal
regions. Many different regions played a critical role in assessing the validity of our
benchmark points depending on the particular make-up of the input parameters.

Instead of predefining β, as we did with α, and therefore fixing a value of B0, we
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decided to leave tan(β) as a free parameter to be scanned over. This affords us some
flexibility in understanding the parameter space. Furthermore, with the results in
hand it is simple to solve Equation 4.1 and find the relevant β parameter.

case m0 A0 B0 Section
I 0 0 2(1− β)m 3

2
4.4

II 0 −6αm 3
2

2(1− β)m 3
2

4.5

TABLE 4.1: Table showing the two cases considered in this work. Gaugino mass terms
(with a value for k), tan(β), the sign of µ, and the gravitino mass scale are also gener-

ated depending on the model being considered.

In order to fully explore the parameter space, a number of scans (and accordant
parameter limits) were initialised. Each scan is assigned to a subsection and
summarised in Table 4.2. Note that each scan is performed twice; once for µ > 0 and
again for µ < 0.

m 3
2
(TeV) α tan(β) k Subsection

Scan 1 [1, 1000] 0 [1.5, 30] [0, 0.1] 4.4.1
Scan 2 [1, 400] 0 [1.5, 50] [−0.01,−0.04] 4.4.2
Scan 3 [1, 1000] [−0.166, 0.166] [1.5, 50] [0, 0.1] 4.5.1
Scan 4 [1, 200] [−0.005, 0.005] [1.5, 50] [−0.014,−0.035] 4.5.2

TABLE 4.2: Show the parameters for the 4 primary scans conducted in this study.
Links to the subsections in which each scan is presented are also included. In gen-
eral, parameter ranges were chosen by trial an error so as to be representative of the

parameter scape without losing excessive efficiency.

In each section, a different set of constraints is pertinent to the objectives of this work
and therefore we modify our likelihood calculation to reflect this. Table 4.3 shows a
summary of the experimental values and deviations of the constraints used.

Observable Constraint Ref
mh (125± 2)GeV [10, 11]

Ωh2 (0.12± 0.012) [117–121]
∆aµ (2.51± 0.59)× 10−9 [75]

TABLE 4.3: Table gives the constraints used to calculate the likelihood. In all sections
the Higgs mass is considered. However, Ωh2 only contributes to the likelihood in
Sections 4.4.1 and 4.5.1 and ∆aµ contributes to the likelihood in Sections 4.4.2 and

4.5.2.

4.4 No-scale SUGRA with A0 = 0 (Case I)

Completely no-scale SUGRA with A0 = 0 represents a fascinating scheme for this
model. Previously thought to be ruled out, such scale-less supersymmetry has seen
something of a resurrection motivated by inflationary model building [128]. As shown
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in Table 4.1, α = 0, and therefore A0 = 0, precludes trilinear terms from the model.
Although we allow variance in β in order to understand the parameter space, we shall
see a strong preference for β ≈ 1 implying B0 = 0 bilinear coupling. With m0 = 0, the
scalar masses are all zero at the high scale. However, the gauginos get mass terms by
Equation 4.3 and generate non-zero low energy scalar masses via the RGEs.
Remarkably, it turns out that such a scheme is phenomenologically viable, as we shall
see.

We begin by analysing the results of Scan 1 in Table 4.2, which assumes positive
universal gaugino masses k, and allows the gravitino mass m 3

2
to vary up to its upper

bound from inflation of 1000 TeV.

4.4.1 Positive k (Scan 1)

As discussed earlier, positive universal gaugino mass parameter k will tend to yield a
spectrum with a relatively light gluino and relatively heavy winos and binos, so we do
not expect this choice to explain the muon g− 2, so we will focus mainly on the Higgs
mass and dark matter in this case. Figure 4.2 shows a scatter plot between the two
most influential scan variables, k and m 3

2
. It should be noted that, although tan(β) is a

scan parameter, its influence on the overall likelihood is limited.

(A) µ < 0, case I (B) µ > 0, case I

FIGURE 4.2: Shows k against m 3
2

for case I, α = 0 data from a Monte-Carlo scan with

parameter ranges ranges tan(β) ∈ [1.5, 30], k ∈ [0, 0.1], and m 3
2
∈ [103GeV, 106GeV].

Colour denotes likelihood, with hotter colours corresponding with high likelihoods.
The likelihood is dominated by the relic density calculation. The range of k is naturally
restricted to k . 0.006 due to |µ|2 < 0. Two bands of high likelihood points; one
from above, one from below, converge at (1000TeV, 0.0044) in (m 3

2
, k) space. The 6

benchmarks that are presented in Table 4.4 are also marked. The central colour of the
benchmark denotes its likelihood.

As points that failed to produce correct electroweak symmetry breaking or a suitable
dark matter candidate have been excluded from these plots, a fascinating structure of
allowed, disallowed, and high likelihood points emerges. Firstly, for values of
k & 0.006 electroweak symmetry breaking cannot be satisfied (except for some
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anomalous points that, due to numeric instability, achieve electroweak symmetry
breaking). Secondly, for values of k . 0.004 with m 3

2
& 400 TeV the LSP becomes

charged. This can be seen in Figure 4.3 where cold-coloured points tend to 0 mass
difference and therefore, a charged LSP for large m 3

2
values.

In addition to the structure of excluded points, a band of hot-coloured points in the
(m3/2, k) plane from (350 TeV, 0.0025) up to (250 TeV, 0.004) and across to (1000 TeV,
0.0045) where the relic density likelihood is maximised. An additional strip of high
likelihood points begins at (400 TeV, 0.0055) and tracks down to (1000 TeV, 0.0046). We
speculate that there could be some symmetry about k ≈ 0.0045 that is broken above
k ≈ 0.006 due to electroweak symmetry breaking.

(A) µ < 0, case I, (B) µ > 0, case I,

FIGURE 4.3: Shows the mass difference between the LSP and the nLSP for case I,
α = 0. The colour denotes the value of k. Small values of k lead to a negative difference

between the χ̃1+ and χ̃10 at 400TeV implying a charged LSP.

The masses of the first two neutralinos [36] are given by

mχ̃10 = M1 −
m2

W(M1 + µsin(2β))

µ2 −M2
1

+ ...

mχ̃20 = M2 −
m2

W(M2 + µsin(2β))

µ2 −M2
2

+ ...
(4.4)

and the first chargino by,

mχ̃1+ = M2 −
m2

W(M2 + µsin(2β))

µ2 −M2
2

+ ... (4.5)

From Table 4.6 we can see that as k reduces, the LSP becomes increasingly "wino-like".
Therefore, the mass of the lightest neutralino is dominated by the mass of mχ̃20

(Equation 4.4). In turn, the mass of lightest chargino is given, to leading order, by the
same expression (Equation 4.5). Therefore, their masses are exceptionally close.
Although this can be helpful in reducing the relic density by some co-annihilation
processes, for high m 3

2
the contributing factors can lead to a switch in hierarchy
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between the two mass states. This is further confirmed in Figure 4.3 where the mass
difference between the LSP and the nLSP tends to 0 for small k.

In this case m0 = 0 and thus the susy scale is relatively low. Therefore, it is important
to consider the spectrum masses, their potential collider signature, and the effect new
SUSY diagrams could have on certain branching ratios. We begin by looking at the
mass distributions of the SUSY spectrum.

(A) µ < 0, case I (B) µ > 0, case I

FIGURE 4.4: Shows the squark mass spectrum for case I, α = 0. Particles are plotted in
the same colour if they are sufficiently mass degenerate as to be indistinguishable in
this plot. Typically, this would entail masses within 15GeV of each other. Increasing k

increases the mass of the squarks. Low k points cut-off just below 400TeV.

From Fig 4.4, we see the mass distribution of the squarks with respect to m 3
2
. Although

it is not explicitly plotted we can see the effect of k variance as a part of the mass
distribution cuts-off just below 400TeV. This is a reflection of the point demonstrated
in Figure 4.3, where low k points tend to having a charged LSP for large m 3

2
. This same

dependance of k can also be seen in Figures 4.5 and 4.6.

We see that a reduction in k increases the overall scale of the squarks. Their mass is
given predominantly by M3 contributions. Therefore, a reduction of k will lead to an
increase in the absolute value of M3 as, by Equation 4.3, the anomaly mediated term is
negative. This increase in mass scale leads to an increase in the mass scale of the
squarks. We also note that the left handed t̃ tends to be the the lightest squark with the
first generation squarks making up the heaviest squarks as is typical in such models
without flavour mixing.

Unlike the squarks, a reduction in k decreases the mass scale of the sleptons. As they
are uncharged under SU(3), they receive their mass from contribution from M1 and
M2. Furthermore, their anomaly mediated terms are positive, so a reduction in k leads
to a reduction in their absolute scale and thus a reduction in the slepton masses.
Analogously to the squarks, the left handed τ̃ states tend to be the lightest sleptons.

Perhaps predictably, given the scaleless nature of the model, Figure 4.6 shows the
most interesting structure with regard to the mass spectrum. Firstly, as m 3

2
increases,
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(A) µ < 0, case I (B) µ > 0, case I

FIGURE 4.5: As in Figure 4.4 but showing the slepton masses. Increasing k decreases
the mass of the sleptons. Low k points cut-off just below 400TeV.

(A) µ < 0, case I (B) µ > 0, case I

FIGURE 4.6: As in Figure 4.4 but showing the gaugino masses. Increasing k decreases
the mass of the gauginos. Low k points cut-off just below 400TeV.

the hierarchy of the heaviest neutralino and the gluino reverse. Furthermore, as k
increases, the gluino mass increases significantly. This can be understood by a similar
argument to that of the squarks; an increase in k leads to a decrease in the absolute
scale of M3 and thus a decrease in the gluino mass.

Furthermore, for large values of k the first neutralino mass, χ10, does not depend on
m 3

2
. The large values of k increase the proportion of the first neutralino that is

"higgsino-like". As this mass depends predominantly on µ, this stabilises the mass of
the neutralino with respect to m 3

2
. Conversely, small k creates a "wino-like" neutralino

whose mass is proportional to M2 and thus to m 3
2
.

Due to the different natures of the model weights, we decided to allow tan(β), and
therefore B0 and β1, to vary as a free parameter but keep α fixed. Therefore, it is
interesting to see the implications of the scan for the free β parameter. Looking at Fig
4.7 we find a striking prediction for the model. For both signs of µ this model predicts
that β ≈ 0.998 (excluding some anomalous points). Recall that, by Eq. 4.1, β is

1β is used both as the inverse tangent of the ratio of the higgs vevs, and as the modular weight. From
context it should be clear which is being referred to.
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(A) µ < 0, case I (B) µ > 0, case I

FIGURE 4.7: Shows the values of the modular weight, β, produced for case I, α =
0. There is a natural tendency for values very close to 1. According to Eq. 4.1, this

suggests B0 ≈ 0, in-keeping with scale-less supersymmetry or no-scale SUGRA.

connected to the bilinear coupling such that if β = 1 =⇒ B0 = 0. As can be seen, the
model clearly favours a bilinear coupling very close to 0 making a fully scale-less
model.

(A) µ < 0, case I (B) µ > 0, case I

FIGURE 4.8: Shows a scatter plot of the higgs mass against the anomalous muon
magnetic moment for a scan with ranges tan(β) ∈ [1.5, 30], k ∈ [0, 0.1], and m 3

2
∈

[103GeV, 106GeV]. The 2σ region of aµ is marked with dotted lines while the 2σ re-
gion of mh is marked with dashed lines. The colour denotes the relic density. No point

satisfies the observed values of the muon g− 2.

From Figure 4.8 we see that this model cannot satisfy this condition for either sign of
µ. In the µ < 0 case, we see that the contributions are in fact negative. The
contributions generally take the form ∆aµ ∝ sign[µ] 1

(mµ̃,ν̃µ )
2 . Therefore, a change in the

sign of µ reverses the sign of these contributions. In general, large m 3
2

leads to a large
mass spectrum which in turn suppresses the g− 2 contributions. From Figure 4.5 we
can see that the masses of the µ̃s and ν̃µs grow linearly with m 3

2
leading to quadratic

suppression of ∆aµ. Although in the positive µ case, the contributions are themselves
positive, no point can satisfy the measured discrepancy.

To gain further insight into this model, a set of benchmark points is presented. Table
4.4 shows the input parameters for each benchmark point selected. The benchmark
points were selected to reflect a variety of viable regions in the model.
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Quantity BP1 BP2 BP3 BP4 BP5 BP6
α 0 0 0 0 0 0
β 0.996 0.997 0.997 0.998 0.998 0.998
m 3

2
[TeV] 903 268 359 995 269 358T

k 0.00443 0.00323 0.00251 0.00457 0.00324 0.0026
SPheno:
m0 [GeV] 0 0 0 0 0 0
tan(β) 18.1 23.9 19.6 29.3 20.0 29.6
sign(µ) 1 1 1 -1 -1 -1
A0 [GeV] 0 0 0 0 0 0
M1 [GeV] 20800 5700 7600 23000 5900 7600
M2 [GeV] 6800 1700 2000 7600 1700 2000
M3 [GeV] -4400 -1600 -2400 -4700 -1600 -2400

TABLE 4.4: Shows six benchmark points representing six different areas of interest in
the parameter where case I, α = 0. We present the model parameters and the resultant
SPheno input parameters. BP1 and BP4 show the highest likelihood points for µ > 0
and µ < 0 respectively. BP2 and BP5 show points where m 3

2
is minimised whilst still

satisfying our main constraints for µ > 0 and µ < 0 respectively. BP3 and BP6 show
points for minimal values of k whilst still satisfying our main constraints for µ > 0
and µ < 0 respectively. Dimensions of the parameters are given. m 3

2
is given in units

of TeV, and m0, A0, Mi are given in GeV.

Benchmark points 1,2, and 3 all have their sign of µ positive while the reverse is true
for points 4,5, and 6. BP1 and BP4 are the highest likelihood points of the model for
their respective signs of µ. BP4 comes from the second band of high likelihood points
at k > 0.0045. They both have very high m 3

2
values existing just below the cut-off set

by the CMB in the context of inflation [112]. BP2 and BP5 have the lowest values of m 3
2

whilst staying in a high likelihood range and BP3 and BP6 have the lowest values of k
whilst staying in a high likelihood range.

Table 4.5 shows the resultant SUSY mass spectrum for the 6 benchmark points
presented so far. As changing the sign of µ plays little role, we will refer to the
combination of BP1 and BP4 as BP1,4, and similarly for the other benchmark points.
Many points do not achieve the precise value for the Higgs mass. However, there is a
relatively large theoretical uncertainty on this parameter leaving all these points with
relatively high likelihoods.

BP1,4 shows a hugely inflated mass spectrum for the squarks and sleptons.
Furthermore, we see huge masses for the heaviest gauginos. However, although much
of the spectrum is high in mass, the lighter gauginos are only about 1TeV. These could
leave a tell tale signature in current or future colliders. We also see a relatively low µ

value. This causes the high "higgsino-like" proportions of the LSP. ν̃τL is the smallest
supersymmetric scalar (excluding the Higgs boson).

BP2,5 shows a significantly reduced SUSY spectrum due to the reduced scale of m 3
2
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Masses BP1 BP2 BP3 BP4 BP5 BP6
ẽL 5690 1540 1900 6340 1540 1910
ẽR 7590 2160 2790 8400 2170 2790
ν̃eL 5690 1530 1890 6340 1540 1910
µ̃L 5690 1540 1900 6340 1540 1910
µ̃R 7590 2160 2790 8400 2170 2790
ν̃µL 5690 1530 1890 6330 1540 1910
τ̃1 5690 1490 1860 6100 1510 1820
τ̃2 7460 2100 2740 8040 2130 2680
ν̃τL 5610 1490 1860 6100 1510 1820
d̃L 8580 3190 4500 9260 3190 4450
d̃R 7780 3060 4390 8310 3060 4330
ũL 8580 3190 4500 9260 3190 4450
ũR 8920 3300 4680 9620 3310 4630
s̃L 8580 3190 4500 9260 3190 4450
s̃R 7780 3060 4390 8310 3060 4330
c̃L 8580 3190 4500 9260 3190 4450
c̃R 8920 3300 4680 9620 3310 4630
b̃1 7670 2910 4160 8040 2940 4090
b̃2 7870 2980 4320 8420 3020 4230
t̃1 7600 2840 4050 8190 2840 4010
t̃2 7880 2940 4170 8420 2960 4110
g̃ 8940 3510 5080 9540 3510 5010
χ̃10 1110 1370 1750 1110 1370 1770
χ̃20 1111 1410 2170 1110 1400 2110
χ̃30 5810 1500 2170 6520 1500 2110
χ̃40 9650 2620 3440 10800 2640 3440
χ̃1+ 1110 1370 1750 1110 1370 1770
χ̃2+ 5810 1500 2180 6520 1500 2110
h0 124.5 120 122 125 121 123
H0 5510 1860 2690 5410 1970 2520
A0 5510 1860 2690 5410 1970 2520
H± 5520 1870 2700 5410 1970 2520
µ 1100 1400 2100 -1070 -1390 -2090
B0 7610 1510 1970 3890 1240 1700

TABLE 4.5: Shows the spectrum of SUSY masses for the benchmark points given in
Table 4.4. The difference between the mass of χ̃1+ and χ̃10 is also given as this pertains
to the production of dark matter. We also include the highscale bilinear coupling value
B0 for its relevance to the high scale parameters of the model. All massses are given

in GeV.
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Quantity BP1 BP2 BP3 BP4 BP5 BP6
ΩDMh2 0.119 0.124 0.115 0.119 0.119 0.124
χ̃10 [GeV] 1109.5 1372.7 1748.3 1110.5 1372.1 1767.0
χ̃1+ − χ̃10 [GeV] 0.48072 1.5 0.0329 0.59656 1.699 0.03567
|α1|2 0.000016 0.000441 0.000004 0.000009 0.0004 0.000004
|α2|2 0.000144 0.312481 0.982081 0.0001 0.228484 0.976144
|α3|2 0.499849 0.352836 0.011025 0.499849 0.394384 0.014161
|α4|2 0.499849 0.335241 0.007396 0.499849 0.375769 0.009604
σSI × 109[pb] 0.03 34.29 2.12 0.01 19.05 1.80

TABLE 4.6: Shows the relic density of the LSP for each benchmark point. The dif-
ference between the LSP and the nLSP is also given. Finally, we give the probability
of finding the given LSP in a particular flavour state. That is to say; we give |αi|2
where χ̃10 = α1B̃ + α2W̃ + α3H̃1 + α4H̃2 and ∑ |αi|2 = 1. Dimensionful parame-
ters are given in GeV except for the spin independent cross-section which is given
in pb. The experimental limit for σSI

BP1,4 = 0.96 × 10−9 pb, σSI
BP2,5 = 1.19 × 10−9 pb,

σSI
BP3,6 = 1.52× 10−9 pb. Therefore, BP2,5 and BP3,6 exceed the experimental limits.

and therefore the reduction in M1,2,3. Although the majority of the spectrum is still
mostly out of range of modern detectors, the model still produces low mass light
gauginos. Although the mass gap between χ̃10 and χ̃1+ is still small, the gap between
the first two charged states has increased due to a change in the mixing of the
gauginos. Again, ν̃τL is the smallest supersymmetric scalar.

Finally, BP3,6 shows a slight increase in the overall SUSY scale in comparison to the
BP2,5. Although the mass gap between the heavy and light gaugino states has
increased, the overall scale for the states has increased significantly as the LSP
becomes almost exclusively "wino-like". In general, a high wino-like state can lead to
excessive co-annihilation with the first chargino; especially when, as can be seen in
Table 4.6, the mass gap between said states is so low. However, for sufficiently high
mass neutralinos, the freeze out temperature is high thus ending these problematic
processes early in the universes cosmological past and thereby preventing the
excessive annihilation of the candidate. Although χ̃1+ is still the second lowest mass
particle, the ν̃τL is lighter than the χ̃20 unlike in the other benchmark points where a
clear hierarchy existed between the fermionic and scalar states.

Table 4.6 shows information specifically regarding the relic density for the
benchmarks points. In all cases we see a very compressed gaugino mass spectrum
inducing the requisite co-annihilarion processes. BP3,6 shows an exceptionally
compressed mass gap. As was previously argued, the high mass leads to an early
freeze out temperature preventing these co-annihilartion processes eradicating the
dark matter too efficiently. We also present the proportion of bino, wino, and higgsino
for the given particle. We see a very interesting shift between the respective
benchmark points with BP1,4 being mostly higgsino, BP2,5 being evenly split between
higgsino and wino, and BP3,6 being majority wino.
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In addition to the relic density, we consider the spin-independant nucleon scattering
cross-section, σSI , in order to compare the benchmark points with direct detection
experiments. The authors have done work in [59] to extrapolate XENON1T limits for a
range of dark matter candidate masses (further details of this extrapolation can be
found there-in). We also consider the spin-dependant limits but, as these are much
less stringent and are easily satisfied by the model, we do not present them here.
Although BP1,4 easily satisfies the spin-independent limits, BP2,5 and BP3,6 have
cross-sections that exceed them as they have significant wino content .

Tables 4.7, 4.8, 4.9 show phenomenological information regarding potential
constraints and collider physics. BP1 and BP4, BP2 and BP5 , and BP3 and BP6 are
paired together as they belong to similar regions of parameter space. We implemented
a checkmate analysis for both 8, 13, and 14 TeV ATLAS and CMS analyses. However,
we chose not to include 14TeV analysis in our tables as they are not based on LHC
runs but rather Monte-Carlo simulations. Instead, where appropriate, we have simply
noted the rmax value (defined below) produced as suggestive of the type of the effects
future colliders could have. We use MadGraph_2.6.7 [129, 130] to generate events with
SUSY final states. Pythia_8.2.45 [131, 132] is then used to shower and hadronise the
events. Finally, Delphes_3.4.2 [133] and some subsidiary tools [134–137] are used to
perform event and detector analysis. This approach allows us to assess a given
benchmark points viability in comparison with experimental data. We find that all
presented benchmark points cannot be ruled out by the LHC at

√
s ≤ 13TeV. We

include a quantity rmax defined by

rmax =
S− 1.64 · ∆S

S95
(4.6)

where S is the number of signal events, ∆S is its uncertainty, and S95 is the
experimental upper limit on the number of signal events. This quantity indicates
whether a point is ruled out by the analyses or not. Points with rmax ≥ 1 are ruled out;
those with rmax < 1 are not. Finally, the most important signal regions analysed by
CheckMATE are given. We find a variety of different analyses are important due to
the changing mixing matrices and SUSY spectrum.

We include a number important beyond the standard model constraints; ∆aµ, BR
(Bs → µ+ µ−), the relic density, and BR (b→ s γ). We find that the two branching
ratios agree with experimental data very well. However, the lack of light µ̃s and ν̃µs
lead to insufficient contributions to the ∆aµ loop diagrams as these are suppressed by
the propagator mass squared. Indeed, BP4, 5, and 6 have negative contributions to the
anomalous muon magnetic moment. This is due to the reversal of sign of the µ

parameter, and the dependancy on µ in the gaugino mediated diagrams that
contribute to ∆aµ. As the relic density is our strongest constraint, all points have been



4.4. No-scale SUGRA with A0 = 0 (Case I) 63

chosen to satisfy modern cosmological constraints on the production of dark matter.

Finally, we include the decay width and branching ratios of the two lightest particles
(excluding the LSP who is stable). In BP1,4 and BP2,5 these are light gaugino states.
However, in BP3,6, the ν̃τ is lighter than the χ20. Only branching ratios that contribute
by more than 1% are included.

Although BP1,4 shows a long lifetime it is drastically insufficient for the particle to
escape the detector. Therefore, the particles decay products are very important in
assessing the signature of this model. The analysis region of most significance is one
that focuses on mono-jets. This analysis has a very large luminosity. It should be noted
that, unlike BP2,5 and BP3,6, 14TeV analysis yields an rmax value of 0, perhaps due to
the lack of significance at such high energy scales. The branching ratios for both the
two lightest non-LSP particles are dominated by χ̃10 decays. This would suggest large
corresponding missing momenta. We find an excellent fit for the BSM constraints as
well as dark matter. However, ∆aµ cannot be satisfied.

The most constraining region for BP2,5 focuses on squarks and gluinos, with 0
leptons, and 2-6 jets at 13Tev. This is due to the relatively low mass of the strongly
coupled particles. We see the highest value of rmax of all the benchmark points due to
the abundance of these lighter particles. χ̃20 shows a huge variety in decay channels as
the mass gap is too small for the squark pairs to hadronise. We find that 14TeV
analysis yields very high rmax values of 0.276 in the positive µ case. This suggests that
future colliders could probe regions of interest in this model. Again, the relic and BSM
branching ratios can be fitted well, but ∆aµ cannot.

As previously eluded to, BP3,6 shows a change in the spectrum hierarchy. From Table
4.6, the mass difference between χ̃10 and χ̃1+ is the smallest. Therefore, a smaller
phase space is available leading to fewer decay channels. In contrast to ν̃τ, whose
lifetime is very small, the lifetime of χ1+ is sufficiently long that the particle could
escape the detector. As it is a charged particle, this would appear as a charge track in
the calorimeter. As was the case for BP2,5, 14TeV analysis gives a whole order of
magnitude increase in rmax hinting at the exciting prospects for physics to come.
Again, the BSM constraints and the relic are satisfied; however, ∆aµ is not.
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Quantity BP1 BP4
Γχ1+ [GeV] 8.4× 10−14 1.7× 10−13

BR (χ1+ → χ10 π+) [%] 92.9 89.3
BR (χ1+ → χ10 e+ νe) [%] 4.00 5.71
BR (χ1+ → χ10 µ+ νµ) [%] 3.14 4.90
Γχ20 [GeV] 5.12× 10−12 2.9× 10−12

BR (χ20 → χ10 π0) [%] 63.8 74
BR (χ20 → χ1+ π−) [%] 6.1 2.64
BR (χ20 → χ1− π+) [%] 6.1 2.64
BR (χ20 → χ10 γ) [%] 4.9 5.79
BR (χ20 → χ10 e− e+) [%] 2.0 1.81
BR (χ20 → χ10 µ− µ+) [%] 2.0 1.72
BR (χ20 → χ10 νe νe) [%] 2.0 10.8
BR (b→ s γ) [%] 0.032 0.032
BR (Bs → µ+ µ−) [%] 2.9× 10−7 2.9× 10−7

∆aµ 8.39× 10−12 −1.15× 10−11

ΩDMh2 0.119 0.119
χ10 [GeV] 1110 1110
σqq→χ10χ10 [pb] 0 0
rmax 3.72× 10−4 2.03× 10−4
√

s [TeV] 13 13
Analysis atlas_conf_2017_060 atlas_conf_2017_060
Signal Region EM7 IM6
Ref. [138] [138]

TABLE 4.7: Shows branching ratios for lightest supersymmetric particles in the spec-
trum for the benchmarks points with highest likelihood, BP1 and BP4. Only branching
ratios greater than 1% are included. We also include some the the beyond the stan-
dard model observables BR (b → s γ), BR (Bs → µ+ µ−), ∆aµ, and ΩDMh2, where
∆aµ is a calculation of the SUSY contribution beyond the standard model. The model
successfully predicts the b decays discrepancy as well as the relic density. However,
the anomalous muon magnetic moment cannot be satisfied. CheckMATE runs using
13TeV and 8TeV analyses cannot rule out these points. Decay widths and masses are

given in GeV and branching ratios are given in %.
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Quantity BP2 BP5
Γχ1+ [GeV] 8.9× 10−12 1.4× 10−11

BR (χ1+ → χ10 d u) [%] 60.0 58.9
BR (χ1+ → χ10 s c) [%] 0.34 2.02
BR (χ1+ → χ10 e+νe) [%] 20.1 19.7
BR (χ1+ → χ10 µ+νµ) [%] 19.6 19.4
Γχ20 [GeV] 2.45× 10−4 6.1× 10−5

BR (χ20 → χ10 u u) [%] 3.92 4.22
BR (χ20 → χ10 c c) [%] 3.90 4.18
BR (χ20 → χ10 d d) [%] 5.09 5.49
BR (χ20 → χ10 s s) [%] 5.09 5.49
BR (χ20 → χ10 b b) [%] 4.68 4.74
BR (χ20 → χ10 e− e+) [%] 1.17 1.26
BR (χ20 → χ10 µ− µ+) [%] 1.17 1.26
BR (χ20 → χ10 τ− τ+) [%] 1.16 1.24
BR (χ20 → χ10 νe νe) [%] 7.03 7.57
BR (χ20 → χ1+ d u) [%] 11.2 10.8
BR (χ20 → χ1− d u) [%] 11.2 10.8
BR (χ20 → χ1+ s c) [%] 11.1 10.7
BR (χ20 → χ1− s c) [%] 11.1 10.7
BR (χ20 → χ1+ e− νe) [%] 3.72 3.60
BR (χ20 → χ1− e+ νe) [%] 3.72 3.60
BR (χ20 → χ1+ µ− νµ) [%] 3.72 3.60
BR (χ20 → χ1− µ+ νµ) [%] 3.72 3.60
BR (χ20 → χ1+ τ− ντ) [%] 3.68 3.54
BR (χ20 → χ1− τ+ ντ) [%] 3.68 3.54
BR (b→ s γ) [%] 0.033 0.033
BR (Bs → µ+ µ−) [%] 2.9× 10−7 3.0× 10−7

∆aµ 1.15× 10−10 −9.6× 10−11

ΩDMh2 0.124 0.119
χ10 [GeV] 1370 1370
σqq→χ10χ10 [pb] 8.629× 10−8 2.718× 10−8

rmax 1.12× 10−2 8.10× 10−3
√

s [TeV] 13 13
Analysis atlas_1712_02332 atlas_1712_02332
Signal Region 2j-3600 2j-3600
Ref. [139] [139]

TABLE 4.8: As in Table 4.7 but for BP2 and BP5; points with low m 3
2
.
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Quantity BP3 BP6
Γχ1+ [GeV] 7.2× 10−20 1.0× 10−19

BR (χ1+ → χ10 d u) [%] 72 72
BR (χ1+ → χ10 e+ νe) [%] 28 28
Γν̃τ [GeV] 2.9× 10−1 7.7× 10−2

BR (ν̃τ → χ10 ντ) [%] 33.3 33.0
BR (ν̃τ → χ1+ τ−) [%] 66.7 67.0
BR (b→ s γ) [%] 0.032 0.032
BR (Bs → µ+ µ−) [%] 2.9× 10−7 3.0× 10−7

∆aµ 5.50× 10−11 −8.30× 10−11

ΩDMh2 0.115 0.124
χ10 [GeV] 1750 1750
σqq→χ10χ10 [pb] 7.805× 10−8 6.467× 10−8

rmax 3.458× 10−3 3.189× 10−3
√

s [TeV] 13 13
Analysis atlas_conf_2017_060 atlas_conf_2017_060
Signal Region EM10 EM10
Ref. [138] [138]

TABLE 4.9: As in Table 4.7 but for BP3 and BP6; points with low k.
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4.4.2 Negative k (Scan 2)

In this case we expect a negative universal gaugino mass parameter k to tend to yield
a spectrum with a heavy gluino and relatively light winos and binos, possibly suitable
to explain the muon g− 2, as well as the Higgs mass and dark matter. Moreover, in
order to explain the measured ∆aµ, small values of the µ̃ mass are required. As seen in
Figures 4.4, 4.5, and 4.6, a reduction in k reduces the slepton masses, whilst increasing
the gluon and squark masses. Further reductions in k reduce the µ̃ mass sufficiently
but keep the mass of the higgs boson high as this is dependant on the SU(3) charged
squarks and sleptons.

In Scan 2, the k parameter is varied from 0 to −0.04. As noted, negative values of k will
increase the absolute scale of M3 but reduce the scale of M2. This will further
contribute to the effect described above, increasing squark masses whilst decreasing
slepton masses. As previously argued, the ∆aµ contributions depend on m−2

µ̃ and
therefore large values of m 3

2
will lead to a suppression of the contributions. We

therefore scan for lower values of m 3
2

between 0 and 400 TeV.

Fig 4.9 shows the distribution of k against m 3
2

for both signs of µ. As we are now
focussing on aµ we redefine the likelihood as L = Laµ × Lmh . However, we do not want
relic particles whose abundance would rule out the model entirely. Therefore, we
impose the condition that Ωh2 < 0.12 + 2× 0.0078 such that no point can be ruled out
by leaving a non-phenomenologically large relic abundance.

From Fig 4.9, we see two distinct areas of points that give viable results; k ≈ −0.016
and k ≈ −0.023. However we find that k ≈ −0.023 with µ < 0 is phenomenologically
preferred. In this region, we also find 30TeV < m 3

2
< 100TeV to be preferred.

(A) µ < 0, case I (B) µ > 0, case I

FIGURE 4.9: Shows the distribution of k against m 3
2

with aµ and mh log likelihood
for m 3

2
∈ [0TeV, 400TeV], α = 0 and k ∈ [−0.035,−0.014]. A region with µ < 0,

k ≈ −0.023 and m 3
2
∈ [40TeV, 60Tev] is preferred.

Finally, we present the results of a scan focussing on the good region as seen in Figure
4.10 where k varies between -0.022 and -0.027 and the sign of µ is fixed as negative.
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Negative results for ∆aµ are now ruled out as the absolute value of the gaugino mass
parameters is large, suppressing some key SUSY contributions to (g− 2) that involve
these particles. This leaves us with one first order loop diagram that contributes to this
result whose sign is fixed by the sign of µ.

(A) µ < 0, case I (B) µ < 0, case I, zoomed

FIGURE 4.10: Shows a scatter plot of aµ and mh for a focussed scan with ranges m 3
2
∈

[0TeV, 160TeV], k ∈ [−0.022,−0.027] and tan(β) ∈ [2, 12]. The 2σ region of aµ is
marked with dotted lines while the 2σ region of mh is marked with dashed lines. The

colour denotes the relic density.

Figure 4.10 shows the distribution of ∆aµ against the higgs mass. We see many points
sit within the 2σ region. Furthermore, we find that many of these points have excellent
dark matter relic densities. Two benchmark points are marked on Figure 4.10 who are
presented later.

Until now, the relic abundance of dark matter has played a pivotal role in assessing
the veracity of any given point. However, we find large parts of the parameter space
give the right handed stau state as the lightest sparticle. In all preceding plots and in
Figure 4.10 we present results where the neutralino is the LSP. However, it is also
interesting to consider potential R-parity violating models in which these light,
charged particles decay into standard model particles. Although a detailed discussion
of the viability of such points is beyond the scope of this work, we include Figure 4.11
as these states can lead to excellent fits for aµ and mh.



4.4. No-scale SUGRA with A0 = 0 (Case I) 69

(A) µ < 0, case I (B) µ < 0, case I, zoomed

FIGURE 4.11: As for Fig 4.10 but where points that have charged LSP states are shown.
Such states are marked in blue to indicate that no relic density could be calculated.

Continuing our analysis, we took a number of points from the allowed region and ran
them through CheckMATE. Finding that a sample of points were excluded we wrote a
code to systematically check points in the allowed region. We found that all points
were either excluded by CheckMATE or in a region near exclusion (allowing for
uncertainties in the analysis). We include some of the more promising benchmark
points below. It should be noted that we ran CheckMATE using the default 5000 points.
However, if a warning was presented speculating that more data could exclude the
point in question we increased the number of events by the specified amount.

In Table 4.10 we present the input parameters for two benchmarks points from Case I
with negative k values. One point was selected for its relatively high values of ∆aµ

whilst the other was selected for it’s relatively high value of Ωh2. Both points are
k = −0.023 in accordance with the highest likelihood region. Indeed, both points are
very similar in a variety of ways suggesting a small input deviations can give large
variance in output; particularly for the LSP relic abundance.

Table 4.11 shows the SUSY spectrum for benchmark points 7 and 8. Strikingly, we see
that the lightest stau state is the nLSP behind the usual neutralino LSP. This ofcourse
has implications for the most powerful diagrams for the relic density. Furthermore,
the nnLSP is given by µ̃R as anticipated by our efforts to generate a high ∆aµ value
using diagrams involving this particle. Unlike the sleptons, the squarks are very high
in mass contributing to the phenomenologically viable Higgs mass. In both cases
τ̃1 − χ̃10 ≈ 10GeV. This is important for critical co-annihilation diagrams for the relic
density. Again we see that B0 is very small in comparison with m 3

2
suggesting a fully

scale-less model.

Both benchmarks produce a completely bino-like LSP state caused by the large scale
difference between M1 and M2 and have very similar dark matter physics in general.
Although BP7 has a dark matter relic density within the allowed region, BP8 gives an
excellent value. We see a much larger mass gap between the LSP and the nLSP than
for Benchmark points 1 to 6. This is because the points produce a much smaller mass
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Quantity BP7 BP8
α 0 0
β 1 1
m 3

2
[TeV] 51 57

k -0.023 -0.023
SPheno:
m0 [GeV] 0 0
tan(β) 9.72 9.37
sign(µ) -1 -1
A0 [GeV] 0 0
M1 [GeV] -263 -263
M2 [GeV] -1058 -1152
M3 [GeV] -1694 -1863

TABLE 4.10: Shows two benchmark points representing two different areas of interest
in the parameter space. We present the model parameters and the resultant SPheno
input parameters. BP7 shows a point with high aµ and BP8 shows a point with high

Ω. m 3
2

is given in TeV and all other dimensionful parameters are given in GeV.

LSP. Therefore, the freeze out temperature is low and as such, there is more
cosmological time for co-annihilation to occur. A larger mass gap reduces the strength
of these co-annihilation channels allowing for the phenomenological Higgs boson
mass. Both points have spin-independent cross-sections less than the experimental
limits of 0.09× 10−9 pb as they are exclusively bino and thus will not interact with the
nucleus in direct detection experiments.

Table 4.13 shows some key observables for the given benchmark points. As previously
stated, both points are at the borderline of exclusion by Checkmate analysis, since,
both points still have relatively low rmax ∼ 1 values, suggesting that both points might
be viable within the uncertainties of the analysis, as we discuss further below.

We see short life times for τ̃1 with only one decay channel therefore potentially leaving
a strong collider signature. Both points get their strongest constraints from the CMS
analysis [140] that focuses on direct electroweak production of charginos and
neutralinos leading to final state leptons, little hadronic activity, and a large missing
momentum. As the colour charged particles are far more massive than the leptons and
gauginos, the latter will represent the dominant production mechanism for the
sparticles. The signal region focuses on a final state with three light leptons where two
of the three are either e or µ and as we have a light gaugino LSP with light sleptons for
g− 2 this is likely to be constraining. Furthermore this region focuses on states where
the leptonic pair have invariant mass greater than 105GeV and transverse mass of the
third lepton greater than 160GeV. χ̃20 has a 32% branching ratio into µ̃±µ∓ / ẽ±e∓

combined with χ̃1+’s tendency to decay into τ̃ντ pairs creates a strong signal in this
region placing the parameter point on the edge of exclusion. Furthermore, the
relatively large mass of χ̃20 means that the resultant lepton pair will exceed the
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Masses BP7 BP8
ẽL 661 717
ẽR 133 138
ν̃eL 656 712
µ̃L 661 717
µ̃R 133 137
ν̃µL 656 712
τ̃1 104 109
τ̃2 661 717
ν̃τL 654 710
d̃L 3110 3390
d̃R 3050 3330
ũL 3110 3390
ũR 3050 3320
s̃L 3110 3390
s̃R 3050 3330
c̃L 3110 3390
c̃R 3050 3320
b̃1 2890 3150
b̃2 3040 3310
t̃1 2580 2820
t̃2 2910 3170
g̃ 3560 3890
χ̃10 100 99
χ̃20 855 933
χ̃30 1890 2060
χ̃40 1890 2060
χ̃1+ 855 933
χ̃2+ 1890 2060
h0 121.5 122
H0 1990 2170
A0 1990 2170
H± 2000 2170
µ -1777 -1931
B0 -12 -26.5
τ̃1 − χ̃10 4.2 9.6

TABLE 4.11: Shows the spectrum of SUSY masses for the benchmark points given in
Table 4.10. The difference between the mass of τ̃1 and χ̃10 is also given as this pertains
to the production of dark matter. We also include the high scale bilinear coupling
value B0 for its relevance to the high scale parameters of the model. All parameters

are given in GeV.
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Quantity BP7 BP8
ΩDMh2 0.020 0.112
χ̃10 [GeV] 100 99
τ̃1 − χ̃10 [GeV] 4.2 9.6
|α1|2 1 1
|α2|2 0 0
|α3|2 0 0
|α4|2 0 0
σSI × 109[pb] 0.004 0.003

TABLE 4.12: Shows the relic density of the LSP for each benchmark point. The differ-
ence between the LSP and the nLSP is also given. Finally, we give the probability of
finding the given LSP in a particular flavour state. That is to say; we give |αi|2 where
χ̃10 = α1B̃ + α2W̃ + α3H̃1 + α4H̃2 and ∑ |αi|2 = 1. Dimensionful parameters are given
in GeV except for the spin independent cross-section which is given in pb. The exper-
imental limit for both of these points is 0.09× 10−9 pb. Therefore, these points do not

exceed the experimental limits.

required 105 GeV invariant mass and the production of the τ are on the edge of
exclusion of the transverse mass limit. The b-type decays satisfy the experimental
constraints for both points.
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Quantity BP7 BP8
Γτ̃1 [GeV] 3.30× 10−3 1.63× 10−2

BR (τ̃−1 → χ10τ−) [%] 100 100
Γµ̃R [GeV] 1.32× 10−1 1.67× 10−1

BR (µ̃−R− → χ10µ−) [%] 100 100
BR (b→ s γ) [%] 0.032 0.032
BR (Bs → µ+ µ−) [%] 2.97× 10−7 2.96× 10−7

∆ (g−2)µ

2
1.42× 10−9 1.30× 10−9

ΩDMh2 0.020 0.112
χ10 [GeV] 100 99
σqq→χ10χ10 [pb] 1.796× 10−14 3.562× 10−14

rmax 1.22 1.04√
s [TeV] 13 13

Analysis cms_sus_16_039 cms_sus_16_039
Signal Region SR_A44 SR_A44
Ref. [140] [140]

TABLE 4.13: Shows branching ratios for lightest supersymmetric particles in the spec-
trum for BP7 and BP8. Only branching ratio greater than 1% are included. We also in-
clude some beyond the standard model observables BR (b → s γ), BR (Bs → µ+ µ−),

∆ (g−2)µ

2 , and ΩDMh2, where ∆ (g−2)µ

2 is a calculation of the SUSY contribution beyond
the standard model. The model successfully predicts the b decays discrepancy and
satisfies the anomalous muon magnetic moment to 2σ. The relic density is too small
and is therefore not ruled out phenomenologically. CheckMATE runs using 13 TeV
and 8 TeV analyses rule out these points. Decay widths and masses are given in GeV

and branching ratios are given in %.

4.5 No-scale SUGRA with non-zero A0 (Case II)

In order to fully explore the parameter space we can also allow for non-zero values of
A0. Indeed, non-zero A0 will serve to increase the Higgs boson mass, encouraging a
better fit to the current experimental results. We therefore present a subsequent scan
where we vary α between −0.016 and 0.016. These values were chosen by trial and
error such that computer time would not be wasted by producing many points with
large A0 values breaking colour charge symmetry.

Analogously to the previous, we start by analysing the positive k values. Further to
this analogy, we revert to the previous definition of the likelihood to emphasise the
relic density as key constraint in this paradigm and highlight the fact that g− 2 will
not be satisfied for positive values of k.

4.5.1 Positive k (Scan 3)

Fig 4.12 shows the distribution of A0 against k for both signs of µ. Interestingly, the
shape of the two plots for the two signs of µ is quite different, with the µ < 0 sign
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(A) µ < 0, case II (B) µ > 0, case II

FIGURE 4.12: Shows the distribution of A0 where case I data from a Monte-Carlo
scan with parameter ranges tan(β) ∈ [1.5, 50], k ∈ [0, 0.1], α ∈ [−0.166, 0.166], and
m 3

2
∈ [103GeV, 106GeV]. Colour denotes likelihood, with hotter colours correspond-

ing with high likelihoods. As before, the likelihood is dominated by the relic density
calculation.

(A) µ < 0, case II (B) µ > 0, case II

FIGURE 4.13: Shows k against m 3
2

where case II data from a Monte-Carlo scan with
parameter ranges ranges tan(β) ∈ [1.5, 50], k ∈ [0, 0.1], α ∈ [−0.166, 0.166], and
m 3

2
∈ [103GeV, 106GeV]. Colour denotes likelihood, with hotter colours correspond-

ing with high likelihoods. As before, the likelihood is dominated by the relic density
calculation.

yielding a mushroom shaped distribution of points, while the µ > 0 sign results in a
wigwam shaped plot. However, there are some key features of both that are shared. In
neither do we see any particular likelihood increase for non-0 A0. This suggests that
moving to case II will not give significant improvement compared to the previous
case. Furthermore, in both we observe a preferred region of k ≈ 0.003.

Fig 4.13 closely mirrors the structure of Fig 4.7b; with A0 variation causing some
spread in the likelihoods. The structure of LSP make-up as well as spectrum is
generally similar. For this reason we refer you to the previous for detailed analysis.
Furthermore, the density of points is greatly reduced as variation in A0 produces
many low-likelihood points. This does support claims of naturalness for the
exclusively scaleless model previously presented. Although this scan was not truly
exhaustive, no gains were made in terms of the overall likelihood.
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As in case I with positive k, we see that no point can satisfy the higgs mass and g− 2
simultaneously. The same is true of g− 2 and the relic density. In order to achieve the
correct higgs mass, m 3

2
must be at least 200TeV. This has the effect of increasing the

slepton masses and thus decreasing ∆aµ. We therefore, turn our attention to k < 0
values.

4.5.2 Negative k (Scan 4)

As was previously argued, the inclusion of negative k values should allow for larger
Higgs boson masses while keeping slepton masses low; thus incorporating a
mechanism for generating the anomalous muon magnetic moment. As was done
previously, we loosen the relic density constraint insisting only that the relic density is
sufficiently small so as not to completely rule out the given point. Furthermore, we
find large parts of the parameter space give the right handed stau state as the lightest
sparticle. In Figures 4.14 to 4.16 we present results where the neutralino is the LSP.
However, it is also interesting to consider potential R-parity violating models in which
these light, charged particles decay into standard model particles. As was previously
stated, a detailed discussion of the viability of such points is beyond the scope of this
work, but we do include Figures 4.17 and 4.18 as these states can lead to excellent fits
for aµ.

Below we present the results of two scans (over positive and negative µ values). We
limit the range of m 3

2
under the upper limit set by the starobinsky-like inflation limits

previously discussed. This eliminates particularly massive gaugino states and thus
large slepton mass states.

(A) µ < 0, case II (B) µ > 0, case II

FIGURE 4.14: Shows the distribution of k against m 3
2

with aµ and mh log likelihood
for m 3

2
∈ [0TeV, 200TeV], α ∈ [−0.005, 0.005] and k ∈ [−0.035,−0.014].

In both cases, two values of k are favoured by the scan. Analogously to case I,
k ≈ −0.016 and k ≈ −0.0023 with the latter snf µ < 0 representing a greater likelihood
region of parameter space. This gives an approximate ratio of the high scale gaugino
mass parameters as |M1| : |M2| : |M3| ≈ 1 : 4 : 7.
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(A) µ < 0, case II (B) µ > 0, case II

FIGURE 4.15: Shows a scatter plot of the higgs mass against the anomalous muon
magnetic moment for a scan with ranges m 3

2
∈ [0TeV, 200TeV], α ∈ [−0.005, 0.005]

and k ∈ [−0.035,−0.014]. The 2σ region of aµ is marked with dotted lines while the
2σ region of mh is marked with dashed lines. The colour denotes the relic density.

From Fig. 4.15 and 4.16 we again see that µ < 0 is favoured with a proportion of points
sitting well within the 2σ range. We also observe that some points have a remarkably
high relic density almost satisfying the 1σ region. This is a tantalising suggestion that
this effectively scaleless model may be able to satisfy the higgs mass, relic density, and
aµ simultaneously. Having said this, the inclusion of A0 does not give any discernible
improvement in the allowed values of the Higgs boson mass due to the previously
discussed natural tendency toward a scale-less model. However, these results are still
included as the inclusion of a small A0 parameter can modify the SUSY parameters
sufficiently such that some points pass the CheckMATE collider constraints as presented
in benchmark points 9 and 10 (Table 4.14).

(A) µ < 0, case II (B) µ > 0, case II

FIGURE 4.16: As for Fig 4.15 but zoomed in on the 3σ region for both aµ and mh. Two
benchmark points (presented below are marked)

From Fig 4.17 we can see that allowing for these RPV parameter points slightly
increases the aµ values. Conversely to the previous, µ < 0 now represents the higher
likelihood points. As the stau is the lightest particle in the cases, no relic density can
be calculated, and therefore we mark all points in blue to indicate this issue. Having
said this, some parameter points perfectly attain the higgs mass and aµ. For a
discussion of the phenomenology of such points see [113].
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(A) µ < 0, case II (B) µ > 0, case II

FIGURE 4.17: As for Fig 4.15 but where points that have charged LSP states are shown.
Such states are marked in blue to indicate that no relic density could be calculated.

(A) µ < 0, case II (B) µ > 0, case II

FIGURE 4.18: As for Fig 4.17 but zoomed in on the 3σ region for both aµ and mh.

We now present the two benchmark points plotted on Fig 4.16. Both were selected to
represent a particularly high value of aµ as well as interesting collider results.

Both benchmarks 9,10 have the same value of k as shown in Fig 4.12 where k = −0.23
had clear phenomenological advantages. Furthermore, the values of m 3

2
and tan(β)

are also approximately similar. They are both selected from the µ < 0 scan due to its
more promising phenomenology. In both cases β ≈ 1 and α is very small. This is
consistent with the no-scale model we are examining. The high scale gaugino mass
parameters are also presented. After running to the low scale the ratio becomes far
more extreme causing a great hierarchical divergence between the colour charged and
the non-colour charged sparticles as can be seen below.

Table 4.15 shows the mass spectrum for the two benchmark points BP9, BP10. Large
values of M3 give large values of squark and gluon masses and contribute to the
relatively large Higgs mass. Conversely, the smaller values of the other two gaugino
mass parameters, in combination with the absence of m0, gives the requisite small
slepton states. Furthermore, the hierarchy between M1 and M2 gives a notable
disparity between the right and left handed states. Due to the small value of tan(β)

and the negative sign of µ, τ̃1 is predominantly right handed. We note the very light
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Quantity BP9 BP10
α 0.0007 0.0003
β 1 1
m 3

2
[TeV] 56 57

k -0.023 -0.023
SPheno:
m0 [GeV] 0 0
tan(β) 10.5 10.0
sign(µ) -1 -1
A0 [GeV] -227 -109
M1 [GeV] -271 -271
M2 [GeV] -1144 -1163
M3 [GeV] -1841 -1877

TABLE 4.14: Shows two benchmark points representing two different areas of interest
in the parameter space. We present the model parameters and the resultant SPheno
input parameters. BP9 shows a point with high aµ and BP10 shows a point with high
Ω. Dimensions of the parameters are given. m 3

2
is given in units of TeV, and m0, A0, Mi

are given in GeV.

smuon states that give key contributions to aµ. Finally, the small value of M1 leads to
predominantly bino-like, light dark matter candidate.

Table 4.16 shows the key parameters for the relic density calculation for the two points
BP9, BP10. As the stau is the nLSP, the mass difference between it and χ̃10 is presented.
As its mass gap is so small, the τ̃ plays a critical role in the mechanism for dark matter
annihilation. Indeed the dominant decay channels contributing to the relic density
calculation are τ̃1 τ̃1 → τ τ and τ̃1 χ̃10 → τ γ. As the mass gap is especially small in the
BP9, dark matter is over-annihilated by these channels leading to a relic density below
the desired value. Both points have spin-independent cross-sections less than the
experimental limits of 0.09× 109 pb as they are exclusively bino-like.

Table 4.17 shows the key collider and phenomenological findings resulting from these
parameter points BP9, BP10. Both the nnLSP, µ̃R, and the LSP τ̃1, have short lifetimes
with only one decay channel perhaps suggesting a strong collider signature. Indeed,
the strongest signal region for both BP9 and BP10 is one that focuses on dileptonic
final states with missing transverse energy in the context of "electroweakinos". Both
b-type branching ratios are very well fitted in both cases. Furthermore, aµ is within the
2σ region for BP9 and BP10. We see relatively high values of r calculated by
CheckMATE due to the low mass sleptons.
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Masses BP9 BP10
ẽL 712 724
ẽR 139 140
ν̃eL 708 719
µ̃L 712 724
µ̃R 139 140
ν̃µL 708 719
τ̃1 107 110
τ̃2 712 724
ν̃τL 706 717
d̃L 3360 3420
d̃R 3290 3350
ũL 3360 3420
ũR 3290 3350
s̃L 3360 3420
s̃R 3290 3350
c̃L 3360 3420
c̃R 3290 3350
b̃1 3120 3180
b̃2 3280 3340
t̃1 2800 2840
t̃2 3140 3190
g̃ 3850 3920
χ̃10 103 103
χ̃20 926 942
χ̃30 2000 2050
χ̃40 2000 2060
χ̃1+ 926 943
χ̃2+ 2009 2060
h0 122 122
H0 2110 2160
A0 2110 2160
H± 2110 2170
µ -1870 -1930
B0 -68 -46
τ̃1 − χ̃10 3.87 6.77

TABLE 4.15: Shows the spectrum of SUSY masses for the benchmark points given in
Table 4.14. The difference between the mass of τ̃1 and χ̃10 is also given as this pertains
to the production of dark matter. We also include the high scale bilinear coupling
value B0 for its relevance to the high scale parameters of the model. All parameters

are given in GeV.
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Quantity BP9 BP10
ΩDMh2 0.0397 0.020
χ̃10 [GeV] 103 103
τ̃1 − χ̃10 [GeV] 3.87 6.77
|α1|2 1 1
|α2|2 0 0
|α3|2 0 0
|α4|2 0 0
σSI × 109[pb] 0.003 0.003

TABLE 4.16: Shows the relic density of the LSP for each benchmark point. The dif-
ference between the LSP and the nLSP is also given. Finally, we give the probability
of finding the LSP in a particular flavour state. That is to say; we give |αi|2 where
χ̃10 = α1B̃ + α2W̃ + α3H̃1 + α4H̃2 and ∑ |αi|2 = 1. Dimensionful parameters are given
in GeV except for the spin independent cross-section which is given in pb. The exper-
imental limit for both of these points is 0.09× 109 pb. Therefore, these points do not

exceed the experimental limits.

Quantity BP9 BP10
Γτ̃1 [Gev] 2.61× 10−3 8.18× 10−3

BR (τ̃−1 → χ10τ−) [%] 100 100
Γµ̃R [Gev] 1.47× 10−1 1.57× 10−1

BR (µ̃−R− → χ10µ−) [%] 100 100
BR (b→ s γ) [%] 0.032 0.032
BR (Bs → µ+ µ−) [%] 2.96× 10−7 2.95× 10−7

∆ (g−2)µ

2
1.39× 10−9 1.32× 10−9

ΩDMh2 0.0397 0.020
χ10 [Gev] 103 103
σqq→χ10χ10 [pb] 3.982× 10−14 2.290× 10−14

rmax 0.40 0.57√
s [TeV] 13 13

Analysis cms_sus_16_039 cms_sus_16_039
Signal Region SR_A44 SR_A44
Ref. [140] [140]

TABLE 4.17: Shows branching ratios for lightest supersymmetric particles in the spec-
trum for BP7 and BP8. Only branching ratio greater than 1% are included. We also in-
clude some beyond the standard model observables BR (b → s γ), BR (Bs → µ+ µ−),

∆ (g−2)µ

2 , and ΩDMh2, where ∆ (g−2)µ

2 is a calculation of the SUSY contribution be-
yond the standard model. The model successfully predicts the b decays discrepancy
and satisfies the anomalous muon magnetic moment to 2/3σ. The relic density is
too small and is therefore not ruled out phenomenologically. CheckMATE runs using
13TeV and 8TeV analyses do not rule out these points. Decay widths and masses are

given in GeV and branching ratios are given in %.
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4.6 Conclusion

Inflation represents a very attractive solution to a number of cosmological problems
and, in combination with supersymmetry, a very attractive model for Beyond the
Standard Model physics emerges based on no-scale SUGRA. We have focussed on the
particular case where the Polonyi term in the superpotential acts as a slow roll inflaton
for Starobinsky inflation, leading to an upper bound on the gravitino mass
m3/2 < 1000 TeV.

The recent Fermilab muon g− 2 result further motivates a no-scale model, where all
the dimensionful parameters the model are zero (except the gaugino masses which
arise via mixed modulus and anomaly mediation), naturally leading to light slepton
masses for certain gaugino masses. For negative universal gaugino masses, k < 0, we
find relatively light bino/wino masses together with light sleptons, as suggested by
the muon g− 2 measurement. In general, such a model is also capable of providing a
good dark matter candidate whilst satisfying constraints from collider physics, as well
as yielding the correct Higgs boson mass, but it turns out to be non-trivial to achieve
this while satisfying the desired muon g− 2 constraints.

We have conducted a Monte Carlo parameter scan over the given model in two
conditions: case I and case II, corresponding to zero or non-zero trilinear soft
parameter A0. We show that case I with k > 0 can give excellent fits for the Higgs
boson mass and relic density whilst easily satisfying the collider and flavour
constraints. Furthermore, with a reversal in the sign of k we show that g− 2 can be
satisfied to 2σ, as exemplified by BP7 and BP8, where BP8 also satisfies the desired
relic density. Since BP7 and BP8 are on the edge of exclusion, with rmax values slightly
above unity, this motivates the study of case II where we allow a non-zero A0 trilinear
soft parameter. By including a small A0 parameter at the high scale, we find that
muon g− 2 can be satisfied whilst satisfying the collider constraints that threaten case
I. However we find, while the case II benchmark points BP9 and BP10 satisfy the
collider constraints and the muon g− 2, they both predict a relic density which is
below the desired value, which does not exclude these points of course, but is
somewhat disappointing from the point of view of dark matter. Interestingly, we find
that, in both cases, a large part of parameter space is dominated by RPV-style points,
where the LSP becomes the lightest τ̃ state. Although such states are beyond the scope
of this work, a detailed discussion of these kind of points can be found [113].

In general, we find that the lightest neutralino χ̃10 should be a purely bino-like state
with a mass of around 100 GeV for parameter points BP7-BP10 that satisfy the muon
g− 2 constraint. We highlight in particular the fully no-scale SUGRA point with zero
A0, B0 and m0, namely BP8, which can explain not only the recent Fermilab muon
g− 2 measurement, and has the correct Higgs boson mass, but also yields the desired
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dark matter relic density, albeit with rmax = 1.04 on the edge of exclusion. We remark
that current LHC limits are more easily evaded due to right handed sleptons being
almost degenerate with the neutralino LSP, while the left handed counterparts are
much higher in mass, suppressing chargino decay channels into first and second
generation sleptons. However, even for BP9 and BP10, the rmax value is not too far
from unity, suggesting that future LHC runs are capable of discovering such SUSY
particles for all the interesting benchmarks that satisfy the muon g− 2.

In conclusion, no-scale SUGRA is not only well motivated theoretically from string
theory and provides an elegant framework for accounting for cosmological
Starobinsky inflation, but also has very interesting phenomenological implications as
well. Ignoring the muon g− 2 to begin with, and assuming positive universal gaugino
mass contributions, in addition to the anomaly mediated contributions, we show that
no-scale SUGRA can readily satisfy the dark matter and Higgs boson mass
requirements, consistently with all other phenomenological constraints. We then show
that the recent Fermilab measurement of the muon g− 2 may be accommodated,
together with the correct Higgs boson mass, for no-scale SUGRA with negative
universal gaugino mass contributions in addition to the anomaly mediated
contributions. For the fully no-scale SUGRA case, with all soft parameters equal to
zero at the high scale, apart from gaugino masses, we find that successful points
which satisfy the muon g− 2, and can sometimes yield the desired relic density,
although such points tend to be near the edge of LHC collider exclusion. Analysing
no-scale SUGRA with a non-zero A0, we find that the muon g− 2 can still be
explained, with the collider constraints somewhat relaxed. However, even in this case,
light sleptons and charginos are still predicted, with good prospects for discovering
these SUSY particles in LHC Run 3.



83

Chapter 5

Data-driven analysis of a SUSY
GUT of flavour

5.1 Introduction

The Minimal Supersymmetric Standard Model (MSSM), introduced in Chapter 2.4,
remains an appealing extension of the Standard Model of particle physics, as it
provides solutions to the most prominent shortcomings of the latter. In addition to
solving the hierarchy problem related to the mass of the Higgs boson [141, 142], the
model includes a viable candidate for the observed Cold Dark Matter (CDM) in the
Universe, namely the lightest of the four neutralinos. Furthermore, I discussed in
Chapter 3.1 how the masses of the Standard Model neutrinos can be generated
through the Seesaw mechanism [61–65] by including heavy right-handed neutrinos
which can easily be implemented in the MSSM.

While collider searches for new physics have remained unsuccessful so far, additional
information can be obtained from examining precision observables involving flavour
transitions. For example, in the hadronic sector, the branching ratios of rare decays
such as b→ sγ are sensitive to new physics contributions, especially if they involve
the NMFV paradigm discussed in Chapter 2.4.5, i.e. sources of flavour violation
beyond the Cabbibo Kobayashi Maskawa (CKM) matrix [40, 41]. The same holds for
the lepton sector [68, 69], where NMFV contributions can induce the branching ratios
like µ→ eγ and µ→ 3e, or µ− e conversion rates in nuclei. Flavour precision
observables therefore provide an interesting handle towards the new physics
spectrum, and in particular towards the underlying flavour structure.

Extensive studies have shown that the MSSM parameter space can accommodate
NMFV in both the squark and the slepton sectors despite the numerous experimental
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and theoretical constraints [143–145]. In addition, NMFV may lead to specific collider
signatures [146–156], weaken the current mass limits derived from the
non-observation of superpartners [157–159], and, although to some lesser extend,
affect the dark matter phenomenology [160–163].

As shown in Chapter 2.4.4 and, SUSY has great utility in the context of GUTs. Such a
framework allows a unification of the gauge couplings at a scale of about 1016 GeV
with better precision than the Standard Model alone [164]. In the same spirit, the soft
breaking parameters related to squarks and sleptons stem from a common origin. In
the most simple realisations this allows for the reduction of the number of parameters
of the model. Starting from the imposed values at the GUT scale, the
phenomenological aspects are obtained through renormalisation group running to the
TeV scale, where the physical masses and related observables are computed.

The two aforementioned aspects are introduced in Chapter 3.2.2 where I address them
by considering SUSY-GUTs including flavour symmetries, such as SU(5)× A4 [165] or
SU(5)× S4 [166, 167], to cite only two examples. In such a situation, the flavour
structure of the theory is defined at the GUT scale by the imposed symmetry.
Renormalization group running then translates the GUT-scale structure into the
observable mass spectrum at the TeV scale. The TeV-scale phenomenology thus
inherits a footprint of the imposed flavour structure at the GUT scale.

In a previous study [168], some of the authors have explored the phenomenology of
NMFV within a SU(5)× A4 implementation of the MSSM suggested first in Ref. [165].
Based on the variation of the NMFV parameters around a MFV reference scenario
taken from Ref. [165], it has been shown that these parameters need to be varied
simultaneously in order to cover all phenomenological aspects, in particular since
cancellations between different contributions may occur. Moreover, it has been
demonstrated that a model may feature a reasonable amount of flavour violation
while satisfying the stringent constraints of rare decays such as b→ sγ or µ→ eγ. It is
therefore interesting to pursue the study of GUT implementations of flavour violation,
e.g., via flavour symmetries, in the context of low-energy and precision constraints as
well as TeV-scale phenomenology.

In the present document, I shall focus on the case of SU(5) unification combined with
an S4 flavour symmetry, as suggested by one of the authors in Refs. [166, 167]. In a
similar way as in Ref. [168], I will explore in detail the TeV-scale aspects of this model,
including observables related to flavour violation and dark matter phenomenology.
More precisely, in this study, we aim at a complete exploration of the associated
parameters, i.e. including a variation of all relevant parameters at the GUT scale. For
the sake of an efficient exploration, I make use of the Markov Chain Monte Carlo
technique [169–171].
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The Chapter is organised as follows. In Section 5.2, I review the assumed model.
Section 5.3 is dedicated to the discussion of the Markov Chain Monte Carlo algorithm
that I employ to efficiently explore the model parameter space. Results are then
presented in Section 5.4. Our conclusions are given in Section 5.5.

5.2 The Model

5.2.1 Fields and symmetries

The model developed in Refs. [166, 167, 172, 173] is based on the grand unifying group
SU(5) combined with an S4 family symmetry, and supplemented by a U(1) symmetry.
The left-handed quarks and leptons are unified into the representations 5̄, 10 of SU(5)
and 1 for the right-handed neutrino as given in Equation 3.12. The three families are
controlled by a family symmetry S4, with F and N each forming a triplet and the first
two families of T forming a doublet, while the third family T3 (containing the top
quark) is a singlet, as summarised in Table 5.1. The choice of the third family T3 being
a singlet, permits a renormalisable top quark Yukawa coupling to the singlet Higgs
discussed below.

The S4 singlet Higgs fields H5, H5̄ and H4̄5, each contain a doublet SU(2)L ×U(1)Y

representation that eventually form the standard up (Hu) and down (Hd) Higgses of
the MSSM (where the Hd emerges as a linear combination of doublets from the H5̄ and
H4̄5) [174].1 The VEVs of the two neutral Higgs fields are

vu =
v√

1 + t2
β

tβ, vd =
v√

1 + t2
β

, (5.2.1)

where tβ ≡ tan(β) = vu
vd

and v =
√

v2
u + v2

d ≈ 246 GeV.

Just below the SU(5) breaking scale to the usual SM gauge group, the flavour
symmetry is broken by the VEVs of some new fields: the flavons, Φ f

ρ , which are

1As H5̄ and H4̄5 transform differently under U(1), it is clear that the mechanism which spawns the
low energy Higgs doublet Hd must necessarily break U(1). Although the discussion of any details of the
SU(5) GUT symmetry breaking (which, e.g., could even have an extra dimensional origin) are beyond the
scope of our work, I remark that a mixing of H5̄ and H4̄5 could be induced by introducing the pair H±24
with U(1) charges ±1 in addition to the standard SU(5) breaking Higgs H0

24.

Field T3 T F N H5 H5 H45 Φu
2 Φ̃u

2 Φd
3 Φ̃d

3 Φd
2 Φν

3′ Φν
2 Φν

1 η

SU(5) 10 10 5 1 5 5 45 1 1 1 1 1 1 1 1 1
S4 1 2 3 3 1 1 1 2 2 3 3 2 3′ 2 1 1′

U(1) 0 5 4 -4 0 0 1 -10 0 -4 -11 1 8 8 8 7

TABLE 5.1: Field content of the model and associated charges and representations.
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labelled by the corresponding S4 representation ρ as well as the fermion sector f to
which they couple at leading order (LO). Two flavons, Φu

2 and Φ̃u
2 , generate the LO

up-type quark mass matrix. Three flavon multiplets, Φd
3, Φ̃d

3 and Φd
2, are responsible

for the down-type quark and charged lepton mass matrices. Finally, the right-handed
neutrino mass matrix is generated from the flavon multiplets Φν

3′ , Φν
2 and Φν

1 as well as
the flavon η which is responsible for breaking the tri-bimaximal pattern of the
neutrino mass matrix to a trimaximal one at subleading order. An additional U(1)
symmetry must be introduced in order to control the coupling of the flavon fields to
the matter fields in a way which avoids significant perturbations of the flavour
structure by higher-dimensional operators.

5.2.2 Flavon alignments

The vacuum alignment of the flavon fields is achieved by coupling them to a set of
so-called driving fields and requiring the F-terms of the latter to vanish. These driving
fields, whose transformation properties under the family symmetry are discussed in
Refs. [166, 167, 172, 173], are SM gauge singlets and carry a charge of +2 under a
continuous R-symmetry. The flavons and the GUT Higgs fields are uncharged under
this U(1)R, whereas the supermultiplets containing the SM fermions (or right-handed
neutrinos) have charge +1. As the superpotential must have a U(1)R charge of +2, the
driving fields can only appear linearly and cannot have any direct interactions with
the SM fermions or the right-handed neutrinos.

Using the driving fields, the flavour superpotential may be constructed, resulting in
the following vacuum alignments (for details see Refs. [172, 173]),

〈Φu
2〉

M
=

(
0
1

)
φu

2 λ4,
〈Φ̃u

2〉
M

=

(
0
1

)
φ̃u

2 λ4, (5.2.2)

〈Φd
3〉

M
=

 0
1
0

 φd
3 λ2,

〈Φ̃d
3〉

M
=

 0
−1
1

 φ̃d
3 λ3,

〈Φd
2〉

M
=

(
1
0

)
φd

2 λ , (5.2.3)

〈Φν
3′〉

M
=

 1
1
1

 φν
3′ λ

4,
〈Φν

2〉
M

=

(
1
1

)
φν

2 λ4,
〈Φν

1〉
M

= φν
1 λ4,

〈η〉
M

= φη λ4,(5.2.4)

where λ = 0.22 is approximately equal to the Wolfenstein parameter [175] and the φ’s
are dimensionless order one parameters. Imposing CP-symmetry of the underlying
theory [176], all coupling constants can be taken real, so that CP is broken
spontaneously by generally complex values for the φs. M denotes a generic messenger
scale which is common to all the non-renormalisable effective operators and assumed
to be around the scale of grand unification.
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5.2.3 Yukawa matrices

Because of the non-trivial structure of the Kähler potential, non-canonical kinetic
terms are generated. For a proper analysis of the flavour structure, one needs to
perform a canonical normalisation (CN) operation, swapping the misalignment of the
kinetic terms to the superpotential. Therefore, in the model proposed in Refs.
[166, 167, 172, 173], contributions to the flavour texture from both the superpotential
and the Kähler potential are taken into account. In this subsection, I shall begin by
ignoring such corrections, and also only consider the leading order Yukawa operators,
in order to clearly illustrate the origin of the flavour structure in the model. However,
all such corrections are taken into account in the phenomenological treatment of the
Yukawa matrices in the following subsection. I remark that the model is highly
predictive, as the parameters entering the flavour structure are expected to be of O(1)
but the overall flavour texture is provided as a function of the expansion parameter
λ = 0.22.

5.2.3.1 Up-type quarks

The Yukawa matrix of the up-type quarks can be constructed by considering all the
possible combinations of a product of flavons with TTH5 for the upper-left 2× 2
block, with TT3H5 for the (i3) elements, and with T3T3H5 for the (33) element. The
most important operators which generate a contribution to the Yukawa matrix of
order up to and including λ8 are

ytT3T3H5 +
1
M

yu
1 TTΦu

2 H5 +
1

M2 yu
2 TTΦu

2 Φ̃u
2 H5 , (5.2.5)

where the parameters yt and yu
i are real order one coefficients. Inserting the flavon

VEVs and expanding the S4 contractions of Eq. (5.2.5), with TT and Φu
2 Φ̃u

2 each
combined into a doublet using the Clebsch-Gordan coefficients [172, 173], yields the
up-type Yukawa matrix at the GUT scale

Yu
GUT ≈

 yueiθy
u λ8 0 0

0 yceiθy
c λ4 0

0 0 yt

 , (5.2.6)

where the relation to the flavon VEVs, see Eqs. (5.2.2) – (5.2.4), is given by

yueiθy
u = yu

2 φu
2 φ̃u

2 , yc eiθy
c = yu

1 φu
2 . (5.2.7)
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5.2.3.2 Down-type quarks and charged leptons

The Yukawa matrices of the down-type quarks and the charged leptons can be
deduced from the leading superpotential operators

yd
1

1
M

FT3Φd
3 H5̄ + yd

2
1

M2 (FΦ̃d
3)1(TΦd

2)1H4̄5 + yd
3

1
M3 (F(Φd

2)
2)3(TΦ̃d

3)3H5̄ , (5.2.8)

where the yd
i are real order one coefficients. For the operators proportional to yd

2 and
yd

3, specific S4 contractions indicated by (· · · )1 and (· · · )3 have been chosen (justified
by messenger arguments) such that the Gatto-Sartori-Tonin (GST) [177] and
Georgi-Jarlskog (GJ) [178] relations are satisfied. Separating the contributions of H5̄

and H4̄5, the S4 contractions give rise to

Y5̄ ≈

 0 x̃2eiθ x̃
2 λ5 −x̃2eiθ x̃

2 λ5

−x̃2eiθ x̃
2 λ5 0 x̃2eiθ x̃

2 λ5

0 0 ybeiθy
b λ2

 , Y4̄5 ≈

 0 0 0
0 yseiθy

s λ4 −yseiθy
s λ4

0 0 0

 .

(5.2.9)
The parameters in these expressions are related to the flavon VEVs as defined in Eqs.
(5.2.2)–(5.2.4) via

ybeiθy
b = yd

1φd
3 , yseiθy

s = yd
2φd

2 φ̃d
3 , , x̃2eiθ x̃

2 = yd
3(φ

d
2)

2φ̃d
3 . (5.2.10)

The Yukawa matrices of the down-type quarks and the charged leptons are linear
combinations of the two structures in Eq. (5.2.9). Following the construction proposed
by Georgi and Jarlskog, we have Yd

GUT = Y5̄ + Y4̄5, Y e
GUT = (Y5̄ − 3Y4̄5)

T. CKM
mixing is dominated by the diagonalisation of the down-type quark Yukawa matrix.
Note that in some models it is possible to go beyond the simple case mb = mτ at the
GUT scale, by including larger Higgs representations [179, 180].

5.2.3.3 Neutrinos

The neutrino masses originate from a standard Supersymmetric Type I Seesaw
mechanism, where the heavy right-handed fields, N, are turning the tiny observed
neutrino effective Yukawa couplings into natural parameters. The Lagrangian for the
neutrino sector is therefore given by

Lν ⊃ (Yν)ijLi HuNj + (MR)ijNiNj , (5.2.11)

where Yν is the Dirac Yukawa coupling andMR is the right-handed Majorana mass
matrix.
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The Dirac coupling of the right-handed neutrinos N to the left-handed SM neutrinos is
dominated by the superpotential term

yDFNH5 (5.2.12)

where yD is a real order one parameter. The corresponding Yukawa matrix is
determined as

Yν ≈

 yD 0 0
0 0 yD

0 yD 0

 , (5.2.13)

The mass matrix of the right-handed neutrinos is obtained from the superpotential
terms

w1,2,3NNΦν
1,2,3′ + w4

1
M

NNΦd
2η , (5.2.14)

where wi denote real order one coefficients. This results in a right-handed Majorana
neutrino mass matrixMR of the form

MR

M
≈

 A + 2C B− C B− C
B− C B + 2C A− C
B− C A− C B + 2C

 eiθA λ4 +

 0 0 D
0 D 0
D 0 0

 eiθD λ5 ,(5.2.15)

with

AeiθA = w1φν
1 , BeiθA = w2φν

2 , CeiθA = w3φν
3′ , DeiθD = w4 η φd

2 . (5.2.16)

The first matrix of Eq. (5.2.15) arises from terms involving only Φν
1,2,3′ . As their VEVs

respect the tri-bimaximal (TB) Klein symmetry ZS
2 × ZU

2 ⊂ S4, this part is of TB form.
The second matrix of Eq. (5.2.15), proportional to D, is due to the operator
w4

1
M NNΦd

2η which breaks the ZU
2 at a relative order of λ, while preserving the ZS

2 .
The resulting trimaximal TM2 structure can accommodate the sizable value of the
reactor neutrino mixing angle θl

13.

It is instructive to show the effective light neutrino mass matrix which arises via the
type I seesaw mechanism, and has the form

meff
ν ≈ y2

Dv2
u

λ4M


 bν + cν − aν aν aν

aν bν cν

aν cν bν

 e−iθA +

 0 0 dν

0 dν 0
dν 0 0

 λ ei(θD−2θA)

 ,(5.2.17)

with aν, bν, cν and dν being functions of the real parameters A, B, C and D. The
deviation from tri-bimaximal neutrino mixing is controlled by dν ∝ D. Due to the
three independent input parameters (w1 ∝ A, w2 ∝ B, w3 ∝ C), any neutrino mass
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spectrum can be accommodated in this model. Note that this expression, while
generally providing a good estimation of the effective neutrino mass matrix, is only an
approximation valid at order λ. Therefore, it does not strictly hold when considering a
potential O(10) D-parameter as we do in the numerical analysis which requires a
more rigorous treatment.

5.2.4 Phenomenological Yukawa couplings at the GUT scale

The true model predictions at the high scale differ from those shown previously, since
they also involve other higher order corrections to the Yukawa terms, and one must
also include the effects of canonical normalisation (CN) leading to the matrices in Ref.
[167]. For simplicity, while keeping the phenomenology indistinguishable from the
constructed model, we allow for minor approximations, and here we summarise the
form of the Yukawa matrices that we actually assume at the GUT scale.

Concerning the up-type quark Yukawa matrix, we shall continue to take it to be
diagonal as the off-diagonal entries are much more λ suppressed than the diagonal
ones. We may also absorb the phases into a redefinition of the fields.

Since the CKM matrix is controlled by the down-type quark Yukawa matrix, we shall
include some of the higher-order terms and some of the effects of CN, in order to
obtain a perfect fit to quark data. Therefore there are some corrections to the GST
relations.

The charged lepton Yukawa matrix is, like in any standard SU(5) model, closely
related to the down-quark Yukawa matrix as per Y` ' YT

d , together with a modified
via the GJ mechanism through the incorporation of 4̄5 and 5̄ Higgs representations in
order to generate a more reasonable relation between ms and mµ.
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The explicit Yukawa matrices we will use for the charged fermionic sector are
therefore provided by the following expressions:

Yu =

yuλ8 0 0
0 ycλ4 0
0 0 yt

 ,

Yd =

 zd
1λ8 e−iδ x2λ5 −x2λ5 eiδ

−x2λ5 ysλ
4 e−iθd

2 −ysλ
4 e2i(θd

2+θd
3 ) + x2λ5e3i(θd

2+θd
3 )

(zd
3 e−iθd

2 − 1
2 K3yb e−iδ)λ6 (zd

2 e−iθd
2 − 1

2 K3yb e−iδ)λ6 ybλ2

 ,

Y` =

−3zd
1λ8 e−iδ −x2λ5 (zd

3 e−iθd
2 − 1

2 K3yb e−iδ)λ6

x2λ5 −3ysλ
4 e−iθd

2 (zd
2 e−iθd

2 − 1
2 K3yb e−iδ)λ6

−x2λ5 eiδ 3ysλ
4 e2i(θd

2+θd
3 ) + x2λ5e3i(θd

2+θd
3 ) ybλ2

 ,

(5.2.18)

where δ = 2θd
2 + 3θd

3 , and θd
ρ (ρ = 2, 3) corresponds to the phase of a ρ-representation

flavon in the original model. Note that our analysis, including the soft masses
discussed below, relies only on the two phases θd

2 and θd
3 . The up-type quark Yukawa

has been approximated with respect to Ref. [167].

In the neutrino sector, the effects of CN are negligible, and we therefore take these
matrices to have the same form as given previously,

MR

MGUT
=

A + 2C B− C B− C
B− C B + 2C A− C
B− C A− C B + 2C

 λ4 e−2iθd
3 +

 0 0 D
0 D 0
D 0 0

 λ5 ei(4θd
2−θd

3 ) . (5.2.19)

The Dirac neutrino coupling, neglecting the O(λ4) terms, compared to the original
paper [167], that is also of the form given in the previous subsection,

Yν =

yD 0 0
0 0 yD

0 yD 0

 . (5.2.20)

5.2.5 SUSY breaking terms

We now consider the SUSY breaking sector of the low energy scale MSSM generated
after integrating out the heavy degrees of freedom. In the context of the standard
phenomenological R-parity conserving MSSM, the soft Lagrangian is parametrised as
in Equation 2.8, but with an additional neutrino soft mass term of the form −ν̃†m2

νν̃.
Assuming that the SUSY breaking is controlled by some hidden sector mediated by a
superfield X, the soft parameters described in Equation 2.8 are generated when X
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develops a VEV in its F-term at the SUSY breaking scale. Furthermore, we consider
that the SUSY breaking mechanism is independent of the flavour breaking one.

The new flavour structure arising from the SUSY breaking sector is also controlled by
the flavour symmetry, in a similar fashion as the SM texture is. Extracting the results
from Ref. [167], we first summarise the predictions for the soft trilinear terms A f ,

Au
GUT
A0

'

auλ8 0 0
0 acλ4

0 0 at

 ,

Ad
GUT
A0

'

 zda
1 λ8 x̃a

2λ5 −x̃a
2λ5

−x̃a
2λ5 asλ

4 −asλ
4

(zda
3 −

K3ab
2 )λ6 (zda

2 −
K3ab

2 )λ6 abλ2

 ,

Ae
GUT
A0

'

−3adλ8 −x̃a
2λ5 (zda

3 −
K3ab

2 )λ6

x̃a
2 −3asλ

4 (zda
2 −

K3ab
2 )λ6

−x̃a
2λ5 3asλ

4 abλ2

 ,

Aν
GUT
A0

'

aD 0 0
0 0 aD

0 aD 0

 .

(5.2.21)

The trilinear soft couplings exhibits the same structure as the Yukawa terms, except
that the O(1) parameters and phases are now different. This is expected since the
trilinear terms are projected out from the Yukawa terms when the superfield X
acquires its VEV, breaking the different supermultiplets. Therefore, we can use the
same approximations as the ones considered for the Yukawa couplings. Furthermore,
for simplicity, we neglect all additional CP-violating phases that may appear in the
soft terms.

Similarly, we summarise the results on the soft scalar mass matrices,

M2
T ' m2

0

b01 (b2 − b01k2)λ4 (b4 − k4(b01−b02)
2 )e−iθ4k λ6

· b01 (b3 − k3(b01−b02)
2 )e−iθ3k λ5

· · b02

 ,

M2
F(N) ' m2

0


B(N)

0 (B(N)
3 − K(N)

3 )λ4 (B(N)
3 − K(N)

3 )λ4

· B(N)
0 (B(N)

3 − K(N)
3 )λ4

· · B(N)
0

 ,

(5.2.22)

where N is the right handed sneutrino term, θ3k = −5θd
2 and θ4k = θd

3 − θd
2 . Because of

the unification, all the sfermion soft matrices are linked to the soft matrix of the SU(5)
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representation they belong to.

5.3 Data-driven model exploration

5.3.1 Algorithm

The full analysis of the parameter space relies on a Markov-Chain Monte Carlo
technique [171], and more specifically the Metropolis-Hastings algorithm [169, 170].
This technique allows one to perform a sophisticated data-driven exploration of an
high-dimension parameter space. The idea behind the algorithm is to estimate the
likelihood L of a given set of parameter values~θ with respect to the set of observables
~O. For simplicity and the rest of the analysis we assume that the observables are not
correlated, i.e.

L(~θ, ~O,~σ) = ∏
i
Li(~θ, Oi, σi), (5.3.23)

where σi is the uncertainty associated to the observable Oi.

Successively, random values of the parameters, picked around the previous ones, are
evaluated at each iteration. In our implementation, the new proposed parameter value
θn+1 is obtained through a Gaussian jump,

θn+1
i = G

(
θn

i , κ(θmax
i − θmin

i )
)

, (5.3.24)

where G (a, b) is a Gaussian distribution centered around a with width b, κ is a
parameter that needs to be tuned empirically for the algorithm and θmax

i and θmin
i

stands for the extrema values of the θi considered range.

If Ln+1(~θn+1, ~O,~σ) > Ln(~θn, ~O,~σ), the point is accepted and the chain continues from
this point. Otherwise, the new point is accepted with probability

p =
Ln+1(~θn+1, ~O,~σ)

Ln(~θn, ~O,~σ)
(5.3.25)

This avoids falling into local minima, and thus ensures complete parameter space
exploration. In practice, we randomly choose a number µ ∈ [0, 1] such that the test
succeeds if µ < p. Otherwise, the point is rejected, and we reevaluate the step n + 1
for another proposal set of parameters deduced from step n. Within this framework,
the algorithm can move across larger regions while still converging to highest
likelihood regions.

In high-dimensional parameter space, the quality of the exploration relies more on the
total of chain numbers than the length of the chain themselves. Indeed, different
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Point n: ~θn

Proposal n + 1: ~θn+1

Likelihood: Ln+1(~θn+1, ~O, ~σ)

Test: µ < Ln+1(~θn+1, ~O,~σ)
Ln(~θn, ~O,~σ)Fail: restart at n Success: n→ n + 1

Jump
G
(
θn

i , κθn
i
)

µ ∈ [0, 1]

~O(~θn+1)

FIGURE 5.1: Illustration of the MCMC algorithm utilisation.

starting points (chosen randomly) can lead to different likelihood maximums. A
summary of the algorithm is given in Figure 5.1.

5.3.2 Constraints, tools and setup

We now develop on the numerical tools and constraints employed in our analysis. As
the model is defined at the GUT scale, we first perform the evolution of the
renormalisation group equations (RGEs) to the low scale, to derive low energy
observables. For this purpose we employed the SARAH v4.14.1 Mathematica package
[181–185] in order to generate a type I Seesaw GUT MSSM model based on SPheno

v4.0.4 [114, 115]. Right handed Majorana neutrinos, which typically live near the
GUT scale are therefore consistently integrated out at their mass scale. Furthermore,
the Flavour kit [186] available within SARAH / SPheno computes a wide range of
flavour observables, simplifying our framework as both one-loop masses and flavour
observables are evaluated within a single executable.

However, modifications of this model have been realised: In the usual SPheno
instances, SM fermion masses are enforced to match the experimental data by several
runs up and down between the GUT scale and the low scale, rendering our model
predictions impossible to estimate. To overcome this, we have removed the SM
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fermions from this iterative convergence process while keeping the massive gauge
bosons. To consistently implement such restrictions, attention must be payed
concerning several features. An extended discussion regarding our modified SPheno

version can be found in Appendix A.

We have also decided to include dark matter constraints in our analysis. Restricting
ourselves to neutralino dark matter, we imposed a step dark matter candidate
likelihood (1 if the LSP is the lightest neutralino, 0 otherwise). In order to derive relic
density and direct detection constraints, we have used micrOMEGAs v5.2, which
accepts the spectrum files generated by SPheno through the SUSY Les Houches Accord
(SLHA) [187, 188] interface.

It should be noted that SARAH generated micrOMEGAs models are in general limited to
real Lagrangian parameters, that is all couplings need to be real. This caused problems
in our relic density calculations due to the presence of phases in multiple sectors. To
overcome this, we maintained a full calculation including phases within SPheno but
recast the model with real valued couplings for the relic density calculation. As, in
general, the CP-violating contribution to relevant (co-)annihilation channels are
limited, and our CP-violating parameters are also numerically rather small, this is a
valid approximation. We have verified for a few cases, that the effect of the phases had
little impact on the amplitudes squared of the relevant processes.

Linking these tools together, we are able to investigate a wide range of constraints.
The list of the Standard Model parameters to be fitted is given in Table 5.3 while the
flavour and dark matter constraints are listed in Table 5.4. We give the list of input
parameters and their respective scanning range in Table 5.2.

In all tables, the upper bounds constraints are given at the 90% confidence level and in
order to help the process of chain convergence and initialization, we postulate a
smoothing step function for the upper limits constraints

Lupper(~θ, Oi, σi) =


1 for Oi(~θ) ≤ Obound

i

e
− (

Oi(~θ)−Obound
i )

2

2σ2
i for Oi(~θ) > Obound

i

(5.3.26)

where we chose, somehow arbitrarily, a common value of σi = 10% ·Obound
i .

On the other hand, we associate a Gaussian likelihood function for all experimentally
measured observables

Lmeasured(~θ, Oi, σi) = e
− (

Oi(~θ)−O
exp
i )

2

2σ2
i , (5.3.27)

σi being the uncertainty given in Tables 5.3 and 5.4.
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Parameter Range Parameter Range Parameter Range

A0 [−1000, 1000] yd [−2, 2] k2 [−8, 8]

m2
0 [2 · 105, 7 · 106] zd

1 [−2, 2] k3 [−8, 8]

m2
Hu

[2 · 105, 7 · 106] x2 [−1.2, 1.2] k4 [−8, 8]

m2
Hd

[2 · 105, 7 · 106] ys [−1, 1] B(N)
0 [0, 8]

M1 [500, 1500] zd
3 [−2, 2] B(N)

3 [−8, 8]

M2 [500, 1500] zd
2 [−2, 2] K(N)

3 [−8, 8]

M3 [800, 3000] yb [−2.5, 2.5] au [−8, 8]

tan(β) [6, 15] A [−8, 8] ac [−8, 8]

yu [0.1, 1.5] B [−8, 8] at [−8, 8]

yc [0.1, 1.5] C [−8.8] as [−8, 8]

yt [0.4, 0.7] D [−8, 8] ab [−8, 8]

θd
3 [0, 2π] b01 [0, 8] x̃a

2 [−8, 8]

θd
2 [0, 2π] b02 [0, 8] zda

3 [−8, 8]

zda
1 [−8, 8] b2 [−8, 8] zda

2 [−8, 8]

αD [−8, 8] b3 [−8, 8]

yD [−1.5, 1.5] b4 [−8, 8]

TABLE 5.2: GUT scale input parameters for the model and their scanning range. For
all parameters, the step size for a Markov chain iteration is given as 0.5% of the total
range length of the allowed values. This step size was procured by trial and error
in order to balance scan efficiency and a search of the parameter space. In addition,
we set a fixed value for the following parameters: sign(µ) = −1; and λ = 0.22 and
MGUT = 2 · 1016 which enters as parametrization of Yukawa, trilinear and mass ma-

trices as stated in Eqs. (5.2.18), (5.2.19) and (5.2.22).

Observable Constraint Refs.

mu (2.2± 0.5) · 10−3 [189]

mc 1.275± 0.0035 [189]

mt 172.76± 0.9 [189]

md (4.7± 0.5) · 10−3 [189]

ms (93± 9) · 10−3 [189]

mb 4.18± 0.04 [189]

me 0.511 · 10−3 [189]

mµ 105.66 · 10−3 [189]

mτ 1.7769 [189]

mh 125 [189]

Observable Constraint Refs.

(∆mν
21)

2 (7.42± 0.2) · 10−23 [48]

(∆mν
31)

2 (2.514± 0.028) · 10−21 [48]

sin(θCKM
12 ) 0.225± 0.0010 [190]

sin(θCKM
13 ) (0.003675± 9.5) · 10−5 [190]

sin(θCKM
23 ) 0.042± 0.00059 [190]

δCKM 1.168± 0.04 [190]

sin(θPMNS
12 ) 0.55136± 0.012 [48]

sin(θPMNS
13 ) 0.1490± 0.0022 [48]

sin(θPMNS
23 ) 0.7550± 0.0134 [48]

δPMNS 3.86± 1.2 [48]

TABLE 5.3: νSM parameters, masses and EWSB constraints for our model exploration.
All masses are given in GeV and are pole masses, except for the bottom and light
quarks: the bottom (light quarks) one is the MS mass given at the scale Q = mb
(µ = 2 GeV). Theoretical uncertainties of 1% are assumed for the different masses and
are added in quadrature with the experimental ones. Note that the charged lepton
and Higgs boson mass experimental uncertainties are negligible with respect to the

theoretical ones and are therefore omitted.



5.3. Data-driven model exploration 97

Observable Constraint Refs.
BR(µ→ eγ) < 4.2 · 10−13 [189]
BR(τ → eγ) < 3.3 · 10−8 [189]
BR(τ → µγ) < 4.4 · 10−8 [189]
CR(µ− e, Ti) < 4.3 · 10−12 [189]
CR(µ− e, Au) < 7 · 10−13 [189]
CR(µ− e, Pb) < 4.6 · 10−11 [189]
BR(µ→ 3e) < 1 · 10−12 [189]
BR(τ → 3e) < 2.7 · 10−8 [189]
BR(τ → 3µ) < 2.1 · 10−8 [189]

BR(τ− → e−µ+µ−) < 2.7 · 10−8 [189]
BR(τ− → µ−e+µ−) < 1.8 · 10−8 [189]
BR(τ− → e+µ−µ−) < 1.7 · 10−8 [189]
BR(τ− → µ+e−e−) < 1.5 · 10−8 [189]

Observable Constraint Refs.
BR(Z → eµ) < 7.5× 10−7 [189]
BR(Z → eτ) < 9.8× 10−6 [189]
BR(Z → µτ) < 1.2× 10−5 [189]
BR(h→ eµ) < 6.1× 10−5 [189]
BR(h→ eτ) < 4.7× 10−3 [189]
BR(h→ µτ) < 2.5× 10−3 [189]
BR(τ → eπ) < 8× 10−8 [189]
BR(τ → eη) < 9.2× 10−8 [189]
BR(τ → eη′) < 1.6× 10−7 [189]
BR(τ → µπ) < 1.1× 10−7 [189]
BR(τ → µη) < 6.5× 10−8 [189]
BR(τ → µη′) < 1.3× 10−7 [189]

Ωh2 0.12± 0.012 th. [117, 191–193]

Direct detection cf. Figure 5.2 [194, 195]

TABLE 5.4: Leptonic flavour and dark matter constraints. These upper limits numbers
are given at the 90% confidence level. For the dark matter relic density we assume 10%

theoretical uncertainties because of cosmological assumptions.

From Table 5.2, this model has 46 parameters. On the other hand, there are only 20
standard model constraints in Table 5.3 and 26 further constraints in Table 5.4
(although these are often only upper limits. Naively, this could be interpreted to imply
that this model will inherently be sufficient to fit all the data as the number of
constraints matches the number of parameters. However, the precise nature of the
model in question and the precise nature of the symmetry breaking schema are critical
in the phenomenological realisation of the parameters into observables. Indeed, as we
shall see later, only by directly tackling these phenomenological implications can we
make any claims as to the viability of a given model as it is not trivial to satisfy the set
of experimental results simultaneously.

Regarding the dark matter direct detection constraints, we extracted and extrapolated
the curves from Refs. [194, 195] as shown in Figure 5.2, while for the relic density we
have used the results from Ref. [191] adding a 10% uncertainty due to micrOMEGAs

precision in combination with underlying cosmological assumptions. For the other
constraints we are using the current experimental uncertainties associated to the
values given in the different tables while adding in quadrature a theoretical
constraints on the different standard model masses. The theory uncertainty on the
Higgs mass is fixed at 2 GeV [196] while we assume a common 1% uncertainty on the
different fermion masses because of RGE fixed order precision and changes from the
DR to the on-shell renormalisation scheme. If no experimental constraints is present
for a given value in the tables it is understood that theoretical uncertainties are by far
dominant with respect to the experimental ones. Finally, the different quark masses
are extracted at different scales, i.e. Q = 2 GeV for q = (u, d, c, s) and Q = mb for
q = b.
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FIGURE 5.2: Dark matter direct detection limits in plane of dark matter mass and spin-
(in)dependent nucleon scattering cross section. The dots correspond to data extracted
from Xenon1T experiments presented in Refs. [194, 195], while the solid line is the

extrapolation we performed.
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FIGURE 5.3: Distribution of the Higgs mass and dark matter relic density predictions,
normalised to one. The 1σ region is marked in red. The MCMC displays an approxi-

mate Gaussian fit around the experimental values.

Having implemented and executed the above, 197 chains were recovered. As the
parameter space was so vast and such a large number of very precise constraints were
used, the efficiency of these scans was very low, requiring weeks of computer time to
complete. Therefore, the scans were allowed 2000 Markov chain steps each. After this
process we collect the data and applied a likelihood cutoff such that only points with
relatively high likelihood are left in the final data set. This was in order to prevent the
distributions presented here-in from misleading the reader into thinking some parts of
parameter space were viable when, in fact, they produce excessively low likelihoods.
The likelihood cutoff applied was 10−150. Although this is tiny, much of the poor
likelihood comes from poor convergence of the fermion masses (see discussion in
Section 5.4.1). In general, the remaining constraints converged very well to the
observed values. As an example of two constraints, see Figure 5.3, which shows how
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the Higgs boson mass and relic density are centered around the expected value.

5.4 Results

The subsequent results are based on the Markov Chain Monte Carlo (MCMC) study
following the methods elucidated previously. Having already presented two
illustrative plots showing the constraints used to guide the MCMC, we now present
the resultant spectra and phenomena. We begin with a discussion of the fermion
masses, mixing, and a general discussion of the model’s success in recreating the
Standard Model observables. We then look at the supersymmetric (SUSY) spectrum,
the dark matter sector, and further phenomenological results. Finally, we give a
discussion of the effects on collider physics and experimental physics more generally.

5.4.1 Fermion masses and mixing

In this subsection we present the results of our scan for fermion masses and mixing
parameters, which are put in as constraints as shown in Table 5.3. The results for the
fermion masses are shown in Figure 5.4, while those for the mixing parameters are
shown in Figures 5.6 and 5.7.

These results follow from the charged fermion Yukawa matrices at the GUT scale
shown in Eqs. (5.2.18), together with the neutrino Dirac Yukawa matrix in Eq. (5.2.20)
and the heavy right-handed neutrino mass matrix in Eq. (5.2.19). Note that the (3, 3)
entries of the charged lepton and down type quark Yukawa matrices are equal at the
GUT scale (yielding approximate bottom-tau unification mb = ms), while the (2, 2)
entries of these matrices differ by the Georgi-Jarlskog (GJ) factor of 3 (yielding an
approximate strange to muon mass ratio ms = mµ/3 at the GUT scale).

The results for fermion masses in Figure 5.4 show that the above GJ relations do not
lead to phenomenologically viable charged lepton and down type quark masses at
low energy, in particular ms, mb and mτ are not well fitted. This problem has also been
noted by other authors, and possible solutions have been proposed based on various
alternative choices of GUT scale Higgs leading to different phenomenologically
successful mass ratios at the GUT scale [179, 180] but are beyond the scope of this
study. Since the purpose of this study is to perform a comprehensive
phenomenological analysis on an existing benchmark model, we shall not consider
such alternative solutions here, but simply note that such solutions exist and could be
readily applied.
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FIGURE 5.4: The fermion masses are displayed where the red region indicating the 1σ
limits. The first generations are very well fitted. However, due to the link between the
down type quarks and the leptons at the GUT scale, the second and third generation
masses are slightly off. Furthermore, the top mass is also slightly poorly aligned due
to the Higgs mass constraint. Note that few points exhibit neutrino masses above the

visible part of the histograms.

Note that the absolute values of the neutrino masses in Figure 5.4 are genuine
predictions of the model, since only the experimentally measured mass squared
differences in Table 5.3 were put in as constraints. In particular, the lightest neutrino
mass distribution is peaked around a few times 10−3 eV. This leads to an interesting
prediction for neutrinoless double-beta becay. In Figure 5.5 we give the model
prediction of the neutrinoless double-beta decay parameter mee against the mass of the
lightest neutrino mν1. Future projections for CUORE rule out approximately 52% of
the data set. Indeed, the model tends to favour relatively high values of mee as
compared to the theoretically allowed region.

The results for the CKM and PMNS mixing parameters in Figures 5.6 and 5.7 show a
good fit to the constraints. The PMNS mixing parameters sin θPMNS

12 and sin θPMNS
13 also
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FIGURE 5.5: The dark blue points are the model prediction of the neutrinoless double
beta decay parameter |mee| vs the mass of the lightest neutrino mν1. The light blue
shaded region shows the allowed range in this plane for a normal hierarchy as pre-
dicted by the model. The vertical grey shaded bands to the right show the current
Planck disfavoured region [54], while the coloured horizontal lines show the limits on
|mee| from KamLAND [197], EXO-200 [198], CUORE [199], and GERDA [200]. We also

indicate future prospects for CUORE [201].

fit very well. However the model prefers somewhat smaller values of sin θPMNS
23 , with

the CP-oscillation phase δPMNS being quite uniformly distributed.

The Majorana phases are also predicted and are highly correlated as shown in Figure
5.8. In principle, the fact that they are correlated is not surprising. The model only
depends on two high scale phases, θd

2 and θd
3 , and the MCMC has two low scale

constraints on the phases from δCKM and δPMNS. Therefore, the high scale phases, who
determine the Majorana phases, must be correlated. However, the striking nature of
the correlation is surprising. It seems that, roughly speaking, the Majorana phases
must sum to a multiple of π. Of course, these phases are important with regards to
CP-violating processes but this should suggest that their individual values should be
multiples of π, not their sum. For the time being we leave this puzzle as a comment to
be understood in greater detail.

5.4.2 SUSY spectrum

Figure 5.10 shows the distribution of the lightest charged sfermion masses. Typically,
the lightest sleptonic state represents the lightest sfermion of the spectrum with the up
and down squarks being larger and similar in mass to each other. Furthermore, as will
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FIGURE 5.6: The CKM parameters are displayed where the red region indicating the
1σ limits. All parameters in the CKM are fitted very well with an approximately

Gaussian distribution around the expected value.

be discussed later, large flavour mixing involving the first and second generation, is
typical of these sfermionic states under this model. This is caused by the (1,1), (2,2)
and (3,3) entries of the MT and MF soft matrices in Eq. (5.2.22). In MT, as the (1,1) and
(2,2) entries are given by b01, their relative size in comparison with the (3,3) element,
given by b02, dictates the structure of the mixing matrix. In MF, all diagonal entries are
identical at the GUT scale. These structure peculiarities of the soft matrices stem from
the flavour symmetry at the GUT scale: by construction the first two generations of
(uL, uR, dL, `R) are gathered in an S4 doublet while the third generation forms a
singlet. For (dR, `L) the visible mass splitting difference is due to significantly larger
third generation Yukawa coupling.

The neutralino, chargino, and gluino masses are displayed in Figure 5.11. Although
the gluino mass is not particularly constrained, the two lightest neutralinos and the
lightest chargino have a very constrained spectrum. As, a priori, the relic density is
too high, the model requires a specific mechanism to reduce the dark matter relic
density to phenomenological values. As much of the rest of the spectrum is large, the
neutralinos and charginos supply an alternative mechanism via co-annihilation. In
order to allow for such contributions, the lightest gauginos must be comparable in
mass as will be seen in the dark matter dedicated section below.
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1σ limits. Unlike the CKM parameters, the PMNS shows more variation due to the

less stringent experimental constraints.
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FIGURE 5.9: Mass distribution of right handed neutrinos. Overall, the masses are very
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FIGURE 5.10: Distribution of masses for the lightest up-type, down-type sfermions
and the lightest slepton. The slepton is the lightest of these particles.

The last panel of Figure 5.11 demonstrates the "decoupling limit" for two Higgs
doublet models. In this limit, the three additional Higgs states have very large masses
and are approximately degenerate.

5.4.3 Dark matter

We now come to the discussion of dark matter aspects of the model under
consideration. As we have seen in Figure 5.3, the dark matter relic density given by
the latest Planck results is well accommodated for in the parameter regions surviving
the numerous imposed constraints. The corresponding parameter configurations
feature essentially bino-like dark matter, which can be understood from Figure 5.12,
where we depict the relevant bino and wino content of the lightest neutralino.

Looking at the gaugino masses (Figure 5.11), it can be seen that the second-lightest
neutralino as well as the lighter chargino lie very close to the lightest neutralino. In
other words, the bino and wino mass parameters are, at the SUSY scale, almost equal,
the bino lying just below the wino mass. This feature is driven by co-annihilations
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co-annihilation mechanism for dark matter.
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contents of the lightest neutralino are negligible and not shown here. The neutralino

mixing matrix Rχ̃0 is defined according to the SLHA standard [187].
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FIGURE 5.13: Mass differences between the lightest chargino (left) as well as the
second-lightest neutralino (right) and the lightest neutralino displayed against the
lightest neutralino mass. Correlations between the masses are displayed with the
colour indicating the relic density. The relic density is controlled by co-annihilation
channels whose strength are dictated by the mass gap between the relevant particles.

needed to achieve the required relic density. Note that this corresponds to a situation
where the GUT-scale values of the bino and wino mass differ roughly by a factor of
two.

It is interesting to note that, although the bino-like lightest neutralino χ̃10 is the dark
matter candidate, the (co-)annihilation cross-section is dominated by the
(co-)annihilaton of the wino-like states χ̃20 and χ̃1±. This is explained, on the one
hand, by the very small mass difference between the wino-like states, and, on the
other hand, by the enhanced annihilation cross-section for the latter as compared to
the bino-like state. Typical final states of these (co-)annihilation channels are
quark-antiquark pairs and gauge boson pairs (including Z0, W±, and γ). Neutrino
final states are subdominant.

The presence of co-annihilation can also be understood through Figure 5.13 showing
the correlation of the three lightest gaugino masses and the dark matter relic density.
Let us finally note that scenarios with wino-like dark matter would give rise to
insufficient relic density to align with the experimental evidence, as the wino
(co-)annihilation cross-section is numerically more important as the one for the bino.

Coming to the direct dark matter detection, we can see from Figure 5.14 that this
constraint is also well satisfied in the model under consideration, both for the
spin-dependent and the spin-independent case. It is important to note that all points
shown in Figure 5.14 lie also below the projected limits of the XENONnT experiment
[202]. The fact that all points are found below this limit can be traced to the fact that
we have applied a cut on the global likelihood value as explained in Section 5.3. This
procedure discards the points which are too close to the current XENON1T limit, since
they typically feature a somewhat lower likelihood value. This means that parameter
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FIGURE 5.14: The direct detection limits for spin dependant and spin independent
cross-sections are shown with the experimental limit plotted. The solid line indicates
the XENON1T limits [195], while the dashed line in the first panel indicates the expected
limit for the XENONnT [202] experiment. We have precluded a representation of the
neutron direct detection calculation as all data points are far away from the exclusion

limit, much like the proton calculation of the same.

configurations with reasonably high global likelihood values may not be challenged
by direct detection experiments in a near future.

In summary, the relic density constraint implies a relatively small mass difference
between the lightest neutralino and the next-to-lightest states, leading to final states
with soft pions and leptons which are difficult to detect. The current bounds depend
on the nature of the NLSP go up to masses of about 240 GeV [203–206]. This cuts
slightly into the allowed parameter space.

5.4.4 Collider related aspects

As already mentioned in Section 5.4.2 the flavour structure of the lightest sfermions
falls into two extreme case: For each sfermion type, we observe either a first and
second generation fully mixed state or a strict third generation state. This feature is
illustrated in Figure 5.15 where we show the distribution of the sum of the square of
the mixing matrix entries.

While at first glance it seems that this particular prediction of the model would be
quite interesting from a collider perspective, enabling potential flavour mixed search
channels, the model also predicts rather high masses for sfermion states. The lightest
squark masses are peaked around 4 TeV and stand well beyond any potential collider
sensitivity reach (see for e.g. Ref. [139] where the limits are around 1.8 TeV squarks
using simplifying assumptions that do not hold in our case). The lightest slepton on
the other hand can be as light as 1 TeV. However, the production cross section drops
significantly with respect to the QCD dominated squark ones. Furthermore, our
model naturally predicts right-handed slepton states to be the lightest ones which
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SLHA 2 standard [188].
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FIGURE 5.16: BR(µ → eγ) as a function of mẽ1 . Current experimental limit is repre-
sented by the red solid line while the dashed one corresponds to the future prospects

of MEG II (6 · 10−14) [210].

further decreases the production cross section [207]. As an example, recent searches
for flavour conserving channels with nearly helicity degenerated slepton states are
excluding masses of the order 600 – 700 GeV [208] if mχ̃10 < 150 GeV (and limits are
even weaker if this is not the case). In addition, current exclusion on τ flavoured
sleptons masses are of order 390 GeV [209].

It turns out that our model predictions regarding the sfermionic sector are not very
promising for potential collider searches. However this flavour mixing particularity
leads to some interesting features from indirect searches perspectives. It is well known
that slepton mixing can generate significant contributions to flavour violating decay
constraints; in particular, if the mass of the slepton is rather light. In our case,
BR(µ→ eγ) illustrates very well this feature as being one of the most stringent test for
lepton flavour violation. Figure 5.16 shows the distribution of this branching ratio as a
function of the mass of the lightest slepton. While the points are within the current
experimental limits, it appears that future prospects in the current MEG II experiment
[210] could rule out a vast majority of our light slepton points, implying the
interesting conclusion that this particular constraint and other flavour violating
constraints would have more discriminatory power than classic direct slepton
searches and propose typical smoking guns for our framework.

Despite the sfermionic states being unreachable in near future collider searches, this is
not necessarily the case for the other SUSY particles in our model. In particular, the
model can predict rather light electroweakinos with sufficient mass gap for collider
considerations. As a comparison, recent searches from ATLAS [211] put a lower
bound on mχ̃10 of 270 GeV when the mass gap with mχ̃1± is of order 50 GeV. While
these very light masses are not present in our current framework, we can hope for
more stringent limits from future LHC runs. Two example Feynman diagrams for



110 Chapter 5. Data-driven analysis of a SUSY GUT of flavour

FIGURE 5.17: Feynman diagrams showing pair production of electroweakinos and
subsequent decay into LSPs mediated by weak and Higgs bosons, with three leptons
and a neutrino. The compressed mass gap of the light electroweakinos increases the
significance of these channels. Such diagrams can be of interest for the model under
discussion in future collider searches as the lower mass limits on the LSP increases.

Figure from [211]

such searches are given in Figure 5.17. The compressed mass spectrum in the
electroweakinos increases the relevance of such processes.

Similar conclusion can be derived regarding gluino searches. While the predicted
masses lie in the 2 – 6 TeV range, ATLAS and CMS limits using simplified models
[139, 212] reaches 1.8 TeV exclusion. Again, we can argue that future LHC runs might
restrict our light spectrum parameter distributions.

To illustrate the collider phenomenology we present three benchmark points where
relevant information is given in Table 5.5. The detailed information is added as
supplementary material to the arXiv submission of the corresponding paper to this
chapter. In particular, we list the masses of the electroweakinos for an illustrative
point with low masses for the light gauginos and a relatively small mass gap. We also
give the dominant decay channels and decay widths. All other particles are too heavy
to be detected in the upcoming LHC run. We give a benchmark for a point which
features, besides the light chargino and the neutralinos of BP1, a gluino with mass 2
TeV which should be in reach of the upcoming LHC run. Again, we give the masses,
decay widths, and decay channels for the particles under examination. Regarding the
third benchmark point, while having similar features as BP2 in view of collider
physics, it further highlights the fully mixed nature of the lightest sleptons and the
potential relevance for µ→ eγ. Its branching of 4 · 10−13 is close to the current
experimental bound. However, even if this rare decay is discovered in an upcoming
experiment, this example shows that it will be rather challenging to detect lepton
flavour at a high energy collider as the sleptons are quite heavy.
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Particle Mass Decay Width Decay Channels Branching Ratio

BP1
χ̃10 402 0

χ̃20 442 1.76× 10−11
χ̃10 q̄ q
χ̃10 b̄ b
χ̃10 νiνi

70%
13%
14%

χ̃1+ 444 1.5× 10−8 χ̃10 q̄ q
χ̃10 l̄ νi

67%
33%

BP2 G̃ 2000 1.87× 10−1
˜χ10 q̄ q
˜χ1± q∗ q

χ̃20 q∗ q

11%
46%
35%

BP3
ẽ1 1470 6.6

χ̃10 e
χ̃10 µ

44%
56%

ẽ2 1500 6.8
χ̃10 e
χ̃10 µ

56%
44%

χ̃10 413 0

χ̃20 439 3.72× 10−11 χ̃10 q∗ q
χ̃10 ν ν

81%
15%

χ̃1+ 440 5.18× 10−8 χ̃10 q∗ q
χ̃10 ν e∗

67%
33%

G̃ 2110 0.228
χ̃10 q∗ q
χ̃1± q∗ q
χ̃20 q∗ q

13%
50%
37%

TABLE 5.5: Selected benchmark points (BP) for phenomenology. The first BP exhibits
rather light electroweakinos and might represent a challenge for future colliders. The
second BP has a rather light gluino, which is already close to the current experimental
limits from the LHC collaborations. Finally, the last BP is an example of maximally

mixed lightest sleptons. All masses and widths are given in GeV.

5.5 Conclusion

In this chpater I have presented a detailed phenomenological analysis of a concrete
Supersymmetric (SUSY) Grand Unified Theory (GUT) of flavour, based on
SU(5)× S4. The model predicts charged fermion and neutrino mass and mixing, and
where the mass matrices of both the Standard Model and the Supersymmetric
particles are controlled by a common symmetry at the GUT scale, with only two input
phases. The considered framework predicts small but non-vanishing non-minimal
flavour violating effects, motivating a sophisticated data-driven parameter analysis to
uncover the signatures and viability of the model.

The computer-intensive Markov-Chain-Monte-Carlo (MCMC) based analysis
performed here, the first of its kind to include a large range of flavour as well as dark
matter and SUSY observables, predicts distributions for a range of physical quantities
which may be used to test the model. The predictions include maximally mixed
sfermions, µ→ eγ close to its experimental limit and successful bino-like dark matter
with nearby winos (making direct detection unlikely), implying good prospects for
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discovering winos and gluinos at forthcoming collider runs. The results also
demonstrate that the Georgi-Jarlskog mechanism does not provide a good description
of the splitting of down type quark masses and charged leptons. However
neutrinoless double beta decay, which depends on a curious pattern of Majorana
phases resulting from the two input phases, is predicted at observable rates.

The analysis here may be repeated for any given SUSY GUT of flavour, leading to
corresponding predictions for fermion masses and mixing as well as SUSY masses and
flavour violating physical observables at colliders and high precision experiments.
The results here exemplify the synergy between the theory of quark and lepton
(including neutrino) mass and mixing, dark matter and the SUSY particle spectrum
and flavour violation, that is possible within such frameworks. It is only by
systematically confronting the detailed predictions of concrete examples of SUSY
GUTs of flavour with experiment that the underlying unified theory of quark and
lepton flavour beyond the Standard Model may eventually be discovered.
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Chapter 6

Conclusions

The Standard Model, although remarkably successful, has some critical weaknesses
that preclude it as the final theory of nature. In order to solve these problems, while
keeping its remarkable successes in hand, it is natural to try to extend the standard
model. I have considered two such extensions both involving supersymmetry.

Despite the lack of direct experimental evidence, supersymmetry still represents a
fascinating and promising model for theoretical physics beyond the Standard Model.
Not only does it solve the hierarchy problem, but also supplies a framework for
satisfying various flavour conundrums in modern physics, as well as its critical role in
constructing GUT models. Although there is no direct evidence, a whole host of
alternative experimental results constrain SUSY models making the role of
phenomenologists critical in assessing the merits of SUSY models.

In this thesis I have displayed the analysis of two SUSY models. I first gave a brief
review fo the SM as the bed rock for all theories moving forward. I then introduced
SUSY and other BSM frameworks as critical pieces of infrastructure of the models I
analysed. I then introduced two models, each focussing on different approaches to
beyond the standard model phenomenology and displaying two different numerical
techniques of analysis. Thereby, I have assessed their current theoretical validity in
light of present experimental results and their potential to contribute to a more
complete view of fundamental physics. I hope that this work can also serve to guide
experimental colleagues in their searches and motivate further experimentation at
colliders as well as the vast array of flavour physics, neutrino experiments, and dark
matter searches.

In Chapter 4, I present the results of a no-scale Starobinsky inflation inspired SUGRA
model. Such a model is well motivated by string theory as well as by its use of the
Polonyi term to drive slow-roll inflation and thereby solving various cosmological
problems. As the SUGRA parameter set is small and indeed the zero scalar mass
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requirement effectively removes another parameter, MonteCarlo analysis is used to
assess the parameter space. We conducted two main scans, corresponding to zero and
non-zero trilinear soft parameter and presented the results. First, leaving g-2 aside for
a moment, we show how readily this frame work can accommodate the Higgs mass
and the dark matter relic density. We also analyse the spectrum showing how the
variance in the universal gaugino mass parameter (controlled by k) influences both the
SUSY spectrum but also the mixing amongst the gauginos and therefore the relic
density. By considering g-2 as well, we find the model is significantly more
constrained. Indeed, k < 0 is required in order to satisfy the constraint to 2σ.
Furthermore, the no-scale nature of the model naturally leads to light sleptons and
light gauginos. Although the resultant parameter set can also satisfy collider
constraints, this is non-trivial and requires some parameter tuning. Having said this, a
large part of the parameter space satisfies g-2 very well when we allow for the right
handed stau to supersede the lightest gaugino as the lightest sparticle. This could
motivate R-parity violating models.

In Chapter 5, we present the results of a phenomenological scan of a SUSY GUT of
flavour based on an SU(5)× S4 symmetry group. The model relaxes assumptions
about the flavour structure of the SUSY breaking lagrangian instead controlling them
and indeed the flavour structure of the SM, with the above symmetry. However, by
allowing for NMFV parameters, the size of the parameter space is greatly increased as
compared to the model in the previous chapter. Therefore, a more sophisticated
MCMC approach was adopted in order to increase computer efficiency. In conjunction
with the GUT symmetries imposed, we also include the seesaw mechanism such that
the model also addresses the neutrino mass problem. By using a whole host of flavour
constraints, we show that the Georgi-Jarlskog mechanism does not generate
satisfactory SM masses. However, the model does successfully satisfy all other
constraints. Furthermore, it predicts maximally mixed sfermions between the first and
second generation. It also predicts µ→ eγ close to the experimental limit. Indeed, our
analysis suggests that this result will be more powerful in constraining such models
than near future collider runs. Having said this, the model predicts low mass
gauginos and gluinos and observable rates of neutrino-less double beta decay.

In conclusion, I have presented the results of two interesting prospective SUSY models
and in so doing, provided some understanding of the current state of BSM
phenomenology. I have also demonstrated the use of different data techniques and
their relative utility. I have considered many of latest experimental results and hope
that many more exciting results are just around the corner.
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Appendix A

SPheno

Our results have been obtained using the numerical code SPheno [114, 115], where we
have implemented the model using SARAH v4.14.0 [181–185] and then adapted the
code for the model at hand. Here we describe the corresponding modifications.

In the standard version of SPheno the SM fermion masses, the CKM matrix, the mass
of the Z-boson mZ, the Fermi constant, the electromagnetic coupling α, and the strong
coupling αs(mZ) serve as input. The latter can either be given in the Thomson limit or
in the MS-scheme at Q = mZ. From these the three gauge couplings, the SM vacuum
expectation value (VEV) v of the Higgs boson and the Yukawa couplings are
calculated at the scale Q = mZ. The couplings are then evolved up to the scale MSUSY

where the SM and the MSSM are matched including one-loop SUSY threshold
corrections.

In the model at hand the Yukawa couplings are given at the GUT-scale and the
fermion masses, the CKM-matrix and the PMNS-matrix are an output which required
some changes to the code. The input which is done via the standard SUSY Les
Houches format [187, 188] with the slight modification that the Yukawa couplings can
be input at the GUT scale. The input is given at different scales as follows:

• at MGUT: Y`, Yν, Yd, Yu, arg(µ) (in practice the sign of µ), as well as the soft SUSY
breking terms in a non-universal form: scalar mass squares m2

f̃
( f̃ = . . . ),

trilinear couplings A f̃ ( f̃ = . . . ) and non-universal gaugino mass parameters M1,
M2, M3. All phases can be non-zero in principle.

• at MSUSY: tan β

• at Q = mZ: GF, mZ, αs, αem(mZ)

The calculation is done in an iterative way:
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1. The gauge couplings are evolved from the electroweak scale using the SUSY
RGEs at the one-loop level to MGUT = 2 · 1016 GeV. We do not require unification
at this scale. These couplings at this stage serve only as a starting point for our
iteration.

2. All parameters are evolved from MGUT to MSUSY =
√
(MQ)33(MU)33 using

RGEs at the two-loop level. The right-handed neutrinos are decoupled at their
respective mass scale during this evaluation and the contributions to the
Weinberg operator are calculated at these scales as well. The running of this
operator is taken into account as well.

3. The SUSY spectrum is calculated at the scale MSUSY at the one-loop level and the
heavy Higgs masses at two-loop level taking into account the contributions from
third generation sfermions and fermions, see Ref. [196] for a summary. In
addition the matching to the SM-parameters is performed as described in Ref.
[213].

4. The SM-parameters are evolved from MSUSY to mZ using the two-loop SM RGEs.
At mZ, the masses of the SM fermions are calculated and the mass of the Higgs
boson at the two-loop level. For these calculations we however take GF, mZ,
α(mZ) and αs(mZ) to calculate the gauge couplings and the VEV.

5. The gauge and Yukawa couplings as well as the quartic Higgs couplings are
then evolved to MSUSY using the two-loop RGEs. At this scale the SUSY
threshold corrections to the gauge and Yukawa couplings are taken into account.
The resulting couplings are evolved to MGUT = 2 · 1016 GeV. Then steps 2. to 4.
are repeated until a relative precision of all masses at the level of 10−5 is reached.

6. Once the precision goal for the spectrum has been achieved, the flavour
observables are calculated. Also here we have modified the procedure slightly:
we have a quite heavy spectrum leading potentially large logs of the form
ln(MSUSY/mt). For this reason the calculation is done in two steps: (i) Calculate
the SUSY contributions to the Wilson coefficients at Q = MSUSY. (ii) Calculate
the SM contributions to the Wilson coefficients at Q = mt. (iii) Add both
contributions to calculate the relevant observables.
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