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Abstract: Satellite data provide high potential for estimating crop yield, which is crucial to un-
derstanding determinants of yield gaps and therefore improving food production, particularly in
sub-Saharan Africa (SSA) regions. However, accurate assessment of crop yield and its spatial vari-
ation is challenging in SSA because of small field sizes, widespread intercropping practices, and
inadequate field observations. This study aimed to firstly evaluate the potential of satellite data
in estimating maize yield in intercropped smallholder fields and secondly assess how factors such
as satellite data spatial and temporal resolution, within-field variability, field size, harvest index
and intercropping practices affect model performance. Having collected in situ data (field size,
yield, intercrops occurrence, harvest index, and leaf area index), statistical models were developed
to predict yield from multisource satellite data (i.e., Sentinel-2 and PlanetScope). Model accuracy
and residuals were assessed against the above factors. Among 150 investigated fields, our study
found that nearly half were intercropped with legumes, with an average plot size of 0.17 ha. Despite
mixed pixels resulting from intercrops, the model based on the Sentinel-2 red-edge vegetation index
(VI) could estimate maize yield with moderate accuracy (R2 = 0.51, nRMSE = 19.95%), while higher
spatial resolution satellite data (e.g., PlanetScope 3 m) only showed a marginal improvement in
performance (R2 = 0.52, nRMSE = 19.95%). Seasonal peak VI values provided better accuracy than
seasonal mean/median VI, suggesting peak VI values may capture the signal of the dominant upper
maize foliage layer and may be less impacted by understory intercrop effects. Still, intercropping
practice reduces model accuracy, as the model residuals are lower in fields with pure maize (1 t/ha)
compared to intercropped fields (1.3 t/ha). This study provides a reference for operational maize
yield estimation in intercropped smallholder fields, using free satellite data in Southern Malawi. It
also highlights the difficulties of estimating yield in intercropped fields using satellite imagery, and
stresses the importance of sufficient satellite observations for monitoring intercropping practices
in SSA.

Keywords: Sentinel-2; PlanetScope; accuracy assessment; empirical model; Sub-Saharan Africa;
optimal spatial resolution; field size; harvest index; temporal aggregation methods
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1. Introduction

The sustainability of crop production in Sub-Saharan Africa (SSA) is threatened by sev-
eral pressures, such as population growth [1], land degradation [2], pests [3], droughts [4],
flooding, and climate change [5,6]. Smallholder agriculture accounts for 85% of the total
farming area in SSA, but quantitative information on crop yield remains either poorly mea-
sured [7] or available at a very coarse spatial scale [8]. Due to the lack of reliable crop yield
data, it is challenging to implement evidence-based policies and intervention programs
to close yield gaps [7,9]. Routine and cost-effective estimates of crop yield are needed
to address these challenges [7,9]. Particularly, efficient and spatially explicit mapping of
yield is needed to better target sustainable intensification interventions [10], as relying on
traditional field-based yield estimation is time-consuming and difficult to scale to large
areas [7].

Earth observation (EO) data have been demonstrated to estimate crop yield at the field,
country, and continental scales [11–13]. Progress has been made to assess within-field yield
variability in smallholder farms [14], particularly with the new development of EO systems
that offer increased revisit frequencies and increased spatial resolutions, such as Sentinel-
2 data with 5-days revisit frequency at 10 m spatial resolution and daily PlanetScope
data at 3 m. Empirical relationships between crop yield and vegetation indices (VIs) or
biophysical variables (i.e., leaf area index—LAI), have been used for yield estimation in
large homogeneous crop plots [15–17]; however, there are limited studies focusing on
smallholder fields in SSA [18,19]. Linear empirical models are commonly used to estimate
crop yields, although they are known to be site and crop-specific [10,20,21]. The linear
models are, however, easy to develop and, thus, are particularly useful for operational
purposes of agricultural monitoring services [20,21].

Several projects and platforms have been developed to utilize EO data for monitoring
crop conditions and crop response to adverse environmental conditions, such as insects and
droughts [22–24]. Such monitoring services are particularly crucial for SSA [21] in order to
implement food-aid programs and take prompt mitigation strategies in the case of crop
failure. They are usually implemented for large areas and rely on models that are rarely
calibrated for specific regions and agricultural practices [22]. In SSA smallholder fields,
EO data has been used to monitor crop conditions in response to droughts, but model
performance and accuracy have not been evaluated [22]. Studies that have attempted to
estimate crop yield at the field scale in SSA smallholder fields by using EO data are rather
limited. For example, existing studies span only four countries (e.g., Burkina Faso, Kenya,
Mali, and Uganda) and cover a subset of crop types cultivated across SSA (e.g., maize,
wheat, and millet, sorghum, beans, and cotton) [7,10,18,25–27]. As such, they provide only
a limited understanding of the potential of EO data for yield estimation in SSA.

Of the limited number of previous studies, few measured crop yield at the field
scale [18,27–29]; instead, the majority of these studies rely on official crop yield statistics
that are either available at the scale of administrative zones [8,30] or are desk-based yield
estimates that are not always reliable [28,31]. In situ yield measurements are particularly
scarce in SSA smallholder fields, thus limiting the accuracy of EO-based empirical models.
It is recognized that the availability of reliable and sufficient in situ data would quickly
accelerate progress in yield estimation in SSA (Burke et al., 2021). In addition, it is sug-
gested that the accuracy of EO-based operational programs, such as global famine early
warning [29] and agricultural monitoring systems [32], can be further improved when
calibrated by using in situ data, particularly for the SSA region [22].

In addition to lack of reliable in situ yield data, other challenges associated with EO-
based yield estimation in SSA include (1) frequent cloud contamination of optical satellite
data; (2) limited spatial resolutions that fail to adequately represent the heterogeneous
landscape [21] and small fields, which are particularly widespread in SSA as 80% of small-
holders’ fields are smaller than 2 ha [33]; and (3) widely practiced intercropping that results
in mixed satellite image pixels. All of these factors play a key role in determining the per-
formance of EO-based empirical models. To address the first factor, temporal aggregation
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methods (i.e., temporal mean, maximum, and median) and high-temporal-resolution EO
are needed. To address the second factor, satellite data providing a sufficient number of
measurements relative to the field size (enabling within-field variation to be captured)
are necessary, though there are trade-offs in terms of optimal spatial resolution and fi-
nancial and computational costs. In addition, the landscape heterogeneity is correlated
to environmental conditions and resources (i.e., water and nutrition) available for crops
to grow, which can be reflected by the harvest index. In terms of the third factor (inter-
cropping practices), legumes are commonly intercropped in maize fields that dominate
most smallholder farming [34,35], while maize is the main staple food that grows in 97% of
farming households in Southern Africa [36]. The intercropping practice poses difficulties
for estimating both maize and intercrop yield using EO data. Therefore, field investiga-
tion of intercropping practices is critical for assessing how they may affect maize-yield
estimation accuracy.

The aim of this paper is to understand opportunities and challenges in estimating crop
yield in smallholder farming systems, using the currently available optical EO data. In
particular, this study explored how reliable PlanetScope and Sentinel-2 EO data can be used
to estimate maize yield in intercropped smallholder fields in Southern Malawi. We collected
in situ data on crop field characteristics (e.g., field size, intercropping practices, yield,
biomass, harvest index, and LAI) from 150 maize-dominated fields in 2019/2020 seasons.
We used these data to calibrate and validate empirical EO-based models and assessed
how the abovementioned factors, including spatial resolution/temporal aggregation of EO
data, field size, within-field variability, harvest index and intercropping practices, affect the
performance of the final maize-yield estimation.

2. Data and Methods
2.1. Study Area Description

Malawi is ranked as a low-income developing country in SSA, with around 90% of the
population reliant on rain-fed subsistence smallholder farming [37]. Maize is the dominant
crop type cultivated by over 97% of households [36]. Intercropping practices are common
in maize fields, with one or more intercrops such as pigeon peas, soybeans, groundnuts,
beans, and pumpkins [38] grown together on the same ground for all or most of the life
cycle. The extent of individual smallholder fields is small, with an average of 0.32 ha
in 2016, based on integrated household surveys [39]. The country is divided into three
administrative regions, i.e., Southern, Central, and Northern regions. The Southern region
is the most populated and has the majority of cropland generally characterized by smaller
plot size than the other two regions. The Southern region is characterized by semi-arid
conditions and has experienced climatic hazards, including droughts and dry spells, and
localized floods in the past decades [40]. The rainy season, spanning from November to
April, represents the main agricultural season in the majority of the country. In this study,
in situ data collection was undertaken over maize-dominated fields in the Southern region,
in the three Extension Planning Areas (EPAs) of Naminjiwa, Tamani, and Waruma, located
in Phalombe District (Figure 1). In these areas, maize planting starts around November,
and harvesting starts in March.

2.2. Field Data Collection

A total of 150 maize fields were investigated across the three EPAs (Figure 1) within
certain criteria to capture yield variability within the study area. Firstly, field plots were
selected to capture a wide range of maize yield values. Secondly, plots were selected to
ensure they were spread in space and not adjacent to each other. Thirdly, plots with trees
inside or plots that were too small were not selected in order to ensure pure pixels from the
satellite data. Finally, as we focused on maize fields, only plots with at least half of their
area covered by with maize were chosen. The selection of field plots following the above
criteria was guided by local stakeholders’ experience. Global positioning system (GPS)
coordinates of the corners of all selected field plots were recorded and used to calculate the
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field size. The LAI was measured in all 150 fields across the growing season (Figure 2; see
Section 2.2.1). Maize biomass and yield were measured during the harvest season in late
March (see Section 2.2.2), over a subset of 68 of these fields due to logistic difficulties in the
field. In addition, the number and type of intercrops were recorded for each field; however,
the intercrop yield was not measured, due to varying planting densities and long harvest
periods spanning 1–2 months.
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Figure 1. Location of study sites on top of multi-source satellite images; (a) location of study sites
showing three EPAs (red polygons) in Southern Malawi; (b) location of investigated maize (black
outlines) within the study sites; (c1–c3) examples of selected maize fields on top of different satellite
imagery: (c1): Digital Globe imagery (collected in 2016 © 2021 CNES/Airbus, Maxar Technologies,
Westminster, CO, USA) shows maize fields at 0.5 m spatial resolution, comparing to (c2) spatial
resolution of 3 m PlanetScope imagery (collected on 22 February 2020) and (c3) 10 m Sentinel-2
imagery (collected on 21 March 2020) used in this study.

2.2.1. LAI Measurements

In situ LAI was used to evaluate the satellite-derived LAI (Section 2.4.2), which was
further used to estimate crop yield. In situ LAI was assessed by using digital hemispherical
photography (DHP), following the Committee on Earth Observation Satellites (CEOS)
Working Group on Calibration and Validation (WGCV) Land Product Validation (LPV)
protocol [41]. In each field, eight to thirteen DHP images were acquired by using a Nikon
D5600 digital single-lens reflex (DSLR) camera and Sigma 4.5 mm F2.8 EX DC HSM fisheye
lens. The images were taken with automatic exposure [42]. DHP images were collected in
three phases (December 2019 to January 2020, February 2020, and March 2020) to capture
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key growth stages during the growing season (Figure 2). In the earlier growth stages,
downward-facing images were obtained at the operator’s shoulder height, whilst upward-
facing images were utilized in later phases, when the crop was taller than shoulder height.
In total, approximately 2600 images were used for LAI retrieval. A 90◦ mask was applied
to the downward-facing images to exclude the operator. All images were first classified
and further processed to estimate LAI on the basis of gap fraction at 57.5◦ (±5◦), as further
detailed by Brown, et al. [43].
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Figure 2. Example DHP images of maize fields capturing different growth stages in the Phalombe
district. Images were taken on the following dates (from left to right): 23 December 2019 (seeding),
11 January 2020 (vegetative), and 23 February 2020 (grain-filling) to capture maize main
growth stages.

2.2.2. Biomass and Yield Measurements

Crop cutting measurements, considered to be the best standard of yield estimates [28],
were used to measure maize biomass and yield in the sampled fields. For field sampling
and yield measurements, the Food and Agriculture Organization (FAO) crop statistics
protocol was followed, which suggests that at least three random subplots of 1 × 1 m are
sampled within each field [44]. To increase the level of precision and considering that
maize is generally spaced at a distance of approximately 75 cm in Southern Malawi, larger
subplots of 1 × 2 m were sampled in this study, thus allowing us to harvest four to eight
planting stations in each plot. Three of these subplots were established in each field to
represent the whole field in terms of yield variation, and the mean value of the subplots
was calculated to represent the whole field. The choice of the number and size of subplots
was further guided by consulting local stakeholders and previous studies [9], whilst also
considering trade-offs in terms of logistical practicability. In each subplot, the grain was
shelled from the cob and then weighed, and grain moisture content was measured by using
a grain moisture meter [45]—MC 7825G. Maize yield was adjusted to 12% moisture content
based on fresh weight and moisture content [46]. In addition, aboveground maize biomass
was measured by harvesting the maize canopy and weighing air-dried biomass. The ratio
between yield and maize biomass was calculated to determine the harvest index, showing
the proportion of the total aboveground biomass contributing to yield [47]. The harvest
index was used to investigate its impact on yield model accuracy.

2.3. Official Yield Data and Maize Mask Dataset

Official crop yield data in 2020 were accessed through the Ministry of Agriculture in
Malawi. The official yield data were available at the EPA level through the aggregation of
plot-level yield measurements. For this study, maize yield data were retrieved for the three
EPAs where the field plots were selected for in situ yield data collection. The official maize
yield data were measured by following standard crop-cutting protocol in the field rather
than relying on desk-based estimation, therefore providing a more reliable evaluation. The
official maize-yield data were further used to test the feasibility of applying the EO-based
model to a larger region than that over which it was calibrated. Application of the EO-
based model was restricted to maize areas identified by using the malawi maize mask
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dataset (accessed through the World Bank Data Catalog), which was developed based on
Sentinel-2 satellite imagery and complementary georeferenced plot-level data from national
household surveys [48]. This dataset includes 10 m spatial resolution maize mask maps
across Malawi for each rainy season during the period of 2016–2019. In this study, the
maize crop mask for 2019 was used.

2.4. PlanetScope and Sentinel-2 Data

PlanetScope and Sentinel-2 satellite data were used to compare accuracy in yield
estimation when using commercial high-spatial-resolution imagery over freely available
imagery, while keeping in mind sensor differences and trade-offs between accuracy and cost
when using these two datasets. The PlanetScope Level-3 Analytic Ortho Tile product with
four spectral bands, namely blue, green, red, and near-infrared, was used. This product is
both radiometrically and geometrically corrected. Cloud-free imagery during the growing
season from November 2019 to April 2020 was selected (Table 1). The Sentinel-2 L2A
surface reflectance data corrected using the Sen2Cor algorithm [49], were obtained and
further analyzed in the Google Earth Engine platform [50]. Seven bands of visible, red-edge,
and near-infrared covering the same phenological stage from November 2019 to April 2020
were used (Table 1). In addition, the clouds cirrus and shadow were masked out by using
cloud mask bands.

Table 1. Dates of the satellite data used during maize growing season, from November 2019 to April
2020, in the investigated test sites in Malawi.

Satellite Data
Dates

November 2019 December 2019 January 2020 February 2020 March 2020 April 2020

PlanetScope 2, 3, 14, 29 2, 4, 8, 16, 27 10, 13, 27 4, 8, 10, 19, 22, 23 2, 9, 13, 15, 21, 23, 26 6, 8, 17, 25

Sentinel-2 2, 7 2, 7, 22, 27 26 2, 05, 20 3, 6, 21, 31 5, 10, 15, 25, 30

2.4.1. Vegetation Indices (VIs)

VIs which proved capable of estimating crop yield in smallholder farming systems
(Table 2) were investigated (Burke and Lobell 2017; Jain et al., 2019; Jin et al., 2017). In
addition, red-edge VIs from Sentinel-2 images were calculated because of their good
performance in estimating green LAI and chlorophyll content in maize fields [51–55]. The
VIs were calculated at spatial resolutions of 3 m for PlanetScope imagery and 10 m for
Sentinel-2 imagery (resampled 20 m red-edge bands to 10 m), respectively. Spatially, the
field-averaged VI and LAI derived from satellite data (Section 2.4.2) were calculated. In
addition, the standard deviation of VI and LAI values within each field was calculated to
estimate within-field variation in terms of yield. The number of pixels falling inside each
plot was calculated for each spatial resolution to understand the number of pixels required
in order to capture within-field variation. Temporally, the maximum and median values, as
well as mean values, were calculated across the growing season. This is necessary for maize
yield estimation, as maize and intercrops appear in different growth stages. The accuracy
of the temporal aggregation method in estimating maize yield was assessed. In addition,
to further minimize the impact of cloud contamination and to avoid false positive values,
a higher temporal resolution of VI and LAI values was constructed by using temporal
interpolation [56], as this has been proven to improve empirical estimations of grain
yield [57]. The discrete Fourier transform (DFT) [58,59] was used to interpolate between
cloud-free Sentinel-2 VI and LAI values throughout the growing season on a per-pixel basis
(Waldner et al., 2019). The selection of coefficients (i.e., phase of harmonic fits) was based on
a study in East Africa and implemented in Google Earth Engine (Jin et al., 2019). Similarly,
the seasonal mean, median, and maximum VIs/LAI were computed over interpolated data.
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Table 2. Vegetation indices (VIs) and bands from Sentinel-2 and PlanetScope used for crop
yield estimation.

VI Formulation Sentinel-2
(10 m)

PlanetScope
(3 m) Reference

NDVI (NIR − Red)/(NIR + Red) B8, B4 Red, NIR [60]
EVI 2.5 × (NIR − Red)/(NIR + 6 × Red + 7 × Blue − 1) B8, B4, B2 Blue, Red, NIR [61]

MSAVI (2 × NIR + 1 − sqrt ((2 × NIR + 1)2 − 8 × (NIR − Red)))/2 B8, B4 Red, NIR [62]
SAVI ((NIR − Red) / (NIR + Red + 0.5)) × (1.5) B8, B4 Red, NIR [62]

OSAVI (1 + 0.16) × (NIR − Red)/(NIR+ R+0.16) B8, B4 Red, NIR [63]
TVI 0.5 × [120 × (NIR − Green) − 200 × (Red − Green)] B8, B4, B3 Red, Green, NIR [64]

CIgreen (NIR/Green − 1) B7, B3 - [65–67]
CIred NIR/RE − 1 B7, B5 - [65–67]
MTCI (NIR − RE)/(RE − Red) B7, B5, B4 - [68]

MCAR/
OSAVI (750 − 705) − 0.2× (750 − 550) × (750/705)/OSAVI B6, B5, B3 - [54]

TCARI/
OSAVI 3× [(750 − 705) − 0.2× (750 − 550) × (750/705)]/OSAVI B6, B5, B3 - [54]

2.4.2. LAI Retrieval

In addition to the LAI measurements from the DHP images, the LAI was also retrieved
by using the radiative transfer model-based Simplified Level 2 Product Prototype Processor
(SL2P) algorithm [69]. The SL2P algorithm was developed to systematically retrieve
vegetation biophysical variables from Sentinel-2 Multispectral Instrument (MSI) data and
is executed in the Sentinel Application Platform (SNAP). SL2P retrievals are sensitive to
the ‘effective LAI’ [70], which was compared with in situ ‘effective LAI’. For correlating in
situ LAI to Sentinel-2 derived LAI, the Sentinel-2 images closest to the DHP acquisition
dates were chosen, where the average acquisition date difference for two measurements
was less than three days.

2.5. Model Development and Performance Evaluation
2.5.1. Linear Regression Model and Its Accuracy Assessment

Empirical linear regression models between the field-measured yields and VIs/LAI
computed from Sentinel-2 and PlanetScope data were developed to estimate maize yield.
To assess the model performance, the coefficient of determination (R2), p-value, root mean
square error (RMSE), and normalized root mean square error RMSE (nRMSE: RMSE divided
by observed yield difference) were calculated. In addition, standard deviations of R2 and
RMSE were calculated from 10-fold cross-validation with 500 repeats. The models with the
highest estimation accuracy (i.e., the highest R2 and lowest RMSE) were applied to estimate
maize yield for the whole area of the three EPAs (Figure 1) and validated against official
maize yield statistics. To avoid the extrapolation of the empirical models, yield estimation
was restricted to maize areas where Vis/LAI satellite estimates fell within the range of the
training data.

2.5.2. Evaluating Factors Influencing Model Performance

Model residuals were plotted against the factors (field size, within-field variation,
intercropping practices, and the harvest index (described in Section 2.2.2) to understand
if and how these factors influence yield estimation accuracy. To evaluate how the spatial
resolution of satellite data affects yield estimation accuracy, after validating the EO data
at their native spatial resolution, i.e., 3 m for PlanetScope and 10 and 20 m for Sentinel-2
data, PlanetScope data were aggregated to coarser spatial resolutions (from 10 to 100 m, at
10 m intervals; and, afterward, at 100 m intervals up to 500 m) to assess how the model
accuracy is affected by the EO spatial resolution, whilst removing the impact of differences
introduced by the use of different sensors. As the PlanetScope data were resampled to lower
spatial resolutions, fields that accounted for less than half a pixel (after the resampling)
were not considered. This resulted in approximately 16 small fields being excluded from
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the analysis when resampling to resolutions coarser than 350 m. An overview of the data
and the methodology is presented in Figure 3.
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Figure 3. Flowchart showing the approach used to estimate crop yield and evaluate factors influenc-
ing model accuracy.

3. Results
3.1. Field Characteristics and Intercropping Practices

The investigated field size ranges from 0.03 to 0.55 ha, with a mean value of 0.17 ha
(Figure 4a). The number of Sentinel-2 pixels (at 10 m resolution) falling inside of the maize
plots varied from 3 to 58, with an average of 17 pixels. The number of PlanetScope pixels
(at 3 m resolution), instead, varied between 35 and 640, with an average value of 191 pixels.
The harvest index showed high variability in the investigated fields, ranging from 0.18 to
0.55 (Figure 4b). Intercropping was practiced at half of the investigated fields: 18% of the
investigated fields were cultivated with one intercrop, whilst nearly 33% were cultivated
with two intercrops other than maize. Some fields were cultivated with up to four different
intercrops (Figure 4c). Relay intercropping is the most common practice: intercrops were
planted when maize had grown to a certain height, and they reached maturity only after
the maize was harvested. This practice led to dominant maize foliage on the top of the
canopy during the peak of the growing season that was slowly taken over by the lower
intercrops during maize senescence. Intercropping was practiced with varying crop types
and densities among the fields, with soybean and pigeon pea being the most common,
followed by sunflower and sorghum (Figure 4d).

3.2. Crop Yield Estimation Using VIs and LAI with Different Spatial Resolution

When comparing model accuracy with different temporal aggregation methods (sea-
sonal maximum, median, and mean VI), the models based on the maximum VI values
demonstrated the highest accuracy for all investigated VIs (Supplementary Tables S1 and S2).
This was the case for both PlanetScope and Sentinel-2 data. Meanwhile, there was no
substantial improvement when using temporally interpolated VIs compared to original
values (Supplementary Table S1). Similar to the VIs, the maximum LAI calculated from
both the original and interpolated values demonstrated better estimation accuracy than the
mean and median LAI (Supplementary Table S3). As with the VI results, the temporally
interpolated LAI did not demonstrate any improvements compared to the original LAI
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values (including the mean, median, and maximum) (Supplementary Table S3). As such,
models calibrated using seasonal maximum VIs/LAI are presented hereafter.
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(d) Histogram of intercrop types in maize field.

When comparing different spatial resolutions, models that were calibrated using the
PlanetScope EVI (which achieved higher accuracy compared to other Vis; see Figure 5b and
Supplementary Table S2) were developed for spatial resolutions of 3 to 500 m (Figure 6).
The results demonstrated that crop-yield estimation accuracy was relatively stable at spatial
resolutions finer than 20 m (i.e., 3 and 10 m) (Figure 6). However, at spatial resolutions
coarser than 20 m, the model accuracy reduced sharply, with further decreases in spatial
resolution (Figure 6). In addition, when the predictive power of the two satellite datasets
(Sentinel-2 and PlanetScope) with different spatial resolutions was compared, we found
that the model with the highest accuracy that was calibrated by using 3 m PlanetScope data
(EVI, R2 = 0.52, nRMSE = 19.95%) only demonstrated a marginal improvement over 10 m
Sentinel-2 data (CIgreen, R2 = 0.51, nRMSE = 19.95%) (Figures 5a,b and 7a,b). Specifically,
models based on red-edge indices (CIgreen and CIred) estimated the maize yield with the
highest accuracy when using the Sentinel-2 data (Figure 5a and Supplementary Table S1).
The model based on the EVI calculated from PlanetScope showed a slightly higher accuracy
(R2 = 0.52, nRMSE = 19.95%) when compared to other VIs computed from the same dataset
(Figure 5b and Supplementary Table S2) and a significantly higher accuracy than the EVI
computed from Sentinel-2 (R2 = 0.32, nRMSE = 23.8%) (Supplementary Tables S1 and S2;
Figure 5a,b). When estimating maize yield by using the LAI, the Sentinel-2 LAI was firstly
evaluated with respect to in situ LAI (Figure 7c). The Sentinel-2 LAI demonstrated a
strong linear correlation (R2 = 0.8, RMSE = 0.28) but presented an overestimation of the in
situ LAI for high LAI values, i.e., during the late growing season (Figure 7c). The model
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calibrated using Sentinel-2 LAI had lower accuracy in estimating yield (average R2 = 0.49,
nRMSE = 21.5%) compared to CIgreen from Sentinel-2 (i.e., R2 = 0.52, nRMSE = 19.95%)
(Figure 7a,d). Therefore, the model calibrated using Sentinel-2 CIgreen was used for
further analysis.
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Figure 5. The accuracy (R2 and RMSE) of the empirical models using the seasonal maximum VIs listed
in Table 2, using (a) Sentinel-2 seasonal maximum VIs (only top eight shown) at spatial resolution of
10 m and (b) PlanetScope seasonal maximum VIs at spatial resolution of 3 m. Error bars indicate the
standard deviation of R2 assessed from the 10-fold cross-validation realizations, whilst the red dots
refer to the RMSE (t/ha).
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Figure 6. Performance of linear regressions between in situ yield and PlanetScope EVI resampled to
different spatial resolutions (3, 10 m, 20 m, . . . , 100 m, 200 m, . . . , 500 m). Gray bars indicate R2, and
the blue lines indicate R2 standard deviation. The red dots show RMSE (right-hand y-axis).
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Figure 7. Linear correlation between in situ maize yield from 68 fields and (a) maximum PlanetScope
EVI and (b) maximum CIgreen; (c) Correlation between in-situ LAI and SL2P-derived LAI; (d) linear
regression between in situ yield and seasonal maximum SL2P-derived LAI. The colored dots indicate
the harvest index (HI) category.

3.3. Factors Influencing Model Accuracy

The evaluation of intercropping practices, field size, within-field variability, and
harvest index against model residuals showed the mixed results. The intercropping practice
reduced model accuracy, as the mean model residuals are lower in fields cultivated with
pure maize fields (1 t/ha) compared to intercropped fields (1.3 t/ha) (Figure 8a). In addition,
the harvest index was positively correlated to the model residuals (observed yield minus
estimated yield) that were calibrated using Sentinel-2 CIgreen, demonstrating that the linear
models tended to overestimate (/underestimate) yield for fields with a low (high) harvest
index (Figures 7a and 8b). No clear correlation pattern was observed when considering the
correlation between model residuals and the field size (Figure 8c). Finally, model residuals
were not correlated to within-field variation (Figure 8d).
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Figure 8. Scatterplots between model residuals (observed yield minus estimated yield) and field
characteristics: (a) number of intercrops in maize fields; (b) maize harvest index (the vertical dashed
lines show the 25th (HI = 0.25) and 75th percentiles (HI = 0.35) of the harvest index); (c) maize field
size; and (d) within-field variation defined as the standard deviation of CIgreen index. The horizontal
dashed lines in each panel show residuals equal to zero.
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3.4. Validation of the Models over a Larger Region Using Official Statistics

Our comparison between EO-estimated and official yield shows that EO estimates
could capture the spatial variability of yield (Figure 9) that varied from 2.1 to 5.6 t/ha.
The highest maize yield was found in the Naminjiwa EPA, while the lowest yield was
found in the Tamani EPA (Table 3), both from EO estimates and the official estimates
(Table 3). In absolute terms, however, EO-estimated yield tended to be higher, with
average overestimation of 0.98 t/ha compared to official data (Table 3). In addition, bigger
disparities existed for EPAs outside of the calibration region in the Lake Chilwa-Phalombe
plain (Supplementary Figure S1), where EO-estimated yields were much higher than
official estimates.
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Figure 9. Yield estimates for maize fields using the linear model with the highest accuracy developed
from the Sentinel-2 CIgreen index (Figure 7b). White areas represent non-maize fields.

Table 3. Comparison between satellite data estimated maize yield by using red-edge VIs at spatial
resolution of 10 m (R2 = 0.52, nRMSE = 19.95%) and official maize yield estimates at the EPA
administrative level.

Extension Planning Areas (EPAs) Naminjiwa Tamani Waruma

Satellite estimated yield (t/ha) 4.05 3.95 3.96
Official estimated yield (t/ha) 3.27 2.56 3.19

4. Discussion

This study examines to what extent EO data can estimate maize yield for smallholder
intercropped fields in order to provide a better understanding of yield estimation when
utilizing such dataset for operational purposes. By evaluating factors including temporal
and spatial resolution of satellite data, field size, within-field variability, harvest index
and the occurrence of intercrops that affect yield estimation accuracy, our study identified
the challenges and opportunities for estimating yield by using EO data in smallholder
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intercropped fields, whilst adding to the limited amount of the literature that estimates
crop yield in smallholder farms in SSA.

4.1. Performance of Optical EO Data in Estimating Yield in Intercropping Fields

Considering that optical satellite data showed a high cloud-cover percentage during
the rainy (and maize growing) season in Malawi, we constructed a higher temporal resolu-
tion of VIs/LAI and evaluated how temporal resolution and temporally aggregated values
(e.g., mean, maximum, and median value) affect yield estimation accuracy. Our results
revealed that there was no substantial improvement when using temporally interpolated
VIs/LAI compared to original values (Supplementary Tables S1–S3), indicating that tem-
poral interpolation methods are unlikely to improve yield estimation accuracy. Indeed,
previous studies have found that simple metrics remain the best choice when satellite
data are sparse, while advanced smoothing methods based on phenological profiles are
recommended when temporal resolution is ≤5 days (Waldner et al., 2019). We found that
the peak value of all VIs and LAI both from original and temporarily interpolated values
provided a better yield estimation accuracy than mean/median values (Supplementary
Tables S1 and S2). Similar results have also been shown by other studies (Zhao et al., 2020),
suggesting that the peak value best captures photosynthetic activity and, therefore, serves
as a good predictor for yield estimation. In our study area, the dates when crops reach peak
greenness range from the end of January to the middle of March. These dates can be related
to crop physiology, seed varieties, growing degree days (temperature), or management
practices, but they can also be impacted by satellite data availability during the growing
season. Therefore, obtaining more frequent imagery during the peak of the growing season
would be useful for improving yield predictions.

The lack of in situ yield data is another difficulty in estimating yield in intercropped
smallholder fields in SSA. Although 68 fields were sampled in Southern Malawi—a number
that is not sufficient enough to upscale our findings to the national scale—this sample
size was considered to be reasonable in the African setting for stable model performance
(Burke et al., 2021). Our study indicates that models calibrated with in situ data provide a
better estimation accuracy (i.e., R2 = 0.51) than models trained with farmer self-reported
data and official data (i.e., R2 = 0.1–0.4), as shown by previous studies (Burke et al., 2021;
Burke and Lobell 2017). This stresses the importance of collecting ground data in SSA where
the paucity of ground data is the largest constraint to satellite-based model performance [8].
Collectively collecting ground data on crop and field characteristics, as well as sharing and
making the dataset publicly available, would advance the field of yield monitoring and
modeling using satellite imagery.

This study provides insights on which optical satellite inputs of VIs and LAI could
serve for the operational purpose of rapid and large-scale yield assessment in Southern
Malawi. As seasonal maximum VIs/LAI was the best predictor of maize yield, it follows
that Sentinel-2 data could forecast maize yield 1–2 months in advance of harvest with
moderate accuracy (R2 = 0.51, nRMSE = 19.95%). However, this assessment pertains
to the areas where the model was calibrated with ground data (Figure 9). Indeed, the
model prediction uncertainties tend to be larger when applying the models outside the
calibration area (Supplementary Figure S1). As such, model calibration using in situ data is
necessary for the operational purposes of yield monitoring. In addition, further analysis is
needed to test whether the model accuracy still holds outside of the calibration season of
2019/2020. Finally, although VIs or LAI for empirical yield estimation have been widely
adopted in previous studies [15–17], this and previous studies in Kenya and Mali have
found that VIs can explain maize and cotton yield variation with an R2 ranging from 0.3
to 0.6 (Burke and Lobell 2017; Jin et al., 2017; Lambert et al., 2018). Indeed, using mainly
satellite inputs of VIs or LAI and empirical models carries limited accuracy and may not
capture the full variation of actual yield, as spectral properties (as captured by VIs) reflect
photosynthetically active biomass within fields, including maize, weeds, and intercrops,
which is only indirectly related to crop maize yield [71]; however, maize foliage is dominant
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over other intercrop foliage, as demonstrated by field photos (Supplementary Figure S2). In
this case, integrating information on environmental conditions could potentially improve
yield estimation accuracy.

4.2. Impact of EO Spatial Resolution on Yield Estimation Accuracy

Although PlanetScope data could capture 191 pixels (at 3 m resolution)—that is
10 times more than using Sentinel-2 data (17 pixels at 10 m resolution)—our study and
others have reported limited improvements when using finer spatial resolution satellite
data (i.e., 3 m) compared to the spatial resolution of 10 m (i.e., Sentinel-2). For example, for
sorghum yield, Lobell, et al. [72] found similar accuracy by using both 3 and 30 m data in
smallholder fields in SSA, suggesting that the benefits of using a finer spatial resolution
(e.g., <10 m) for yield estimation at the field scale might not be substantial. Given that
model residuals in our study were relatively consistent irrespective of field size and within-
field variation, and yield estimation accuracy dropped when spatial resolution is coarser
than 20 m, while it stays stable when finer than 10 m, this might suggest that satellite data
with a 10 m spatial resolution offer a cost-effective choice for yield estimation in smallholder
fields in Southern Malawi. However, the optimal spatial resolution may depend on the field
size and heterogeneity of landscape, in addition to the scale of yield estimation (field, local
or regional) and requirements of accuracy by stakeholders (i.e., farmers, crop insurers, or
officials). Therefore, the proposed optimal resolution and number of pixels for smallholder
farming yield estimation need to be tested in different sites and crop types. Trade-offs
between accuracy and cost should also be considered when using high-resolution satellite
data (i.e., finer than 3 m). UAV data that were widely used for precision soil monitoring
and yield prediction [73,74] could provide a link between field and satellite observation
for better monitoring field variation. Finally, spectral resolution is also critical for yield
estimation when using satellite data. Comparing model accuracy when using Sentinel-2
(10 m) and PlanetScope data (3 m), our study demonstrates the importance of red edge-
based VIs (CIred and CIgreen) from Sentinel-2 in yield estimation, as spectral reflectance
in the red edge has a strong linear correlation with canopy chlorophyll content [68,75].
Therefore, models utilizing the red edge part of the electromagnetic spectrum have a higher
ability to predict crop yield, as also shown by other studies [72,76].

The positive correlation between the harvest index and residuals indicates that includ-
ing the harvest index could improve model accuracy. The wide range of harvest index
values (i.e., from 0.18 to 0.55) found in this study indicates varying environmental condi-
tions (e.g., water or nutrient deficits) [47], particularly during the crop reproductive stage.
Stress factors such as extreme temperatures and limited water availability may cause strong
decreases in harvest index and, therefore, yield [47]. As such, including environmental
variables such as soil moisture and climate information [32,77] during the reproductive
stage may also be beneficial for yield estimation accuracy. As the correlation between
biomass and final yield can be non-linear, integrating environmental variables and apply-
ing a non-linear model could offer further improvements in yield estimation accuracy [77].
In this case, synergizing multiple satellite data sources, including thermal and microwave
data that reflect soil moisture, could be further explored for yield estimation [78].

4.3. Future Research Paths for Understanding Intercropping Practice and Better Estimating Yield

Intercropping has been widely practiced in Africa for a long time [79]; however,
intercropping practices have rarely been identified when estimating yield in previous
EO-based studies [7,10,18]. This study found that intercropping practices reduce model
accuracy and suggests that the potential impact of intercropping on maize yield estimation
might be minimized when using seasonal maximum VIs/LAI values. Often, as intercrops
are planted and harvested after maize, intercrops usually grow underneath the maize
canopy during the peak of the growing season. An illustration from field photographs
(Supplementary Figure S2) shows that green intercrops appear at the senescent stage of
the maize crops, resulting in relatively higher mean greenness than maize alone across
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the growing season. Therefore, the seasonal mean value of satellite VIs/LAI calculated
from intercropped fields is more likely to include the signal from the intercrops, whilst the
peak value from satellite VIs/LAI is likely to capture the fully developed maize canopy,
with understory intercrops contributing less to the satellite signal. In our study, we found
that peak values showed, indeed, better prediction accuracy compared to mean values.
As such, this result suggests that seasonal maximum VIs/LAI values might reduce the
potential impact of intercropping on maize yield estimation. However, further studies
are needed to test the above arguments. One option would be to compare the time series
of vegetation greenness of pure maize fields and intercropped maize fields by using fine
temporal resolution satellite data (e.g., <5 days). In addition, examining field greenness after
maize harvesting by using sufficient satellite observations could also be used to identify the
presence/absence and intensity of intercropping. This is critical to more accurately estimate
yield, including main maize, as well as intercrops, while the only estimation of maize yield
resulted in the underestimation of total yield. Therefore, the practices of intercropping and
its impacts on total yield need further investigation for better estimating food production.

5. Conclusions

This study investigated the performance of EO data for estimating maize yield in
intercropped fields through field investigations and multisource satellite data. For this,
comprehensive field data (i.e., field size, yield, the presence and type of intercrops, harvest
index, and LAI) were collected in Southern Malawi to calibrate EO-derived VIs and LAI.
The results showed that, despite mixed pixels in the EO data from maize and intercrops,
moderate accuracy (R2 = 0.51, nRMSE = 19.95%) was achieved by using the red-edge band
VI. Having evaluated the impact of spatial resolution on yield estimation accuracy, this
study concluded that high-resolution data (e.g., PlanetScope 3 m) provide only marginal
improvements in yield estimation accuracy. Our findings suggest that Sentinel-2 data offer
the potential for operational monitoring of maize yield in intercropped smallholder fields
in Southern Malawi. The presence of intercrops complicates yield estimation using EO data,
but our results indicate that the use of the seasonal maximum VI value could lessen the
impact of intercrop presence. However, difficulties in measuring and estimating intercrop
yield need to be overcome in order to accurately measure total yield, which is critical for
understanding and closing the yield gap in SSA.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14102458/s1, Figure S1: Comparison between official yield and
satellite data estimated yield; Figure S2: Field photos showing maize-legume intercropped plots at
peak growing season and harvesting stage; Table S1: Accuracy assessment (R2 and RMSE) of linear
regression models between Sentinel-2 VIs and yield; Table S2: Accuracy assessment (R2 and RMSE)
of linear regression models between PlanetScope VIs and yield; Table S3: Accuracy assessment (R2

and RMSE) of linear regression models between Sentinel-2 retrieved LAI and yield.
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