


The cover image was created by Thomas Thoma. It includes four types of proof -
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1. Introduction

In Spring 2022 we conducted the ‘Mathematics in Transit’ project. In this
project a team of teachers and researchers from post-16 schools, the
Southampton Education School and the School of Mathematics, explored
curriculum materials to find the topic that would be most helped with a
supporting booklet. The most useful topic was ‘proof’. This booklet is aimed at
students interested in learning more about proof and different types of proof.
In this booklet, we go through what is a proof, how to construct a proof, and

different types/methods of proof.

The booklet has made use of the extensive SMP
archives at the University of Southampton and is
accompanied by a website with the solutions to the

exercises provided here:

http://blog.soton.ac.uk/mshe/solutions-mit-proof-

booklet/

Christian Bokhove — Southampton Education School, University of Southampton
Athina Thoma — Southampton Education School, University of Southampton
David Gammack — School of Mathematics, University of Southampton

Lu Heng Sunny Yu — School of Mathematics

Sarah Roberts — Barton Peveril College

Frances Downey — High Storrs School

15t edition. July 2022.


http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/
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2. What is a Proof?

Proof is at the heart of all mathematics. A proof uses previously known
truths and logical arguments to show that a statement is true and, once the
statement has been proved this way, we can say with certainty that it will
always be true. Many of the facts that you use in day-to-day mathematics
and take for granted were at some point an idea or a conjecture, that
needed to be proved. Once a conjecture is proved, it is then known as a

proposition or theorem.
Let’s consider the following proposition:
x2—1=(x — 1)(x + 1) for all real values of x

We can satisfy ourselves that this is true by substituting in the equality values

of x. For example:
Whenx =1, x2-1=12-1=0
and x+Dx-1D)=0+1DA-1)=2x0=0

Since both sides equal the same value then we can say that they are equal
when x = 1. But can we repeat this process for all values of x? If we could
then we would be using a type of Proof called Proof by Exhaustion. We will

look more at this type of proof later in section 5.

However, in this case we cannot try every single possible value of x, so this
does not provide us with absolute certainty that the proposition is true for all
values of x. When we are proving a statement, it is not sufficient for it to only

be true in some cases.

You may have looked at the proposition and thought that this is obviously true

because of your existing knowledge of how algebraic multiplication works —



you can multiply out the right-hand side and that will give you the left-hand
side. (x+D(x—1)=(xx)+ (1A xx)+(-1xx)+(1x(-1))

=x’—x+x—-1=x>-1

This is an example of Direct Proof — it starts with what is known and proceeds,
by a sequence of logical steps, to the conclusion. This is the most common
type of proof that you will have come across at A-level. In section 6 we go
through this type of proof in more detail. A direct proof is not necessarily
algebraic in nature. Geometry or reasoning may be involved, provided one step
logically leads to the next. Figure 2.1 shows another way we could directly

prove the proposition:

Figure 2.1: A visual direct proof of the proposition (SMP AS/A2 Core 3 for AQA chapter 10).

A further type of direct proof that you may not have come across is Proof by
Induction. This is studied in Further Maths A-level and is used considerably
within degree-level mathematics. We will look at this type of proof in more
detail in section 7. There are times when we cannot use a direct method of
proof. You will come across one type of Indirect Proof at A-level, known as
Proof by Contradiction. This involves assuming the opposite of your
conjecture and then proving that this cannot be true. You will see more
information about this type of proof in section 9. However, before we look at
the different types of proof, we will look at how we can disprove a statement

(or a conjecture).



3. Disproof - Counterexample

Whenever we are given a conjecture our first step is to try some values and
see whether we think it is true. It may be that the conjecture is false and we
can therefore disprove it. Disproof only requires one Counterexample —
because that one example demonstrates that the conjecture is not true in all

cases.

Example 3.1
By finding a suitable counterexample, prove that the following conjecture is

false: a® + b3 = (a + b)3

Solution 3.1
Whena =4andb =1, then a®+b3=43+13=64+1=65

and (a+b)3=0(@+1)2=53=125

Since 65 # 125, this counterexample shows that the conjecture is false.



3. Exercises

Prove that each of these conjectures is false by finding a suitable

counterexample. The solutions to these exercises are in the website

accompanying this booklet?.

1.

2.

3.

The product of two odd numbers is always a multiple of 3.
cos(—60) = —cos 6

sin(26) = 2sin®

For all real values of x, x% > x

The product of two different irrational numbers is always irrational
e?* = e* + e?

For all positive values of a and b, In(ab) = Inalnb

For all real valuesof x and y,x2 > y?=> x >y

! http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/
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4. What is the structure of a proof?

From studying at A-level, you will now appreciate that mathematics is not
simply about getting the correct answer to a question. The process of how you
reach that answer is the important part. This is particularly true in proof, since
we already have an idea of the answer and we have to demonstrate precisely

how we get to it.

Students often find producing a mathematical proof extremely difficult.
It can be hard to know where to start or how to proceed if you get stuck
in the middle of the proof. Sometimes you may be able to follow a proof
that someone else has produced, but feel that you could never have

constructed it for yourself.

The truth is that many published proofs are the polished result of a messy
process that has involved many dead-ends. The final proof may look effortless
and elegant but does not reveal the work involved in constructing it. Most
people only feel confident about proof after a lot of experience of proving

things in a variety of mathematical contexts.

We do use certain notation within a proof — in particular we use the

implication sign = to show that one step implies the next step:

For example, P = (Q can be read as “P implies Q” and it means that if

statement P is true then statement Q is true.
For example, if we have the following statements:
P: ABCD is a square

Q: ABCD is a quadrilateral



then P = Q. However, you cannot say that Q = P asthatis not true in all

cases.
Now consider, the following statements:
P: AB? + BC? = AC?
Q: Triangle ABC is a right-angled triangle

In this case P = (Q, but also the converse is true, Q = P. We can therefore

say that statement P is true if and only if Q is true and can write this as P
& Qor “Piff Q.

Key Symbols

In the table below you have some key symbols which are going to be useful
when reading or writing a proof.

Table 1. Key mathematical symbols

Symbol Meaning
PEN if and only if (iff)
= implies
€ element of
therefore
Q.E.D?,m, O end of the proof

Constructing a Proof

Let’s now look at how you might construct a proof. Consider this conjecture.

2 Q.E.D stands for the Latin phrase Quod Erat Demonstrandum which means “Which was
shown”
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Example 4.1

For all odd numbers n, show that n? — 1 is divisible by 8.

A good place to start is to try some values. This may disprove the conjecture,
in which case you’re done. But if it doesn’t then you are going to need to

prove it and this step may help you spot any useful patterns and reasons for

them:
Rough work
” py n=1,12-1=0
Lll try a few o
value}s/ af]; i n=3 3-1=38 All these are divisible by 8 so
what happens =5, 124 Pl try to prove the conjecture.
- eI If I can’t produce a proof,
i G SR Pl carry on with values of n and
n=9, 92-1=80 try to find a counterexample.
Where do I start?
What do I know? Since nis odd ¢

I know that n is odd. 2§ .
n? is od Just because a number is even,

72 — 1 is even. it doesn’t have to be divisible by 8.
For example, 2, 4, 6,10, 12, 14, 18, ...
I need a different approach.

Figure 4.1: An example proof (SMP AS/A2 Core 3 for AQA chapter 10).

At this point it can be really useful to think about whether we could use direct

proof and describe what is happening using algebra:

11



All odd numbers can be written as 2 X some number + 1.
For example, 11 = 2x5 + 1.

So I can write n as 2k + 1.

n=2k+1

so n?=(2k+1)32

=4k + 4k + 1
Clearly this is divisible by 4 but
so n?—1=4k + 4k I need to show it is divisible by 8.
= 4k(k+ 1) I’ll factorise and see if that helps.

[
If I could show that k(k + 1) was even then the number would be
the product of 4 and an even number, which is divisible by 8.
But I see that k and k + 1 are consecutive integers so one of them
must be even and hence the product must be even. I think I'm there!

Figure 4.2: Another example proof (SMP AS/A2 Core 3 for AQA chapter 10).

It may be that your final algebraic step is not sufficient to clearly prove the
conjecture. You always need to finish a proof by explaining the reasoning and

drawing a conclusion:

Solution 4.2

As n is odd there is some integer k such thatn = 2k + 1
So, n?—1=0Qk+1)*-1

=4k*+4k+1-1

= 4k* + 4k

=4k(k +1)
Since k and k + 1 are consecutive integers, one of them must be even, so the
product k(k + 1) is even too. So 4k(k + 1) is the product of 4 and an even
number. Hence 4k(k + 1) is divisible by 8. So for all odd n,n? — 1 is divisible

by 8. O
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As you can see, a proof is a combination of writing and mathematics and
should be laid out so that the sequence of logical steps leads to the conclusion

and you are convinced by the reasoning in each step.

5. Proof by Exhaustion

The basic idea of the proof by exhaustion is the following:

Split the statement into a couple of distinct cases. Then for each of the cases,

check that the statement you’d like to prove is true.

You can think of proof by exhaustion as a two-step process:

Step 1: Split the statement into finite number of exhaustive cases, then
Step 2: Show the statement is true in each case.

Before we look at examples, let us mention a few “fine prints” regarding the
two steps. While they may sound abstract at this stage, these points will
become clear once we see a few examples.

The “fine prints” are regarding:

1. The casesin Step 1:
a. The number of cases must be finite. Otherwise, you are then tasked with
checking infinite number of cases, which is impossible (at least within a

finite period of time!).

Example 5.1

Prove the following statement:
The square of any real number is never negative.
In principle, you can “split” all possible real numbers into a case of just

themselves, and check if the square of every possible real number from —oo to

13



oo is not negative taking one-by-one all the numbers. But this will take forever,

and hence impossible.

But if we split all real numbers into three cases: (i) numbers less than zero, (ii)
numbers larger than zero, (iii) zero, it will be more feasible to check these

three cases.

b. The cases must be exhaustive. This means while the number of cases are

finite, it must also cover all possibilities of the statement.

2. When you get to Step 2 which is “checking each case”, this is basically
saying “prove each individual case”. Having said that, for a lot of proofs

using this method, it simply amounts to a direct “check” if this case is true.

Therefore, in some sense, rather than being a full and standalone “method for
proof” itself, proof by exhaustion can be thought of as a potential “first step”

towards a complete proof of the initial statement.

Why is this method useful?

The purpose of employing this method is to take the initial statement and
break it down to smaller cases, such that each of the subsequent cases are

easy (or easier) to prove.

Once you'’ve split into cases, each case should be proved independently. For a
lot of questions, after you have split into cases, the cases will be simple
enough to prove by simply substituting in the numbers and check.
Occasionally, you may then need to use other types of proof so that you can

provide a proof for each of the cases.

Before we look at some examples, we shall list a few common finite exhaustive

cases.

14



Tips: Common types of finite, exhaustive cases

1. “Trichotomy of real numbers”

Every real number is either (i) positive, (ii) negative, or (iii) zero.

i.e.,

a>0,or
a€ER=>3a<0,or
a=0.

*All real numbers satisfy this property.

4

Note: Trichotomy is a Greek word and means “divide in three sections”.

2. Even and odd (integers)

All integers are either (i) even or (ii) odd.

i.e.,

n = 2k, or

n=2k+1, where k € Z.

nEZ:{

Note: Recall the formal definitions of even and odd numbers:

Definition of even:

n is even if it can be written in the form n = 2k, where k is any integer.
Definition of odd:

n is odd if it can be written as n =2k+1, where k is any integer.

*All integers satisfy this property.

3. Divisibility of integers

15



An integer n is either:

A multiple of some other integer m,

1 more than a multiple of m,

2 more than a multiple of m,

e .., oOr

k — 1 more than a multiple of m.

Note: This is also an extension to the “odd and even” type. Basically, “odd and
even” type is splitting numbers into cases that can be divided by 2 precisely,
and numbers that can be divided by 2 with remainder 1. (i.,e.n = 2k orn =

2k + 1, where k is an integer.)
*All integers satisfy this property.

4, Explicit testing of each case

Finally, if the statement to be proved only refers to a finite number of explicit

cases, you just need to test the cases explicitly one by one.

n
E.g. If you are asked: Prove that 25 < 1 + g ifn=20,1,2,3,4,5 then you can

simply run through each case of n explicitly to check if the statement holds.

Note: Of course this type of proof should only be used, in examinations or
during your studies, if there is a manageable number of cases (for example
under 10). Beyond that, it will be not be an efficient or realistic way to
complete the proof within a reasonable time. Nevertheless, outside of
secondary school or undergraduate studies, explicitly running through a large
number of finite case to prove certain statements is sometimes used in real
research (often with the help of a computer). The famous “four-colour

theorem” in mathematics is an early example of this, where the infinite cases

16



are first reduced down to 1,834 cases (later reduced to 1,482), and the

researchers had a computer run through each case explicitly3.

Example 5.1 (Using trichotomy)

Prove that the square of any real number is never negative.

Solution 5.1

Let a be any real number.

To prove:

AaER=>a%2>0

By trichotomy of real numbers, a
satisfies eithera > 0,a < 0, or
a=0.

Casel:a >0

Thena? > 0

Case2:a <0

Thena? > 0

3 Appel, K. 1., & Haken, W. (1989). Every planar map is four colorable (Vol. 98). American

Mathematical Soc..

It is always useful to first define
the variable you are working with
and consider the domain they

belong to e.g., naturals, reals etc.

If possible, always try to first

translate the “worded statement

into a “mathematical statement”.

Multiply both sides by a

Multiply both sides by a

Here you use the property that
when you have an inequality and

you multiply it with a negative

17



number that process flips the sign

of inequality.

Case3:a=0

Thena? =0 Multiply both sides by a

~ProvedVa€eR,a?2>0 0O

Example 5.1 (Using divisibility)

Prove the following statement:

If m is an integer that is not a multiple of 3, show that m? — 1 willbe a

multiple of 3.

Solution 5.2

From the divisibility of integers, any integers are one of the following:

(i) multiple of 3
(ii) 1 more than a multiple of 3

(iii) 2 more than a multiple of 3

Since case (i) is ruled out in the question, we just need to check the two latter

cases:

Case (ii): m is 1 more than a multiple of 3. You can write m = 3k + 1, where k

is some integer.
Then, m2—1=GBk+1)?%-1

=Bk+1-1)G@k+1+1)

18



= 3k(3k + 2) which is a multiple of 3.

Case (iii): m is 2 more than a multiple of 3. You can write m = 3k + 2, where

k is some integer.
Then, m2—1=0Bk+2)?-1
=Bk+2-1)Bk+2+1)
=Bk+1)(3k+3)
= 3(3k + 1)(k + 1) which is a multiple of 3.
Since all cases are verified, the initial statement is proved. O

Example 5.2 (Testing all cases explicitly)
Prove that (n + 1)3 > 3" foralln € N,n < 4.

Solution 5.3

Foralln € N,n < 4, n can only be four numbers*. n € {1, 2, 3,4}
Case (i): n = 1. Then you have
n+1)2¥=010+1)3=8
3n=31=3
8 > 3. The statement is trueif n = 1.
Case (ii):n =2
n+1)3=02+1)3=27
3"=32=9

v 27 > 9. The statement is true if n = 2.

4 Note: Some authors may consider 0 € N. The statement will still be true. This additional case
will be left as an exercise for you to check.

19



Case (iii):n =3
n+1)3=0B+1)°3=64
3" =33=27
64 > 27. The statement is true if n = 3.
Case (iv):n =4
n+1)3=04+1)2=125
3" =3* =81
125 > 81. The statement is true if n = 4.
~ Initial statement is proved. O

Potential mistakes
e Checking one or two values does not mean the result is true for all values!
o When a statement makes a claim about certain sets of numbers, all
values within that set the statement has claimed to be about will need

to be tested!

n

E.g. If nis an integer between 10 < n < 20, then 210 is always larger
than (%)2.

If you had checked only sayn = 10,11,12, ..., 19, you may be
convinced the statement is true. But upon more careful inspection, you
will find n = 20 fails. Therefore we must be careful to check all
possible values that the statement claims it holds true for before the
proper proof is complete. And if the statement claims to hold for an
infinite set of numbers, then other methods must be used, since it is

impossible prove by exhaustion for infinite number of cases!

20



Make sure cases are exhaustive.

o Make sure the cases you split do cover all possible scenarios that the
statement claims to apply to.
E.g. If a statement refers to all real numbers and you would like to use
the trichotomy of real numbers, don’t forget to check the statement is

also true for the case a = 0.

21



When is this method useful?
This method is useful when the statement you are given can be easily split into

a handful of simpler or more limiting cases.

Of course, it takes a bit of experience to know if the subsequent cases are
really “easier” to prove or not, or would it be easier to just directly prove the
original statement (via some of the other methods).

And in some cases, it is just a matter of trial and error. Like most things in

mathematics (and life), experience is just a result of sufficient trial and errors!

22



. Exercises”
. Prove that 2g <1+ %, ifn=0,1,2,3,4,5.
. Show that n? + 2 is not a multiple of 4, if nisaninteger,2 <n < 7.
. If pis a prime number such that 3 < p < 25, then prove by exhaustion that
(p — D(p + 1) is a multiple of 12.
. If x is a positive integer less than 5, prove that the last digit of x> is x.
. Prove that a? + 1 is not divisible by 3, where 6 < a < 10.
. Prove that the difference between n3 + 7 and a multiple of 7 is always 1,
for all integers in the interval 1 < n < 4.
. Let n be an integer. Prove by exhaustion that n? — 5n + 4 is positive for
6<n<8.
. Prove by exhaustion that if n is not divisible by 3, then n? = 3k + 1 for
some integer k.
. If a is not a multiple of 3, use exhaustion to prove that a? — 1 is a multiple
of 3.

If n is a positive integer, then n” — n is divisible by 7.

Prove that V x € R, x? = |x|?

Hint: Recall the definition of [x|:

Ix| _:{ x ,ifx=0;
T l—x ,ifx<O.

> The solutions are here
http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/
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6. Direct proof

The proof we saw in Section 4, Example 4.1 is often known as Proof by

Deduction and is the type of Direct Proof that we will now consider in more

detail. It will, most likely, be the type of proof that you are most familiar with

from A-level.

In the first instance it is often easiest to look for a way to describe what is

happening algebraically and then use your algebraic knowledge to prove the

conjecture.

We tend to use

e ntorepresent any integer. Use n and m to represent any two integers.

e n,n+ 1andn+ 2 to represent 3 consecutive integers. You might also

considern —1,nandn +1
e n? and m? to represent any two square numbers.

e n?and (n + 1)? represent any two consecutive square numbers.

If n represents any integer, then 2k represents any even integer and 2k + 1

represents any odd integer.

It follows that 2k and 2k + 2 represent any two consecutive even numbers

and 2k + 1 and 2k + 3 represent any two consecutive odd numbers.

There is also certain knowledge that is considered known and can simply be

stated within a proof.
For example,

e even number X even number = even number,
e even number X odd number = even number,

e even number + even number = even number etc.

24



Example 6.1

Prove that the sum of any two consecutive odd numbers is a multiple of 4
Solution 6.1

Let two consecutive odd numbers | Make sure that you define what

be 2k + 1 and 2k + 3 symbols you will use

Then their sum can be expressed | Carry out what the conjecture

as2k+1+2k+3 =4k + 4 suggests, i.e. find their sum

4k +4 = 4(k + 1), whichisa Factorise to show that you can

multiple of 4 take out a factor of 4

Hence the sum of any two

_ _ Write the conclusion to reflect the
consecutive odd numbers is a

wording of the conjecture
multiple of 4 O

This type of example requires less reasoning as the algebra does the work for

you, but it is not always possible to use algebra.

Example 6.2
Prove that the product of any three consecutive positive integers is a multiple

of 6.

Solution 6.2

Let three consecutive integers be | Make sure that you define what

nn+1l,n+2 symbols you will use

Then their product is

25



nn+1n+2)
=nn?+3n+2)
=n3+3n%+2n

Realise that you’re not sure how
that helps as you cannot take out

a factor of 6

Start again

In three consecutive integers, you
will have either one or two even
numbers — so the product must

be a multiple of 2.

Since every third number is
divisible by three, in three
consecutive integers, one of the
integers will be divisible by 3.
Hence their product must be a

multiple of 3.

Thus if the product of three
consecutive numbers is a multiple
of 2 and a multiple of 3 then it

must be a multiple of 6.

As you can see, there is a certain amount of trialling and dismissing ideas

within proof.

Think about what it means if you
have three consecutive numbers
and their relationship to odd and

even numbers

Bringing it together

26



6. Exercises®

Prove each of these statements:

1.

2.

The cube of any even number is divisible by 8

The sum of the first n odd numbers is n?

not defined

. For any four consecutive integers, the difference between the product of

the last two and the product of the first two of these numbers is equal to

their sum.

. The graphs of y = |sinx cosx + 1| and y = sinx cos x + 1 are identical

. The product of four consecutive integers is always 1 less than a perfect

square.

. 9™ — 1 is a multiple of 8 for any positive integer n

. If pis a prime number such that p > 3, then p? — 1 is a multiple of 24.

6 The solutions are here
http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/

. cosf cotf + sinf = cosec 0 and find any values for which the identity is

27
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7. Proof by induction
Proof by induction is a type of proof that you can find in many areas of
Mathematics (e.g., Algebra, Geometry, Trigonometry, Analysis, Combinatorics

and Graph Theory etc.). Let’s take a look at a few examples.

Example 7.1

Prove the following statement: 1+ 3 + 5+...+(2n — 1) = n? is true for
n positive integer.

Solution 7.1 -A

First let’s have a look at this virtually?, starting from 1 and then slowly adding

the next terms of the summation.

If we have 1 on the left-hand side of the equality
then1 = 12,

If we have 1 + 3 on the left-hand side of the

equality then

1 + 3 = 4 and the right-hand side of the equality
is 22 = 4

Virtually we can see now that if we add 3 more

circles then that gives us a square with side 2 and

area 4.

” The idea of this virtual proof is presented in Brown, J. R. (1997). Proofs and pictures. The
British Journal for the Philosophy of Science, 48(2), 161-180.
28



If we have 1 + 3 + 5 on the left-hand side of the
equality then

1+ 3 4+ 5 =9 and the right-hand side of the
equality is 32=9

Virtually we can see now that if we add 5 more

circles then that gives us a square with side 3 and

area 9.

If we have 1 + 3 + 5 + 7 on the left-hand side of
the equality then 1+ 3+ 5+ 7 = 16 and the

right-hand side of the equality is 42 =16

Virtually we can see now that if we add 7 more
circles then that gives us a square with side 4 and

area 16.

And this can continue with the addition of the next odd numbers.

Let’s now think about the same proof but we will now think of the first step, a

random k step and the step that comes after that, step k+1.

Solution 7.1- B

Step 1 — Base Case — Check that the statement you have holds for n = 1

When n = 1 the left-hand side of the equation is 1 and the right hand side is

12 =1. So, the statement holds forn = 1.

Step 2 — Induction hypothesis — Assume that the statement holds forn = k

29



You assume that the statement holds for k. This means that the left-hand side

of the equality for n = k is equal to k?. In other words that 1 + 3 +

S5+...+(2k — 1) = k?

Step 3 - Induction step — Prove that if the statement holds for n = k then it

holdsforn =k +1

You will now show that the statement holds forn = k + 1. You will aim to

showthat 1+3+5+ -+ 2k—1)+ 2k +1)—1) = (k+ 1)2.

You will start from the left-hand side. You have:

14345+..+2k—-1)
+Q2k+1D-1)

=k?+Q2k+1)-1)

=k*+2k+2-1

=k?4+2k+1

= (k +1)?

The first part of the summation you
have to prove is the same as the
summation you have in your
induction hypothesis (left-hand
side).

You can replace it with the right-
hand side of the induction

hypothesis.

Now you will manipulate the

expression aiming to simplify it.

You now need to factorise it
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In this step you proved that if the statement holds for n = k then it holds for

n = k + 1, which concluded the induction step.
Step 4 — Summarise and conclude

Hence, the statement 1 + 3 + 5+...+(2n — 1) = n? is correct for all positive

integers n.

Example 7.2

Prove thatn! > 2" forn > 4

Solutions 7. 2

You will follow exactly the same steps as before.
Step 1 - Base Case — Check that the statement you have holds for n = 4
Note that the base step is now different (the base step is the smallest value

n can take but not necessarily 1).

When n = 4 the left-hand side of the equationis 4! =1 X 2 X 3 X 4 =24

and the right hand side is 2% =16.And 24 > 16 so, the statement holds for

n=4.
Step 2 - Induction hypothesis — Assume that the statement holds forn = k

You assume that the statement holds for k. This means that the left-hand side

of the equality for n = k is more than 2%, In other words that k! > 2k

Step 3 — Induction step — Prove that if the statement holds for n = k then it
holdsforn =k + 1

You will now show that the statement holds for n = k + 1. In other words you

need to show that (k + 1)! > 2kl

You will start from the left-hand side. You have:
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(k+ 1! = (k + Dk!

= kk!+ k!

> k2k 4+ 2k

=28k +1)

> 2K(4 4+ 1) > 2K(1 + 1) = 2k2

— 2k+1

You expand the factorial but you
keep the k! as that appears in your

induction hypothesis.

You expand the brackets and you
have two appearances of k! and you
can use your induction hypothesis

k! > 2k

Now you will manipulate the

expression aiming to simplify it.

Also you have that the smallest

value k can take is k > 4

In this step you proved that if the statement holds for n = k then it holds for

n = k + 1, which concluded the induction step.

Step 4 — Summarise and conclude

Hence, the statement n! >2" is true for all n > 4.

Example 7.3

Prove the for n positive integer f(n) = 4™ + 15n — 1 is divisible by 9.

Solution 7.3

Step 1 — Base Case — Check that the statement you have holds for n =1

Whenn =1thenf(1) =4 +15x1—-1=4+15—1=18.And 18is

divisible by 9 so, the statement holds forn = 1.
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Step 2 - Induction hypothesis — Assume that the statement holds forn = k

You assume that the statement holds for k. This means that f (k) = 4% +

15k — 1 is a multiple of 9. You can rewrite this as 4* + 15k — 1 = 9m where

m a positive integer.

Step 3 - Induction step — Prove that if the statement holds for n = k then it

holdsforn =k + 1

You will now show that the statement holds for n = k + 1. In other words you

need to show that 4*™ + 15(k+ 1) — 1 = 9l where [ a positive integer.

You will start from the left-hand side. You have:

4 L 15k +1) -1
=4*4 + 15k + 15

-1
= 453 + 1) + 15k
+15—1

= 4K(3+1)+15k+15-1

= 4 +3 x4k + 15k + 15— 1

= [4% + 15k — 1] + 3 x 4k + 15

=9m+3 x 4%+ 15

You expand your expression by

breaking up the
41 and the 15(k + 1). You do this

as 4° + 15k — 1 appears in your

induction hypothesis.

Now you have 4* 4+ 15k — 1 and you
can use your induction hypothesis

that 4 + 15k — 1 = 9m

Now you need to show that 3 x 4% +
15 is a multiple of 9. To do this you

need to prove by induction (this is a
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proof by induction within a proof by

induction)

You need to show that that 3 X 4% + 15 is a multiple of 9.
Step 1 - Base Case — Check that the statement you have holds for k = 1

When k = 1then 3 x 4 + 15 = 12 + 15 = 27. And 27 is divisible by 9 so,

the statement holds for k = 1.
Step 2 - Induction hypothesis — Assume that the statement holds for k =t

You assume that the statement holds for t. This means that 3 X 4t + 15is a
multiple of 9. You can rewrite this as 3 X 4¢ + 15 = 9s where s a positive

integer.

Step 3 - Induction step — Prove that if the statement holds for k = t then it
holdsfork =t +1

You will now show that the statement holds for k = t + 1. In other words you

need to show that 3 x 4t*1 + 15 = 9v where v a positive integer.

You will start from the left-hand side. You have:

3 x 41 + 15 You expand your expression by

4t+1

=3x4t x4+ 15 breaking up the . You do this as

3 X 4 + 15 appears in your
=3x4t x4+ 15 PP Y
induction hypothesis.

=3 x4 x4+ 60— 45
You now need to write 15 as a

difference of two numbers.
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However, these cannot be any
numbers. One of them needs to be a
multiple of 9 and the other one a

= 4(3 x 4 + 15) — 45
multiple of 4 and 15 so that you can

= 4(9s) — 45 create your induction hypothesis.
=4(9s)—9 x5
=9(4s—5)=9v

Now you have 3 X 4t + 15 and you
can use your induction hypothesis

that 3 X 4t + 15 = 9s

In this step you proved that if the statement holds for k = t then it holds for

k =t + 1, which concluded the induction step.
Step 4 — Summarise and conclude
Hence, the statement 3 X 4% + 15 is a multiple of 9.

You can now return to the step of the previous proof we had left

unanswered.

4 15k + 1) -1 You expand your expression by
=4%4 + 15k + 15 breaking up the
-1 4% and the 15(k + 1). You do this
= 4k(3 +1) + 15k as 4° + 15k — 1 appears in your

+15-1 induction hypothesis.

= 4*3+1)+15k+15-1
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= 4K+ 3 x4 +15k+15-1 Now you have 4* + 15k — 1 and you
can use your induction hypothesis

that 4 + 15k — 1 = 9m

= [4% + 15k — 1] + 3 x 4% + 15

N x 4k
— 9m 4+ 3 X 4% + 15 ow you need to show that 3 X 4% +
15 is a multiple of 9. Using the
=9m+9s =9(m+s) =9l ) ) )
previous proof by induction you have
that 3 X 4t + 15 = 9s where sis a

positive integer.

Step 4 — Summarise and conclude

Hence, f(n) = 4™ 4+ 15n — 1 is divisible by 9 for n positive integer.
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7. Exercises?®

n(n+1)

2.
5 ) istrueforn>1

1. Provethat 13 + 23433 + ...+ n3 = (

2. Prove thatn! > n™ forn > 2

Prove that 2" > n?forn > 5

w

Prove that 2n® + 3n? + n is divisible by 6 forn > 1

vk

Prove that x™ — y™ is divisible by x — y for n positive integer.

8 The solutions are here
http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/
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8. Proof by contradiction
This type of proof, assumes that what you want to prove is in fact false and

tries to derive a logical contradiction, a so-called proof by contradiction.

A famous example concerns proving that the number V2 is irrational.

Recall that an irrational number is a number that cannot be expressed as the

ratio of two integers.
We will start with this famous example.

Example 8.1

Proof by contradiction that v/2 is irrational

Solution 8.1

Assume that V2 is rational.

Then there must exist integers p and g such that v/2 = gin its simplest form.

2
q q

:>p2 :2q2

So p?is even and therefore p is even too.

If p is even then there exists an integer k such that p = 2k and so p? =

(2k)? = 4k2.

But as p? = 2g? and p? = 4k? it follows that 2g? = 4k? which gives g? =
2k?.

In other words, g2 is even and therefore q is even too.
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But if both p and g are even, then g is not in its simplest form and our original

assumption was false.
We conclude that v/2 is irrational. O

Example 8.2 — infinitely many primes

Although some argue that this is not strictly a proof by contradiction
because it also provides a ‘recipe’ for creating new prime numbers, many
would call this one of the first known proofs by contradiction. It is Euclid's
proof that there are infinitely many prime numbers. It is considered to be

one of the most elegant proofs in mathematics.

Solution 8.2

Assume that there are a finite number of primes.

Letp, =2,p, =3,p3 =5, py, =7 ... be the primes in ascending order and let
pn be the largest. Now consider N, which is one more than the product of all

the primes:

N = p1p2p3Ps-Pn+ 1

This number is not divisible by any of the primes py, p,, D3, P4, --- Pn as division
by each leaves a remainder of 1. Hence N is divisible by a prime larger than p,,

oris itself prime.
This contradicts the assumption that p,, is the largest prime.

Hence our original assumption is false and there must be infinitely many

primes. O
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Example 8.3 —divided by 1001

Prove that the product of two positive integers whose sumis 1001

cannot be divided by 1001.

Solution 8.3

Let the two positive integers be n and m.
We want to prove that nm is not divisible by 1001.

Suppose nm is divisible by 1001, in other words nm = 1001k with k a

positive integer
nm = 1001k =7 x 11 x 13k
So, n (or m or both) has a factor of 7.
Butn + m = 1001 was given.
Son+m=7x11x13
So, n + m also has a factor of 7.
Hence both n and m have a factor of 7.
The argument can be repeated with 11 and 13.
So n and m have factors of 7, 11 and 13.
That can only mean that both n and m are greater than or equal to 1001.
Sincen = 1001 and m = 1001 we haven + m = 2002,
So, if nm is divisible by 1001, then n + m must be greater than 1001.

Butn 4+ m = 1001 (given) and so the product nm cannot be divisible by 1001

ifn+m = 1001. O

40



Example 8.4 — no integer solutions

Prove that the equation x3 = 99x + 1 has no integer solutions.

Solution 8.4

Assume that the equation x3 = 99x + 1 does have at least one integer

solution and call it k. Hence k3 = 99x + 1.
Now k is either even or odd.
e If kiseventhen k3 is even and 99k + 1 is odd which is not possible.

e |If kisoddthen k3is odd and 99k + 1 is even which is not possible

either.
In both cases we have a contradiction.
Hence our original assumption is false and the equation x3 = 99x + 1 has no

integer solutions. |

Example 8.5

Prove the following proposition: Suppose a is an integer: If a? is even, then a is

even.

Solution 8.5

Suppose a? is even and a is not even.

Then a? is even, and a is odd.

Since a is odd, there is an integer ¢ for whicha = 2c¢ + 1.

Thena? = (2c +1)? = 4c? + 4c+ 1 = 2(2¢? + 2¢) + 1, so a? is odd.
Thus a? is even and a? is not even, a contradiction. Our proposition is true.

O
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Example 8.6

Prove the following proposition:
If a and b are integers, then a? — 4b + 2.

Solution 8.6

Suppose this proposition is false.

In other words, there exist numbers a and b for which a and b are integers but
a? — 4b # 2 is false. Or again worded differently: there exist integers a and b

for which a® — 4b = 2.
From the equation it follows that a? = 4b + 2 = 2(2b + 1), so a? is even.
Since a? is even, it follows that a is even, so a = 2¢ for some integer c.

If we now plugin a = 2cina? — 4b = 2, we get (2¢)?2 — 4b = 2 and so 4c? —

4p = 2.
Dividing by 2 gives 2¢? — 2b = 1.

Therefore 1 — 2(c? — b), and since ¢ — b is an integer, it follows that 1 is
even. This is a contradiction. Our assumption that our proposition was

false....is false.
This means that the proposition is true. |

Example 8.7

Prove the following proposition:
For every real number x € [0, g], we have sinx + cosx > 1.
Solution 8.7

Suppose the statement is not true.
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Then there exists an x € [0, g] for which sinx + cosx < 1.

T

But recalling the graphs of sin x and cos x, both are positive for x € [0, 2], SO

0 < sinx + cosx < 1. Thus 02 < (sinx + cos x)? < 12, which gives 02 <
sin® x + 2 sinx cos x + cos? x < 12. As sin? x + cos? x = 1, this becomes
0<1+42sinxcosx <1,s01+ 2sinx cosx < 1. Subtracting 1 from both

sides gives 2sinx cos x < 0.
But this contradicts the fact that neither sin x nor cos x is negative. [

Example 8.8

Up until now examples have been algebraic. Proof by contradiction, however,
is more a concept, an idea, which could be used for any mathematical sub-
discipline. Let’s look at a famous historical problem, and how contradiction can

be used to prove it.

The Konigsberg bridge problem has been made famous by Leonard Euler.
Based on communications with others, people wondered whether it was
possible to make a roundtrip in the town of Kénigsberg, crossing each of the

seven bridges a, b, ..., g only once, as can be seen in Figure 8.1.
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Figure 8.1: Diagram by Leonard Euler from Solutio problematis ad geometriam situs pertinentis . Created
2014 by Ushakaron. Wikimedia commons.

Figure 8.1 shows a stylised version of Kénigsberg and its seven bridges. Euler
first translates the problem to finding a route across the seven bridges as one
that would require travelling across at most eight areas. He denoted these
with capital letters, and hence crossing seven bridges would be a series of
eight capital letters. Then Euler analysed the situation further by looking at

simpler examples of landmasses and bridges, for example in Figure 8.2.

Figure 8.2: Diagram by Leonard Euler from Solutio problematis ad geometriam situs pertinentis . Created
2014 by Ushakaron. Wikimedia commons.

Looking at Figure 8.2 he concluded that “In general, if the number of bridges is
any odd number, and if it is increased by one, then the number of occurrences

of A is half of the result.”®

9 For more extensive information on the problem see
https://www.maa.org/press/periodicals/convergence/leonard-eulers-solution-to-the-
konigsberg-bridge-problem-the-fate-of-konigsberg
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In other words, we could look at the number of bridges leading to an area, and

then we can find the number of times that area has to occur -crossing a bridge

only once- by adding one and dividing by 2. For area A in Figure 1 that means

for five bridges that A must occur three times. Area B, C and D must occur

twice because three bridges lead to them. In total, that is 3 (for A) + 2 (for B) +

2 (for C) +2 (for D)=9. But we knew that there only must be eight occurrences

for the seven bridges. This is a contradiction. It therefore is impossible to

travel the bridges in the city of Kbnigsberg once and only once. Euler then set

out to generalise the statement as well.

O

8. Exercises?®

Prove each of the following by contradiction.

1) VY2 is irrational.

2) x* = 45x + 1 has no integer solutions.

3) There are no pairs of positive integers x and y such that x? — y

4) For all integers n, if 3n + 2 is odd then n is odd.
5) For all integers n, if n3 + 5 is odd then n is even.
6) There exist no integers a and b for which 21a + 30b = 1.

7) The sum of a rational number and an irrational number is

irrational.

8) If a and b are positive real numbers, thena + b < 2vab

0 The solutions are here
http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/

Z2 =10.
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9) There are infinitely many primes p such that p + 2 is not prime.

10) Suppose a and b and c are positive real numbers. If ab = ¢ then

a<+corb <.




9. How do | know which proof type | need to use?
In the previous sections of this booklet, we have discussed different types of

proof: by exhaustion, direct, by induction, by contradiction.
The next question is:
How do | know which one to use when | have been given only a statement?

This is a bit tricky and requires practice to recognise standard ways to prove a
statement. Sometimes you might find that the question provides you with
some hints as to which type of proof you should follow. Other times you need
to trial different types prior to deciding which one is appropriate. This is what
Mathematicians do as well, when it is not obvious which type of proof is the
best they try a few different methods and then they decide which one is the

correct one.

To prove that the statement is true (or false) we have to construct a
mathematical argument using correct reasoning and ensure that our

arguments follow properly from each other.

A very useful question to ask yourself when you are deciding which type of

proof to use is the following:

Is your statement of the type “If A, then B”? In that case, your proof

would either be Direct proof or Proof by Contradiction.
Let’s briefly remember what we do in each type.

In the direct proof, you have to prove a conditional statement: “If A is true,

then B is true”.

You start from A and using axioms (assumptions) you demonstrate that you

can get to B.
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In the proof by contradiction, you have to prove a conditional statement “If A
is true, then B is true”. You start by assuming that A is true and try to show
that B is false. This leads you to find something false (a contradiction). Which

means that B is true.
Let’s have a look at some examples:
Prove the following statements:

1. If mandn are odd integers then m + n is an even integer.

2. Ifnisan odd integer then n3 + 1 is an even integer.

Let’s first try them both with direct proof. So, we start with the A being true

and we want to show that B is true.
1. Ifmandn are odd integers then m + n is an even integer.

It is really important to initially translate the words into the appropriate

symbols.

“If m and n are odd integers” meansthatm =2k +1landn=21+1
where k, [ are integers. Notice that we are very careful with our use of
symbols. You need to make sure that you do not use the same symbol for

different things.

Now that you have translated the phrase “If m and n are odd integers” in
symbols, you need to try to get from “If m and n are odd integers” to “then
m + nis an even integer” which means that you have to show that m +

n = 2t where t is an integer.

So, your proof should have the following structure:

m=2k+1,n=21+1
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...and then some steps
Thenm+n =2t
Let’s try to fill in the missing steps now.

You have that m = 2k + 1, n = 21 + 1 and you want to find a statement
about their summation. So you need to sum the two statements you have

about m and n.

m+n=2k+1+2[+1 Now you can notice that you can

start collecting like terms

=2k +2]+2 You can see that all the terms have

a common factor of 2

Now you can name the sum in the
=2k+1+1)
brackets t as that sum is an integer.

= 2t,wheret=k+1+1

So, you have shown that If m and n are odd integers then m + n is an even

integer.
Let’s try the other statement now.

2. Ifnisan odd integer then n® + 1 is an even integer.
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Does this seem reasonable? One way to convince yourself if to try with a

selection of values. Forn =1, (1)3+1=1+1=2
Forn=2,(23%+1=8+1=9

And we have found a value of n for which the statement is false.
Can we do this in general?

Let’s assume that n3 + 1 is an even integer, ie. n> + 1 = 2k wherekisan

integer.

lfnisodd, n = 2p+ 1,thenn3+1=2p+1)3+1=2p)3>+ (1)3+
32p)()2p + 1) + 1.

This looks messy, but let’s examine this term by term:
The first term is even: (2p)"3 = 2(4p”"3)
The second termisodd (1)*3 =1
The third termis even 6p(2p + 1)
The final term, 1, is odd
Therefore, when nis odd, n3 + 1 = 2k, is even.
The next parts were going to be...
Exhaustion:
Proving that each case is true
Does the statement say it is only valid for a set number of cases?
Induction:

If the statement is meant to be true for many different values
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Does the statement say A is true for all n?

Examples:
Show that the Show that the Show that the Show that if the
difference difference sum of the first n | square of a
between two between two square numbers | number is

consecutive consecutive is given by positive, the
square numbers | square numbers | r(+D@+2) number is
is always odd. between 9 and ° positive.

81 is odd.
If we have A The square This statement But (—=3)2 =9
(two consecutive | numbers has to be true

square
numbers), then B
(the difference is

odd).

Looks like a

direct proof!

between 9 and

81 are:
16, 25, 36, 49, 64

These can be
checked
individually.

for all n.

Looks like proof

by induction.

Looks like proof

by contradiction
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Looks like a
proof by

exhaustion.

A quest for prime number formulas

Let’s do a more extensive exploration of a statement and its proof. It will
demonstrate how finding a proof can sometimes be a real quest. The quest

ends with a proof by contradiction.

Many quadratic formulas generate long strings of prime numbers. The formula

n? —n + 41 is a much-quoted example.
First conjecture
n? —n + 41 is always prime.

Let’s first test the conjecture with values of n up to 10.

n 1123|4567 |8|9]10

n>—n+41|41|43 |47 |53 |61|71|83|97|113 131

Yes, these are all prime numbers®?.,
The conjecture is true for all values of n up to and including 40.

However, whenn = 41,n?> —n + 41 = 41%, whenn =42, n> —n+ 41 =

41 x 43.

And there are more values of n for which n? — n + 41 is divisible by 41.

1 You can check manually, but there also are websites that can check this for you, for example
http://www.math.com/students/calculators/source/prime-number.htm
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So, we formulate a second conjecture.
Second conjecture

No quadratic expression in n is prime for all integral (another word for integer)

values of n.
Let’s start by looking at a few quadratic expressions in n, for example:
n?+7n+5
n? -1
3n? + 2

You can fairly quickly find values of n for which the expression is not prime, for
example for the first one n = 3 gives 35, the second onen = 3 gives 8, and
the last one n = 4 gives 50. It is likely that the more quadratic expressions you
try, the more you will become convinced of the truth of the second conjecture.
But, as you know, it is not sufficient simply to try lots of examples — you may

miss the one example which turns out to be a counter-example.

This process is an exciting phase of mathematical problem solving where all
sorts of ideas must be tried out as you search for either a convincing proof or a

counter-example. Let’s try to prove the conjecture now.
First attempted proof
The general quadratic is of the form an? + bn + c.

Putting n = ¢ gives ac? + bc + ¢ = c(ac + b + 1), which is not prime
because it is divisible by both ac + b + 1 and c. Therefore no quadratic

expression in n can be prime for all integral values of n.
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However, this proof doesn’t work. Which particular cases spoil the ‘proof’

(think of the definition of a prime number)?
Second attempted proof (by contradiction)
Suppose an? + bn + c is prime for all integers n.
In particular, forn = 1, a + b + ¢ must be prime.
leta+b+c=p,
Forn=1+p,
an+bn+c=alp+1)?+b(p+1)+c
=ap®’+2ap+bp+a+b+c
=ap?+2ap+bp+p
an? + bn + c is therefore (ap + 2a + b + 1)p.
Similarly, we can find a similar expression for an? + bn + ¢ whenn = 1 + 2p.
So, an? + bn + c is divisible by p whenn=1,n=1+pandn =1 + 2p.

If it is prime for each of these values then an? + bn + ¢ must equal p itself

and we would have three points on a horizontal line.

This is not possible for a quadratic.

So an? + bn + c is not prime for at least one of these three values.
Combining techniques

The following proof combines proof types. The overall approach is direct, but

inside the direct proof is a separate proof by contradiction.

Example 8.9

Prove the following proposition:
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Every nonzero rational number can be expressed as a product of two irrational

numbers.

Solution 8.9

The proposition first can be reworded: If r is a nonzero rational number, then

T is the product of two irrational numbers.

. . a .
Suppose 1 is a nonzero rational number. Thenr = > for integers a and b. r can

also be written as a product of two numbers:

T
T=ﬁ.ﬁ

We know V/2 is irrational (see example 8.1), so to complete the proof we

should show that \/T—E also is irrational. We now use proof by contradiction.

o, . . r _c¢ . —
Suppose 51 rational. This means that N for integers ¢ and d, so V2

a
r—.
c

But we know thatr = %and combining both equations gives:

d ad ad
VZ=ri=2i.

c bc bc

This means V2 is rational, a contradiction. Therefore \/% is irrational.

r

7 is a product of two irrational numbers. O

Asa consequence, r = \/E
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10. Are the following proofs correct?
Sometimes a proof can look convincing, but may not actually be valid. It is a
good practice to always go through the steps of the proof in detail and check

whether you agree with the correctness of each one.

Example 10.1
Suppose that a = b

Hence a’ =ab
a’? — b? = ab — b?

(a—b)(a+b) =b(a—b)

a+b=>b
b+b=b>b
2b=b
2=1

We seem to have proved using algebra that 2 = 1, which we know is not true.
This is known as a Mathematical fallacy — we have used what may appear to
be logical steps but the issue is between line 4 and 5. We cannot divide by a —
b, because it equals 0 since a = b. Division by zero is undefined which makes

the proof invalid.
It can be very difficult to identify why a proof is invalid. For example,

Example 10.2
Prove that /9 is irrational

Assume V9 = %where a,b €\Z and a, b are co-prime (have no common

factor other than 1)
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Therefore a? is a multiple of 9 so a is a multiple of 9 and we can let a = 9k.
Then 9b? = (9k)?
9h% = 81k?
b? = 9k?
Therefore b?is a multiple of 9 so b is a multiple of 9. a, b are both multiples of
9 so cannot be co-prime. By contradiction, V9 is irrational.

Here they have used incorrect reasoning to conclude that a is a multiple of 9
because a? is. Sometimes when you are trying to unpick algebraic reasoning
you can try some values and look for a counter-example to help identify where

the error is.
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10. Exercises'?

Can you identify what is wrong with the following proof?

Exercise 10.1

The following statement is true but the proof by induction is wrong. Can you
find the error and write the correct proof?

Prove that for an odd positive integer n, f(n) = 7™ + 1 is divisible by 8.
Step 1 — Base Case

Whenn = 1then f(1) =71 + 1 =7+ 1 = 8. And 8 is divisible by 8 so, the

statement holds forn = 1.
Step 2 - Induction hypothesis

You assume that the statement holds for k. This means that f(k) = 7% + 1 is

a multiple of 8. You can rewrite this as 7" + 1 =8mwherema positive

integer.
Step 3 — Induction step

You need to show that the statement holds for n = k + 1. In other words you

need to show that 7**!

+ 1 = 8l where [ a positive integer.
You will start from the left-hand side. You have:

7 1 =77 41

=7%7+7-6
=7(7*+1) -6
=7X8m—6

2 The solutions are here
http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/



http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/

= 8(7m) — 6, which is not a multiple of 8
Can you identify what is wrong with the following proof?

Exercise 10.2

cos? 6 +sin?6 =1

Hence

cos?0 =1 —sin?0
cosf =+/1 —sin?6
1+ cos8 =1++/1—sin?0
Now this is true for all values of 8, so substitute 8 = m to obtain
1+cosm=1++1—sin’nm
1+ -1=1++1-07?

0=2
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11. Conclusion

This booklet aimed to give an overview of the challenging topic of ‘proof’. We
explained what proofs were and gave several types/methods of proof. It is not
always easy to see which types of proof you need in what circumstances. Only
after a lot of practice and immersing yourself in the world of mathematics, you
will become more proficient in recognising which approaches to proof you
might use when. However, when you do, you will more and more appreciate
the beauty of proofs as well. Proofs are the building blocks of mathematics;
after all, if we do not ‘prove’ our claims and statements, it could be conceived

as little more than speculation.
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One of the important building blocks of
mathematics is proof. In this booklet we
explain what constitutes a good proof,
and present several types/methods of
proof. The booklet gives numerous

examples and exercises.
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