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Fig. 1 The multiparticle superfields and pure spinor one-loop building blocks lead to intuitive

mappings between one-loop cubic graphs and pure spinor superspace expressions encoding the

polarization dependence of ten-dimensional supersymmetric Yang–Mills states [1].

1. Description of the problem and its solution

This paper aims to answer a question left over from the pure spinor construction of one-

loop integrands of super-Yang–Mills (SYM) using locality and BRST invariance [1]. Can

one find a set of local and supersymmetric numerators for ten-dimensional SYM one-loop

integrands at six points satisfying the Bern-Carrasco-Johansson (BCJ)1 color-kinematics

duality? We will see below that the answer is yes, and we will also outline the solution for

seven-point integrands.

The one-loop integrands of SYM in ten dimensions for five and six points were con-

structed in [1], where it was shown that the numerators for the five-point amplitude sat-

isfied the color-kinematics duality while those at six points did not. The proposal of [1]

was based on two main ingredients: locality and BRST invariance. Using the multiparticle

superfields in pure spinor superspace developed in [3], these requirements together with a

basic understanding of the zero-mode saturation rules of the pure spinor formalism [4,5]

led to intuitive rules mapping one-loop cubic graphs to superspace numerators, see fig. 1.

By assembling the numerators of the cubic graphs for all p-gons of a n-point amplitude

such that their sum is in the pure spinor BRST cohomology (up to anomalous terms of

the form discussed in [6,7]), the amplitudes of the color-ordered five and six-point ampli-

tudes for the canonical color ordering were constructed. The six-point integrand was later

successfully used in [8], passing some consistency checks.

1 A brief review of the BCJ color-kinematics duality sufficient for our purposes will be given

below in section 3.1 but a much more in-depth review is contained in [2].

2



1.1. Genus-one open superstring correlators in pure spinor superspace

In this paper we will also use the same formalism of multiparticle superfields in pure spinor

superspace to present local representations of the five-, six- and seven-point amplitudes that

do obey the color-kinematics duality. Since we are using the same superfield language, it is

therefore important to highlight the differences with respect to the previous analysis of [1].

The difference stems from the knowledge of the open-string one-loop correlators recently

obtained in [9–11] up to seven points. They are given by

K4(ℓ) = V1T2,3,4Z1,2,3,4 , (1.1)

K5(ℓ) = V1T
m
2,3,4,5Z

m
1,2,3,4,5 (1.2)

+
(

VATB,C,DZA,B,C,D + [A,B,C,D|12345]
)

,

K6(ℓ) =
1

2
V1T

mn
2,3,4,5,6Z

mn
1,2,3,4,5,6 (1.3)

+
(

VAT
m
B,C,D,EZ

m
A,B,C,D,E + [A,B,C,D,E|123456]

)

+
(

VATB,C,DZA,B,C,D + [A,B,C,D|123456]
)

,

K7(ℓ) =
1

6
V1T

mnp
2,3,4,5,6,7Z

mnp
1,2,3,4,5,6,7 (1.4)

+
1

2

(

VAT
mn
B,C,D,E,FZ

mn
A,B,C,D,E,F + [A,B,C,D,E, F |1234567]

)

+
(

VAT
m
B,C,D,EZ

m
A,B,C,D,E + [A,B,C,D,E|1234567]

)

+
(

VATB,C,DZA,B,C,D + [A,B,C,D|1234567]
)

−
(

V1J
m
2|3,4,5,6,7Z

m
2|1,3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7)

)

−
((

VAJB|C,D,E,FZB|A,C,D,E,F + (B ↔ C,D,E, F )
)

+ [A,B,C,D,E, F |1234567]
)

−
(

∆1|2|3,4,5,6,7Z12|3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7)
)

,

where the [A1, ..., Am|12...n] notation is used to denote a sum over Stirling cycles [11], see

the appendix A for more details.2 The supersymmetric polarizations of ten-dimensional

gluons and gluinos are encoded in the pure spinor multiparticle building blocks VAT
m...
B,C,D...

reviewed in [9]. The various Zm...
A,B,C,... are worldsheet functions elaborated in [10] and they

depend on the insertion points of the vertices on the Riemann surface and on the loop

momentum ℓm.

2 These sums can also be described by all the ways in which 12...n can be completely decom-

posed into m Lyndon words, with every letter appearing in precisely one such word.
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The open string amplitudes for supersymmetric states are obtained from these cor-

relators after integration over the vertex insertion points, over the loop momentum, and

over the modulus τ of the genus-one Riemann surfaces

An =
∑

top

Ctop

∫

Dtop

dτ dz2 dz3 . . . dzn

∫

dDℓ |In(ℓ)| 〈Kn(ℓ)〉 , (1.5)

where In(ℓ) denotes the Koba-Nielsen factor, Dtop denotes an ordered region of integration

over the insertion points zi, and Ctop denotes a group-theory factor which depends on the

topology of the genus-one surface (cylinder, Möbius strip or non-planar cylinder) [12]. For

simplicity we will consider only the planar cylinder topology in the following. For more

details on this setup, see section 2 of [9].

To gain intuition why the one-loop open-string correlators lead to a representation of

one-loop SYM numerators that satisfy the color-kinematics duality it will be illustrative

to review the quest for local BCJ-satisfying ten-dimensional supersymmetric numerators

at tree level, solved in pure spinor superspace in [13].

1.2. BCJ-satisfying local numerators at tree level from string disk correlators

1.2.1. Cohomology analysis: Five-point tree numerators from relabeling

When the tree-level color-ordered amplitudes were first proposed in [14], the construction

was based on the principles of locality and BRST invariance of pure spinor superspace

expressions using multiparticle superfields. These same principles were later used when

proposing SYM one-loop integrands in [1]. The difference between the expressions in [14]

and [1] originates from the differences in the pure spinor amplitude prescriptions at tree

level [5] and one loop [4]. The n-point tree-level numerators of [14] had to be built from

three unintegrated (multiparticle) vertices V following the OPE contractions with (n− 3)

integrated vertices U(z). For example, at tree level the five-point SYM amplitude in the

canonical color ordering was obtained as3

ASYM(1, 2, 3, 4, 5) =
V[12,3]V4V5

s12s123
+

V[1,23]V4V5

s23s123
+

V[1,2]V[3,4]V5

s12s34
+

V1V[23,4]V5

s23s234
+

V1V[2,34]V5

s34s234
(1.6)

3 For convenience we shall frequently omit from amplitudes such as (1.6) the pure spinor

brackets 〈. . .〉 that extract the top element (λγmθ)(λγnθ)(λγpθ)(θγmnpθ) in the cohomology of

the pure spinor BRST operator [5]. The component evaluation of ghost-number three expressions

uses the identities from the appendix of [6].
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where V[A,B] denotes the multiparticle unintegrated vertex operator in the BCJ gauge,

see the review on multiparticle superfields in section 3 of [9] and section 4.3 of [15]. The

expression (1.6) correctly reproduces the five-point tree amplitude of SYM in the canonical

color ordering. The next task is to check whether this representation leads to numerators

that satisfy the color-kinematics duality, this is where a subtle point arises.

A triplet of numerators participating in a kinematic Jacobi identity necessarily involves

numerators from amplitudes with different color orderings, but the naive relabeling of the

amplitude (1.6) does not lead to a representation satisfying the BCJ color-kinematics dual-

ity. Let us illustrate this point with an example. Using the parameterization of numerators

from [16] where

ASYM(1, 2, 3, 4, 5) =
n1

s12s45
+

n2

s23s51
+

n3

s34s12
+

n4

s45s23
+

n5

s51s34
(1.7)

ASYM(1, 4, 3, 2, 5) =
n6

s14s25
+

n5

s51s34
+

n7

s32s14
+

n8

s25s34
+

n2

s51s23

in order to check whether the numerators n3, n5 and n8 satisfy the kinematic Jacobi iden-

tity n3 − n5 + n8 = 0 one needs to extract the numerator n8 of the pole in 1/(s25s34),

n3 of 1/(s34s12) and n5 of 1/(s51s34). While n3 and n5 can be read off from the am-

plitude A(1, 2, 3, 4, 5) in (1.6), the numerator n8 is found in the different color ordering

A(1, 4, 3, 2, 5). If we assume that this color ordering is given by the relabeling of (1.6) the

kinematic Jacobi relating these three numerators is not satisfied,

n3 − n5 + n8 = V[1,2]V[3,4]V5 − V1V[2,34]V5 + V1V[43,2]V5 6= 0 , (1.8)

where we used n8 = V1V[43,2]V5 obtained from n4 = V1V[23,4]V5 via the relabeling 2 ↔ 4.

1.2.2. Open superstring: Five-point tree numerators from the field-theory limit

The solution to the above problem was found in [13] by utilizing the n-point string disk

correlator of [17] to generate different color orderings in its field-theory limit. These order-

ings follow from the various integration regions over the insertion points zi ordered along

the boundary of a disk. For five points the superstring tree-level correlator is

K5(z1, . . . , z5) =
V123V4V5

z12z23
+

V1V432V5

z43z32
+

V12V43V5

z12z43
+ (2 ↔ 3) . (1.9)

The string tree-level amplitudes with different color orderings are obtained by the different

integration regions of the vertex insertion points relative to each other. The corresponding
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color-ordered SYM amplitudes follow from the field-theory limit α′ → 0 of the disk inte-

grals, encoded in the biadjoint scalar amplitudes [18] (see also [19]). More precisely, one

can express the field-theory limit of the string correlator (1.9) as follows [20,21]

ASYM(Σ) =
∑

XY =23

V1XV(n−1)Ỹ Vn m(Σ|1, X, n, Y, n− 1)(−1)|Y |+1 + (2 ↔ 3) , (1.10)

where m(Σ|Ω) denotes the biadjoint tree amplitudes,

m(P, n|Q, n) = sPφP |Q (1.11)

and φP |Q are the Berends-Giele double currents [21]. They can be computed recursively

φP |Q =
1

sP

∑

XY =P

∑

AB=Q

(

φX|AφY |B − (X ↔ Y )
)

, φP |Q = 0 if P \Q 6= ∅ . (1.12)

in terms of generalized Mandelstam invariants sP = 1
2kP · kP where kP is a multiparticle

momentum defined by kP = kp1
+ kp2

+ · · · (for example k123 = k1 + k2 + k3).

Extracting the field-theory limit of the string disk integrals computed in the ordering

z1 ≤ z4 ≤ z3 ≤ z2 ≤ z5 – corresponding to Σ = 14325 in (1.10) – leads to the following

color-ordered amplitude

ASYM(1, 4, 3, 2, 5) =
1

s14s25
(V1V432 + V12V43 + V13V42 + V132V4)V5 (1.13)

+
1

s51s34
V1V432V5 −

1

s23s14
(V1V[4,23] + V[1,23]V4)V5

+
1

s25s34
(V1V432 + V12V43)V5 −

1

s51s23
V1V[4,23]V5 .

One can now read off the numerator n8 = V1V432V5 + V12V43V5 and verify that the BCJ

identity n3 − n5 + n8 = 0 is identically4 satisfied [13]

n3 − n5 + n8 = V[1,2]V[3,4]V5 − V1V[2,34]V5 + (V1V432V5 + V12V43V5) = 0 , (1.14)

where the bracket notation reviewed in section 3.4.3 of [9] implies V432 = V[23,4] and

V43 = −V[3,4].

The field-theory tree-level SYM numerators are extracted from the knowledge of the

singular behavior of the correlator as vertex operators collide as encoded in the biadjoint

4 Identicallymeans that no BRST cohomology identity (of the type discussed in [22]) is required

to verify the vanishing of the triplet of numerators; it vanishes at the superfield level.

6



3

2

1 5

4

ℓ

Fig. 2 The cubic graph associated to the pentagon N
(5)

1|2,3,4,5
(ℓ) from equation (1.15). The con-

vention for the loop momentum ℓ is to run from the last argument of the numerator to the first.

Berends-Giele currents. But we know that these limits constitute a local property of the

Riemann surface and therefore must be independent of its genus. These results together

with the analysis of [23] lead to the following expectation:

The field-theory limit of the one-loop string correlators integrated along different

vertex insertion orderings should give rise to a local representation for SYM one-

loop integrands that satisfy the BCJ color-kinematics duality.

As an illustration of this method – to be fully developed in the next sections – let us apply

it in the simplest case of the five-point SYM integrand/amplitude following from the string

correlator (1.2).

1.3. BCJ-satisfying local numerators at one loop from string genus-one correlators

1.3.1. Cohomology analysis: Five-point pentagon from relabeling

As mentioned above, the five-point SYM integrand was proposed based on a few constraints

such as locality and BRST invariance. The pentagon for the color order A(1, 2, 3, 4, 5) was

given as [1]

N
(5)
1|2,3,4,5(ℓ) = ℓmV1T

m
2,3,4,5 +

1

2

[

V12T3,4,5 + (2 ↔ 3, 4, 5)
]

+
1

2

[

V1T23,4,5 + (2, 3|2, 3, 4, 5)
]

(1.15)

where the notation +(i, j|2, 3, 4, 5) denotes a sum over all possible ways to choose two

elements i and j from the set {2, 3, 4, 5} while keeping the same order of i and j within the

set. The cubic graph associated to this pentagon is displayed in fig. 2. Note the convention

of assigning the loop momentum ℓ to the edge between 5 and 1.

7



Using BRST cohomology arguments the box and pentagon numerators following from

relabelings (while respecting the loop momentum assignment convention and the constraint

that leg 1 is contained in a multiparticle unintegrated vertex V ) were proposed in [1],

N
(4)
A|B,C,D

(ℓ) = VATB,C,D (1.16)

N
(5)
A|B,C,D,E

(ℓ) = ℓmVAT
m
B,C,D,E +

1

2

[

V[A,B]TC,D,E + (B ↔ C,D,E)
]

(1.17)

+
1

2

[

VAT[B,C],D,E + (B,C|B,C,D,E)
]

.

For a cubic-graph parameterization of the five-point integrand to obey the BCJ color-

kinematics duality the antisymmetric combination of two pentagons in the legs 1 and 2

must give rise to a box [24]

3

2

1 5

4

ℓ

−

3

1

2 5

4

ℓ

ℓ− k2
−

ℓ

1

2

3 4

5

= 0

From the figure above we see that the pentagon in the middle must come from the color

ordering A(2, 1, 3, 4, 5) so as to keep the momenta in the common edges of the participating

cubic graphs the same while respecting the loop momentum convention mentioned above.

However, the generic expression (1.17) has to ensure that the leg 1 appears in A, so the

solution proposed in [1] satisfying both constraints was to assign the pentagon numerator

N1|3,4,5,2(ℓ−k2) to the middle diagram, with a shift in the loop momentum. Using that the

12-box numerator is V12T3,4,5, the expression (1.17) implies that the numerator translation

of the diagrams above is given by

〈N (5)
1|2,3,4,5(ℓ)−N

(5)
1|3,4,5,2(ℓ− k2)−N

(4)
12|3,4,5〉 = (1.18)

〈k2mV1T
m
2,3,4,5 + V21T3,4,5 + V1T23,4,5 + V1T24,3,5 + V1T25,3,4〉 = 0. (1.19)

The BCJ color-kinematic identity relating two pentagons with a box is satisfied, but only

up to BRST-exact terms in pure spinor superspace that are annihilated by the pure spinor

cohomology bracket 〈. . .〉. The BRST exactness of the second line was shown in [22].
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1.3.2. The BCJ pentagon from the field-theory limit of the string correlator

The five-point analysis of [1] was primarily based on the BRST cohomology properties

of the integrands, and as we reviewed above this was enough to obtain a BCJ-satisfying

parameterization up to BRST-exact terms. However, using the field-theory limit of the

string correlator the resulting numerators for the pentagons improve the BCJ identity to

be satisfied identically at the superspace level, requiring no cohomology manipulations.

To see this we consider the five-point correlator (1.2) written in terms of the Eisenstein-

Kronecker coefficient functions g
(1)
ij of [10], namely Zm

1,2,3,4,5 = ℓm and Z12,3,4,5 = g
(1)
12

K5(ℓ) = V1T
m
2,3,4,5ℓ

m +
[

V12T3,4,5g
(1)
12 + (2 ↔ 3, 4, 5)

]

+
[

V1T23,4,5g
(1)
23 + (2, 3|2, 3, 4, 5)

]

.

(1.20)

In the string-based formalism [25], the field-theory limit of the string propagator (in our

case the g
(1)
ij functions) depends on the relative ordering of how the vertex insertion points

are integrated by a term proportional to sgnij . More precisely, if the color ordering of the

resulting SYM integrand is P , the field-theory limit of g
(1)
ij contains a term 1

2 sgn
P
ij , where

sgnPij is defined in (2.16). Therefore the pentagons of the integrands in the A(1, 2, 3, 4, 5)

and A(2, 1, 3, 4, 5) orderings differ by a sign in the term coming from g
(1)
12 . This gives rise

to the following pentagons:

N1|2,3,4,5(ℓ) = ℓmV1T
m
2,3,4,5 +

1

2
V12T3,4,5 +

1

2
V13T2,4,5 +

1

2
V14T2,3,5 +

1

2
V15T2,3,4 (1.21)

+
1

2
V1T23,4,5 +

1

2
V1T24,3,5 +

1

2
V1T25,3,4 +

1

2
V1T34,2,5 +

1

2
V1T35,2,4 +

1

2
V1T45,2,3

N2|1,3,4,5(ℓ) = ℓmV1T
m
2,3,4,5 −

1

2
V12T3,4,5 +

1

2
V13T2,4,5 +

1

2
V14T2,3,5 +

1

2
V15T2,3,4 (1.22)

+
1

2
V1T23,4,5 +

1

2
V1T24,3,5 +

1

2
V1T25,3,4 +

1

2
V1T34,2,5 +

1

2
V1T35,2,4 +

1

2
V1T45,2,3

where we note that the constraint that leg 1 is within V is automatically satisfied because

the correlator (1.20) is always the same, what changes is the relative ordering of integration

of the vertex positions.

It is easy to see that the numerators (1.21) and (1.22) imply that the BCJ identity is

identically satisfied at the superfield level,

N1|2,3,4,5(ℓ)−N2|1,3,4,5(ℓ)−N12|3,4,5(ℓ) = 0 , (1.23)

where N12|3,4,5(ℓ) = V12T3,4,5. We thus see that the derivation of n-gon numerators from

the field-theory limit of the open superstring correlator evaluated at different regions of

9



integration implies that the associated BCJ identity is satisfied even before applying the

pure spinor cohomology bracket to extract the polarization content of the superfields, unlike

the case (1.18) obtained from relabeling. For five points this difference is immaterial as both

approaches eventually satisfy the color-kinematics duality in the cohomology. However, we

will see below that the field-theory limit technique leads to a six-point representation that

satisfies the color-kinematics duality in contrast to the representation of [1].

2. SYM one-loop integrands from string correlators

The field-theory limit of the one-loop string correlators is obtained by shrinking the strings

to points with α′ → 0 while degenerating the genus-one surface with modular parameter

τ to point-particle worldline diagrams with Im(τ) → ∞ [26]. In principle this can be done

using the tropical limit techniques of [27] or the string-based formalism [25], although the

explicit form of the Kronecker-Eisenstein coefficient functions g(n)(z, τ) lead to subtleties

arising from the regular functions with n ≥ 2. Alternatively, one can combine the strengths

of these approaches with the requirement that the field-theory integrands for different color

orderings and loop-momentum parameterizations obtained from the string correlators are

in the BRST cohomology of the pure spinor BRST charge. Some trial and error led to the

combinatorial rules described below.

2.1. Kinematic poles and biadjoint Berends-Giele currents

The kinematic poles arise when the insertion points of the vertex operators approach each

other zi → zj on the Riemann surface. The short-distance behavior of the Koba-Nielsen

factor and the OPE propagator is independent of the genus of the Riemann surface. This

means that the pole structure of the genus-one string correlators can be described by the

same combinatorics of tree-level poles, given by the biadjoint scalar amplitudes (1.11).

These amplitudes are efficiently computed using the Berends-Giele double currents φP |Q

of explicit form given in (1.12) where the words P and Q encode the integration region

and integrand.

In the one-loop case however, in addition to the tree-level kinematic poles in Mandel-

stam invariants the field-theory limit of the genus-one string correlators also yield Feynman

loop momentum integrands

IAn+11A1,A2,...,An
(ℓ) =

1

(ℓ− kA1
)2(ℓ− kA1A2

)2 · · · (ℓ− kA1A2...An
)2

(2.1)

10



to be integrated over a D-dimensional loop momentum ℓ with
∫

dDℓ. Note the special role

played by the label 1 in the above definition; this handling fixes the freedom to shift the

loop momentum and is useful in obtaining BRST-closed SYM integrands [1].

In summary, the field-theory limit of genus-one open string correlators will be de-

scribed by poles in Mandelstam invariants encoded in Berends-Giele double currents mul-

tiplied by Feynman loop momentum integrals.

2.1.1. Encoding different integration regions

In the same way as in the tree-level case, the color ordering of the resulting SYM integrand

from the field-theory limit of the genus-one open string correlator is associated to the

relative ordering of the zi variables among each other on the boundary of the Riemann

surface. For example, the ordering z1 ≤ z3 ≤ z5 ≤ z4 ≤ z2 yields an integrand with color

ordering σ = 13542.

The presence or absence of kinematic poles depend crucially on the region of integra-

tion relative to the ordering of the zij variables being integrated. To encode this information

we define a map OrdA(B) acting on two words A and B that crops the word A while main-

taining the letters it shares with B. That is, we take the word B and return the smallest

sequence of consecutive letters in the cyclic-symmetric object A containing every letter in

B. For example,

Ord123456(32) = 23 , Ord123456(13) = 123 , Ord123456(15) = 561 , (2.2)

Ord24856317(58) = 85 , Ord24856317(465) = 4856 , Ord24856317(78) = 7248 .

This map can be defined algebraically by

OrdA(B) =







AiAi+1...Aj−1Aj if Ai, Aj ∈ B, B ⊆ Ai...Aj, j − i ≤ |A|
2

AjAj+1...A|A|A1A2...Ai if Ai, Aj ∈ B, B ⊆ Ai...Aj, j − i > |A|
2

0 else (2.3)

This map will be used with the Berends-Giele double current to correctly generate kine-

matic poles for each integration region σ. It will be convenient to introduce the notation:

φ̂(σ|A) ≡ φOrdσ(A)|A , (2.4)

for an amplitude with color ordering σ.
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2.2. p-gon loop momentum integrands

Frequently we will need the Feynman loop momentum integrands (2.1) with a general shift

in the loop momentum ℓ → ℓ+ aiki. This will be indicated by superscripts

Ia1,a2,...,am

An+11A1,A2,...,An
(ℓ) = IAn+11A1,A2,...,An

(ℓ+ a1k1 + a2k2 + · · ·+ amkm) (2.5)

Explicitly we have

Ia1,a2,...,am

An+11A1,A2,...,An
=

1

(ℓ+ fa1...am
− kA1

)2...(ℓ+ fa1...am
− kA1A2...An

)2
, (2.6)

where we defined for convenience

fa1,...,am
= a1k1 + a2k2 + ...+ amkm . (2.7)

In the event of an ai being zero, we will omit it from the notation. Note that the words

characterizing the integrands (2.6) are totally symmetric e.g. I1,342,5,6 = I1,234,5,6.

We will sometimes simplify the notation for the loop momentum integrands by drop-

ping all indices which are single letters, and dropping the shifts in the loop momentum.

When this is done it should always be clear the color ordering of the amplitude. For ex-

ample, in the canonical ordering A(1, 2, ..., n; ℓ) we have

I∅ = I = Ia1,...,an

1,2,...,n , I234 = Ia1,...,an

1,234,5,6,...,n , (2.8)

I23,56 = Ia1,...,an

1,23,4,56,7,8,...,n , In1,34 = Ia1,...,an

n1,2,34,5,6,...,n−1 .

In a few instances, we may wish to use this notation when it is not immediately clear what

the underlying color ordering is. In these circumstances we will include it as a superscript

in the I. So, for example

I235416∅ = I235416 = I2,3,5,4,1,6 , I23541653 = I2,35,4,1,6 , I235416612 = I162,3,5,4 . (2.9)

2.3. Field-theory limit of Kronecker-Eisenstein coefficients

We are now ready to give the field theory limits. These are:

g
(p)
ij → b

(p)
ij P + c

(p)
ij P (ij) (2.10)

g
(p)
ij g

(q)
kl → b

(p)
ij b

(q)
kl P + b

(p)
ij c

(q)
kl P (kl) + c

(p)
ij b

(p)
kl P (ij) + c

(p)
ij c

(q)
kl P (ij, kl) (2.11)

g
(p1)
i1j1

g
(p2)
i2j2

g
(p3)
i3j3

→ b
(p1)
i1j1

b
(p2)
i2j2

b
(p3)
i3j3

P + b
(p1)
i1j1

b
(p2)
i2j2

c
(p3)
i3j3

P (i3j3) (2.12)

+ b
(p1)
i1j1

c
(p2)
i2j2

b
(p3)
i3j3

P (i2j2) + c
(p1)
i1j1

b
(p2)
i2j2

b
(p3)
i3j3

P (i1j1)

+ b
(p1)
i1j1

c
(p2)
i2j2

c
(p3)
i3j3

P (i2j2, i3j3) + c
(p1)
i1j1

b
(p2)
i2j2

c
(p3)
i3j3

P (i1j1, i3j3)

+ c
(p1)
i1j1

c
(p2)
i2j2

b
(p3)
i3j3

P (i1j1, i2j2) + c
(p1)
i1j1

c
(p2)
i2j2

c
(p3)
i3j3

P (i1j1, i2j2, i3j3)

12



These limits always have the same form; we take the subscripts of the g
(p)
ij , and sum over

the possible ways to assign these to either a b(p) or a c(p) (to be defined below), and

whenever we assign them to a c(p) they are also entered into the P function. In turn these

are defined by

P = I (2.13)

P (ij) = φ̂(σ|ij)Iij

P (ij, kl) =

{

φ̂(σ|ijl)Iijl if j = k

φ̂(σ|ij)φ̂(σ|kl)Iij,kl if all i unique

P (ij, kl,mn) =



























φ̂(σ|ijln)Iijln if j = k, l = m

φ̂(σ|ijl)φ̂(σ|mn)Iijl,mn if j = k, m,n /∈ {i, j, k, l}

φ̂(σ|ijn)φ̂(σ|kl)Iijn, kl if j = m, k, l /∈ {i, j,m, n}

φ̂(σ|ij)φ̂(σ|kln)Iij, kln if l = m, i, j /∈ {k, l,m, n}

φ̂(σ|ij)φ̂(σ|kl)φ̂(σ|mn)Iij, kl,mn if all i unique

where we used the notation (2.4). The cases provided above will be sufficient for our

purposes.

Finally, the coefficients b(p) and c(p) for an integrand A(σ; ℓ+
∑n

i=1 aiki) are given by

b
(p)
ij =

p
∑

m=0

(

sgnσij
)m Bm(aj − ai)

p−m

m!(p−m)!
(2.14)

c
(p)
ij =

1

2(p− 1)!

(

(aj − ai) + sgnσijdist
σ
4 (i, j)

)p−1
(2.15)

where Bn denotes the nth Bernoulli number5 and

sgnBij =

{

+1 : i is left of j in B
−1 : i is right of j in B

(2.16)

The function distBa (i, j) measures the distance between i and j in the word B and returns

+1 if it is larger than a and 0 otherwise,

distBa (i, j) =

{

+1 : if i is a or more letters to the left or right of j in B
0 : if i is fewer than a letters to the left or right of j in B

(2.17)

Note that when ai = 0 ∀ i, we must take 00 = 1 in the above.

5 The amplitudes up to seven points require up to B3: B0 = 1 , B1 = 1
2
, B2 = 1

6
, B3 = 0.
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2.3.1. A seven-point example

The field-theory limit of the term g
(1)
25 g

(1)
57 g

(1)
76 V1T2576,3,4 in the seven-point string correlator

(1.4) for the SYM integrand with color ordering A(1, 2, 3, 4, 5, 6, 7; ℓ+ 4k4 − 6k5) follows

from (2.12) with a4 = 4 and a5 = −6,

g
(1)
25 g

(1)
57 g

(1)
76 → b

(1)
25 b

(1)
57 b

(1)
76 P + b

(1)
25 b

(1)
57 c

(1)
76 P (76)

+ b
(1)
25 c

(1)
57 b

(1)
76 P (57) + c

(1)
25 b

(1)
57 b

(1)
76 P (25) (2.18)

+ b
(1)
25 c

(1)
57 c

(1)
76 P (57, 76) + c

(1)
25 b

(1)
57 c

(1)
76 P (25, 76)

+ c
(1)
25 c

(1)
57 b

(1)
76 P (25, 57) + c

(1)
25 c

(1)
57 c

(1)
76 P (25, 57, 76) .

Many of these terms vanish. For instance using (2.13) the factor P (57) is proportional to

φ̂(1234567|57) = φ57|Ord1234567(57) = φ57|567 = 0. Similarly, we find

P (25) = P (25, 76) = P (25, 57) = P (25, 57, 76) = 0 . (2.19)

The non-zero terms are then given by

P = I = Ia4,a5

1,2,3,4,5,6,7 (2.20)

P (76) = φ̂(1234567|76)I76 = φ76|67I76 = −
1

s67
Ia4,a5

1,2,3,4,5,76

P (57, 76) = φ̂(1234567|576)I576 = φ576|567I1,2,3,4,576 = −
1

s67s567
Ia4,a5

1,2,3,4,576

The various b
(1)
ij and c

(1)
ij terms are given by (2.14) and (2.15). In the g

(1)
25 case, these are

given by (recall that a4 = 4, a5 = −6)

b
(1)
25 =

B0(−6)1

0! 1!
+

B1(−6)0

1! 0!
= −6 +

1

2
= −

11

2
(2.21)

c
(1)
25 =

(

a5 − a2 + sgn123456725 dist12345674 (2, 5)
)1−1

2(1− 1)!
=

(

− 6 + (−1)0 × 0
)0

2
=

1

2

The others are given by

b
(1)
57 =

13

2
, c

(1)
57 =

1

2
, b

(1)
76 = −

1

2
, c

(1)
76 =

1

2
. (2.22)

Putting everything together, we see that the limit is given by

g
(1)
25 g

(1)
57 g

(1)
76 →

143

8
Ia4,a5

1,2,3,4,5,6,7 +
143

8

1

s67
Ia4,a5

1,2,3,4,5,67 +
11

8

1

s67s567
Ia4,a5

1,2,3,4,567 (2.23)

Doing this analysis for the full seven point correlator leads to a BRST closed expression

up to anomalous terms (the explicit expression is available to download from [28]). In the

appendix D the BRST variation of this numerator is worked out and shown to have the

desired property of canceling propagators.
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2.4. The one-loop SYM field-theory integrands

The one-loop correlators of the open superstring are integrated over the vertex insertions

zi ordered along the boundary of a genus one surface. After taking the field-theory limit,

the color ordering of the resulting SYM integrand corresponds to the ordering of the

insertions zi. As alluded to in section 2.1, the field-theory limit of the open-string correlators

will be written as a field-theory integrand depending on the loop momentum ℓm. The

parameterization of the one-loop graphs by Feynman loop integrals is notoriously plagued

with the “labelling problem”: arbitrary shifts of the loop momentum must not affect the

integrated amplitude. This will be indicated by labelling a color-ordered SYM integrand

with the explicit parameterization of the loop momentum as

A(1, 2, ..., n; ℓ+ a1k1 + · · ·+ ankn) (2.24)

This refers to the amplitude with color ordering 1, 2, ..., n, constructed such that the mo-

mentum going from the nth leg to the 1st leg is ℓ + a1k1 + ... + ankn. For example, the

field-theory limit of the five-point correlator with insertion points ordered according to

z1 ≤ z3 ≤ z5 ≤ z2 ≤ z4 and loop momentum ℓ running between legs 4 and 1 is repre-

sented by the SYM integrand6 A(1, 3, 5, 2, 4; ℓ). The statement of cyclicity – proven in the

appendix B – in the color ordering becomes

A(1, 2, ..., n; ℓ+ a1k1 + ...+ ankn) = A(2, 3, ..., n, 1; ℓ+ (a1 − 1)k1 + a2k2...+ ankn) (2.25)

Using this, one can always choose to fix the color ordering of the SYM integrand to start

with a leading 1.

2.4.1. The field-theory numerators

The field-theory limit of the open superstring n-point correlator for will be parameterized

by a sum over p-gon cubic graphs ranging from p = 4 (boxes) to p = n:

A(i1i2 . . . in; ℓ+ ajkj) =

n
∑

p=4

∑

A1...Ap+1=i2...in

N a1,a2,...,an

Ap+1i1A1|A2,...,Ap
(ℓ) Ia1,a2,...,an

i1A1,A2,...,Ap
(2.26)

where N a1,a2,...,an

A1|A2,...,Ap
(ℓ) denotes the kinematic Berends-Giele numerator of a p-gon con-

structed as described in the appendix A and Ia1,a2,...,an

A1,A2,...,Ap
represents the p-gon integrand.

We note that in extracting a local numerator N... from (2.26) there will be a factor of 1/2

for each inverse Mandelstam invariant, see the definition (A.4).

6 For simplicity we will consider only the planar topology.
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2.4.2. Four points

The extraction of the field theory limit at four points is trivial as there is no propagator

function [4]. The only limit to consider is the Koba-Nielsen factor and we get

A(σ1, σ2, σ3, σ4|ℓ+ a1kσ1
+ ...+ a4kσ4

) = V1T2,3,4I1,2,3,4 . (2.27)

2.4.3. Five points

The five-point genus-one superstring correlator is given by [11]

K5(ℓ) = V1T
m
2,3,4,5Z

m
1,2,3,4,5 +

[

V12T3,4,5Z12,3,4,5 + (2 ↔ 3, 4, 5)
]

(2.28)

+
[

V1T23,4,5Z23,1,4,5 + (2, 3|2, 3, 4, 5)
]

with the worldsheet functions [10]

Zm
1,2,3,4,5 = ℓm , Z12,3,4,5 = g

(1)
12 . (2.29)

This correlator gives rise to five terms with non-vanishing poles in the canonical color

ordering, namely g
(1)
12 , g

(1)
23 , g

(1)
34 , g

(1)
45 , and g

(1)
51 . The parameterization of the integrand

A(1, 2, 3, 4, 5; ℓ+ aiki) from (2.26) is given by

A(1, 2, 3, 4, 5; ℓ+ aiki) = N1|2,3,4,5(ℓ)I
a1,...,a5

1,2,3,4,5(ℓ) (2.30)

+
1

2s12
N12|3,4,5(ℓ)I

a1,...,a5

12,3,4,5 (ℓ) +
1

2s23
N1|23,4,5(ℓ)I

a1,...,a5

1,23,4,5 (ℓ)

+
1

2s34
N1|2,34,5(ℓ)I

a1,...,a5

1,2,34,5 (ℓ) +
1

2s45
N1|2,3,45(ℓ)I

a1,...,a5

1,2,3,45 (ℓ)

+
1

2s51
N ′

51|2,3,4(ℓ)I
a1,...,a5

1,2,3,4 (ℓ) .

Since the field-theory limit rules behave differently for labels at the extremities of the color

ordering, the 51-pentagon numerator is denoted N ′
51|2,3,4(ℓ). Using the field-theory limit

(2.10) and comparing the outcome with (2.30) we can read off the box numerators. They

are independent of the loop momentum and are uniformly described by

NA|B,C,D = VATB,C,D . (2.31)

In particular, N ′
51|2,3,4 = N51|2,3,4 = V51T2,3,4. This result agrees with the analysis of [1].
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The pentagon Ia1,...,a5

1,2,3,4,5(ℓ) arises from the pieces with no kinematic poles in (2.10) and

collecting its associated superfields yields the numerator

Na1,...,a5

1|2,3,4,5(ℓ) =V1T
m
2,3,4,5ℓ

m +
[

V12T3,4,5

(

a2 − a1 +
1

2

)

+ (2 ↔ 3, 4, 5)
]

(2.32)

+
[

V1T23,4,5

(

a3 − a2 +
1

2

)

+ (2, 3|2, 3, 4, 5)
]

.

A straightforward but tedious calculation shows that

QNa1,...,a5

1|2,3,4,5(ℓ) =
1

2
V1V2T3,4,5((ℓ+ fa1...a5

− k12)
2 − (ℓ+ fa1...a5

− k1)
2) (2.33)

+
1

2
V1V3T2,4,5((ℓ+ fa1...a5

− k123)
2 − (ℓ+ fa1...a5

− k12)
2)

+
1

2
V1V4T2,3,5((ℓ+ fa1...a5

− k1234)
2 − (ℓ+ fa1...a5

− k123)
2)

+
1

2
V1V5T2,3,4((ℓ+ fa1...a5

− k12345)
2 − (ℓ+ fa1...a5

− k1234)
2)

with the fa1...a5
defined as in (2.7). It is then not hard to check that the above cancels the

BRST variation of the box terms. For example, the terms proportional to (ℓ+fa1...a5
−k123)

2

are given by
1

2
(V1V3T2,4,5 − V1V4T2,3,5) = −

1

2s34
QV1T2,34,5 (2.34)

and cancel the BRST variation of the 34-box in (2.30) since

(ℓ+ fa1...a5
− k123)

2Ia1,...,a5

1,2,3,4,5(ℓ) = Ia1,...,a5

1,2,34,5 (ℓ) . (2.35)

Similar calculations show that QNa1,...,a5

1|2,3,4,5(ℓ)I
a1,...,a5

1,2,3,4,5 = −QAbox(1, 2, 3, 4, 5) and therefore

the five-point SYM integrand (2.30) is BRST invariant.

The BRST cohomology identities [22]

〈V1k
1
mTm

2,3,4,5〉 = 〈−V12T3,4,5 + (2 ↔ 3, 4, 5)〉 (2.36)

〈V1k
2
mTm

2,3,4,5〉 = 〈V12T3,4,5 +
[

− V1T23,4,5 + (3 ↔ 4, 5)
]

〉

can be used to show that

〈N
(5)
1|2,3,4,5(ℓ+ aiki)〉 = 〈Na1,...,a5

1|2,3,4,5(ℓ)〉 (2.37)

where N
(5)
1|2,3,4,5(ℓ) is given by (1.15) and Ia1,...,a5

1,2,3,4,5(ℓ) = I1,2,3,4,5(ℓ + aiki). This is an im-

portant consistency check on the field-theory rules spelled out in section 2.3.

All color ordering permutations of the five-point SYM integrand is available to down-

load from [28].
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2.4.4. Six points

The six-point genus-one superstring correlator is given by [11]

K6(ℓ) =
1

2
VA1

Tmn
A2,...,A6

Zmn
A1,...,A6

+
[

123456|A1, . . . , A6

]

(2.38)

+ VA1
Tm
A2,...,A5

Zm
A1,...,A5

+
[

123456|A1, . . . , A5

]

+ VA1
TA2,...,A4

ZA1,...,A4
+
[

123456|A1, . . . , A4

]

,

with the worldsheet functions [10],

Z123,4,5,6 = g
(1)
12 g

(1)
23 + g

(2)
12 + g

(2)
23 − g

(2)
13 , (2.39)

Z12,34,5,6 = g
(1)
12 g

(1)
34 + g

(2)
13 + g

(2)
24 − g

(2)
14 − g

(2)
23 ,

Zm
12,3,4,5,6 = ℓmg

(1)
12 + (km2 − km1 )g

(2)
12 +

[

km3 (g
(2)
13 − g

(2)
23 ) + (3 ↔ 4, 5, 6)

]

,

Zmn
1,2,3,4,5,6 = ℓmℓn +

[

(km1 kn2 + kn1 k
m
2 )g

(2)
12 + (1, 2|1, 2, 3, 4, 5, 6)

]

.

To illustrate the field-theory rules of the previous section we will derive the SYM integrand

A(2, 3, 4, 5, 6, 1; ℓ) = A(1, 2, 3, 4, 5, 6; ℓ+k1). We begin with the field theory limit rules given

by (2.10) and (2.11)

g
(1)
ij →

1

2
sgn234561ij I234561 +

1

2
φij|Ord234561(ij)I

234561
ij (2.40)

g
(2)
ij →

1

12
I234561 +

1

2s12
(−δ1iδ2j + δ1jδ2i)I

234561
12

g
(1)
ij g

(1)
kl →

1

4
sgn234561ij sgn234561kl I234561 +

1

4
sgn234561kl φij|Ord234561(ij)I

234561
ij

+
1

4
sgn234561ij φkl|Ord234561(kl)I

234561
kl +

1

4
P (ij, kl)

where

P (ij, kl) =



























φijl|Ord234561(ijl)I
234561
ijl if j = k

−φijk|Ord234561(ijk)I
234561
ijk if j = l

−φjil|Ord234561(ijl)I
234561
jil if i = k

φkij|Ord234561(kij)I
234561
kij if i = l

φij|Ord234561(ij)φkl|Ord234561(kl)I
234561
ij,kl else

(2.41)

Extracting the terms proportional to I234561 = I2,3,4,5,6,1, we find the hexagon numerator

N2|3,4,5,6,1(ℓ) =
1

2
V1T

mn
2,3,4,5,6

(

ℓmℓn −
1

12
[k1mk1n + (1 ↔ 2, 3, 4, 5, 6)]

)

(2.42)
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+
1

2
(V1T

m
23,4,5,6(ℓ

m −
1

6
km2 +

1

6
km3 ) + (2, 3|2, 3, 4, 5, 6))

−
1

2
(V12T

m
3,4,5,6(ℓ

m +
1

6
km1 −

1

6
km2 ) + (2 ↔ 3, 4, 5, 6))

+
1

6
V1(T[[2,3],4],5,6 + T[2,[3,4]],5,6 + (2, 3, 4|2, 3, 4, 5, 6))

+
1

4
(V1T23,45,6 + (2, 3|4, 5|2, 3, 4, 5, 6))

−
1

4
(V12T34,5,6 + (2|3, 4|2, 3, 4, 5, 6))

−
1

6
((V123 − 2V132)T4,5,6 + (2, 3|2, 3, 4, 5, 6)) .

We then identify the pentagon numerators, which in all but one case are given by a gen-

eralization of the formulae from [1],

NA|B,C,D,E1 = VE1T
m
A,B,C,Dℓm +

1

2
(V[A,E1]TB,C,D + (A ↔ B,C,D)) (2.43)

+
1

2
(VE1T[A,B],C,D + (A,B|A,B,C,D))

The exception to the above is the 12-pentagon, which differs as it has a contribution

from the g(2) terms due to the color ordering 234561. It is given by the coefficient of

1/2s12I
a1=1
2,3,4,5,6 (note the absence of the label 1 from the ordering in Ia1=1

2,3,4,5,6)

N ′
21|3,4,5,6(ℓ) =− V1T

mn
2,3,4,5,6k

m
2 kn1 (2.44)

− (V1T
m
23,4,5,6k

m
1 + (3 ↔ 4, 5, 6))

+ V12T
m
3,4,5,6(ℓ

m + km1 − k2m)

− (V13T
m
2,4,5,6k

m
2 + (3 ↔ 4, 5, 6))

+
1

2
(V12T34,5,6 + (3, 4|3, 4, 5, 6))

− (V13T24,5,6 + (3|4|3, 4, 5, 6))

+
1

2
((2V132 − V123)T4,5,6 + (3 ↔ 4, 5, 6))

The box numerators have the standard form, with the word containing the label 1 assigned

to the V superfield, and the other blocks of indices assigned to the T

NA|B,C,D1E = VD1ETA,B,C , NE1A|B,C,D = VE1ATB,C,D . (2.45)
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A long calculation shows that the BRST variation of the above integrand is purely anoma-

lous and given by7

QAa1=1(1, 2, 3, 4, 5, 6) =
1

2
V1Y2,3,4,5,6(I2,3,4,5,6 − ℓ2I2,3,4,5,6,1) (2.46)

This is then of a similar form to the a1 = ... = a6 = 0 result found in [1], and by an

analogous argument to the one presented there one finds the same result for the integrated

anomaly
∫

d10ℓQAa1=1(1, 2, 3, 4, 5, 6) = −
π5

240
V1Y2,3,4,5,6 . (2.47)

Of course the type I superstring theory with gauge group SO(32) is free of gauge anomalies

[30], but this property does not survive the field-theory limit of its planar sector and the

six-point one-loop SYM amplitude in ten dimensions is anomalous [31]. The result (2.47)

written in terms of the anomalous building block Y2,3,4,5,6 [22] is the pure spinor superspace

encoding of the field-theory anomaly [6,7].

2.4.5. Seven Points

At seven points, the numerators become far too complex to state here. One example

can be found in the appendix D. The derivation of these numerators has one additional

complication; as was discussed in [11] the refined worldsheet functions are given by

Z12|3,4,5,6,7 = ∂g
(2)
12 + s12g

(1)
12 g

(2)
12 − 3s12g

(3)
12 . (2.48)

The derivative and the double pole are then removed by using partial integration with the

Koba-Nielsen factor I7(ℓ)

(∂1g
(2)
12 )I7(ℓ) = ∂1(g

(2)
12 I7(ℓ)) + g

(2)
12 ∂2I7(ℓ) (2.49)

= ∂1(g
(2)
12 I7(ℓ)) + g

(2)
12

(

(ℓ · k2) + s21g
(1)
21 + s23g

(1)
23 + ...+ s27g

(1)
27

)

I7(ℓ),

which gives the reformulated expression for (2.48)

Z12|3,4,5,6,7 = −3s12g
(3)
12 + g

(2)
12 (ℓ · k2 + s23g

(1)
23 + s24g

(1)
24 + ...+ s27g

(1)
27 ) (2.50)

This is the form of the refined worldsheet function we use to extract the numerators and

the computation proceeds analogously as before. And we have verified the vanishing of the

BRST variation of the resulting general expression.

7 See the discussion of [29] as summarized in section 4.5 of [1] to understand why (2.46) is not

trivially zero due to the cancellation of propagators in the integrand.
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3. Local BCJ-satisfying numerators

In this section we will obtain the kinematic numerators associated to various one-loop cubic

graphs using the field-theory limit rules of section 2.3 applied to the superstring correlators

for six external states as well as some seven-point numerators. The results of this section

resolve a puzzle in the analysis of [1]. Namely, the representation in [1] of the six-point

integrand did not satisfy the color-kinematics duality by terms which suspiciously were

related to the gauge anomaly. We now show that the six-point integrand representation

arising from the field-theory limit of the string correlator satisfies all the color-kinematic

Jacobi dual relations of Bern-Carrasco-Johansson.

3.1. Color-kinematics duality

The color factors of amplitudes in gauge theory depend on the structure constants of some

gauge group, fabc, that satisfy the Jacobi identity,

fabef cde + f bcefade + f caef bde = 0 . (3.1)

The color-kinematics duality conjecture posed by Bern, Carrasco and Johansson (BCJ)

states that the kinematic numerators of cubic-graph diagrams can be chosen to satisfy the

same Jacobi identity relating their color factors [16]. That is, if a triplet of diagrams i, j, k

whose color factors ci, cj, ck vanish due to the Jacobi identity (3.1), ci + cj + ck = 0, the

corresponding numerators Ni, Nj, Nk of the diagrams satisfy Ni(ℓ) + Nj(ℓ) + Nk(ℓ) = 0

as well. Stated originally at tree-level [16] (and proven by the field-theory limit of string

theory tree amplitudes [32,33]) the duality was conjectured at loop-level in [34], where the

kinematic numerators also depend on loop momenta ℓ parameterizing various n-gon cubic

graphs. Through this approach, properties of 4 ≤ N ≤ 8 supergravity up to four loops

have been made manifest [35] (for the five-loop extension see [36,37]).

As part of the color-kinematics duality, once the gauge-theory amplitude is written

down using kinematic numerators that satisfy all the kinematic Jacobi identities and auto-

morphism symmetries of the cubic graphs, the gauge amplitude can be used to construct a

gravity amplitude by replacing the color factors by a second copy of numerators ci → Ñi(ℓ)

[16,34]. For more details see the review [2].

We will now show that the numerators extracted from the one-loop string correlators

using the field-theory rules of section 2.3 satisfy all the color-kinematics relations. However,

starting at six points the numerators do not satisfy the required symmetries under shifts
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of the loop momentum required by the automorphism symmetries of the cubic graphs (see

[24]), leading to subtleties in the construction of the gravity amplitudes which we defer to

future work.

The one-loop five-point integrand of SYM in ten dimensions was already discussed

in section 1.3.2 so we will focus on the six-point SYM integrand and briefly outline the

discussion of the seven-point numerators.

3.2. Six points

The color-kinematics relations are manifestly satisfied within external tree graphs due to

the BCJ gauge used in the multiparticle superfields [38,15]. Therefore we will discuss the

kinematic Jacobi identities among p-gons with different values of p.

3.2.1. Kinematic Jacobi between pentagons and a box

The pure spinor superspace expressions of the numerators associated to the graphs in the

following linear combination

ℓ

4

1 6

5

3

2
−

ℓ

ℓ− k
23

4

1

6

5

3

2

−

ℓ

1

2

3

4 5

6

constitute a good example of how our methods give rise to a BCJ-satisfying parameteri-

zation of the six-point integrand.

Two of the above graphs are part of the integrand in the canonical color ordering

A(1, 2, 3, 4, 5, 6; ℓ). According to the color-kinematics identity that we are seeking to show,

the loop momentum parameterization of the graphs must have the same momentum flowing

in the edges that are kept the same for all graphs. Therefore the middle graph must have

loop momentum ℓ flowing from leg 6 to the fork 23. According to the convention shown

in fig. 2 this is the 23-pentagon N23|1,4,5,6(ℓ) from the integrand A(2, 3, 1, 4, 5, 6; ℓ) whose

expression can be read off from the field-theory limit rules for this particular ordering.

However the assumption used in the parameterization of [1] was that this pentagon is

obtained in a crossing symmetric way as N1|4,5,6,23(ℓ − k23). As shown in [1], using these
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kinematic numerators the algebraic translation of the BCJ triplet linear combination above

becomes

N1|23,4,5,6(ℓ)−N1|4,5,6,23(ℓ− k23)−N[1,23]|4,5,6(ℓ) = (3.2)

k23mV1T
m
23,4,5,6 + V231T4,5,6 +

[

V1T234,5,6 + (4 ↔ 5, 6)
]

which is not in the cohomology of the BRST charge and therefore is not vanishing. In

other words, the representation of the six-point integrand chosen in [1] does not satisfy the

color-kinematics duality.

In contrast, using the field-theory limit rules of this work the cubic graphs above

can be derived in their native color ordering and they satisfy the BCJ triplet numerator

identity:

N1|23,4,5,6(ℓ)−N23|1,4,5,6(ℓ)−N[1,23]|4,5,6(ℓ) = 0 . (3.3)

To see this vanishing we begin with the box numerator N[1,23]|4,5,6(ℓ), the coefficient of
1

4s23s123
I123,4,5,6 in the integrand A(1, 2, 3, 4, 5, 6; ℓ). According to (2.11) and (2.13) the

only functions that can generate such a factor are g
(1)
12 g

(1)
23 and g

(1)
13 g

(1)
23 via P (12, 23) and

P (13, 23). There are only two terms featuring these functions in the six-point string cor-

relator (1.3),

V123T4,5,6g
(1)
12 g

(1)
23 + V132T4,5,6g

(1)
13 g

(1)
32 . (3.4)

The field-theory limit of g
(1)
12 g

(1)
23 and g

(1)
13 g

(1)
23 gives rise to the box integrand through the

P (ij, jk) terms in

1

4
V123T4,5,6P (12, 23)+

1

4
V132T4,5,6P (13, 32) =

1

4
V123T4,5,6φ123|123I123+

1

4
V132T4,5,6φ132|123I123

=
1

4
V123T4,5,6

(

1

s12s123
+

1

s23s123

)

I123 +
1

4
V132T4,5,6

(

−
1

s23s123

)

I123 . (3.5)

The box numerator N[1,23]|4,5,6(ℓ) is given by the coefficient of 1
4

1
s23s123

I123,

N[1,23]|4,5,6 = V123T4,5,6 − V132T4,5,6 = V[1,23]T4,5,6 (3.6)

The pentagon N1|23,4,5,6(ℓ) is given by the coefficient of 1
2s23

I23 in the field theory limit of

the correlator K6(ℓ) for the color ordering A(1, 2, 3, 4, 5, 6; ℓ). Such factors arise from any

appearance of g
(1)
23 in (1.3),

V1T
m
23,4,5,6ℓ

mg
(1)
23 +

[

V123T4,5,6g
(1)
12 g

(1)
23 + (2 ↔ 3)

]

+
[

V1T234,5,6g
(1)
23 g

(1)
34 + (4 ↔ 5, 6)

]

+
[

V14T23,5,6g
(1)
14 g

(1)
23 + (4 ↔ 5, 6)

]

+
[

V1T23,45,6g
(1)
23 g

(1)
45 + (4, 5|4, 5, 6)

]

(3.7)
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Taking the limits and collecting terms proportional to 1
2s23

I23 we get

N1|23,4,5,6(ℓ) = V1T
m
23,4,5,6ℓ

m +
1

2

[

V[1,23]T4,5,6 + (23 ↔ 4, 5, 6)
]

(3.8)

+
1

2

[

V1T[23,4],5,6 + (23, 4|23, 4, 5, 6)
]

.

The numerators (3.6) and (3.8) agree with the numerators obtained in [1].

The middle pentagon in the above figure is the 23-pentagon in the integrand of

A(2, 3, 1, 4, 5, 6; ℓ) since the loop momentum is running from leg 6 to 2. Alternatively, a

cyclic rotation as in (2.25) yields the integrand A(1, 4, 5, 6, 2, 3; ℓ− k23) whose field-theory

limit is computed using the rules of section 2.3 with with a2 = a3 = −1, ai = 0 for all

other i. The calculation proceeds similarly to the above. The relevant terms are now8

V1T
m
4,5,6,23ℓ

mg
(1)
23 +

[

V123T4,5,6g
(1)
12 g

(1)
23 + (2 ↔ 3)

]

(3.9)

+
[

V1T423,5,6g
(1)
42 g

(1)
23 + V1T432,5,6g

(1)
43 g

(1)
32 + (4 ↔ 5, 6)

]

+
[

V14T5,6,23g
(1)
14 g

(1)
23 + (4 ↔ 5, 6)

]

+
1

2

[

V1T45,6,23g
(1)
45 g

(1)
23 + (4, 5|4, 5, 6)

]

.

Taking the field theory limits and restricting ourselves to the s23 single poles, we see that

the numerator is given by

N23|1,4,5,6(ℓ) = V1T
m
4,5,6,23ℓ

m −
1

2
V[1,23]T4,5,6 +

1

2
(V[1,4]T5,6,23 + (4 ↔ 5, 6))

+
1

2
(V1T[23,4],5,6 + (23, 4|23, 4, 5, 6)) (3.10)

This differs from the parameterization of this graph used in [1], namely N
(5)
1|4,5,6,23(ℓ− k23)

with the expression for N
(5)
A|B,C,D,E

(ℓ) given in (1.17). While the representation of [1] fails

to satisfy the color Jacobi identity, the new representation derived here obeys the color-

kinematics duality. To see this we plug the superfield expressions of the new field-theory

representations of the box (3.6) and pentagons (3.8), (3.10) in the kinematic Jacobi relation

(3.3) to obtain

N1|23,4,5,6(ℓ)−N23|1,4,5,6(ℓ)−N[1,23]|4,5,6(ℓ) = 0 . (3.11)

And we note that the BCJ relation is identically satisfied at the superfield level (i.e. no

BRST cohomology identity is needed). This trivial vanishing for the BCJ triplet at one

loop parallels the superfield vanishing of the BCJ triplet of tree-level numerators obtained

from the field-theory of the disk correlators as seen in (1.14).

8 We exploit the total symmetry of the six-point correlator (1.3) in 2, 3, 4, 5, 6
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3.2.2. Kinematic Jacobi between hexagons and a pentagon

In a given color ordering, all of the pentagons have a similar structure apart from the ij-

pentagon whose labels are cyclically split at the extremities A(i, . . . , j; ℓ). In this subsection

we will demonstrate the validity of a BCJ relation involving such a numerator. The relation

we will show is

ℓ

3

2

1

6

5

4

−

ℓ+ k6

3

2

6

1

5

4

−

ℓ+ k
6

3

2

5

4

1

6

= 0

which corresponds to

N1|2,3,4,5,6(ℓ)−Na6=1
1|6,2,3,4,5(ℓ)−N61|2,3,4,5(ℓ) = 0 . (3.12)

To find the hexagon numerators, we look at the piece of the field theory limits proportional

to P = I. In the first case, this means making the substitution

g
(1)
ij →

1

2
sgn123456ij I , g

(1)
ij g

(1)
kl →

1

4
sgn123456ij sgn123456kl I , g

(2)
ij →

1

12
I . (3.13)

This then gives the value of the first hexagon numerator as

N1|2,3,4,5,6(ℓ) = +
1

6
((V[[1,2],3] + V[1,[2,3]])T4,5,6 + (2, 3|2, 3, 4, 5, 6)) (3.14)

+
1

6
V1(T[[2,3],4],5,6 + T[2,[3,4]],5,6 + (2, 3, 4|2, 3, 4, 5, 6))

+
1

4
V[1,2]T[3,4],5,6 + (2|3, 4|2, 3, 4, 5, 6))

+
1

4
V1T[2,3],[4,5],6 + (2, 3|4, 5|2, 3, 4, 5, 6))

+
1

2
(V[1,2]T

m
3,4,5,6(ℓ

m −
1

6
km1 +

1

6
km2 ) + (2 ↔ 3, 4, 5, 6))

+
1

2
(V1T

m
[2,3],4,5,6(ℓ

m −
1

6
km2 +

1

6
km3 ) + (2, 3|2, 3, 4, 5, 6))

+
1

2
V1T

mn
2,3,4,5,6(ℓ

mℓn −
1

12
km1 kn1 −

1

12
km2 kn2 − · · · −

1

12
km6 kn6 ) .

For the second hexagon, we consider the field-theory limit of the correlator with the color

ordering A(1, 6, 2, 3, 4, 5; ℓ+ k1). The limits needed now have the form

g
(1)
ij →

1

2
sgn162345ij + δj6 − δi6 , (3.15)

g
(1)
ij g

(1)
kl →

(1

2
sgn162345ij + δj6 − δi6

)(1

2
sgn162345kl + δl6 − δk6

)

,

g
(2)
ij →

1

12
+

1

2

(

δi6(1− sgn162345ij ) + δj6(1 + sgn162345ij )
)

.
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Using these, the numerator is identified as

Na6=1
1|6,2,3,4,5(ℓ) = +

1

2
V1T

mn
2,3,4,5,6(ℓ

mℓn + 2km1 kn6 −
1

12
(k1mk1n + k2mk2n + · · ·k6mk6n))

+
1

2
(V1T

m
[2,3],4,5,6(ℓ

m −
1

6
km2 +

1

6
km3 ) + (2, 3|2, 3, 4, 5, 6))

− (V1T
m
[2,6],3,4,5k

m
1 + (2 ↔ 3, 4, 5)) (3.16)

+
1

2
(V[1,2]T

m
3,4,5,6(ℓ

m −
1

6
km1 +

1

6
km2 + 2km6 ) + (2 ↔ 3, 4, 5))

+ V[1,6]T
m
2,3,4,5(

3

2
ℓm −

13

12
km1 +

13

12
km6 )

+
1

6
V1(T[[2,3],4],5,6 + T[2,[3,4]],5,6 + (2, 3, 4|2, 3, 4, 5, 6))

+
1

6
((V[[1,2],3] + V[1,[2,3]])T4,5,6 + (2, 3|2, 3, 4, 5))

−
1

3
((V[[1,2],6] + V[1,[2,6]])T4,5,6 + (2 ↔ 3, 4, 5))

+
1

4
(V1T[2,3],[4,5],6 + (2, 3|4, 5|2, 3, 4, 5, 6))

+
1

4
(V[1,2]T[3,4],5,6 + (2|3, 4|2, 3, 4, 5))

−
3

4
(V[1,2]T[3,6],4,5 + (2|3|2, 3, 4, 5))

+
3

4
(V[1,6]T[2,3],4,5 + (2, 3|2, 3, 4, 5))

Finally we have the pentagon term, the superfield coefficient of 1
2s16

I61,2,3,4,5 from the

integrand A(1, 2, 3, 4, 5, 6; ℓ). This can be found to be

N ′
61|2,3,4,5(ℓ) = +

1

2

[

(V[[1,2],6] + V[1,[2,6]])T3,4,5 + (2 ↔ 3, 4, 5)
]

(3.17)

+
[

V[1,2]T[3,6],4,5 + (2|3|2, 3, 4, 5)
]

−
1

2

[

V[1,6]T[2,3],4,5 + (2, 3|2, 3, 4, 5)
]

−
[

V[1,2]T
m
3,4,5,6k

m
6 + (2 ↔ 3, 4, 5)

]

+
[

V1T
m
[2,6],3,4,5k

m
1 + (2 ↔ 3, 4, 5)

]

− V[1,6]T
m
2,3,4,5(ℓ

m + km6 − km1 )

− V1T
mn
2,3,4,5,6k

m
1 kn6

It is then simply a matter of plugging the numerators into the identity (3.12) to verify its

validity.
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Fig. 3 The antisymmetry of the 61-pentagon from the integrand A(1, 2, 3, 4, 5, 6; ℓ). The momen-

tum running into the 61 external tree in the graph on the right is ℓ + k6 because in the color

ordering 1, 2, 3, 4, 5, 6 a momentum ℓ must run between 6 and 1. Therefore in order to preserve

the momentum assignment in the edges between the two cubic graphs, the pentagon on the left is

part of the integrand A(1, 6, 2, 3, 4, 5; ℓ+ k6) with momentum ℓ+ k6 running between legs 5 and

1 as dictated by the convention (2.24). Therefore to extract this pentagon the field-theory rules

of section 2.3 must be used with a6 = 1.

3.2.3. Antisymmetry of ij-pentagons from A(i, P, j; ℓ) in i ↔ j

As mentioned above, the color-kinematics duality relations within external tree diagrams

is manifestly satisfied due to the usage of multiparticle superfields in the BCJ gauge. For

instance, all the boxes and all but one pentagon for an integrand of arbitrary color ordering

A(P ; ℓ) can be described by

NA|B,C,D(ℓ) = VATB,C,D(ℓ) + (A ↔ B,C,D) (3.18)

NA|B,C,D,E(ℓ) =
[

VAT
m
B,C,D,Eℓm + (A ↔ B,C,D,E)

]

+
1

2

[

VAT[B,C],D,E + (A|B,C|A,B,C,D,E)
]

+
1

2

[

V[A,B]TC,D,E + (A,B|A,B,C,D,E)
]

(3.19)

with the additional constraint that T ...
...,A1B,... = 0 (i.e., setting to zero all terms in which

the label 1 is not assigned to a multiparticle vertex VP ). For example, using (3.19) we

recover the 23-pentagon (3.10)

N23|1,4,5,6(ℓ) = V1T
m
4,5,6,23ℓ

m −
1

2
V[1,23]T4,5,6 +

1

2
(V[1,4]T5,6,23 + (4 ↔ 5, 6)) (3.20)

+
1

2
(V1T[23,4],5,6 + (23, 4|23, 4, 5, 6))

where we used (1.17) and the constraint T ...
...,A1B,... = 0. Since in the BCJ gauge [38,15] the

multiparticle labels (words) in (3.18) and (3.19) satisfy generalized Jacobi identities, the

color-kinematics duality are manifest within those words, with a notable exception.
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The exception arises for the ij-pentagon when the labels i, j are adjacent up to a cyclic

rotation, e.g. the 61-pentagon in A(1, 2, 3, 4, 5, 6; ℓ) or the 12-pentagon in A(2, 3, 4, 5, 6, 1; ℓ)

do not follow the general formula (3.19), as can be seen for example in (2.44). The reason

this happens is due to a clash between the ij pentagon labels in A(j, P, i; ℓ) and the

convention that the loop momentum ℓ runs between i and j. So to verify the antisymmetry

of the 61-pentagon from A(1, 2, 3, 4, 5, 6; ℓ) one needs to compare it to the 16-pentagon from

A(1, 6, 2, 3, 4, 5; ℓ+ k6) using the field-theory rules from section 2.3. The result is

Na6=1
16|2,3,4,5(ℓ) = −

1

2

[

(V[[1,2],6] + V[1,[2,6]])T3,4,5 + (2 ↔ 3, 4, 5)
]

(3.21)

−
[

V[1,2]T[3,6],4,5 + (2|3|2, 3, 4, 5)
]

+
1

2

[

V[1,6]T[2,3],4,5 + (2, 3|2, 3, 4, 5)
]

+
[

V[1,2]T
m
3,4,5,6k

m
6 − V1T

m
[2,6],3,4,5k

m
1 + (2 ↔ 3, 4, 5)

]

+ V[1,6]T
m
2,3,4,5(ℓ

m + km6 − km1 )

+ V1T
mn
2,3,4,5,6k

m
1 kn6 .

Comparing (3.21) with (3.17) one immediately verifies the color-kinematics identity de-

picted in fig. 3

Na6=1
16|2,3,4,5(ℓ) +N61|2,3,4,5(ℓ) = 0 . (3.22)

It is interesting to observe that the field-theory limit rules yield a different 16-pentagon in

the in color ordering without a shift in the loop momentum A(1, 6, 2, 3, 4, 5; ℓ), namely

N16|2,3,4,5(ℓ) = V16T
m
2,3,4,5ℓm +

1

2

[

V16T23,4,5 + (2, 3|2, 3, 4, 5)]+
1

2
V162T3,4,5 + (2 ↔ 3, 4, 5)

]

.

(3.23)

If we now perform a manual shift ℓ → ℓ + k6 in the 16-pentagon numerator (3.23) and

compare it with the 16-pentagon from the shifted amplitude A(1, 6, 2, 3, 4, 5; ℓ+k6) we find

that they are not BRST equivalent,

Q
(

Na6=1
16|2,3,4,5(ℓ)−N16|2,3,4,5(ℓ+ k6)

)

= Q(s16V1J6|2,3,4,5) . (3.24)

This shows that the field-theory rules of section 2.3 capture the shifts in the loop momen-

tum parameterization in a non trivial way, as the limit for A(1, 6, 2, 3, 4, 5; ℓ+ k6) does not

follow from naively shifting ℓ → ℓ+ k6 in A(1, 6, 2, 3, 4, 5; ℓ).
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3.2.4. Remaining BCJ triplets

There are then a number of relations between pentagons and boxes left to show in order

to see that we have a BCJ representation of A(1, 2, 3, 4, 5, 6), and these can be seen in the

cases a) to d) in the next figure. For each of these in turn we just follow the rules (2.10)

for the following amplitudes with the following assignments of values for the ai

a)

ℓ

ℓ+ k6

4

3

2

1

6

5

−
ℓ+ k6

4

3

6

2

1

5

−

ℓ+ k
6

6

1

2

3 4

5

= 0

b)

ℓ

ℓ+ k56

3

2

1

6

5

4

− ℓ+ k56

3

2

6

5

1

4

−

ℓ+ k56

1

5

6

2 3

4

= 0

c)

ℓ+ k6

ℓ− k1

3

2

1

6

5

4

−

ℓ+ k6

ℓ+ k6 − k2

3

1

6

2 5

4

−
ℓ+ k6

2
6

1

5

3

4

= 0

d)

ℓ+ k6

ℓ− k1

3

2

1

6

5

4

−

ℓ
+
k
5
−

k
1

ℓ− k1 ℓ+ k56

3

2

5

1

6

4
−

ℓ+ k56

1

5

6

2 3

4

= 0

A(1, 2, 6, 3, 4, 5; ℓ+ k6),

A(1, 6, 5, 2, 3, 4; ℓ+ k56),

A(1, 3, 4, 5, 2, 6; ℓ− k2),

A(1, 5, 2, 3, 4, 6; ℓ+ k5),

a1 = a2 = a3 = a4 = a5 = 0, a6 = 1

a1 = a2 = a3 = a4 = 0, a5 = a6 = 1

a1 = a3 = a4 = a5 = a6 = 0, a2 = −1

a1 = a2 = a3 = a4 = a6 = 0, a5 = 1

(3.25)
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These have been verified to give amplitudes which are BRST invariant and satisfy the

relations a) to d) in the figure above. We will not detail their construction any further, as

they can be obtained by analogous manipulations as discussed above.

3.2.5. Other parameterization of cubic graphs

Note that the choice of loop momentum to parameterize the cubic graphs plays an im-

portant role due to the inherent asymmetry of the numerators with respect to the label

1 (which must always be associated with VP ). The cases considered above are the ones

which maximize the chances of failure. For instance, if we choose to position ℓ in the edge

between 3 and 4 in the graphs depicted in a) in the previous figure the resulting triplet of

numerators

ℓ

4

3

2

1

6

5

−

ℓ

4

3

6

2

1

5

−

ℓ

6

1

2

3 4

5

is easily seen to satisfy the color-kinematics identity. In this case we get,

N4|5,6,12,3(ℓ)−N4|5,12,6,3(ℓ)−N4|5,[6,12],3(ℓ) = 0 . (3.26)

To see this it is enough to use the pentagon (1.17) to obtain

N4|5,6,12,3(ℓ) = V12T
m
3,4,5,6ℓm −

1

2

[

V12T34,5,6 + V12T35,4,6 + V12T36,4,5 (3.27)

− V12T45,3,6 − V12T46,3,5 − V12T56,3,4 − V123T4,5,6 + V124T3,5,6

+ V125T3,4,6 + V126T3,4,5

]

N4|5,12,6,3(ℓ) = V12T
m
3,4,5,6ℓm −

1

2

[

V12T34,5,6 + V12T35,4,6 + V12T36,4,5

− V12T45,3,6 − V12T46,3,5 − V12T56,3,4 − V123T4,5,6 + V124T3,5,6

+ V125T3,4,6 − V126T3,4,5

]

,

from which we get N4|5,6,12,3(ℓ) − N4|5,12,6,3(ℓ) = −V126T3,4,5 and (3.26) is satisfied since

N4|5,[6,12],3 = V[6,12]T3,4,5 = −V126T3,4,5.

Thus we conclude that the field-theory limit of the genus-one six-point string correlator

(1.3) for various color orderings as dictated by the ordering of vertex operators on the

boundary of the Riemann surface satisfies all the color-kinematics identities.
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3.3. Seven points

At seven points, BCJ relations are analogously satisfied. Given their significantly more

complex structure, we will not demonstrate these explicitly here and we will only outline

their construction below.

As alluded to earlier, at seven points there is an extra complication that must be

dealt with: the refined superfields. To find the field theory limits of the refined terms, we

have to use an alternative method and partially integrate the worldsheet functions against

the Koba-Nielsen factor. This then means that, when we want to verify BCJ relations, we

must rearrange these refined terms. For relations in which the loop momentum structure

is unchanged between terms (that is, BCJ relations in which there is always momentum ℓ

going into leg 1), this amounts to canceling all (ℓ · k) terms. Take for instance the relation

N1|2,3,4,5,6,7(ℓ)−N1|2,4,3,5,6,7(ℓ)−N1|2,34,5,6,7(ℓ) = 0 , (3.28)

and consider the refined terms V1J34|2,5,6,7 within it. In the standard ordering correlator,

these terms are associated with the worldsheet function Z34|1,2,5,6,7 and we would therefore

expect the heptagon numerator N1|2,3,4,5,6,7(ℓ) to contain the terms

−
1

12
V1J34|2,5,6,7

(

ℓ · k4 −
1

2
k12 · k4 +

1

2
k4 · k567

)

. (3.29)

Likewise, the other numerators we would expect to contain the terms

N1|2,4,3,5,6,7(ℓ) ↔ −
1

12
V1J43|2,5,6,7

(

ℓ · k3 −
1

2
k12 · k3 +

1

2
k3 · k567

)

(3.30)

N1|2,34,5,6,7(ℓ) ↔ 0 .

The relation (3.28) is clearly not satisfied with these values.

Instead, we cancel the ℓ · k terms. For example, we rewrite (3.29) as

−
1

12
V1J34|2,5,6,7

(1

2
(ℓ− k123)2 −

1

2
(ℓ− k1234)2 + k123 · k4 −

1

2
k12 · k4 +

1

2
k4 · k567

)

=−
1

12
V1J34|2,5,6,7

(1

2
(ℓ− k123)2 −

1

2
(ℓ− k1234)2 +

1

2
k3 · k4

)

. (3.31)

We then cancel the (ℓ − k)2 terms with the denominator of the Feynman loop integrand

I1,2,3,4,5,6,7(ℓ) associated with this term, and so they contribute to hexagons instead. Hence

there is only one term of this form associated with the heptagon,

N1|2,3,4,5,6,7(ℓ) ↔ −
1

24
s34V1J34|2,5,6,7 . (3.32)
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Similarly, the other heptagon numerator undergoes this procedure and is associated with

N1|2,4,3,5,6,7(ℓ) ↔
1

24
s34V1J34|2,5,6,7 . (3.33)

There are then extra terms in the hexagons arising from the canceled portion of the terms

from the heptagons. The 34-hexagon we are interested in inherits a term from the cancel-

lation (3.31). Hence we now have

N1|2,34,5,6,7(ℓ) ↔ −
1

12
s34V1J34|2,5,6,7 . (3.34)

Note this differs from what may be naively expected from (3.31) due to the hexagon

containing an extra 2s34 in its denominator compared with the heptagon. Now plugging

(3.32), (3.33), (3.34) into the relation (3.28) we see it is now satisfied

−
1

24
s34V1J34|2,5,6,7 −

1

24
s34V1J34|2,5,6,7 −

(

−
1

12
s34V1J34|2,5,6,7

)

= 0 . (3.35)

Similar manipulations hold for other BCJ relations of this sort. Additional complications

arise when the BCJ relations involve terms of different loop momentum structure, and

we have yet to identify a general algorithm for these situations. However, by explicitly

rearranging amplitudes term by term, we have been able to structure them so that they

satisfy all of the BCJ relations we have tested. Namely, we have been able to simultaneously

satisfy the following more complex relations

N1|2,3,4,5,6,7(ℓ)−Na7=1
1|7,2,3,4,5,6(ℓ)−N[7,1]|2,3,4,5,6(ℓ) = 0 , (3.36)

N1|2,3,4,5,7,6(ℓ)−Na6=1
1|6,2,3,4,5,7(ℓ)−N[1,6]|2,3,4,5,7(ℓ) = 0 ,

N[7,1]|2,3,4,5,6(ℓ)−Na6=1
[7,1]|6,2,3,4,5(ℓ)−N[6,[7,1]]|2,3,4,5 = 0 ,

N[6,[7,1]]|2,3,4,5(ℓ)−Na5=1
[6,[7,1]]|5,2,3,4(ℓ)−N[5,[6,[7,1]]]|2,3,4(ℓ) = 0 ,

Na6=1
[1,6]|2,3,4,5,7(ℓ) +N[6,1]|2,3,4,5,7 = 0 ,

N[7,1]|2,3,4,5,6(ℓ) +Na7=1
[1,7]|2,3,4,5,6 = 0 .

Though this is not an exhaustive test, we hope that it is sufficient to serve as a proof of

concept that this method work, and that it should always be possible to rearrange the

refined terms to satisfy the color-kinematics duality.
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3.4. Supergravity amplitudes and the double copy

One of the goals in obtaining a parameterization of gauge theory 1-loop integrands that

satisfies the color-kinematics duality is to construct corresponding supergravity integrands

via the double-copy construction [2]. For five points this construction was carried out

explicitly in four dimensions in [24] while the ten-dimensional analysis using pure spinor

superspace was done in [1]. In the pure spinor superspace setup, the supergravity integrand

obtained via the double copy must be checked to be BRST invariant, as that guarantees

gauge and supersymmetry invariance of its component expression in terms of polarizations

and momenta [5].

We will now repeat the five-point supergravity construction of [1] to highlight that

it is BRST invariant but that it is so only because the numerators satisfy the dihedral

symmetries of the cubic graphs in the cohomology of pure spinor superspace (see [24]

for a discussion of these symmetries). While at five points our numerators satisfy these

symmetries in addition to the color Jacobi identities, the corresponding symmetries at six

points are not satisfied by our BCJ-satisfying six-point numerators and will prevent the

double-copy construction of a BRST-closed supergravity integrand. Applying the double-

copy procedure at six points will be left for a future work.

3.4.1. The five-point supergravity integrand

Let us construct the five-point supergravity integrand using the double-copy procedure

to highlight the existence of a subtlety: the consistency of the double-copy construction

requires the five-point numerators not only to satisfy the kinematic Jacobi identities but

also the dihedral symmetries of the cubic graphs. We will see that these symmetries, unlike

the kinematic Jacobi identities, are satisfied in the cohomology rather than identically.

Starting with the color-dressed integrand (E.1) we replace the color factors by an extra

copy of duality-satisfying kinematic numerators. This yields

M5(ℓ) =
(1

2
N1|2,3,45I1,2,3,45Ñ1|2,3,45 +

1

2
N1|2,34,5I1,2,34,5Ñ1|2,34,5 (3.37)

+
1

2
N1|23,4,5I1,23,4,5Ñ1|23,4,5 +

1

2
N12|3,4,5I12,3,4,5Ñ12|3,4,5

+
1

2
N51|2,3,4I51,2,3,4Ñ51|2,3,4 +N1|2,3,4,5(ℓ)I1,2,3,4,5Ñ1|2,3,4,5(ℓ) + perm(2, 3, 4, 5)

)

Note that the kinematic numerators on the left are written in terms of Berends-Giele

numerators N of the appendix A while those on the right are the local numerators N .
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After setting up the double-copy supergravity integrand (3.37) we must check its

BRST variation. Since (3.37) is left/right symmetric9 it is enough to consider the left-

moving BRST variation, which we will see vanishes only if the right-movers are in the

cohomology of the right-moving pure spinor superspace. To see this surprising fact, consider

the variation of the left-moving pentagon N1|2,3,4,5(ℓ) multiplied by the loop-momentum

integrand I1,2,3,4,5:

QN1|2,3,4,5(ℓ)I1,2,3,4,5 =
1

2
V1V2T3,4,5

[

(ℓ− k12)
2 − (ℓ− k1)

2
]

I1,2,3,4,5 (3.38)

+
1

2
V1V3T2,4,5

[

(ℓ− k123)
2 − (ℓ− k12)

2
]

I1,2,3,4,5

+
1

2
V1V4T2,3,5

[

(ℓ− k1234)
2 − (ℓ− k123)

2
]

I1,2,3,4,5

+
1

2
V1V5T2,3,4

[

ℓ2 − (ℓ− k1234)
2
]

I1,2,3,4,5

=
1

2
V1V2T3,4,5

[

I1,23,4,5 − I12,3,4,5
]

+
1

2
V1V3T2,4,5

[

I1,2,34,5 − I1,23,4,5
]

+
1

2
V1V4T2,3,5

[

I1,2,3,45 − I1,2,34,5
]

+
1

2
V1V5T2,3,4

[

I1,2,3,4 − I1,2,3,45
]

where we used identities such as (ℓ − k1)
2I1,2,3,4,5 = I12,3,4,5 that follow from (2.6).

These loop-momentum identities are trivial but one of them on the last line, namely

ℓ2I1,2,3,4,5 = I1,2,3,4, has a peculiar behavior: the right-hand side has no label 5. This seem-

ingly innocuous fact will have a surprising implication in the double-copy construction of

the five-point supergravity integrand when (3.38) appears multiplied by a right-moving

factor Ñ1|2,3,4,5(ℓ).

The reason is that the right-moving pentagon Ñ1|2,3,4,5(ℓ) depends on the loop mo-

mentum and picks up the shift10 ℓ → ℓ − k5 needed when rewriting I1,2,3,4 → I51,2,3,4.

More explicitly, one can show that the BRST variation of (3.37) contains

QM5(ℓ) = . . .+
1

2
V1V5T2,3,4

[

I1,2,3,4Ñ1|2,3,4,5(ℓ) + I51,2,3,4(Ñ15|2,3,4 − Ñ1|5,2,3,4(ℓ))
]

= . . .+
1

2
V1V5T2,3,4 I51,2,3,4

[

Ñ15|2,3,4 + Ñ1|2,3,4,5(ℓ− k5)− Ñ1|5,2,3,4(ℓ)
]

. (3.39)

9 The left- or right-moving terminology refers to the two sides of the double-copy kinematic

factors, distinguished by the tildes.
10 In the gauge-theory integrand the term V1V5T2,3,4I1,2,3,4 from the last line of (3.38) can

be trivially rewritten as V1V5T2,3,4I51,2,3,4 since its kinematic factor is invariant under the shift

ℓ → ℓ− k5.
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On the one hand we know from section 3 that the kinematic Jacobi identity

Ñ5|1,2,3,4(ℓ)− Ñ1|5,2,3,4(ℓ) + Ñ15|2,3,4 = 0 . (3.40)

is satisfied11. Therefore the vanishing of the left-moving BRST variation (3.39) hinges on

the dihedral symmetry of the pentagon Ñ1|2,3,4,5(ℓ−k5) = Ñ5|1,2,3,4(ℓ). One can show that

this symmetry is satisfied in the cohomology of the right-moving pure spinor superspace

given by the pure spinor bracket

〈Ñ1|2,3,4,5(ℓ− k5)〉 = 〈Ñ5|1,2,3,4(ℓ)〉 , (3.41)

where we emphasize that the above would not be true in terms of superfields, i.e. without

the pure spinor brackets. To see this we use the numerators obtained from the field-theory

limits to get that 〈Ñ5|1,2,3,4(ℓ)− Ñ1|2,3,4,5(ℓ− k5)〉 is given by

〈Ṽ1T̃
m
2,3,4,5k

m
5 + Ṽ51T̃2,3,4 +

[

Ṽ1T̃52,3,4 + (2 ↔ 3, 4, 5)
]

〉 = 0 , (3.42)

as can be seen using the cohomology identity (1.19).

To summarize, the five-point supergravity integrand is BRST invariant. But there is

a subtlety: the double-copy construction seems to require more than just the kinematic

Jacobi identities, the numerators must also satisfy the dihedral symmetries of the cubic

graphs12 (which are satisfied in the cohomology of the right-movers).

3.4.2. Six-point double copy and automorphism symmetries

At six points a naive application of the double-copy procedure with BCJ-satisfying nu-

merators obtained in the previous sections does not produce a consistent supergravity

integrand: it fails to be BRST invariant in pure spinor superspace. This happens because

the numerators, even though they satisfy the color-kinematics duality they do not satisfy

the automorphism symmetries of their associated cubic graphs.

To see this it is enough to use the BCJ-satisfying six-point numerators in a tentative

double-copy construction to obtain, among many others, the following terms under a left-

moving BRST variation QM6(ℓ),

−
1

4s23
V1V23T4,5,6

(

I123,4,5,6Ñ1|23,4,5,6(ℓ)− I1,4,5,6Ñ1|4,5,6,23(ℓ)− I123,4,5,6Ñ[1,23]|4,5,6

)

= −
1

4s23
V1V23T4,5,6I123,4,5,6

(

Ñ1|23,4,5,6(ℓ)− Ñ1|4,5,6,23(ℓ− k23) + Ñ231|4,5,6

)

. (3.43)

11 These numerators are readily available to download from [28].
12 At tree level for the double copy construction of supergravity amplitudes to be BRST invari-

ant it is enough for the numerators to satisfy the kinematic Jacobi identities
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Similarly as described in (3.38) at five points, the missing labels in I1,4,5,5 arise from loop-

momentum cancellations in QN1|4,5,6,23(ℓ)I1,4,5,6,23. This is compensated by the shift ℓ →

ℓ−k23 which is picked up by the right-moving pentagon in the second line. If the condition

Ñ1|4,5,6,23(ℓ − k23) = Ñ23|1,4,5,6(ℓ) for the automorphism symmetry of the pentagon was

satisfied then the terms (3.43) would vanish identically since

Ñ1|23,4,5,6(ℓ)− Ñ23|1,4,5,6(ℓ) + Ñ231|4,5,6 = 0 , (3.44)

as can be verified using the numerators available to download from [28]. Unfortunately it

is not true that Ñ1|4,5,6,23(ℓ− k23) = Ñ23|1,4,5,6(ℓ) and, unlike the case at five points, this

is not true even in the cohomology13,

〈Ñ1|4,5,6,23(ℓ− k23)〉 6= 〈Ñ23|1,4,5,6(ℓ)〉 . (3.45)

Therefore the naive application of the double-copy construction at six points is not con-

sistent even though the numerators satisfy the color-kinematics duality.

It is interesting to observe that the automorphism symmetries of the graphs encoded

in the loop momentum shifts ℓ+ aiki are satisfied by the numerators from the integrands

with shifted loop momentum A(σ; ℓ+aiki). In the case of (3.45) we have the identity (valid

at the superfield level)

Na2=−1,a3=−1
1|4,5,6,23 (ℓ) = N23|1,4,5,6(ℓ), (3.46)

where the numerator on the left-hand side is the 23-pentagon from the amplitude with

shifted loop momentum, A(1, 4, 5, 6, 2, 3; ℓ − k23). This integrand is computed with the

field-theory limits of section 2.3 with a2 = a3 = −1 corresponding to the shifted loop

momentum ℓ− k2 − k3. Unfortunately it is not clear how to use these numerators directly

as functions of ℓ rather than as functions of the shift parameters ai.

13 Note that the last line of (3.43) is identical (apart from the left/right-moving nature of the

numerators) to the BCJ-triplet failure in the representation of [1], given in equation (6.12) of

that reference. Unlike the representation of [1], the six-point integrand of gauge theory found here

satisfies all BCJ relations for the left- and right-moving numerators. However, once terms in the

left-moving BRST variation are collected we see that the BCJ failure of [1] in the left-moving

sector appears here as a failure in the right-moving sector due to a shift of the loop momentum.
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3.4.3. Comments on the double-copy construction in pure spinor superspace

The failure of the automorphism symmetry (3.45) for the 23-pentagon is a contact term

in s23 after its component expansion is evaluated through the pure spinor bracket, that is

〈Ñ1|4,5,6,23(ℓ− k23)− Ñ23|1,4,5,6(ℓ)〉 ∼ s23(. . .). In pure spinor superspace we have

N23|1,4,5,6(ℓ)−N1|4,5,6,23(ℓ− k23) = km23V1T
m
23,4,5,6 + V231T4,5,6 +

[

V1T234,5,6 + 4 ↔ 5, 6
]

(3.47)

which represents the same failure to satisfy the color-kinematics duality as pointed out in

equation (6.12) of [1].

Since the issue with missing labels in the loop momentum integral as a result of

a BRST variation will always be present for the BCJ-satisfying numerators obtained in

this work, solving this problem seems to require a different approach to the double-copy

construction in the pure spinor superspace context. Given that the failures are purely

contact terms, the generalized double-copy prescription of [36] may be applicable14 and it

will be interesting to see how BRST invariance is restored. It is reasonable to speculate

that the deformations of the right-moving BCJ triplets by contact terms as a result of loop

momentum shifts due to canceled loop propagators in the left-moving BRST variation may

be a generic feature of the double copy in pure spinor superspace. If true, the generalized

double-copy formalism may be the norm by which gravity integrands are generated from

gauge-theory integrands; a tree-level manifestation of this behavior was anticipated in [39].

We plan to investigate this problem in future work.

We note that supergravity integrands have been constructed using BCJ numerators

in four dimensions for up to seven points in [40] and to all multiplicity in [20] using spinor

helicity in the MHV sector. Supergravity amplitudes were also constructed in [41] but using

a partial-fraction representation of the loop momentum integrands.

4. Conclusion

In this work we obtained a set of field-theory limit rules for the Kronecker-Eisenstein

coefficient functions present in the genus-one superstring correlators derived in [9,10,11].

Using these rules we found local numerators for ten-dimensional SYM integrands at one

loop for five, six and seven points that satisfy the BCJ color-kinematics duality. These

14 We thank Oliver Schlotterer for discussions on this point.
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results resolve the difficulties in an earlier analysis of the six-point SYM integrands which

did not satisfy the color-kinematics duality [1].

These field-theory limits have an special affinity with the pure spinor superspace rep-

resentation of the superstring correlators. They take into account arbitrary choices in the

parameterization of the loop momentum integrands, shuffling terms among various nu-

merators preserving BRST invariance of the SYM one-loop integrands while changing the

BRST properties of individual numerators in a non-trivial way, see the discussion around

(3.24). The prescription to find the field-theory limit of the correlator whose parameteri-

zation contains shifts of the loop momentum by arbitrary linear combinations of external

particle momenta is crucial in demonstrating all the BCJ color-kinematic identities of our

ten-dimensional SYM representation.

However, in attempting to use the BCJ-satisfying six-point numerators in a double-

copy construction of the supergravity integrand we learned that the numerators must sat-

isfy, in addition to the kinematic Jacobi identities, also the various graph automorphism

symmetries in order for the supergravity integrand to be BRST invariant. Unfortunately

our six-point numerators viewed as functions of the loop momentum (rather than as the

numerators from integrands with general loop momentum as described at the end of sec-

tion 3.4.2) do not satisfy these symmetries and the double-copy construction initiated here

remains incomplete. However, the contact-term nature of the automorphism symmetry

failure indicates that the generalized double-copy prescription of [36] may resolve this. We

defer the full analysis of this problem to future work.

Acknowledgements: We thank Oliver Schlotterer for discussions and helpful comments

on the draft. EB thanks Kostas Skenderis for useful discussions. CRM thanks Oliver Schlot-

terer for collaboration on closely related topics. CRM is supported by a University Research

Fellowship from the Royal Society.

Appendix A. Conventions

In this appendix we briefly summarize some of the conventions used in the main text.

Sums over deconcatenations are denoted by
∑

A1...An=a1...am
They represent the sum

over all possible ways of generating n words from a1...am, while maintaining the order.

These words may be empty, but often when they are the terms being summed over will be

zero. So, to give an example, the sum
∑

ABC=12 denotes the sum over six cases; three of
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them are where two of A, B and C are empty and the third is 12, and the other three are

where A = 1, B = 2, C = ∅, A = 1, B = ∅, C = 2, and A = ∅, B = 1, C = 2.

Another notation commonly used is

(terms) + (a1, ..., am|N1, ..., Nn), m ≤ n. (A.1)

This notation works means a sum over all possible ways of replacing a1, ..., an in the

terms with n terms from the ordered list N1, ..., Nn. Further generalizations of this fol-

low naturally, with (terms) + (a1, ..., am1
|b1, ..., bm2

|N1, ..., Nn) meaning sum over all ways

of generating two ordered lists from N1, ..., Nn, one of length m1, one of length m2,

and substituting them in for a1, ..., am1
and b1, ..., bm2

. For example, in V[1,23]T[4,56],7,8 +

(23|4, 56|23, 4, 56, 7, 8) possible terms are V[1,4]T[23,56],7,8 and V[1,23]T[7,8],4,56, but not

V[1,23]T[8,7],4,56 as the latter would violate the ordering constraint.

Another summation notation to note is

(terms) + [1...n|A1, ..., Am], m ≤ n. (A.2)

This denotes the sum over A1, ..., Am all possible Stirling cycle permutations constructed

from 1, ..., n [11]. This means that you take the set of numbers 1, ..., n, and construct all

possible permutation cycles from it, select those involving m brackets, and canonicalise

by having the first term in each cycle be its lowest element, and the cycles ordered by

their lowest elements. Each cycle is then substituted in for an A. For example, consider

the sum +[1234567|A1, ..., A4]. One possible permutation of 1, . . . , 5 involving 4 brackets

would be (12)(64)(3)(57), which swaps 1 with 2, 6 with 4, and 5 with 7. We then begin

canonicalising by using that permutation cycles have cyclic symmetry to rewrite this as

(12)(46)(3)(57), and then order the cycles by their lowest values, (12)(3)(46)(57). Hence,

one term in this sum would set A1 = 12, A2 = 3, A3 = 46, A4 = 57. These sums may be

thought of as being A1 = 1 followed by any terms from 2...n in any order, then A2 is the

next lowest value left followed by any possible set of values in any order from the numbers

left, and so on. So in the above example, A1 = 15 would be a possible term, which would

mean A2 starting with a 2 and so it could be A2 = 23, then A3 starts with a 4 and so we

could have A3 = 4, and then finally A4 follows the same rules and uses up all remaining

letters, so A4 = 67.
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A.0.1. Lie algebra notation and Berends-Giele currents

We frequently use the notation of words and Lie brackets, especially when indexing SYM

multiparticle superfields, see the discussion on section 3 of [9]. In any situation where a

Lie bracket would be expected but a word A is found instead, this should be regarded as

being the left-to-right Dynkin bracket ℓ(A) [42],

ℓ(a1...an) ≡ [[...[[a1, a2], a3]...], an] . (A.3)

For example, [[[1, 23], 45], 678] is interpreted as [[[1, [2, 3]], [4, 5]], [[6, 7], 8]] and vice-versa.

A mapping from words to Lie brackets which will be particularly useful is the b-map

defined by [43]15

b(i) = i, b(P ) =
1

2sP

∑

XY =P

[b(X), b(Y )]. (A.4)

For example, b(12) = 1
2s12

[1, 2], and b(123) = 1
4s12s123

[[1, 2], 3] + 1
4s23s123

[1, [2, 3]].

Superfields are described in terms of two broad classes of objects. The first are local

and denoted by V , T , J , and N . The composition of the first three of these objects can be

found in more detail in [3,22]. The fourth will be used to refer to amplitude numerators

and are detailed on a case by case basis. These objects have a number of slots for indices

labelling their superfield contents, and all such indices will be Lie brackets. The second

class of objects are Berends-Giele (BG) currents. These are related to the local objects

previously described through the use of the b-map on each of their blocks of indices. The

BG current of particular use to us is denoted by N , defined in terms of local objects N as

NA1|A2,...,Am
(ℓ) ≡ N

(m)
b(A1)|b(A2),...,b(Am)(ℓ) (A.5)

For example, a seven-point box Berends-Giele numerator is expanded as

N1|23,456,7(ℓ) = Nb(1)|b(23),b(456),b(7)(ℓ)

=
1

s23s456

(

1

s45
N1|[2,3],[[4,5],6],7(ℓ) +

1

s56
N1|[2,3],[4,[5,6]],7(ℓ)

)

.

It should be noted that generalized Mandelstam invariants are defined with a 1
2
factor,

si1...in ≡
1

2
(kmi1 + ...+ kmin)

2 =
∑

1≤a<b≤n

kia · kib (A.7)

15 Note the extra factor of 1
2
in (A.4) compared to the definition in [43]. This convention leads

to local BCJ numerators which are correctly normalized.
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Appendix B. Cyclic symmetry of the field-theory limit rules

In this appendix we will show that the definitions for the field theory limits we have given

yield the cyclic symmetry relations seen in (2.25)

A(1, 2, ..., n; ℓ+ Σiaiki) = A(2, 3, ..., n, 1; ℓ− k1 + Σiaiki) (B.1)

We refer to terms from A(1, 2, ..., n; ℓ+Σiaiki) with a (I), and A(2, 3, ..., n, 1; ℓ−k1+Σiaiki)

with a (II).

First, we compare their b
(p)
ij terms. We restrict ourselves to the limit of a single

Kronecker-Eisenstein coefficient function, as the limits of their products are the natu-

ral generalization of this and will follow accordingly. Referring to (2.14), and using the

notation aji := aj − ai, we see that they differ by

b
I (p)
ij −b

II (p)
ij =

p
∑

m=0

(

(

sgn12...nij

)m Bmap−m
ji

m!(p−m)!
−
(

sgn23...n1ij

)m Bm(aji + δj1 − δi1)
p−m

m!(p−m)!

)

=

p
∑

m=0

Bm

m!(p−m)!

(

(

sgn12...nij

)m
ap−m
ji −

(

sgn23...n1ij

)m
(aji − δj1 + δi1)

p−m
)

(B.2)

Clearly in all cases where neither of i or j is 1 this vanishes. If we suppose i = 1, the first

sgn function is 1, and the second is −1. Hence this difference becomes

b
I (p)
ij − b

II (p)
ij =

p
∑

m=0

Bm

m!(p−m)!

(

ap−m
j1 − (−1)

m
(aj1 + 1)p−m

)

(B.3)

This can be shown to vanish. Taking for instance the p = 3 case, we have

b
I (3)
ij − b

II (3)
ij =

B0

6

(

a3j1 − (−1)
0
(aj1 + 1)3

)

+
B1

2

(

a2j1 − (−1)
1
(aj1 + 1)2

)

+
B2

2

(

a1j1 − (−1)
2
(aj1 + 1)1

)

+
B3

6

(

a0j1 − (−1)
3
(aj1 + 1)0

)

=
1

6

(

a3j1 − a3j1 − 3a2j1 − 3aj1 − 1
)

+
1

4

(

a2j1 + a2j1 + 2aj1 + 1
)

+
1

12

(

aj1 − aj1 − 1
)

+ 0 = 0 . (B.4)

To show that (B.3) vanishes in general we expand the bracket (aj1 + 1)p−m,

b
I (p)
ij − b

II (p)
ij =

p
∑

m=0

Bm

m!(p−m)!

(

ap−m
j1 − (−1)

m
p−m
∑

n=0

(

p−m

n

)

anj1

)

(B.5)

=

p
∑

m=0

p−m−1
∑

n=0

−(−1)mBmanj1
m!n!(p−m− n)!

+

p
∑

m=0

Bm(1− (−1)m)ap−m
j1

m!(p−m)!
,
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where we have separated out the terms of order (p − m) in the second line. In the right

hand terms of the above, (1− (−1)m) vanishes when m is even, and Bm vanishes when m

is odd and not 1. Hence, this summation reduces to a single term,

2B1a
p−1
j1

1!(p− 1)!
=

ap−1
j1

(p− 1)!
. (B.6)

We then turn to the left hand terms of (B.5). Reordering the double summation, these

have the form
p
∑

n=0

p−n−1
∑

m=0

−(−1)mBm

m!n!(p−m− n)!
anj1 (B.7)

We may then use a known identity of Bernoulli numbers [44]16,

n−1
∑

k=0

(

n

k

)

(−1)kBk = δ(n−1),0 , (B.8)

to simplify the form of (B.7) to

p
∑

n=0

−anj1δp−n−1,0

n!(p− n− 1)!
=

−ap−1
j1

(p− 1)!
. (B.9)

The two summations in (B.5) therefore reduce to (B.6) and (B.7), which cancel each other

and thus this difference vanishes. Similar will hold if we instead take j = 1 in (B.2). Hence,

the b part of the field theory limits matches in both representations.

Then, we move onto the c piece. This difference is given by

c
I (p)
ij − c

II (p)
ij =

1

2(p− 1)!

(

(

aji + sgn12...nij dist12...n4 (i, j)
)p−1

(B.10)

−
(

aji − δj1 + δi1 + sgn23...n1ij dist23...n14 (i, j)
)p−1

)

Again, we need only consider the cases where one of i and j is 1. If we take i = 1 we get

c
I (p)
ij − c

II (p)
ij =

(

aj1 + dist12...n4 (1, j)
)p−1

−
(

aj1 + 1− dist23...n14 (1, j)
)p−1

2(p− 1)!
(B.11)

16 Note the definition of the Bernoulli number Bn used in this source differs from that of this

paper by a factor (−1)n
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We now consider the two pieces of the numerator, and see that these are given by

(aj1 + dist12...n4 (1, j))p−1 =

{

ap−1
j1 j ≤ 4

(aj1 + 1)p−1 j > 4
, (B.12)

(aj1 + 1− dist23...n14 (1, j))p−1 =

{

ap−1
j1 j ≤ n− 2

(aj1 + 1)p−1 j > n− 2
.

When n = 4, 5, the only Kronecker-Eisenstein functions in amplitudes is g
(1)
ij , and we see

that setting p = 1 in the above gives equivalence. When n = 6, these coincide in that

n − 2 = 4. When n = 7 and p > 1, they differ when j = 5. However, this disagreement

will not matter. At 7 points a term g
(2+)
15 is multiplied by at most one other g

(q)
ij function,

but we need at least two Kronecker-Eisenstein coefficient functions in order to make the

corresponding P function non-zero. That is, for example,

g
(2)
15 g

(1)
56 ⇒ P (15, 56) = φ156|5671I156 = 0 , (B.13)

g
(2)
15 g

(1)
56 g

(1)
67 ⇒ P (15, 56, 67) = φ1567|5671I5671 6= 0 .

At 8 points, this will of course become an issue. However, the description of the dist

function was chosen purely for simplicity. If we instead think of this function as asking

whether the pole being approached crosses the boundary between particles n and 1, then

consistency should be maintained to higher points.

Appendix C. The field-theory limit at higher points

We anticipate that the field theory limit rules for an arbitrary product of g
(n)
ij functions

should generalize in the natural way

n
∏

a=1

g
(pa)
iaja

→
∑

A∈P(12...n)

(

(

∏

a∈A

b
(pa)
iaja

)(

∏

b∈Ac

c
(pb)
ibjb

)

P (iB1
jB1

, ..., iB|B|
jB|B|

)
)

)

(C.1)

where P(12...n) denotes the power set of 12...n, A is an element of this, and Ac its com-

plement. We stress that the indices of the c(p) and those in the P function are identical.

The general P functions will be as in (2.13), with P (i1j1, ..., injn) chaining together

imjm pairs as much as possible, and then using these as indices for φ and I functions. So,

for instance, we would expect

P (12, 23, 34, 45, 56, 67)↔ φ̂(σ|1234567)I1234567 (C.2)

P (15, 32, 56, 24)↔ φ̂(σ|156)φ̂(σ|324)I156,324
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As for the limits of b(p) and c(p) at higher points, these we expect will generalize from

(2.10) in the natural way. As evidence of this, we look to the Fay identity for g
(n)
12 g

(1)
23

g
(n)
12 g

(1)
23 = −g

(n+1)
13 + g

(1)
13 g

(n)
12 − ng

(n+1)
12 +

n
∑

j=0

(−1)jg
(n−j)
13 g

(1+j)
23 . (C.3)

We begin by looking at b(n), and restrict ourselves to the case ai = 0 ∀ i initially. In these

circumstances we know that b
(1)
ij = 1

2 sgn
12...n
ij , and we would expect the general order b

(n)
ij

to depend only upon the order of i and j with respect to the color ordering. Hence, we

substitute into (C.3) the values

g
(1)
13 , g

(1)
23 →

1

2
, g

(n)
12 , g

(n)
13 , g

(n)
23 → b(n) . (C.4)

Upon rearranging this gives us the recursion relation

b(n+1) = −
1

n+ 1− (−1)n

n
∑

j=1

(−1)jb(n−j+1)b(j) . (C.5)

This can be seen to vanish for n even, n > 0, by virtue of the symmetry in the gg terms

and the antisymmetry of the (−1)j . For n odd, it simplifies to

b(2n) = −
1

2n + 1

2n−1
∑

j=1

(−1)jb(2n−j)b(j) = −
1

2n + 1

n−1
∑

j=1

b(2n−2j)b(2j) , (C.6)

where the second equality follows from the vanishing of the b with odd indices. It may then

be proved by induction that this is solved by

b(n) =
Bn

n!
, (C.7)

where Bn is the nth Bernoulli number. Showing this requires an identity due to Euler [45],

n−1
∑

k=1

(

2n

2k

)

B2kB2n−2k = −(2n+ 1)B2n , n ≥ 2 . (C.8)

Hence, we speculate that when ai = 0 ∀i, the field theory limit of a general term from

the Kronecker-Eisenstein series away from poles is given by (C.7). The first few (non-zero)

values are

b(0) = 1 , b(1) =
1

2
, b(2) =

1

12
, b(4) = −

1

720
, b(6) =

1

30240
, (C.9)

b(8) = −
1

1209600
, b(10) =

1

47900160
, b(12) = −

691

1307674368000
.
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We can then extend this to the general ai case, though with less elegance. If instead of

making the substitution (C.4) into (C.3), we instead use the general ai values of the b(1)

terms, we find the relation

(

1

2
+ a3 − a2

)

b
(n)
12 = −b

(n+1)
13 +

(

1

2
+ a3 − a1

)

b
(n)
12 − nb

(n+1)
12 (C.10)

+

(

1

2
+ a3 − a2

)

b
(n)
13 +

n
∑

j=1

(−1)jb
(n−j)
13 b

(1+j)
23 .

This cannot be as easily rearranged into a recursion relation. However, if we assume that

b
(n)
ij is a polynomial in aj−ai up to order n, we may use the above to identify the polynomial

coefficients. Doing this reveals the value of b
(4)
ij as would be expected from (2.10) as the

unique solution. And then we have verified that the relation above is satisfied in a number

of further cases if we assume this general form of b(n).

We can perform a similar exercise for the c
(n)
ij pole terms. In its current form (C.3) is

not the most useful for this, as we would like the dist functions to be non-zero. Instead,

we suppose the amplitude we are considering is A(1, 2, ..., m) for convenience, and look at

an alternative Fay identity,

g
(n)
1mg

(1)
m(m−1) = −g

(n+1)
1(m−1) + g

(1)
1(m−1)g

(n)
1m − ng

(n+1)
1m +

n
∑

j=0

(−1)jg
(n−j)
1(m−1)g

(1+j)
m(m−1) . (C.11)

We need not restrict ourselves to the ai = 0 ∀i case here, as the computation is simpler.

Looking at the s1m single poles leads us to the relation

c
(n)
1m

(

−
1

2
+ am−1 − am

)

=

(

1

2
+ am−1 − a1

)

c
(n)
1m − nc

(n+1)
1m

⇒ c
(n+1)
1m =

1

n
c
(n)
1m(1 + am − a1) (C.12)

Using that we know c
(1)
1m = 1

2
, this becomes

c
(n)
1m =

1

2(n− 1)!
(1 + am − a1)

n−1
(C.13)

This agrees with the known values of c
(2)
17 and c

(3)
17 also. We can also repeat this calculation

for poles of g
(n)
12 to see what would happen if the dist function were not triggered, and find

the similar relation

c
(n)
12 =

1

2(n− 1)!
(a2 − a1)

n−1
(C.14)
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Hence the form of c
(n)
ij presented in (2.10) is the natural generalization, and we expect

(2.10) to hold to higher points.

We end this discussion though by stressing that this approach is highly speculative,

and we have not tested these values produced in any way beyond the aforementioned

discussion. They are however a strong candidate for what they are attempting to describe.

Appendix D. The BRST analysis of a seven-point numerator

In this appendix we identify the full expression for the [5, [6, 7]]-pentagon in the amplitude

A(1, 2, 3, 4, 5, 6, 7; ℓ+ 4k4 − 6k5), and confirm that its variation has the desired form. We

begin by finding the coefficient of one term contributing to the numerator in detail, namely

V1T2576,3,4. Within the string correlator this is associated with the worldsheet function

Z1,2576,3,4 =g
(1)
25 g

(1)
57 g

(1)
76 + g

(3)
25 + g

(3)
57 + g

(3)
76 − 2g

(3)
62 + g

(1)
25 (g

(2)
57 + g

(2)
76 − g

(2)
62 )

+g
(1)
57 (g

(2)
25 + g

(2)
76 − g

(2)
62 ) + g

(1)
76 (g

(2)
25 + g

(2)
57 − g

(2)
62 ) . (D.1)

Only two of these terms contain the s67s567 pole structure, g
(1)
25 g

(1)
57 g

(1)
76 and g

(1)
76 g

(2)
57 . The

contribution of the former was identified in (2.23), and the latter follows from (2.11),

c
(1)
76 c

(2)
57 =

1

2
·
6

2
=

3

2
. (D.2)

Summing these together, the V1T2576,3,4 contribution to the [5, [6, 7]]-pentagon is
(

−
11

8
+

3

2

)

V1T2576,3,4φ̂(1234567|576)I567 = −
1

8s67s567
V1T2576,3,4I1,2,3,4,567 (D.3)

Similar calculations for all other terms in the correlator yield the numerator expression

Na4=4,a5=−6
1|2,3,4,[5,[6,7]](ℓ) = 6V1T

mn
2,3,4,5,67k

m
5 kn67 + V1T

m
2,3,4,[5,67](ℓ

m − 6km5 + 6km67)

− 6
(

(V1T
m
25,3,4,67k

m
67 + (2 ↔ 3, 4)) + V15T

m
2,3,4,67k

m
67 + (5 ↔ [6, 7])

)

+
1

2

(

V12T3,4,[5,67] + (2 ↔ 3, 4, [5, 67])
)

+
1

2

(

V1T23,4,[5,67] + (2, 3|2, 3, 4, [5, 67])
)

(D.4)

+ 6
(

(V1T25,[3,67],4 + (2, 3|2, 3, 4)) + (2 ↔ 3)
)

+ 6
(

(V15T[2,67],3,4 + (2 ↔ 3, 4)) + (5 ↔ [6, 7])
)

+ 6 ((V1T2675,3,4 + (2 ↔ 3, 4))− (6 ↔ 7))

+ 6 (V1675T2,3,4 − (6 ↔ 7)) + 4
(

V1T24,3,[5,67] + (2 ↔ 3)
)

+ 4V14T2,3,[5,67] − 4V1T2,3,[4,[5,67]] + 6V1J
m
5|2,3,4,6,7(k

m
6 − km7 )

+ 6s67
(

(V1J5|27,3,4,6 + (2 ↔ 3, 4, 6)) + V17J5|2,3,4,5,6 − (6 ↔ 7)
)
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The V J terms above are those which arise naively by looking to the s67s567 poles in the

correlator. As discussed previously it may be that they require some rearrangement to be

in a BCJ representation, but for illustrating the field theory limit methods we give the

numerator in the above form. A lengthy calculation yields the variation

QNa4=4,a5=−6
1|2,3,4,[5,[6,7]](ℓ) =

1

2
V1V2T3,4,[5,67]

(

(ℓ− k12 + 4k4 − 6k5)
2 − (ℓ− k1 + 4k4 − 6k5)

2
)

+
1

2
V1V3T2,4,[5,67]

(

(ℓ− k123 + 4k4 − 6k5)
2 − (ℓ− k12 + 4k4 − 6k5)

2
)

+
1

2
V1V4T2,3,[5,67]

(

(ℓ− k1234 + 4k4 − 6k5)
2 − (ℓ− k123 + 4k4 − 6k5)

2
)

+
1

2
V1V[5,67]T2,3,4

(

(ℓ− k1234567 + 4k4 − 6k5)
2 − (ℓ− k1234 + 4k4 − 6k5)

2
)

+(k6 · k7)

(

(

6V1V26T
m
3,4,5,7k

m
5 + (2 ↔ 3, 4, 5)

)

+ V1V57T
m
2,3,4,6

(

ℓm + 6km57
)

+ 6V1V7T
mn
2,3,4,5,6k

m
5 kn67 + 6km5 (V1V6T

m
27,3,4,5 + (2 ↔ 3, 4, 5)) (D.5)

+
(

ℓm + 6km67
)

V1V7T
m
2,3,4,56 + 6(V1V6T

m
25,3,4,7k

m
67 + (2 ↔ 3, 4))

+ 6V15V6T
m
2,3,4,7k

m
67 + 6V17V6T

m
2,3,4,5k

m
5

+ 6V1V5T
mn
2,3,4,6,7k

m
5 kn7 + V16V5T

m
2,3,4,7k

m
5

+ (6V1V25T
m
3,4,6,7k

m
6 + (2 ↔ 3, 4)) + (6V1V5T

m
26,3,4,7k

m
5 + (2 ↔ 3, 4, 7))

+
1

2
(V1V[2,57]T3,4,6 + (2 ↔ 3, 4))

−
1

2
(V1V26T3,4,57 + (2 ↔ 3, 4))−

1

2
(V1V56T23,4,7 + (2, 3|2, 3, 4, 7))

+
1

2
(V1V7T[2,3],4,56 + (2, 3|2, 3, 4, 56))+

1

2
(V12V57T3,4,6 + (2 ↔ 3, 4))

+
1

2
(V12V7T3,4,56 + (2 ↔ 3, 4, 56))−

1

2
V17V56T2,3,4 +

1

2
V175V6T2,3,4

+ 6
(

(V1V27T[3,5],4,6 + (3 ↔ 4, 6)) + (2 ↔ 3, 4)
)

+ 6(V1V7T[26,5],3,4 + (2 ↔ 3, 4))

+ 6(V1V7T25,36,4 + V1V7T26,35,4 + (2, 3|2, 3, 4)) + 6(V15V27T3,4,6 + (2 ↔ 3, 4))

+ 6(V15V7T26,3,4 + (2 ↔ 3, 4)) + 6(V16V7T25,3,4 + (2 ↔ 3, 4))

+ 6
(

(V1V25T37,4,6 + (3 ↔ 4, 6)) + V17V25T3,4,6 + (2 ↔ 3, 4)
)

+ 6V165V7T2,3,4 + 6(V1(V257 + V275)T3,4,6 + (2 ↔ 3)) + 6V1V576T2,3,4

+ 4(V1V57T24,3,6 + (2 ↔ 3, 6)) + 4V14V57T2,3,6 + 4(V1V7T24,3,56 + (2 ↔ 3, 56))

+ 4V14V7T2,3,56 + 4V1V46T2,3,57 + 2V1V457T2,3,6 + 20V1V475T2,3,6

+ 6V1Y
m
2,3,4,5,6,7k

m
7 + 6(V1Y26,3,4,5,7 + (2 ↔ 3, 4, 5, 7)) + 6V16Y2,3,4,5,7
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− (6 ↔ 7)

)

+(k5 · k67)

(

(1

2
(V1V[2,67]T3,4,5 + V12V67T3,4,5 + (2 ↔ 3, 4)) + 4V1V5T2,3,67 + 4V14V67T2,3,5

+
1

2
(V1V67T23,4,5 + (2, 3|2, 3, 4, 5))+ 4(V1V67T24,3,5 + (2 ↔ 3, 5))− (5 ↔ 67)

)

−
1

2
(V15V67T2,3,4 + (5 ↔ 6, 7)) + 6

(

(V1V25T3,4,67 − (25 ↔ 67)) + (2 ↔ 3, 4)
)

− 6V15V67T2,3,4 − 6V1Y2,3,4,5,67

)

+6(k6 · k7)(k5 · k6)V1V5(J7|2,3,4,6 + J6|2,3,4,7)− 6(k5 · k67)(k6 · k7)V1V5J7|2,33,4,6

This has intentionally been expressed with factors (ℓ · k) reformulated in terms of propa-

gators. For an n-point amplitude in the canonical ordering with arbitrary loop momentum

structure, this is done with

(ℓ · ki(i+1)...j) = −
1

2
(ℓ+

n
∑

m=1

amkm − k12....j)
2 +

1

2
(ℓ+

n
∑

m=1

amkm − k12....(i−1))
2

− ki(i+1)...j ·

(

n
∑

m=1

amkm −
1

2
ki(i+1)...j

)

. (D.6)

We may then be reassured of the validity of this numerator expression, as those terms in

the variation proportional to propagators cancel terms from other box numerators. For

example, one such set of terms is

V1V3T2,4,[5,67]

(

(ℓ− k123 + 4k4 − 6k5)
2 − (ℓ− k12 + 4k4 − 6k5)

2
)

Ia4=4,a5=−6
1,2,3,4,567

= V1V3T2,4,[5,67]

(

Ia4=4,a5=−6
1,2,34,567 − Ia4=4,a5=−6

1,23,4,567

)

(D.7)

This then cancels one term in the variation of the [3, 4], [5, [6, 7]]-box, and one from the

[2, 3], [5, [6, 7]] box. Similar holds true for all other terms in the variation, and the remaining

terms in (D.5) are canceled themselves by analogous results in the variation of hexagons.

Appendix E. The five-point color-dressed integrand

In this appendix the five-point color-dressed integrand will be written down after the

application of the color decomposition techniques of [46].
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The five-point color-dressed one-loop integrand can be written as

M5(ℓ) =
(1

2
N1|2,3,45I1,2,3,45B1,2,3,45 +

1

2
N1|2,34,5I1,2,34,5B1,2,34,5 (E.1)

+
1

2
N1|23,4,5I1,23,4,5B1,23,4,5 +

1

2
N12|3,4,5I12,3,4,5B12,3,4,5

+
1

2
N51|2,3,4I51,2,3,4B51,2,3,4 +N1|2,3,4,5(ℓ)I1,2,3,4,5P1,2,3,4,5 + perm(2, 3, 4, 5)

)

where N denotes the Berends-Giele counterpart of the n-gon numerator as described in

the appendix A while the color factors of the box and pentagon cubic graphs are

B12,3,4,5 = fa12feabf b3cf c4dfd5e, P1,2,3,4,5 = fa1bf b2cf c3dfd4efe5a . (E.2)

The factor of 1
2 in (E.1) compensates the overcounting of graphs due to symmetries. Note

that the box numerators do not depend on the loop momentum.

The color-dressed integrand (E.1) is BRST closed. To see this we expand all color

factors in terms of their pentagon constituents using the Jacobi identity as B12,3,4,5 =

P1,2,3,4,5 − P2,1,3,4,5 [46] and consider the terms proportional to P1,2,3,4,5. Using the five-

point numerators of section 2.4.3 these are

M5(ℓ)
∣

∣

∣

P1,2,3,4,5

= N1|2,3,4,5(ℓ)I1,2,3,4,5 +
1

2

(

N12|3,4,5I12,3,4,5 −N21|3,4,5I1,3,4,5 (E.3)

+
[

N1|23,4,5 −N1|32,4,5

]

I1,23,4,5 +
[

N1|2,34,5 −N1|2,43,5

]

I1,2,34,5

+
[

N1|2,3,45 −N1|2,3,54

]

I1,2,3,45 +N51|2,3,4I1,2,3,4 −N15|2,3,4I15,2,3,4

)

.

After using Nij|k,l,m = −Nji|k,l,m by (2.31) and performing the loop momentum shifts ℓ′ =

ℓ−k2 in I1,3,4,5 and ℓ′ = ℓ+k5 in I15,2,3,4 these terms become the integrand A(1, 2, 3, 4, 5; ℓ)

of (2.30),

M5(ℓ)
∣

∣

∣

P1,2,3,4,5

= N1|2,3,4,5(ℓ)I1,2,3,4,5 +N1|23,4,5I1,23,4,5 +N1|2,34,5I1,2,34,5

+N1|2,3,45I1,2,3,45 +N12|3,4,5I12,3,4,5 +N51|3,4,5I1,2,3,4 . (E.4)

Hence, after considering all the permutations the color-dressed integrand (E.1) becomes

M5(ℓ) = A(1, 2, 3, 4, 5; ℓ)P1,2,3,4,5 + perm(2, 3, 4, 5) (E.5)

and it is manifestly BRST closed. The rewriting (E.5) agrees with the general result of [46]

(see e.g. equation (3.4) of [47]).
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