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Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common
chronic liver disease worldwide. NAFLD‐related cirrhosis is often compli-
cated by portal hypertension (PHT). Recent evidence showed that portal
venous pressure (PVP) starts to rise in the early stages of NAFLD, even in
absence of advanced fibrosis or cirrhosis. However, the precise pathological
mechanisms of this process are still poorly understood. Lipid accumulation,
hepatocellular ballooning, sinusoidal endothelial cell dysfunction, capillar-
ization, microthrombosis, increased angiogenesis, and pericellular fibrosis
may all be involved in the early development of increased PVP in NAFLD.
Direct measurement of PHT is invasive and impractical in noncirrhotic
NAFLD individuals and may also underestimate its severity. Thus, the
development and validation of noninvasive and more accurate measure-
ments, including new serum biomarkers, scoring models, and imaging
techniques (such as ultrasonography, elastography, and magnetic resonance
imaging), are urgently needed. Owing to the increasing morbidity, challenges
in the prevention and management of PHT in NAFLD are unprecedented.
This review article aims to briefly discuss these challenges and summarizes
the mechanisms, diagnosis, and emerging therapies for PHT in people with
NAFLD.
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1 | INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) has emerged as
one of the commonest causes of chronic liver disease,
affecting up to 25%–30% of the global population.1–3 The
histological spectrum of NAFLD ranges from nonalcoholic
fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH),
advanced fibrosis, and cirrhosis.4 From 10% to 25% of
patients with NASH progress to cirrhosis within 8–14 years,
and the risks of developing portal hypertension (PHT),
liver failure, and hepatocellular carcinoma are significantly
increased.5 Increasing evidence suggests that patients with
NAFLD may develop increased portal pressure even in the
early stages of NAFLD when advanced fibrosis or cirrhosis
is absent.6–10 Recent evidence also suggests that increased
portal venous pressure (PVP) can promote fibrosis
development in NAFLD.11,12 These data suggest that
increased PVP is not just a consequence of NAFLD, but
may also contribute to the pathogenesis of NAFLD.8

However, the underlying pathophysiological mechanisms
for PHT remain incompletely understood.

Measurement of the hepatic venous pressure gradi-
ent (HVPG) is the most commonly used method for
invasively detecting PHT, and HVPG is calculated as the
difference between free hepatic venous pressure (FHVP)
and wedged hepatic venous pressure (WHVP).5,13

However, recent observations suggest that HVPG may
underestimate the true PVP in patients with NAFLD.9,14

Furthermore, liver decompensation may develop at
lower HVPG in patients with NAFLD than in those with
viral liver disease, underscoring differences in disease
pathophysiology.15 Therefore, this gold standard inva-
sive method might not be accurate for assessing PHT in
people with NAFLD. Thus, there are currently a large
number of questions and challenges that arise in
the detection of PHT in this patient population. These
questions include (a) What is the underlying pathologi-
cal mechanism? (b) How does the increase in portal

pressure contribute to NAFLD progression? (c) How can
subclinical PHT be detected? (d) How should patients
with PHT be managed? (e) What treatment is appropri-
ate and what candidate drugs are available?

This review article briefly discusses and summarizes
recently discovered mechanisms, novel measurements
for assessment and therapies for PHT, and the review
also provides our perspective as to how best to address
these coming challenges.

2 | CHALLENGE IN
PATHOPHYSIOLOGY: THE
PATHOLOGICAL MECHANISMS
ARE UNCLEAR

The main pathophysiological mechanisms of PHT in
NAFLD‐related cirrhosis appear to be similar to other
etiologies of cirrhosis, such as viral hepatitis, autoimmune
liver disease, and schistosomiasis.6 The increase in portal
pressure is mainly due to increased intrahepatic vascular
resistance (IHVR).7 However, in contrast to other etiolo-
gies, clinically significant portal hypertension (CSPH) may
develop early in the natural history of NAFLD, even before
the development of advanced fibrosis or cirrhosis.
Changes in hepatic blood flow may also occur during
the early stages of hepatic fibrosis in NAFLD pa-
tients because of impaired outflow in liver sinusoids.16

Several mechanisms that may impair sinusoidal hemosta-
sis and contribute to the rise of IHVR in NAFLD are
schematically illustrated in Figure 1.

2.1 | Hepatocellular enlargement and
sinusoidal narrowing

Hepatocellular enlargement, caused by lipid accumula-
tion (steatosis) and ballooning, is thought to play a key

F IGURE 1 Due to steatosis and hepatocellular ballooning, enlarged fatty hepatocytes reduce sinusoidal flow and promote endothelial
dysfunction, contributing to further shear stress. In response to these structural and functional changes, LSECs become defenestrated and develop
a basement membrane (capillarization) that causes hypoxia and hepatocellular injury. HSCs reside in the space of Disse and Kupffer cells in the
sinusoids. Defenestrated LSECs stimulate the contractility and transformation of HSCs into myofibroblasts leading to increased liver fibrogenesis
and angiogenesis. Hepatocellular injury and apoptosis activate Kupffer cells leading to advancing inflammation, fibrosis, and angiogenesis, which
further narrows the sinusoid. Augmented inflammatory changes include the recruitment of additional cellular components such as
polymorphonuclear leukocytes promoting adhesion and microthrombosis. HSCs, hepatic stellate cells; LSECs, liver sinusoidal endothelial cells.
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role in the development of both increased IHVR and
PHT in the early stages of NAFLD. This process of
hepatocellular enlargement reduces the space of liver
sinusoids, hindering circulation from sinusoids to liver
cells because the diameter of swollen hepatocytes is
enlarged about 1.5–2.0 times and causes sinusoidal
narrowing, which may induce sinusoidal endothelial cell
dysfunction.8,17 Furthermore, steatotic hepatocytes are
susceptible to lipotoxicity, which affects several cellular
signaling pathways, and induces reactive oxygen species
formation and endoplasmic reticulum stress.18 Further-
more, the ballooned hepatocytes, as a characteristic
feature of lipotoxicity‐induced NASH, may activate the
sonic hedgehog signaling pathway, which promotes liver
fibrogenesis.19

2.2 | Sinusoidal endothelial cell
dysfunction

A disrupted balance between vasodilator and vaso-
constrictor products of sinusoidal vessels has been
observed in the early stages of NAFLD.20–22 Liver
sinusoidal endothelial cells (LSECs) play a key role in
both sensing and regulating hepatic blood flow, not only
regulating portal and hepatic vascular resistance but
also inhibiting the activation of Kupffer cells and hepatic
stellate cells (HSCs).23 Endothelial nitric oxide synthase
(eNOS) is the key vasodilator that regulates sinusoidal
blood flow and LSECs are the main source of nitric oxide
(NO).23 In an experimental study, Wistar Kyoto rats were
fed with cafeteria diet (65% of fat) to develop liver
steatosis and metabolic syndrome features.8 Later, the
cafeteria diet‐fed rats developed higher in vivo hepatic
vascular resistance and greater portal perfusion pres-
sure. Because the decrease of endothelium‐dependent
vasodilation is due to a decrease in eNOS phosphoryl-
ation and NOS activity, the results of this experimental
study suggest that liver steatosis may impair the
function of LSECs and limit NO release, causing
endothelial cell dysfunction in the early stages of
NASH.8 HSCs, located in the space of Disse, are
inhibited by NO release from LSECs in healthy livers.24

HSCs are activated by liver injury and cause contraction
of the sinusoids and decrease sinusoidal blood flow.
Kupffer cells may also regulate liver injury, inflamma-
tion, and fibrosis, as well as participate in the
pathogenesis of NAFLD.25 Kupffer cells are also acti-
vated by injured hepatocytes and activate‐HSCs.24

Activated Kupffer cells release multiple chemokines,
eicosanoid derivatives, and reactive oxygen species,
which may further aggravate liver inflammation.26

2.3 | Sinusoidal capillarization, fibrosis,
and angiogenesis

Sinusoidal capillarization of LSEC, as an early manifesta-
tion of endothelial dysfunction in NAFLD, happens before
the synergistic activation of Kupffer cells and HSCs.27 The
capillarization of LSEC that leads to sinusoidal dysfunction
may promote liver steatosis by blocking the transfer of

chylomicron remnants from portal vessels to hepatocytes,
potentially stimulating hepatic cholesterol, and triglyceride
synthesis.28 In response to liver injury, LSECs undergo
gradual defenestration by forming a perisinusoidal base-
ment membrane with deposits of extracellular matrix
proteins, such as fibronectin and laminin, in the space of
Disse. Capillarization impairs hepatic perfusion and
induces chronic hypoxia, which may aggravate steatosis
and promote the progression of NAFLD to NASH and
cirrhosis, leading to activation of hypoxia‐inducible factors
and increased transcriptional gene regulation of angiogen-
esis and proliferation.29–31 Increasing evidence suggests
that sinusoidal capillarization and angiogenesis play a key
role in the progression of NAFLD. The vascular endothelial
growth factor is the key regulator in this process, which is
activated by the hypoxia‐inducible factor and may further
promote fibrosis development.17 Chronic hypoxia activates
HSCs, collagen begins to accumulate in the space of Disse
and with capillarization and hypoxia development, fibrous
bridging occurs near the hepatic sinusoids, eventually
leading to the formation of cirrhotic nodules.28 Moreover,
it is known that fibrosis in NAFLD usually begins to
develop in the intercellular space around the central vein
and in the perisinusoidal area of zone 3, where HSCs are
the main driver of the process.4,32 This fibrosis pattern is
different from other forms of chronic liver disease and
potentially causes PHT before patients with NAFLD
develop overt cirrhosis.31

2.4 | Cell adhesion and microthrombosis

In NAFLD, enlarged hepatocytes (caused by steatosis and
ballooning) initially reduce sinusoidal flow in zone 3, and
this effect then spreads across the entire lobule, thereby
resulting in increased shear stress in LSECs. Furthermore,
LSECs respond by facilitating the adhesion of blood cells.
When the sinusoids narrow enough to trap blood cells,
such as leukocytes, the effect usually occurs first in the
centrilobular region, constraining the sinusoidal space and
exacerbating the negative impact of steatosis.33

It has been hypothesized that microthrombosis could
also increase IHVR in NAFLD. In a cohort of obese/
overweight individuals, it was found that patients with
biopsy‐proven NASH had higher plasma plasminogen
activator inhibitor‐1 (PAI‐1) concentrations than those
with normal livers.34 Levels of PAI‐1 increased significantly
with the histological severity of NAFLD, whereas other
coagulation factors were unaltered. An increase in
fibrinogen, factor VIII, and von Willebrand factor and a
decrease in anti‐thrombin III were correlated with
metabolic features, including fasting C‐peptide and waist
circumference, but not with liver histology. This finding
might, in part, explain why microthrombosis and PHT are
associated with NAFLD.34

2.5 | Microbiota and gut–liver axis

Gut microbiota and bacterial translocation may also
play an important role in the development of NAFLD‐
related cirrhosis and its complications, such as PHT,
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spontaneous bacterial peritonitis, and hepatic encepha-
lopathy.35–37 Gut microbiota products, such as second-
ary bile acids, may affect intestinal permeability and
PHT, mainly through the farnesoid‐X receptor (FXR)
and the G protein‐coupled bile salt receptor‐1, which
mediate antisteatotic, anti‐inflammatory, and antifibro-
tic effects. In contrast, cirrhosis and PHT affect gut
microbiota and increase translocation.37 Therefore,
pharmacological regulation of the gut–liver axis may
be an effective strategy for the prevention and manage-
ment of NAFLD‐related PHT, although this needs to be
tested in randomized clinical trials.

2.6 | Genetic mechanisms

Inherited risk factors predisposing to NAFLD develop-
ment in individuals with metabolic risk factors may
directly contribute to fibrogenesis and PHT independently
of their effect on hepatic fat accumulation.38 In particular,
the common rs738,409 polymorphism encoding for the
p.I148M variant of PNPLA3 accounts for a large fraction of
the interindividual susceptibility to NAFLD in the popula-
tion and is strongly enriched in patients with severe
NAFLD and NASH.39,40 Furthermore, the p.I148M PNPLA3
variant has been identified as one of the main determi-
nants of susceptibility to endothelial activation and
inflammation.41 Besides promoting intracellular fat accu-
mulation in hepatocytes, PNPLA3 plays a key role in the
trans‐activation of HSCs,42 and the PNPLA3 variant
triggers a pro‐fibrogenic and pro‐inflammatory phenotype
in HSCs.43,44 In keeping, carriage of the PNPLA3 variant
has been associated with the risk of decompensation in
patients with PHT due to fatty liver disease.45 These data
suggest that a large fraction of patients with severe NAFLD
may be predisposed to develop PHT due to genetic
mechanisms.

3 | CHALLENGE IN THE
DETECTION AND ASSESSMENT
OF PHT

To assess the degree of PHT, PVP is traditionally
measured by an invasive method like HVPG, which is
costly and performed only in some specialized centers.13

But there have been significant efforts to find novel
diagnostic approaches for the assessment of PVP and
replace traditional HVPG measurements, such as less
invasive or noninvasive techniques, to indirectly estimate
PVP (Figure 2). But none of these noninvasive techniques
has entered clinical practice as a substitute for HVPG with
the exception of endoscopic ultrasound‐guided portal
pressure gradient measurement (EUS‐PPG).46,47

3.1 | Shortage and inaccuracy of
conventional measurements

WHVP represents the hepatic sinusoid pressure, which
indirectly reflects portal vein pressure in PHT.13 Clinical
signs of PHT may be present in about 25% of patients

when patients have advanced fibrosis or cirrhosis.6

However, a recent study involving 40 patients with
NAFLD‐related cirrhosis treated with a trans‐jugular
intrahepatic portosystemic shunt in three European
centers showed discrepancies in the measurements of
WHVP and portal pressure occurred in up to 15% of
patients, thus suggesting that PVP could be significantly
underestimated by WHVP. These data suggest that
WHVP in patients with NAFLD‐related cirrhosis is not
as accurate as in cirrhotic patients; this is due to other
etiologies.14

HVPG is defined as the difference between WHVP
and FHVP, and can better reflect PVP.13 As early as 2005,
the Baveno IV consensus proposed that monitoring
HVPG can identify the beneficiaries of nonselective
beta‐blockers.48 The new Baveno VII consensus pointed
out that HVPG ≥10mmHg is still the gold standard for the
diagnosis of CSPH.13,49,50 This consensus also indicated
that in patients with NAFLD‐related cirrhosis, although
an HVPG >10mmHg is strongly associated with the
presence of clinical signs of PHT such as esophageal
varices,51 these signs can also be present in a small
proportion of patients with HVPG values <10mmHg.13 In
an observational study investigating the prevalence and
the noninvasive predictors of PHT in 354 patients with
NAFLD, the authors found that signs of CSPH were
present in about 25% of these patients at the time of
diagnosis of NAFLD, and most of these patients had
advanced fibrosis or cirrhosis. However, these authors
also found that PHT could occur in a small proportion of
patients with mild or no fibrosis, and was associated with
the extent of steatosis.6 A discrepancy was found between
HVPG and PPG in noncirrhotic NAFLD.14 A retrospective
analysis showed that about 15% of patients with CSPH,
whose HVPG was >10mmHg, did not have cirrhosis.7 In
two phase 2b, placebo‐controlled trials of simtuzumab
(combined) that involved a total of 475 individuals with
NASH with bridging fibrosis or compensated cirrhosis
(F3–F4 stage), the authors found that seven patients with
subclinical PHT (median HVPG: 7.5mmHg; range:
4.0–9.5mmHg) without cirrhosis developed the symp-
toms of decompensation, and patients with higher HVPG
at baseline had the greater increase in HVPG over time.52

All these observations suggest that HVPG may under-
estimate the fibrosis stage and severity of NAFLD.
Actually, the effects and manifestations of subclinical
PHT, which was defined as HVPG ≥5mmHg and HVPG<
10mmHg, on the natural course of NAFLD, are not well
understood, and the effects of subclinical PHT may have
been largely overlooked.53 That said, measurements of
WHVP and HVPG are invasive and require technical
expertise from the operator and equipment. Thus, these
measurements are rarely used in clinical practice.

3.2 | The novel invasive and noninvasive
measurements

As shown in Figure 2, the EUS‐PPG is one of the novel
techniques that can directly measure the portal and
hepatic vein pressure.46 Theoretically, EUS‐PPG is more
accurate than WHVP and HVPG in patients with
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presinusoidal PHT because WHVP and HVPG tend to
underestimate PVP in these patients. This ultrasound
technique is suitable for patients with advanced NAFLD
and for other patients with indications for endoscopy (e.g.,
surveillance of esophageal and gastric varices, portal
hypertensive gastropathy screening, EUS‐guided liver
biopsy, or duodenal mucosal analysis by confocal
endomicroscopy). Hence, other traditional techniques for
portal pressure measurement that included intra‐splenic
puncture, trans‐hepatic portal catheterization, operative
portal pressure measurements, and umbilical vein cathe-
terization are now being gradually replaced. Thus, novel
noninvasive measurements that accurately measure PVP
in a safe and simple way are urgently needed.47 Novel
noninvasive measurements such as serum markers,54–59

the subharmonic‐aided pressure estimation based,
dynamic contrast‐enhanced ultrasonography, liver and
spleen stiffness elastography60–65 based on recent doppler
ultrasound and imaging technology,66–70 contrast‐
enhanced computer tomography,71,72 and multiparametric

magnetic resonance imaging (MRI),73,74 which require
further investigation to test their utility in the investigation
of PHT in NAFLD (Figure 2).

4 | CHALLENGE IN PREVENTION
AND MANAGEMENT: THERE IS NO
SPECIFIC THERAPY

To date, there are no specific pharmacotherapies for
NAFLD‐related PHT. In noncirrhotic NAFLD, prevention
is usually the best therapeutic strategy, so lifestyle
modifications are still the first‐line recommended
treatment.51,75 In cirrhotic NAFLD‐related PHT, current
drugs used for management of PHT and its complica-
tions are substantially similar to those used for cirrhosis
due to other etiologies, such as prevention of variceal
bleeding by using nonselective beta‐blockers or vaso-
constrictor drugs, such as terlipressin, vasopressin, or
octreotide.13,49 However, these pharmacotherapies have

F IGURE 2 Old and new invasive and noninvasive methods for the assessment of PHT. Traditional methods (indicated by the blue area)
include HVPG measurement, which uses a balloon‐tipped central vein catheter inserted into a hepatic vein tributary that detects WHVP and FHVP.
With the development of EDG technology (indicated by the red area), EUS‐PPG is an emerging method to provide a safe and direct measurement
of PPG. Analysis of mucosal vascular pattern and flow by confocal endomicroscopy is another novel method. Several noninvasive methods
(indicated by the green area), for example, serum biomarkers, models or risk scores, tissue stiffness assessment of the liver, and spleen by
elastography based on ultrasound or MR, are in development. EDG, endoscopy; EUS‐PPG, endoscopic ultrasound‐guided portal pressure gradient
measurement; FHVP, free hepatic venous pressure; HVPG, hepatic venous pressure gradient; MR, magnetic resonance; PHT, portal hypertension;
PPG, portal pressure gradient; PVP, portal venous pressure; WHVP, wedged hepatic venous pressure.
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not been yet tested for management of PH in the early
stages of NAFLD. Most drug candidates for PHT
management in the early stages of NAFLD have only
been tested in animal models.76 However, there are
some promising drugs for PHT in NAFLD as outlined
below.

4.1 | NO modulation

It is known that NO plays an important role in the
modulation of IHVR in liver sinusoids, thus NO
modulation might be a promising therapeutic option
in the early stage of NAFLD.8 In a pilot human study,
vardenafil, that is, an NO modulator that can prevent
the breakdown of the NO mediator cyclic guanosine
monophosphate, was found to reduce HVPG.77 In an
animal model in cirrhotic rats, portal pressure was
decreased by the use of tetrahydrobiopterin and
AVE9488, which increase NOS transcription or activity,
respectively. NO modulation may inhibit HSC
activation.78,79 However, NO donors might cause hypo-
tension due to the decrease in systemic vascular
resistance.80 Thus, clinical trials in patients are needed
to prove its effect on PHT and to investigate side effects.

4.2 | Statins

Statins have been demonstrated to have some benefi-
cial effects on steatosis, inflammation, and fibrosis in
NAFLD.81 Furthermore, statins may lower PVP in
patients with cirrhosis and reduce the increased
postprandial portal pressure.81,82 Some studies have
shown that simvastatin had a positive effect on
decreasing PVP in NAFLD.68 This effect in NAFLD
might be partially due to the statins' function to
modulate IHVR by enhancing eNOS expression, which
may improve endothelial dysfunction, and reduce HSC
contractility.68 Moreover, statins have been also re-
ported to reduce angiogenesis, which might also be
beneficial for PHT.83

4.3 | Farnesoid‐X nuclear receptor

FXR, as a modulator of IHVR in NAFLD, affects bile acid
metabolism, lipid metabolism, inflammation, and fibro-
sis.84 FXR agonists stimulate eNOS activity and inhibit
the endothelin‐1 (ET‐1)‐mediated contraction of HSCs.85

Obeticholic acid is a promising steroidal FXR agonist,
which may reduce PHT in rats by upregulating eNOS
and rho‐kinase.86 Another nonsteroidal FXR agonist
PX20606 may reduce PHT by improving liver sinusoidal
cell dysfunction, fibrosis, and vascular remodeling.87 In
addition, obeticholic acid has been shown to reduce
bacterial translocation and intestinal inflammation in
cirrhotic rats with ascites.88 Therefore, FXR is now
emerging as a promising therapeutic target for reducing
PHT in NAFLD. However, the precise biological
mechanisms of FXR‐induced reduction of liver fibrosis
need to be further explored.

4.4 | Peroxisome proliferator‐activated
receptor (PPAR) agonists

PPAR agonists play a key role in fatty acid and lipid
metabolism, inflammation, and fibrogenesis. Promising
agents such as pan‐PPAR agonist (lanifibranor) showed
some beneficial effects on liver fibrosis.89–91 Moreover,
the PPAR‐α agonist fenofibrate could reduce PVP in
cirrhotic rats by improving endothelial function mainly
through increased NO bioavailability and reduced
leukocyte recruitment.92 However, further research is
needed to examine the efficacy of PPAR agonists on PHT
in humans.

5 | CONCLUSIONS AND FUTURE
PERSPECTIVES

PHT is the underlying cause of many liver‐related
complications that drive poor clinical outcomes. With
the potential pathophysiological significance of
increased PVP in NAFLD indicating that PHT may
promote NAFLD/NASH fibrosis progression and vice
versa, it is clinically important to find noninvasive and
accurate methods that allow early detection and
monitoring of PHT. The role of metabolic risk factors
in the pathogenesis of PHT in the early stages of NAFLD
is poorly studied and is worth further exploration.
Likewise, we believe that the recently proposed change
in the nomenclature from NAFLD to metabolic‐
dysfunction associated fatty liver disease (MAFLD)
may help to better understand the role of metabolic
risk factors in PHT and facilitate new drug development
to reduce PVP and fibrosis in patients with NAFLD,
possibly through the improvement of multiple meta-
bolic pathways.
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