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Abstract: This paper investigated the resistance performance of a 

submersible surface ship (SSS) in different working cases and scales 

to analyze the hydrodynamic performance characteristics of an SSS 

at different speeds and diving depths for engineering applications. 

First, a hydrostatic resistance performance test of the SSS was 

carried out in a towing tank. Second, the scale effect of the 

hydrodynamic pressure coefficient and wave-making resistance was 

analyzed. The differences between the three-dimensional real-scale 

ship resistance prediction and numerical methods were explained. 

Finally, the advantages of genetic algorithm (GA) and neural 

network were combined to predict the resistance of SSS. Back 

propagation neural network (BPNN) and GA-BPNN were utilized to 

predict the SSS resistance. We also studied neural network parameter 

optimization, including connection weights and thresholds, using K-

fold cross-validation. The results showed that when a SSS sails at 

low and medium speeds, the influence of various underwater cases 

on resistance is not obvious, while at high speeds, the resistance of 

water surface cases increases sharply with an increase in speed. After 

improving the weights and thresholds through K-fold cross-

validation and GA, the prediction results of BPNN have high 

consistency with the actual values. The research results can provide 

a theoretical reference for the optimal design of the resistance of SSS 

in practical applications. 

 

Article Highlights 

• The SSS’s scale effect of the hydrodynamic pressure coefficient 

and wave-making resistance was analyzed. 

• The differences between the three-dimensional real-scale ship 

resistance prediction and numerical methods were explained. 

• Back propagation neural network (BPNN) and GA-BPNN 

were utilized to predict the SSS resistance. 

• K-fold cross-validation was used to optimize neural network 

parameters, including connection weights and thresholds. 
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1 Introduction 

Due to their autonomous navigation capability, unmanned 

ships can replace humans in performing dangerous tasks and 

thus have become a hot spot in marine research (2009). Since 

the birth of the first surface unmanned ship, its development 

has lasted more than 20 years (2008). With scientific and 

technological development, research on unmanned ships has 

further developed, progressing from surface conditions to 

underwater conditions. Unmanned ships include fully 

autonomous, remote-controlled, and semi-autonomous ships 

(2013). According to ship type, they can be divided into semi-

submersible, conventional planning, hydrofoil, etc. Among 

these, semi-submersible ships are widely favored for their 

excellent radar stealth performance, long-term endurance, 

and high adaptability to different sea conditions (2011). In 

recent years, researchers have studied hydrodynamic, control, 

and self-propelled performances of various forms of semi-

submersible ships (2018, 2012). These ships have enormous 

application potential in scientific research, the military, and 

other fields. As a special semi-submersible ship, a 

submersible surface unmanned ship has the abilities of semi-

submersible concealment and high-speed sailing on the 

surface, which can inspire new ideas for designing multi-

navigation vehicles in the water (2016). 

To avoid interference from wind and waves on the sailing 

of SSS under high sea conditions and to minimize the 

influence of waves during high-speed sailing. Hirayama et al. 

(2005) proposed a new design concept for an SSS. The SSS 

has a hull different from conventional ships, and wings and 

ailerons are located in the middle and stern of the ship. It also 

has a cross-domain "surface-underwater" sailing function. It 

can sail on calm water, similar to ordinary surface ships. 

When waves are violent or severe caused by high-speed 

sailing, they can dive to a certain depth below the water's 

surface to continue sailing. Since the SSS can sail on water, 

frictional resistance caused by a large wetted surface at full 

depth is reduced. It can also actively dive into the water 

according to surface conditions. By "dodging waves", the 

degree of interference of waves on sailing is significantly 

reduced. Therefore, whether it is in calm or rough sea 

conditions, the ship can select its sailing state in a targeted 

manner and maintain excellent performance. 

The initial hull scheme of the SSS is a conventional 

container ship. Hirayama's team (2005) conducted a multi-

condition experimental study and found that the performance 

during underwater navigation was not optimal. The bulbous 
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bow was removed, and the profile at the upper deck was 

treated as a smooth retraction. This improved the 

hydrodynamic performance of the submarine state by making 

the main hull shape more holistic (2005). Ueno theoretically 

deduced hydrodynamic derivatives of SSS based on wing and 

rudder parameters for its maneuverability. The motion 

responses of straightness, submergence, and rotation with 

different wing or rudder angles were simulated (2010, 2011). 

Many factors, such as wetted surface area, surface waves, and 

underwater turbulence, will significantly impact the rapid 

performance of this type of ship under different sailing 

conditions, such as water surface and multiple submarine 

depths. As a result, it is necessary to investigate the multi-

depth cases of these ships. 

There is a wealth of domestic and international research on 

the hydrodynamic performance of the surface and underwater 

ships. The existing research on submarines primarily focuses 

on the Suboff submarine model in the United States and on 

rotating and non-rotating models of different shapes. Zhou 

(2008) investigated the CFD numerical simulation of the 

Suboff-S full appendage submarine model using an RSM 

turbulence model using ANSYS' commercial computational 

fluid dynamics (CFD) software. Liu et al. (2009) established 

up to 15 different computational domain grids for the Suboff. 

Four types of turbulence models were used to calculate the 

submarine model's flow field morphology and resistance 

performance. The influence of grid division and turbulence 

model selection on the calculation of the submarine flow field 

was studied. Sarkar et al. (2015) believed that a significant 

number of ship-type test analyses were needed to obtain 

reliable test data, and it was expensive and time-consuming 

to complete these tasks. The authors calculated four different 

types of ships. Through an efficient ship form design, the 

propulsion power of propeller and hull efficiency were 

generally improved after optimizing ship hull, and the use of 

fuel was significantly reduced. Nan Zhang used four different 

turbulence models to solve the Reynolds-averaged Navier–

Stokes (RANS) equation using the Suboff as a research object 

and found that the turbulence model greatly influenced 

numerical simulation results (2005, 2007). Li (2006) used the 

volume of fluid (VOF) method and the RNG k-ε turbulence 

model to numerically simulate the motion of the ellipsoid 

near the free surface. The results show that when diving depth 

is three times greater than the diameter of the rotary body, the 

influence of the free surface can be ignored in simulated 

working conditions. Nematollahi et al. (2015) studied 

hydrodynamic characteristics of a rotary body named 

Afterbody-1 near a free surface. The study used CFX 

combined with standard k-ε and VOF methods to calculate 

the influence of model domain size and grid number on 

calculation results at a specific speed point. The research on 

cross-domain "surface-underwater" ships is insufficiently 

deep. Thus, this research performed numerical simulations on 

surface and underwater navigation conditions and analyzed 

the hydrodynamic performance of a cross-domain SSS under 

various conditions. 

CFD is a popular method for predicting ship resistance 

performance. On this basis, ship form optimization is carried 

out, and the best scheme is selected and applied to real ships. 

However, the CFD method takes too long to calculate ship 

resistance by viscous flow. Many factors, such as grid 

division, turbulence model, and so on, affect the calculation 

of the CFD method, requiring a high degree of user 

experience. In recent years, computer software and hardware 

technology has developed rapidly. Machine learning 

algorithms are gradually forming a trend in ship engineering 

that has high engineering application value and scientific 

research significance. Khan et al. (2005) combined neural 

network, fuzzy logic, and data fusion technology to develop 

engineering applications for very short-term forecasts of ship 

motion. Xing et al. (2010) applied the neural network method 

to the ship rolling model and the fitting of test data. Two 

multivariable nonlinear models are used to describe the 

forced nonlinear rolling motion of ships at sea, and 

experimental data verify the neural network method. Ling et 

al. (2016) applied deep neural network structure to a RANS 

turbulence model. Gurgen et al. (2018) used an artificial 

neural network to predict the length, width, and draft of the 

ship with maximum deadweight and a design speed of the 

ship as input. These results show that neural networks can 

predict the parameters of the ship well. Miyanawala et al. 

(2017) used a convolutional neural network to predict the 

main flow field parameters of unsteady flow around rigid 

bodies. Liu et al. (2021) established a multi-step direct-

mapping ship motion very short-term forecast model based 

on a long short-term memory network and used filtered ship 

motion data to carry out forecast analysis under different 

working conditions. For this paper, sample training of a 

BPNN was carried out, and this neural network was used to 

predict the resistance performance of an SSS, providing data 

for future research on the fast performance. 

To sum up, in this research, resistance tests of the SSS 

model were carried out first. Then, hydrodynamic 

performance of different scale SSS under different cases was 

analyzed by STAR-CCM+. Finally, a digital model of SSS 

resistance prediction based on a BPNN was established. 

2 Model towing test 

2.1 Test ship model parameters 

In this study, only the sailing resistance of the main hull is 

considered, ignoring the influence of appendages such as 

wings and rudders on the resistance. Figure 1 depicts the SSS 

model involved in the test, and the body line is shown in 

Figure 2. 

 

Fig. 1 Schematic diagram of the naked hull of the SSS test 

model 



 

 

 

Fig. 2 Body line of the SSS model 

A bulbous bow, similar to water droplets, can be seen in the 

bow of the hull. The shape of the stern is similar to that of a 

cruiser stern in a conventional ship, and there is room for 

thrusters and rudders. The side top, which has an arc-shaped 

top side with a large radius of curvature to transition smoothly 

and tangentially to the deck, is the most significant difference 

from conventional surface ships. The overall shape is also 

well-integrated. 

Table 1 presents the main dimensions and related overall 

parameters of the SSS model. 

Tab. 1 Values of overall elements of test ship model 

Parameter Numerical value 

Total length Loa (m) 1.6452 

Length between perpendiculars LPP (m) 1.6000 

Beam B (m) 0.2322 

Moulded depth D (m) 0.1408 

Draft T (m) 0.0868 

Freeboard F (m) 0.0540 

Wetted surface Aw (m2) 0.4451 

Surface Ao (m2) 0.8303 

2.2 Test scheme 

The scale of the ship model towing tank of the Dalian 

University of Technology is 160.0 m × 7.0 m × 3.7 m (length 

× width × water depth). Pool trailer speeds range from 0.010 

m/s to 8.000 m/s with a speed accuracy of 0.1%. 

Model resistance at different diving depths was tested. The 

resistance at 0.4 m/s, 0.6 m/s, 0.8 m/s, 1.0 m/s, 1.1 m/s, 1.2 

m/s, 1.3 m/s, 1.4 m/s, 1.5 m/s, 1.6 m/s, and 1.7 m/s was tested 

under each diving depth. Accordingly, the range of Froude 

number (Fr) is 0.1010–0.4291, and the range of Reynolds 

number (Re) is 0.5284 × 106–2.2459 × 106. A total of six cases 

(#0–#5) were tested, and the corresponding diving depths 

were respectively 0 m, 0.054 m, 0.32 m, 0.48 m, 0.64 m, and 

0.96 m, all based on the designed waterline. Table 2 shows 

the test setup, and Figure 3 depicts the resistance test site. 

Tab. 2 Test setup range 

Parameter Range 

Ship velocity Vm (m/s) 0.4–1.7 

Diving depth D* (m) 0–0.96 

Froude number Fr 0.101–0.4291 

Reynolds number Re 0.5284 × 106–2.2459 × 106 

 

     

 (a) Case #0: Surface navigation (b) Case #1: Dive depth 0.054 m (c) Case #2: Dive depth 0.32 m 

     

 (d) Case #3: Dive depth 0.48 m  (e) Case #4: Dive depth 0.64 m  (f) Case #5: Dive depth 0.96 m 

Fig. 3 Towing test site photos 

2.3 Towing test results and analysis 

After each group of towing experiments, the multi-speed 

test results of various cases were obtained. Since the sensor 

is subjected to resistance due to water flow during 

measurement, SSS's resistance is equal to the difference 

between the resistance measured with the sensor and the 

resistance of the single sensor. Table 3 depicts the resistance 

of SSS by analyzing test data. 

Tab. 3 Towing resistance results of SSS 

Vm 

(m/s) 

Vm 

(kn) Fr Re (×106) 
Rtm/ (N) 

#0 #1 #2 #3 #4 #5 

0.4 0.78 0.101 0.528 0.29  0.27  0.39  0.37  0.28  0.33  

0.6 1.17 0.152 0.793 0.54  0.54  0.72  0.71  0.62  0.70  



 

 

0.8 1.56 0.202 1.057 0.84  0.99  1.22  1.25  1.15  1.22  

1.0 1.94 0.253 1.321 1.22  1.42  1.95  1.89  1.79  1.87  

1.1 2.14 0.278 1.453 1.47  1.68  2.22  2.28  2.23  2.23  

1.2 2.33 0.303 1.585 1.78  2.37  2.67  2.69  2.62  2.68  

1.3 2.52 0.328 1.717 2.10  2.79  3.21  3.15  3.07  3.17  

1.4 2.72 0.353 1.850 2.72  4.30  3.86  3.71  3.54  3.60  

1.5 2.92 0.379 1.982 3.90  7.02  4.72  4.31  4.13  4.06  

1.6 3.11 0.404 2.114 5.70  10.54  5.83  5.00  4.71  4.66  

1.7 3.30 0.430 2.246 7.61  14.39  6.96  5.82  5.37  5.23  

Figure 4 presents the curve of the abovementioned Vm-Rtm 

measurement results. 

 
Fig. 4 The Vm-Rtm curve of SSS 

As shown in Table 2 and Figure 5, the resistance 

performance of SSS is analyzed as follows according to the 

relative position of the ship and water and speed changes in 

various cases: 

1) When Vm is 0.4–0.8 m/s, the difference in resistance of 

each case is not significant. Therefore, the ship's resistance 

for surface navigation and submerged navigation are similar, 

and the trend of resistance increases with the increase in 

speed is not obvious. The resistance of Case #0 is slightly 

lower than in other cases, and the resistance of Cases #2–#5 

has no obvious change in direct proportion to depth. 

2) When Vm is 1.0–1.3 m/s, Case #0 and Case #1 (in which 

the upper surface of SSS coincides with the water surface) 

are significantly smaller than Cases #2–#5. However, the 

difference in resistance of each underwater case is not 

obvious. This shows that no violent wave-making occurs 

when sailing on the water surface at this speed. Most 

resistance components are friction resistance, which strongly 

correlates with wetted surface area. The particularity of Case 

#1 is that the upper surface of the hull and water surface 

theoretically coincide, but a wetted surface does not 

completely cover the hull due to fluctuation of the water 

surface during sailing. Specifically, the upper deck and 

surface close to the wetted surface area have no obvious wet 

effect, and their friction resistance is thus reduced. 

3) When Vm is 1.4–1.7 m/s, Fr reaches 0.35 or more, which 

is categorized as high-speed sailing. At this time, the wave 

effect of SSS tends to be significant, so the resistance of Case 

#0 and Case #1 has an obvious positive trend with speed. 

Because increasing wave-making effect with increasing 

speed changes the resistance component of the hull, frictional 

resistance is gradually replaced by wave-making resistance 

as the main component of resistance at high speed. When 

speed is 1.7 m/s, due to violent wave-making and the flapping 

of irregular water surface on the upper surface of the hull, the 

increase in wave resistance with speed goes with V5. 

Simultaneously, according to the Smith effect, wave 

characteristics of fluid particles below the water surface 

decay exponentially. As a result, the resistance of various 

underwater cases also decreases with increased depth, and 

this trend becomes more significant with increased speed. 

The resistance difference between Case #4 and Case #5 is 

insignificant in this entire speed range, indicating that the 

influence of fluid particles by surface wave fluctuation in this 

diving depth range has nearly disappeared. 

3 Real-scale resistance prediction method 

ITTC1978 ship model test extrapolation method (three-

dimensional method) has been widely used worldwide. The 

resistance coefficient of the real-scale ship can be expressed 

as 

ts s( 1) Δf r f AAC k C C C C            (1) 

where k + 1 is the form factor; Cfs is the frictional 

resistance coefficient; Cr is the residual resistance coefficient; 

fC  is the roughness coefficient; CAA is the air resistance 

coefficient. 

For the frictional resistance estimation of the real-scale 

ship, the Grigson formula shows higher prediction accuracy 

than the ITTC1957 formula, and its formula is as follows: 
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where Lpp is the length of the ship; V is the trailer speed; ν 

is the kinematic viscosity coefficient. 

The roughness coefficient becomes 

 
1/3 3
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f s
C K L


    

     (3) 

where the roughness performance Ks = 0. 15 mm. 

  0.001 /AA TC A S     (4) 

where AT is the projected area of the hull above the 

waterline on the middle cross section; S is the wet surface 

area. 

In this study, the air resistance has little effect on the total 

resistance, so the effect of air resistance is ignored. 

According to the test results in the range of Fr = 0.1–0.2, 

the form factor (1 + k) was determined. 
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In Eq. (5), Ctm, Cfm, and Fr can be obtained from the ship 

model resistance test data. The Ctm/Cfm and Fr/Cfm are plotted 

linearly. And the intercept of the line is then the form factor 

1 + k, as shown in Figure 5. Finally, the form factor 1 + k is 

determined to be 1.34. 

 
Fig. 5 Prohaska method to determine form factor 

4 Numerical calculation method 

This study was based on the RANS method. The SST k-ω 

turbulence model was used to study the SSS resistance and 

flow field characteristics at different scales. A VOF model 

was used to capture the free surface. 

4.1 Calculation of objects and case 

The parameters of the model scale and real-scale SSS are 

shown in Table 4, and the geometric model is shown in Figure 

7. 

Tab. 4 Ship parameters 

Parameters 
λ 

1 20 

Case 

Lpp (m) 

#0 

1.6 

#0 

32 

B (m) 0.2322 4.6440 

T (m) 0.0868 1.7360 

▽ (m3) 0.0183 146.40 

Aw (m2) 0.4451 178.04 

Z

Y

X

U

O

 

Fig. 6 Geometric model 

4.2 Computational domain and mesh generation 

During numerical simulation, SSS is in a state of uniform 

linear motion on the water surface. A geodetic coordinate 

system was used to study the problem, with X-axis pointing 

to the bow as positive, Y-axis pointing to the starboard side 

as positive, and Z-axis pointing up as positive. The issue of 

SSS sailing at a constant speed can be transformed into a 

problem of water flowing around the submarine. The hull has 

strict symmetry; thus, 1/2 symmetry was used to simulate the 

SSS model. The origin of coordinates was defined as the 

intersection of the vertical line of the stern and the design 

waterline, the distance from the bow one time the length of 

the SSS as an entrance, and the distance from the stern two 

times the length of the SSS as an exit. The hull distance to 

the upper boundary of the calculation domain was one time 

the length of the ship, and the lower boundary of the distance 

calculation domain was two times the length of the ship. To 

better present Kelvin waves in their entirety, the shipboard 

distance from the side boundary of the computational domain 

was two times the length of the ship. The cutting body of 

software was used to divide the mesh. The basic grid size is 

LPP/50, and the number of boundary layers, boundary layer 

growth rate, and Y+ settings of model scale and real-scale are 

shown in Table 5. Mesh refinement was performed on bow 

and stern, free surface, calculation domain, and obvious 

wave-making areas to ensure accuracy of numerical 

simulation calculations. Figure 7 depicts the boundary 

conditions, whereas Figure 8 presents the meshing diagram 

at the real scale and model scale. 

Tab. 5 Boundary settings 
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Fig. 7 Boundary condition display diagram 

 

(a) Model scale

 

 (b) Real scale 

Fig. 8 Meshing diagram 

4.3 Numerical calculation result comparison 

In order to confirm the correctness of the mesh topology 

used in this study, the mesh independence analysis was 

carried out on the model scale ship and the real-scale ship 

with Fr = 0.202. The mesh-independent validation was 

carried out based on the Richardson extrapolation. Three sets 

of meshes with different numbers were generated, the time 

step of the model scale was taken as 0.005 Lpp/V according to 

the recommendations of ITTC regulations, and the time step 

of real-scale calculation was taken as 0.0025 Lpp/V. 

Tables 6–8 depict the results of resistance deviation and 

independence analysis, where Ct is the resistance coefficient 

of the model scale as the test result of the SSS model; the 

resistance coefficient of the real-scale ship is the extrapolated 

resistance value based on the SSS model test; RG is the mesh 

convergence rate; UG is uncertainty; D0 is the corresponding 

test (extrapolation) result; PG is the accuracy order. 

Tab. 6 Model scale resistance results 

Parameter 
Number of meshes 

/104 

Ct/10-

3 

Deviation 

/% 

SSS test 

value 
- 5.915 - 

Fine mesh 242 5.841 1.25 

Medium 

mesh 
105 5.794 2.05 

Coarse mesh 53 5.535 6.42 

Tab. 7 Real-scale resistance results 

Parameter 
Number of 

meshes /104 

Ct/10-

3 

Deviation 

/% 

SSS extrapolation 

value 
- 3.524 - 

Fine mesh 615 3.568 1.24 

Medium mesh 275 3.589 1.76 

Coarse mesh 112 3.692 4.77 

Tab. 8 Mesh verification analysis Ct 

λ RG PG (UG/D0)% 

1 0.181 4.926 0.176 

20 0.204 4.590 0.742 

Table 8 shows that the resistance calculation results of the 

three sets of mesh at the model scale have high accuracy, and 

the deviation is within 7%. The mesh convergence rate RG of 

the two scales is less than 1, indicating that the mesh 

converges monotonically. The numerical uncertainty UG of 

model scale and real-scale resistance is 0.176%D0 and 

0.742%D0 (less than 1%D0), indicating a high level of 

numerical simulation verification. In general, this mesh 

topology has good convergence and can be used to study the 

scale effect of ship resistance. The subsequent two-scale 

calculations are based on the coarse mesh, and the time cost 

can be reduced. 

5 Results and analysis 

5.1 Ship resistance 

The comparison of the resistance calculation results of the 

CFD model scale, experimental model scale, CFD real scale, 

and real-scale extrapolation is shown in Figure 9. It can be 

seen from Figure 9 that the CFD real-scale results and the 

extrapolation results are in good agreement, and the average 

difference is 5.27. It shows that the extrapolation results can 

be used to replace the numerical simulation results to a 

certain extent, and the time cost can be reduced. By 

comparing the results of the CFD real scale and CFD model 

scale, it is not difficult to find that under the same Fr, the total 

resistance has an obvious scale effect. 



 

 

 

Fig. 9 Comparison of resistance at different scales 

5.2 Scale effect of the surrounding flow field 

Scale effects arise due to dissimilarities in force ratios 

between model and real-scale ships (2020). Therefore, 

studying the scale effect when solving the real-scale 

hydrodynamic performance is necessary. 

Figure 11 shows the distribution of the hydrodynamic 

pressure coefficient (CP) on the hull of the model scale and 

real scale for Fr = 0.404. 

   2

02 /Cp P gh V      (6) 

where P is the total pressure; ρ is the density of water; g is 

the acceleration of gravity; h is the water depth; V0 is the 

speed. 

 

(a) Model scale 

 
(b) Real scale 

Fig. 10 Surface pressure distribution of ships at different 

scales 

Figure 10 shows that the hydrodynamic pressure 

distribution of the hull under the model scale and the real 

scale has a high similarity, but there are certain differences in 

the bow and stern. The hydrodynamic pressure of the bow at 

the real scale is slightly larger, reflecting that the wave-

making at the bow has a specific scale effect. The pressure 

coefficient at the stern is smaller at the real scale, mainly due 

to the smaller viscous force. The difference in the distribution 

of pressure coefficients at the model scale and realscale 

explains the reason for the scale effect of the form factor. 

Figure 11 shows the model scale and real-scale free surface 

waveforms when Fr = 0.404. Moreover, the waveform at the 

two scales has a high similarity, as presented in Figure 11. 

However, the amplitudes of the bow and stern waves at the 

model scale are significantly lower, resulting in a weakened 

prediction of the wave-making resistance at the model scale. 

 
(a) Model scale 

 
(b) Real scale 

Fig. 11 Free surface waveforms 

6 Neural network prediction model 

6.1 Sample data acquisition 

According to the previous SSS resistance test data (Table 

3), 55 sets of sample data were obtained (due to the special 

case of working condition 1, the data of working condition 1 

were discarded). V and D* of the SSS were used as the 

network input, and the sailing resistance was used as the 

output of the prediction network model. 

6.2 K-fold cross-validation 

The flowchart in Figure 12 shows that first, the data are 

randomly divided into K groups, and then, for each group, the 

following operations are performed: 

 One training fold was chosen as the test dataset. 

 The remaining K-1 is used as the training set. 

 The selected training dataset is used to train the model, 

and the test dataset is used to evaluate it. 

D

D1 D2 D3 Dk-1 Dk...

D1 D2 D3 Dk-2 Dk-1... Dk
Test result 

error 1

Training set

D1 D2 D3 Dk-2 Dk... Dk-1
Test result 

error 2

Test set

...

D2 D3 D4 Dk-1 Dk... D1
Test result 

error k

Average

 
Fig. 12 K-fold cross-validation flow char 

In the small sample dataset of this work, K was set to 5. 

Neural network simulation results in low bias and moderate 

variance results were directly utilized. Therefore, in this 

simulation, the comprehensive data set was randomly divided, 

44 groups were selected as the training set, and the remaining 

11 groups were used as the test set. The 44 sets of samples 

were then divided into five training folds. Furthermore, each 

time, a different test fold from D1 to D5 is chosen as the 

validation set. Then these five sets of data are input into the 
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back propagation neural network (BPNN) model. The 

inaccuracy of model evaluation caused by accidental 

segmentation of the sample dataset can be ruled out with five 

cross-validations. 

6.3 BPNN and genetic algorithm 

Based on the advantages of BPNN, such as nonlinear 

mapping ability, self-learning adaptive ability, generalization 

ability, and fault tolerance ability, the applicability of BPNN 

in predicting the SSS resistance is discussed. 

The activity level of neuron j in layer L is: 

( ) ( ) 1

0

( ) ( ) ( )
p

l l l

j ji i

i

v n w n y n



    (7) 

The tansig activation function is: 

  
1

( ) ( )( ) 1 exp 2 ( ) 1l l

j jy n v n


       (8) 

Neural network weights: 
( ) ( ) ( ) ( 1)( 1) ( ) ( 1) ( ) ( )l l l l l

ji ji ji j jw n w x n n y n         
 

(9) 

In the formula, the "δ" of the output layer and the hidden 

layer are respectively: 
( ) ( ) ( )( ) ( ) ( ) 1l l n

j j j jn e n o n o     
   (10) 

( ) ( ) ( ) ( 1) 1( ) ( ) 1 ( ) ( ) ( )l l l l l

j j j k kj

k

n y n y n n n        

(11) 

The empirical value of "α" is selected between 0 and 1, and 

the learning rate η=0.01. 

In the BPNN, the neural network has a nonlinear mapping 

ability and is suitable for solving problems with complex 

mechanisms, so the neural network can predict the output of 

nonlinear functions. It can get random weights and thresholds 

from the split samples and start training the model. Regarding 

the genetic algorithm (GA) part, the steps of calculating 

fitness value, crossover, mutation, etc., select the optimal 

group until it is close to the optimal solution (2001). In 

general, GA adopts binary coding and divides the program 

into four parts: input and hidden layer link weights, hidden 

layer weights, hidden layer and output layer weights, and 

output layer weights. Each weight and threshold is coded 

with m-bit binary, and then the optimized weight and 

threshold are input to the BPNN. 

6.4 Model parameter settings 

In this study, 55 sets of data were selected as training and 

testing samples for development. The sum of the absolute 

values of the prediction errors of the training data is used as 

the fitness value of the individual. The smaller the fitness 

value of the individual is, the better the individual is. 

To achieve the optimal simulation of the BPNN model, the 

number of neurons in the hidden layer needs to be changed 

according to the learning rate, number of neurons, learning 

algorithm, etc., and is determined after many experiments 

(2019). In addition, it is assumed that the number of hidden 

layer neurons is 2-12. In addition, the simulation results of 

BPNN are used to test the optimal number of neurons (the 

predicted results are shown in Figure 13). The main purpose 

of this study is to improve the predictive model through a K-

fold cross-validation approach. During this process, when the 

number of neurons in the hidden layer changes, it is difficult 

to determine whether the prediction results are changed by 

the K-fold cross-validation method. Therefore, controlling 

the number of neurons in the hidden layer can provide a more 

intuitive view for this method. Figure 14 shows the final 

network structure of the neural network used in this study for 

SSS resistance prediction. 

In the BPNN, the number of samples was randomly 

divided into two groups, the first group of 44 samples was 

used for training, and the remaining 11 samples were used as 

test samples. This can better illustrate the authenticity of the 

simulation results. In the GA-BPNN, the number of samples 

is also divided, but the weights and thresholds vary with the 

best gene individuals selected. The GA parameters were set 

as follows: the total population size of the genetic algorithm 

was 20, the maximum number of iterations was 30, the 

crossover rate was 0.8, and the mutation probability was 0.1. 

 
Fig. 13 Average test error of 5-fold cross-validation for 

different neuron models 
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Fig. 14 Neural network structure 

6.5 Evaluation indicators 

This paper used five statistical evaluation indicators to 

evaluate the performance of different models. They are mean 

absolute error (MAE), mean square error (MSE), root mean 

square error (RMSE), coefficient of determination (R2), and 

mean absolute percentage error (MAPE). 

These metrics are calculated as follows: 
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1

n
∑ |y

î
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i
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In formula 12-16, n is the number of data sets, y is the 

average value of the test resistance of the SSS, ŷ  is the 

predicted resistance value, and yi is the test resistance. 

MSE, MAE, and RMSE are measures of mean error and 

are used to assess the degree of variability in the data. Also, 
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RMSE has a smooth loss function. Furthermore, R2 is used to 

characterize the fit by the variation of the data. Its normal 

range is [0,1], and the closer it is to 1, the better the variable 

y in the equation explains, and the better the model fits the 

data. Additionally, MAPE can determine how well different 

models evaluate the same data; the lower the value, the better 

the prediction. 

6.6 Model prediction performance comparison 

The K-fold cross-validation method is used to sequentially 

select training samples as input data, and then BP and GA-

BP neural networks are used to predict the resistance of the 

SSS. Table 9 shows the results, which presents the K-fold 

cross-validation results for five different datasets. This step 

selects the model with the best predictive performance by 

comparing the evaluation metrics. Although some test groups 

had high correlation values close to 1, they performed poorly 

on the RMSE and MSE measures. 

Tab. 9 5-fold cross-validation results of BPNN 

Evaluation indicators 1 2 3 4 5 

MAE 0.093 0.116 0.353 0.103 0.082 

MSE 0.016 0.031 0.236 0.025 0.016 

RMSE 0.125 0.177 0.485 0.158 0.125 

MAPE 0.030 0.070 0.169 0.080 0.050 

R2 0.994 0.996 0.945 0.995 0.998 

After K-fold cross-validation, Table 9 shows that the best 

model should be group 5, and the MAE, MSE, and RMSE 

values in group 5 are lower than in other models. In Table 9, 

evaluation metrics can be used to evaluate the predictive 

performance of each group of models. The smaller values of 

MAE, RMSE, and MAPE improve the generalization ability 

of the prediction model. Also, R2 is informative, and the value 

of a perfect model should be closer to 1. Therefore, when the 

MAE exceeds 0.1, groups 2, 3, and 4 should be discarded. 

Moreover, the R2 evaluation metric also provided a reason to 

exclude the first group because the R2 value corresponding to 

group 1 (0.994) was smaller than that of group 5 (0.998). 

Therefore, group 5 was selected comprehensively. Then, the 

weights and thresholds were recorded and fed into the BPNN 

model for comparison with the test set. After the initial 

weights and thresholds were changed, the prediction model 

of the BPNN was also improved. 

Figure 15 shows that GA and K-fold cross-validation work 

well to improve the prediction accuracy of BPNN, including 

the error ranges for different models. Figure 4 depicts that the 

maximum error of the neural network model using K-fold is 

reduced from 0.25 to 0.1. Similarly, the maximum error of 

the GA-BPNN model is reduced from 0.25 to 0.07. 

Furthermore, most of the 11 test data errors of GA-BPNN are 

closer to 0 (Figure 15), showing that for this study, GA is 

better than K-fold cross-validation in reducing error. 

 
Fig. 15 Error distribution between different models 

The predicted value of the BPNN model has a higher error 

value than that of the GA-BPNN. In particular, the prediction 

errors of groups 1–5 of the BPNN are larger. This result is 

because fewer data are selected for training, and the threshold 

and weight derivation of BPNN are limited. After optimizing 

the thresholds and weights by GA, the BPNN also performed 

well (Figure 16). And both models achieved good results in 

the last five test data. However, the 5th group error of the 

neural network model using K-fold is too large (as shown in 

Figure 18). Overall, the prediction results of the GA-BPNN 

are in good agreement with the actual values. 

 
Fig. 16 Prediction results of GA-BPNN  

 
Fig. 17 Prediction results of BPNN 
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Fig. 18 BP neural network optimized by K-fold cross-

validation 

BPNN generally performs poorly without parameter 

optimization due to the random generation of thresholds and 

weights. A GA can find the optimal weights and thresholds. 

Also, by entering the weights and thresholds filtered by K-

fold cross-validation, the network can be improved. 

The reciprocal of MAE, MSE, RMSE, MAPE, and R2 are 

plotted as a radar chart of model performance evaluation 

metrics, as shown in Figure 19. Through K-fold cross-

validation optimization, the fit of the model is improved, R2 

is improved from 0.895 to 0.998, but the MAPE is only 

reduced by about 0.07. Furthermore, BPNN optimized by GA 

has a better effect than BPNN. The values of MAE, MSE, 

RMSE, and MAPE all decreased, and the correlation 

coefficient increased by 0.1. This result is better than the 

neural network after K-fold cross-validation. Compared with 

the neural network after K-fold cross-validation, the GA 

significantly impacts the optimization of the neural network 

by setting better initial weights and thresholds. The 

simulation results show that although K-fold cross-validation 

also has a specific optimization effect on the neural network, 

the improvement is insufficient. However, after optimization 

by GA, the RMSE, MSE, MAE, and MAPE values of the 

neural network model are the lowest (as shown in Table 10), 

and the optimization effect is the best.

 

Tab. 10 Calculation results of different models 

Models MAE MSE RMSE MAPE R2 

BPNN 0.399 0.253 0.503 0.121 0.895 

BPNN-K-fold 0.082 0.016 0.125 0.050 0.998 

GA-BPNN 0.073 0.008 0.088 0.027 0.994 

 

 
Fig. 19 Model performance evaluation index radar chart 

7 Conclusion 

This study aims to investigate the performance of the 

optimized BPNN in predicting the resistance of SSS. By 

entering different V and D, the resistance performance of the 

SSS in multiple sailing states is studied. The specific 

conclusions are as follows: 

1) By analyzing the results of the resistance test and 

numerical simulation, it can be found that when an SSS is 

sailing at medium or low speed (Vm = 0.4–1.3 m/s), the effect 

of different cases on the resistance performance is not 

obvious. At high speeds (Vm = 1.4–1.7 m/s), the resistance of 

the edge diving case (Case #1; that is, the upper surface of the 

ship coincides with the water surface) and the surface case 

(Case #0) increases sharply with the increase in speed. 

2) In this study, the resistance performance of SSS in 

various scales is solved based on the RANS method. The 

hydrodynamic pressure of the bow at the real scale is slightly 

larger, reflecting that the wave-making at the bow has a 

specific scale effect. The wave amplitudes of the bow wave 

system and the stern wave system at the model scale are 

significantly lower, resulting in a weakened prediction of the 

wave-making resistance at the model scale. 

3) In this paper, the original data are normalized to ensure 

that the dataset is easier to use. The 55 sets of experimental 

data come from the resistance test results done by the author. 

The dataset is randomly divided into two groups: the first 

group contains 44 sample data for model training and 

validation; the remaining data are used to verify the accuracy 

of the model. In this paper, BPNN is used, and GA and K-fold 

cross-validation are used to optimize the network parameters 
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of the model. After K-fold cross-validation models, the five 

groups of data, in turn, optimize the initial threshold and 

weight of BPNN. Conversely, the genetic algorithm finds the 

optimal thresholds and weights in successive iterations. 

However, both methods improve the accuracy of BPNN 

prediction results. But based on the statistical results of MAE, 

MSE, RMSE, MAPE, and R2, GA-BPNN is the best 

predictive model for SSS resistance. 

4) As a new type of ship, research on the fast performance 

of the SSS has potential application value in the engineering 

field. In the next step, we can combine the innovative design 

of ship form and introduce complex marine environment 

elements such as waves and ice loads for more in-depth 

research. 

 

Nomenclature 

Parameter Abbreviation Unit 

Total length Loa m 

Length between perpendiculars Lpp m 

Beam B m 

Molded depth D m 

Draft T m 

Freeboard F m 

Wetted surface Aw m2 

Total Surface Ao m2 

Reynolds number Re - 

Froude number Fr - 

Diving depth D* m 

Ship model velocity Vm m/s 

Frictional resistance coefficient 

Residual resistance coefficient 

Total resistance coefficient 

Mesh convergence rate 

Uncertainty 

Corresponding test (extrapolation) 

result 

Accuracy order 

Form factor 

Roughness coefficient 

Air resistance coefficient 

Kinematic viscosity coefficient 

Roughness performance 

Volume of displacement 

Cf 

Cr 

Ct 

RG 

UG 

D0 

PG 

k+1 

ΔCf 

CAA 

υ 

Ks 

▽ 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

mm 

m3 

Scale ratio 

Total pressure 

Density of water 

Acceleration of gravity 

Water depth 

λ 

P 

ρ 

g 

h 

- 

Pa 

kg/m3 

m/s2 

m 

Mean absolute error MAE - 

Mean square error MSE - 

Root mean square error RMSE - 

Coefficient of determination R2 - 

Mean absolute percentage error MAPE - 
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