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Interpretation

by Takaki Yamada

This thesis develops a method to incorporate domain knowledge into modern machine
learning techniques when interpreting large volumes of robotically obtained seafloor
imagery. Deep learning has the potential to automate tasks such as habitat and animal
recognition in marine monitoring. However, the large input of human effort needed to
train the models is a bottleneck, and this motivates research into methods that reduce
the human input requirements. This research investigates how metadata gathered dur-
ing robotic imaging surveys, such as the location and depth information, can be used
to constrain learning based on expected metadata patterns. Two self-supervised repre-
sentation learning methods are developed. The first uses deep learning convolutional
autoencoders that leverage location and depth information to impose soft constraints
based on the assumption that images taken in physically nearby locations or simi-
lar depths are more likely to share important features than images that are taken far
apart or at different depths. The second method uses contrastive learning techniques
where three-dimensional position information acts as a hard constraint on represen-
tation learning. Self-supervision allows both methods to be implemented on a per-
dataset basis with no human input. The representations learned can be used for dif-
ferent downstream interpretation tasks, where applications to unsupervised clustering
and representative image identification (i.e. as tasks that do not require any human in-
put) are demonstrated alongside content based retrieval and semi-supervised learning
based classification (i.e. tasks that require a relatively small amount of human input).
Three real-world seafloor image datasets are analysed. These consist of ~150k seafloor
images taken over 16 dives by two different Autonomous Underwater Vehicles (AUVs)
along sparse and dense survey trajectories spanning a seafloor depth range of 20 to 780
metres. The results show relative accuracy gains of 7 to 15 % compared to other state
of the art self-supervised representation learning and supervised learning techniques,
and achieves equivalent accuracy for an order of magnitude less human input. This
offers a practical solution to the problem of training deep-learning neural networks in
application domains where there is limited transfer of learning across datasets.
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Chapter 1

Introduction

1.1 Motivation

Autonomous Underwater Vehicles (AUVs) equipped with acoustic sensors and camera
systems can map large areas of the seafloor at high-resolution. Data gathered by these
systems is used for a wide range of scientific and commercial purposes. However,
our ability to gather data is not currently matched by our ability to interpret it and
efficiently generate the information needed for marine monitoring, conservation and
subsea inspection. This forms a bottleneck that limits the usefulness of mobile robotic
platforms.

In particular, the large scale colour image datasets that are now routinely gathered
by camera equipped AUVs present a major challenge for analysis. During a typical
seafloor imaging survey, AUVs collect tens to hundreds of thousands of seafloor im-
ages during their dives ( Figure 1.1). The high-resolution colour images they gather are
informative for estimating the distribution of seafloor habitats and substrates. How-
ever, interpreting these images often requires domain specific expertise, and so only
a small number of human experts are able to perform this task. As a result, our abil-
ity to interpret the data cannot keep up with the influx of data complexity and avail-
ability, limiting our capacity to build knowledge and insight. Modern machine learn-
ing techniques have the potential to significantly speed up the interpretion of these
images; however, the domain-specific characteristics of seafloor imaging pose signifi-
cant challenges for direct applications of these techniques. In particular, the absence
of large annotated image datasets, which are available in other domains, i.e. general
objects (ImageNet (Deng et al., 2009a), COCO (Lin et al., 2014), Pascal VOC (Evering-
ham et al., 2015)), satellite (SpaceNet (Van Etten et al., 2018)) or autonomous driving
(KITTI (Geiger et al., 2013)), and are essential for their training, limits the direct applica-
tion of these techniques to the marine domain. However, machine learning, especially
modern deep learning techniques, can be still useful to achieve a better understanding
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(A) ae2000f (B) Autosub6000

(C) TUNA-SAND (D) Sirius

FIGURE 1.1: Camera equipped AUVs. (A) ae2000f AUV equipped with the SeaXe-
rocks camera system (Thornton et al., 2016). (B) Autosub6000 AUV equipped with the
BioCam camera system (West et al., 2020). (C) TUNA-SAND AUV equipped with a
visual camera system (Nishida et al., 2013). (D) Sirius AUV equipped with a visual
camera system (Williams et al., 2010).

of large datasets that humans cannot inspect thoroughly, and this is the topic that will
be explored in this thesis.

For machine learning based image interpretation, the following three topics have been
intensely studied: (1) image classification, where a single or a few attribute labels are
given to each image; (2) object detection, where each object of interest is detected and
located in images; and (3) image segmentation, where a class is attributed to individual
pixels in the images. Although all three categories are potentially useful for seafloor im-
age interpretation, this work focuses on learning features, or latent representations, to
efficiently describe images, and the application of these representations to seafloor im-
age classification. Generally, classification is achieved using supervised machine learn-
ing models that require a training dataset where the data inputs are annotated using the
same labelling scheme as the desired prediction targets, or outputs. This requires single
or multiple attribute labels to be manually given by humans. However, although the
large training datasets needed to train deep learning classifiers are typically not avail-
able for seafloor image classification tasks, other forms of potentially useful data are
available for robotically collected images. For example, AUVs used for seafloor imag-
ing surveys are typically equipped with position measuring systems for autonomous
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navigation, and so the geolocation of each image observation is generally available.
In addition, other environmental parameters such as water temperature, salinity and
pH are often also measured. Since these metadata are potentially correlated with at-
tributes of the observed seafloor, it important to consider how these relationships could
be leveraged for machine learning based seafloor interpretation.

This thesis investigates how commonly gathered metadata can be used to guide learn-
ing for image classification to significantly reduce, and where possible eliminate com-
pletely the need for human annotations. Figure 1.2 illustrates the concept of leveraging
metadata in image representation learning that will be explored. The objective here is
training a function f (·) that maps the images x to a set of descriptive features, known as
their latent representations h. In this simple example, the images can be split into three
classes that humans might be interested in, i.e. house, camper van and car. When f (·)
is trained only on images themselves so that similar appearance images have similar
latent representations, three clusters corresponding to the three classes would appear
in the latent space. However, if f (·) is trained considering ‘the number of beds in the
illustrated target’ metadata, the house and camper van classes, which are slightly sim-
ilar in their appearance, would be mapped more closely in the latent representation
space. In another case, if ‘the maximum speed the target can travel at’ metadata are
leveraged, the camper van class would be mapped more closely to the car class in the
latent representation space. The preferable f (·) depends on the application, i.e. the
former is useful for selecting places to live, and the latter is useful for considering how
to get from one place to another. An important point here is that the modified image
latent representations can be predicted without their corresponding metadata once f (·)
is trained. The metadata is leveraged to help identify important image features that it
should learn for the target applications only during training. Once training is complete,
this information is embedded in f (·), and when an image is presented, the function will
look for these prioritised image features and map the images to the appropriate loca-
tion in the latent representation space without the need to provide the metadata. This
example illustrates how metadata can be used to introduce specific domain knowledge
into machine learning.
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FIGURE 1.2: Simple example of metadata leveraging. f (·) is the function that maps
images x to their latent representation x. When three classes, i.e. house, camper van
and car, are included in the set of x, an ideal f (·) maps x into three clusters corre-
sponding to the three classes, considering only their appearance. If metadata ‘number
of beds’ attributes are given as valuable metadata, f (·) which maps the representations
of house class and camper van class close together can be regarded as more useful.

The metadata obtained with seafloor images by AUVs can be leveraged in the same
way as this simple example; however, there are limited examples of research that at-
tempts to implement this idea. For example, Rao et al. (2014, 2017) use depth metadata
to aid learning for seafloor imagery. However, the method is tailored to depth and
does not consider how other types of metadata could be used. Since various types of
potentially useful metadata are available, this PhD work aims to develop a versatile
framework that allows a wide range of metadata to be flexibly leveraged in seafloor
visual image interpretation.
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1.2 Problem statement

A major challenge for automating seafloor image interpretation, is the sensitivity of
the appearance of the seafloor in images to the underwater environment and obser-
vation conditions used when the images were taken. The strong wavelength depen-
dent attenuation of light in water is sensitive to the turbidity and composition of the
medium it passes through, and the hardware needed to take images in water at oceanic
depths is complex and is not standardised. In addition to having cameras in bespoke
sealed pressure-resistant housings that can introduce variable degrees of image distor-
tion, seafloor imaging requires submersibles equipped with illumination sources that
can maintain low altitudes (typically a few metres) over natural terrains, where protru-
sions are often large relative to the imaging altitude and the ability to maintain a target
range differs significantly between platforms. Although the mechanisms that degrade
underwater image appearance are researched and can be partially compensated, these
combined factors reduce the consistency of how objects and scenes on the seafloor look
in images, which in turn limits the transferability of learning across different marine
image datasets.

Other limitations include the high cost of obtaining seafloor images, the significant do-
main expertise needed to accurately annotate seafloor imagery and the relatively small
size of the marine imaging community compared to more general applications (e.g.
face identification, autonomous driving and medical imaging). These factors mean that
comprehensive datasets suitable for training machine learning models are unlikely to
be built in the foreseeable future. At the same time, the large input of human effort
needed to train effective deep learning models using traditional supervised learning
methods is unlikely to be justified to train models on a per-dataset basis in most mon-
itoring applications. These problems motivate investigations into how the amount of
human input needed can be reduced without degrading the quality of automated in-
terpretation outputs.
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1.3 Hypothesis, aim and objectives

This thesis aims to develop a method to efficiently train deep learning models on a per
dataset basis and so enable seafloor image interpretation that is of practical use in ma-
rine science. The hypothesis is that gains in learning efficiency can be achieved by intro-
ducing domain knowledge into the deep learning training process. By expressing do-
main knowledge through relationships of the metadata gathered together with seafloor
imagery, this knowledge can be leveraged while reducing the reliance on human input
to train machine learning models. For complex natural environments, however, do-
main knowledge typically does not set absolute conditions, and so it is necessary to
constrain learning without over-exerting assumptions about patterns that are expected
but not always observed in the data. To implement and validate this hypothesis, the
following objectives are set:

• Develop effective representation learning methods for seafloor imagery that lever-
age metadata in order to loosely constrain learning based on relevant domain
knowledge. The low-dimensional latent representations generated by this ap-
proach will allow for important and discriminate information about a seafloor
image dataset to be preserved in a way that allows for efficient interpretation.

• Develop unsupervised and semi-supervised methods that use these latent rep-
resentation spaces for large scale interpretation of seafloor image datasets. By
developing methods that can be deployed on a per dataset basis with realistic
levels of human input, this will allow semantic maps to be generated to help sci-
entists rapidly understand vast seafloor scenes in timeframes that are relevant for
planning during ongoing scientific expeditions.

• Validate the effectiveness of the above methods using established metrics on seafloor
image datasets that are representative of different types of surveys used in marine
monitoring and conservation. The advantage posed by the methods developed
in this thesis will be systematically verified through comparison with alternative
processing methods at various stages of the learning and interpretation pipeline.
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1.4 Contributions

The contributions of this thesis are the following:

• Development of a self-supervised representation learning method that leverages
a soft assumption about metadata to guide the training of a deep learning autoen-
coder.

• Development of a contrastive learning based self-supervised representation learn-
ing method that makes a hard assumption on the similarity of images based on
their metadata relationships.

• Proposal of seafloor interpretation applications that require only little or no su-
pervision by humans for gaining an insight into trending patterns in the images
of the dataset.

• Proposal of a pipeline for semi-supervised seafloor imagery interpretation by ef-
ficiently aligning the seafloor image representations with human interests.
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1.5 Outline

The remainder of this thesis is structured as follows:

Chapter 2 presents a literature review of the methods for computer-aided interpre-
tation of seafloor visual imagery. At the beginning of the chapter, several important
characteristics of seafloor imagery that form a barrier for applying machine learning
techniques to this domain are described. Subsequently, noticeable works in this do-
main, in which machine learning techniques are exploited, are introduced. The chapter
also investigates state-of-the-art representation learning methods which are potentially
applicable for seafloor imagery learning.

Chapter 3 first introduces a general idea for exploiting metadata in seafloor imagery
learning. Then, two image representation learning methods based on two different as-
sumptions; the hard assumption and the soft assumption; are formulated to implement
the proposed idea. In the autoencoder based method, the soft assumption is imple-
mented as a novel loss function derived from metadata to regularise training. In the
contrastive learning based method, metadata is leveraged to select similar image pairs
based on the hard assumption. Subsequently, the seafloor interpretation pipeline ex-
ploiting the representation learning outcome is proposed. The pipeline is developed to
reduce or even eliminate human efforts for analysing large datasets of seafloor imagery.
The unsupervised application, e.g. clustering and representative imagery identification
and the semi-supervised pipeline, are proposed.

Chapter 4 validates the performances of the proposed representation learning and the
application pipelines on real seafloor imagery datasets. The datasets consist of ~150k
seafloor images taken over 16 dives along sparse and dense survey trajectories span-
ning a seafloor depth range of 20 to 780 metres in shallow coastal waters of Tasmania,
Australia, and gas hydrate field off the coast of Oregon, USA.

Chapter 5 summarises the major findings of this thesis.

~
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Chapter 2

Background

In this chapter, some important background for discussing the requirements for computer-
aided seafloor imagery interpretation and developing machine learning based interpre-
tation methods are introduced. Section 2.2 introduces machine learning basics which
the following discussions in this thesis are based on. The characteristics of the target
datasets, i.e. seafloor imagery datasets, are also described. Subsequently, noticeable
previous efforts for interpreting seafloor imagery by machine learning are shown. Sec-
tion 2.3 shows the general concept of representation learning. The section first shows
why representation learning is considered crucial in this work, then currently available
methods are introduced. The formulations of these methods are also shown for the dis-
cussion for the development of the novel methods proposed in this thesis. Section 2.4
presents several important methods for applying machine learning in domains where
fewer human annotations are available.
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2.1 Machine learning basics

Before the literature review, this section introduces the general concept of machine
learning necessary for the following discussion. Machine learning techniques, espe-
cially modern deep learning techniques, have been recognised as particularly useful
for the domains where semantic interpretation of the mass volume of high-dimensional
data (e.g. image, video, audio) is necessary.

2.1.1 Perceptron

The great advantage of today’s deep learning techniques is that their artificial neural
network architecture can model significantly complex functions for classification, re-
gression and other problems. The complicated modelling is available because it can
obtain the mathematical models with a significantly large number of parameters, i.e.
weights and biases, using sophisticated optimisation techniques.

FIGURE 2.1: Overview of a perceptron.

The most fundamental network component for every deep learning architecture is a
perceptron fper(·). This component is illustrated in Figure 2.1. The left-side nodes are
input nodes. The number of input nodes n corresponds to the dimensionality of the
input vector x. The right-side m nodes are output nodes or neurons. Each output node
has an additive part, shown as a circle, and an activation function fact, shown as a box.
The edges between input nodes and output nodes correspond to the weight values w,
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which are unique to each edge. The weight value of the edge between the i-th input
node and the j-th output node is labelled as wij. w0j, which corresponds to the biases
is also introduce, though it is not shown in Figure 2.1 for simplicity. w0j is always
multiplied by -1, so that the independent value from inputs is added to j-th output
node as a bias. The value of each output node is derived only from the input nodes:
multiplying the weight values corresponding to the edges between the input nodes and
the target output node, adding these values together, and inputting the sum into the
step function. As a result, the only thing the output nodes share is the inputs, and the
output nodes are completely independent of each other. This procedure for deriving
the output value of j-th output node ŷj can be shown as follows:

ŷj = fact(∑ xiwij). (2.1)

The output vector ŷ can be described as ŷ = [ŷ1, ŷ2, ..., ŷm]T.

In the classification problem, a perceptron is optimised so that the output ŷ becomes
close to the ground truth vector y. Both ŷ and y have the same dimensionality that
corresponds to the number of classes that exist in the target dataset. When input data x
belongs to the j-th class in the potential classes, the ground truth vector y becomes a m-
dimensional one-hot vector where only the j-th element is one and the others are zero.
The perceptron should be optimised so that ŷ becomes close to y as much as possible.
When the step function outputs 1 if the input is 0 or higher and outputs 0 in other cases,
wij is updated by gradient descent as follows,

wij ← wij − η
(
ŷj − yj

)
· xi, (2.2)

feeding all available sets of x and y repeatedly until convergence. η is a learning rate
that controls how much to change the weights at each iteration. A large η value tends to
make the training process unstable, but a small η value possibly requires more iteration
steps until convergence.

2.1.2 Deep learning

As shown in Equation 2.1, the perceptron fper is a linear function, so only linear planes
in the input vectors’ n-dimensional space can appear as the boundary of each class, so
that it can precisely classify only linearly separable classes. The idea of the multilayer
perceptron method is to connect multiple perceptron units one after another, so that the
output nodes of one perceptron unit become the input nodes of the next perceptron.
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FIGURE 2.2: Overview of a multilayer perceptron.

Figure 2.2 shows the overview of a multilayer perceptron. This example shows the
structure of a 4-layer multilayer perceptron where three perceptron networks, i.e. fper1,
fper2 and fper3, are connected. When an input vector x is given, the first layer percep-
tron fper1 maps x to its output vector xh1, then the second layer perceptron fper2 maps
xh1 to xh2. Finally, the third and final layer perceptron fper3 maps xh2 to ŷ, which cor-
responds to the output vector of the whole multilayer perceptron. Every perceptron
in a multilayer perceptron includes a differentiable nonlinear function as its activation
function such as sigmoid, hyperbolic tangent or Rectified Linear Unit (ReLU). As a re-
sult, the whole multilayer perceptron fmlp(x) = fper1 ◦ fper2 ◦ fper3(x) becomes also a
differentiable nonlinear function. Thanks to its stacked structure and nonlinear activa-
tion functions appearing at every layer, a multilayer perceptron can express complex
nonlinear class boundaries so that it can achieve higher performance for non-linear sep-
arable data. Modern deep learning architectures such as AlexNet are introduced based
on the same basic idea that a more deeply and widely stacked multilayer perceptron
can express more complex class boundaries.

For classification problems, the cross entropy loss is commonly used as the objective
function of multilayer perceptron, which is defined against y as follows:

Lce = −∑ yi · log(ŷi) = −∑ yi · log( fmlp(x)). (2.3)

Since Lce is still differentiable, the weight parameters of a multilayer perceptron can be
optimised by gradient descent. In a multilayer perceptron, the partial derivative values
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for each weight value, which are necessary for gradient descent, are not calculated
analytically nor numerically. Instead, they are found by backpropagation, where each
partial derivative value is derived efficiently from the output vector and intermediate
terms calculated for obtaining it (e.g. xh1, xh1 in Figure 2.2) following the chain rule at
each iteration.

Multilayer perceptrons can be optimised against any type of differentiable loss function
by backpropagation. For regression problems where y is given as a standard vector
which should be predicted as precisely as possible, the following Mean Squared Error
(MSE) loss is used:

Lmse = −∑ (yi − ŷi)
2 = −∑ (yi − fmlp(x))2. (2.4)

While other models generally need gradient matrices analytically solved for efficient
optimisation, multilayer perceptron does not require them. Any differentiable function
can be used as a loss function and optimised, and so the loss function can be designed
flexibly depending on the problems.

The basic idea of deep learning is stacking perceptron layers more deeply so that more
complex functions can be expressed. In addition, when input data x is 2 or 3-dimensional
tensors, rather than vectors, convolutional layers are introduced. The layers of a mul-
tilayer perceptron are called the fully connected layers since each node is connected to
all nodes of the previous and next layers. This structure is unreasonable for image data
because the pixels at faraway positions are not strongly correlated, so it is redundant
to consider all connections. Instead, in convolutional layers, 3-dimensional filters are
applied to the input data and their intermediate representations. The features observed
in this filter size are learned intensively at the layer. The next convolutional layer can
learn the features that appear in the broader areas in the original image by applying
convolutional filters to the previous convolutional outputs. Pooling, where only the
maximum or average value of each filtering result is kept as the output value, and
others are dropped, are often applied after the convolution so that only informative
parts are preserved. Therefore, Convolutional Neural Network (CNN), in which con-
volutional layers are applied besides fully connected layers, is significantly efficient for
extracting low-dimensional vectors which preserve important information of original
high-dimensional data. AlexNet (Krizhevsky et al., 2012), where 5 convolutional layers
and 3 fully connected layers are applied, is the first CNN that is successfully applied
for general image interpretation tasks. Later more efficient CNNs with more complex
structures such as ResNet (He et al., 2016) and GoogLeNet (Szegedy et al., 2015) appear
and are widely used for image interpretation applications.
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2.1.3 Evaluation metrics

This section introduces some important methods for evaluating the performance of
machine learning.

For classification problems, the confusion matrix is generally used for visualising the
relationship between the classifier’s predictions ŷ and ground truth annotations ŷ. Fig-
ure 2.3 shows an example of a confusion matrix for classification problems on a dataset
that consists of the data from three classes A, B and C. It is a square matrix where all
the possible classes are allocated in both the horizontal and vertical directions, which
corresponds to the predictions and ground truths, respectively. The element of the con-
fusion matrix at (i, j) shows the number of input data whose ground truth class is i
but predicted as j by the classifier. The elements on the main diagonal correspond to
the numbers of correctly classified samples. In this example, the matrix reveals that
most samples from the three classes were classified correctly, but two samples of class
C were misclassified as A. For a small number of classes, the confusion matrix is useful
for understanding the overall performance of classifiers.

FIGURE 2.3: Example of a confusion matrix.

For evaluating the performance of multiple classifiers, comparable evaluation metrics
are essential. Several important metrics for evaluating classification performance are
introduced here. For simplicity, the metrics are defined on a binary classification prob-
lem, where the classifier should determine whether each sample belongs to 1 (‘Posi-
tive’) or 0 (‘Negative’). The confusion matrix can be drawn in Figure 2.4. ‘True’ and
‘False’ mean that the classification result of the corresponding matrix element is correct
and incorrect, respectively.
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FIGURE 2.4: Confusion matrix of binary classification.

The elements on the main diagonal of Figure 2.4 are correct, and those off the diagonal
are wrong, as well as the previous confusion matrix example (Figure 2.3). The classifi-
cation Accuracy can be defined as the sum of the number of True Positive (TP) and True
Negative (TN) samples divided by the total number of the samples:

Accuracy =
#TP + #FP

#TP + #FP + #TN + #FN
. (2.5)

Precision is the ratio of correctly predicted positive samples to the total number of pos-
itive predicted samples and is defined as follows:

Precision =
#TP

#TP + #FP
. (2.6)

Recall is the ratio of correctly predicted positive samples to the total number of actually
positive samples and is defined as follows:

Recall =
#TP

#TP + #FN
. (2.7)

As their definitions show, Precision and Recall are inversely related to some extent; if #FP
increases (meaning that a broader definition of a target class is obtained by the classi-
fier), then #FN is likely to decrease, and vice versa. Adequate classifiers should show
high scores on both of them, and so the following F1-score is defined as a harmonic
mean of Precision and Recall for evaluation:

F1 = 2
Precision× Recall
Precision + Recall

=
#TP

#TP + (#FN+#FP)
2

. (2.8)
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For multiclass classification problems, these metrics can be derived against each class
and can be used for per-class performance evaluation. For overall performance evalu-
ation, F1 can be derived by counting all TP, FN and FP samples. This F1 value is called
micro averaged F1. When the target dataset is imbalanced, i.e. the number of samples
in each class is not even, the micro averaged F1 is largely affected by the classification
result against the majority classes. When all classes in the dataset can be considered as
evenly important, macro averaged F1, which is the average of the F1-score of each class,
can be considered as more appropriate since it does not ignore the minority classes.

Besides classification problems where classifiers predict the class ŷ of each sample in
the same categorisation scheme as the ground truth y, clustering is also commonly used
for automating big data analysis. In clustering problems, no information on the ground
truth of each sample is given to the algorithms during the training, so they cannot
predict classes. Instead of class prediction ŷ, clustering algorithms output c, which is
the cluster that the input sample is likely to belong, against each sample. Therefore the
evaluation metrics for classification problems cannot be applied. Normalised Mutual
Information (NMI) (Estévez et al., 2009) is one of the most widely used metrics, which
is defined based on information entropy H(·) of the set of the ground truth labels Y
and the assigned cluster labels C as follows:

NMI(Y, C) = 2
H(Y)− H(Y|C)

H(Y) + H(C)
. (2.9)

H(Y|C) is a conditional entropy of the ground truth labels within each cluster. A NMI
score is bounded between 0 (no mutual information) and 1 (perfectly correlated). A
large NMI score means that the clustering result has a large amount of mutual infor-
mation with the ground truth and corresponds to superior clustering performance. The
number of clusters found using a clustering algorithm is often different from the num-
ber of ground truth classes. In this case, NMI is a favourable metric since it does not
require the targets to have the same number of clusters or categories.
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2.2 Interpreting seafloor imagery

Determining the distribution of habitats, substrates and infrastructures are tasks that lie
at the core of seafloor survey. Determining the distribution of habitats, substrates and
infrastructures are tasks that lie at the core of seafloor survey. Computer vision and ma-
chine learning techniques can be efficient solutions for these tasks. However, the imple-
mentation is not straightforward because of several special characteristics known about
underwater imaging. These characteristics often form barriers to their widespread
use in real-world survey scenarios. This section states the important characteristics
of robotically collected underwater imagery in section 2.2.1. Then the previous efforts
which have been made for extracting features from seafloor imagery necessary for ma-
chine learning based processing are shown in section 2.2.2. Subsequently, supervised
learning based approaches and unsupervised learning based approaches for seafloor
image interpretation are introduced in section 2.2.3 and section 2.2.4, respectively.

2.2.1 Characteristics of underwater images

Underwater camera systems are mostly composed of commercially available camera
modules, which can capture Red Green Blue (RGB) colour or greyscale images with
high-dynamic-range, and powerful strobe lights. Therefore, the collected images are
compatible with modern computer vision and machine learning techniques. However,
these images have properties that are not common in other domains that need to be
considered:

1. Colour and geometry distortion
Different wavelengths of light attenuate at different rates in water, causing under-
water images to look blue-green compared to the true colour of observed targets.
The relatively low imaging altitudes (typically less than 10 m) and wide angle
lenses often used to maximise area cover result in large relative range differences
within an image due to terrain profiles and between images due to vehicle dy-
namics, which change the hue of images. Between datasets and platforms, there
are additional sources of variability, including different water column properties
that affect the wavelength dependence of light attenuation, and the use of artifi-
cial light sources with different wavelength profiles. In addition to colour degra-
dation, the variable range causes spatial inconsistencies that distort the shape and
size of observed targets.

2. Small footprint
Light rapidly attenuates in water, and so powerful artificial light sources are
needed to obtain visual images in most applications. The range at which im-
ages can be obtained is limited to approximately 10 m for most setups, which
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constrains the footprint of a single frame to edge lengths of a similar magnitude.
Since many patterns of interest (e.g. substrates, habitats, infrastructure) exist on
far larger spatial scales, multiple images need to be taken along trajectories to
capture these broader scale patterns.

3. Metadata reference
Most images of the seafloor are gathered by robotic platforms or fixed observato-
ries, and so various types of metadata, e.g. georeference (latitude, longitude and
depth), water temperature, salinity and pH, are typically available. As for geo-
reference, since Global Navigation Satellite Systems (GNSS) cannot be used un-
derwater, most mobile robotic platforms have navigational suites that fuse data
from an Attitude and Heading Reference System (AHRS), Doppler Velocity Log
(DVL) and depth sensor with acoustic positioning systems such as an Ultra Short
BaseLine (USBL). Georeferencing is typically achieved with a relative accuracy of
approximately 1 % of distance travelled, and absolute accuracy of approximately
1 % of depth (Paull et al., 2014). Stationary systems have similar absolute position
accuracy.

4. Imbalanced Class Distribution
Seafloor substrates and habitats can change over spatial scales larger than the
extents observed during most robotic imaging surveys. Furthermore, there are
many types of benthic communities, geological features and infrastructures that
are sparsely distributed, making subsea datasets highly susceptible to skewed
class membership (Bewley et al., 2015a; Mahmood et al., 2018).
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FIGURE 2.5: Colour and geometry distortion in underwater images. Since red lights
are absorbed rapidly compared with blue and green lights, the images captured at
higher altitude from seafloor look bluer and darker. This colour distortion can be
corrected by colour channel and range dependent attenuation parameters. Geometry
distortion caused by imaging hardware and altitude fluctuation can also be corrected
by camera parameters and altitude.

Imbalanced class distributions, colour and geometry distortions can degrade learning
performance (Krawczyk, 2016; Walker et al., 2019). The problem of small footprints can
potentially be solved if pixel-order accurate georeferencing can be achieved, as artefact-
free photomosaics can be generated and cropped to form image patches for processing.
However, for seafloor imaging applications, position estimates contain non-negligible
uncertainty compared to the resolution and footprint of obtained imagery. Although
techniques such as simultaneous localisation and mapping are available (Mahon et al.,
2008), the need for artificial strobes and the limited energy available on robotic plat-
forms limits the relative overlap that can be achieved between images. This makes
generating pixel-order accurate photomosaics more challenging to obtain than with
satellite and aerial drone imagery, which typically have lower resolution, larger image
footprints with greater overlap and accurate position information. These points favour
the use of single image frames for automated interpretation of underwater imagery
since these contain fewer artefacts.
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FIGURE 2.6: Colour and geometry correction of seafloor images. Seafloor images cap-
tured at 5.1 m (top, 5 mm/pixel) and 7.0 m (bottom, 7 mm/pixel) altitude for (A) raw,
(B) pixel-wise normalisation, (C) attenuation correction and pixel-wise normalisation
and (D) undistortion and rescaling to a constant spatial resolution (6 mm/pixel, equiv-
alent to 6.0 m altitude).

There have been many studies investigating computational and physically grounded
principles to compensate for the artefacts caused by colour and geometry correction.
Figure 2.5 shows the process overview for correcting these distortions. As for colour
correction, light attenuation in water differs for each wavelength that constitutes the
RGB channels. Since red attenuates more aggressively than green or blue wavelengths,
uncorrected underwater images appear blue and green (Jaffe, 1990) (Figure 2.6A). Seafloor
images captured at low altitudes (Figure 2.6A top) are also brighter than the images
captured at high altitudes (Figure 2.6A bottom). Often wide angle lenses are used to
maximise the imaged area, and this can cause pixels at the centre of each image to be
brighter than those at its edges. Pixel-wise colour correction normalises each pixel by
the mean and standard deviation of the same pixel across an entire dataset based on
the grey-world assumption (Buchsbaum, 1980). This can improve the imbalance be-
tween colour channels and uneven brightness within each image (Figure 2.6B). How-
ever, pixel-wise normalisation cannot correct colour variations caused by altitude dif-
ferences within a dataset. One way of compensating for these variations is by grouping
the images so that the images captured at a similar altitude range belong to the same
group, then apply the pixel-wise colour correction on a per-group basis. However,
this method requires enough images in each group, and the images which can not be
assigned to any altitude range group can not be corrected consistently. Bryson et al.
(2013) proposed a more practical method that improves colour consistency by taking
into account the attenuation of the different colour channels. This work applies a simi-
lar approach, where the attenuation is approximated as follows:

µx(u, v, ν, d) = a(u, v, ν)exp(−b(u, v, ν)d) + c(u, v, ν). (2.10)
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The indices [u, v] specify each pixel’s location in the image frame, ν is the colour chan-
nel, d is the range from the centre of the camera to the seafloor when the image was
taken, and µx(u, v, ν, d) is the mean of all intensities in the dataset. Parameters a(u, v, ν),
b(u, v, ν) and c(u, v, ν) model the effects of the water column for each pixel and colour
channel. These parameters are identified through regression of the image dataset. In
(Bryson et al., 2013), the range d is estimated by stereo image matching and the regres-
sion is calculated with a non-linear least squares fitting. Since stereo images are not
always available, altitude values from range measurements made by a Doppler Veloc-
ity Log (DVL) are used for estimating d in practical scenarios. This assumes the seafloor
is flat, which is reasonable when the vertical profile in each image is small relative to the
altitude. The pixel-wise normalisation also corrects for vignetting. Figure 2.6C shows
the result of the proposed colour correction. Compared to Figure 2.6B, the brightness
between images taken at different altitudes is more uniform. For geometry correction,
the 3d information needed to fully compensate for scale effects within an image frame
is not always available. However, scale can be approximately corrected considering
imaging altitude. Geometric distortions are also corrected using lens calibration data.

2.2.2 Feature engineering

Seafloor habitats and substrates can be identified by unique patterns in their appear-
ance, and various machine learning techniques have been applied to automate image
interpretation. Since visual images are significantly high-dimensional for conventional
machine learning algorithms and possibly redundant, it would be preferable if each
image is expressed in a low-dimensional representation without losing its intrinsic in-
formation. The method for obtaining these representations can be broadly split into
studies that use feature engineering, where descriptors are manually chosen or tuned
by human experts, and representation learning, where descriptors are directly learnt
from the data. In both cases, the reduced dimensions of the representations allow for
more effective identification of patterns in the data. This section describes feature engi-
neering techniques applied in the previous studies, especially before the deep learning
techniques were applied to this domain.

Manually engineered feature descriptors have been investigated by several groups for
efficient image representation (Bewley et al., 2015b; Rao et al., 2017; Steinberg et al.,
2011; Beijbom et al., 2012; Kaeli and Singh, 2015; Neettiyath et al., 2020). In Beijbom
et al. (2012) and Neettiyath et al. (2020), colour-based descriptors were designed based
on prior knowledge of targets that are of specific scientific interest. Generic descriptors
such as Local Binary Patterns (LBP) (Ojala et al., 2002) and Sparse coding Spatial Pyra-
mid Matching (ScSPM) (Yang et al., 2009) have also been applied to identify spatially
invariant patterns that appear at different scales within images of the seafloor (Bew-
ley et al., 2015b; Rao et al., 2017). In Kaeli and Singh (2015), accumulated histograms
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of oriented gradients from image keypoints were used to describe seafloor images for
the purpose of clustering and anomaly detection. However, all of the descriptors men-
tioned above require manual tuning of parameters to effectively describe the datasets
they are applied to. For seafloor imagery interpretation, the most proper feature de-
scriptor would differ depending on the targets, imaging hardware and imaging con-
ditions. These manual feature engineering techniques cannot deal with the influx of a
large volume of new datasets in this domain.

2.2.3 Supervised learning

A large proportion of automated classifiers have used a combination of hand-picked
features chosen based on expert knowledge of the application domain or through a
reward-based selection process (Beijbom et al., 2012; Neettiyath et al., 2020) as de-
scribed in section 2.2.2. In Beijbom et al. (2012) the authors apply a Support Vector
Machine (SVM) to texture- and colour-based features designed to classify seafloor im-
ages into different substrates types for reef ecology surveys. In Inglada (2007), hand-
picked geometric features are combined with an SVM for the classification of satellite
images. In Neettiyath et al. (2020), a similar approach is applied for seafloor mineral
prospecting. Spatial invariant features such as Local Binary Patterns (LBP) (Ojala et al.,
2002) and Spatial Pyramid Matching (SPM) (Yang et al., 2009) have also been effectively
applied to classification problems (Bewley et al., 2015b; Rao et al., 2017). However,
these types of features require manual tuning of parameters, or feature engineering,
to efficiently describe each independent dataset. Furthermore, a separate classification
process is required, which also requires parameter tuning. As such, these feature engi-
neering based methods often require expert knowledge of both the data and application
domain and have limited versatility when applied to multiple datasets.

Recently, deep learning techniques have been applied to the classification problem in
this domain. A key advantage of deep learning techniques is that both the latent repre-
sentation of data and classification can be simultaneously optimised in a single end-to-
end training process. This avoids the need for costly and potentially subjective feature
engineering and reduces the need for parameter tuning, making deep learning tech-
niques a compelling choice. In Mahmood et al. (2018), the ResNet (He et al., 2016) deep
learning CNN is used to classify images of coral into nine separate classes, achieving
higher classification resolution than prior studies and demonstrating the ability of deep
learning to effectively model class boundaries used in scientific taxonomy. However, to
work effectively, deep learning classification techniques typically require a large num-
ber of annotated examples of each class. Although several labelling platforms tailored
to seafloor imagery exist (Bewley et al., 2015a; Langenkämper et al., 2017), the sensitiv-
ity of images to environmental and acquisition conditions, the complexity of annotation
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schemes and the comparatively small size of each environmental monitoring commu-
nity mean that large-scale label repositories such as those in terrestrial imaging (Deng
et al., 2009b), satellite imagery (Van Etten et al., 2018) and autonomous driving (Geiger
et al., 2013) do not yet exist. Furthermore, for sub-sea imaging, most groups gather im-
ages using custom built imaging hardware, where in Langenkämper et al. (2020), the
authors reported that even small differences in sub-sea imaging hardware potentially
limits learning transferability and distorts deep learning classifier outputs.

Under these constraints, a reasonable approach for the effective use of deep learning
techniques is to train models on the target dataset itself. However, the implied re-
quirement to annotate large numbers of images every time a new dataset is obtained
is unlikely to be justified for most applications, forming a barrier to the widespread
adoption of deep learning for image interpretation in environmental monitoring appli-
cations. This motivates research into techniques for effort reduction.

2.2.4 Unsupervised learning

Unsupervised learning techniques have great potential for image interpretation in en-
vironmental monitoring because they do not require annotations and so can be effi-
ciently trained and applied on a per-dataset basis. As with any automated image anal-
ysis, feature engineering is crucial for effective interpretation. In Steinberg et al. (2011),
LBP (Ojala et al., 2002) features derived from greyscale images, 3d rugosity and colour
are applied to seafloor image clustering. The authors later applied ScSPM (Yang et al.,
2009) as a more generic approach to describe seafloor images (Steinberg, 2013). In Fried-
man et al. (2011), the non-parametric Bayesian clustering technique used in Steinberg
et al. (2011) and Steinberg (2013) is extended to incorporate annotations made during
active learning (Settles, 2009) for seafloor imagery. In Kaeli and Singh (2015), the ac-
cumulated histogram of oriented gradients from keypoints are used to describe each
image, and this is applied to clustering and anomaly detection. More recently, Shields
et al. (2020) used unsupervised clustering results generated from visual images as la-
bels for supervised learning of seafloor bathymetric datasets.

However, a disadvantage of unsupervised approaches is that the resulting clusters do
not attempt to align with the class boundaries of interest to humans, and when latent
representations are optimised on a per-dataset basis, it is not possible to make direct
comparisons between clusters or perform content-based queries across multiple pro-
cessed datasets.
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2.3 Representation learning

For introducing machine learning techniques to seafloor imagery interpretation, ob-
taining low-dimensional representations of raw images is necessary for any type of
algorithm. Instead of feature engineering (section 2.2.2), where human efforts for iden-
tifying features which properly explain original images, several dimension reduction
techniques, such as Principal Component Analysis (PCA) (Wold et al., 1987), where
human supervising is not required, exist. Deep learning based representation learning
methods such as autoencoder and contrastive learning are also actively studied and
achieve great success in obtaining image representations. All of the techniques intro-
duced in this section can be categorised as self-supervised learning methods, where
only data themselves are necessary, and human annotations are not required for train-
ing.

2.3.1 Concept

In the classification problem, the machine learning pipeline should output the class pre-
diction value ŷ which the input x belongs to. Figure 2.7 shows the overview of a typical
classification pipeline where a conventional classifier is applied. For conventional clas-
sifiers, e.g. logistic regression, k-nearest neighbours, support vector machine, random
forest and Gaussian process classifier, the original data x are too high-dimensional in

FIGURE 2.7: Overview of supervised classification with feature engineering.
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most practical applications, and so their features or latent representations h are passed
to the classifier fcls(·) as the inputs. Previously, the function f (·), which maps original
data x to their corresponding latent representations h, was determined by ’feature en-
gineering’. In this process, the experts who sufficiently understand the characteristics
of the domain empirically investigate the proper feature descriptor for the data and
design f (·). The classifier fcls(·) is optimised so that the class prediction ŷi for ith data
point xi, which is estimated from hi, equals its ground truth class yi. Ground truth class
values y should be manually annotated to each data point of x, so great human efforts
are also required here. The necessity of feature engineering and annotating prevents
machine learning techniques from being applied to many domains where available hu-
man expert resources are limited.

Recently, so-called deep learning techniques are recognised as powerful, especially for
high-dimensional data classification problems. Figure 2.8 presents the overview of
deep learning based classification. The key characteristic of a deep learning classi-
fier fdlc is that it can directly predict the classes ŷ from their original high-dimensional
inputs x. Thus, the complex feature engineering process is not necessary for deep learn-
ing. In comparison with feature engineering, where both domain data knowledge and
general data processing knowledge are required, annotating does not require specific
skills if the target dataset and annotating scheme are general. However, compared with
a conventional classifier fcls, a deep learning classifier fdlc has a considerably larger
number of parameters (weights) that should be optimised. Therefore, a large number
of sets of x and y are required as a training dataset for preventing the parameters from

FIGURE 2.8: Overview of supervised classification with deep learning.
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over-fitting to the specific examples contained in the dataset. This is a serious disad-
vantage for non-general applications where gathering a large amount of annotated data
is difficult, including seafloor imagery interpretation.

For the domains in which preparing large scale datasets is infeasible, applying deep
learning techniques for obtaining latent representations h instead of ŷ is possibly effi-
cient. In other words, automatically finding the function f ()̇ that maps original data
x to their latent representations h. The methods for implementing this idea are cat-
egorised as representation learning. Figure 2.9 shows a classification pipeline where
representation learning is applied. Since deep learning based self-supervised represen-
tation learning techniques, e.g. autoencoder and contrastive learning, where annota-
tions are not required for optimising f (·), have been developed, the obtained latent
representations h are not affected by the biases caused by the manual feature engi-
neering processes and annotating. Once the subjective representations h are obtained,
various types of machine learning techniques, e.g. classification, clustering, content
based retrieval, can be applied for automatic interpretation of original data x.

FIGURE 2.9: Overview of supervised classification with representation learning.
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2.3.2 Dimension reduction

There exist several noticeable dimension reduction techniques for embedding high di-
mensional data into low dimensional data without a manual process like feature engi-
neering.

PCA (Wold et al., 1987) is one of the most popular and established techniques where a
set of dorg-dimensional vectors can be embedded into d-dimensional vectors (d is arbi-
trary and smaller than dorg), keeping the distinctiveness of each original vector as much
as possible in the set.

t-distributed stochastic neighbour embedding (t-SNE) is another important technique
of dimension reduction. It embeds high-dimensional vectors into 2 or 3 dimensional
vectors, keeping the relative distance between each vector in the original space as much
as possible. For a set of dorg-dimensional vectors x, the probability pij which represents
the similarity between ith vector xi and jth vector xj (i 6= j) in the set is defined as
follows. First, the conditional probabilities pj|i are defined as

pj|i =
exp

(
−
∥∥xi − xj

∥∥2 /2σ2
)

∑k 6=i exp
(
−‖xi − xk‖2 /2σ2

), (2.11)

for different i and j, and pi|i = 0. σ is a perplexity parameter. Then the joint probabilities
pij, which correspond to the similarity between xi and xj are defined as

pij =
pj|i + pi|j

2
. (2.12)

The latent representation vectors h are embedded in the d-dimensional spaces, consid-
ering this similarity. d for t-SNE is particularly set to two or three since this technique
is mostly applied for data visualisation. The joint probabilities qij correspond to the
similarity of two latent representations hi and hj are defined as

qij =

(
1 +

∥∥hi − hj
∥∥2
)−1

∑k 6=l

(
1 + ‖hk − hl‖2

)−1. (2.13)

qij is defined based on a Student t-distribution with a single degree of freedom i.e.(
1 +

∥∥hi − hj
∥∥2
)−1

. To force h to have a similar neighbouring relationship to original x,
the Kullback-Leibler divergence between two affinity matrix P and Q, whose elements
are pij and qij, respectively, are computed as
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Ltsne = KL(P‖Q) = ∑
i 6=j

pij log
pij

qij
. (2.14)

For the optimisation, Ltsne is minimised by an improved gradient descent based tech-
nique. The gradient of Ltsne is given by

δC
δhi

= 4 ∑
j

(
pij − qij

) (
hi − hj

) (
1 +

∥∥hi − hj
∥∥2
)−1

, (2.15)

and a momentum term is used for accelerating the optimisation.

2.3.3 Autoencoder

FIGURE 2.10: Overview of an autoencoder.

The autoencoder is a variation of the artificial neural network that is useful for repre-
sentation learning. Figure 2.10 shows an overview of the autoencoder. It consists of
two parts; an encoder f (·) and a decoder. The encoder f (·) maps original data x into
a latent representation h of lower dimensionality and can be expressed as h = f (x).
The decoder g(·) is expressed as xrec = g(h), and reconstructs xrec to be as similar to
the original sample x as possible for a given latent representation. When the values
in x are continuous, the difference between x and xrec can be measured as the mean
squared error. Given n samples in a dataset, the autoencoder’s objective function can
be formulated as MSE loss between x and xrec as follows:

Lrec =
1
n

n

∑
i=1
‖xi − xrec i‖2 , (2.16)
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where w denotes the parameters of the encoder and decoder, respectively. The biggest
advantage of the autoencoder is that the neural networks used can be trained without
the need for expert annotations. Since xrec is reconstructed from a latent representation
h that preserves key information in x in a lower dimensional space, h can be thought of
as the set of features of a given size that best represents the original data. For seafloor
imagery learning applications, autoencoders are applied partly to learn mid-level fea-
tures in visual imagery after extracting low-level features with ScSPM in Rao et al.
(2017). Convolutional autoencoders are applied in Flaspohler et al. (2017) for unsuper-
vised representation learning from seafloor imagery and shows that they outperform
hand-designed features in discovering characteristic patterns.

To enhance the unsupervised representation learning performance of autoencoders,
several studies have demonstrated training of autoencoders with additional loss func-
tions designed to maximise clustering in the latent representation space (Aljalbout
et al., 2018; Min et al., 2018). A typical loss function can be formulated as

Lall = (1− λ)Lrec + λLclust, (2.17)

where Lclust is a clustering loss, and λ is a hyperparameter designed to balance Lrec

and Lclust. In Yang et al. (2017), the use of such a loss function for k-means clustering
significantly improved clustering performance. In Xie et al. (2016), Lclust is formulated
as follows:

Lclust = KL(P‖Q) = ∑
i

∑
k

pik log
pik

qik
(2.18)

qik =

(
1 + ‖hi − µk‖

2
)−1

∑k′
(

1 + ‖hi − µk′‖
2
)−1 (2.19)

pik =
q2

ik/ fk

∑k′ q2
ik′/ fk′

, (2.20)

where µk is the centroid of cluster k in the latent representation space, pik and qik are
the [i, k] th elements of the probabilistic distributions P and Q, and f j is soft cluster fre-

quency which is defined as ∑i qij. ∑k′ means that the values of
(

1 + ‖hi − µk′‖
2
)−1

are
calculated for all the clusters (k′) and summed for use as a normalisation factor. The
element qik can be interpreted as the probability of assigning hi to cluster k, defined
with the Student’s t-distribution as a kernel following t-SNE algorithm (Maaten and
Hinton, 2008). The element pik is the target value derived from qik to maximise the
separation between cluster k and the other clusters. Lclust is trained after training Lrec
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by minimising the Kullback-Leibler (KL) divergence between P and Q. Since Lclust in
Equation 2.18 is derived as a soft cluster assignment and is differentiable, it can be ef-
ficiently optimised using back-propagation. For public datasets, the use of a clustering
loss was shown to improve clustering accuracy by up to 2.5 % for the MNIST dataset.
However, both studies require the number of clusters to be manually set, which is not
practical for seafloor images or other natural scenes where the appropriate number of
clusters is not known.

Another noticeable application of autoencoders is anomaly detection since anomalous
data which are rarely observed in the dataset cannot be reconstructed precisely and
have a large value of Lrec. For a seafloor imagery application, Zurowietz et al. (2018)
uses autoencoders to detect anomalous regions in seafloor images as candidates for
living organisms, since they are less frequently observed than backgrounds (i.e. rocks
and sand).

2.3.4 Contrastive learning

The recent development of contrastive learning concepts have demonstrated signifi-
cant performance gains in self-supervised representation learning (Jing and Tian, 2020;
Le-Khac et al., 2020). The main idea behind contrastive concepts is to simultaneously
provide similar and dissimilar image pairs during training, where similar pairs are
mapped close to each other in the representation space, and dissimilar pairs are mapped
far apart. These concepts require a binary prior that describes whether the image pairs
provided during training are expected to be similar or not.

The triplet loss Ltrp (Hadsell et al., 2006) is the loss function for contrastive learning
where the contrastive concept is straightforwardly implemented. It requires a similar
pair [xi, xj] and a dissimilar pair [xi, xk]. From their latent representations xi xj and xk,
the triplet loss is defined as follows:

Ltrp = ∑ max(0, ‖hi − hj‖2 − ‖hi − hk‖2) + m. (2.21)

m is a margin parameter that should be kept between each dissimilar pair in latent
space. Figure 2.11 illustrates the overview of the triplet loss based contrastive learning.
The triplet loss intends to push the dissimilar sample hk outside of the neighbourhood
by a margin while keeping similar samples hi and hj within the neighbourhood.
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FIGURE 2.11: Overview of contrastive learning.

In Chen et al. (2020a), a method to generate similar and dissimilar pairs without any di-
rect human input is developed using data augmentation. The proposed Simple frame-
work for Contrastive Learning of visual Representations (SimCLR) applies random
data augmentations to artificially generate similar image pairs, which are then con-
trasted with dissimilar pairs where different images are used. The method demon-
strated significant gains in performance compared to supervised training using the
transfer learning approach (Tan et al., 2018). The formulation of SimCLR is introduced
in section 3.3.1 in detail.
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2.4 Annotation effort reduction

The shortage of annotations is a common issue when supervised learning is applied to
real-world problems, and a number of concepts have emerged to address this issue.

2.4.1 Transfer learning

Transfer learning allows supervised learning models to be trained using a relatively
small number of annotations in the target dataset by making use of much larger an-
notated datasets from a different domain. Several frameworks have been proposed to
implement this concept (Tan et al., 2018). Network-based transfer learning has been ap-
plied in many application domains including medical (Shin et al., 2016), satellite (Yao
et al., 2016), and seafloor imaging (Zurowietz et al., 2018). This approach works by
reusing networks that have been pre-trained using large, generic datasets (e.g. Ima-
geNet (Deng et al., 2009a), COCO (Lin et al., 2014), Pascal VOC (Everingham et al.,
2015)) that consist of hundreds of thousands to more than ten million labels as an ini-
tial model. Though the number of dataset specific annotations needed depends on the
domain, number of classes and data augmentation methods used, previous studies on
satellite (Marmanis et al., 2015) and medical imagery (Shin et al., 2016) have required
several hundreds of domain specific labels for effective use.

In Zurowietz and Nattkemper (2020) a pipeline to make seafloor imagery datasets
transferable for inference on images from other datasets is proposed for the segmen-
tation of marine organisms. The work proposes how to reduce scale variance across
multiple datasets, which is highlighted as an important consideration for seafloor im-
agery. However, considering the other distortion factors mentioned in section 2.2.1, this
method only partially extends the transferability, and no general method that can deal
with all the possible distortion factors has been proposed.

2.4.2 Prioritised labelling

Images in a dataset do not have equal value for training machine learning algorithms.
In Lapedriza et al. (2013), the authors demonstrate that training data selection can have
a significant impact on supervised learning, where CNNs trained on a well selected
subset of annotations can outperform CNNs trained using a larger number of annota-
tions. In Paul et al. (2016), annotation efforts are prioritised using k means clustering
to estimate the entropy of each sample, showing significant gains in performance com-
pared to random selection.
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In active learning (Settles, 2009), the learner interacts with human annotators by iter-
atively proposing data samples that it considers will most efficiently improve perfor-
mance. Several strategies have been proposed to achieve this. Most approaches priori-
tise unlabelled samples that have the highest estimated uncertainty, or are predicted to
have the biggest impact on the model. However, the heuristics used to suggest samples
can only be calculated after the initial subset has been analysed by the algorithm. Al-
though the initial subset can impact subsequent learning performance, its selection falls
outside of the scope of most active learning techniques (Settles, 2009; Li et al., 2019).

In Zurowietz et al. (2018), an autoencoder is used to locate objects of interest in an
unsupervised manner. The method highlights these regions to human experts in or-
der to facilitate efficient use of time for manual segmentation. The approach leverages
the assumption that interesting objects are relatively rare in the original seafloor im-
age datasets they are applied to. Regions with a high autoencoder reconstruction loss
value are considered likely to include targets of potential interests, and these regions
are flagged for prioritised annotation by humans. Active learning is also applied for
seafloor image interpretation in Friedman et al. (2011) and Shields et al. (2020), where
the authors implemented this with ScSPM as the feature descriptor.

2.4.3 Group labelling and label extrapolation

Group-based labelling (Dai et al., 2012; Wigness et al., 2015) is a technique that assigns
annotations to subgroups of clustered data in order to reduce the human annotation
effort. An advantage of this approach is that it can be applied to datasets with no labels
by using unsupervised clustering methods to generate the groups. However, deter-
mining the annotation for a cluster of images can be more complex than per-sample
based annotation, especially when unsupervised cluster decision boundaries are not
aligned with the desired class boundaries, resulting in conflicted human annotations.
In Tian et al. (2007), the authors modified Gaussian mixture model based clustering
to find clusters with high intra-cluster similarity since the samples in these clusters are
considered to be more informative than others. Although these techniques have shown
significant improvement in learning efficiency, the underlying assumption is that effec-
tive clustering can be achieved.

Predictive pseudo-labelling (Lee, 2013) reduces human effort by first training a classi-
fier on a small subset of data that requires fewer annotations than the target dataset. An
advantage of this over group labelling is that annotators consider individual images.
After initial training, the classifier predicts labels for the remaining data, and these
pseudo-labels are used together with the original annotations to fine-tune a classifier.
Li et al. (2019) reports that SVM and Random Forest classifiers outperform CNNs when
generating pseudo-labels from an initial annotated subset. Wu and Prasad (2017) used
pseudo-labelling to improve the classification performance for a hyperspectral satellite
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image dataset, demonstrating effective application of this approach to unstructured en-
vironmental monitoring data, where random subsets were used for initial training. The
use of prioritisation methods for subset selection has not previously been investigated.
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Chapter 3

Method

This chapter presents novel representation learning methods for seafloor imagery and
their applications, where domain knowledge and metadata are exploited. Section 3.1
proposes a general idea for leveraging metadata in seafloor imagery learning. The soft
assumption and the hard assumption, where the metadata is used differently for repre-
sentation learning, are introduced. Section 3.2 formulates an autoencoder based repre-
sentation learning, where the soft assumption is implemented as a novel loss function
derived from metadata to regularise training. Section 3.3 shows a contrastive learn-
ing based method, where metadata is leveraged to select similar image pairs based on
the hard assumption. Section 3.4 shows the unsupervised learning applications of the
proposed representation learning techniques, e.g. clustering and representative image
identification. Section 3.5 presents the methods for aligning the acquired representa-
tions with human interests. Content based retrieval and semi-supervised learning are
introduced as the applications.
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3.1 Concept overview

As introduced in chapter 2, many efforts have been made for computer-aided seafloor
imagery interpretation. Like the other image learning domains, modern CNN is con-
sidered competitive for acquiring a discriminative model. However, for training CNN,
a significant number of annotated images are required, a potentially serious drawback
for real-world applications. Representation learning introduced in section 2.3, i.e. au-
toencoder and contrastive learning, can train a CNN without human annotations. The
trained CNN can encode images to latent representations that preserve only the im-
portant information of originals. Since the obtained representations can be applied to
various types of machine learning applications, seafloor interpretation can be achieved
more flexibly and accurately through representation learning.

When applying general representation learning techniques to seafloor visual imagery
learning, the special characteristics of seafloor imagery mentioned in section 2.2.1 should
be considered. Though some of them form barriers for applying machine learning
techniques, metadata availability can be a great advantage for acquiring more efficient
CNN models, since metadata such as georeference and water condition conveys po-
tentially useful information to discriminate the attributes of the observed images. For
example, geological and ecological features of the seafloor such as sediments, bacte-
rial mats and seafloor infrastructures, and background substrates such as sands and
rocks, exist over a spatial scale larger than the footprint of a single image frame. In
other words, similar features possibly appear in two images if they are captured at
physically close locations. Figure 3.1 illustrates the basic idea of leveraging horizon-
tal location metadata for representation learning. Seafloor images are collected along
the platform’s trajectory, so many pairs of images which are collected within a close
physical distance are included in a dataset.

To leverage this domain knowledge in representation learning, the following assump-
tion is made on image similarity, i.e. how much the images share the appearance fea-
tures in common:

Soft assumption
Two images tend to be more similar when they are captured within a closer physical distance
than two that are far away. More generally, the similarity between two images correlates with
the similarity of metadata between them.

Since metadata is assumed to be loosely correlated with image appearance, this as-
sumption is referred to as the soft assumption in the rest of this thesis. On the other
hand, more deterministic clues would potentially help efficient training. For example,
in supervised learning, human annotations are generally given as binary values rather
than continuous values that show the belongingness possibility to each candidate class.
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FIGURE 3.1: Overview of leveraging horizontal location metadata for representation
learning. Since observation targets such as sediments exist over a spatial scale larger
than the footprint of a single image frame, two images captured within close distance
are likely to be similar, so that their latent representation would be similar.

This approach controls training more forcefully; however, overfitting would likely oc-
cur if many exceptions or errors are included in a training dataset. The hard assumption
for considering this approach in representation learning is defined as follows:

Hard assumption
Two images captured within a certain close physical distance must be similar, and vice versa.
More generally, two images must be similar if the metadata attached to them are similar enough.

The basic idea of leveraging domain knowledge in this thesis is refining existing repre-
sentation learning techniques by formulating these assumptions in their training. Since
the two assumptions here are exclusive, they are individually formulated in two dif-
ferent representation learning methods in the following sections. The soft assumption
based method is presented in section 3.2, and the hard assumption based method is
shown in section 3.3.
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3.2 Representation learning with soft assumption

Figure 3.2 illustrates a typical AUV survey scenario. Data is often gathered over mul-
tiple dives, where ships transport AUVs between sites between their dives. These lo-
cations can be separated by distances far larger than that traversable by an individual
AUV. Observations typically cover spatial extents several orders of magnitude larger
than the footprint of a single image frame, which typically has edge lengths of a few
metres, and span a wide range of seafloor depths. Habitats and substrates vary over
spatial scales larger than each image and exhibit patterns with depth, especially in shal-
low water due to the influence of sunlight. Therefore, the soft assumption, e.g. images
taken close to each other, or separated but with similar depths, are more likely to share
visual characteristics than would otherwise be the case, can be effective. This section
introduces a novel metadata regularised representation learning method. A key advan-
tage of this approach is that regularisation can be applied to data gathered in remote
locations during different dives based on depth information. The validation result of
the proposed method is shown in section 4.2.1.

FIGURE 3.2: Overview of representation learning method with soft assumption. The
method regularises the representation space of an autoencoder by embedding images
taken at similar horizontal locations, or separated but with similar depths, in nearby
regions of the latent representation space. This is achieved by minimising the Kull-
back–Leibler divergence between the affinity matrix of the image latent representation
with horizontal location metadata using the loss function Lloc, and with depth meta-
data using the loss function Ldep. These are optimised together with the autoencoder
reconstruction loss Lrec to regularise the latent representation space according to these
metadata.
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3.2.1 Vector and scalar regularisation

An autoencoder consists of an encoder f (·) and a decoder g(·). The encoder f (·) maps
a set of seafloor images x to a lower-dimensional tensor h (h= f (x)), and the decoder
g(·) reconstructs the images xrec from h (xrec=g(h)) so that the reconstructed images
become as similar as possible to the original images. The optimisation minimises the
mean squared error loss function Lrec=

1
n ∑n ‖xrec − x‖2, where n is the total number

of images. Here h can be regarded as reasonable latent representations of x since they
preserve key information in x so that xrec can be reconstructed properly. The key ad-
vantage of an autoencoder is that the encoder f (·) can be trained in a self-supervised
manner, where only the input images are used and no additional human annotations
are needed. To incorporate metadata into autoencoder training, a loss function of the
following form is minimised:

Lall = Lrec + ∑ λmLm. (3.1)

m is an index for each type of metadata used for learning regularisation, where these
can be any number of continuous scalar or vector quantities that can be associated with
the images. Lm is the loss function that regularise autoencoder training based on the
values of metadata m. λm is a hyperparameter used to balance the loss contributions.

AUVs typically measure their horizontal location, depth and altitude for basic naviga-
tional functionality. This metadata can be leveraged to regularise autoencoder training
by formulating equation (3.1) as follows:

Lall = Lrec + λlocLloc + λdepLdep, (3.2)

where Lloc is the loss function for the horizontal location based regularisation, Ldep is
for the depth based regularisation, λloc and λdep are hyperparameters to balance their
relative contributions. In the implementation, AlexNet (Krizhevsky et al., 2012) and its
inverted architecture are used as the encoder and decoder, respectively, where any type
of neural network can be used to construct autoencoders in a similar way.

The horizontal location loss Lloc is introduced to regularise autoencoder training fol-
lowing the assumption that two images captured within a close distance tend to look
more similar than two that are far away. In representation learning, if two images look
similar and potentially belong to the same class, their latent representations should
be located within a close distance in the latent space. In order to make the distribu-
tion of latent representations h reflect the 2d horizontal location vector y where the
images x are taken, a loss function that has a similar structure to the loss function of
t-SNE (Maaten and Hinton, 2008) (equation (2.11) - (2.14) in section 2.3.2) is introduced.
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In t-SNE, original high-dimensional data xorg is embedded into a 2d or 3d space xemb so
that data with close relative distances in the original space are represented with high
probability in the embedded space. In the proposed loss function, y, which controls
the distribution in the latent space corresponds to xorg, and the latent representations
h corresponds to xemb. Following the t-SNE loss function, the probability pij, which is
proportional to the distance between yi and yj, is defined for i 6=j as:

pj|i =

exp
(
−
∥∥∥yi − yj

∥∥∥2
/2σ2

loc

)
∑k 6=i exp

(
−‖yi − yk‖

2 /2σ2
loc

), (3.3)

pij =
pj|i + pi|j

2n
, (3.4)

where pij=0 when i=j, σloc is a normalising factor for y. The probability qij is derived
from h, and is optimised based on pij. For qij when i 6=j, it is defined by the Student’s
t-distribution as:

qij =

(
1 +

∥∥hi − hj
∥∥2
)−1

∑k 6=l

(
1 + ‖hk − hl‖2

)−1, (3.5)

where qij=0 for i=j.

By defining the affinity matrices P and Q with pij and qij as their elements, the hori-
zontal location loss Lloc is defined as the Kullback–Leibler (KL) divergence of P from
Q:

Lloc = KL(P‖Q) = ∑
i 6=j

pij log
pij

qij
. (3.6)

Minimising Lloc forces Q to approach P, which embeds the correlation between the im-
age representations and the horizontal location metadata into the latent representation.
Equation (3.3) - (3.6) are implemented in a similar way to the loss function of t-SNE,
where y is used to derive the target probabilistic distribution instead of xorg, and h is
optimised instead of xemb.

The depth loss Ldep can be formulated in a similar way to the horizontal location loss
Lloc defined earlier. Given that the seafloor depth where an image xi is captured is a
scalar value di, the probability rij is defined to be proportional to the difference between
di and dj where the observations are made:
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rj|i =
exp

(
−(di − dj)

2/2σ2
dep

)
∑k 6=i exp

(
−(di − dk)2/2σ2

dep

), (3.7)

rij =
rj|i + ri|j

2n
, (3.8)

where rij=0 when i=j. σdep is a normalising factor. The depth loss is formulated as the
KL divergence Ldep=KL(R‖Q), where R is the affinity matrix with elements rij.

An important characteristic of the proposed method is that multiple regularisation
methods can be applied without risk of significantly degrading performance. As el-
ements in the affinity matrices (e.g. P and R), become further apart in the metadata
space (i.e. the distance between yi and yj or di and dj increases), the values of pij or rij

become less sensitive to the separating distance. Furthermore, since the t-distribution
used in this work is heavy-tailed compared to Gaussian distributions, it avoids the
“crowding problem” that can occur when high-dimensional data is embedded into a
lower-dimensional space when generating a t-SNE. This is preferable to avoid over-
regularisation by the metadata, since pairs of images that are far apart are less strongly
constrained by the regularisation and can be flexibly embedded in the latent space.
Since the loss function only loosely constrains autoencoder training based on proba-
bilistic distributions, it is inherently robust to over-fitting metadata. Furthermore, if
the training process finds a particular type of metadata to have little correlation with
the appearance of images, it gets automatically ignored, and where a particular type of
metadata is found to have a strong correlation with image appearance it gets increas-
ingly prioritised. This self-regulating characteristic is important in situations where
many different types of metadata can be applied as the method can automatically pri-
oritise the most significant metadata and mitigate any negative impact without addi-
tional human input or tuning.

Here P and R are formulated for y and d, which are 2d (latitude-longitude) vectors and
scalar values, respectively. However, the proposed loss function can be implemented
for any combination of vector or scalar metadata where the similarity between its val-
ues can be defined. This is important as it allows the proposed concept of metadata
based regularisation to be readily applied to different types of samples (e.g. seafloor
imagery, water column microscopy) and available metadata (e.g. acoustic back-scatter
intensity, terrain rugosity, seawater temperature, pH) depending on the configuration
of the data gathering platforms.
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3.2.2 Mini-batch sampling considering metadata

Ideally, Lloc and Ldep would be derived from all the samples in a dataset (i.e. n sam-
ples) so that they are globally optimised. However, due to computational limitations,
mini-batch gradient descent is used for the simultaneous optimisation of Lrec, Lloc and
Ldep. The number of images considered at each iteration is limited to a mini-batch size
n∗, where a strategy is needed to avoid over-fitting to local minima in Lloc or Ldep when
sampling n∗ images. Since the regularisation effect is diminished as the number of
horizontal location and depth neighbourhood pairs reduces, a sampling method that
balances the number of images that are nearby and far away in each metadata space
is introduced. First, two images are randomly selected at each iteration. Next n∗/3
images are selected from the first image’s horizontal location neighbourhood, and an-
other n∗/3 images are selected from the second image’s depth neighbourhood, and the
final n∗/3 images are randomly selected from the whole dataset in accordance with
the principles of triplet loss contrastive learning demonstrated in Jing and Tian (2020).
This ensures a large variety is maintained in the values of the affinity matrices P and R,
which prevents over-regularisation and allows similar images and dissimilar images to
be evenly considered at each batch iteration.
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3.3 Representation learning with hard assumption

In section 3.2, the autoencoder based image representation learning technique, where
the georeference metadata are leveraged based on Soft assumption in section 3.1, is in-
troduced. As described in section 3.1, Hard assumption where the similarity of two
images is more strongly assumed, would be also useful for seafloor image representa-
tion learning. This section investigates whether georeference information can also be
leveraged to improve the latent representations generated in contrastive learning (Chen
et al., 2020a). Unlike the modified autoencoder loss functions used in section 3.2 where
location information can be used to loosely regularise learning, the binary similarity
condition that is imposed in contrastive learning forces a much stronger constraint on
the latent representations that get generated. In order to validate this similarity as-
sumption, the proposed method takes advantage of the fact that AUVs capture images
that often overlap and have footprints that are generally smaller than the patch size of
habitats and substrates on the seafloor.

The following subsections give a formulation of state-of-the-art modern contrastive
learning approaches such as SimCLR (Chen et al., 2020a), and introduce a novel con-
trastive learning method for efficient representation of spatially contiguous georefer-
enced imagery. The validation result of the proposed method is shown in section 4.2.2.

3.3.1 Contrastive learning

SimCLR learns representations by maximising agreement between differently augmented
images generated from the same original image. The learning framework, illustrated
in Figure 3.3a, consists of four parts; data augmentation, base encoder f (·), projection
head g(·) and a contrastive loss function. Data augmentation transforms each image
x in the target dataset randomly to artificially generate two correlated images, x̃i and
x̃j, where random cropping, colour distortions and Gaussian blur augmentations are
applied in this order. The base encoder f (·) is a CNN that extracts representation vec-
tors from the augmented images. The method allows any CNN to be used for f (·),
where Chen et al. (2020a) found this approach to be most effective on deeper and wider
ResNet (He et al., 2016) architectures. hi ∈ Rd is a feature vector extracted from x̃i by
the base encoder (hi = f (x̃i)). The projection head g(·) is a two layer multilayer per-
ceptron (MLP) to obtain zi ∈ Rd′ (zi = g(hi)). The dimension d′ of the MLP output
are smaller than the dimension d of the base encoder since the contrastive losses de-
fined in lower-dimensional spaces are more efficient for representation learning. A
minibatch of n∗ original images are taken into consideration at each iteration, so 2n∗

augmented images including n∗ similar pairs are sampled. For a similar pair, other
2(n∗− 1) augmented images (ỹn in Figure 3.3a) can be regarded as dissimilar examples
within the minibatch. The Normalised Temperature-scaled Cross Entropy loss function
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(A) SimCLR
(B) Hard assumption based contrastive learn-
ing

FIGURE 3.3: Overview of SimCLR and the proposed hard assumption based con-
trastive learning. The two methods apply different conditions to generate similar pairs
of images to implement contrastive learning. In SimCLR (a), similar image pairs [x̃i,
x̃j] are generated by applying different random augmentations to the same image x.
The proposed method (b) generates similar pairs [x̃i, x̃′ j] using different images that
were taken from physically nearby locations, x and x′. The large range of variability
captured in the generated similar pairs allows for robust CNN training.

(NT-Xent) (Sohn, 2016; Wu et al., 2018; Oord et al., 2018) between the similar pair x̃i and
x̃j is defined as

`i,j = − log
exp

(
sim

(
zi, zj

)
/τ
)

∑2n∗
k=1 1[k 6=i] exp (sim (zi, zk) /τ)

, (3.9)

where sim(·) denotes cosine similarity, 1[k 6=i] ∈ {0, 1} is the indicator function which is
1 if k 6= i, and τ is the temperature parameter. The total minibatch loss can be written
as,

L =
1

2n∗
n∗

∑
k=1

[`(2k− 1, 2k) + `(2k, 2k− 1)]. (3.10)
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The parameters of the base encoder f (·) and the projection head g(·) are updated by a
stochastic gradient descent (SGD) optimiser with linear rate scaling (Goyal et al., 2017).

SimCLR can efficiently train CNNs using large unannotated image datasets, where the
latent representations derived from the original images x were shown to outperform
other state-of-the-art methods in the benchmark classification tasks. It was further
shown that fine-tuning of SimCLR trained CNNs can achieve more accurate classifica-
tion with two orders of magnitude fewer labels than conventional supervised training
methods.

3.3.2 Integrating georeference information

A limitation of SimCLR is that the variety of possible image appearances is limited by
the types of augmentation used, and only features intrinsic to each image can be effi-
ciently extracted. However, when applied to practical semantic interpretation, people
are typically interested in correlating images that show a greater degree of variabil-
ity than can be described by algorithmic augmentation alone. It can be predicted that
the performance of downstream interpretation tasks will benefit if a greater variety of
appearances can be integrated into the similar pairs during CNN training. The hard
assumption based contrastive learning method proposed in this paper allows great
variability to be introduced into the similar image pairs by leveraging the georeference
information associated with each image. It can be argued that the level of variability be-
tween images taken nearby will exhibit a level of variability that is more representative
of that seen across similar habitats or substrates than augmentation alone.

Figure 3.3b shows the overview of the proposed method. Each similar image pair [x̃i,
x̃′j] is generated from two different images, where x̃i and x̃′j are generated from x′, which
is a different image to x but is taken of a physically nearby location. For each image x
captured at the 3d georeference of (geast, gnorth, gdepth), x′ is randomly selected at each
iteration from the images which satisfy the following criteria:

√
(g′east − geast)2 + (g′north − gnorth)2 + λ(g′depth − gdepth)2 ≤ r, (3.11)

where (g′east, g′north, g′depth) is the 3d georeference of x′, λ is the scaling factor for depth di-
rection. Introducing λ > 1 allows the depth difference between images to be weighted
so that the nearby images with large depth gap are not selected, where values of λ < 1
tend to ignore differences in depth. This flexibility is introduced because the relative
impact depth has on image appearance can vary across different application, where
for example shallow water application typically have a stronger correlation due to the
variable influence of sunlight reaching the seafloor than deep-sea applications. To iden-
tify an image pair, the distance r needs to be larger than the distance between adjacent
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images taking into account variability in the acquisition interval, and smaller than the
patch size of substrates and habitats so that paired images are likely to be similar in
appearance. In practise, a small value is advantageous since the similarity assump-
tion is likely to be violated near patch boundaries as r increases. The lower limit for
r should also be conservatively set since restricting pairs to only its nearest neighbour
means that the same pairing is more likely to be selected multiple times during training,
which does not generate any additional information compared to the original SimCLR.

Once x′ is selected, the same types of random data augmentation used in SimCLR are
applied to each image to obtain the similar pair [x̃i, x̃′j].

In this implementation, the hard assumption is leveraged only in data loading and
augmentation parts, and the main parts for training, such as the loss function, is the
same as the original SimCLR contrastive learning method. Practically, this is preferable
because other contrastive learning methods such as SimCLRv2 (Chen et al., 2020b),
BYOL (Grill et al., 2020), and Barlow Twins (Zbontar et al., 2021), can be also used in
the implementation straightforwardly.
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3.4 Unsupervised applications of representation learning

3.4.1 Clustering

Clustering is a useful technique for semantic interpretation of the features obtained
with the proposed autoencoder since it does not require ground truth and interprets
the data in a completely unsupervised manner. For high-dimensional datasets, cluster-
ing algorithms often degrade their performance or are even unable to be solved. Both
of the two representation learning methods proposed in section 3.2 and section 3.3 can
set the number of dimensions of the latent representation to an arbitrary value. There-
fore, if the dimensionality of the latent representation h is small enough, clustering
techniques can be applied directly without any further dimensional reduction. The
non-parametric Bayesian method described in Blei et al. (2006) is potentially preferable
for a newly collected image dataset where the number of classes included is usually
unknown since it automatically determines the appropriate number of clusters simul-
taneously during the processing. The clustering result on a real-world seafloor imagery
dataset is demonstrated in section 4.3.1.

3.4.2 Representative image identification

Generally, it is preferable for supervised learning that the training datasets have class-
balanced distributions. Skewed class distributions, such as those found in natural
scenes on land and on the seafloor, can result in overfitting of classes with relatively
large numbers of samples. If M images are randomly selected for annotation, training
datasets approximate the skewed class distributions of the parent populations, result-
ing in non-ideal conditions for training and carrying a risk that smaller classes may not
be represented in training for small M values.

In the proposed pipeline, k means clustering is applied to the obtained latent represen-
tation to identify densely populated regions. The number of clusters should be large
enough to avoid missing small classes. As long as this condition is satisfied, the out-
puts are not strongly sensitive to small differences in k as the clusters attempt to evenly
represent the different regions of the latent space. In this work, k = dke/10e × 10 is
used, where ke is a number of clusters estimated by the elbow method (Satopaa et al.,
2011). The value of k is ke rounded up to the nearest ten. Next, a subset of images for
prioritised annotation are selected by taking bM/kc or dM/ke images from each clus-
ter so that the total number of images is M. This generates a training class distribution
that follows the cluster distribution, which eases the class imbalance problem as long
as effective clustering is achieved. The way samples are chosen from within each clus-
ter can also affect learning. In Paul et al. (2016), it is assumed that the samples close
to the cluster boundaries are important as they have a greater effect on classification
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decision boundaries. This assumption is reasonable if the boundaries of clustering and
classification are comparable, but in situations where class boundaries are ambiguous,
like in many environmental monitoring applications, it is possible that variability in
the annotations will degrade learning performance.

In this study, it is assumed that the samples provided for training should represent the
variability within each cluster in order to deal with situations where the clustering res-
olution is not sufficient to resolve class boundaries. Two approaches are implemented
to achieve this. The first approach uses k means clustering and randomly samples data
from within each cluster so that each cluster in the acquired latent representation is
evenly represented in the training data. A more structured form of latent space rep-
resentation, which is implemented using hierarchical k means clustering, is also inves-
tigated. This approach is originally proposed in Nister and Stewenius (2006) where a
multi-stage clustering process is introduced. The first stage explores the dominant pat-
terns in the whole dataset, and the following stages attempt to select a representative
set of samples from within each cluster. This approach has also been applied to extract
representative data in text clustering problems (Gowda et al., 2016). In this work, it is
considered to be important to guarantee that samples are selected from dense regions
of the latent representation, and so after the first k means clustering, bM/kc or dM/ke
sub-clusters are generated within each cluster and samples that are closest to each sub-
cluster centroid are selected so that the total number of samples is M. This representa-
tive image identification is performed on a real-world dataset is in section 4.3.2.
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3.5 Efficient alignment with human interests

3.5.1 Content based retrieval

Once an interesting target is found in a dataset, images that are similar in appearance
and their geographic distribution are also likely to be of interest. This information can
be automatically retrieved from large volumes of imagery by calculating the similar-
ity between the query image and other remaining images in the latent representation
space. This is useful as clustering techniques typically do not assign an independent
cluster to categories with a small number of samples and have difficulty with ambigu-
ous categories that have continuously varying characteristics.

The similarity between a pair of images sim(xi, xj) can be derived from the latent rep-
resentation h of each image, where established similarity metrics such as the Euclidean
distance and cosine distance can be used (Wu et al., 2013). Since the similarities are de-
fined in the latent space, georeference information is unnecessary for this application
once the autoencoder has been trained. Predicting the performance of the two metrics is
difficult for features learnt by an autoencoder since the interpretation of their meaning
is non-trivial. In practical cases, adequate metrics should be empirically investigated.
The performance results with these similarity metrics are shown in section 4.4.1.

3.5.2 Semi-supervised learning

Data augmentation (Shorten and Khoshgoftaar, 2019) plays an important role in reduc-
ing the risk of overfitting during CNN training. Since the features in most images of
the seafloor and of land can be considered invariant to rotation and flipping (Cheng
et al., 2016), these augmentations are applied randomly during the training process,
together with random shift operations to account for uncertainty in position. These
transformations are applied with different parameters (i.e. rotation angle and offset)
that are randomly assigned every time an image is fed into the model during training.
Weighted sampling is also applied at each epoch to balance the number of samples in
each class. Data augmentation is not applied to colour and scale distortions since it can
be consistently corrected taking into account illumination and turbidity conditions and
lens distortions.

Pseudo-labels are predicted for each unseen image based on its location relative to an-
notated samples in the acquired latent space. Although the clustering results used to
identify images for prioritised annotation can be used for this purpose, the decision
boundaries of clusters and classes are not necessarily aligned. Therefore, different ap-
proaches are investigated to estimate class decision boundaries, comparing the perfor-
mance of nearest neighbour (1-NN), Random Forest and SVM (Friedman et al., 2001)
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with linear and Radial Basis Function (RBF) kernels as methods capable of expressing
varying degrees of complexity of class boundaries in the latent space.

Although the original pseudo-labelling implementation for deep-learning applies a sin-
gle winner takes all class label to unseen data (Lee, 2013), recent research has demon-
strated that taking the uncertainty of each pseudo-label into consideration can improve
downstream classification accuracy (Iscen et al., 2019; Arazo et al., 2020). Class bound-
aries in environmental monitoring data are often ambiguous and so to address uncer-
tainty near class decision boundaries, probabilistic pseudo-labelling using a Gaussian
Process classifier (Williams and Rasmussen, 2006) is implemented to predict class con-
ditional probability distributions for each sample in the latent space.

Both the annotations and pseudo-labels assigned to the remaining images are used to
train CNNs, where for probabilistic pseudo-labelling, the conditional probability dis-
tributions are applied to the softmax loss of CNN training in order to describe the
pseudo-label uncertainty. The suitability of these classifiers for pseudo-labelling is de-
termined through validation against human annotations. The validation result of the
proposed method is shown in section 4.4.2 and 4.4.3.

This semi-supervised learning approach can significantly speed up the whole interpre-
tation process. In Figure 3.4, the time required for supervised learning (Figure 3.4a)
and the proposed semi-supervised learning (Figure 3.4d) are estimated. Since deep
learning CNNs require a large number of annotations for supervised learning, the total
time required highly depends on annotating process. When tens to hundreds of thou-
sands of images are included in the target dataset, annotating enough images would
take a few days at least. On the other hand, the proposed semi-supervised learning
pipeline can select the images for annotation efficiently from the dataset, and so fewer
annotations are required. As a result, the required person hours is far fewer than the
supervised learning pipeline, and the classification result can be obtained within a sig-
nificantly short time. The required time estimations of the unsupervised representation
pipeline described in section 3.4 and content based retrieval introduced in section 3.5.1
are shown in Figure 3.4b and Figure 3.4c, respectively.
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(A) Supervised learning

(B) Clustering and representative image selection

(C) Content based retrieval

(D) Semi-supervised learning

FIGURE 3.4: Swim lane chart of deep learning based supervised learning pipeline (A),
clustering and representative image selection (B), content based retrieval (C) and semi-
supervised pipeline (D).
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Chapter 4

Result

In this chapter, the seafloor interpretation methods proposed in chapter 3 are evaluated.
Three real-world seafloor datasets are used for training CNNs by the two representa-
tion learning methods, and the performance is evaluated in terms of the classification
with the obtained representations. Also, the proposed applications where the obtained
representations are exploited are demonstrated. Section 4.1 describes the three real-
world seafloor imagery datasets used for the experiments in the following sections.
Section 4.2 shows the experiment results for validating the proposed two representa-
tion learning methods (e.g. the soft assumption based method and the hard assumption
based method introduced in sections 3.2 and 3.3, respectively). Section 4.3 presents the
unsupervised interpretation results, e.g. clustering and representative image identifi-
cation, based on the acquired seafloor image representations. Section 4.4 demonstrates
the results of efficient alignment of the acquired representations with human interests.
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4.1 Description of datasets

The proposed representation learning techniques and their applications target real-
world seafloor imagery. For evaluating their performance in practical scenarios, three
real-world seafloor imagery datasets, i.e. Southern Hydrate Ridge dataset, Tasmania
dataset and Hippolyte Rocks dataset, are used in the following experiments. This sec-
tion describes the details of these datasets.

4.1.1 Southern Hydrate Ridge dataset

TABLE 4.1: Description of the Southern Hydrate Ridge dataset

Vehicle ae2000f
Trajectory Type Dense Grid

Altitude 5.0 - 7.0 m
Ave. Velocity 0.7 m/s
Camera FoV 68 × 57 deg

Camera Resolution 1280 × 1024
Frame Rate 0.25 Hz

Spatial Resolution (Rescaled) 10 mm/pixel
Location Southern Hydrate Ridge, US
Latitude 44.5683 - 44.5715 ◦ N

Longitude 125.1455 - 125.1506 ◦ W
Seafloor Depth 765 - 785 m

Year 2018
No. of Dives 4

No. of Images 62,875
No. of Annotations 18,740

No. of Classes 7 (See Figure 4.1)

Southern Hydrate Ridge dataset is a seafloor visual imagery dataset obtained at the
Southern Hydrate Ridge, a gas hydrate field that is home to a seafloor cabled observa-
tory (Cowles et al., 2010) located 100 km off Oregon, US. Over 12,000 images of the site
were collected using the AUV ae2000f of the Institute of Industrial Science, University
of Tokyo, Japan, during the Schmidt Ocean Institute’s FK180731 #Adaptive Robotics
campaign in August 2018. Table 4.1 gives an overview of the dataset, and Figure 4.2a
shows an ortho-projected mosaic created from the images in the dataset using a stereo
SLAM pipeline developed by the Australian Centre for Field Robotics, University of
Sydney, Australia (Mahon et al., 2008; Johnson-Roberson et al., 2010).

Five small patches are cropped from each image at this size from the four corners and
the centre to obtain the proper size of images for the proposed AlexNet based autoen-
coder (227 × 227, overlapping partially). The original images are first scaled so that
they have a constant spatial resolution of 10 mm/pixel. The total number of patches for
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Label ‘Rock’ ‘Sand’ ‘Carbonate’ ‘Shell Fragment’
Count 7,660 (40.9 %) 6,781 (36.2 %) 2,014 (10.7 %) 1,151 (6.1 %)

Label ‘Bacterial Mat’ ‘Cable’ ‘Artificial Object’
Count 751 (4.0 %) 344 (1.8 %) 39 (0.2 %)

FIGURE 4.1: Class example images together with the number of expert human anno-
tations in each class (Southern Hydrate Ridge dataset)

autoencoder training is 62,875. The georeference information (position where each im-
age was captured) is obtained through the visual SLAM pipeline developed in Mahon
et al. (2008). This has been applied to data collected by the AUV’s navigational sensors,
consisting of an iXblue Quadrans IMU, RDI 300 kHz DVL, Paroscientific depth sensor,
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(A) Ortho-projected top view of mosaiced Southern Hydrate Ridge dataset

(B) Distribution of ground truth category. The same colour scheme is used as in Figure 4.1.

FIGURE 4.2: Overview of the Southern Hydrate Ridge dataset. (A) and (B) show that
each ground truth category has a characteristic spatial distribution. Many of samples
in the dataset are categorised as either ‘Rock’ or ‘Sand’. ‘Shell Fragment’ is often ob-
served around ‘Bacterial Mat’. ‘Cable’ has a characteristic distribution.



4.1. Description of datasets 57

iXblue Gaps USBL and stereo imagery collected by the SeaXerocks mapping system of
the University of Tokyo, Japan (Thornton et al., 2016). The relative position accuracy
using this combination is estimated to be <1 m across the dataset. This is of a simi-
lar order to the randomly allocated shifting of images applied for data augmentation
when training the autoencoder (25 % of 2.27 m). This allows the autoencoder to take
localisation uncertainty into consideration and avoids overfitting to the georeference
information.

For Southern Hydrate Ridge dataset, ground truth annotations were generated using
SQUIDLE+ (Bewley et al., 2015a) by experts for 18,740 (approx. 30 %) image patches
randomly selected from the original 62,875 image patches. Figure 4.2b shows the spa-
tial distributions, the numbers and the examples of each category. Boundaries between
some categories are ambiguous, especially for natural features, e.g. ‘Rock’, ‘Sand’ and
‘Carbonate’, where the density of the relevant targets vary on a continuum. From the
appearances of the ground truth categories shown in Figure 4.1, it is noticeable that
these categories form larger patterns than the footprint of images; thus, the proposed
metadata (georeference) utilisation is assumed to be effective. In this experiment, only
the dominant label is given to each image patch based on the individual annotator’s
judgement. Although this complicates the quantitative evaluation of performance,
the relative performance between different conditions of the proposed representation
learning can be used to verify how effective the methods developed in this paper are
for semantic interpretation.
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4.1.2 Tasmania dataset

TABLE 4.2: Description of the Tasmania dataset

Vehicle Sirius AUV
Trajectory Type Sparse

Altitude 1.0 - 3.0 m
Ave. Velocity 0.5 m/s
Camera FoV 42 × 34 deg

Camera Resolution 1,360 × 1,024
Frame Rate 1 Hz

Spatial Resolution (Rescaled) 2 mm/pixel
Location East Coast of Tasmania, Australia
Latitude 42.9113 - 43.1289 ◦ S

Longitude 147.9646 - 148.0555 ◦ E
Seafloor Depth 28 - 96 m

Year 2008
No. of Dives 12

No. of Images 86,772
No. of Annotations 5,369

No. of Classes 6 (See Figure 4.3)

Tasmania dataset consists of 86,772 seafloor images taken by the Australian Centre for
Field Robotics’ Sirius AUV from a target altitude of 2 m. The dataset contains habi-
tat and substrate distributions as shown in Figure 4.3, including kelp (A), a registered
essential ocean variable, and rocky reefs (B,C,D), which can form habitats for various
conservation targets such as coral and sponges (Moltmann et al., 2019b). 5,369 ran-
domly selected images are annotated by human experts into 6 classes. 50 images ran-
domly selected from the 6 classes (total of 300 images) are used for validation and
M=[40, 100, 200, 400, 1000] images selected from the remaining 5,069 annotated images
are used for training in the following experiments. The georeference information of
each image is determined based on the stereo SLAM pipeline described in Mahon et al.
(2008) and Johnson-Roberson et al. (2010). The original resolution of the images is 1,360
× 1,024, where the average distance between adjacent images is approximately 0.5 m,
so some images partly overlap each other. Prior to analysis, each image in the dataset
is re-scaled to a resolution of 2 mm/pixel based on the imaging altitude. Randomly
cropped 224 × 224 regions of the images are used for training, where validation is per-
formed on the same sized regions cropped from the centre of the images.
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Label A B C
Count 531 (9.9 %) 1,084 (20.2 %) 903 (16.8 %)

Label D E F
Count 598 (11.1 %) 1,568 (29.2 %) 685 (12.8 %)

FIGURE 4.3: Class example images together with the number of expert human anno-
tations in each class (Tasmania dataset)
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FIGURE 4.4: Overview of the Tasmania dataset. The images were gathered through
12 AUV deployments. The start points of each deployment are shown as green dots.
The pie charts show the class distributions according to ground truth. The same colour
scheme is used as in Figure 4.3, which shows example images of each class. The survey
paths of Dives 01, 03 and 08 are shown with the human annotated class distributions
at the bottom.
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4.1.3 Hippolyte Rocks dataset

TABLE 4.3: Description of the Hippolyte Rocks dataset

Vehicle Sirius AUV
Trajectory Type Sparse

Altitude 1.0 - 3.0 m
Ave. Velocity 0.5 m/s
Camera FoV 42 × 34 deg

Camera Resolution 1,360 × 1,024
Frame Rate 1 Hz

Spatial Resolution (Rescaled) 2 mm/pixel
Location Hippolyte Rocks, Australia
Latitude 43.1136 - 43.1289 ◦ S

Longitude 148.0358 - 148.0555 ◦ E
Seafloor Depth 28 - 96 m

Year 2008
No. of Dives 6

No. of Images 32,097
No. of Annotations 2,221

No. of Classes 8 (See Figure 4.5)

Hippolyte Rocks dataset consists of 32,097 seafloor images taken by the Australian Cen-
tre for Field Robotic’s Sirius AUV from an altitude of ~2 m. The data analysed here was
gathered over six dives sparsely covering a 1.6× 1.7 km region of the seafloor between
28 and 96 m depth. Details of the survey are given in Table 4.3. Hippolyte Rocks dataset
is a subset of Tasmania dataset, corresponding to Dives 07 - 08 in Figure 4.4, but a dif-
ferent class categorisation scheme shown as Figure 4.5 is applied.

The images show various habitat and substrate distributions, including kelp (A), a reg-
istered essential ocean variable, and rocky reefs (B) - (E), which can form habitats for
various conservation targets such as coral and sponges (Moltmann et al., 2019a). The
original resolution of the images is 1,360 × 1,024. Each image in the dataset is re-scaled
to a resolution of 2 mm/pixel based on the camera field of view (FoV) and imaging al-
titude. The centre 227× 227 of each image is used in the analysis. The average distance
between adjacent images is approximately 0.5 m and so the overlap between cropped
images is negligible. 2,221 randomly selected images are annotated by human experts
into 8 classes, as shown in Figure 4.5, where these are used to validate the performance
of the proposed method. Figure 4.6a shows the horizontal distribution of each ground
truth class in the dataset. The figure shows that the classes form continuous spatial
patterns along the sparse survey trajectories. Figure 4.6b shows the depth distribution
of annotated images in each class together with the class labels. The figure shows that
Kelp (A) is found at shallow depth ranges where energy from the sun can reach. High
Relief Coral (B) and Low Relief Reef (C) start to appear at the depth of 40 m and 45
m, respectively. Other classes (D) - (H) also exhibit unique depth distributions, though
there is considerable overlap beyond 50 m depth.

~
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Label A B C D
Count 152 (6.8 %) 449 (20.2 %) 285 (12.8 %) 157 (7.1 %)

Label E F G H
Count 101 (4.6 %) 315 (14.2 %) 605 (27.2 %) 157 (7.1 %)

FIGURE 4.5: Class example images together with the number of expert human anno-
tations in each class (Hippolyte Rocks dataset).

Horizontal location and depth estimates for each image are generated based on the
Simultaneous Localisation and Mapping (SLAM) pipeline described in Mahon et al.
(2008). When georeference metadata is used for the soft assumption based autoencoder
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(A) Horizontal distribution.

(B) Class vs depth.

FIGURE 4.6: Overview of the Hippolyte Rocks dataset. The horizontal spatial distri-
bution of the human annotated classes are shown in (A) and the depth distribution of
each class is shown in (B), where the same colour scheme has been used throughout
the figure.
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regularisation proposed in section 3.2.1), georeference errors smaller than σloc in equa-
tion (3.3) or σdep in equation (3.7) do not affect the optimisation. Where SLAM or other
global localisation methods such as ultra-short baseline or long-baseline acoustic posi-
tioning are not used, horizontal position errors accumulate at a rate of approximately
1 % distance travelled using typical AUV navigational sensor suites (Paull et al., 2014).
In practical terms, this means that the position uncertainty between sequentially taken
images will be negligible. For images taken nearby but with a longer period of separa-
tion, the position uncertainty should be estimated using established methods (e.g. an
extended Kalman filter) and where the uncertainty exceeds σloc, the pair should be re-
jected. Error accumulation does not occur when using commercial grade pressure and
altitude sensors to determine seafloor image depth and so depth regularisation can be
performed as long as these sensors are properly calibrated.
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4.2 Representation learning

This section investigates the effectiveness of domain knowledge introduction to seafloor
image representation learning by the proposed methods. The representation learning
performances are basically evaluated based on the classification accuracy achieved us-
ing the acquired representations. In section 4.2.1, the soft assumption based autoen-
coder performance is compared with a standard CNN based autoencoder to investi-
gate the performance improvement achieved by the regularisation with the novel loss
function proposed in section 3.2. In section 4.2.2, the proposed hard assumption based
representation learning is compared with the original SimCLR method.

4.2.1 Autoencoder performance validation (soft assumption)

Method and dataset
This section evaluates the representation learning performance of the soft assumption
based autoencoder proposed in section 3.2. Hippolyte Rocks dataset introduced in
section 4.1.3 is used in the experiment.

Learning configuration
To investigate the effectiveness of the proposed regularisation, the autoencoder is trained
(i) without regularisation, (ii) with Lloc, (iii) with Ldep, (iv) with both Lloc and Ldep on
the dataset. AlexNet (Krizhevsky et al., 2012) with batch normalisation is used as the
encoder architecture, and its inverse is used as the decoder where the number of di-
mensions of the encoder output (equal to the number of dimensions of the decoder
input) is set to 16. The autoencoder weights are initialised with the values of AlexNet
pre-trained on ImageNet. A mini-batch size of n∗ = 256 is applied and random ro-
tation, shifting, flipping and colour distortions are applied for data augmentation. In
the experiments where either Lloc or Ldep are applied, n∗/2 images are selected from
the metadata space neighbourhoods of each randomly selected sample, and remain-
ing n∗/2 images are selected randomly from the entire dataset. σloc in equation (3.3)
is set to 10.0 m, and σdep in equation (3.7) is set to 1.0 m since image appearance is ex-
pected to show some degree of correlation with horizontal location and depth within
these ranges. Preliminary experiments indicated that the method is not highly sensi-
tive to these parameters, where σloc values ranging from 3.0 to 20 m only had a marginal
impact on performance. This is favourable for practical application since extensive pa-
rameter tuning via trial and error is not necessary. Both λloc and λdep in equation (3.2)
are set to 1× 105, and a learning rate of lr=1× 10−5 is used for the Adam optimiser.
These hyperparameters are experimentally determined so that all loss terms that are
applied decrease during training. This is also favourable in practical terms since de-
crease of the loss function is a necessary condition for successful training, where most
workflows already confirm this happens before proceeding with further analysis. The
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number of epochs is set to 100 and each experiment configuration is executed three
times.

Evaluation protocol
The representation learning performance is evaluated based on the classification accu-
racy achieved using the acquired representations. The classifiers used to assess perfor-
mance consist of a k-Nearest Neighbour with k=1 (1-NN), a Gaussian Process classifier
(GP), Random Forest (RF), Support Vector Machine with Linear kernel (L-SVM) and
with Radial basis function kernel (R-SVM). These classifiers are commonly selected in
seafloor classification problems (Rigby et al., 2010; Stephens and Diesing, 2014). A 10-
fold cross validation is performed to examine each autoencoder, where three autoen-
coders are used in each training configuration. To reduce the effect of class imbalance,
the cost functions of RF, L-SVM and R-SVM are balanced considering the class counts.
The F1-score (macro averaged) is used for performance evaluation, since all classes are
considered as equally important. Though this experiment considers classification to
evaluate accuracy, the higher score indicates that the obtained representations are ef-
fective at describing the images, and so form a favourable basis for other applications
such as clustering, content based retrieval, and use in observation-aware path planning
methods.

Result
Table 4.4 shows the mean and standard deviation of the F1-scores for each autoencoder
training configuration and classifier. For four of five classifiers; 1-NN, GP, L-SVM and
R-SVM, the autoencoders trained with both Lloc and Ldep (configuration (iv)) show the
best performance among the four configurations. For RF, configuration (ii), where only
Lloc is applied, has the best score. However, the difference between (ii) and (iv) is
marginal. Configurations (ii) - (iv) perform better than configuration (i), where no reg-
ularisation is applied, for all classifiers, achieving an average performance gain of (ii)
9.4 %, (iii) 6.9 % and (iv) 10.9 %, respectively. The results show that horizontal loca-
tion metadata is more effective for learning latent representations than depth for this
dataset. However, using both of horizontal location and depth information generally
improves performances, and never causes any significant degradation. The biggest
gains in performance are seen for the R-SVM classifier, where an improvement of (ii)
12.5 %, (iii) 8.7 % and (iv) 15.1 %, are seen respectively compared to no regularisation
(i). Another noticeable point is that for L-SVM, configuration (iii) shows a better score
better than (ii). Among the five classifiers used in the experiment, L-SVM is the only
linear classifier, which makes it relatively robust against over-fitting. A different trend
is observed compared to the other classifiers with depth only regularisation perform-
ing favourably. A possible explanation for this is that some over-fitting may be taking
place with the non-linear classifiers when only depth regularisation is used.

Figure 4.7 shows the per-class F1-scores of the best performing classifier (R-SVM) for
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regularisation configurations (i)-(iv). Configurations (ii)-(iv) are superior to configura-
tion (i) for all classes. Horizontal location regularisation (ii) performs better than depth
regularisation (iii) for all classes except for C. The relative performance improvement
with metadata regularisation is most significant for classes D, E, and H (24.9 %, 33.5 %,
and 52.6 % between (i) and (iv), respectively), which have relatively small populations
in the dataset. This can be explained as optimising only the autoencoder reconstruc-
tion loss Lrec potentially leads to focusing on the appearances of majority classes, where
the proposed regularisation avoids this form of over-fitting by effectively prioritising
patterns in classes with smaller populations.

An important characteristic of the proposed method is that both regularisation meth-
ods can be applied without risk of significant performance degradation. This is due
to the use of t-distributions and the loose regularisation constraints imposed during
the loss function optimisation based on probabilistic distributions. This characteristic
is observed in the result, where configuration (iv) leads to an overall improvement in
performance and better class scores than configurations (ii) and (iii) for most classes.
Where the scores for classes C, F and G are slightly degraded, the difference is negligi-
ble. Although horizontal location regularisation is generally more effective than depth
regularisation for this dataset, the ability to improve performance using only depth
information is valuable as accurate horizontal localisation in GPS denied subsea envi-
ronments requires expensive navigational sensors that may not be available on some
low cost AUVs and Remotely Operated Vehicles (ROVs). On the other hand, depth
sensors are relatively cheap and so are available on almost all underwater platforms.

TABLE 4.4: F1-scores (macro averaged) for each regularisation configuration and clas-
sifier

Regula-
risation

Classifier
1-NN RF GP L-SVM R-SVM

(i) 46.0±3.2 50.1±2.5 48.3±2.8 51.4±3.4 50.3±3.4
(ii) 49.4±3.8 53.6±3.3 53.3±3.7 56.3±3.6 56.6±4.0
(iii) 48.2±3.7 51.1±3.2 52.4±3.5 56.6±4.1 54.7±3.6
(iv) 49.7±2.8 53.4±3.7 54.3±2.7 57.5±3.8 57.9±4.1

The convolutional autoencoder is trained (i) without regularisation, (ii) with Lloc, (iii)
with Ldep, (iv) with Lloc and Ldep. Five different classifiers are trained on the autoen-
coder embedded representations (1-Nearest Neighbour, Random Forest, Gaussian Pro-
cess classifier, Linear kernel Support Vector Machine (SVM) and Radial basis function
SVM. The F1 Macro Average is computed based on human labels.

Discussion
In conclusion, the experiment result shows that the soft assumption based autoencoder
proposed in section 3.2 is efficient in learning representations of seafloor imagery. The
result and following discussion in this section can be summarised as follows:
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FIGURE 4.7: Per-class F1-scores and their macro average for (i) no regularisation, (ii)
horizontal location regularisation, (iii) depth regularisation and (iv) horizontal loca-
tion and depth regularisation. R-SVM is used as the classifier in this plot.

• Combining multiple sources of metadata regularisation can outperform single
metadata regularisation using the proposed method. Regularising learning using
depth and horizontal location metadata improves the performance of five clas-
sifiers operating on the latent representations by an average of 10.9 % compared
to a standard convolutional autoencoder, with the R-SVM classifier showing the
largest gain in performance at 15.1 %.

• Horizontal location regularisation is more effective than depth regularisation for
the sparse transect dataset analysed in this work, achieving an average improve-
ment of 9.4 % (as opposed to 6.9 %) across five classifiers, and 12.5 % (as opposed
to 8.7 %) for the best performing classifier. However, combining both in metadata
regularisation reliably outperforms individual regularisation and never signifi-
cantly degrades performance.
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4.2.2 Contrastive learning performance validation (hard assumption)

Method and dataset
In this section, the representation learning performance of the hard assumption based
contrastive learning proposed in section 3.3 is evaluated. Tasmania dataset introduced
in section 4.1.2 is used for the training and validation.

Learning configuration
The proposed hard assumption based contrastive learning method can by used to train
any type of CNN. The well established ResNet18 (He et al., 2016) is used for bench-
marking in this experiment. The latent representation h and z dimensions are set
to d=512 and d′=128, respectively. A minibatch size of n∗ = 256, learning rate of
3.0× 10−4, weight decay of 1.0× 10−4, temperature τ=0.07 in equation (3.9) was used
for all experiments in this section. The thresholds of closeness and depth scaling factor
in equation (3.11) were set to r=1.0 m and λ=1.0, respectively. The value for r is con-
servative compared to the expected substrate and habitat patch size in the surveyed
region, and was chosen to yield 2 to 4 nearby images based on the average distance
between images (see Table 4.2). This minimises the probability of non-similar image
pairs being selected near patch boundaries and the likelihood of duplicate pairs be-
ing selected during training. The value of λ was chosen to evenly treat horizontal and
vertical displacement between images.

Other than the method for generating similar image pairs, identical parameters were
used for the proposed method and the original SimCLR method to allow for compari-
son. Both methods are trained on the all 86,772 images in the dataset. The performance
of the proposed method against transfer learning is also benchmarked, using ResNet18
that was pre-trained on ImageNet.

Evaluation protocol
CNNs trained using three different approaches (ImageNet, SimCLR, the proposed hard
assumption based method) are evaluated following the protocol used by Chen et al.
(2020a). Once the CNNs are trained, the latent representations they generated are anal-
ysed using different classifiers; a linear logistic regression, a non-linear Support Vector
Machine with a Radial Basis Function kernel (SVM with RBF), and a fine-tuned CNN
classifier. The logistic regression and SVM with RBF are both trained on the latent
representation space output h of ResNet18 after CNN training. For fine-tuning, a mini-
batch size of 256, an Adam optimiser with learning rate of 3.0× 10−4 and no weight
decay were chosen. The macro averaged F1-score over 6 classes determined from the
independent validation set is used to compare the classification accuracy of each train-
ing method. All experiments are repeated ten times in each configuration, where the
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standard deviation (SD) of scores is shown alongside the mean value to describe vari-
ability. The classifiers are trained on M=[40, 100, 200, 400, 1000] images, which are se-
lected so that all six classes are equally represented. This requires significant human ef-
fort to determine the relevant classes and identify images corresponding to each class,
which is not practical for most field survey scenarios. Other data selection strategies
(i.e. random selection and hierarchical k-means clustering based selection proposed in
section 3.4.2) with the same representation learning setup are examined in section 4.4.3.

Result
Table 4.5 shows the macro averaged F1-scores of each CNN training and classifier con-
figuration on the class-balanced subsets of the annotated images. The results show that
the proposed hard assumption based learning has the best performance for all values
of M, with the linear classifier (C1) showing the best performance for M=40, and the
SVM classifier (C2) best for all other M values. The latent representations generated us-
ing the proposed method achieves an average 7.4 % and 5.2 % increase in performance
compared to the best performing ImageNet and SimCLR trained configurations.

Among the ImageNet pre-trained CNN (A∗), the CNN fine-tuned using M images (A3)
achieves the highest accuracy for all M with an average performance gain of 6.6 %.
This is owed to the capacity of CNNs to simultaneously optimise representation learn-
ing and classification during training. In A1 and A2, the lower level feature extractor
optimised on ImageNet is not updated. The inferior performance compared to A3 in-
dicates that the latent representations generated using ImageNet are suboptimal for
the seafloor images used in this work, failing to describe their useful distinguishing
features.

In contrast, for SimCLR and the proposed method trained CNNs (B∗ and C∗), the fine-
tuned scores for the ResNet18 classifier are lower than the scores of linear and SVM
classifier. This shows that the constraining effect of contrastive learning in SimCLR or
the proposed method training generates highly optimised latent representations. Since
conventional fine-tuning does not maintain this constraining effect, it degrades per-
formance, achieving a similar level of accuracy as fine-tuning of ImageNet pre-trained
CNN in A3 for larger values of M. This finding is in contrast to the results of Chen
et al. (2020a), where fine-tuning of CNNs trained using SimCLR significantly outper-
form linear classifiers applied to latent representation space for generic terrestrial im-
age datasets analysed. A possible reason for the difference in behaviour is the rela-
tively high dimensionality of h (d=512) compared to the small number of classes (6)
in the dataset considered in this paper, combined with the continuous transition of
image appearance across the class boundaries, both of which are different to terres-
trial benchmark datasets, which typically have a larger number of classes with discrete
boundaries, both of which can make the latent representation more sensitive to the
constraining effect of contrastive learning. Figure 4.19a shows representative config-
urations from Table 4.5. The proposed representation learning method with a SVM
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TABLE 4.5: CNN training method comparison on class balanced training subset

Config.
Label

CNN
Training

Classifier
Number of Annotations (M)

40 100 200 400 1000
A1 ImageNet linear 54.9±4.7 61.6±2.8 63.0±2.2 67.5±2.2 67.4±2.1
A2 ImageNet SVM 47.0±4.9 55.3±4.9 60.2±2.3 66.2±1.1 69.7±1.1
A3 ImageNet Res18 58.9±2.6 65.5±2.7 68.2±2.5 71.2±1.7 73.8±1.3
B1 SimCLR linear 62.5±2.7 65.2±2.8 67.1±1.2 69.2±2.2 71.8±1.0
B2 SimCLR SVM 62.4±2.7 66.9±1.8 69.2±1.8 71.8±1.4 74.1±1.0
B3 SimCLR Res18 53.4±4.4 61.3±2.2 65.5±2.0 68.9±2.7 72.4±0.9
C1 Proposed linear 63.8±2.9 67.8±2.4 71.4±1.4 72.9±1.8 74.9±1.0
C2 Proposed SVM 61.7±2.5 70.1±2.4 74.5±1.4 75.8±1.4 78.3±1.1
C3 Proposed Res18 53.6±5.3 62.8±2.2 66.2±2.9 69.5±1.9 73.2±1.3

The CNNs are trained using three different methods (Supervised Learning by Ima-
geNet, SimCLR and Proposed). The latent representations (h) extracted from the M
annotated images by each CNN are used for logistic regression classification (linear)
and SVM (with RBF) training. Also the CNNs are fine-tuned on the same subsets of
images. The M images are selected so that all 6 classes in the dataset are evenly de-
scribed. The classifiers are trained 10 times with different random seeds, and mean and
SD values of F1-scores (macro averaged) are shown. The best score for each M is shown
as bold.

classifier (C2) outperforms all other configurations except for B2 when M=40. Having
said this, the best performance for M=40 is achieved by the proposed method with
a linear classifier (C1) as can be seen in Table 4.5. When the CNNs are fine-tuned,
transfer learning with ImageNet (A3) outperforms fine-tuned SimCLR and proposed
method (B3 and C3).

Discussion
The experiment result shows that the hard assumption based contrastive learning in
section 3.3 is efficient in learning representations of seafloor imagery. The proposed
method outperforms existing state-of-the-art contrastive learning (SimCLR) and trans-
fer learning for downstream supervised classification tasks using an equivalent CNN
architecture (ResNet18). On an ideal, class balanced training dataset, the SVM with
RBF kernel trained on the representations acquired by the proposed method shows an
average of 5.2 % and maximum of 7.7 % improvement compared to the accuracy scores
of SimCLR for M=[40, 100, 200, 400, 1000] annotations. Compared to ResNet18 trained
by transfer learning, an average improvement of 7.4 %, a maximum of 9.2 % is achieved.
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4.3 Unsupervised interpretation for scene understanding

In this section, the unsupervised seafloor interpretation pipelines proposed in sec-
tion 3.4 are examined on the real-world seafloor imagery datasets. In section 4.3.1, the
clustering pipeline proposed in section 3.4.1 is performed and evaluated on Southern
Hydrate Ridge dataset (section 4.1.1). In section 4.3.2, the representative image selec-
tion proposed in section 3.4.2 is demonstrated on Tasmania dataset (section 4.1.2) and
Hippolyte Rocks dataset (section 4.1.3).

4.3.1 Clustering

Method and dataset
In this section, the clustering pipeline proposed in section 3.4.1 is performed on the
latent representations of Southern Hydrate Ridge dataset (section 4.1.1) acquired by
the soft assumption based autoencoder proposed in section 3.2.

Learning configuration
To evaluate the effectiveness of the novel aspects of the proposed soft assumption based
representation learning, the autoencoder is trained on the dataset with/without colour
attenuation correction, rescaling and the metadata regularisation. Since the depth is
less likely to correlate with the image appearances at the depth range of Southern Hy-
drate Ridge dataset (i.e. 765 - 785 m, see Table 4.1), only horizontal location is used
as metadata for the soft assumption based regularisation. For defining the affinity ma-
trix in horizontal location metadata space, Student’s t-distribution instead of Gaussian
distribution in equation (3.3) is used for computational efficiency. In mini-batch sam-
pling, all images are selected from the neighbourhoods of the first randomly selected
image. The dimensionality of h is set as 16 since the Lrec does not vary significantly
even if larger values are used. The weights in the autoencoder are initialised with the
original AlexNet trained with the ImageNet dataset. The mini-batch size n∗ is fixed as
256, and an Adam optimiser (Kingma and Ba, 2014) is used. When training without
the regularisation, each epoch contains all of the image patches in the data set. With
the georeference regularisation, this is not guaranteed because of the unique sampling
strategy described in section 3.2. However, the large number of epochs ensures that the
data is evenly sampled for autoencoder training. After autoencoder training, the latent
representation h of each image x is obtained by processing x with the trained encoder
without any rotating, shifting or addition of noise.

It can be said that a better latent representation shows smaller distances between sam-
ples for the same category and larger distances for the different categories in the latent
representation space. Since this viewpoint is the same as internal evaluation metrics
for clustering performance, the proposed feature learning can be evaluated through
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the metrics by inputting ground truth instead of clustering results. Silhouette score
(Rousseeuw, 1987), Calinski and Harabasz score (CH) (Caliński and Harabasz, 1974)
and Davies-Bouldin score (DB) (Davies and Bouldin, 1979) are used for the evaluation
in this experiment. However, it should be noted that while these are the most widely
used metrics to assess clustering performance, it has been reported that these existing
metrics cannot completely take into account imbalances in datasets (Krawczyk, 2016).
Although the dataset analysed in this work is highly skewed (see Figure 4.5) these
metric are used since no standard methods are available that can overcome these limi-
tations.

Representation learning result
The internal evaluation metrics corresponding to each training condition, labelled C1

to C9, are shown in Table 4.6. The latent representations h are normalised in each di-
mension as standard scores. Table 4.6 shows that the proposed georeference regular-
isation improves performance significantly for all metrics. The attenuation correction
also increases performance, but the effectiveness of rescaling is less clear from these
results alone. Figure 4.8 illustrates the distribution of ground truth in the latent repre-
sentation space h using t-SNE visualisation (Maaten and Hinton, 2008). Figure 4.8a and
4.8b are for autoencoders trained without/with the georeference regularisation, respec-
tively (corresponding to C4 and C8 in Table 4.6). The most distinguishing characteristic
of the resulting representation is that the distribution corresponding to ‘Cable’ forms
an obvious cluster at the centre of Figure 4.8b with clear separation from other cate-
gories, while it is widely distributed in 4.8a without the georeference regularisation.
This illustrates how the georeference regularisation allows the autoencoder to priori-
tise features that are common between images taken in close proximity to each other
over features that would be learnt without this regularisation. The other ground truth
categories also gather more closely in Figure 4.8b than in Figure 4.8a, as reflected by the
improved evaluation metrics in Table 4.6.

TABLE 4.6: Evaluation results of the proposed feature learning and clustering.

Condition Label C1 C2 C3 C4 C5 C6 C7 C8 C9

Pixel-wise Normalisation - X X X X X X X X
Attenuation Correction - - - X X - - X X

Rescaling - - X - X - X - X
Georeference Regularisation - - - - - X X X X

Silhouette -0.020 -0.026 -0.025 -0.004 -0.019 0.003 0.010 0.032 0.035
CH 253 160 476 290 272 622 696 1078 772
DB 18.7 14.6 10.2 8.0 7.3 5.1 4.7 3.4 3.5

Num. of Clusters 15 10 9 10 8 15 13 12 11
NMI 0.078 0.101 0.111 0.103 0.104 0.165 0.176 0.227 0.216

The check (X) and dash (-) marks illustrate whether each preprocessing or regularisa-
tion is applied or not, respectively. Each condition is labelled from C1 to C9 and these
labels are referred to in the later sections. The best scores (the lowest for DB and the
highest for Silhouette, CH and NMI) are shown in bold.
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Clustering result
For evaluating clustering performance, Normalised Mutual Information (NMI) (Estévez
et al., 2009) is used, following the previous works which also use imbalanced seafloor
datasets for their experiments (Steinberg et al., 2011; Beijbom et al., 2012; Steinberg,
2013; Kaeli and Singh, 2015; Rao et al., 2017; Flaspohler et al., 2017). A NMI score is
bounded between 0 (no mutual information) and 1 (perfectly correlated). A large NMI
score means that the clustering result has a large amount of mutual information with
the ground truth and corresponds to superior clustering performance. The numbers of
clusters found using the non-parametric Bayesian method are not guaranteed to be the
same as the number of categories used in human annotation. NMI is a favourable met-
ric for this experiment because it does not require the targets to have the same number
of clusters or categories. However, the result should be carefully investigated since it
does not completely manage imbalanced datasets (Krawczyk, 2016).

Table 4.6 shows the number of clusters and the NMI scores for each autoencoder. The
proposed georeference regularisation improves the NMI scores by a factor of 1.6 (C2 to
C6) to 2.2 (C4 to C8) compared to equivalent analysis without this regularisation. The
introduction of the horizontal location based loss is effective at controlling the training
process so that it obtains solutions closer to human interpretation. This can be ex-
pected as it leverages an assumption about the scale of seafloor habitats and features,
compensating for the limited image footprints that can be achieved underwater. When
georeference regularisation is used, the proposed light attenuation correction improves
the NMI score by 23 % (C7 to C9) and 38 % (C6 to C8) compared to a simple grey-world
assumption. In contrast, no increase in performance is observed when the georeference
regularisation was not used. A possible explanation is that when autoencoder train-
ing is regularised to the local neighbourhood, colour information is used in the latent
space since adjacent images will tend to show a similar colour of seafloor. Under this
assumption, any colour artefacts will degrade clustering performance. With no geo-
reference regularisation, the autoencoder can easily end up being trained using images
that are far apart, where the actual seafloor colour would tend to be more varied. In this
scenario, the autoencoder would not prioritise colour information in the latent repre-
sentation space, and so be less sensitive to differences in the colour correction method
used. The results for rescaling are inconclusive with no significant difference observed
in the NMI scores compared to equivalent experiments without rescaling. Although it
is thought that rescaling would be effective for images of objects with consistent phys-
ical sizes, objects in the natural scenes that dominate the dataset vary widely in size,
and so no significant gains in NMI performance could be achieved. The maximum NMI
score achieved is not high (0.227), which is in part due to the impact of imbalanced cat-
egories as reported by Krawczyk (2016), and therefore a category based evaluation is
also necessary.

Representative images from each cluster in the result with the highest NMI score (C8
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in Table 4.6) are shown in Figure 4.9. The relationship between the ground truth and
this clustering result are shown in Table 4.7. To obtain a better understanding of each
identified cluster, a treemap (Bruls et al., 2000) is shown in Figure 4.10, which allows
the relative sizes of each cluster and their representative samples to be visualised si-
multaneously. To discuss the performance of the clustering result quantitatively, the
confusion matrix is shown in Figure 4.11. Since the non-parametric Bayesian method
optimises the number of clusters automatically, some clusters are manually merged
based on the appearance of their representative samples so that the number of merged
clusters corresponds to the number of ground truth categories. For example, cluster ‘A’,
‘B’ and ‘F’ are merged and regarded as ‘Rock’, and they appear at the first column of the
confusion matrix as a single merged cluster. Since the number of ‘Artificial Object’ in
ground truth is extremely small compared to other categories, the category is merged
with ‘Cable’ and a 6× 6 confusion matrix is shown. Table 4.8 shows the precision, re-
call and F1-score for each ground truth category, based on the confusion matrix. The
table shows that the proposed method can separate ‘Rock’, ‘Sand’, and ‘Bacterial Mat’
with F1-scores greater than 0.6. The F1-score scores for other categories are lower since
they are subjective classes where there is ambiguity in human judgement. For example,
‘Carbonate’, which shows the lowest F1-score (0.25), is often confused with ‘Rock’ and
‘Sand’ as shown in the confusion matrix. This result is reasonable because the density
of both rock and carbonate distributions on sandy backgrounds vary on a continuum.
Further verification to distinguish carbonates and rocks would require physical sam-
pling, and it can be said that the clustering provides a meaningful result, in line with
human interpretation, considering the inherent limitations of visual observation.

TABLE 4.7: Confusion matrix of the clustering result. Rows and columns correspond
to the ground truth and the clustering result using C8 in Table 4.6, respectively.

A B C D E F G H I J K L Total
Rock 1,741 2,039 436 425 229 776 489 206 755 22 207 335 7,660
Sand 1,096 62 1,448 937 1,237 298 660 207 3 3 646 184 6,781

Carbonate 161 116 99 305 74 317 147 233 299 43 103 117 2,014
Shell Fragment 15 3 20 142 13 30 35 504 17 305 27 40 1,151
Bacterial Mat 3 1 2 6 0 2 1 64 1 639 1 31 751

Cable 25 17 8 6 3 8 8 4 9 28 2 226 344
Artificial Object 2 2 0 2 0 5 3 1 3 6 1 14 39

Total 3,043 2,240 2,013 1,823 1,556 1,436 1,343 1,219 1,087 1,046 987 947 18,740

Habitat map
Habitat maps are useful as they summarise the geological and ecological patterns ob-
served in a seafloor region. Figure 4.12 shows the habitat map obtained by plotting
the semantic clusters generated by the proposed method. Figure 4.12b shows the result
with the highest NMI score (C8 in Table 4.6), and Figure 4.12a is the clustering result
for the same pre-processing steps but without the georeference regularisation (C4 in
Table 4.6). Comparison with the distribution of ground truth in Figure 4.2b illustrates
that the habitat map in Figure 4.12b can identify areas corresponding to categories such
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TABLE 4.8: Precision, recall and F1-score for the clustering result using C8 in Table 4.6.
The same cluster merging as in Figure 4.11 is applied. The total accuracy across all
categories is 0.56.

Category Precision Recall F1-score
Rock 0.68 0.59 0.63
Sand 0.68 0.59 0.63

Carbonate 0.21 0.30 0.25
Shell Fragment 0.41 0.44 0.43
Bacterial Mat 0.61 0.85 0.71

Cable, Artificial Object 0.25 0.63 0.36

as ‘Bacterial Mat’, ‘Shell Fragment’, and ‘Cable’ more effectively than the habitat map
in Figure 4.12a. Since these categories have geographic distribution patterns larger
than the footprint of an image, the proposed georeference regularisation is effective at
extracting the features that are representative of these categories.

Discussion
The clustering result and the following investigation in this section reveal the effec-
tiveness of metadata introduction to representation learning. The importance of colour
correction is also demonstrated. The key findings in this section can be summarised as
follows:

• Autoencoders implemented using deep convolutional neural networks form an
effective and generic method to learn features in seafloor visual imagery.

• The use of the soft assumption based autoencoder training leads to a factor of
two improvement in the retrieval of information from the seafloor images anal-
ysed. This includes geomorphological and ecological patterns that occur on spa-
tial scales larger than a single image frame.

• Correction of colour information in seafloor imagery using physics based tech-
niques improves information retrieval rates by more than 20 % when the georef-
erence regularisation is used.

• Non-parametric Bayesian unsupervised clustering can be implemented directly
on features learnt by the proposed autoencoder for effective semantic interpreta-
tion and visualisation of spatial patterns in seafloor visual mapping data.
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‘

(A) Without georeference regularisation (C4 in Table 4.6)

(B) With georeference regularisation (C8 in Table 4.6)

FIGURE 4.8: t-SNE visualisation of the latent representation h for the ground truth.
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FIGURE 4.9: Representative samples of each cluster (C8 in Table 4.6).
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FIGURE 4.10: Visualisation of the sizes of each cluster (C8 in Table 4.6) using a tree-
map representation. The same colours as Figure 4.9 are assigned for each cluster and
the areas are proportional to the number of image patches in each cluster.

FIGURE 4.11: Confusion matrix between ground truth categories and the unsuper-
vised clustering result using C8 in Table 4.6. Some clusters and ground truth categories
are manually merged based on the appearance of representative images. The values
in the matrix are normalised, and diagonal elements correspond to the recall values in
Table 4.8.
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(A) Without georeference regularisation (C4 in Table 4.6)

(B) With georeference regularisation (C8 in Table 4.6)

FIGURE 4.12: Habitat maps based on unsupervised clustering result. The clusters
corresponding to ‘Bacterial Mat’ (‘J’), ‘Shell Fragment’ (‘H’) and ‘Cable’ (‘L’) appear
clearly in Figure 4.12b. The results demonstrate that the proposed georeference regu-
larisation enhances clustering performance over wide spatial distributions.



4.3. Unsupervised interpretation for scene understanding 81

4.3.2 Representative image identification

Method and dataset
In this section, the representative image identification method proposed in section 3.4.2
is demonstrated. First, the representations of images in Hippolyte Rocks dataset (sec-
tion 4.1.3) learnt by the soft assumption based autoencoder (section 3.2) is used for the
demonstration. The horizontal location and depth are exploited as metadata (corre-
sponding to configuration (iv) in Table 4.4). Then the representative images of Tasma-
nia dataset (section 4.1.2) are identified based on the representations learnt by the hard
assumption based contrastive learning (section 3.3).

Result (soft assumption)
Figure 4.13 shows the automatically selected representative images, overlaid on the
representations of Hippolyte Rocks dataset using a t-SNE visualisation (Maaten and
Hinton, 2008). In Figure 4.13a, k-means clustering is applied to the acquired latent
representations, and the images closest to each of the k centroids are selected as repre-
sentative images. Here, k=8 which is automatically determined based on the elbow-
method (Satopaa et al., 2011) is adopted. In Figure 4.13b, the hierarchical k-means clus-
tering is applied to identify a further k′=3 within each original cluster. This allows for
representation of the range and sequential transitions of seafloor scenes. The results
show that a relatively small number of representative images automatically identified
by the system can efficiently describe the variety of scenes found in a dataset consist-
ing of more than 30k images, including representative examples of classes with a small
population. This is valuable for remote transmission of exemplary data over the lim-
ited bandwidths available using long-range underwater acoustics communications, or
global communication satellites when platforms are at the water surface. Represen-
tative images may also benefit low-shot training of supervised and semi-supervised
classifiers.

Result (hard assumption)
Figure 4.14 shows the representative images of Tasmania dataset (section 4.1.2) selected
by three different methods, e.g. (a) Balanced, where the representatives are selected so
that all classes are equally included in number (similar to the training data selection in
section 4.2.1), (b) Random, where the representatives are randomly selected without any
constraint and (c) H-kmeans, where the identification method proposed in section 3.4.2
is applied. For representation learning, the hard assumption based contrastive learn-
ing (section 3.3) is applied with the same configuration as the experiment in section 3.3.
The representatives in each selection strategy are overlaid on the latent representation
obtained by the proposed hard assumption based contrastive learning method. t-SNE
(Maaten and Hinton, 2008) is applied for visualisation. In this figure, M=30 images are
shown for ease of visualisation, where the background points show the image repre-
sentations that are not selected. The colour of the points and selected image borders
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(A) k-means clustering (k=8).

(B) Hierarchical k-means clustering (k=8 and k′=3).

FIGURE 4.13: Representative image identification from the Hippolyte Rocks dataset.
The t-SNE latent representation learnt by the proposed method for both horizontal
location and depth regularisation, i.e. configuration (iv) in Table 4.4. Representative
images are selected based on k-means clustering for a) and hierarchical k-means clus-
tering for b). The colours represent the classes determined by R-SVM and are used for
illustrative purposes only.
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illustrate the human class annotation of each annotated image using the same colour
key as Figure 4.3. The visualisation shows that random selection strategy fails to se-
lect images from the central region of the latent representation space that is relatively
sparsely populated. On the other hand, H-kmeans selects images evenly from the dif-
ferent regions of the latent representation. The balanced selection strategy also fails to
sample images from several regions. This is because they are mapped to different re-
gions of the latent space as more densely populated regions that have the same class.
These undersampled regions of the latent space can be easily confused by a classifier,
where the final assigned class will depend on the distribution of nearby training sam-
ples.

Discussion
The representative image identification can be applicable to the latent representations
obtained by both the soft assumption based autoencoder and the hard assumption
based contrastive learning. The acquired latent representations allow representative
images of large datasets with imbalanced class distributions to be automatically identi-
fied in a fully unsupervised way, which can help achieve an efficient understanding of
underwater scenes in real seafloor survey scenarios.
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(A) Balanced (B) Random

(C) H-kmeans

FIGURE 4.14: Comparison of representative image identification strategy on the Tas-
mania dataset. M = 30 images are selected by (a) Balanced, (b) Random and (c) H-
kmeans strategy. The selected images are shown on t-SNE visualisation of latent repre-
sentations obtained by the hard assumption based contrastive learning. While Random
sampling fails to select from the centre area, H-kmeans successfully select the images in
the relatively sparse areas so that a more informative training dataset is gained. Simi-
larly, balanced fails to sample regions of the latent space where there are more densely
populated regions of the same class. In these situations, class assigned by the classi-
fier will depend on the class of training examples that happen to be nearby. The same
colour scheme as Figure 4.3 is applied.
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4.4 Efficient alignment with human interests

In this section, the pipelines for aligning the representation learning with human in-
terests proposed in section 3.5 are evaluated on the seafloor imagery datasets. In sec-
tion 4.4.1, the content based retrieval pipeline proposed in section 3.5.1 is evaluated
on Southern Hydrate Ridge dataset (section 4.1.1). In section 4.4.2, the soft assump-
tion based autoencoder (section 3.2) is trained on Southern Hydrate Ridge dataset (sec-
tion 4.1.1) and the learnt representations are used for the proposed semi-supervised
pipeline (section 3.5.2). In section 4.4.3, the hard assumption based contrastive learn-
ing (section 3.3) is performed on Tasmania dataset (section 4.1.2), then the outputs are
exploited for the proposed semi-supervised pipeline.

4.4.1 Content based retrieval

Method and dataset
This section evaluates the effectiveness of the proposed domain knowledge introduc-
tion to content based retrieval in a seafloor imagery dataset (section 3.5.1). Southern
Hydrate Ridge dataset (section 4.1.1) is used for the experiment, and the represen-
tations are learnt by the proposed soft assumption based autoencoder (section 3.2)
trained in the same configuration as the experiment in section 4.3.1.

The performance of content based retrieval using Euclidean distance and cosine simi-
larity are quantitatively evaluated by taking the average values of top-10 retrieval ac-
curacy, defined as the rate of images retrieved with the same ground truth category as
the retrieval image for each ground truth category (Wu et al., 2013). Representation
learning is achieved by the autoencoder trained with/without the proposed metadata
regularisation loss function and with/without rescaling. These correspond to autoen-
coders labelled C4, C5, C8 and C9, respectively in Table 4.6 in section 4.3.1.

Result
The results in Table 4.9 show that the proposed georeference regularisation improves
the performance in every category, with an overall increase in accuracy across all cat-
egories from 47 % to 59 %. The largest improvement is for ‘Cable’, from 10 % to 15 %
accuracy without the georeference regularisation to a maximum value of 53.7 % with
the regularisation. Although rescaling does not influence the accuracy of most cate-
gories, the accuracy of ‘Cable’ improves noticeably from 40 % to 52 %. The results in-
dicate that rescaling is only effective when learning the representations of objects with
a fixed size, which are in this case ‘Cable’ and ‘Artificial Object’, improving their ac-
curacy scores by a factor of 1.39 and 1.16 when rescaling is applied, while the other
categories that have a large amount of natural variability show no improvement. This
fact shows an important characteristic of the autoencoder, which prioritises meaningful
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features automatically. If scale variant features are found to be better descriptors, then
the autoencoder will prioritise this property. The results show that for some categories
such as ‘Cable’ and ‘Artificial object’, physical scaling can pose benefits. For many cat-
egories, the difference is negligible, illustrating that the autoencoder does not need to
make such explicit assumptions.

Regarding the similarity metrics, the proposed loss function for soft assumption as-
sumes that the similarities of h are related to a t-distribution, which is derived from
Euclidean distance (

∥∥hi − hj
∥∥). However, interpretation of the autoencoder learnt la-

tent space is challenging, and the results indicate that Euclidean distance and cosine
similarity are almost equivalent for the dataset used in this study.

TABLE 4.9: Mean top 10 accuracy of search in each category (%). ‘l2’ and ‘cos’ in the
similarity metric correspond to the Euclidean distance and cosine similarity, respec-
tively. As with the clustering result in Table 4.6, the proposed georeference regular-
isation significantly improves the accuracy scores, especially for ‘Cable’ which has a
characteristic spatial distribution.

Condition in Table 4.6 C4 C5 C8 C9
Georeference Regularisation - - - - X X X X

Rescaling - - X X - - X X
Similarity Metric l2 cos l2 cos l2 cos l2 cos

Rock 53.1 51.5 52.8 52.6 66.6 66.6 63.2 65.5
Sand 56.5 57.0 55.2 55.3 63.9 64.9 63.9 62.0

Carbonate 16.7 16.1 15.1 15.0 27.8 27.3 25.6 24.1
Shell Fragment 19.0 18.8 16.0 15.7 43.2 41.2 39.3 38.7
Bacterial Mat 61.1 62.9 58.3 58.2 71.0 72.1 69.8 70.8

Cable 11.0 11.8 15.6 13.5 40.2 39.7 51.3 53.7
Artificial Object 3.8 4.4 4.1 4.4 4.9 4.1 6.4 6.7

NMI in Table 4.6 (for Reference) 0.10 0.10 0.23 0.22

Identifying the location of similar images is important to interpret spatial patterns of
interesting targets. In comparison to clustering, which interprets the representative
patterns in the dataset, content based retrieval can generate target specific distribution
maps using the same latent space. This can be useful when specific targets within a
cluster are of interest, or where the target is rare and so does not form an independent
cluster. Since the retrieval target is known, the autoencoder and similarity metric used
can be tailored to the type of object, where for human-made objects such as ‘Cable’ and
‘Artificial Object’, the georeference regularisation with rescaling and cosine similarity
provided the best performance.

Similarity map
The similarity maps in Figure 4.15 show some results of content based retrieval and
the locations of images that have a similar appearance. Figure 4.15a shows the result
of a bacterial mat image search. On the whole, the areas with high similarity in the
similarity map show similar distributions to the ‘Bacterial Mat’ in the ground truth
(Figure 4.2b). Since the similarity scores vary continuously, the result is useful for
analysing small differences between images which are categorised as ‘Bacterial Mat’.
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Figure 4.15b shows the result when a typical image of a cable is chosen as a query.
The content based retrieval successfully extracts cables deployed in this area, and the
similarity map shows the distribution of cables more clearly than the clustering result
(Figure 4.12b). Features that are small, more sparsely distributed and few in numbers
such as seafloor infrastructures and crabs are less likely to form independent clusters
using the non-parametric Bayesian method (Figure 4.9). However, relatively minor
categories such as these can be effectively found using content based retrieval, where
Figure 4.15c and 4.15d show the different distributions in this area. These similarity
maps can form a useful tool for rapidly understanding complex, multi-parameter spa-
tial patterns in georeferenced imagery. An important point is that the distributions in
Figure 4.15 are spread widely and are not limited within the neighbouring area of the
query images. This fact confirms that the proposed loss function for the soft assump-
tion allows meaningful features to be extracted from the images themselves without
over-regularising the results of the content based retrieval. Looking more closely at
Figure 4.15d shows that some of the results of the search do not include crabs, but in-
stead contain other types of benthic organisms. To obtain a more precise result for these
categories, supervised learning based approaches are more appropriate (Walker et al.,
2019). The proposed content based retrieval may be useful to reduce the effort required
for manual annotation by filtering out candidate images that are more likely to contain
the targets of interest.

Discussion
The content based retrieval results show that the retrieval accuracy is significantly im-
proved by exploiting horizontal location in autoencoder training. Also, it is revealed
that correction for spatial scale and distortion of images prior to representation learn-
ing improves the performance against artificial structures on the seafloor. However, for
natural objects that exhibit significant variability in size and shape, the gains in perfor-
mance achieved through scale correction are minimal.
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(A) Bacterial mat

(B) Cable

(C) Infrastructure

(D) Crab

FIGURE 4.15: Content based retrieval result. Red frame images are query and yellow
frame images are Top 5 similarity images. The maps on the middle show the similarity
distributions between the queries and all the other images in the dataset. The red
circles in the similarity maps show the location of the query images. The plots on the
right show similarity values corresponding to all images in the dataset in the latent
space, visualised by t-SNE.
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4.4.2 Semi-supervised learning (soft assumption)

Method and dataset
This section evaluates the proposed semi-supervised interpretation (section 3.5.2). The
representations are learnt by the proposed soft assumption based autoencoder (sec-
tion 3.2) trained in the same configuration as C9 in Table 4.6 in section 4.3.1 and 4.4.1,
i.e. horizontal location is exploited as metadata and both the light attenuation cor-
rection and rescaling is applied to the images. The Southern Hydrate Ridge dataset
(section 4.1.1) is used for the training and test. The ‘Cable’ class and ‘Artificial Object’
class are merged into a single ‘Artificial Object’ class in this experiment, so there are six
ground truth classes in total.

Classification with conventional classifiers
First, the performance of conventional (non-CNN) classifiers is investigated in order to
generate effective pseudo-labels from a small subset of annotated examples. Five well
established classifiers; k-NN with k = 1 (1-NN), Random Forest, SVM with two kernel
types (Linear and RBF ) (Friedman et al., 2001) and Gaussian Process (Williams and Ras-
mussen, 2006), are applied to the latent space mapped by an autoencoder with the soft
assumption based regularisation that has been trained on all available image patches.
The results are compared to those with a standard convolutional autoencoder without
the proposed metadata based regularisation. To evaluate the performance with a small
number of annotations, an adjusted cross-validation is applied. First, half (i.e. 9370)
of the annotated image patches are randomly selected as a test dataset, preserving the
class distribution of the entire dataset. Then M images are selected from the remaining
patches based on random selection, k means based selection, and the proposed hierar-
chical k means based selection. Following the equation defined in section 3.4.2, k = 20
is used for both k means and hierarchical k means based selection. In k means based se-
lection, M/20 images are selected randomly from each cluster. In hierarchical k means
based selection, the second stage k means is applied to each cluster to find M/20 sub-
cluster centroids, and the images closest to each centroid are selected for annotation.
Training and testing are executed ten times for each configuration with M = 20, 40, 100,
200, 400, 1000 and 9370. When M is 9370, all available training images are selected and
so the sampling method used becomes irrelevant.

Table 4.10 shows the mean and SD of the F1-scores for a ten-time cross-validation with
each configuration (A1 - A20). The data selection strategy has a greater impact on per-
formance than the choice of classifier, with all classifiers benefiting significantly from
hierarchical k means prioritisation. The relative gains in accuracy compared to ran-
dom selection are especially large for small values M (20, 40 and 100), confirming the
importance of the data selection strategy when training with a small number of anno-
tations. For all values of M, the combination of the soft assumption based autoencoder
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TABLE 4.10: F1-scores (macro averaged) mean and SD (%) of the classification result
with conventional classifiers

Config.
Label

Rep.
Learning

Data
Selection

Classifier
Number of Annotations (M)

20 40 100 200 400 1000 9370
A1 with random 1-NN 31.8±9.1 40.1±3.0 44.0±4.5 47.6±3.3 48.9±3.1 50.6±1.5 54.0±0.5
A2 soft Random Forest 27.6±6.8 38.3±4.1 43.0±4.5 48.7±4.9 51.8±3.3 56.4±1.4 61.0±0.3
A3 assumption Linear SVM 33.8±9.6 43.5±3.9 48.2±4.4 52.6±3.4 54.3±2.5 56.3±1.9 60.0±0.5
A4 RBF SVM 31.6±7.6 42.4±3.7 48.4±3.7 54.4±3.3 57.4±3.7 60.2±0.8 63.3±0.7
A5 Gaussian Process 29.6±5.2 39.1±6.2 46.1±3.9 47.2±5.2 52.5±2.2 56.9±2.0 63.2±0.6
A6 k means 1-NN 41.6±5.1 46.2±5.2 47.2±4.3 50.8±1.7 51.0±1.9 52.5±1.1 54.0±0.5
A7 Random Forest 33.7±5.7 43.1±5.2 49.2±4.0 54.7±1.2 56.9±1.6 59.1±0.7 61.0±0.3
A8 Linear SVM 43.2±5.4 47.9±5.8 51.5±4.2 56.6±1.3 57.1±1.4 59.9±1.0 60.0±0.5
A9 RBF SVM 42.0±6.0 50.7±5.3 55.1±4.4 59.2±1.5 60.5±1.3 62.4±0.8 63.3±0.7

A10 Gaussian Process 42.1±6.8 45.8±6.8 51.8±2.5 55.1±1.5 57.2±1.6 60.0±0.8 63.2±0.6
A11 H-k means 1-NN 46.9±7.2 48.6±4.3 48.9±2.9 52.2±2.4 52.3±1.7 53.0±0.8 54.0±0.5
A12 Random Forest 42.1±7.4 47.9±3.9 51.8±2.5 55.8±1.5 57.6±1.5 59.3±0.9 61.0±0.3
A13 Linear SVM 47.4±8.1 50.9±4.7 53.6±3.0 56.8±1.6 58.3±1.2 60.8±0.9 60.0±0.5
A14 RBF SVM 48.0±8.3 54.8±2.3 56.9±2.0 60.1±1.0 61.0±1.0 62.7±0.7 63.3±0.7
A15 Gaussian Process 44.5±7.7 51.4±3.8 55.1±2.3 56.1±2.1 59.5±1.2 61.2±1.1 63.2±0.6
A16 without H-k means 1-NN 25.5±1.3 30.5±1.5 33.2±1.0 33.8±1.2 35.6±1.4 36.6±0.8 38.3±0.5
A17 soft Random Forest 24.4±1.7 29.0±3.0 32.0±1.6 33.6±2.2 35.6±1.1 39.1±0.8 41.1±0.4
A18 assumption Linear SVM 10.0±5.6 8.3±4.5 6.0±3.4 8.5±8.5 6.7±2.6 10.9±3.1 34.9±0.7
A19 RBF SVM 21.7±3.4 28.2±2.6 29.6±4.0 35.0±1.8 38.3±1.5 42.0±0.9 44.9±0.6
A20 Gaussian Process 9.7±0.0 9.7±0.0 9.7±0.0 10.3±1.4 14.9±1.3 18.9±0.8 21.5±0.3

Classifiers are applied to the latent representations obtained by the soft assumption
based autoencoder and a standard convolutional autoencoder. Three data selection
strategies and five classifiers are validated on the Southern Hydrate Ridge dataset with
different numbers of annotations (M). The combination of the soft assumption based
autoencoder, hierarchical k means (H-k means) based data selection and SVM with RBF
kernel performs the best for all M. When M = 9370, all images other than the test
images are selected as the training images regardless of the data selection strategy. Bold
and bold italics indicate the best and next best performer for each value of M.

pre-training and hierarchical k means based data selection with a RBF kernel SVM (con-
figuration A14) performs the best among the tested cases. The linear kernel SVM and
Gaussian Process generally perform better than 1-NN and Random Forest, where the
linear SVM tends to be better for small values of M and Gaussian Process better for
larger M.

The standard deep learning autoencoder (configuration A16 - A20) is far less effective
than the autoencoder based on the soft assumption. This is an expected result since
the experiment result in section 4.3.1 has already shown that the autoencoder achieves
poor clustering performance without the georeference regularisation, and the underly-
ing assumption behind the data selection strategies investigated here is that effective
clustering can be achieved. The same trend as Table 4.10 is observed for three aerial
imagery datasets, where the results are shown in Appendix A. This demonstrates that
the proposed location guided latent representation learning and representative image
selection are effective for environmental applications across different types of georefer-
enced image datasets and domains.

Classification with CNN (CNN architecture comparison)
This section evaluates the proposed semi-supervised learning pipeline’s performance
using CNNs. The M training images and test images are selected in the same way as the
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experiment for Table 4.10. When M is smaller than the total number of available train-
ing data, data augmentation, pseudo-labelling (PL) or probabilistic pseudo-labelling
(PPL) are applied so that the number of training images at each epoch is the same as
the total number of the training images to allow for fair comparison of the results.

The proposed semi-supervised training method can be applied to any CNN architec-
ture. Here, The impact of using the following three well established CNN architectures
are investigated on classification accuracy: AlexNet, ResNet18 and ResNet152 (He
et al., 2016). The accuracy of each configuration is evaluated based on the mean F1

(macro averaged).

Each CNN is pre-trained using ImageNet, where experiments are performed with all
layers and only last layer training on the Southern Hydrate Ridge dataset following the
network-based transfer learning process described in Tan et al. (2018). Since AlexNet is
used as the basic architecture of the autoencoder implemented in this work, its encoder
part can be regarded as an AlexNet classifier where the weight values have been opti-
mised to describe all the available images in the target dataset through latent represen-
tation learning. The performance of the soft assumption based autoencoder pre-trained
CNN is compared to traditional ImageNet pre-trained CNNs to assess the effectiveness
of embedding additional information acquired from metadata.

The following parameters are experimentally determined: Mini-batch sizes of 128 sam-
ples are used for AlexNet (all layer and final layer training) and ResNet18 (all layer
training), 32 for ResNet18 (final layer training) and 16 for ResNet152, Adam (Kingma
and Ba, 2014) is used as the optimiser and the learning rate is set to 1e-5 except for
ResNet18 (final layer training) where it is set to 1e-4, and the number of training epochs
is 50 for all configurations.

Table 4.11 shows the results for configuration B1 to B8. As expected, the accuracy im-
proves when a larger number of annotations are used to train each CNN architecture.
Overall, B4, which corresponds to AlexNet pre-trained with the soft assumption where
only the last layer is trained on the Southern Hydrate Ridge dataset, shows the best per-
formance except for when M = 40 and 9370. The performance gap between B4 and B8,
where all the layers are trained on the Southern Hydrate Ridge dataset, is potentially
caused by overfitting due to high model flexibility of B8. Though B8 outperforms B4
for M = 40, the difference in performance here is marginal. B8 shows a similar level of
accuracy to B5, where ImageNet is used for pre-training instead of the the soft assump-
tion based autoencoder, indicating that the advantage of the pre-training is lost when
all the layers are trained. When M = 9370, B6, corresponding to the case where all
the layers of an ImageNet pre-trained ResNet18 are trained on the Southern Hydrate
Ridge dataset, shows the best accuracy. This suggests that ResNet18’s deeper archi-
tecture and use of residual blocks allows for better performance than AlexNet when
a sufficient number of training examples is available. However, B4 is the best option
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TABLE 4.11: F1-scores (macro averaged) mean and SD (%) of the classification result
with CNN Trained by standard supervised learning, active learning and the proposed-
supervised learning.

Config.
Label

CNN
Pre-

training
Trained
Layer

Data
Selection

Number of Annotations (M)
20 40 100 200 400 1000 9370

B1 AN IN last random 36.6±5.1 38.0±7.1 50.2±5.8 57.7±1.5 59.4±1.7 59.7±1.1 60.5±0.9
B2 RN18 IN last random 36.3±6.4 42.3±3.8 48.3±5.2 53.4±5.5 57.7±2.6 60.3±2.7 62.8±0.7
B3 RN152 IN last random 34.9±7.0 43.4±5.0 49.7±6.6 54.2±3.8 58.4±2.4 58.8±2.6 61.4±1.1
B4 AN Proposed last random 39.2±7.4 43.2±6.3 51.2±5.3 58.3±1.9 62.0±2.5 65.8±0.9 67.7±0.7
B5 AN IN all random 31.1±7.5 39.2±6.7 48.1±5.9 53.8±3.8 57.3±2.2 60.5±2.0 68.6±0.7
B6 RN18 IN all random 34.1±7.0 38.5±9.9 50.7±6.4 54.9±5.1 58.5±3.1 61.9±1.1 69.4±0.6
B7 RN152 IN all random 35.3±6.4 38.2±8.2 50.3±5.8 51.7±3.3 57.5±2.0 59.1±1.8 64.9±1.1
B8 AN Proposed all random 32.9±7.0 44.6±4.0 44.9±5.8 54.7±3.5 57.7±2.7 60.1±1.4 66.3±0.9
C1 AN Proposed last random+LC 30.5±6.2 34.9±6.7 47.2±6.6 57.0±3.8 62.0±1.8 63.7±0.8 65.5±1.1
C2 AN Proposed last random+margin 32.9±5.6 40.3±4.4 49.6±9.1 55.8±7.4 60.5±2.3 61.8±1.4 64.8±1.5
C3 AN Proposed last random+entropy 36.9±7.9 41.3±8.7 53.4±4.9 58.5±3.5 62.0±1.5 63.7±1.3 66.2±0.5
C4 AN Proposed last k means+LC 49.6±4.7 53.7±5.4 56.5±4.3 59.6±2.0 62.2±1.8 62.8±1.5 65.6±1.0
C5 AN Proposed last k means+margin 48.9±4.2 52.5±2.7 56.3±2.7 57.8±1.9 60.5±1.2 61.7±1.4 64.2±1.4
C6 AN Proposed last k means+entropy 46.6±5.2 49.8±5.4 55.7±3.4 58.3±3.4 62.5±1.3 63.3±1.2 65.6±0.6
C7 RN18 IN all random+LC 33.4±7.8 43.4±6.7 53.1±4.5 56.8±2.2 58.6±1.2 59.4±0.9 63.5±0.7
C8 RN18 IN all random+margin 38.2±4.2 42.9±6.4 52.8±5.8 54.3±2.9 57.3±2.0 58.2±1.8 63.9±0.5
C9 RN18 IN all random+entropy 35.9±6.5 47.7±6.2 55.2±2.1 56.2±3.7 57.6±1.8 59.1±1.3 63.6±0.8
C10 RN18 IN all k means+LC 50.3±5.7 53.5±4.8 56.3±2.0 56.4±2.3 59.1±1.3 59.5±1.4 64.0±0.9
C11 RN18 IN all k means+margin 49.1±6.2 50.8±6.1 53.4±4.9 54.5±2.9 57.3±1.1 58.5±1.0 63.7±0.5
C12 RN18 IN all k means+entropy 49.2±7.0 52.1±5.7 55.4±2.9 57.5±2.9 59.0±2.1 60.3±1.3 63.6±0.7
D1 AN Proposed last k means 43.6±4.0 51.4±4.8 56.7±2.9 60.9±2.0 64.5±1.0 66.0±0.9 67.7±0.7
D2 AN Proposed last H-k means 44.9±6.4 53.2±4.2 58.1±2.2 61.5±1.8 64.4±1.1 66.9±0.8 67.7±0.7
D3 AN Proposed last H-k means+PL 50.4±8.3 57.8±3.0 60.4±2.6 62.8±1.0 62.7±1.2 64.7±0.8 67.7±0.7
D4 AN Proposed last H-k means+PPL 31.3±2.7 40.1±2.8 52.0±2.6 57.2±1.6 62.3±0.9 65.4±0.8 67.7±0.7
D5 RN18 IN all k means 45.5±8.0 49.6±7.2 55.4±3.9 57.2±2.3 59.5±1.6 62.0±1.1 69.4±0.6
D6 RN18 IN all H-k means 44.7±8.1 53.0±5.3 57.9±1.9 59.3±1.7 59.2±2.7 62.1±1.5 69.4±0.6
D7 RN18 IN all H-k means+PL 51.9±7.6 59.1±2.7 60.4±2.4 62.9±0.7 64.2±1.0 64.8±0.8 69.4±0.6
D8 RN18 IN all H-k means+PPL 46.2±3.2 51.2±2.5 55.1±2.4 58.9±1.3 52.3±1.5 66.4±1.1 69.4±0.6

The proposed method (D3 and D7) outperforms other configurations when M ≤ 200.
When M = 9370, all available training images are used making the selection strategy
irrelevant. Bold and bold italics indicate the best and next best performer for each value
of M.

overall for M ≤ 1000, which is significant since this work focuses on efficient training
with a small number of annotated examples.

The comparison between B1 to B3 (last layer only) and B5 to B7 (all layer) indicates
that training only the last layer limits the performance of each architecture for large
values of M, indicating that there is a significant difference between the low-level and
mid-level features of ImageNet and the Southern Hydrate Ridge dataset.

In the proposed pipeline, the number of training examples can be considered large due
to the use of pseudo-labels. Therefore, B6 is chosen to be investigated, as it demon-
strated the best capacity for learning among B1 to B8, and B4 is also examined since it
is the most efficient learner for M ≤ 1000.

Classification with CNN (Active learning comparison)
Active learning methods attempt to improve learning efficiency by training classifiers
on a subset of annotated samples, and proposing which samples should be annotated
next based on their prediction uncertainty (Settles, 2009). CNNs are well suited to this
iterative process of prediction and prioritised annotation as their outputs are already
conditional probabilities against labels and so uncertainty metrics can be easily derived.
Common strategies for uncertainty based prioritisation include Least Confidence (LC)
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(A) Number of Annotations (M) - F1 (macro-average) mean.

(B) Number of Annotations (M) - F1 (macro-average) SD.

FIGURE 4.16: Comparison of classification performance investigated in section 4.4.2.
Mean and SD of F1 (macro-average) values against each M are shown. Representative
configurations are chosen from Table 4.10 and Table 4.11. The proposed pipeline (D3
and D7) outperforms others for M ≤ 400. It is notable that the proposed pipeline
always outperform a conventional classifier (A14, RBF SBM) by several percent.

sampling, margin sampling and entropy based sampling, all of which have previously
been demonstrated to be effective for seafloor imaging applications (Friedman et al.,
2011).

Conventional active learning starts the iterative training process with a randomly se-
lected subset of samples. However, its performance is sensitive to this initial selection
and so whether an initial selection of samples nearest to the centroids of the k means
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clusters in the latent space obtained by the soft assumption based autoencoder im-
proves their performance is investigated. Subsequent batches of samples (20 when
M ≤ 1000 or 1000 when M > 1000) are selected based on the active learning query
strategies and iteratively added to the subset of annotated samples for training. A
training epoch of 10 was chosen so that the total number of epochs is comparable to the
standard supervised learning results (B1-8) and proposed methods (D1-D8).

In this experiment, two different CNN architectures (AlexNet and ResNet18) are as-
sessed, and compare the performance of three well established active learning iterative
sampling techniques (LC sampling, margin sampling and entropy based sampling).
The active learning process is initialised using two different initial subset selection
methods. The first initial subset is randomly sampled, corresponding to traditional
active learning workflows. This is compared to active learning initialised by a k means
centroid based sample initialisation method that takes advantage of the latent repre-
sentations learnt during pre-training.

Configuration C1 to C12 in Table 4.11 show the accuracy scores for CNNs trained us-
ing the different configurations for active learning. Comparing the proposed method
pre-trained AlexNet (C1 to C3) with their transfer learning counterpart (B4), the active
learning has reduced accuracy. However, for ResNet18, the accuracy increases when
active learning is applied (B6 and C7 to C9). It is noticeable that for larger M (partic-
ularly M = 9370), active learning degrades performance, possibly due to overfitting
of CNN weights at an early phase of the iterative learning process, causing them to
remain trapped in local minima. This is because the CNN is trained sequentially on
discrete subsets of data, where the stored weights are used to initialise the optimisation
of the next subset to limit the total number of training epochs required (Zhou et al.,
2017). Although this issue of overfitting is potentially mitigated by resetting the CNN
weights between each training subset (Gal et al., 2017), this requires a large number
of training epochs, making it impractical for use in domains that require per-dataset
training.

The use of k means centroids for initial sample selection significantly improves perfor-
mance (C4 to C6 and C10 to C12), where the gains are largest for small numbers of
training examples, i.e. M ≤ 100. Although this advantage is lost as M increases, it does
not cause any significant degradation in performance compared with the random ini-
tial subset selection. The difference between the active learning strategies is marginal
for both the random and k means initial selection. Although different hyperparameters
(e.g. number of epochs for each iteration) may improve active learning performance,
optimisation of these is outside the scope of this work since there are no systematic
methods available to determine them.

Classification with CNN (Data selection strategy comparison)
Four data selection strategies; k means, hierarchical k means, and hierarchical k means
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with pseudo-labelling or probabilistic pseudo-labelling, are validated in this section.
The previous section already confirmed that hierarchical k means based data selection
is effective for small values of M when combined with conventional non-CNN classi-
fiers. In order to allow for fair comparison, the number of training samples used by
the CNN at each training epoch is fixed to the total number of available labelled train-
ing image patches (i.e. 9370 in this experiment). For configurations where all available
labelled image patches are used in the training (i.e. all pseudo-label and probabilis-
tic pseudo-label configurations and where M = 9370 without pseudo or probabilistic
pseudo-labelling), each original labelled training image patch is used once, and these
samples are individually subjected to data augmentations that randomise orientations,
flipping and position offsets at each training epoch before being used by the CNN. For
configurations where the number of labelled image patches used in the training is less
than available labelled training image patches (i.e. M < 9370 with no pseudo or prob-
abilistic pseudo labels), the selected original images are sampled multiple times (i.e.
approximately 9370/M times for this experiment) so that a fixed number of labelled
training samples are provided to the CNN, where each sample is subjected to random
data augmentation before being used by the CNN at each training epoch. In Lee (2013),
pseudo-labels are determined by k means clustering result, corresponding to 1-NN in
Table 4.10. However, Table 4.10 shows that RBF kernel SVM consistently achieves bet-
ter performance when estimating class decision boundaries and so RBF kernel SVMs
are used to assign predictive pseudo-labels in this work. Although the Gaussian Pro-
cess classifier described in section 3.5.2 did not perform as well as the RBF kernel SVM,
the prediction uncertainty may be useful for CNN training and so experiments are also
performed using these outputs as probabilistic pseudo-labels.

Configuration D1 to D4 in Table 4.11 shows the performance metrics for each data
selection strategy with the soft assumption pre-trained AlexNet CNN with last layer
training. D5 to D8 show the same comparison for ImageNet pre-trained ResNet18
CNN with all layer Southern Hydrate Ridge training. For both AlexNet and ResNet18,
the combination of hierarchical k means and pseudo-labelling achieves the best per-
formance for M ≤ 200. Comparing the cases with pseudo-labelling (D3 and D7) to
the cases without (D2 and D6) shows that pseudo-labelling consistently improves the
classification performance, where D7, which applies hierarchical k means and pseudo-
labelling to ResNet18, performs the best for M ≤ 200 among all the configurations in
Table 4.11. The accuracies achieved by D7 with M = 20, 40, 100 are similar to the met-
rics achieved for B1 to B4 with M = 200, 400, 1000, which have an order of magnitude
more annotations. In particular, B6 and D7 use the same CNN architecture, show-
ing that gains in learning efficiency can be attributed to the semi-supervised training
method, resulting in a significant reduction in human effort to achieve a similar level of
classification accuracy. Although the efficiency gains diminish as the number of human
annotations available for training increases, the proposed method never degrades the
CNN’s performance for an equal number of annotations. Another way to look at this
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is that the largest gains in learning efficiency are achieved when there is only a small
amount of human effort available for annotation tasks, where D7 with 40 prioritised
annotations reaches 85 % of the accuracy achieved by the best performing supervised
CNN, B6, trained using 9370 human annotations, which represents just 0.4 % of the
human effort. The data also shows that the the combination of hierarchical k means
and pseudo-labelling improves the repeatability between experiments under the same
conditions, which is an important attribute for practical application of automated data
interpretation.

Probabilistic pseudo-labelling outperforms pseudo-labelling only when M = 1000.
This indicates that meaningful probabilistic expression of pseudo-labels can only be
taken advantage of when a relatively large number of annotations are available. On
the other hand D2, where pseudo-labelling is not applied, shows the best accuracy for
M = 1000, and similarly D1 shows the best performance for M = 400 with D2 fol-
lowing it. This trend suggests that the soft assumption pre-trained AlexNet is effective
at describing the class boundaries when a sufficient number of annotated examples
can be provided for fine-tuning. The equivalent training approach for D5 and D6 does
not show this behaviour, indicating that this is a particular feature of using the soft
assumption pre-trained network. The advantages of the proposed method with hierar-
chical k means for prioritised sample annotation and pseudo-labelling using RBF kernel
SVM is significant for M ≤ 200 for both CNN architectures (i.e. D3 and D7).

CNN and conventional classifier comparison
Figure 4.16 compares the performance metrics of several representative configurations
in Table 4.10 and Table 4.11. The mean and SD values of the scores from ten repeat trials
for each configuration are shown in Figure 4.16a and Figure 4.16b, respectively. The
result under configuration A14 are shown as this is the best performing conventional
(i.e. non-CNN) classifier. For the CNN classifiers, configurations B4, B6, C7, C10, D3
and D7 are shown to demonstrate the effectiveness of the proposed pipeline compared
to other data selection strategies (random selection and active learning).

Overall, the CNNs trained with proposed pipeline (D3 and D7) outperform the con-
ventional classifier (A14) and the best performing CNN trained using active learning
(C7 and C10), except for M = 1000. The outputs of the A14 form the inputs to train
D3, where the soft assumption based autoencoder is used for pre-training the AlexNet
CNN. The improvement in performance shows that the CNN does not merely repli-
cate the class boundaries found in the annotations and the pseudo-labels, but learns
more general boundaries that discriminate the classes more accurately. ResNet18 (D7)
shows better performance than AlexNet (D3) when trained using the same outputs of
A14, indicating an ability to more accurately model complex class boundaries. This
was generally the case for all random selected training data and the proposed pipeline.
Comparing M = 1000 and M = 9370, the conventional classifier’s accuracy is not sig-
nificantly improved even though almost 10 times the number of annotations are used
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for training. On the other hand, the CNNs achieve statistically significant increases
from M = 1000 to M = 9370 in all cases. This supports the common understanding
that deep learning CNNs are a better option than conventional classifiers when large
training datasets are available, and that conventional classifiers are a reasonable option
when only a small number of annotations are available for training.

Active learning (C7 and C10) benefits from the metadata introduced autoencoder based
kmeans initialisation (C10), and shows better accuracy than standard training (B4 and
B6) for small M, but the performance degrades when M is large due to overfitting as
discussed previously. The proposed pipeline with prioritised annotation and pseudo-
labelling significantly outperforms active learning for all M and both CNN architec-
tures (D3, D7). Pseudo-labelling is more robust to overfitting than active learning since
variability within the dataset is fully represented as all the available images are used
for training.

Other factors that are important for practical application include the computational cost
and the requirements for human input. Compared with CNNs, conventional classifiers
require less time for training once latent representations are generated and annotations
have been made. In active learning, the three main steps; training with annotated sam-
ples, inference for prioritising samples without annotations and annotating by humans,
need to be repeated in sequence. This results in a large computational cost and also
leads to inefficiencies as human annotators are forced to work around classifier retrain-
ing at each iteration. On the other hand, the time investment needed for the proposed
pipeline is similar to conventional CNN training, since the unsupervised training and
autoencoder based sample prioritisation do not require any human input, and the com-
putation time for predicting pseudo-labels is negligibly small.

Per-class performance investigation
So far the macro-averaged F1-score has been used as a metric to compare the overall
performance of different classifiers. This is appropriate when all classes in a dataset
are assumed to be equally important. However, there are applications where this is
not the case, and in these scenarios it is more valuable to consider performance on a
per-class basis. Figure 4.17 and Figure 4.18 compare the per-class confusion matrices
for M values of 20, 40, 100 and 1000 for configurations B2 and D7. These represent
the outputs of the best performing network, ResNet18, trained using standard transfer
learning and the proposed semi-supervised pipeline, respectively. The values in each
confusion matrix are normalised by the number of ground truth annotations so that the
diagonal elements correspond to the recall value of each class. The confusion matrices
corresponding to the trials with the closest F1-score (macro-average) to the mean of
ten repetitions (Table 4.11) are chosen for each value of M. The values of zeros for
M = 20 and 40 in Figure 4.17 suggest no images corresponding to ‘Artificial Object’
were selected in the random selection used for training and so predictions could not be
made effectively for this class. On the other hand, Figure 4.18 shows that all six classes



98 Chapter 4. Result

in the dataset are predicted for all M, illustrating the advantage of using hierarchical
k means based data selection to avoid minority classes from being overlooked even
when the total number of annotated images is small.

Comparing the habitat maps generated using the classification results to the ground
truth annotations (Figure 4.2b) shows that the random data selection (Figure 4.17) re-
quires a larger number of training samples M to capture the different spatial distri-
bution patterns of each class. Using the proposed semi-supervised training method
(Figure 4.18) results in more consistent performance from a per-class perspective, and
provides a better approximation of the ground truth class distribution patterns even for
small values of M. The consistent performance for different numbers of input training
data is an important attribute for practical application since the annotation resource
available for different datasets is likely to vary. These points favour the proposed
method over random sampling approaches that are more sensitive to the number of
available annotations, and require larger amounts of training data to achieve similar
performance.

Discussion
The proposed semi-supervised pipeline with the soft assumption based autoencoder
for representation learning is examined in this section. The experiment results on
Southern Hydrate Ridge dataset consisting of more than 18,000 human annotations
demonstrate that:

• The proposed semi-supervised learning pipeline can achieve classification accu-
racy equivalent to naively trained CNNs with an order of magnitude fewer hu-
man annotations (i.e. tens to hundreds, as opposed to thousands). The results
demonstrate improvements in accuracy by a factor of 1.2 to 1.5 when a hundred
or less annotations are used, where the largest gains in learning efficiency are
achieved with small numbers of annotations. The method also reduces the sta-
tistical variability between independent trials under the same learning configura-
tions to approximately 0.6 of that when random sampling is used. The proposed
method reaches 85 % of the accuracy achieved by the best performing naively
trained CNN (trained using 9370 human annotations) with just 40 prioritised an-
notations, which represents 0.4 % of the human effort.

• The strategy to select data for human annotation affects final classification per-
formance. Introducing structure to prioritise annotation effort using hierarchical
k means in the latent space obtained by the soft assumption based autoencoder
and assigning pseudo-labels with a RBF kernel SVM to identify class boundaries
improves the classification performance of CNNs by an average of 1.34 times
compared to naive dataset annotation when 100 or less annotations are used. A
similar gain in performance is seen when the soft assumption based autoencoder
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with k means selection is used to initialise active learning, with a 1.25 factor im-
provement compared to equivalent randomly initialised active learning setups.

• The proposed method makes more efficient use of human effort than traditional
active learning based techniques tested, and is less prone to overfitting, achiev-
ing a factor 1.12 and 1.22 improvement in performance for AlexNet and ResNet18
respectively when compared to randomly initialised active learning across all val-
ues of M.

• CNN architectures are able to generalise class boundaries of interest to humans
even when pseudo-labels are assigned to all data in a training set. The resulting
CNN is able to improve the relative classification accuracy by an average of 6.4 %
compared to the classification accuracy of the pseudo-labels themselves.

• The performance of conventional classifiers for pseudo-label generation is signif-
icantly improved using k means based selection compared to random selection
when generating subsets of data for annotation. A factor of 1.30 improvement in
classification accuracy is achieved for prioritised subsets with a hundred samples
or less.

• Implementation of annotation effort prioritisation strategies relies on effective un-
supervised clustering performance for seafloor images, where the use of georef-
erencing information by the soft assumption based autoencoder compared to an
equivalent autoencoder that only uses information in images resulted in an im-
provement in classification accuracy by a factor of 1.4 to 8.9 (average 3.1) for the
configurations tested in this work.

In addition, it is shown that the method generalises to other environmental monitor-
ing domains, where the use of georeference information in the the soft assumption
based autoencoder and prioritised image annotation strategy improve the classifica-
tion accuracy for three different aerial image datasets when compared to traditional
autoencoders that use only a reconstruction loss and random sampling strategies for
supervised learning.
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M = 20 M = 40

M = 100 M = 1000

FIGURE 4.17: Confusion matrices and habitat maps predicted by ResNet18 trained
using the random data selection (configuration B6 in Table 4.11). This corresponds
to conventional good practise, using a CNN pre-trained on the ImageNet annotation
dataset and fine-tuning all the layers using randomly sampled annotated images with
data augmentation. The results show that for a values of M = 20 the ‘Artificial Object’
and ‘Bacterial Mat’ class that contain the fewest samples are not efficiently learned,
and even for M = 40, ‘Artificial Object’ is not recognised. The confusion matrix shows
that even with M = 1000, there is still significant confusion when classifying ‘Carbon-
ate’ and ‘Shell Fragment’.
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M = 20 M = 40

M = 100 M = 1000

FIGURE 4.18: Confusion matrices and habitat maps predicted by ResNet18, which was
trained using the proposed semi-supervised method, using the hierarchical k means
based data selection and pseudo-labelling (configuration D7 in Table 4.11). Compared
to Figure 4.17, the results show improved learning efficiency, especially for small val-
ues of M, where the ‘Artificial Object’ and ‘Bacterial Mat’ class are efficiently learned
using just 20 human annotations, despite these being the classes with the smallest
number of data samples. The performance with M = 100 shows similar performance
to when the same CNN architecture is trained using an order of magnitude more an-
notations from randomly selected data (i.e Figure 4.17).
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4.4.3 Semi-supervised learning (hard assumption)

Method and dataset
In this section, the proposed semi-supervised interpretation pipeline (section 3.5.2) is
investigated with the hard assumption based contrastive learning (section 3.3) for rep-
resentation learning. Tasmania dataset (section 4.1.2) is used for the training and test.

While the training data is sampled in the class balanced manner in the experiment in
section 3.3, the experiments in this section compares the performance using random and
H-kmeans based selection strategies. In addition, the effectiveness of pseudo-labelling
with linear logistic regression (PL-linear), a non-linear SVM with RBF (PL-SVM) for
CNN fine-tuning is investigated. The training data selection strategies can both real-
istically be implemented in field survey scenarios since they do not assume any prior
knowledge of the datasets, and the images that require annotation can be rapidly iden-
tified in a fully unsupervised manner.

Data selection method comparison
The performance using the random and H-kmeans training data selection strategies, both
of which do not need prior human input to understand the datasets, are shown in Ta-
ble 4.12 for different values of M. The different CNN training methods shows the same
trend as the previous results with balanced training data selection (Table 4.5). When
the classifiers are trained on the latent representations, the proposed hard assumption
based method outperforms SimCLR and ImageNet pre-training, achieving and aver-
age performance gains of 6.3 % and 20.0 %, respectively across all M. As previously
observed, fine-tuning SimCLR and proposed method trained CNNs degrades their per-
formance. However, the pseudo-labelling introduced in (E7, E8, F7, F8) mitigates this
effect by using a larger number of images for fine-tuning, which avoids the problem
of overfitting that can occur when only a small number of images are used in fine tun-
ing. This effect is strongest for small values of M=40, 100, where performance gains of
13.1 % and 8.0 % are achieved for both the proposed method and SimCLR compared to
equivalent configurations that do not use PL.

Figure 4.19b shows representative configurations in Table 4.12. The configurations with
the proposed method (F∗) outperform their counterparts with the SimCLR (E∗) except
for the case where M=40 where E4 performs better than F4. In general, the use of H-
kmeans improves performance compared to equivalent random configurations, achiev-
ing performance gains of 13.1 % and 5.7 % respectively for M=40, 100. Although the
gain in performance reduces for larger M, for the proposed hard assumption based
representation learning H-kmeans selection always improves performance compared to
equivalent random configurations for all values of M. An important observation is that
the proposed representation learning achieved the best performance for all values of M
for both the balanced and H-kmeans selection strategies.
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A comparison between Table 4.5 and Table 4.12 shows that the proposed representation
learning with H-kmeans performs better than with the balanced selection strategy for all
values of M, with gains of 3.1 % and 2.7 % for small values of M=40, 100, and averaging
a performance gain of 1.6 %.

From a practical perspective, the proposed representation learning with M=100 H-
kmeans machine prioritised annotations and the SVM-RBF classifier (F4), and PL-SVM
fine tuning (F7) achieves the same accuracy as state-of-the-art transfer learning (i.e. D5
M=1000) using an order of magnitude fewer human annotations. The method also
achieves the same accuracy as state-of-the-art contrastive learning approaches (i.e. E3
M=400) using a quarter of the annotations, where prior works rely on random data
annotations and do not propose a data selection strategy. Being able to perform ac-
curate classification with a relatively small number of labels (i.e. 0.1 % of the entire
dataset) can be considered as an important development since providing 100 annota-
tions represents a level of human effort that can be justified for most application in the
field. It is also shown that for applications that can justify a larger amount of human
effort (i.e. M = 1000), the proposed representation learning outperforms conventional
transfer learning (D5) and contrastive learning (E3) by 8.5 % and 7.5 % respectively. In
addition to the demonstrated performance gains, the use of the proposed represen-
tation learning consistently improves performance over alternative configurations for
all conditions tested in this work, and machine guided annotation H-kmeans benefits
performance for all configurations where M<400, and although the performance gains
diminish for larger M, it never leads to significant performance reduction. The re-
sults indicate that these approaches can robustly improve the performance of CNNs
for seafloor image interpretation.
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TABLE 4.12: Data selection method comparison

Config.
Label

CNN
Training

Classifier
Data

Selection
Number of Annotations (M)

40 100 200 400 1000
D1 ImageNet linear random 45.4±5.8 57.0±3.2 61.3±2.8 63.3±2.9 67.5±2.2
D2 ImageNet linear H-kmeans 49.5±5.6 58.0±4.7 64.4±3.4 66.5±2.6 68.8±1.8
D3 ImageNet SVM random 35.5±4.4 50.2±3.7 58.4±3.3 63.7±1.4 67.9±1.0
D4 ImageNet SVM H-kmeans 43.0±3.4 57.5±2.8 63.7±1.0 67.0±1.4 69.7±1.3
D5 ImageNet Res18 random 55.5±3.1 63.2±3.2 67.0±2.0 69.7±2.4 72.8±2.3
D6 ImageNet Res18 H-kmeans 51.8±5.7 64.1±2.0 67.6±2.7 73.1±1.3 74.1±1.7
D7 ImageNet Res18 PL-linear 51.9±5.7 62.2±4.5 68.6±1.8 70.9±2.0 71.9±2.3
D8 ImageNet Res18 PL-SVM 46.4±5.4 58.9±3.4 67.1±1.6 69.9±1.7 72.6±2.1
E1 SimCLR linear random 55.0±4.0 63.8±3.0 66.3±2.1 67.7±3.2 71.2±1.1
E2 SimCLR linear H-kmeans 61.9±2.6 66.5±1.6 68.2±1.4 69.3±2.7 69.5±1.9
E3 SimCLR SVM random 47.2±5.5 64.5±2.4 68.8±1.6 72.0±2.2 73.5±0.7
E4 SimCLR SVM H-kmeans 58.0±2.0 67.6±1.5 70.9±1.3 71.7±1.8 73.7±1.5
E5 SimCLR Res18 random 49.5±7.5 60.3±2.2 64.5±2.4 67.7±1.8 71.5±2.3
E6 SimCLR Res18 H-kmeans 56.4±3.3 65.2±2.2 66.2±1.7 69.3±2.0 70.1±1.2
E7 SimCLR Res18 PL-linear 64.3±2.2 68.8±1.4 69.5±1.7 70.5±1.7 72.8±1.3
E8 SimCLR Res18 PL-SVM 63.1±2.8 69.8±1.8 70.6±1.1 72.7±1.1 72.9±0.8
F1 Proposed linear random 58.9±5.0 67.8±2.7 70.8±1.7 72.7±2.5 75.1±1.4
F2 Proposed linear H-kmeans 65.8±2.9 70.5±1.7 72.8±2.0 73.0±2.1 74.6±2.5
F3 Proposed SVM random 53.2±5.9 68.8±3.1 72.9±2.2 75.5±1.0 77.5±1.2
F4 Proposed SVM H-kmeans 55.3±4.2 71.8±1.6 74.6±1.5 76.6±1.2 79.0±1.0
F5 Proposed Res18 random 49.5±7.9 60.3±3.8 65.2±1.7 69.0±3.0 73.2±1.9
F6 Proposed Res18 H-kmeans 56.5±3.4 65.5±1.4 66.8±1.9 70.9±1.3 73.9±1.7
F7 Proposed Res18 PL-linear 64.2±2.5 71.7±2.3 72.7±1.6 73.5±1.4 75.7±1.6
F8 Proposed Res18 PL-SVM 63.7±2.1 72.0±2.1 72.5±1.5 74.3±1.0 75.2±1.3

The same CNNs as Table 4.5 where different data selection strategies (random and H-
kmeans are used in the downstream classification task. In contrast to the balanced selec-
tion strategy shown in Table 4.5, these selection strategies do not require prior analysis
by humans and so are available for analysis of data as it get collected in the field. The
same classifiers (linear, SVM, fine-tuned ResNet18) are investigated. For fine-tuning
the CNNs, pseudo-labels generated by linear classifier (∗-7) or SVM (∗-8) are used. The
classifiers are trained 10 times with different random seed, and mean and SD values of
F1-scores (macro averaged) are shown. The best score for each M is shown as bold.

Estimating relative habitat class proportion
Determining seafloor habitat class distributions is a fundamental task for marine mon-
itoring and conservation. Here the proposed hard assumption based contrastive learn-
ing method is applied to estimate the relative proportion of habitat classes and map
their physical distribution. Figure 4.20 shows the relative proportion of different habi-
tat classes estimated for M=[40, 100, 200, 400, 1000] machine prioritised annotations for
each of the 12 dives in the Tasmania dataset. These are compared to the relative pro-
portions for each dive where all human annotations have been used (i.e. average 450
annotations per dive) which can be regarded as the ground truth here. The equivalent
number of annotations per dive for the proposed method average approximately 3 an-
notations per dive for M=40 to approximately 83 per dive for M=1000. The results
show that the estimated proportions approach the ground truth distributions for all
dives, with the expected result that performance increases as a larger number of anno-
tations are used for classifier training. The estimated proportions are poor for several of
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(A) CNN training method comparison for class-balanced training (Table 4.5)

(B) Data selection method comparison for SimCLR and proposed representa-
tion learning (Table 4.12)

FIGURE 4.19: Representative configurations from (a) Table 4.5 and (b) Table 4.12. (a)
When the CNNs are trained on the class-balanced subsets, the proposed representa-
tion learning with a SVM classifier (C2) outperforms all other configurations except
for B2 when M=40. The best performance for M=40 is achieved by the proposed rep-
resentation learning with a linear classifier (C1). (b) In general, the use of H-kmeans
improves performance compared to equivalent random configurations, and the pro-
posed representation learning outperform their counterparts with the SimCLR except
for {M=40, E4}.
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the dives with M=40 when using the F4 SVM classifier (Figure 4.20a), whereas the F8
fine-tuned with pseudo-labels generated by the SVM is generally more robust, approx-
imating the ground truth class proportions better for the same number of training ex-
amples (Figure 4.20b). This indicates that the SVM classifier (F4) may be overfitting the
latent representation space generated by the proposed representation learning when
the number of annotations available is small, where this effect is mitigated by provid-
ing a larger number of training examples through pseudo-labels. However, there are
some exceptions (Dives 06 and 07) to this and so the outputs with M=40 should be
treated with caution where validation data is not available. On the other hand, for
M≥100 both methods (i.e. F4 and F8) perform robustly for all dives, with F4 outper-
forming F8 and providing more stable estimates for different values of M. This is due
to the fact that the latent representation space remains the same regardless of M as no
CNN re-training takes place.

Habitat map
The physical distribution of habitats is important for conservation since it influences
the distribution of organisms near the seafloor. It is also important for understanding
ecosystem health as benthic habitats such as kelp (seen here) and coral are classified as
essential ocean variables.

The proposed method allows efficient estimation of habitat maps based on the 3d lo-
cation where each classified image was taken. Here, the horizontal distributions of
the classes, the depth profiles versus image index, and the class versus depth distri-
butions are shown in Figures 4.21, 4.22 and 4.23 for three dives (01,03 and 08) which
were chosen as representative cases. The figures show habitat maps generated using
the proposed representation learning for {M=100,F8}, {M=1000,F4} in Table 4.12 and
the ground truth labels.

The results show that both {M=100,F8} and {M=1000,F4} configurations closely ap-
proximate the ground truth horizontal and vertical habitat class distributions, captur-
ing the continuous spatial transitions between Kelp (A), Low Relief Reef (C), High Re-
lief Reef (B) to Screw Shell Rubble (E) or Sand (F). The class vs depth distributions show
that the larger values of M provide a better approximation of vertical class distribution,
which is an expected result. However, for classes that exist in a limited depth band (e.g.
Kelp (A), Screw Schell Rubble (E)) both values of M capture this trend.
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(A) F4 in Table 4.5 (SVM on latent representation h)

(B) F8 in Table 4.5 (fine-tuned on pseudo-labels generated by SVM)

FIGURE 4.20: Class distribution estimated for each dive using the proposed hard as-
sumption based representation learning. The same colour scheme is used as in Fig-
ure 4.3. The estimated distributions approaches the ground truths when larger num-
ber of annotations are used for classifier training. The use of pseudo-labels is generally
favourable for a small number of annotations (i.e. M=40, though this is not always
the case. For M>100, F4 performs better than F8 and provides more stable estimates
of class distribution as the same latent representation space is used for all M.
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(A) Horizontal distribution (B) Depth profile vs. image index

(C) Class vs. Depth

FIGURE 4.21: Class distribution of Dive-01 with M=100 annotations by F8, M=1000
annotations by F4 in Table 4.12 and ground truth. The same colour scheme as Fig-
ure 4.3 is applied.
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(A) Horizontal distribution (B) Depth profile vs. image index

(C) Class vs. Depth

FIGURE 4.22: Class distribution of Dive-03 with M=100 annotations by F8, M=1000
annotations by F4 in Table 4.12 and ground truth. The same colour scheme as Fig-
ure 4.3 is applied.
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(A) Horizontal distribution (B) Depth profile vs. image index

(C) Class vs. Depth

FIGURE 4.23: Class distribution of Dive-08 with M=100 annotations by F8, M=1000
annotations by F4 in Table 4.12 and ground truth. The same colour scheme as Fig-
ure 4.3 is applied.
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Discussion
This section examined the performance of the proposed semi-supervised pipeline with
the hard assumption based contrastive learning. The experiments on the Tasmania
dataset that includes more than ~86k images and ~5k annotations show that:

• The representations extracted by the hard assumption based contrastive learning
are useful for identifying representative images for prioritised human annotation
in a fully unsupervised manner. This can improve the performance and efficiency
of human effort for classification, where selecting a prioritised training dataset
using H-kmeans clustering increases the classification accuracy by an average of
4.9 % and maximum of 14.1 % compared to random selection, where the perfor-
mance gains are more significant for small numbers of M.

• The proposed unsupervised representative image identification results in better
performance than providing class-balanced annotated examples in a supervised
manner. The machine driven H-kmeans selection strategy achieves an average of
1.6 % and maximum of 3.1 % increase in accuracy compared to the class-balanced
selection strategy for an equivalent number of annotations, where greater gains
are achieved for small numbers of annotations. This indicates that it is more in-
formative to provide training data that evenly describes the latent representation
space generated during self-supervised training, than it is to provide training data
that evenly describes the targets that are of final interest to humans.

• The combination of the hard assumption based contrastive learning and H-kmeans
achieves the same accuracy as state-of-the-art transfer learning using an order
of magnitude fewer human annotations, and state-of-the-art contrastive learning
approaches using a quarter of the labels. This allows the proportion of habitat
classes and their spatial distribution to be accurately estimated (> 70 %) anno-
tating only 0.1 % of the images in the dataset. This is significant as providing
approximately 100 annotations represents a level of human effort that can be jus-
tified for most field applications. For applications where a greater level of human
effort is available, it is shown that with 1000 annotations, the proposed hard as-
sumption based contrastive learning outperforms conventional transfer learning
and contrastive learning by 8.5 % and 7.5 % respectively, achieving a classification
accuracy of 79 %. The combination of the hard assumption and H-kmeans never
degraded performance compared to equivalent alternative configurations in the
experiments described in this paper.

~
~




113

Chapter 5

Conclusions and future work

This PhD thesis has been concerned with leveraging domain knowledge for machine
learning based seafloor image interpretation. Two novel representation learning tech-
niques for seafloor imagery have been proposed, and their effects have been evalu-
ated on real-world seafloor image datasets. Interpretation pipelines that eliminate hu-
man effort, or require significantly less than conventional supervised learning methods,
have also been proposed and examined. A summary of the contributions and findings
of chapters 3 and 4 is given in section 5.1, with some further insights in section 5.2
and potential future areas for investigation and application described in section 5.3.
Section 5.4 shows the list of authored publications during this PhD programme.
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5.1 Conclusions

The contributions of this thesis arise from the development of two novel representation
learning methods for seafloor visual imagery that leverage metadata commonly gener-
ated during robotic imaging surveys. The following is a summary of the four principal
contributions in this PhD thesis.

Seafloor image representation learning based on soft assumptions (proposed in sec-
tion 3.2 and evaluated in section 4.2.1)
A novel self-supervised representation learning method that uses soft assumptions
about metadata relationships to guide the training of a deep learning autoencoder is
proposed in section 3.1. The soft assumption is introduced by defining a novel loss
function based on the Kullbuck-Leibler divergence between the affinity matrices of
each image in the latent space and the metadata spaces. This approach has been gener-
alised to deal with any combination and number of vector and scalar metadata values,
as described in section 3.2.1. The method uses contrastive batch sampling, introduced
in section 3.2.2, to ensure that a range of metadata relationships are considered at each
training step, and a Student’s t-distribution is introduced to avoid over constraining
the latent representations. The experiment in section 4.2.1 on a real-world seafloor im-
age dataset consisting of ~32k images (section 4.1.3) shows that combining multiple
sources of metadata regularisation can outperform single metadata regularisation us-
ing the proposed method. Compared to an equivalent convolutional autoencoder that
does not consider metadata, regularising learning using depth and horizontal location
information improves the performance of five classifiers operating on the latent repre-
sentations by an average of 10.9%, with a R-SVM classifier showing the largest gain in
performance at 15.1% (see Table 4.4).

Seafloor image representation learning based on hard assumptions (proposed in sec-
tion 3.3 and evaluated in section 4.2.2)
A novel contrastive self-supervised representation learning method is developed that
imposes hard assumptions on the relationships between metadata and the similarity of
images in section 3.1. A novel similar image pair selection method is developed where
3d georeference information is used as the relevant metadata to implement contrastive
learning. The experiment in section 4.2.2 on a real-world seafloor image dataset con-
sisting of ~87k images (section 4.1.2) shows that the downstream classification accuracy
is improved by an average of ~5.2 % compared to a state-of-the-art SimCLR representa-
tion learning method, which generates similar image pairs through data augmentation
without considering where the images were gathered. Compared to traditional transfer
learning approaches, an average improvement of 7.4 %, is achieved (see Table 4.5).

~
~
~


5.1. Conclusions 115

Unsupervised seafloor image interpretation methods (proposed in section 3.4 and
demonstrated in section 4.3)
To show the advantage of representation learning in real seafloor survey scenarios,
unsupervised seafloor imagery interpretation pipelines that make use of the acquired
image representations are proposed.

The first application is clustering (section 3.4.1) where a non-parametric Bayesian clus-
tering method, that can automatically determine the number of clusters in a target
dataset, is directly applied to the obtained low-dimensional latent representation space.
This allows important insight about patterns in the target seafloor images to be gained
without any human supervision. The experiment in section 4.3.1 shows that cluster-
ing with the proposed soft assumption based metadata guided representation learning
achieves almost double the performance of a standard convolutional autoencoder that
doesn’t consider metadata, based on the NMI score for human generated ground truth
classes (see Table 4.6).

The next application is representative image identification presented in section 3.4.2.
This method identifies the images that are most representative of the target dataset
based on hierarchical H-kmeans clustering. Section 4.3.2 shows how this can be ap-
plied to the latent representations obtained using both the soft assumption based au-
toencoder (see Figure 4.13) and the hard assumption based contrastive learning (Fig-
ure 4.14). The method allows representative images of large datasets with imbalanced
class distributions to be automatically identified in a fully unsupervised way. The com-
bination of representative images with maps of semantic cluster distributions can help
achieve efficient understanding of underwater scenes in a fully unsupervised man-
ner. This can be useful for planning operations since the unsupervised outputs can
be rapidly generated without the need for any human input.

Efficient alignment of latent representations with human interests (proposed in sec-
tion 3.5 and evaluated in section 4.4)
The cluster boundaries generated through unsupervised interpretation are not guaran-
teed to match the semantic boundaries of interest to human experts. To efficiently align
boundaries in the acquired representations with human interests, a semi-supervised
learning method is proposed in section 3.5.2. The key elements in the pipeline are the
use of unsupervised representative image identification and pseudo-labelling to effi-
ciently obtain labels for training a classifier. The representative images annotated by
human experts are algorithmically proposed in a fully unsupervised way. This effi-
ciently guides the human annotation effort, and the number of representative images
proposed can be flexibly set to match the availability of human effort. The proposed
semi-supervised method can be applied to both the soft assumption based autoencoder
and the hard assumption based contrastive learning.
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The experiment in section 4.4.2 evaluates the semi-supervised pipeline with the soft
assumption based method on a real-world seafloor image dataset consisting of ~63k
images (section 4.1.1). The pipeline achieves a classification accuracy equivalent to
naively trained CNNs that use randomly selected images for annotation, using an or-
der of magnitude fewer human annotations (i.e. tens to hundreds, as opposed to thou-
sands). The results also demonstrate improvements in accuracy by a factor of 1.2 to
1.5 when a hundred or less annotations are used compared to conventional supervised
learning methods using an equivalent CNN architecture, where the largest gains in
learning efficiency are achieved with small numbers of annotations. Unlike alternative
methods that attempt to reduce the number of human annotations needed such as ac-
tive learning approaches, the proposed method does not require multiple interactions
with human annotators, which is a significant disadvantage of active learning methods
that need humans to work around the schedule of a machine. The method is also less
sensitive to initialisation conditions since sequential learning methods do not address
how initial annotation subsets should be sampled.

The advantages of the semi-supervised method are also shown to improve the learning
efficiency on three aerial imagery datasets, where the results are shown in Appendix A.
This demonstrates that the proposed location guided latent representation learning and
representative image selection strategies are effective for environmental applications
across different georeferenced imaging domains.

The experiment in section 4.4.3 evaluates the semi-supervised pipeline with the hard
assumption based contrastive learning on a real-world seafloor image dataset consist-
ing of ~87k images (section 4.1.2). The proposed pipeline improves the performance
and efficiency of human effort for classification, where selecting a prioritised training
dataset using H-kmeans clustering increases the classification accuracy by an average of
4.9 % and maximum of 14.1 % compared to random selection, where the performance
gains are more significant for small numbers of annotations given by humans.

The F1-score achieved in this work ranges from 60% to 72 %. Although the necessary
level of accuracy, and the metrics themselves differ between applications, Purkis et al.
(2019) reported 80 % to 90 % accuracy scores for satellite remote sensing based shallow
sea habitat mapping using highly tailored processing algorithms for specific habitat
classes, and similarly Zelada Leon et al. (2020) reported accuracy levels of 60 % to 70 %
scores in side scan sonar based deep sea habitat mapping. An advantage of the method
proposed in this research is that the feature learning aspect does not require separate
algorithms to be developed for the different applications.

~
~
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5.2 Further insight

The two different representation learning methods presented in this thesis have differ-
ent characteristics that can influence their applicability to different datasets and appli-
cation domains. This section describes these characteristics to help judge the suitability
and limitations of each method. Since the soft assumption based method loosely reg-
ularises autoencoder training using a modified loss function derived from metadata
values, it can consider multiple metadata sources at once and minimises the risk of
overfitting the metadata through the use of a Student’s t-distribution and maintaining
the reconstruction loss. Therefore, this method is suitable for datasets where various
types of metadata are available, but where the correlation between the metadata and
image appearances is not clear. Examples of applications where this behavioural prop-
erty might be useful include those where metadata characteristics might vary at a faster
temporal scale or different spatial scale than seafloor appearance. e.g. water column
pH, temperature, chemical composition near hydrothermal vents or cold seeps. On the
other hand, the hard assumption based method exploits the metadata more strictly for
selecting similar image pairs. This is useful where the assumptions are known to be
valid, e.g. using 3d geolocation where the geological and habitat features are known
to vary over spatial scales larger than the footprint of a single image frame). However,
efficient training relies on the fact that the metadata used to identify similar image pairs
strongly correlates with the similarity of image appearance. As long as this condition
is satisfied, the hard assumption method can be applied to train any CNN architecture,
which is an advantage over the autoencoder based method since a decoder architecture
needs to be implemented. As such, the hard assumption method can take advantage
of the rapid advance in CNN architectures more readily than the autoencoder based
method.

Regarding the relative effectiveness of the two methods, although the datasets and the
validation methods are not identical, the results of experiments in sections 3.2 and 3.3
show that the hard assumption based representation learning can be more effective
when similar metadata relationships are used and these relationships show good corre-
lation with image appearance. For the analysis performed in these sections, the datasets
partially overlap, and although the soft assumption based method achieves an F1-score
of ~58 % (as shown in Table 4.4), the hard assumption method achieves ~78 % for an
expanded dataset which has a ~50 % overlap in the analysed images (as shown in Ta-
ble 4.5).

In general, deeper CNN architectures, larger minibatch sizes and epochs are known
to provide accuracy gains. However, the availability of these gains is determined by
the necessary computational power where, for applications in the field, access to high-
performance computer networks is limited. The proposed representation learning tech-
niques do not increase the computational requirements, and although the autoencoder

~
~
~
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based soft assumption requires a decoder to be implemented, in principal the meth-
ods can be used with any CNN architecture, where this can be chosen to match the
available computer resources. The desktop workstation used in the experiments in
chapter 4 used a commercial grade GPU (NVIDIA TITAN RTX with 24 GB VRAM) and
was capable of processing the datasets, including the replicate experiments, within a
few days, and a single run can be computed in the order of a few hours. The process-
ing time is short enough to generate results in timeframes relevant to assist planning
and interpretation between AUV dives during multi-day field expeditions.
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5.3 Future work

This section summarises future work and potential applications that could be investi-
gated following on from this PhD research.

Visual-acoustic multimodal data learning for seafloor surveys
In typical seafloor survey scenarios, acoustic data measured at the same location as im-
ages, i.e. bathymetry and backscatter, are often available. Previous works (Rao et al.,
2014, 2017; Shields et al., 2020) have looked at combining visual images and acous-
tic measurements to extend image cluster or class predictions to regions of acoustic
bathymetry that have not been imaged, and this has proven to be effective for regional
scale (hundreds to thousands of km2) seafloor habitat interpretation. One potential ap-
proach for leveraging acoustic measurement is learning vector-form representations of
acoustic measurements with the proposed soft or hard assumption based method and
using the obtained representations for representation learning of visual imagery by that
same method. Values such as acoustic reflection intensity could be used as metadata
inputs and may show strong correlation with visual image appearance. However, it is
important to consider the spatial correlation between the acoustic data and the images
they are linked to, since both the resolution and footprint of the measurements is likely
to differ, and consistent underwater localisation is a challenge.

While the metadata exploited in the proposed methods take the form of vectors or
scalars, where the similarity in metadata space can be straightforwardly derived, acous-
tic seafloor maps can form larger dimensioned tensors, i.e. n-dimensional arrays.
Therefore, extending the proposed representation learning methods to be applied to
tensor-form data is considered one of the potential future works. Modern multimodal
learning concepts can also be applied.

Another potential application is to use the methods described in this work on acousti-
cally derived images. This concept is demonstrated in a co-authored conference pub-
lication ‘Autonomous Identification of Suitable Geotechnical Measurement Locations
using Underwater Vehicles’, which applies the soft assumption based method to learn
features from patches of laser-derived bathymetry data, where depth deviation from
the mean of the patch is linearly mapped to the colour intensity. A similar approach
could be adopted for direct classification and clustering of acoustic bathymetry and
acoustic backscatter intensity. A potential area for investigation may be to use visual
image clustering or classification results as metadata to guide representation learning
of acoustically derived images.

Temporal analysis for environmental monitoring
In section 4, the experimental results show that a georeference, i.e. horizontal location
and depth, is useful metadata for representation learning on seafloor imagery datasets.
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Since seafloor substrates and habitats have unique spatial distributions that extend be-
yond the footprint of a single image frame, using georeference information as metadata
can capture relevant image features. The spatial distributions of habitats and substrates
can change gradually over time. However, as long as the images captured in nearby re-
gions are observed at a time interval that is shorter than this rate of change, the images
are possibly similar. This tendency can be exploited for image representation learn-
ing in the same manner as the proposed metadata leveraging to estimate the potential
similarity between images. For environmental monitoring, temporal analysis plays a
significant role as well as spatial analysis, and so multi-year observation data of sim-
ilar places is often gathered. To interpret such datasets, considering both spatial and
temporal relationships between images may pose potential advantages over processing
temporal datasets in independent time slices.

Over-horizon communication
Due to the large size of images and the limited available communication bandwidth be-
tween an AUV and its operators during missions, the collected images cannot normally
be seen by humans until the AUV is physically recovered for data extraction. With
AUVs now being developed with increased mission durations of weeks to months, the
discrete and sequential nature of data gathering and extraction introduces significant
latency between data acquisition and the insight it provides to scientists and opera-
tors. Such insights can be useful during the deployment, so that AUV missions can be
adaptively replanned based on human decisions without physical recovery. The latent
representations acquired by the proposed methods are much lower in their dimensions
than the original images, so they can be useful for transmitting seafloor status data ef-
ficiently compared to sending their original images. Furthermore, the unsupervised
representative image identification proposed in this thesis can also be applied to ef-
ficiently select which images to transmit to build understanding of the observations
over the limited bandwidths available, rather than sending a stratified or randomly
sub-sampled selection of images observed.

Application to other imaging domains
Although this work has focused on the analysis of georeferenced seafloor imagery, the
methods developed can be applied to other imaging domains. The methods have been
shown to improve the learning efficiency when applied to georeferenced aerial imagery
(see Appendix A), and when applied to holographic images of suspended particles in
a co-authored journal paper ‘Unsupervised feature learning and clustering of particles
imaged in raw holograms using an autoencoder’ that is currently under review, and
also to suspended marine particles imaged using an Underwater Vision Profiler (UVP)
in a co-authored paper tentatively entitled ‘Efficient classification of marine particles
using self-supervised learning’ that is currently being prepared for submission to a
journal.
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5.4 Authored publications

The following outputs have been published, submitted or presented based on the work
done in this PhD.

Journal article

• Takaki Yamada, Adam Prügel-Bennett, and Blair Thornton. Learning features
from georeferenced seafloor imagery with location guided autoencoders. Journal
of Field Robotics 38.1: 52-67, 2021.

• Takaki Yamada, Miquel Massot-Campos, Adam Prügel-Bennett, Stefan B.
Williams, Oscar Pizarro, and Blair Thornton. Leveraging Metadata in Representa-
tion Learning With Georeferenced Seafloor Imagery. IEEE Robotics and Automa-
tion Letters, vol. 6, no. 4, pp. 7815-7822, 2021.

Journal article (in review)

• Takaki Yamada, Miquel Massot-Campos, Adam Prügel-Bennett, Oscar Pizarro,
Stefan B. Williams and Blair Thornton. Guiding Labelling Effort for Efficient
Learning with Georeferenced Images.

• Takaki Yamada, Adam Prügel-Bennett, Stefan B. Williams, Oscar Pizarro, and
Blair Thornton. GeoCLR: Georeference Contrastive Learning for Efficient
Seafloor Image Interpretation.

Conference

• Takaki Yamada, Miquel Massot-Campos, Emma Curtis, Oscar Pizarro, Stefan B.
Williams, Veerle A.I. Huvenne, and Blair Thornton. Metadata Enhanced Feature
Learning for Efficient Interpretation of AUV Gathered Seafloor Visual Imagery.
Marine Geological and Biological Mapping (GEOHAB), 2021.

• Takaki Yamada, Miquel Massot-Campos, Adam Prügel-Bennett, Stefan B.
Williams, Oscar Pizarro, and Blair Thornton. Leveraging Metadata in Represen-
tation Learning with Georeferenced Seafloor Imagery. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2021.

Invited talk

• Takaki Yamada. Automatic Classification of Seafloor Imagery based on Machine
Learning (in Japanese), 5th Subsea and Seafloor Engineering Forum ZERO, 2021.
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In addition to these, the following co-authored publications have made use of the meth-
ods developed in this PhD for different applications.

Journal article

• Zonghua Liu, Thangavel Thevar, Tomoko Takahashi, Nicholas Burns, Takaki Ya-
mada, Mehul Sangekar, Dhugal Lindsay, John Watson, and Blair Thornton. Un-
supervised feature learning and clustering of particles imaged in raw holograms
using an autoencoder. Journal of the Optical Society of America A, in press.

Conference

• Jose Cappelletto, Blair Thornton, Adrian Bodenmann, Takaki Yamada, Mehul
Sangekar, David White, Justin Dix, and Darryl Newborough. Predicting locations
for making geotechnical measurements with Autonomous Underwater Vehicles.
IEEE Oceans, 2021.

• Jenny Walker, Takaki Yamada, Adam Prügel-Bennett, and Blair Thornton. The
effect of physics-based corrections and data augmentation on transfer learning
for segmentation of benthic imagery. IEEE Underwater Technology (UT), 2019.
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Appendix A

Results for aerial imagery dataset

The proposed georeference leveraging latent representation learning and represen-
tative image selection method is designed for domains where georeferenced image
datasets exhibit patterns occurring on spatial scales larger than the size of each image
patch read by a CNN. Here, we apply our method to land cover classification based on
aerial imagery. This domain shares challenges with seafloor image classification, where
both domains have recently seen the increased use of mobile robotic imaging platforms
that have reduced the cost of gathering data. However, the cost of annotating images in
a way that is suitable for environmental monitoring still requires significant domain ex-
pertise. To demonstrate the versatility of the proposed method, experiments are carried
out on three varied aerial image datasets.

Dataset
This appendix shows the validation results of the semi-supervised pipeline proposed
in section 3.5.2. Instead of seafloor image datasets, aerial image datasets are used, since
georeference is also available as metadata possibly related to image appearances. Aerial
image datasets from three different regions (Mountain, Island and Urban) of Sweden
are used to test the versatility of our method. Table A.1 shows the description of the
datasets. The Mountain dataset consists of images of the area surrounding Vindelfjällen
Nature Reserve, which is one of the largest protected areas in Europe (see Figure A.1).
Six classes are observed in this area, where ‘Wetland’ and ‘Other Non-vegetated’ (cor-
responding to alpine peaks) are unique to this dataset in our experiments. The region
also has areas of ‘Water’. The Island dataset is of Gotland island, which consists of four
classes, including large regions of farmland (‘Arable’ class), as shown in Figure A.2.
The Urban dataset consists of images around the city of Stockholm (see Figure A.3).
This dataset consists of six classes, where the ‘Artificial’ class is used to describe the city
and other built up areas suburbs, where this class is unique to this dataset in our exper-
iments. The dataset also contains some ‘Arable’ and ‘Water’ regions. All datasets have
‘Coniferous’, ‘Deciduous’ and ‘Other Vegetated’ areas, although their appearances and
distribution patterns are different between the datasets.
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The dataset images are cropped from ESRI World Imagery. Each image is rescaled and
cropped to 227 × 227 pixels patches. The datasets have different spatial resolutions,
2.0 m/pixel for Mountain and Island and 1.0 m/pixel for Urban, where it is reasonable
to expect higher resolution data to be available near populated areas. Therefore, the
physical sizes of the image patches are 454 × 454 m (Mountain and Island) and 227 ×
227 m (Urban), respectively.

The ground truth annotations used are based on the National Land Cover Database
(NMD) published by the Swedish Environmental Protection Agency, which assigns
land cover classes to every 10× 10 m region of the country. In our experiments, we use
the majority land cover class in each image patch as the ground truth class, and some
detailed classes are merged as they cannot be distinguished using only RGB colour
channels (e.g. six types of coniferous forest classes in NMD are dealt with as a single
‘Coniferous’ class in this experiment).

Learning
The training configuration follows the same procedure as the experiment in sec-
tion 4.4.2. Two AlexNet based convolutional autoencoders: with/without the soft as-
sumption based, are trained on the three aerial image datasets introduced in the pre-
vious section. For the soft assumption based training, the ratio between the spatial
resolution (image patch size) and the distance threshold of the loss function is set to be
the same as the seafloor dataset experiment described in the section 4.4.2.

Discussion
Table A.2 shows the F1 accuracy (macro-average) scores for the Mountain/Island/Ur-
ban datasets and the mean and standard deviation values of the three datasets. The
results show a similar trend to the experiment on the seafloor dataset. The soft as-
sumption based autoencoder (A1-A15) performs better than the standard autoencoder
(A16-A30) when the same data selection method and classifier are applied, showing
that georeference information is being effectively leveraged. When using the soft as-
sumption based autoencoder, the proposed hierarchical k means based data selection
also outperforms random and k means based data selection when using the same clas-
sifier. This improvement in performance is larger for smaller M values, revealing that
the proposed method is also effective for classification of aerial imagery with fewer an-
notations. This trend is not observed when the standard autoencoder is used. This is
thought to be because the selection of images automatically chosen for prioritised an-
notation is less effective when using the standard autoencoder as opposed to the soft
assumption based autoencoder.
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TABLE A.1: Description of aerial imagery datasets

Mountain Island Urban
No. of Image Patches 46,200 15,128 47,961
Resolution [m/pixel] 2.0 2.0 1.0
Imaged Area [km2] 9,520 3,120 2,470

No. of Classes 6 4 6
Latitude [◦N] 65.01 to 66.09 56.91 to 58.00 59.14 to 59.60

Longitude [◦E] 14.79 to 16.53 17.96 to 19.35 17.45 to 18.36
Lat. × Lon. Edge Lengths [km] 120× 80 150× 84 50× 50

Location Vindelfjällen Gotland Stockholm

(A) Mosaiced aerial imagery of the Mountain
dataset

(B) Ground truth classes for the Mountain dataset

FIGURE A.1: Mountain dataset showing the area surrounding Vindelfjällen Nature
Reserve in Sweden. Six classes are observed in this area, where ‘Wetland’ and ‘Other
Non-vegetated’ (corresponding to alpine peaks) are unique to this dataset in our ex-
periments. The dataset also has ‘Water’, ‘Coniferous’, ‘Deciduous’ and ‘Other Vege-
tated’ regions, where these classes are shared across the different datasets studied in
this work. The figure shows that the spatial distributions of the shared classes are
different to their distributions in the Island (Figure A.2) and Urban (see Figure A.3)
datasets.
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(A) Mosaiced aerial imagery of the Island dataset (B) Ground truth classes of the Island dataset

FIGURE A.2: Island dataset showing Gotland island in Sweden, which consists of four
classes, including large regions of farmland (‘Arable’ class) that dominate the open
areas. The dataset also has ‘Coniferous’, ‘Deciduous’ and ‘Other Vegetated’ regions,
where these classes are shared across the different datasets studied in this work. The
figure shows that the spatial distributions of the shared classes are different to their
distributions in the Mountain (Figure A.1) and Urban (see Figure A.3) datasets.

(A) Mosaiced aerial imagery of the Urban dataset (B) Ground truth classes of the Urban dataset

FIGURE A.3: Urban dataset showing the area surrounding Stockholm in Sweden.
The ‘Artificial’ class is used to describe the city and other built up areas, where this
class is unique to this dataset in our experiments. The dataset also has ‘Arable’, ‘Wa-
ter’, ‘Coniferous’, ‘Deciduous’ and ‘Other Vegetated’ regions, where these classes are
shared across the different datasets studied in this work. The figure shows that the
spatial distributions of shared classes are different to their distributions in the Moun-
tain (Figure A.1) and Island (see Figure A.2) datasets.
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TABLE A.2: F1-Score (Macro-Average) Mean and SD (%) of the Classification Result
on Three Aerial Imagery Dataset

Config.

Label

Rep.

Learning

Data

Selection
Classifier

Number of Annotations (M)
20 40 100 200 400 1000 7500

A1 with random 1-NN 43.8±4.2 49.3±3.0 53.4±2.4 55.4±1.5 57.6±0.9 59.4±0.8 62.1±0.4
soft 42.0/45.3/44.0 49.6/47.9/50.4 54.5/50.9/54.8 56.8/52.5/57.0 60.3/53.7/58.8 63.0/55.0/60.3 66.9/56.4/63.0

A2 assumption RF 42.7±6.2 49.4±5.0 55.8±3.2 57.9±2.3 60.8±1.2 63.3±0.9 66.6±0.3
39.0/45.4/43.8 48.5/49.0/50.7 55.8/53.2/58.4 59.0/53.2/61.5 63.2/55.1/64.2 66.6/56.8/66.4 71.2/58.8/69.8

A3 L-SVM 46.3±4.5 52.1±3.6 58.6±2.3 61.1±1.4 63.3±1.0 65.3±0.5 66.9±0.4
45.6/46.8/46.4 52.5/50.2/53.6 60.3/55.5/59.9 62.7/58.2/62.5 65.0/59.7/65.4 66.7/61.9/67.3 68.1/63.4/69.2

A4 R-SVM 42.8±4.7 51.1±3.5 58.5±2.2 61.4±1.4 63.8±1.0 65.7±0.5 69.0±0.3
39.0/46.7/42.8 50.4/51.3/51.6 59.8/55.9/59.9 62.9/58.5/62.8 65.6/60.3/65.3 67.5/62.3/67.4 70.7/65.3/70.9

A5 GP 44.0±4.1 50.1±3.2 55.1±2.7 57.6±2.0 60.5±1.3 63.2±1.0 68.1±0.4
42.9/45.1/44.0 51.4/48.0/50.9 56.5/51.9/57.0 59.0/52.7/60.9 63.5/54.4/63.7 67.2/56.1/66.3 72.9/60.5/70.8

A6 kmeans 1-NN 47.1±4.3 51.1±2.4 54.0±2.1 55.9±1.4 57.1±1.1 59.0±0.7 61.7±0.4
46.5/47.4/47.4 53.3/49.7/50.3 56.6/50.3/55.1 58.9/52.0/56.9 60.7/53.0/57.8 62.3/54.4/60.3 66.3/56.2/62.7

A7 RF 45.3±5.7 51.4±3.0 56.0±1.9 58.4±1.7 60.6±1.2 63.1±0.9 66.4±0.4
42.8/47.9/45.1 51.5/50.9/51.8 57.0/52.4/58.5 59.9/54.0/61.2 63.3/55.0/63.6 66.2/56.9/66.3 71.2/58.7/69.3

A8 L-SVM 49.1±4.5 54.4±2.3 58.6±1.9 61.4±1.3 63.3±1.0 64.8±1.0 66.4±0.4
47.3/50.0/50.0 56.1/52.1/54.9 60.9/54.7/60.1 63.7/57.3/63.2 65.4/59.6/65.1 66.5/60.6/67.4 68.0/62.3/69.0

A9 R-SVM 45.6±4.6 53.4±3.5 58.0±2.5 61.3±1.4 63.3±1.1 65.2±0.9 68.3±0.5
42.9/48.3/45.7 53.9/53.3/52.9 59.2/55.2/59.5 63.1/57.6/63.1 65.9/58.8/65.1 67.2/60.8/67.6 70.6/63.6/70.8

A10 GP 47.6±4.4 51.9±3.0 56.1±1.8 58.5±1.7 60.4±1.2 63.0±0.8 67.7±0.4
47.4/48.1/47.4 53.9/50.8/51.0 58.6/51.8/57.9 61.0/53.8/60.6 63.3/54.5/63.4 66.3/56.4/66.4 72.5/60.1/70.5

A11 H-kmeans 1-NN 50.7±3.0 52.7±2.4 56.6±1.6 58.2±1.1 59.1±0.7 60.3±0.6 62.4±0.4
50.8/49.9/51.4 55.8/49.2/52.9 60.9/51.3/57.5 61.6/53.9/59.1 63.5/53.8/60.0 64.5/54.8/61.4 67.4/56.4/63.3

A12 RF 49.0±3.6 52.4±2.9 57.9±1.7 59.9±1.7 62.1±1.2 63.8±0.7 66.9±0.4
47.1/49.3/50.7 51.5/52.1/53.6 59.3/54.3/60.0 60.4/56.6/62.8 64.8/56.7/64.6 67.7/56.9/66.7 72.3/58.9/69.6

A13 L-SVM 51.8±3.1 55.0±2.2 59.8±1.6 61.8±1.4 63.2±0.8 65.0±0.7 67.1±0.3
52.5/50.2/52.7 58.0/50.5/56.4 63.0/54.1/62.3 65.0/57.2/63.1 65.9/58.7/65.0 66.9/61.0/67.0 69.0/63.5/68.9

A14 R-SVM 50.8±3.3 53.8±2.4 59.3±1.9 61.9±1.3 63.5±0.7 65.5±0.5 69.3±0.3
51.4/52.1/48.9 55.5/52.5/53.5 62.0/54.4/61.5 64.8/57.5/63.3 66.8/58.4/65.4 68.1/61.0/67.4 71.5/65.4/70.9

A15 GP 50.9±3.1 53.6±2.6 58.2±2.0 60.5±1.8 62.5±1.2 64.1±0.7 68.2±0.4
51.0/50.1/51.7 56.1/50.7/54.0 61.7/53.1/60.0 63.0/55.8/62.8 66.0/56.3/65.0 68.3/57.0/67.0 73.4/60.6/70.8

A16 without random 1-NN 42.0±4.7 46.5±3.5 49.7±2.0 51.1±1.2 52.9±0.8 54.6±0.6 57.0±0.3
soft 43.0/42.6/40.4 50.0/44.5/45.1 53.7/47.3/48.1 55.3/48.2/49.9 57.2/49.2/52.2 59.2/50.6/53.9 62.0/52.5/56.5

A17 assumption RF 40.4±5.1 47.0±4.3 51.8±2.4 53.7±2.0 55.9±1.0 58.0±0.8 61.3±0.4
40.6/41.5/39.0 49.8/45.6/45.5 54.5/50.1/50.8 56.1/51.0/54.1 59.2/51.9/56.6 61.2/52.9/59.8 64.6/54.8/64.5

A18 L-SVM 43.4±5.1 47.9±3.8 53.5±2.2 55.9±1.2 58.3±0.9 60.9±0.8 63.0±0.3
44.7/43.8/41.8 51.1/46.1/46.5 56.4/51.5/52.4 58.6/53.4/55.8 60.8/55.4/58.6 63.6/57.6/61.6 65.8/59.1/64.0

A19 R-SVM 41.5±5.8 48.5±3.7 54.2±1.9 56.4±1.0 59.0±0.9 61.3±0.6 64.6±0.2
39.1/42.4/43.0 49.8/48.3/47.3 57.3/52.9/52.4 60.1/54.3/54.8 63.0/56.4/57.6 64.8/58.2/60.8 67.1/61.1/65.7

A20 GP 42.1±4.5 47.1±3.6 51.1±2.2 53.4±1.4 55.7±1.1 58.3±0.9 62.5±0.4
43.5/42.0/40.7 50.5/44.7/45.9 54.1/49.0/50.2 56.5/50.1/53.6 59.0/51.3/56.8 62.0/53.0/59.8 67.0/55.6/64.9

A21 kmeans 1-NN 43.5±4.7 45.7±2.4 49.9±2.0 51.4±1.0 53.0±1.1 53.8±0.8 56.3±0.4
46.7/41.7/42.1 50.4/45.2/41.7 55.7/47.2/46.8 56.5/47.9/49.8 57.7/49.6/51.8 59.1/49.7/52.7 61.4/51.6/55.9

A22 RF 42.6±4.7 46.2±3.3 52.2±1.9 54.2±1.3 56.1±1.2 58.0±0.6 61.0±0.4
44.3/42.7/40.7 49.5/47.8/41.2 57.5/49.1/49.9 58.1/51.2/53.3 59.6/52.1/56.5 61.3/53.1/59.5 64.4/54.5/64.0

A23 L-SVM 44.2±4.4 48.3±2.4 52.7±2.4 55.2±2.2 57.7±1.4 59.4±1.3 60.7±1.1
46.5/43.9/42.2 51.7/48.6/44.6 56.1/50.9/51.1 58.4/53.0/54.4 60.5/54.5/58.2 61.4/55.6/61.3 61.7/57.1/63.3

A24 R-SVM 43.8±4.4 48.6±2.7 52.3±2.6 54.9±2.4 57.6±1.7 59.8±1.4 63.5±0.8
45.5/43.4/42.5 51.0/49.3/45.4 54.7/51.6/50.7 59.8/51.7/53.3 61.4/54.2/57.3 63.5/55.9/59.9 66.9/58.9/64.9

A25 GP 44.0±4.6 46.9±2.7 51.9±2.0 54.1±1.2 56.1±1.1 58.3±0.7 62.2±0.4
47.0/42.3/42.5 51.2/47.0/42.6 57.7/49.1/48.9 58.2/50.5/53.5 59.4/52.1/56.8 61.7/53.1/60.1 66.5/55.2/64.8

A26 H-kmeans 1-NN 45.5±3.2 48.0±2.3 51.8±1.8 53.0±1.2 53.6±0.8 54.8±0.7 57.2±0.3
47.6/44.3/44.5 54.6/44.9/44.5 58.2/47.5/49.7 57.8/49.1/52.2 58.7/49.3/52.8 59.5/50.8/54.2 62.2/52.5/56.7

A27 RF 44.8±3.3 48.3±2.8 51.7±2.1 54.6±1.1 55.9±0.9 58.1±0.6 61.5±0.4
44.3/47.3/42.7 54.0/46.6/44.3 55.8/48.7/50.6 58.3/51.1/54.4 58.9/52.1/56.8 61.4/53.3/59.7 65.7/54.6/64.3

A28 L-SVM 47.5±2.7 49.4±3.2 53.6±2.1 54.7±1.4 56.4±1.3 58.5±1.5 62.7±0.4
49.5/46.2/46.7 52.7/48.1/47.4 57.9/51.0/52.0 57.0/51.3/55.6 58.2/53.5/57.4 58.9/56.2/60.5 66.1/59.1/62.9

A29 R-SVM 46.8±3.5 49.6±3.3 53.6±2.0 55.3±1.6 57.8±1.1 60.2±1.6 65.2±0.3
50.0/45.9/44.6 52.7/49.2/47.0 57.0/51.4/52.6 57.6/53.5/54.8 60.9/55.1/57.5 63.2/57.4/60.0 68.8/61.1/65.6

A30 GP 46.4±3.4 49.1±2.6 52.6±1.8 55.0±1.3 56.3±1.0 58.4±0.5 62.7±0.5
48.1/46.0/45.1 55.9/46.5/44.9 56.9/49.5/51.4 58.4/51.5/55.1 59.3/52.5/57.3 61.3/53.5/60.4 67.2/55.6/65.4

The standard deviation values shown are the mean values of the standard deviations
calculated for the three datasets.





129

References

Aljalbout, E., Golkov, V., Siddiqui, Y., Strobel, M., and Cremers, D. (2018). Clustering
with deep learning: Taxonomy and new methods. arXiv preprint arXiv:1801.07648.

Arazo, E., Ortego, D., Albert, P., O’Connor, N. E., and McGuinness, K. (2020). Pseudo-
labeling and confirmation bias in deep semi-supervised learning. In 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE.

Beijbom, O., Edmunds, P. J., Kline, D. I., Mitchell, B. G., and Kriegman, D. (2012). Au-
tomated annotation of coral reef survey images. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1170–1177. IEEE.

Bewley, M., Friedman, A., Ferrari, R., Hill, N., Hovey, R., Barrett, N., Marzinelli, E. M.,
Pizarro, O., Figueira, W., Meyer, L., et al. (2015a). Australian sea-floor survey data,
with images and expert annotations. Scientific data, 2:150057.

Bewley, M., Nourani-Vatani, N., Rao, D., Douillard, B., Pizarro, O., and Williams, S. B.
(2015b). Hierarchical classification in AUV imagery. In Field and service robotics, pages
3–16. Springer.

Blei, D. M., Jordan, M. I., et al. (2006). Variational inference for dirichlet process mix-
tures. Bayesian analysis, 1(1):121–143.

Bruls, M., Huizing, K., and Van Wijk, J. J. (2000). Squarified treemaps. In Data visualiza-
tion 2000, pages 33–42. Springer.

Bryson, M., Johnson-Roberson, M., Pizarro, O., and Williams, S. B. (2013). Colour-
consistent structure-from-motion models using underwater imagery. Robotics: Sci-
ence and Systems VIII, page 33.

Buchsbaum, G. (1980). A spatial processor model for object colour perception. Journal
of the Franklin institute, 310(1):1–26.
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