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Thinking about Proof 

 
  

The cover image was created by Thomas Thoma. It includes four types of proof - 
the student on the left-hand side is engaging with a proof by exhaustion, the one in 
the right-hand side is engaging with a proof by contradiction. The two students at 
the front are working on a part of a direct proof and the dominos at the front show 
how proof by induction works. 

https://gr.linkedin.com/in/thomanimation
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1. Introduction 
In Spring 2022 we conducted the ‘Mathematics in Transit’ project. In this 

project a team of teachers and researchers from post-16 schools, the 

Southampton Education School and the School of Mathematics, explored 

curriculum materials to find the topic that would be most helped with a 

supporting booklet. The most useful topic was ‘proof’. This booklet is aimed at 

students interested in learning more about proof and different types of proof. 

In this booklet, we go through what is a proof, how to construct a proof, and 

different types/methods of proof. 

 

The booklet has made use of the extensive SMP 

archives at the University of Southampton and is 

accompanied by a website with the solutions to the 

exercises provided here: 

http://blog.soton.ac.uk/mshe/solutions-mit-proof-

booklet/ 

 

Christian Bokhove – Southampton Education School, University of Southampton 

Athina Thoma – Southampton Education School, University of Southampton 

David Gammack – School of Mathematics, University of Southampton 

Lu Heng Sunny Yu – School of Mathematics 

Sarah Roberts – Barton Peveril College 

Frances Downey – High Storrs School 

 

1st edition. July 2022.  

http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/
http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/
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2. What is a Proof? 
Proof is at the heart of all mathematics. A proof uses previously known 

truths and logical arguments to show that a statement is true and, once the 

statement has been proved this way, we can say with certainty that it will 

always be true. Many of the facts that you use in day-to-day mathematics 

and take for granted were at some point an idea or a conjecture, that 

needed to be proved. Once a conjecture is proved, it is then known as a 

proposition or theorem. 

Let’s consider the following proposition: 

 𝑥𝑥2 − 1 = (𝑥𝑥 − 1)(𝑥𝑥 + 1) for all real values of 𝑥𝑥 

We can satisfy ourselves that this is true by substituting in the equality values 

of 𝑥𝑥. For example: 

When 𝑥𝑥 = 1,  𝑥𝑥2 − 1 = 12 − 1 = 0 

and   (𝑥𝑥 + 1)(𝑥𝑥 − 1) = (1 + 1)(1 − 1) = 2 × 0 = 0 

Since both sides equal the same value then we can say that they are equal 

when 𝑥𝑥 = 1. But can we repeat this process for all values of 𝑥𝑥? If we could 

then we would be using a type of Proof called Proof by Exhaustion. We will 

look more at this type of proof later in section 5. 

However, in this case we cannot try every single possible value of 𝑥𝑥, so this 

does not provide us with absolute certainty that the proposition is true for all 

values of 𝑥𝑥. When we are proving a statement, it is not sufficient for it to only 

be true in some cases. 

You may have looked at the proposition and thought that this is obviously true 

because of your existing knowledge of how algebraic multiplication works – 
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you can multiply out the right-hand side and that will give you the left-hand 

side.  (𝑥𝑥 + 1)(𝑥𝑥 − 1) = (𝑥𝑥 × 𝑥𝑥) + (1 × 𝑥𝑥) + (−1 × 𝑥𝑥) + �1 × (−1)� 

            = 𝑥𝑥2 − 𝑥𝑥 + 𝑥𝑥 − 1 = 𝑥𝑥2 − 1 

This is an example of Direct Proof – it starts with what is known and proceeds, 

by a sequence of logical steps, to the conclusion. This is the most common 

type of proof that you will have come across at A-level. In section 6 we go 

through this type of proof in more detail. A direct proof is not necessarily 

algebraic in nature. Geometry or reasoning may be involved, provided one step 

logically leads to the next. Figure 2.1 shows another way we could directly 

prove the proposition: 

 

Figure 2.1:  A visual direct proof of the proposition (SMP AS/A2 Core 3 for AQA chapter 10). 

A further type of direct proof that you may not have come across is Proof by 

Induction. This is studied in Further Maths A-level and is used considerably 

within degree-level mathematics. We will look at this type of proof in more 

detail in section 7. There are times when we cannot use a direct method of 

proof. You will come across one type of Indirect Proof at A-level, known as 

Proof by Contradiction. This involves assuming the opposite of your 

conjecture and then proving that this cannot be true. You will see more 

information about this type of proof in section 9. However, before we look at 

the different types of proof, we will look at how we can disprove a statement 

(or a conjecture). 
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3. Disproof - Counterexample 
Whenever we are given a conjecture our first step is to try some values and 

see whether we think it is true. It may be that the conjecture is false and we 

can therefore disprove it. Disproof only requires one Counterexample – 

because that one example demonstrates that the conjecture is not true in all 

cases. 

Example 3.1 

By finding a suitable counterexample, prove that the following conjecture is 

false: 𝑎𝑎3 + 𝑏𝑏3 = (𝑎𝑎 + 𝑏𝑏)3 

Solution 3.1 

When 𝑎𝑎 = 4 and 𝑏𝑏 = 1, then  𝑎𝑎3 + 𝑏𝑏3 = 43 + 13 = 64 + 1 = 65 

and  (𝑎𝑎 + 𝑏𝑏)3 = (4 + 1)3 = 53 = 125 

Since 65 ≠ 125, this counterexample shows that the conjecture is false. 
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3. Exercises  
Prove that each of these conjectures is false by finding a suitable 

counterexample. The solutions to these exercises are in the website 

accompanying this booklet1. 

1. The product of two odd numbers is always a multiple of 3.  

2. cos(−𝜃𝜃) = −cos 𝜃𝜃 

3. sin(2𝜃𝜃) = 2 sin𝜃𝜃 

4. For all real values of 𝑥𝑥, 𝑥𝑥2 ≥ 𝑥𝑥 

5. The product of two different irrational numbers is always irrational 

6. 𝑒𝑒2𝑥𝑥 = 𝑒𝑒𝑥𝑥 + 𝑒𝑒2 

7. For all positive values of 𝑎𝑎 and 𝑏𝑏, ln(𝑎𝑎𝑎𝑎) = ln𝑎𝑎 ln 𝑏𝑏 

8. For all real values of 𝑥𝑥 and 𝑦𝑦, 𝑥𝑥2 > 𝑦𝑦2 ⇒  𝑥𝑥 > 𝑦𝑦 

 

  

 
1 http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/    
 

http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/
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4. What is the structure of a proof? 
From studying at A-level, you will now appreciate that mathematics is not 

simply about getting the correct answer to a question. The process of how you 

reach that answer is the important part. This is particularly true in proof, since 

we already have an idea of the answer and we have to demonstrate precisely 

how we get to it. 

Students often find producing a mathematical proof extremely difficult. 

It can be hard to know where to start or how to proceed if you get stuck 

in the middle of the proof. Sometimes you may be able to follow a proof 

that someone else has produced, but feel that you could never have 

constructed it for yourself. 

The truth is that many published proofs are the polished result of a messy 

process that has involved many dead-ends. The final proof may look effortless 

and elegant but does not reveal the work involved in constructing it. Most 

people only feel confident about proof after a lot of experience of proving 

things in a variety of mathematical contexts. 

We do use certain notation within a proof – in particular we use the 

implication sign ⇒ to show that one step implies the next step: 

For example, 𝑃𝑃 ⇒  𝑄𝑄 can be read as “P implies Q” and it means that if 

statement P is true then statement Q is true.  

For example, if we have the following statements: 

P: 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵 is a square 

Q: 𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵 is a quadrilateral 
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then 𝑃𝑃 ⇒  𝑄𝑄. However, you cannot say that 𝑄𝑄 ⇒  𝑃𝑃 as that is not true in all 

cases. 

Now consider, the following statements: 

P: 𝐴𝐴𝐵𝐵2 + 𝐵𝐵𝐶𝐶2 = 𝐴𝐴𝐶𝐶2 

Q: Triangle 𝐴𝐴𝐴𝐴𝐴𝐴 is a right-angled triangle 

In this case 𝑃𝑃 ⇒  𝑄𝑄, but also the converse is true, 𝑄𝑄 ⇒  𝑃𝑃. We can therefore 

say that statement 𝑃𝑃 is true if and only if 𝑄𝑄 is true and can write this as 𝑃𝑃

⇔  𝑄𝑄 or “𝑃𝑃 iff 𝑄𝑄”. 

Key Symbols 
In the table below you have some key symbols which are going to be useful 
when reading or writing a proof. 
Table 1. Key mathematical symbols 

Symbol Meaning 

⇔ if and only if (iff) 

⇒ implies 

∈ element of 

∴ therefore 

Q.E.D2 , ∎, □ end of the proof 

 

Constructing a Proof 
Let’s now look at how you might construct a proof. Consider this conjecture. 

 
2 Q.E.D stands for the Latin phrase Quod Erat Demonstrandum which means “Which was 
shown”  
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Example 4.1 

For all odd numbers 𝑛𝑛, show that 𝑛𝑛2 − 1 is divisible by 8. 

A good place to start is to try some values. This may disprove the conjecture, 

in which case you’re done. But if it doesn’t then you are going to need to 

prove it and this step may help you spot any useful patterns and reasons for 

them: 

 

Figure 4.1: An example proof (SMP AS/A2 Core 3 for AQA chapter 10). 

At this point it can be really useful to think about whether we could use direct 

proof and describe what is happening using algebra: 
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Figure 4.2: Another example proof (SMP AS/A2 Core 3 for AQA chapter 10). 

It may be that your final algebraic step is not sufficient to clearly prove the 

conjecture. You always need to finish a proof by explaining the reasoning and 

drawing a conclusion: 

Solution 4.2 

As 𝑛𝑛 is odd there is some integer 𝑘𝑘 such that 𝑛𝑛 = 2𝑘𝑘 + 1 

So,   𝑛𝑛2 − 1 = (2𝑘𝑘 + 1)2 − 1 

= 4𝑘𝑘2 + 4𝑘𝑘 + 1 − 1 

= 4𝑘𝑘2 + 4𝑘𝑘 

= 4𝑘𝑘(𝑘𝑘 + 1) 

Since 𝑘𝑘 and 𝑘𝑘 + 1 are consecutive integers, one of them must be even, so the 

product 𝑘𝑘(𝑘𝑘 + 1) is even too. So 4𝑘𝑘(𝑘𝑘 + 1) is the product of 4 and an even 

number. Hence 4𝑘𝑘(𝑘𝑘 + 1) is divisible by 8. So for all odd 𝑛𝑛,𝑛𝑛2 − 1 is divisible 

by 8.                □ 
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As you can see, a proof is a combination of writing and mathematics and 

should be laid out so that the sequence of logical steps leads to the conclusion 

and you are convinced by the reasoning in each step. 

5. Proof by Exhaustion 
The basic idea of the proof by exhaustion is the following: 

Split the statement into a couple of distinct cases. Then for each of the cases, 

check that the statement you’d like to prove is true. 

You can think of proof by exhaustion as a two-step process:  

Step 1: Split the statement into finite number of exhaustive cases, then 

Step 2: Show the statement is true in each case. 

Before we look at examples, let us mention a few “fine prints” regarding the 

two steps. While they may sound abstract at this stage, these points will 

become clear once we see a few examples.   

The “fine prints” are regarding: 

1.  The cases in Step 1: 

a. The number of cases must be finite. Otherwise, you are then tasked with 

checking infinite number of cases, which is impossible (at least within a 

finite period of time!). 

Example 5.1 

Prove the following statement:  

The square of any real number is never negative. 

In principle, you can “split” all possible real numbers into a case of just 

themselves, and check if the square of every possible real number from −∞ to 
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∞ is not negative taking one-by-one all the numbers. But this will take forever, 

and hence impossible.   

But if we split all real numbers into three cases: (i) numbers less than zero, (ii) 

numbers larger than zero, (iii) zero, it will be more feasible to check these 

three cases. 

b. The cases must be exhaustive. This means while the number of cases are 

finite, it must also cover all possibilities of the statement. 

 

2. When you get to Step 2 which is “checking each case”, this is basically 

saying “prove each individual case”. Having said that, for a lot of proofs 

using this method, it simply amounts to a direct “check” if this case is true.   

Therefore, in some sense, rather than being a full and standalone “method for 

proof” itself, proof by exhaustion can be thought of as a potential “first step” 

towards a complete proof of the initial statement. 

Why is this method useful? 
The purpose of employing this method is to take the initial statement and 

break it down to smaller cases, such that each of the subsequent cases are 

easy (or easier) to prove. 

Once you’ve split into cases, each case should be proved independently. For a 

lot of questions, after you have split into cases, the cases will be simple 

enough to prove by simply substituting in the numbers and check. 

Occasionally, you may then need to use other types of proof so that you can 

provide a proof for each of the cases. 

Before we look at some examples, we shall list a few common finite exhaustive 

cases.  
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Tips: Common types of finite, exhaustive cases 
 

1. “Trichotomy of real numbers” 

Every real number is either (i) positive, (ii) negative, or (iii) zero.   

i.e., 

𝑎𝑎 ∈ ℝ ⇒ � 
𝑎𝑎 > 0, or
𝑎𝑎 < 0, or
𝑎𝑎 = 0.     

 

*All real numbers satisfy this property. 

Note: Trichotomy is a Greek word and means “divide in three sections”. 

2. Even and odd (integers) 

All integers are either (i) even or (ii) odd. 

i.e., 

𝑛𝑛 ∈ ℤ ⇒ � 𝑛𝑛 = 2𝑘𝑘,  or
𝑛𝑛 = 2𝑘𝑘 + 1,  where 𝑘𝑘 ∈ ℤ. 

Note: Recall the formal definitions of even and odd numbers: 

Definition of even:  

𝑛𝑛 is even if it can be written in the form 𝑛𝑛 = 2𝑘𝑘, where 𝑘𝑘 is any integer. 

Definition of odd: 

 𝑛𝑛 is odd if it can be written as 𝑛𝑛 =2k+1, where 𝑘𝑘 is any integer. 

*All integers satisfy this property. 

3. Divisibility of integers  
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An integer 𝑛𝑛 is either: 

• A multiple of some other integer 𝑚𝑚,  

• 1 more than a multiple of 𝑚𝑚, 

• 2 more than a multiple of 𝑚𝑚, 

• …, or 

• 𝑘𝑘 − 1 more than a multiple of 𝑚𝑚. 

Note: This is also an extension to the “odd and even” type. Basically, “odd and 

even” type is splitting numbers into cases that can be divided by 2 precisely, 

and numbers that can be divided by 2 with remainder 1. (i.e. 𝑛𝑛 = 2𝑘𝑘 or 𝑛𝑛 =

2𝑘𝑘 + 1, where 𝑘𝑘 is an integer.) 

*All integers satisfy this property. 

4. Explicit testing of each case 

Finally, if the statement to be proved only refers to a finite number of explicit 

cases, you just need to test the cases explicitly one by one.   

E.g. If you are asked: Prove that 2
𝑛𝑛
5 ≤ 1 + 𝑛𝑛

5
 if 𝑛𝑛 = 0, 1, 2, 3, 4, 5 then you can 

simply run through each case of 𝑛𝑛 explicitly to check if the statement holds. 

Note: Of course this type of proof should only be used, in examinations or 

during your studies, if there is a manageable number of cases (for example 

under 10). Beyond that, it will be not be an efficient or realistic way to 

complete the proof within a reasonable time. Nevertheless, outside of 

secondary school or undergraduate studies, explicitly running through a large 

number of finite case to prove certain statements is sometimes used in real 

research (often with the help of a computer). The famous “four-colour 

theorem” in mathematics is an early example of this, where the infinite cases 
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are first reduced down to 1,834 cases (later reduced to 1,482), and the 

researchers had a computer run through each case explicitly3. 

Example 5.1 (Using trichotomy) 

Prove that the square of any real number is never negative. 

Solution 5.1 

Let 𝑎𝑎 be any real number. It is always useful to first define 

the variable you are working with 

and consider the domain they 

belong to e.g., naturals, reals etc. 

To prove:  

𝑎𝑎 ∈ ℝ ⇒ 𝑎𝑎2 ≥ 0 

If possible, always try to first 

translate the “worded statement” 

into a “mathematical statement”. 

By trichotomy of real numbers, a 

satisfies either 𝑎𝑎 > 0, 𝑎𝑎 < 0, or 

𝑎𝑎 = 0. 

 

Case 1: 𝑎𝑎 > 0 

Then 𝑎𝑎2 > 0    

 

Multiply both sides by 𝑎𝑎 

Case 2: 𝑎𝑎 < 0 

Then 𝑎𝑎2 > 0 

 

Multiply both sides by 𝑎𝑎 

Here you use the property that 

when you have an inequality and 

you multiply it with a negative 

 
3 Appel, K. I., & Haken, W. (1989). Every planar map is four colorable (Vol. 98). American 
Mathematical Soc.. 
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number that process flips the sign 

of inequality. 

Case 3: 𝑎𝑎 = 0 

Then 𝑎𝑎2 = 0 

 

∴ Proved ∀ 𝑎𝑎 ∈ ℝ , 𝑎𝑎2 ≥ 0.   ☐ 

 

Multiply both sides by 𝑎𝑎 

 

Example 5.1 (Using divisibility) 

Prove the following statement: 

If m is an integer that is not a multiple of 3, show that 𝑚𝑚2 − 1 will be a 

multiple of 3. 

Solution 5.2 

From the divisibility of integers, any integers are one of the following: 

(i) multiple of 3 

(ii) 1 more than a multiple of 3 

(iii) 2 more than a multiple of 3 

Since case (i) is ruled out in the question, we just need to check the two latter 

cases: 

Case (ii): 𝑚𝑚 is 1 more than a multiple of 3. You can write 𝑚𝑚 = 3𝑘𝑘 + 1, where 𝑘𝑘 

is some integer. 

Then,   𝑚𝑚2 − 1 = (3𝑘𝑘 + 1)2 − 1     

    = (3𝑘𝑘 + 1 − 1)(3𝑘𝑘 + 1 + 1) 
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    = 3𝑘𝑘(3𝑘𝑘 + 2) which is a multiple of 3. 

Case (iii): 𝑚𝑚 is 2 more than a multiple of 3. You can write 𝑚𝑚 = 3𝑘𝑘 + 2, where 

𝑘𝑘 is some integer. 

Then,   𝑚𝑚2 − 1 = (3𝑘𝑘 + 2)2 − 1 

    = (3𝑘𝑘 + 2 − 1)(3𝑘𝑘 + 2 + 1) 

    = (3𝑘𝑘 + 1)(3𝑘𝑘 + 3) 

    = 3(3𝑘𝑘 + 1)(𝑘𝑘 + 1) which is a multiple of 3. 

Since all cases are verified, the initial statement is proved.          ☐ 

Example 5.2 (Testing all cases explicitly) 

Prove that (𝑛𝑛 + 1)3 ≥ 3𝑛𝑛 for all 𝑛𝑛 ∈ ℕ,𝑛𝑛 ≤ 4. 

Solution 5.3 

For all 𝑛𝑛 ∈ ℕ,𝑛𝑛 ≤ 4, n can only be four numbers4: 𝑛𝑛 ∈ {1, 2, 3, 4} 

Case (i): 𝑛𝑛 = 1. Then you have  

  (𝑛𝑛 + 1)3 = (1 + 1)3 = 8 

  3𝑛𝑛 = 31 = 3 

∵ 8 > 3. The statement is true if 𝑛𝑛 = 1. 

Case (ii): 𝑛𝑛 = 2 

  (𝑛𝑛 + 1)3 = (2 + 1)3 = 27 

  3𝑛𝑛 = 32 = 9 

∵ 27 > 9. The statement is true if 𝑛𝑛 = 2. 

 
4 Note: Some authors may consider 0 ∈ ℕ. The statement will still be true. This additional case 
will be left as an exercise for you to check. 
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Case (iii): 𝑛𝑛 = 3 

  (𝑛𝑛 + 1)3 = (3 + 1)3 = 64 

  3𝑛𝑛 = 33 = 27 

∵ 64 > 27. The statement is true if 𝑛𝑛 = 3. 

Case (iv): 𝑛𝑛 = 4 

  (𝑛𝑛 + 1)3 = (4 + 1)3 = 125 

  3𝑛𝑛 = 34 = 81 

∵ 125 > 81. The statement is true if 𝑛𝑛 = 4. 

∴ Initial statement is proved.   ☐ 

Potential mistakes 
• Checking one or two values does not mean the result is true for all values!   

o When a statement makes a claim about certain sets of numbers, all 

values within that set the statement has claimed to be about will need 

to be tested! 

E.g. If n is an integer between 10 ≤ 𝑛𝑛 ≤ 20, then 2
𝑛𝑛
10 is always larger 

than � 𝑛𝑛
10
�
2
. 

If you had checked only say 𝑛𝑛 = 10,11,12, … , 19, you may be 

convinced the statement is true. But upon more careful inspection, you 

will find 𝑛𝑛 = 20 fails. Therefore we must be careful to check all 

possible values that the statement claims it holds true for before the 

proper proof is complete. And if the statement claims to hold for an 

infinite set of numbers, then other methods must be used, since it is 

impossible prove by exhaustion for infinite number of cases! 
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• Make sure cases are exhaustive. 

o Make sure the cases you split do cover all possible scenarios that the 

statement claims to apply to. 

E.g. If a statement refers to all real numbers and you would like to use 

the trichotomy of real numbers, don’t forget to check the statement is 

also true for the case 𝑎𝑎 = 0. 
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When is this method useful? 
This method is useful when the statement you are given can be easily split into 

a handful of simpler or more limiting cases. 

Of course, it takes a bit of experience to know if the subsequent cases are 

really “easier” to prove or not, or would it be easier to just directly prove the 

original statement (via some of the other methods).  

And in some cases, it is just a matter of trial and error.  Like most things in 

mathematics (and life), experience is just a result of sufficient trial and errors! 
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5. Exercises5 

1. Prove that 2
𝑛𝑛
5 ≤ 1 + 𝑛𝑛

5
, if 𝑛𝑛 = 0, 1, 2, 3, 4, 5. 

2. Show that 𝑛𝑛2 + 2 is not a multiple of  4, if  𝑛𝑛 is an integer, 2 ≤ 𝑛𝑛 ≤ 7. 

3. If 𝑝𝑝 is a prime number such that 3 < 𝑝𝑝 < 25, then prove by exhaustion that 

(𝑝𝑝 − 1)(𝑝𝑝 + 1) is a multiple of 12. 

4. If 𝑥𝑥 is a positive integer less than 5, prove that the last digit of 𝑥𝑥5 is 𝑥𝑥. 

5. Prove that 𝑎𝑎2 + 1 is not divisible by 3, where 6 ≤ 𝑎𝑎 ≤ 10. 

6. Prove that the difference between 𝑛𝑛3 + 7 and a multiple of 7 is always 1, 

for all integers in the interval 1 ≤ 𝑛𝑛 ≤ 4. 

7. Let 𝑛𝑛 be an integer. Prove by exhaustion that 𝑛𝑛2 − 5𝑛𝑛 + 4 is positive for 

6 ≤ 𝑛𝑛 ≤ 8. 

8. Prove by exhaustion that if 𝑛𝑛 is not divisible by 3, then 𝑛𝑛2 = 3𝑘𝑘 + 1 for 

some integer 𝑘𝑘. 

9. If 𝑎𝑎 is not a multiple of 3, use exhaustion to prove that 𝑎𝑎2 − 1 is a multiple 

of 3. 

10. If 𝑛𝑛 is a positive integer, then 𝑛𝑛7 − 𝑛𝑛 is divisible by 7. 

11. Prove that ∀ 𝑥𝑥 ∈ ℝ , 𝑥𝑥2 = |𝑥𝑥|2 

Hint: Recall the definition of |x|: 

|𝑥𝑥| ≔ � 𝑥𝑥  , if 𝑥𝑥 ≥ 0 ;
−𝑥𝑥  , if 𝑥𝑥 < 0 .  

 
5 The solutions are here  
http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/    

http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/
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6. Direct proof 
The proof we saw in Section 4, Example 4.1 is often known as Proof by 

Deduction and is the type of Direct Proof that we will now consider in more 

detail. It will, most likely, be the type of proof that you are most familiar with 

from A-level. 

In the first instance it is often easiest to look for a way to describe what is 

happening algebraically and then use your algebraic knowledge to prove the 

conjecture. 

We tend to use  

• 𝑛𝑛 to represent any integer. Use 𝑛𝑛 and 𝑚𝑚 to represent any two integers. 

• 𝑛𝑛, 𝑛𝑛 + 1 and 𝑛𝑛 + 2 to represent 3 consecutive integers. You might also 

consider 𝑛𝑛 − 1, 𝑛𝑛 and 𝑛𝑛 + 1 

• 𝑛𝑛2 and 𝑚𝑚2 to represent any two square numbers. 

• 𝑛𝑛2 and (𝑛𝑛 + 1)2 represent any two consecutive square numbers.  

If 𝑛𝑛 represents any integer, then 2𝑘𝑘 represents any even integer and 2𝑘𝑘 + 1 

represents any odd integer. 

It follows that 2𝑘𝑘 and 2𝑘𝑘 + 2 represent any two consecutive even numbers 

and 2𝑘𝑘 + 1 and 2𝑘𝑘 + 3 represent any two consecutive odd numbers. 

There is also certain knowledge that is considered known and can simply be 

stated within a proof.  

For example,  

• even number × even number = even number,  

• even number × odd number = even number,  

• even number + even number = even number etc. 
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Example 6.1 

Prove that the sum of any two consecutive odd numbers is a multiple of 4   

Solution 6.1 

Let two consecutive odd numbers 

be 2𝑘𝑘 + 1 and 2𝑘𝑘 + 3  

Make sure that you define what 

symbols you will use 

Then their sum can be expressed 

as 2𝑘𝑘 + 1 + 2𝑘𝑘 + 3 = 4𝑘𝑘 + 4 

Carry out what the conjecture 

suggests, i.e. find their sum 

4𝑘𝑘 + 4 =  4(𝑘𝑘 + 1), which is a 

multiple of 4 

Factorise to show that you can 

take out a factor of 4 

Hence the sum of any two 

consecutive odd numbers is a 

multiple of 4                           ☐ 

Write the conclusion to reflect the 

wording of the conjecture 

This type of example requires less reasoning as the algebra does the work for 

you, but it is not always possible to use algebra. 

Example 6.2 

Prove that the product of any three consecutive positive integers is a multiple 

of 6. 

Solution 6.2 

Let three consecutive integers be 

𝑛𝑛,𝑛𝑛 + 1,𝑛𝑛 + 2 

Make sure that you define what 

symbols you will use 

Then their product is   
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𝑛𝑛(𝑛𝑛 + 1)(𝑛𝑛 + 2)

= 𝑛𝑛(𝑛𝑛2 + 3𝑛𝑛 + 2)

= 𝑛𝑛3 + 3𝑛𝑛2 + 2𝑛𝑛 

Realise that you’re not sure how 

that helps as you cannot take out 

a factor of 6 

Start again 

In three consecutive integers, you 

will have either one or two even 

numbers – so the product must 

be a multiple of 2. 

Since every third number is 

divisible by three, in three 

consecutive integers, one of the 

integers will be divisible by 3. 

Hence their product must be a 

multiple of 3. 

Think about what it means if you 

have three consecutive numbers 

and their relationship to odd and 

even numbers 

Thus if the product of three 

consecutive numbers is a multiple 

of 2 and a multiple of 3 then it 

must be a multiple of 6. 

Bringing it together 

As you can see, there is a certain amount of trialling and dismissing ideas 

within proof. 
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6. Exercises6 
Prove each of these statements:  

1. The cube of any even number is divisible by 8 

2. The sum of the first 𝑛𝑛 odd numbers is 𝑛𝑛2 

3. cos𝜃𝜃 cot𝜃𝜃 + sin𝜃𝜃 ≡ cosec 𝜃𝜃 and find any values for which the identity is 

not defined 

4. For any four consecutive integers, the difference between the product of 

the last two and the product of the first two of these numbers is equal to 

their sum. 

5. The graphs of 𝑦𝑦 = |sin 𝑥𝑥 cos 𝑥𝑥 + 1| and 𝑦𝑦 = sin 𝑥𝑥 cos 𝑥𝑥 + 1 are identical 

6. The product of four consecutive integers is always 1 less than a perfect 

square. 

7. 9𝑛𝑛 − 1 is a multiple of 8 for any positive integer 𝑛𝑛 

8. If 𝑝𝑝 is a prime number such that 𝑝𝑝 > 3, then 𝑝𝑝2 − 1 is a multiple of 24.  

 
6 The solutions are here 
 http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/    

http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/
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7. Proof by induction 

Proof by induction is a type of proof that you can find in many areas of 

Mathematics (e.g., Algebra, Geometry, Trigonometry, Analysis, Combinatorics 

and Graph Theory etc.). Let’s take a look at a few examples. 

Example 7.1 

Prove the following statement:  1 + 3 + 5+. . . +(2𝑛𝑛 − 1) = 𝑛𝑛2 is true for 
𝑛𝑛 positive integer. 

Solution 7.1 -A 

First let’s have a look at this virtually7, starting from 1 and then slowly adding 

the next terms of the summation. 

 

If we have 1 on the left-hand side of the equality 

then 1 = 12. 

 

If we have 1 + 3 on the left-hand side of the 

equality then  

1 + 3 = 4 and the right-hand side of the equality 

is 22 = 4 

Virtually we can see now that if we add 3 more 

circles then that gives us a square with side 2 and 

area 4. 

 
7 The idea of this virtual proof is presented in Brown, J. R. (1997). Proofs and pictures. The 
British Journal for the Philosophy of Science, 48(2), 161-180. 
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If we have 1 + 3 + 5 on the left-hand side of the 

equality then  

1 + 3 + 5 = 9  and the right-hand side of the 

equality is 32 = 9 

Virtually we can see now that if we add 5 more 

circles then that gives us a square with side 3 and 

area 9. 

 

If we have 1 + 3 + 5 + 7 on the left-hand side of 

the equality then 1 + 3 + 5 + 7 = 16  and the 

right-hand side of the equality is 42 = 16 

Virtually we can see now that if we add 7 more 

circles then that gives us a square with side 4 and 

area 16. 

And this can continue with the addition of the next odd numbers. 

Let’s now think about the same proof but we will now think of the first step, a 

random k step and the step that comes after that, step k+1. 

Solution 7.1- B 

Step 1 – Base Case  –  Check that the statement you have holds for  𝑛𝑛 = 1 

When 𝑛𝑛 = 1 the left-hand side of the equation is 1 and the right hand side is 

12 = 1. So, the statement holds for 𝑛𝑛 = 1. 

Step 2 – Induction hypothesis  –  Assume that the statement holds for 𝑛𝑛 = 𝑘𝑘 
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You assume that the statement holds for 𝑘𝑘. This means that the left-hand side 

of the equality for 𝑛𝑛 = 𝑘𝑘 is equal to 𝑘𝑘2. In other words that 1 + 3 +

5+. . . +(2𝑘𝑘 − 1) = 𝑘𝑘2 

Step 3 – Induction step  –  Prove that if the statement holds for 𝑛𝑛 = 𝑘𝑘 then it 

holds for 𝑛𝑛 = 𝑘𝑘 + 1 

You will now show that the statement holds for 𝑛𝑛 = 𝑘𝑘 + 1. You will aim to 

show that 1 + 3 + 5 + ⋯+ (2𝑘𝑘 − 1) + (2(𝑘𝑘 + 1) − 1) = (𝑘𝑘 + 1)2 . 

You will start from the left-hand side. You have: 

1 + 3 + 5+. . . +(2𝑘𝑘 − 1)

+ (2(𝑘𝑘 + 1) − 1) 

 

 

 

= 𝑘𝑘2 + (2(𝑘𝑘 + 1) − 1) 

 

 

 

= 𝑘𝑘2 + 2𝑘𝑘 + 2 − 1 

 

= 𝑘𝑘2 + 2𝑘𝑘 + 1 

= (𝑘𝑘 + 1)2 

The first part of the summation you 

have to prove is the same as the 

summation you have in your 

induction hypothesis (left-hand 

side). 

 

You can replace it with the right-

hand side of the induction 

hypothesis. 

 

Now you will manipulate the 

expression aiming to simplify it. 

You now need to factorise it 
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In this step you proved that if the statement holds for 𝑛𝑛 = 𝑘𝑘 then it holds for 

𝑛𝑛 = 𝑘𝑘 + 1, which concluded the induction step. 

Step 4 – Summarise and conclude 

Hence, the statement 1 + 3 + 5+. . . +(2𝑛𝑛 − 1) = 𝑛𝑛2 is correct for all positive 

integers 𝑛𝑛. 

Example 7.2 

Prove that 𝑛𝑛! > 2𝑛𝑛 for 𝑛𝑛 ≥ 4 

Solutions 7. 2 

You will follow exactly the same steps as before. 

Step 1 – Base Case  –  Check that the statement you have holds for  𝑛𝑛 = 4 

Note that the base step is now different (the base step is the smallest value 

𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 but not necessarily 1). 

When 𝑛𝑛 = 4 the left-hand side of the equation is 4! = 1 × 2 × 3 × 4 = 24 

and the right hand side is 24 = 16. And 24 > 16 so, the statement holds for 

𝑛𝑛 = 4. 

Step 2 – Induction hypothesis  –  Assume that the statement holds for 𝑛𝑛 = 𝑘𝑘 

You assume that the statement holds for 𝑘𝑘. This means that the left-hand side 

of the equality for 𝑛𝑛 = 𝑘𝑘 is more than 2𝑘𝑘. In other words that 𝑘𝑘! > 2𝑘𝑘 

Step 3 – Induction step  –  Prove that if the statement holds for 𝑛𝑛 = 𝑘𝑘 then it 

holds for 𝑛𝑛 = 𝑘𝑘 + 1 

You will now show that the statement holds for 𝑛𝑛 = 𝑘𝑘 + 1. In other words you 

need to show that (𝑘𝑘+ 1)! > 2𝑘𝑘+1 

You will start from the left-hand side. You have: 
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(𝑘𝑘+ 1)! = (𝑘𝑘+ 1)𝑘𝑘! 

 

= 𝑘𝑘𝑘𝑘! + 𝑘𝑘! 

 

 

>  𝑘𝑘2𝑘𝑘 + 2𝑘𝑘 

 

 

= 2𝑘𝑘(𝑘𝑘 + 1) 

≥ 2𝑘𝑘(4 + 1) > 2𝑘𝑘(1 + 1) = 2𝑘𝑘2

= 2𝑘𝑘+1 

You expand the factorial but you 

keep the 𝑘𝑘! as that appears in your 

induction hypothesis. 

You expand the brackets and you 

have two appearances of 𝑘𝑘! and you 

can use your induction hypothesis 

𝑘𝑘! > 2𝑘𝑘 

 

 

Now you will manipulate the 

expression aiming to simplify it. 

Also you have that the smallest 

value k can take is 𝑘𝑘 ≥ 4 

In this step you proved that if the statement holds for 𝑛𝑛 = 𝑘𝑘 then it holds for 

𝑛𝑛 = 𝑘𝑘 + 1, which concluded the induction step. 

Step 4 – Summarise and conclude 

Hence, the statement 𝑛𝑛! >2𝑛𝑛 is true for all  𝑛𝑛 ≥ 4. 

Example 7.3 

Prove the for 𝑛𝑛 positive integer 𝑓𝑓(𝑛𝑛) = 4𝑛𝑛 + 15𝑛𝑛 − 1 is divisible by 9. 

Solution 7.3 

Step 1 – Base Case  –  Check that the statement you have holds for  𝑛𝑛 = 1  

When 𝑛𝑛 = 1 then 𝑓𝑓(1) = 41 + 15 × 1 − 1 = 4 + 15 − 1 = 18. And 18 is 

divisible by 9 so, the statement holds for 𝑛𝑛 = 1. 
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Step 2 – Induction hypothesis  –  Assume that the statement holds for 𝑛𝑛 = 𝑘𝑘 

You assume that the statement holds for 𝑘𝑘. This means that 𝑓𝑓(𝑘𝑘) = 4𝑘𝑘 +

15𝑘𝑘 − 1 is a multiple of 9. You can rewrite this as 4𝑘𝑘 + 15𝑘𝑘 − 1 = 9𝑚𝑚 where 

𝑚𝑚 a positive integer. 

Step 3 – Induction step  –  Prove that if the statement holds for 𝑛𝑛 = 𝑘𝑘 then it 

holds for 𝑛𝑛 = 𝑘𝑘 + 1 

You will now show that the statement holds for 𝑛𝑛 = 𝑘𝑘 + 1. In other words you 

need to show that 4𝑘𝑘+1 + 15(𝑘𝑘+ 1)− 1 = 9𝑙𝑙 where 𝑙𝑙 a positive integer. 

You will start from the left-hand side. You have: 

4𝑘𝑘+1 + 15(𝑘𝑘+ 1)− 1

= 4𝑘𝑘4 + 15𝑘𝑘+ 15
− 1

=  4𝑘𝑘(3 + 1) + 15𝑘𝑘
+ 15− 1 

 

=  4𝑘𝑘(3 + 1) + 15𝑘𝑘 + 15 − 1 

 

=  4𝑘𝑘 + 3 × 4𝑘𝑘 + 15𝑘𝑘 + 15 − 1 

 

 

=  [4𝑘𝑘 + 15𝑘𝑘 − 1] + 3 × 4𝑘𝑘 + 15 

= 9𝑚𝑚 + 3 × 4𝑘𝑘 + 15 

You expand your expression by 

breaking up the 

4𝑘𝑘+1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 15(𝑘𝑘+ 1). You do this 

as 4𝑘𝑘 + 15𝑘𝑘 − 1 appears in your 

induction hypothesis. 

 

Now you have 4𝑘𝑘 + 15𝑘𝑘 − 1 and you 

can use your induction hypothesis 

that 4𝑘𝑘 + 15𝑘𝑘 − 1 = 9𝑚𝑚  

 

Now you need to show that 3 × 4𝑘𝑘 +

15 is a multiple of 9. To do this you 

need to prove by induction (this is a 
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proof by induction within a proof by 

induction) 

You need to show that that 3 × 4𝑘𝑘 + 15 is a multiple of 9. 

Step 1 – Base Case  –  Check that the statement you have holds for 𝑘𝑘 = 1  

When 𝑘𝑘 = 1 then 3 × 41 + 15 = 12 + 15 = 27. And 27 is divisible by 9 so, 

the statement holds for 𝑘𝑘 = 1. 

Step 2 – Induction hypothesis  –  Assume that the statement holds for 𝑘𝑘 = 𝑡𝑡 

You assume that the statement holds for 𝑡𝑡. This means that 3 × 4𝑡𝑡 + 15 is a 

multiple of 9. You can rewrite this as 3 × 4𝑡𝑡 + 15 = 9𝑠𝑠 where 𝑠𝑠 a positive 

integer. 

Step 3 – Induction step  –  Prove that if the statement holds for 𝑘𝑘 = 𝑡𝑡 then it 

holds for 𝑘𝑘 = 𝑡𝑡 + 1 

You will now show that the statement holds for 𝑘𝑘 = 𝑡𝑡 + 1. In other words you 

need to show that 3 × 4𝑡𝑡+1 + 15 = 9𝑣𝑣 where 𝑣𝑣 a positive integer. 

You will start from the left-hand side. You have: 

3 × 4𝑡𝑡+1 + 15 

= 3 × 4𝑡𝑡 × 4 + 15 

= 3 × 4𝑡𝑡 × 4 + 15 

 

= 3 × 4𝑡𝑡 × 4 + 60 − 45 

 

You expand your expression by 

breaking up the 4𝑡𝑡+1 . You do this as 

3 × 4𝑡𝑡 + 15 appears in your 

induction hypothesis. 

 

You now need to write 15 as a 

difference of two numbers. 
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= 4(3 × 4𝑡𝑡 + 15) − 45 

= 4(9𝑠𝑠) − 45 

= 4(9𝑠𝑠) − 9 × 5 

= 9 (4𝑠𝑠 − 5) = 9𝑣𝑣 

However, these cannot be any 

numbers. One of them needs to be a 

multiple of 9 and the other one a 

multiple of 4 and 15 so that you can 

create your induction hypothesis. 

 

Now you have 3 × 4𝑡𝑡 + 15 and you 

can use your induction hypothesis 

that 3 × 4𝑡𝑡 + 15 = 9𝑠𝑠  

In this step you proved that if the statement holds for 𝑘𝑘 = 𝑡𝑡 then it holds for 

𝑘𝑘 = 𝑡𝑡 + 1, which concluded the induction step. 

Step 4 – Summarise and conclude 

Hence, the statement 3 × 4𝑘𝑘 + 15 is a multiple of 9.  

You can now return to the step of the previous proof we had left 

unanswered. 

4𝑘𝑘+1 + 15(𝑘𝑘+ 1)− 1

= 4𝑘𝑘4 + 15𝑘𝑘+ 15
− 1

=  4𝑘𝑘(3 + 1) + 15𝑘𝑘
+ 15− 1 

 

=  4𝑘𝑘(3 + 1) + 15𝑘𝑘 + 15 − 1 

 

You expand your expression by 

breaking up the 

4𝑘𝑘+1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 15(𝑘𝑘+ 1). You do this 

as 4𝑘𝑘 + 15𝑘𝑘 − 1 appears in your 

induction hypothesis. 
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=  4𝑘𝑘 + 3 × 4𝑘𝑘 + 15𝑘𝑘 + 15 − 1 

 

 

=  [4𝑘𝑘 + 15𝑘𝑘 − 1] + 3 × 4𝑘𝑘 + 15 

= 9𝑚𝑚 + 3 × 4𝑘𝑘 + 15 

= 9𝑚𝑚 + 9𝑠𝑠 = 9(𝑚𝑚 + 𝑠𝑠) = 9𝑙𝑙 

Now you have 4𝑘𝑘 + 15𝑘𝑘 − 1 and you 

can use your induction hypothesis 

that 4𝑘𝑘 + 15𝑘𝑘 − 1 = 9𝑚𝑚  

 

Now you need to show that 3 × 4𝑘𝑘 +

15 is a multiple of 9. Using the 

previous proof by induction you have 

that 3 × 4𝑡𝑡 + 15 = 9𝑠𝑠 where s is a 

positive integer. 

Step 4 – Summarise and conclude 

Hence, 𝑓𝑓(𝑛𝑛) = 4𝑛𝑛 + 15𝑛𝑛 − 1 is divisible by 9 for n positive integer. 
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7. Exercises8 

1. Prove that 13 + 23+33 +⋯+ 𝑛𝑛3 = �𝑛𝑛(𝑛𝑛+1)
2 �

2
 is true for 𝑛𝑛 ≥ 1 

2. Prove that 𝑛𝑛! > 𝑛𝑛𝑛𝑛 for 𝑛𝑛 ≥ 2 

3. Prove that 2𝑛𝑛 > 𝑛𝑛2 for 𝑛𝑛 ≥ 5 

4. Prove that 2𝑛𝑛3 + 3𝑛𝑛2 + 𝑛𝑛 is divisible by 6 for 𝑛𝑛 ≥ 1 

5. Prove that 𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛 is divisible by 𝑥𝑥 − 𝑦𝑦 for 𝑛𝑛 positive integer. 

 

  

 
8 The solutions are here 
 http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/    

http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/
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8. Proof by contradiction 
This type of proof, assumes that what you want to prove is in fact false and 

tries to derive a logical contradiction, a so-called proof by contradiction. 

A famous example concerns proving that the number √2 is irrational. 

Recall that an irrational number is a number that cannot be expressed as the 

ratio of two integers. 

We will start with this famous example. 

Example 8.1  

Proof by contradiction that √2 is irrational 

Solution 8.1 

Assume that √2 is rational. 

Then there must exist integers 𝑝𝑝 and 𝑞𝑞 such that √2 = 𝑝𝑝
𝑞𝑞
 in its simplest form. 

√2 =
𝑝𝑝
𝑞𝑞
⇒ 2 =

𝑝𝑝2

𝑞𝑞2
 

⇒ 𝑝𝑝2 = 2𝑞𝑞2 

      

So 𝑝𝑝2 is even and therefore 𝑝𝑝 is even too. 

If 𝑝𝑝 is even then there exists an integer 𝑘𝑘 such that 𝑝𝑝 = 2𝑘𝑘 and so 𝑝𝑝2 =

(2𝑘𝑘)2 = 4𝑘𝑘2. 

But as 𝑝𝑝2 = 2𝑞𝑞2 and 𝑝𝑝2 = 4𝑘𝑘2 it follows that 2𝑞𝑞2 = 4𝑘𝑘2 which gives 𝑞𝑞2 =

2𝑘𝑘2. 

In other words, 𝑞𝑞2 is even and therefore 𝑞𝑞 is even too. 
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But if both 𝑝𝑝 and 𝑞𝑞 are even, then 𝑝𝑝
𝑞𝑞
 is not in its simplest form and our original 

assumption was false. 

We conclude that √2 is irrational.     □ 

Example 8.2 – infinitely many primes 

Although some argue that this is not strictly a proof by contradiction 

because it also provides a ‘recipe’ for creating new prime numbers, many 

would call this one of the first known proofs by contradiction. It is Euclid's 

proof that there are infinitely many prime numbers. It is considered to be 

one of the most elegant proofs in mathematics.  

Solution 8.2 

Assume that there are a finite number of primes. 

Let 𝑝𝑝1 = 2, 𝑝𝑝2 = 3, 𝑝𝑝3 = 5,  𝑝𝑝4 = 7 … be the primes in ascending order and let 

𝑝𝑝𝑛𝑛 be the largest. Now consider 𝑁𝑁, which is one more than the product of all 

the primes: 

𝑁𝑁 = 𝑝𝑝1𝑝𝑝2𝑝𝑝3𝑝𝑝4 ⋯𝑝𝑝𝑛𝑛 + 1 

This number is not divisible by any of the primes 𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3, 𝑝𝑝4, … 𝑝𝑝𝑛𝑛 as division 

by each leaves a remainder of 1. Hence 𝑁𝑁 is divisible by a prime larger than 𝑝𝑝𝑛𝑛 

or is itself prime. 

This contradicts the assumption that 𝑝𝑝𝑛𝑛 is the largest prime. 

Hence our original assumption is false and there must be infinitely many 

primes.             □ 
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Example 8.3 – divided by 1001 

Prove that the product of two positive integers whose sum is 1001 

cannot be divided by 1001. 

Solution 8.3 

Let the two positive integers be 𝑛𝑛 and 𝑚𝑚. 

We want to prove that 𝑛𝑛𝑛𝑛 is not divisible by 1001. 

Suppose 𝑛𝑛𝑛𝑛 is divisible by 1001, in other words 𝑛𝑛𝑛𝑛 = 1001𝑘𝑘  with 𝑘𝑘 a 

positive integer 

 𝑛𝑛𝑛𝑛 = 1001𝑘𝑘 = 7 × 11 × 13𝑘𝑘 

So, 𝑛𝑛 (or 𝑚𝑚 or both) has a factor of 7. 

But 𝑛𝑛 + 𝑚𝑚 = 1001 was given. 

So, 𝑛𝑛 + 𝑚𝑚 = 7 × 11 × 13 

So, 𝑛𝑛 + 𝑚𝑚 also has a factor of 7. 

Hence both 𝑛𝑛 and 𝑚𝑚 have a factor of 7. 

The argument can be repeated with 11 and 13. 

So n and m have factors of 7, 11 and 13. 

That can only mean that both 𝑛𝑛 and 𝑚𝑚 are greater than or equal to 1001. 

Since 𝑛𝑛 ≥ 1001 and 𝑚𝑚 ≥ 1001 we have 𝑛𝑛 + 𝑚𝑚 ≥ 2002, 

So, if 𝑛𝑛𝑛𝑛 is divisible by 1001, then 𝑛𝑛 + 𝑚𝑚 must be greater than 1001. 

But 𝑛𝑛 + 𝑚𝑚 = 1001 (given) and so the product nm cannot be divisible by 1001 

if 𝑛𝑛 + 𝑚𝑚 = 1001.                 □ 
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Example 8.4 – no integer solutions 

Prove that the equation 𝑥𝑥3 = 99𝑥𝑥 + 1 has no integer solutions. 

Solution 8.4 

Assume that the equation 𝑥𝑥3 = 99𝑥𝑥 + 1 does have at least one integer 

solution and call it 𝑘𝑘. Hence 𝑘𝑘3 = 99𝑥𝑥 + 1. 

Now 𝑘𝑘 is either even or odd. 

• If 𝑘𝑘 is even then 𝑘𝑘3 is even and 99𝑘𝑘 + 1 is odd which is not possible.  

• If 𝑘𝑘 is odd then 𝑘𝑘3 is odd and 99𝑘𝑘 + 1 is even which is not possible 

either. 

In both cases we have a contradiction. 

Hence our original assumption is false and the equation 𝑥𝑥3 = 99𝑥𝑥 + 1 has no 

integer solutions.           □ 

Example 8.5 

Prove the following proposition: Suppose a is an integer: If 𝑎𝑎2 is even, then a is 

even. 

Solution 8.5 

Suppose 𝑎𝑎2 is even and 𝑎𝑎 is not even. 

Then 𝑎𝑎2 is even, and 𝑎𝑎 is odd. 

Since 𝑎𝑎 is odd, there is an integer 𝑐𝑐 for which 𝑎𝑎 = 2𝑐𝑐 + 1. 

Then 𝑎𝑎2 = (2𝑐𝑐 + 1)2 = 4𝑐𝑐2 + 4𝑐𝑐 + 1 = 2(2𝑐𝑐2 + 2𝑐𝑐) + 1, so 𝑎𝑎2 is odd. 

Thus 𝑎𝑎2 is even and 𝑎𝑎2 is not even, a contradiction. Our proposition is true. 

               □ 
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Example 8.6 

Prove the following proposition:  

If 𝑎𝑎 and 𝑏𝑏 are integers, then 𝑎𝑎2 − 4𝑏𝑏 ≠ 2. 

Solution 8.6 

Suppose this proposition is false. 

In other words, there exist numbers 𝑎𝑎 and 𝑏𝑏 for which 𝑎𝑎 and 𝑏𝑏 are integers but 

𝑎𝑎2 − 4𝑏𝑏 ≠ 2 is false. Or again worded differently: there exist integers 𝑎𝑎 and 𝑏𝑏 

for which 𝑎𝑎2 − 4𝑏𝑏 = 2. 

From the equation it follows that 𝑎𝑎2 = 4𝑏𝑏 + 2 = 2(2𝑏𝑏 + 1), so 𝑎𝑎2 is even. 

Since 𝑎𝑎2 is even, it follows that 𝑎𝑎 is even, so 𝑎𝑎 = 2𝑐𝑐 for some integer c. 

If we now plug in 𝑎𝑎 = 2𝑐𝑐 in 𝑎𝑎2 − 4𝑏𝑏 = 2, we get (2𝑐𝑐)2 − 4𝑏𝑏 = 2 and so 4𝑐𝑐2 −

4𝑏𝑏 = 2. 

Dividing by 2 gives 2𝑐𝑐2 − 2𝑏𝑏 = 1. 

Therefore 1 − 2(𝑐𝑐2 − 𝑏𝑏), and since 𝑐𝑐2 − 𝑏𝑏 is an integer, it follows that 1 is 

even. This is a contradiction. Our assumption that our proposition was 

false….is false. 

This means that the proposition is true.        □ 

Example 8.7 

Prove the following proposition:  

For every real number 𝑥𝑥 ∈ �0, 𝜋𝜋
2
�, we have sin 𝑥𝑥 + cos 𝑥𝑥 ≥ 1. 

Solution 8.7 

Suppose the statement is not true. 
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Then there exists an 𝑥𝑥 ∈ �0, 𝜋𝜋
2
� for which sin 𝑥𝑥 + cos 𝑥𝑥 < 1. 

But recalling the graphs of sin 𝑥𝑥 and cos 𝑥𝑥, both are positive for 𝑥𝑥 ∈ �0, 𝜋𝜋
2
�, so 

0 ≤ sin 𝑥𝑥 + cos 𝑥𝑥 < 1. Thus 02 ≤ (sin 𝑥𝑥 + cos 𝑥𝑥)2 < 12, which gives 02 ≤

sin2 𝑥𝑥 + 2 sin 𝑥𝑥 cos 𝑥𝑥 + cos2 𝑥𝑥 < 12. As sin2 𝑥𝑥 + cos2 𝑥𝑥 = 1, this becomes 

0 ≤ 1 + 2sin 𝑥𝑥 cos 𝑥𝑥 < 1, so 1 + 2sin 𝑥𝑥 cos 𝑥𝑥 < 1. Subtracting 1 from both 

sides gives 2sin 𝑥𝑥 cos 𝑥𝑥 < 0. 

But this contradicts the fact that neither sin 𝑥𝑥 nor cos 𝑥𝑥 is negative.   □ 

Example 8.8 

Up until now examples have been algebraic. Proof by contradiction, however, 

is more a concept, an idea, which could be used for any mathematical sub-

discipline. Let’s look at a famous historical problem, and how contradiction can 

be used to prove it. 

The Königsberg bridge problem has been made famous by Leonard Euler. 

Based on communications with others, people wondered whether it was 

possible to make a roundtrip in the town of Königsberg, crossing each of the 

seven bridges 𝑎𝑎, 𝑏𝑏, … ,𝑔𝑔 only once, as can be seen in Figure 8.1. 
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Figure 8.1: Diagram by Leonard Euler from Solutio problematis ad geometriam situs pertinentis . Created 
2014 by Ushakaron. Wikimedia commons. 

Figure 8.1 shows a stylised version of Königsberg and its seven bridges. Euler 

first translates the problem to finding a route across the seven bridges as one 

that would require travelling across at most eight areas. He denoted these 

with capital letters, and hence crossing seven bridges would be a series of 

eight capital letters. Then Euler analysed the situation further by looking at 

simpler examples of landmasses and bridges, for example in Figure 8.2. 

 

Figure 8.2: Diagram by Leonard Euler from Solutio problematis ad geometriam situs pertinentis . Created 
2014 by Ushakaron. Wikimedia commons. 

Looking at Figure 8.2 he concluded that “In general, if the number of bridges is 

any odd number, and if it is increased by one, then the number of occurrences 

of A is half of the result.”9 

 
9 For more extensive information on the problem see 
https://www.maa.org/press/periodicals/convergence/leonard-eulers-solution-to-the-
konigsberg-bridge-problem-the-fate-of-konigsberg  

https://www.maa.org/press/periodicals/convergence/leonard-eulers-solution-to-the-konigsberg-bridge-problem-the-fate-of-konigsberg
https://www.maa.org/press/periodicals/convergence/leonard-eulers-solution-to-the-konigsberg-bridge-problem-the-fate-of-konigsberg
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In other words, we could look at the number of bridges leading to an area, and 

then we can find the number of times that area has to occur -crossing a bridge 

only once- by adding one and dividing by 2. For area A in Figure 1 that means 

for five bridges that A must occur three times. Area B, C and D must occur 

twice because three bridges lead to them. In total, that is 3 (for A) + 2 (for B) + 

2 (for C) +2 (for D)=9. But we knew that there only must be eight occurrences 

for the seven bridges. This is a contradiction. It therefore is impossible to 

travel the bridges in the city of Königsberg once and only once. Euler then set 

out to generalise the statement as well.     

    □ 

8. Exercises10  
Prove each of the following by contradiction. 

1) √23  is irrational. 

2) 𝑥𝑥4 = 45𝑥𝑥 + 1 has no integer solutions. 

3) There are no pairs of positive integers 𝑥𝑥 and 𝑦𝑦 such that 𝑥𝑥2 − 𝑦𝑦2 = 10. 

4) For all integers 𝑛𝑛, if 3𝑛𝑛 + 2 is odd then 𝑛𝑛 is odd.  

5) For all integers 𝑛𝑛, if 𝑛𝑛3 + 5 is odd then 𝑛𝑛 is even. 

6) There exist no integers 𝑎𝑎 and 𝑏𝑏 for which 21𝑎𝑎 + 30𝑏𝑏 = 1. 

7) The sum of a rational number and an irrational number is 

irrational. 

8) If a and b are positive real numbers, then 𝑎𝑎 + 𝑏𝑏 ≤ 2√𝑎𝑎𝑎𝑎 

 
10 The solutions are here 
 http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/    

http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/
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9) There are infinitely many primes p such that 𝑝𝑝 + 2 is not prime. 

10) Suppose 𝑎𝑎 and 𝑏𝑏 and 𝑐𝑐 are positive real numbers. If 𝑎𝑎𝑎𝑎 = 𝑐𝑐 then 

𝑎𝑎 ≤ √𝑐𝑐 or 𝑏𝑏 ≤ √𝑐𝑐. 
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9. How do I know which proof type I need to use? 
In the previous sections of this booklet, we have discussed different types of 

proof: by exhaustion, direct, by induction, by contradiction. 

The next question is:  

How do I know which one to use when I have been given only a statement? 

This is a bit tricky and requires practice to recognise standard ways to prove a 

statement. Sometimes you might find that the question provides you with 

some hints as to which type of proof you should follow. Other times you need 

to trial different types prior to deciding which one is appropriate. This is what 

Mathematicians do as well, when it is not obvious which type of proof is the 

best they try a few different methods and then they decide which one is the 

correct one.  

To prove that the statement is true (or false) we have to construct a 

mathematical argument using correct reasoning and ensure that our 

arguments follow properly from each other. 

A very useful question to ask yourself when you are deciding which type of 

proof to use is the following: 

Is your statement of the type “If A, then B”? In that case, your proof 

would either be Direct proof or Proof by Contradiction.  

Let’s briefly remember what we do in each type. 

In the direct proof, you have to prove a conditional statement: “If A is true, 

then B is true”. 

You start from A and using axioms (assumptions) you demonstrate that you 

can get to B. 
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In the proof by contradiction, you have to prove a conditional statement “If A 

is true, then B is true”. You start by assuming that A is true and try to show 

that B is false. This leads you to find something false (a contradiction). Which 

means that B is true. 

Let’s have a look at some examples:  

Prove the following statements: 

1. If 𝑚𝑚 and 𝑛𝑛 are odd integers then 𝑚𝑚 + 𝑛𝑛 is an even integer. 

2. If 𝑛𝑛 is an odd integer then 𝑛𝑛3 + 1 is an even integer. 

Let’s first try them both with direct proof. So, we start with the A being true 

and we want to show that B is true. 

1. If 𝑚𝑚 and 𝑛𝑛 are odd integers then 𝑚𝑚 + 𝑛𝑛 is an even integer. 

It is really important to initially translate the words into the appropriate 

symbols. 

“If 𝑚𝑚 and 𝑛𝑛 are odd integers” means that 𝑚𝑚 = 2𝑘𝑘 + 1 and 𝑛𝑛 = 2𝑙𝑙 + 1 

where 𝑘𝑘, 𝑙𝑙 are integers. Notice that we are very careful with our use of 

symbols. You need to make sure that you do not use the same symbol for 

different things. 

Now that you have translated the phrase “If 𝑚𝑚 and 𝑛𝑛 are odd integers” in 

symbols, you need to try to get from “If 𝑚𝑚 and 𝑛𝑛 are odd integers” to “then 

𝑚𝑚 + 𝑛𝑛 is an even integer” which means that you have to show that 𝑚𝑚 +

𝑛𝑛 = 2𝑡𝑡 where 𝑡𝑡 is an integer. 

So, your proof should have the following structure: 

𝑚𝑚 = 2𝑘𝑘 + 1, 𝑛𝑛 = 2𝑙𝑙 + 1 
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…and then some steps 

Then 𝑚𝑚 + 𝑛𝑛 = 2𝑡𝑡 

Let’s try to fill in the missing steps now. 

You have that 𝑚𝑚 = 2𝑘𝑘 + 1, 𝑛𝑛 = 2𝑙𝑙 + 1 and you want to find a statement 

about their summation. So you need to sum the two statements you have 

about 𝑚𝑚 and 𝑛𝑛. 

𝑚𝑚 + 𝑛𝑛 = 2𝑘𝑘 + 1 + 2𝑙𝑙 + 1 

 

 

                           = 2𝑘𝑘 + 2𝑙𝑙 + 2 

 

 

                           = 2(𝑘𝑘 + 𝑙𝑙 + 1) 

 

 

                           = 2𝑡𝑡, where 𝑡𝑡 = 𝑘𝑘 + 𝑙𝑙 + 1 

 

Now you can notice that you can 

start collecting like terms 

 

You can see that all the terms have 

a common factor of 2 

 

Now you can name the sum in the 

brackets t as that sum is an integer. 

      So, you have shown that If 𝑚𝑚 and 𝑛𝑛 are odd integers then 𝑚𝑚 + 𝑛𝑛 is an even 

integer. 

     Let’s try the other statement now.  

2. If 𝑛𝑛 is an odd integer then 𝑛𝑛3 + 1 is an even integer. 
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Does this seem reasonable? One way to convince yourself if to try with a 

selection of values. For 𝑛𝑛 = 1, (1)3 + 1 = 1 + 1 = 2 

For 𝑛𝑛 = 2, (2)3 + 1 = 8 + 1 = 9 

And we have found a value of 𝑛𝑛 for which the statement is false. 

Can we do this in general? 

Let’s assume that 𝑛𝑛3 + 1 is an even integer, ie. 𝑛𝑛3 + 1 =  2𝑘𝑘  where k is an 

integer. 

If 𝑛𝑛 is odd,  𝑛𝑛 =  2𝑝𝑝 + 1, then 𝑛𝑛3 + 1 = (2𝑝𝑝 + 1)3 + 1 = (2𝑝𝑝)3 + (1)3 +

3(2𝑝𝑝)(1)(2𝑝𝑝 + 1) + 1.  

This looks messy, but let’s examine this term by term: 

The first term is even: (2𝑝𝑝)^3 = 2(4𝑝𝑝^3) 

The second term is odd (1)^3 = 1 

The third term is even 6𝑝𝑝(2𝑝𝑝 + 1) 

The final term, 1, is odd 

Therefore, when 𝑛𝑛 is odd, 𝑛𝑛3 + 1 =  2𝑘𝑘, is even. 

The next parts were going to be… 

Exhaustion: 

 Proving that each case is true 

 Does the statement say it is only valid for a set number of cases? 

Induction: 

 If the statement is meant to be true for many different values 
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 Does the statement say A is true for all n? 

  

Examples: 

Show that the 

difference 

between two 

consecutive 

square numbers 

is always odd. 

Show that the 

difference 

between two 

consecutive 

square numbers 

between 9 and 

81 is odd. 

Show that the 

sum of the first 𝑛𝑛 

square numbers 

is given by 
𝑛𝑛(𝑛𝑛+1)(𝑛𝑛+2)

6
. 

 

 

 

Show that if the 

square of a 

number is 

positive, the 

number is 

positive. 

If we have A 

(two consecutive 

square 

numbers), then B 

(the difference is 

odd). 

 

 

Looks like a 

direct proof! 

The square 

numbers 

between 9 and 

81 are: 

16, 25, 36, 49, 64 

These can be 

checked 

individually. 

 

This statement 

has to be true 

for all 𝑛𝑛. 

 

 

 

 

 

Looks like proof 

by induction. 

But (−3)2 = 9 

 

 

 

 

 

 

Looks like proof 

by contradiction 
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Looks like a 

proof by 

exhaustion. 

 

 

A quest for prime number formulas 
Let’s do a more extensive exploration of a statement and its proof. It will 

demonstrate how finding a proof can sometimes be a real quest. The quest 

ends with a proof by contradiction. 

Many quadratic formulas generate long strings of prime numbers. The formula 

𝑛𝑛2 − 𝑛𝑛 + 41 is a much-quoted example. 

First conjecture 

𝑛𝑛2 − 𝑛𝑛 + 41 is always prime. 

Let’s first test the conjecture with values of 𝑛𝑛 up to 10. 

𝒏𝒏 1 2 3 4 5 6 7 8 9 10 

𝒏𝒏𝟐𝟐 − 𝒏𝒏 + 𝟒𝟒𝟒𝟒 41 43 47 53 61 71 83 97 113 131 

Yes, these are all prime numbers11. 

The conjecture is true for all values of 𝑛𝑛 up to and including 40. 

However, when 𝑛𝑛 = 41, 𝑛𝑛2 − 𝑛𝑛 + 41 = 412, when 𝑛𝑛 = 42, 𝑛𝑛2 − 𝑛𝑛 + 41 =

41 × 43. 

And there are more values of 𝑛𝑛 for which 𝑛𝑛2 − 𝑛𝑛 + 41 is divisible by 41. 

 
11 You can check manually, but there also are websites that can check this for you, for example 
http://www.math.com/students/calculators/source/prime-number.htm  

http://www.math.com/students/calculators/source/prime-number.htm
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So, we formulate a second conjecture. 

Second conjecture 

No quadratic expression in 𝑛𝑛 is prime for all integral (another word for integer) 

values of 𝑛𝑛. 

Let’s start by looking at a few quadratic expressions in 𝑛𝑛, for example: 

𝑛𝑛2 + 7𝑛𝑛 + 5 

𝑛𝑛2 − 1 

3𝑛𝑛2 + 2 

You can fairly quickly find values of 𝑛𝑛 for which the expression is not prime, for 

example for the first one 𝑛𝑛 = 3 gives 35, the second one 𝑛𝑛 = 3 gives 8, and 

the last one 𝑛𝑛 = 4 gives 50. It is likely that the more quadratic expressions you 

try, the more you will become convinced of the truth of the second conjecture. 

But, as you know, it is not sufficient simply to try lots of examples – you may 

miss the one example which turns out to be a counter-example. 

This process is an exciting phase of mathematical problem solving where all 

sorts of ideas must be tried out as you search for either a convincing proof or a 

counter-example. Let’s try to prove the conjecture now. 

First attempted proof 

The general quadratic is of the form 𝑎𝑎𝑛𝑛2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐. 

Putting 𝑛𝑛 = 𝑐𝑐 gives 𝑎𝑎𝑐𝑐2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 𝑐𝑐(𝑎𝑎𝑎𝑎 + 𝑏𝑏 + 1), which is not prime 

because it is divisible by both 𝑎𝑎𝑎𝑎 + 𝑏𝑏 + 1 and 𝑐𝑐. Therefore no quadratic 

expression in n can be prime for all integral values of 𝑛𝑛. 
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However, this proof doesn’t work. Which particular cases spoil the ‘proof’ 

(think of the definition of a prime number)? 

Second attempted proof (by contradiction) 

Suppose 𝑎𝑎𝑛𝑛2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 is prime for all integers 𝑛𝑛. 

In particular, for 𝑛𝑛 = 1, 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 must be prime. 

Let 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 = 𝑝𝑝, 

For 𝑛𝑛 = 1 + 𝑝𝑝, 

𝑎𝑎𝑛𝑛2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 𝑎𝑎(𝑝𝑝 + 1)2 + 𝑏𝑏(𝑝𝑝 + 1) + 𝑐𝑐 

= 𝑎𝑎𝑝𝑝2 + 2𝑎𝑎𝑝𝑝 + 𝑏𝑏𝑏𝑏 + 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 

= 𝑎𝑎𝑝𝑝2 + 2𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑝𝑝 

𝑎𝑎𝑛𝑛2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 is therefore (𝑎𝑎𝑎𝑎 + 2𝑎𝑎 + 𝑏𝑏 + 1)𝑝𝑝. 

Similarly, we can find a similar expression for 𝑎𝑎𝑛𝑛2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 when 𝑛𝑛 = 1 + 2𝑝𝑝. 

So, 𝑎𝑎𝑛𝑛2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 is divisible by 𝑝𝑝 when 𝑛𝑛 = 1, 𝑛𝑛 = 1 + 𝑝𝑝 and 𝑛𝑛 = 1 + 2𝑝𝑝. 

If it is prime for each of these values then 𝑎𝑎𝑛𝑛2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 must equal p itself 

and we would have three points on a horizontal line. 

This is not possible for a quadratic. 

So 𝑎𝑎𝑛𝑛2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 is not prime for at least one of these three values. 

Combining techniques 

The following proof combines proof types. The overall approach is direct, but 

inside the direct proof is a separate proof by contradiction. 

Example 8.9 

Prove the following proposition:  
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Every nonzero rational number can be expressed as a product of two irrational 

numbers. 

Solution 8.9 

The proposition first can be reworded: If 𝑟𝑟 is a nonzero rational number, then 

𝑟𝑟 is the product of two irrational numbers. 

Suppose 𝑟𝑟 is a nonzero rational number. Then 𝑟𝑟 = 𝑎𝑎
𝑏𝑏

 for integers 𝑎𝑎 and 𝑏𝑏. 𝑟𝑟 can 

also be written as a product of two numbers: 

𝑟𝑟 = √2 ∙
𝑟𝑟
√2

 

We know √2 is irrational (see example 8.1), so to complete the proof we 

should show that 𝑟𝑟
√2

 also is irrational. We now use proof by contradiction. 

Suppose 𝑟𝑟
√2

 is rational. This means that 𝑟𝑟
√2

= 𝑐𝑐
𝑑𝑑

 for integers 𝑐𝑐 and 𝑑𝑑, so √2 =

𝑟𝑟 𝑑𝑑
𝑐𝑐
. 

But we know that 𝑟𝑟 = 𝑎𝑎
𝑏𝑏
 and combining both equations gives: 

√2 = 𝑟𝑟
𝑑𝑑
𝑐𝑐

=
𝑎𝑎
𝑏𝑏
𝑑𝑑
𝑐𝑐

=
𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏

 

This means √2 is rational, a contradiction. Therefore 𝑟𝑟
√2

 is irrational. 

As a consequence, 𝑟𝑟 = √2 ∙ 𝑟𝑟
√2

 is a product of two irrational numbers.  □ 
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10. Are the following proofs correct? 
Sometimes a proof can look convincing, but may not actually be valid. It is a 

good practice to always go through the steps of the proof in detail and check 

whether you agree with the correctness of each one. 

Example 10.1 

Suppose that  𝑎𝑎 = 𝑏𝑏 

Hence  𝑎𝑎2 = 𝑎𝑎𝑎𝑎 

𝑎𝑎2 − 𝑏𝑏2 = 𝑎𝑎𝑎𝑎 − 𝑏𝑏2 

(𝑎𝑎 − 𝑏𝑏)(𝑎𝑎 + 𝑏𝑏) = 𝑏𝑏(𝑎𝑎 − 𝑏𝑏) 

𝑎𝑎 + 𝑏𝑏 = 𝑏𝑏 

𝑏𝑏 + 𝑏𝑏 = 𝑏𝑏 

2𝑏𝑏 = 𝑏𝑏 

2 = 1  

We seem to have proved using algebra that 2 = 1, which we know is not true. 

This is known as a Mathematical fallacy – we have used what may appear to 

be logical steps but the issue is between line 4 and 5. We cannot divide by 𝑎𝑎 −

𝑏𝑏, because it equals 0 since 𝑎𝑎 = 𝑏𝑏. Division by zero is undefined which makes 

the proof invalid.  

It can be very difficult to identify why a proof is invalid. For example, 

Example 10.2 

Prove that √9 is irrational 

Assume √9 = 𝑎𝑎
𝑏𝑏

 where 𝑎𝑎, 𝑏𝑏 ∈ \𝑍𝑍 and 𝑎𝑎, 𝑏𝑏 are co-prime (have no common 

factor other than 1) 
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9 =
𝑎𝑎2

𝑏𝑏2
 

9𝑏𝑏2 = 𝑎𝑎2 

Therefore 𝑎𝑎2 is a multiple of 9 so 𝑎𝑎 is a multiple of 9 and we can let 𝑎𝑎 = 9𝑘𝑘. 

Then 9𝑏𝑏2 = (9𝑘𝑘)2 

9𝑏𝑏2 = 81𝑘𝑘2 

𝑏𝑏2 = 9𝑘𝑘2 

Therefore 𝑏𝑏2is a multiple of 9 so b is a multiple of 9. 𝑎𝑎, 𝑏𝑏 are both multiples of 

9 so cannot be co-prime. By contradiction, √9 is irrational. 

Here they have used incorrect reasoning to conclude that 𝑎𝑎 is a multiple of 9 

because 𝑎𝑎2 is. Sometimes when you are trying to unpick algebraic reasoning 

you can try some values and look for a counter-example to help identify where 

the error is.    
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10. Exercises12 
Can you identify what is wrong with the following proof? 

Exercise 10.1 

The following statement is true but the proof by induction is wrong. Can you 
find the error and write the correct proof? 

Prove that for an odd positive integer 𝑛𝑛,𝑓𝑓(𝑛𝑛) = 7𝑛𝑛 + 1 is divisible by 8. 

Step 1 – Base Case   

When 𝑛𝑛 = 1 then 𝑓𝑓(1) = 71 + 1 = 7 + 1 = 8. And 8 is divisible by 8 so, the 

statement holds for 𝑛𝑛 = 1. 

Step 2 – Induction hypothesis   

You assume that the statement holds for 𝑘𝑘. This means that 𝑓𝑓(𝑘𝑘) = 7𝑘𝑘 + 1 is 

a multiple of 8. You can rewrite this as 7𝑘𝑘 + 1 = 8𝑚𝑚 where 𝑚𝑚 a positive 

integer. 

Step 3 – Induction step  

You need to show that the statement holds for 𝑛𝑛 = 𝑘𝑘 + 1. In other words you 

need to show that 7𝑘𝑘+1 + 1 = 8𝑙𝑙 where 𝑙𝑙 a positive integer. 

You will start from the left-hand side. You have: 

7𝑘𝑘+1 + 1 = 7𝑘𝑘7 + 1 

     =  7𝑘𝑘7 + 7 − 6 

     =  7(7𝑘𝑘 + 1) − 6 

     =  7 × 8𝑚𝑚 − 6 

 
12 The solutions are here 
 http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/    

http://blog.soton.ac.uk/mshe/solutions-mit-proof-booklet/
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     = 8(7𝑚𝑚) − 6, which is not a multiple of 8 

Can you identify what is wrong with the following proof? 

Exercise 10.2 

cos2 𝜃𝜃 + sin2 𝜃𝜃 ≡ 1 

Hence 

cos2 𝜃𝜃 ≡ 1 − sin2 𝜃𝜃 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≡ �1 − sin2 𝜃𝜃 

1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≡ 1 + �1 − sin2 𝜃𝜃 

Now this is true for all values of 𝜃𝜃, so substitute 𝜃𝜃 = 𝜋𝜋 to obtain 

1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1 + �1 − sin2 𝜋𝜋 

1 +  −1 = 1 + �1 − 02 

0 = 2 
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11. Conclusion 
This booklet aimed to give an overview of the challenging topic of ‘proof’. We 

explained what proofs were and gave several types/methods of proof. It is not 

always easy to see which types of proof you need in what circumstances. Only 

after a lot of practice and immersing yourself in the world of mathematics, you 

will become more proficient in recognising which approaches to proof you 

might use when. However, when you do, you will more and more appreciate 

the beauty of proofs as well. Proofs are the building blocks of mathematics; 

after all, if we do not ‘prove’ our claims and statements, it could be conceived 

as little more than speculation. 
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One of the important building blocks of  

mathematics is proof. In this booklet we 

explain what constitutes a good proof, 

and present several types/methods of 

proof. The booklet gives numerous 

examples and exercises. 
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