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The aim of the work presented in this paper is the development of theoretical methods
to predict scattering of fan tone noise from a turbofan engine by the airframe fuselage. The
analysis begins with an overview of previous research on fan tone noise scattering by an adjacent
cylindrical fuselage. In all similar previous work the propagation of sound through the fuselage
boundary layer has been calculated using numerical methods. The effect of the boundary
layer can be very significant on the upstream radiated sound from a turbofan’s intake. An
asymptotic approach is presented to model sound propagation within the boundary layer.
An entirely analytic formulation is derived for a thin linear velocity profile. This approach
leads to a far-field solution expressed in terms of a Fourier series, and a near-field solution
expressed in terms of a Fourier series and a Fourier inverse transform. The new formulation
is validated by comparison with simpler analytic solutions, and against existing numerical
solutions. Furthermore, the results using a linear velocity profile are shown to be comparable
with numerical results calculated with a realistic shear velocity profile that closely matches a
turbulent boundary layer. Preliminary results from the new theoretical method are presented
that illustrate the refraction effect by the fuselage boundary layer.

I. Nomenclature

𝑎 = duct radius, m
𝑎0 = fuselage radius, m
𝐵𝑛 = Fourier coefficient for scattered field, uniform flow
𝑏 = distance between the centreline of the fuselage and centreline of the intake duct, m
𝐶𝑛 = Fourier coefficient for scattered field, flow with boundary layer
𝑐0 = speed of sound, m·s−1
𝐸𝑛 = Fourier coefficient for incident field, flow with boundary layer
H(2)

𝑚 = Hankel function of the second kind, order m
𝐼 = denotes integral
J𝑚 = Bessel function of the first kind, order m
𝐾 = non-dimensional axial wavenumber
𝑘0 = freespace wavenumber, rad·m−1

𝑘𝑧𝑙𝑞 = axial wavenumber, mode (𝑙, 𝑞), rad·m−1

𝑙 = azimuthal order
𝑀0 = free-stream Mach number
𝑀𝑤 = Mach number at the fuselage surface
𝑃𝑙𝑞 = pressure amplitude of mode (𝑙, 𝑞), Pa
𝑝′ = acoustic pressure, Pa

∗This is the author’s version (post-print) of the work that was accepted for publication in the proceedings of the AIAA Aviation 2021 Forum,
August 2-6.

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license; http://creativecommons.org/licenses/by-nc-
nd/4.0/

The final version was published in the proceedings of the conference as paper No. 2021-2300. https://doi.org/10.2514/6.2021-2300
†PhD Candidate, Institute of Sound and Vibration Research (ISVR), D-M.Rouvas@soton.ac.uk.
‡Associate Professor, Institute of Sound and Vibration Research (ISVR), A.McAlpine@soton.ac.uk.

1

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.2514/6.2021-2300


𝑞 = radial order
(𝑟, 𝜙, 𝑧) = cylindrical coordinate system centered on the intake duct (or disc source))
(𝑟, 𝜙, 𝑧) = cylindrical coordinate system centered on the fuselage
(�̄�, \̄, 𝜙) = spherical polar coordinate system centred on the fuselage
𝑡 = time,s
Γ = radial wavenumber, rad·m−1

𝛾 = alternative form of radial wavenumber, rad·m−1

Δ0 = wavenumber in real space used in far-field analysis, dependent on \̄, rad·m−1

Δ𝑏𝑙 = difference between sound pressure level with and without the presence of a boundary layer, dB
𝛿 = boundary layer thickness, m
𝜖 = non-dimensional error metric
Y = non-dimensional boundary layer thickness
Z = non-dimensional radial coordinate used to denote location within the boundary layer
^𝑙𝑞 = modal eigenvalue, mode (𝑙, 𝑞), rad·m−1

𝜑 = Mach number distribution inside the boundary layer, dependent on Z
𝜔0 = angular frequency, rad·s−1

Subscripts

𝑓 𝑓 = denotes far-field quantity
𝑖 = denotes incident field
𝑖𝑛 = denotes field inside the boundary layer
𝑛 = denotes quantity is a Fourier–Bessel harmonic
𝑜𝑢𝑡 = denotes field outside the boundary layer
𝑠 = denotes scattered field
𝑡 = denotes total field
0 = denotes free stream value

Superscripts

′ = denotes differentiation with respect to a function’s argument

Symbol

̂ = denotes time-harmonic quantity
¯ = denotes Fourier transformed quantity

II. Introduction

With the introduction of the turbojet engine in the 1950s, commercial aviation entered an era of unprecedented growth.
Over the years, organisations around the world, for example the International Civil Aviation Organisation [1],

have introduced rules and regulations that dictate certain standards regarding noise levels produced by commercial
aircraft. The aim of these standards is to maintain low noise pollution levels despite the frequency of flights continuing
to increase. It is clear that in order for the industry to meet these standards, the use of accurate noise prediction methods
is required.
The most important noise sources can be categorised into three broad groups: engine noise; jet noise; and, airframe

noise. The distribution, strength and directivity of these sources depend on the configuration of the aircraft. The
engine position, engine model, fuselage and wing configuration are all factors to be taken into consideration when
calculating the contribution of each source. Fan noise is one of the dominant sources both during take-off and approach
[2]. However, previous researchers (for example Hanson [3], Hanson and Magliozzi [4], Fuller [5]) have cited that it is
not sufficient to predict the propagation of fan noise in free space, since the engine will be adjacent to the fuselage or
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other parts of the airframe. It is evident that the sound field will interact with the various parts of the airframe. These
interactions are referred to as acoustic installation effects.
Since fan noise is one of the dominant sources, the work in this paper focuses on the modelling of fan tone radiation

and its interaction with an adjacent aircraft fuselage. This interaction leads to substantial alterations in the acoustic
field compared with the same source in free space. Alterations are expected both for the near and the far field. For that
reason it is misleading to calculate only the free-field response of the noise source, its acoustic installation effects must
be included. Installation effects are important for the aviation industry to understand and predict since community noise
exposure, quantified in terms of the Effective Perceived Noise Level (EPNL) metric, is a function of the noise generated
by the aircraft as a whole.
The aim of this work is the development of theoretical methods to predict scattering of fan tone noise from a

turbofan engine by the airframe fuselage. Fan noise includes strong tonal components, thus the analysis is based on a
time-harmonic sound field. More specifically, the aim is to develop and validate analytic expressions that describe the
acoustic near- and far-field from an installed fan tone noise source adjacent to a cylindrical fuselage. This model shown
illustrated in Fig. (1) replicates the real-life situation of a turbofan engine mounted under the wing with its intake duct
next to the fuselage. In this work, the term scattering will refer to reflection and diffraction around a cylindrical fuselage.
The fan tone noise source is modelled by a distributed disc source which simulates an acoustic spinning mode radiated
from a cylindrical intake. The total field, comprised of the sum of the incident field and scattered field, is calculated
separately for the near- or far-field. The objective is to provide physical insight of the acoustic field in the presence of
the cylindrical fuselage, with the key application being fan tone radiation from ultra high-bypass-ratio turbofan engines.
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rigid, infinite
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Fig. 1 Sketch of an installed turbofan aero-engine. Taken from Ref. [8].

The principal novel contributions of this work are the following. Previous work on the same topic has used
numerical solutions (for example McAninch [6], Tam and Morris [7], Hanson and Magliozzi [4], McAlpine, Gaffney
and Kingan [8], Gaffney, McAlpine and Kingan [10]), whereas in this article all the formulations are entirely based on
analytical methods. Analytical solutions have extremely low computational cost, and in acoustics can be used to provide
rapid predictions and physical insight of realistic noise problems. Secondly, this work focusses on both the acoustic
far-field as well as the near-field. Most of the research so far has been restricted to the near-field pressure that affects
cabin noise, with very few researchers (with the exception of Lu [11]) considering in detail the far-field that affects
ground noise. In this paper, expressions are derived for the polar and azimuthal directivity around the fuselage. Thirdly,
it is demonstrated that the predicted results from the analytic methods are comparable with other numerical methods,
and that the simplifications involved in the theory do not compromise the accuracy of the results.
A large proportion of the research on fuselage scattering has focussed on the effect of the boundary layer on the
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sound propagation. The objective is to predict the characteristic refraction of the upstream propagating sound due to the
presence of a boundary layer on the fuselage as shown illustrated in Fig. (2). In the last forty years, methods have been
proposed and successfully implemented to predict the acoustic pressure on the fuselage surface in the presence of a
boundary layer. McAninch [6] was the first researcher to identify the difficulties associated with analytically solving the
sound propagation in a shear layer. Several researchers after that focused on the scattering by the fuselage accounting
for propagation of the sound through the fuselage’s boundary layer. Hanson and Magliozzi [4] were the first to introduce
a model for predicting the scattered field due to an adjacent propeller source. It was not until recently that a comparable
model was introduced that predicted the scattering of fan tone sources by the fuselage (Gaffney et al. [10]). Furthermore,
all the previous methods require a numerical evaluation of the Pridmore-Brown equation to predict the sound field
contained within the boundary layer. In this paper, an analytic method is outlined to predict the sound field within the
boundary layer, solving the Pridmore-Brown equation. This is based on an asymptotic method in duct acoustics by
Eversman and Beckemeyer [12].

distance 

vertical 

to surface

Flow 

velocity

Free stream region

Boundary layer region

Fig. 2 Sketch of refracted rays downstream and upstream of the source. Taken from Ref. [14].

III. Theoretical Background and Analysis

A. In-duct Sound Field
Following McAlpine et al. [8], the analysis starts by considering a ducted fan in a cylindrical intake of radius 𝑎.

The original cylindrical polar coordinate system that is used has its 𝑧-axis coincident with the centreline of the intake
duct (as shown in Fig. (3)). Also there is a subsonic uniform mean flow, Mach number 𝑀𝑧 = 𝑈𝑧/𝑐0, directed in the
negative 𝑧-direction. The sound field generated by the ducted fan is modelled using “spinning modes“ [15]. To avoid
any confusion, it is stated that in the following analysis the time-harmonic convention is exp {+i𝜔0𝑡}. A time-harmonic
spinning mode with azimuthal order 𝑙 and radial order 𝑞 has acoustic pressure and axial particle velocity given by
(eqs.(1) through (4) in Ref. [8])

𝑝𝑙𝑞 = 𝑃𝑙𝑞J𝑙 (^𝑙𝑞𝑟)ei(−𝑙𝜙−𝑘𝑧𝑙𝑞 𝑧) , (1)

�̂�𝑧𝑙𝑞 =
b𝑙𝑞

𝜌0𝑐0
𝑃𝑙𝑞J𝑙 (^𝑙𝑞𝑟)ei(−𝑙𝜙−𝑘𝑧𝑙𝑞 𝑧) , (2)

where 𝑃𝑙𝑞 is the modal amplitude,

b𝑙𝑞 =
𝑘𝑧𝑙𝑞

(𝑘0 + 𝑘𝑧𝑙𝑞𝑀𝑧)
, (3)

and the dispersion relationship is given by

𝑘2𝑧𝑙𝑞 + ^2𝑙𝑞 = (𝑘0 + 𝑘𝑧𝑙𝑞𝑀𝑧)2. (4)

The Bessel function of the first kind and order 𝑙 is denoted by J𝑙 . Also, ^𝑙𝑞 is the set of eigenvalues which satisfy
J′
𝑙
(^𝑙𝑞𝑎) = 0, 𝑘𝑧𝑙𝑞 is the axial wavenumber of mode (𝑙, 𝑞), 𝑐0 is the speed of sound, 𝜌0 is the mean density of the air
inside the duct, and the freespace wavenumber 𝑘0 = 𝜔0/𝑐0. The cylindrical polar coordinates are (𝑟, 𝜙, 𝑧).
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Fig. 3 Coordinate systems for the source and the cylinder.

B. Uniform Flow Analysis
From McAlpine et al. [8], the acoustic pressure generated by a fan tone exiting a cylindrical duct is modelled by

integrating a distribution of monopole sources over the cross-section of the duct termination. In this paper only a brief
review of the derivation is presented in the appendix; the full derivation is in Ref. [8]. The acoustic pressure is

𝑝′𝑖 (𝑟, 𝜙, 𝑧, 𝑡) =
b𝑙𝑞𝑃𝑙𝑞

4

∫ ∞

−∞
(𝑘0 + 𝑘𝑧𝑀𝑧)Ψ𝑙𝑞H(2)

𝑙
(Γ0𝑟)e−i𝑘𝑧 𝑧d𝑘𝑧e−i𝑙𝜙ei𝜔0𝑡 . (5)

This equation describes the incident field and it is in terms of the cylindrical coordinate system centered on the centerline
of the source. However, the scattered field is centered on the fuselage, because the scattered waves take the form of the
scattering surface. Thus the incident field needs to be shifted from the source’s coordinate system to the fuselage’s
coordinate system. This is performed by using Graf’s Addition Theorem listed in Abramowitz and Stegun [16], and
detailed in the appendix.
An important distinction must be made here. In order to use Graf’s theorem, in this paper the near-field is considered

the space where 𝑟 < 𝑏, and the far-field is considered the space where 𝑟 > 𝑏. The geometrical parameters are shown in
Fig.(3). For the near-field result where 𝑟 < 𝑏, the Fourier transformed incident pressure is dependent on 𝑟 via a Bessel
function

𝑝′
𝑖𝑛
(𝑟, 𝑘𝑧 , 𝑡) = 𝜋2b𝑙𝑞𝑃𝑙𝑞 (−1)𝑙+𝑛 (𝑘0 + 𝑘𝑧𝑀)Ψ𝑙𝑞 e−i(𝑙−𝑛)𝛽 H(2)

𝑙−𝑛 (Γ0𝑏) J𝑛 (Γ0𝑟) e
i𝜔0𝑡 , (6)

where Γ20 = (𝑘0 + 𝑘𝑧𝑀𝑧)2 − 𝑘2𝑧 is a radial wavenumber and the function Ψ𝑙𝑞 is given by

Ψ𝑙𝑞 =
Γ0𝑎

^2
𝑙𝑞
− Γ20

J𝑙 (^𝑙𝑞𝑎)J′𝑙 (Γ0𝑎), Γ0 ≠ ^𝑙𝑞 , (7)

Ψ𝑙𝑞 =
1
2

(
𝑎2 − 𝑙2

^2
𝑙𝑞

)
J2𝑙 (^𝑙𝑞𝑎), Γ0 = ^𝑙𝑞 . (8)

McAlpine et al. [8] did not derive the far-field result. In this case, where 𝑟 > 𝑏, application of Graf’s theorem will give a
modified incident field dependent on 𝑟 through a Hankel function (as first shown by Lu [11])

𝑝′
𝑖𝑛
(𝑟, 𝑘𝑧 , 𝑡) = 𝜋2b𝑙𝑞𝑃𝑙𝑞 (𝑘0 + 𝑘𝑧𝑀)Ψ𝑙𝑞 ei(𝑛−𝑙)𝛽 J𝑛−𝑙 (Γ0𝑏) H(2)

𝑛 (Γ0𝑟) ei𝜔0𝑡 . (9)

The governing equation that describes the scattered field is the homogeneous convected wave equation, and since the
solution must be outward propagating cylindrical waves it can be expressed in terms of a Hankel function,

𝑝′𝑠𝑛 (𝑟, 𝑘𝑧 , 𝑡) =
1
2𝜋
𝐵𝑛 (𝑘𝑧 , 𝜔0)H(2)

𝑛 (Γ0𝑟) ei𝜔0𝑡 . (10)
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By taking the total Fourier transformed pressure field given by the sum of the incident and the scattered fields,

𝑝′𝑡𝑛 (𝑟, 𝑘𝑧 , 𝑡) = 𝑝′
𝑖𝑛
(𝑟, 𝑘𝑧 , 𝑡) + 𝑝′𝑠𝑛 (𝑟, 𝑘𝑧 , 𝑡), (11)

and by employing a rigid hard-wall boundary condition at the fuselage surface,

𝜕𝑝′𝑡𝑛
𝜕𝑟

=
𝜕𝑝′

𝑖𝑛

𝜕𝑟
+ 𝜕𝑝

′
𝑠𝑛

𝜕𝑟
= 0 at 𝑟 = 𝑎0, (12)

where 𝑝′
𝑖𝑛
is the near-field expression given by eq.(6) since the fuselage surface lies in the near-field, one can solve for

the coefficient 𝐵𝑛 (𝑘𝑧 , 𝜔0),

𝐵𝑛 (𝑘𝑧 , 𝜔0) = −2𝜋3b𝑙𝑞𝑃𝑙𝑞 (−1)𝑙+𝑛 e−i(𝑙−𝑛)𝛽 (𝑘0 + 𝑘𝑧𝑀)Ψ𝑙𝑞 H(2)
𝑙−𝑛 (Γ0𝑏)

J′𝑛 (Γ0𝑎0)
H(2) ′

𝑛 (Γ0𝑎0)
. (13)

By substituting eq.(13) into eq.(10), the Fourier transformed scattered field is obtained,

𝑝′𝑠𝑛 (𝑟, 𝑘𝑧 , 𝑡) = −𝜋2b𝑙𝑞𝑃𝑙𝑞 (−1)𝑙+𝑛 e−i(𝑙−𝑛)𝛽 (𝑘0 + 𝑘𝑧𝑀)Ψ𝑙𝑞 H(2)
𝑙−𝑛 (Γ0𝑏) H

(2)
𝑛 (Γ0𝑟)

J′𝑛 (Γ0𝑎0)
H(2) ′

𝑛 (Γ0𝑎0)
ei𝜔0𝑡 . (14)

Finally the total field is found by summing the incident field and the scattered field, either in the near-field in which case
equations (6) and (14) are summed together, or in the far-field in which case equations (9) and (14) are summed together.
The total field in real space is found by performing an inverse Fourier 𝑧-transform

𝑝′𝑡 (𝑟, 𝜙, 𝑧, 𝑡) =
1

(2𝜋)2
∞∑︁

𝑛=−∞

∫ ∞

−∞
𝑝′𝑡𝑛 (𝑟, 𝑘𝑧 , 𝑡) e−i𝑘𝑧 �̄� d𝑘𝑧 e−i𝑛�̄� . (15)

1. Fuselage Surface Pressure
The near-field case is of interest on setting 𝑟 = 𝑎0 since it describes the pressure on the fuselage surface. By setting

𝑟 = 𝑎0 and using eq.(11) with the Fourier transformed incident field given by eq.(6) and scattered field given by eq.(14),

𝑝′𝑡𝑛 (𝑎0, 𝑘𝑧 , 𝑡) = 𝜋2b𝑙𝑞𝑃𝑙𝑞 (−1)𝑙+𝑛 e−i(𝑙−𝑛)𝛽 (𝑘0 + 𝑘𝑧𝑀)Ψ𝑙𝑞 H(2)
𝑙−𝑛 (Γ0𝑏)×[

J𝑛 (Γ0𝑎0)H(2) ′
𝑛 (Γ0𝑎0) − J′𝑛 (Γ0𝑎0) H

(2)
𝑛 (Γ0𝑎0)

H(2) ′
𝑛 (Γ0𝑎0)

]
ei𝜔0𝑡 .

(16)

Then by using the Wronskian formula,

J𝑛 (𝑥) H(2) ′
𝑛 (𝑥) − J′𝑛 (𝑥) H

(2)
𝑛 (𝑥) = −i

(
2
𝜋𝑥

)
, (17)

the following is obtained,

𝑝′𝑡𝑛 (𝑎0, 𝑘𝑧 , 𝑡) = 𝜋2b𝑙𝑞𝑃𝑙𝑞 (−1)𝑙+𝑛 e−i(𝑙−𝑛)𝛽 (𝑘0 + 𝑘𝑧𝑀)Ψ𝑙𝑞 H(2)
𝑙−𝑛 (Γ0𝑏)×[(

− i(2/𝜋Γ0𝑎0)
)
/H(2) ′

𝑛 (Γ0𝑎0)
]
ei𝜔0𝑡 .

(18)

Finally, the total pressure in real space is given by eq.(15) substituting 𝑝′𝑡𝑛 (𝑟, 𝑘𝑧 , 𝑡) with 𝑝′𝑡𝑛 (𝑎0, 𝑘𝑧 , 𝑡) from eq.(18),

𝑝′𝑡 (𝑎0, 𝜙, 𝑧, 𝑡) =
b𝑙𝑞𝑃𝑙𝑞

4
(−1)𝑙 e−i𝑙𝛽 ei𝜔0𝑡

∞∑︁
𝑛=−∞

{
(−1)𝑛 𝐼𝑛 (𝑎0, 𝑧) e−i𝑛( �̄�−𝛽)

}
, (19)

where

𝐼𝑛 (𝑎0, 𝑧) =

∫ ∞

−∞
(𝑘0 + 𝑘𝑧𝑀)Ψ𝑙𝑞 H(2)

𝑙−𝑛 (Γ0𝑏)
[(
−i(2/𝜋Γ0𝑎0)

)
/H(2) ′

𝑛 (Γ0𝑎0)
]
e−i𝑘𝑧 �̄� d𝑘𝑧 . (20)

This integral cannot be solved analytically and a numerical integration routine is employed. Equations (19) and (20)
give the pressure at the surface of the cylindrical fuselage which is relevant for the assessment of cabin noise.
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2. Total Far-Field
The same process is followed for the far-field case. Once again, the Fourier transformed total field is described by

eq.(11). The Fourier transformed scattered field is given by eq.(14) as in the near-field case. However, for the far-field
case the Fourier transformed incidence field in eq.(11) is given by eq.(9),

𝑝′𝑡𝑛 (𝑟, 𝑘𝑧 , 𝑡) = 𝜋2b𝑙𝑞𝑃𝑙𝑞 ei(𝑛−𝑙)𝛽 (𝑘0 + 𝑘𝑧𝑀)Ψ𝑙𝑞 H(2)
𝑛 (Γ0𝑟) ei𝜔0𝑡×[ J𝑛−𝑙 (Γ0𝑏)H(2) ′

𝑛 (Γ0𝑎0) − H(2)
𝑛−𝑙 (Γ0𝑏) J

′
𝑛 (Γ0𝑎0)

H(2) ′
𝑛 (Γ0𝑎0)

]
.

(21)

Again the total far-field pressure in real space is obtained by using eq.(15) substituting 𝑝′𝑡𝑛 (𝑟, 𝑘𝑧 , 𝑡) with its expression
in eq.(21). The resulting inverse Fourier 𝑧-transform integral in eq.(15) can be solved asymptotically by employing
spherical polar coordinates and a large argument approximation for the Hankel function term which is dependent on 𝑟 .
This expresses the integral in an appropriate form to be solved by applying the method of stationary phase, as shown in
the appendix. The final far-field expression in terms of spherical polar coordinates is

𝑝′𝑡 (�̄�, \̄, 𝜙, 𝑡) =
ib𝑙𝑞𝑃𝑙𝑞𝑘0
2�̄�

Ψ𝑙𝑞 (Δ0)
𝑆(\̄)

(1 − 𝑀2 sin2 \̄)

∞∑︁
𝑛=−∞

ei(𝑛−𝑙)𝛽 e
1
2 𝑛𝜋i ei𝜔0𝑡×

e−i𝑘0 �̄�𝑆 ( \̄) e−i𝑛�̄�
[ J𝑛−𝑙 (Δ0𝑏)H(2) ′

𝑛 (Δ0𝑎0) − H(2)
𝑛−𝑙 (Δ0𝑏) J

′
𝑛 (Δ0𝑎0)

H(2) ′
𝑛 (Δ0𝑎0)

]
,

(22)

where Δ0 =
𝑘0 sin \̄

(1−𝑀 2 sin2 \̄)1/2 and 𝑆(\̄) =
( (1−𝑀 2 sin2 \̄)1/2+𝑀 cos \̄)

𝜎2
. This far-field expression is expressed in terms of a

Fourier series and has been validated by reducing the disc source to a point source. When this is performed, after
considerable algebraic manipulaton, eq.(22) reduces to the known solution for a stationary monopole adjacent to a
cylinder given by Bowman (page 127, eq.(2.149) from Ref. [18]).

C. Linear Boundary Layer Profile Analysis
According to previous research ([3], [4], [10], [11]) the refraction effect due to the presence of a boundary layer

on the fuselage cannot be ignored. Experimental data on fuselage pressure presented in Ref. [4] show a substantial
discrepancy between the theoretical results and the measurements upstream of the engine source. That is because the
theoretical results were based on a uniform flow assumption and did not take into account the presence of the boundary
layer on the fuselage. All previous work used numerical methods to solve the equation that governs propagation inside
the boundary layer, namely the Pridmore-Brown equation [13]

D0
D𝑡

(
D02𝑝
D𝑡2

− ∇2𝑝
)
− 2𝑀 ′ 𝜕

2𝑝

𝜕𝑟𝜕𝑧
= 0, (23)

where 𝑀 ′ = d𝑀/d𝑟 is the Mach number gradient. In this paper the key analysis is an analytical approach to solve the
Pridmore-Brown equation. This is possible, but subject to constraints. Eversman and Beckemeyer [12] proposed an
asymptotic method that was proven to be accurate for sufficiently thin boundary layers. The work presented here is
based on this method and applied to a linear velocity profile. That will simplify the calculations and facilitate quicker
results in contrary to previous numerical work. Also, by allowing a slip velocity at the wall, the linear profile can be
used to simulate other profiles such as the quarter-sine or the 1/7th power law.

1. Power Series Solution
The analysis is applied to a linear boundary layer with slip on the wall 𝑀𝑤 and free stream Mach number 𝑀0. A

sketch of the linear boundary layer problem is shown in Fig. (4). The Mach number profile inside the linear boundary
layer is defined as

𝑀 = 𝑀0𝜑(Z) = 𝑀0

(
Z
𝑀0 − 𝑀𝑤

𝑀0
+ 𝑀𝑤

𝑀0

)
. (24)
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Fig. 4 Boundary layer with linear velocity profile.

The Fourier transformed Pridmore-Brown equation expressed in cylindrical polar coordinates describes the total
field inside the boundary layer

d2𝑝′𝑡𝑖𝑛
d𝑟2

+
(
1
𝑟
− 2𝑘𝑧𝑀 ′

𝑘0 + 𝑘𝑧𝑀

) d𝑝′𝑡𝑖𝑛
d𝑟

+
[
(𝑘0 + 𝑘𝑧𝑀)2 − 𝑘2𝑧 −

𝑛2

𝑟2

]
𝑝′𝑡𝑖𝑛 = 0. (25)

The initial part of the analysis is to change variables firstly to 𝑦 = 𝑟−𝑎0
𝑎0
, and then to Z =

𝑦

Y
, with the parameter

Y =
𝛿

𝑎0
, (26)

which is the non-dimenional boundary layer thickness. This change of variable is performed in order to shift the limits
of the boundary layer from 𝑎0 < 𝑟 < 𝑎0 + 𝛿 to 0 < Z < 1.
With these changes, eq.(25) becomes

d2𝑝′𝑡𝑖𝑛
dZ2

+
(

Y

YZ + 1 −
2𝐾𝑀0
1 + 𝐾𝑀

d𝜑
dZ

) d𝑝′𝑡𝑖𝑛
dZ

+ Y2
{
(𝑘0𝑎0)2

[
(1 + 𝐾𝑀)2 − 𝐾2

]
− 𝑛2

(YZ + 1)2

}
𝑝′𝑡𝑖𝑛 = 0, (27)

where 𝐾 = 𝑘𝑧/𝑘0. The boundary condition at the fuselage surface is a rigid hard-wall boundary condition, which means

d𝑝′𝑡𝑖𝑛
dZ

= 0 at Z = 0, (28)

because 𝑟 = 𝑎0 ⇒ Z = 0 by definition.
Following Eversman and Beckemeyer [12], eq.(27) can be solved using a power series solution in Y of the form,

𝑝′𝑡𝑖𝑛 (Z) = 𝑝
′
0 (Z) + Y𝑝

′
1 (Z) + Y

2𝑝′2 (Z) + Y
3𝑝′3 (Z) + . . . , (29)

with a slight abuse of notation, omitting for convenience the arguments 𝑘𝑧 and 𝑡 of 𝑝′𝑡𝑖𝑛 and also the exp {i𝜔0𝑡}
dependence. By substituting this solution into eq.(27) and eq.(28) and equating the same powers of Y, differential
equations and boundary conditions can be obtained for each of the terms in the power series.
Zeroth order:

d2𝑝′0
dZ2

− 2𝐾𝑀0
1 + 𝐾𝑀0𝜑

d𝜑
dZ
d𝑝′0
dZ

= 0, (30)

d𝑝′0
dZ

(Z = 0) = 0. (31)
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First order:
d2𝑝′1
dZ2

− 2𝐾𝑀0
1 + 𝐾𝑀0𝜑

d𝜑
dZ
d𝑝′1
dZ

= −
d𝑝′0
dZ

, (32)

d𝑝′1
dZ

(Z = 0) = 0. (33)

Second order:

d2𝑝′2
dZ2

− 2𝐾𝑀0
1 + 𝐾𝑀0𝜑

d𝜑
dZ
d𝑝′2
dZ

= −
d𝑝′1
dZ

+ Z
d𝑝′0
dZ

− 𝑋𝑝′0 + 𝑛
2𝑝′0, 𝑋 = (𝑘0𝑎0)2

[
(1 + 𝐾𝑀0𝜑)2 − 𝐾2

]
, (34)

d𝑝′2
dZ

(Z = 0) = 0. (35)

Third order:

d2𝑝′3
dZ2

− 2𝐾𝑀0
1 + 𝐾𝑀0𝜑

d𝜑
dZ
d𝑝′3
dZ

= −
d𝑝′2
dZ

+ Z
d𝑝′1
dZ

− Z2
d𝑝′0
dZ

− 𝑋𝑝′1 + 𝑛
2𝑝′1 − 2Z𝑛

2𝑝′0, (36)

d𝑝′3
dZ

(Z = 0) = 0. (37)

By arbitrarily specifying the pressure at the wall, for the zeroth-order term

𝑝′0 (Z = 0) = 𝑝′𝑡𝑖𝑛 (0), (38)

and for the higher-order terms

𝑝′1 (Z = 0) = 0,
𝑝′2 (Z = 0) = 0 etc.

(39)

Each term in the power series can be determined by systematically solving the set of differential equations and boundary
conditions (eqs.(30–37).
Zeroth order:

d𝑝′0
dZ

= 0 ⇒ 𝑝′0 (Z) = constant,

⇒ 𝑝′0 (Z) = 𝑝
′
𝑡𝑖𝑛
(0). (40)

First order:

d𝑝′1
dZ

= 0 ⇒ 𝑝′1 (Z) = constant,

⇒ 𝑝′1 (Z) = 0. (41)

Second order:

d𝑝′2
dZ

= 𝑝′𝑡𝑖𝑛 (0) (1 + 𝐾𝑀0𝜑)
2
[
`

∫ Z

0

d[
(1 + 𝐾𝑀0𝜑([))2

− aZ
]
, (42)

⇒ 𝑝′2 (Z) = 𝑝′𝑡𝑖𝑛 (0)
∫ Z

0

{
(1 + 𝐾𝑀0𝜑(𝜎))2

[
`

∫ 𝜎

0

d[
(1 + 𝐾𝑀0𝜑([))2

− a𝜎
]}
d𝜎. (43)
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Third order:

d𝑝′3
dZ

= −𝑝′𝑡𝑖𝑛 (0) (1 + 𝐾𝑀0𝜑)
2
{∫ Z

0

[
`

∫ b

0

d[
(1 + 𝐾𝑀0𝜑([))2

− ab
]
db + 2

∫ Z

0

𝑚𝑛2

(1 + 𝐾𝑀0𝜑(𝑚))2
d𝑚

}
, (44)

⇒ 𝑝′3 (Z) = −𝑝′𝑡𝑖𝑛 (0)
∫ Z

0
(1 + 𝐾𝑀0𝜑(𝜎))2

{∫ 𝜎

0

[
`

∫ b

0

d[
(1 + 𝐾𝑀0𝜑([))2

− ab
]
db +

2
∫ 𝜎

0

𝑚𝑛2

(1 + 𝐾𝑀0𝜑(𝑚))2
d𝑚

}
d𝜎. (45)

Note that in eqs. (42–45)
a = (𝑘0𝑎0)2 and ` = (𝑘0𝑎0)2𝐾2 + 𝑛2. (46)

With these terms known, the power series expression can be evaluated. For the pressure, up to the second order
terms are retained in order to have an error of 𝑂 (Y3),

𝑝′𝑡𝑖𝑛 (Z) = 𝑝
′
0 (Z) + Y𝑝

′
1 (Z) + Y

2𝑝′2 (Z). (47)

Substituting eqs. (40), (41) and (43) into eq. (47) gives

𝑝′𝑡𝑖𝑛 (Z) = 𝑝
′
𝑡𝑖𝑛
(0)

{
1 + Y2

∫ Z

0

[
(1 + 𝐾𝑀0𝜑(𝜎))2

[
`

∫ 𝜎

0

d[
(1 + 𝐾𝑀0𝜑([))2

− a𝜎
] ]
d𝜎

}
. (48)

In order to retain comparative relative error, following Eversman and Beckemeyer [12], the expression for the pressure
derivative is carried to within an error of 𝑂 (Y4),

d𝑝′𝑡𝑖𝑛
dZ

(Z) =
d𝑝′0
dZ

(Z) + Y
d𝑝′1
dZ

(Z) + Y2
d𝑝′2
dZ

(Z) + Y3
d𝑝′3
dZ

(Z). (49)

Substituting the terms from eqs. (40), (41), (42) and (44) into eq. (49) gives,

d𝑝′𝑡𝑖𝑛
dZ

(Z) =Y2𝑝′𝑡𝑖𝑛 (0) (1 + 𝐾𝑀0𝜑)
2

{[
`

∫ Z

0

d[
(1 + 𝐾𝑀0𝜑([))2

− aZ
]

− Y
[∫ Z

0

[
`

∫ b

0

d[
(1 + 𝐾𝑀0𝜑([))2

− ab
]
db + 2𝑛2

∫ Z

0

𝑚

(1 + 𝐾𝑀0𝜑(𝑚))2
d𝑚

]}
.

(50)

The integrals in eqs. (48) and (50) need to be evaluated in order to obtain expressions for the pressure and its derivative
as a function of Z .
Before the integrals are evaluated, the following quantities are introduced to facilitate the integrations. These

quantities are
𝑠 = 𝐾 (𝑀0 − 𝑀𝑤 ), (51)

and
𝑔 = 𝐾 (𝑀0 − 𝑀𝑤 ) (1 + 𝐾𝑀𝑤 ) = 𝑠(1 + 𝐾𝑀𝑤 ). (52)

This will transform the term (1 + 𝐾𝑀0𝜑)2 into

(1 + 𝐾𝑀0𝜑)2 = (1 + 𝐾Z (𝑀0 − 𝑀𝑤 ) + 𝐾𝑀𝑤 )2 = (𝑔/𝑠 + Z 𝑠)2. (53)

Then solving the integrals for the linear velocity profile leads to the power series Fourier transformed pressure as a
function of Z to within an error of 𝑂 (Y3),

𝑝′𝑡𝑖𝑛 (Z) = 𝑝
′
𝑡𝑖𝑛
(0)

{
1 + Y2

[
−a𝑠2 Z

4

4
+ Z

3

3
( 𝑠2`
𝑔

− 2a𝑔
)
+ Z

2

2
(
` − a 𝑔

2

𝑠2

) ]}
. (54)

Additionally the power series Fourier transformed pressure derivative as a function of Z to within an error of 𝑂 (Y4) is,

d𝑝′𝑡𝑖𝑛
dZ

(Z) = Y2𝑝′𝑡𝑖𝑛 (0)
{
−a𝑠2Z3 + Z2 (` 𝑠

2

𝑔
− 2a𝑔) + Z (` − a𝑔2/𝑠2)

− Y
[
(2𝑛2 − `)

[
(Z + 𝑔/𝑠2)2 ln

(
𝑠2Z

𝑔
+ 1

)
− Z 𝑔

𝑠2

]
− a𝑠2 Z

4

2
+ Z3 (` 𝑠

2

𝑔
− a𝑔) − Z2

[
2(𝑛2 − `) + a

2
𝑔2

𝑠2

] ]}
.

(55)
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2. Matching of the Two Solutions
In order to match the two solutions at the edge of the boundary layer, 𝑟 = 𝑎0 + 𝛿 or equivalently Z = 1, the pressure

and its derivative at that point must be known. Therefore, 𝑝′𝑡𝑖𝑛 and
d𝑝′𝑡𝑖𝑛
d𝑟 in eqs. (54) and (55) are evaluated at Z = 1.

𝑝′𝑡𝑖𝑛 (Z = 1) = 𝑝′𝑡𝑖𝑛 (0)
{
1 + Y2

[
`

( 𝑠2
3𝑔

+ 1
2

)
− a

( 𝑠2
4

+ 2
3
𝑔 + 1
2
𝑔2

𝑠2

)]}
. (56)

d𝑝′𝑡𝑖𝑛
d𝑟

(Z = 1) = Y
𝑎0
𝑝′𝑡𝑖𝑛 (0) (1 + 𝐾𝑀0)

2

{
`

( 1
𝑔
− 1

(𝑠2 + 𝑔)

)
− a

− Y
[
(2𝑛2 − `)

𝑠2
ln

(
𝑠2 + 𝑔
𝑔

)
− 2𝑛2

𝑠2 + 𝑔
+ `
𝑔
− a

2

]}
.

(57)

Outside the boundary layer the mean flow is uniform and thus the total field can be expressed in terms of an incident
and scattered field derived previously in Sec. B. The Fourier transformed incident field is given in eq.(6) or written
alternatively as

𝑝′
𝑖𝑜𝑢𝑡

(𝑟) = 𝐸𝑛 (𝑘𝑧 , 𝜔0)J𝑛 (Γ0𝑟), (58)

again omitting the arguments 𝑘𝑧 and 𝑡 and the exp {i𝜔0𝑡} dependence. where

𝐸𝑛 (𝑘𝑧 , 𝜔0) = 𝜋2b𝑙𝑞𝑃𝑙𝑞 (−1)𝑙+𝑛 (𝑘0 + 𝑘𝑧𝑀0)Ψ𝑙𝑞 e−i(𝑙−𝑛)𝛽 H(2)
𝑙−𝑛 (Γ0𝑏). (59)

On the other hand, the Fourier transformed scattered field is given in eq.(10), or written alternatively as

𝑝′𝑠𝑜𝑢𝑡 (𝑟) =
1
2𝜋
𝐶𝑛 (𝑘𝑧 , 𝜔0)H(2)

𝑛 (Γ0𝑟), (60)

also with a different symbol used for the coefficient. (The coefficient is renamed because with the inclusion of the
boundary layer, the coefficient is not the same as its value with uniform mean flow everywhere.)
Inside the boundary layer, the Fourier transformed total field is described in eqs. (54) and (55). The matching of

the two solutions is essential in order to determine the two unknowns of the problem, namely the Fourier transformed
pressure at the fuselage wall 𝑝′𝑡𝑖𝑛 (0) in eqs. (54) and (55), and the coefficient 𝐶𝑛 (𝑘𝑧 , 𝜔0) in eq.(60). The evaluation of
𝑝′𝑡𝑖𝑛 (0) is one of the key results of the analysis in this paper since it specifies the pressure at the wall which is practically
the most important part of the near-field solution.
The matching is performed by using two continuity conditions at the edge of the boundary layer, 𝑟 = 𝑎0 + 𝛿 or

equivalently Z = 1. The pressure continuity condition,

𝑝′𝑡𝑖𝑛 (Z = 1) = 𝑝′𝑡𝑜𝑢𝑡 (𝑟 = 𝑎0 + 𝛿), (61)

and the particle displacement continuity condition, which in the linear profile case reduces to a pressure gradient
continuity condition,

d𝑝′𝑡𝑖𝑛
d𝑟

(Z = 1) =
d𝑝′𝑡𝑜𝑢𝑡
d𝑟

(𝑟 = 𝑎0 + 𝛿). (62)

Since the total Fourier transformed field outside the layer is the sum of the incident and the scattered field, the
pressure continuity condition is expressed as

𝑝′𝑡𝑖𝑛 (Z = 1) = 𝑝′
𝑖𝑜𝑢𝑡

(𝑟 = 𝑎0 + 𝛿) + 𝑝′𝑠𝑜𝑢𝑡 (𝑟 = 𝑎0 + 𝛿), (63)

and by substituting eqs. (56), (58) and (60) into eq.(63),

𝑝′𝑡𝑖𝑛 (0)
{
1 + Y2

[
`

(
𝑠2

3𝑔
+ 1
2

)
− a

(
𝑠2

4
+ 2
3
𝑔 + 1
2
𝑔2

𝑠2

)]}
= 𝐸𝑛 (𝑘𝑧 , 𝜔0)J𝑛 (Γ0 (𝑎0 + 𝛿)) +

1
2𝜋
𝐶𝑛 (𝑘𝑧 , 𝜔0)H(2)

𝑛 (Γ0 (𝑎0 + 𝛿)).

(64)
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The same procedure is followed for the pressure gradient continuity condition,

d𝑝′𝑡𝑖𝑛
d𝑟

(Z = 1) =
d𝑝′

𝑖𝑜𝑢𝑡

d𝑟
(𝑟 = 𝑎0 + 𝛿) +

d𝑝′𝑠𝑜𝑢𝑡
d𝑟

(𝑟 = 𝑎0 + 𝛿), (65)

and substituting eq.(57), (58) and (60) into eq.(65),

Y

𝑎0
𝑝′𝑡𝑖𝑛 (0) (1 + 𝐾𝑀0)

2

{
`

(
1
𝑔
− 1

(𝑠2 + 𝑔)

)
− a − Y

[
(2𝑛2 − `)

𝑠2
ln

(
𝑠2 + 𝑔
𝑔

)
− 2𝑛2

𝑠2 + 𝑔
+ `
𝑔
− a

2

]}
= 𝐸𝑛 (𝑘𝑧 , 𝜔0)Γ0J′𝑛 (Γ0 (𝑎0 + 𝛿)) +

1
2𝜋
𝐶𝑛 (𝑘𝑧 , 𝜔0)Γ0H(2) ′

𝑛 (Γ0 (𝑎0 + 𝛿)),

(66)

Using eqs. (64) and (66), solving for 𝑝′𝑡𝑖𝑛 (0) and 𝐶𝑛 (𝑘𝑧 , 𝜔0) leads to

𝑝′𝑡𝑖𝑛 (0) =
𝐸𝑛 (𝑘𝑧 , 𝜔0)

𝐺

[
J𝑛 (Γ0 (𝑎0 + 𝛿))

+

[
J′𝑛 (Γ0 (𝑎0 + 𝛿)) − 𝑅

𝐺
Y

Γ0𝑎0
(1 + 𝐾𝑀0)2J𝑛 (Γ0 (𝑎0 + 𝛿))

][
𝑅
𝐺

Y
Γ0𝑎0

(1 + 𝐾𝑀0)2H(2)
𝑛 (Γ0 (𝑎0 + 𝛿)) − H(2) ′

𝑛 (Γ0 (𝑎0 + 𝛿))
]H(2)

𝑛 (Γ0 (𝑎0 + 𝛿))
]
,

(67)

where

𝐺 =

{
1 + Y2

[
`

( 𝑠2
3𝑔

+ 1
2

)
− a

( 𝑠2
4

+ 2
3
𝑔 + 1
2
𝑔2

𝑠2

)]}
, (68)

and

𝑅 =

{
`

( 1
𝑔
− 1

(𝑠2 + 𝑔)

)
− a − Y

[
(2𝑛2 − `)

𝑠2
ln

(
𝑠2 + 𝑔
𝑔

)
− 2𝑛2

𝑠2 + 𝑔
+ `
𝑔
− a

2

]}
. (69)

The evaluation of 𝑝′𝑡𝑖𝑛 (0) is a key result of this part of the work. However, it is important to mention the other
quantities that can be determined. The Fourier transformed scattered field is essential for the evaluation of the far-field
case. The coefficient 𝐶𝑛 (𝑘𝑧 , 𝜔0) is

𝐶𝑛 (𝑘𝑧 , 𝜔0) =
2𝜋𝐸𝑛 (𝑘𝑧 , 𝜔0)

[
J′𝑛 (Γ0 (𝑎0 + 𝛿)) − 𝑅

𝐺
Y

Γ0𝑎0
(1 + 𝐾𝑀0)2J𝑛 (Γ0 (𝑎0 + 𝛿))

][
𝑅
𝐺

Y
Γ0𝑎0

(1 + 𝐾𝑀0)2H(2)
𝑛 (Γ0 (𝑎0 + 𝛿)) − H(2) ′

𝑛 (Γ0 (𝑎0 + 𝛿))
] . (70)

Thus, the Fourier transformed scattered field is given from eq.(60) upon substituting 𝐶𝑛 (𝑘𝑧 , 𝜔0) with its expression
from eq.(70),

𝑝′𝑠𝑜𝑢𝑡 (𝑟) =
𝐸𝑛 (𝑘𝑧 , 𝜔0)

[
J′𝑛 (Γ0 (𝑎0 + 𝛿)) − 𝑅

𝐺
Y

Γ0𝑎0
(1 + 𝐾𝑀0)2J𝑛 (Γ0 (𝑎0 + 𝛿))

][
𝑅
𝐺

Y
Γ0𝑎0

(1 + 𝐾𝑀0)2H(2)
𝑛 (Γ0 (𝑎0 + 𝛿)) − H(2) ′

𝑛 (Γ0 (𝑎0 + 𝛿))
] H(2)

𝑛 (Γ0𝑟). (71)

Before moving on, an initial validation can be performed at this point by taking the limit as 𝛿 → 0 in eqs. (67) and
(71). When the boundary layer vanishes then the expressions should reduce to the uniform flow expressions given by
McAlpine et al. [8] and outlined in Sec. B. Therefore, it is expected that when 𝛿 → 0, eq.(67) reduces to eq.(18). Also,
eq.(71) will reduce to eq.(14) which is the scattered field for uniform flow.
Firstly, the bracketed terms 𝐺 and 𝑅 are evaluated in the limit as 𝛿 → 0. Considering that 𝛿 → 0 also means that

Y → 0, by definition
lim
Y→0

𝐺 = 1, (72)

and

lim
Y→0

𝑅 =

{
`

( 1
𝑔
− 1

(𝑠2 + 𝑔)

)
− a

}
. (73)
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Therefore, when 𝛿 → 0 or Y → 0, eq.(67) becomes

𝑝′𝑡𝑖𝑛 (0) = 𝐸𝑛 (𝑘𝑧 , 𝜔0)
[
J𝑛 (Γ0𝑎0) +

J′𝑛 (Γ0𝑎0)
−H(2) ′

𝑛 (Γ0𝑎0)
H(2)

𝑛 (Γ0𝑎0)
]
, (74)

and using the Wronskian formula, it reduces to

𝑝′𝑡𝑖𝑛 (𝑟 = 𝑎0, 𝑘𝑧) = 𝐸𝑛 (𝑘𝑧 , 𝜔0)
[

−i2
𝜋Γ0𝑎0H(2) ′

𝑛 (Γ0𝑎0)

]
, (75)

which is the same as eq.(18). On the other hand, by taking eq.(71) when 𝛿 → 0 or Y → 0,

𝑝′𝑠𝑜𝑢𝑡 (𝑟, 𝑘𝑧) = −𝐸𝑛 (𝑘𝑧 , 𝜔0)
J′𝑛 (Γ0𝑎0)
H(2) ′

𝑛 (Γ0𝑎0)
H(2)

𝑛 (Γ0𝑟), (76)

which is the same as eq.(14).

3. Fuselage Surface Pressure
Equation (67) represents the Fourier transformed pressure on the fuselage surface. In order to obtain the pressure in

real space an inverse Fourier 𝑧-transform must be performed. The dependence on 𝜙 is represented as always, in the form
of a Fourier series. Thus, following from eq.(15), the pressure on the fuselage surface is

𝑝′𝑡𝑖𝑛 (𝑎0, 𝜙, 𝑧, 𝑡) =
1

(2𝜋)2
∞∑︁

𝑛=−∞

∫ ∞

−∞
𝑝′𝑡𝑖𝑛 (𝑎0, 𝑘𝑧) e

−i𝑘𝑧 �̄� d𝑘𝑧 e−i𝑛�̄� ei𝜔0𝑡 , (77)

which becomes, using eq.(67),

𝑝′𝑡𝑖𝑛 (𝑎0, 𝜙, 𝑧, 𝑡) =
1

(2𝜋)2
∞∑︁

𝑛=−∞

∫ ∞

−∞
𝐸𝑛 (𝑘𝑧 , 𝜔0)

[
J𝑛 (Γ0 (𝑎0 + 𝛿))

1
𝐺

+

[
J′𝑛 (Γ0 (𝑎0 + 𝛿)) − 𝑅

𝐺
Y

Γ0𝑎0
(1 + 𝐾𝑀0)2J𝑛 (Γ0 (𝑎0 + 𝛿))

][
𝑅
𝐺

Y
Γ0𝑎0

(1 + 𝐾𝑀0)2H(2)
𝑛 (Γ0 (𝑎0 + 𝛿)) − H(2) ′

𝑛 (Γ0 (𝑎0 + 𝛿))
] H(2)

𝑛 (Γ0 (𝑎0 + 𝛿))
𝐺

]
× e−i𝑘𝑧 �̄� d𝑘𝑧 e−i𝑛�̄� ei𝜔0𝑡 .

(78)

This can be written in compact form as

𝑝′𝑡𝑖𝑛 (𝑎0, 𝜙, 𝑧, 𝑡) =
b𝑙𝑞𝑃𝑙𝑞

4
(−1)𝑙e−i𝑙𝛽

∞∑︁
𝑛=−∞

(−1)𝑛ei𝑛𝛽 𝐼 (𝑙𝑏𝑙)𝑛 (𝑎0, 𝑧)e−i𝑛�̄� ei𝜔0𝑡 , (79)

where
𝐼
(𝑙𝑏𝑙)
𝑛 (𝑎0, 𝑧) =

∫ ∞

−∞
(𝑘0 + 𝑘𝑧𝑀0)Ψ𝑙𝑞 H(2)

𝑙−𝑛 (Γ0𝑏) 𝑆𝑛 (𝑘𝑧 , 𝜔0)e
−i𝑘𝑧 �̄� d𝑘𝑧 , (80)

and

𝑆𝑛 (𝑘𝑧 , 𝜔0) =
[
J𝑛 (Γ0 (𝑎0 + 𝛿))

1
𝐺

+

[
J′𝑛 (Γ0 (𝑎0 + 𝛿)) − 𝑅

𝐺
Y

Γ0𝑎0
(1 + 𝐾𝑀0)2J𝑛 (Γ0 (𝑎0 + 𝛿))

][
𝑅
𝐺

Y
Γ0𝑎0

(1 + 𝐾𝑀0)2H(2)
𝑛 (Γ0 (𝑎0 + 𝛿)) − H(2) ′

𝑛 (Γ0 (𝑎0 + 𝛿))
] H(2)

𝑛 (Γ0 (𝑎0 + 𝛿))
𝐺

]
.

(81)

The inverse Fourier 𝑧-transform integral in eq. (80) with the superscript (𝑙𝑏𝑙) denoting linear boundary layer cannot be
solved analytically, which means that a numerical integration routine is required to evaluate it. It is important to note
that the integrand contains certain singularity points along the 𝑘𝑧-axis, but all the singularities are integrable.
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Finally, it is important to note that the expressions derived here contain the logarithm term ln
( 𝑠2+𝑔

𝑔

)
. This poses a

potential issue, because the argument of the logarithm can become negative, in which case the logarithm would become
imaginary.
The region where this happens coincides with the region where there is the critical layer. For the linear boundary

layer the critical layer lies in the region −𝑘0/𝑀𝑊 < 𝑘𝑧 < −𝑘0/𝑀0 as shown in Fig. (5). The critical layer is the point at
which 𝑘0 + 𝑘𝑧𝑀 (𝑟𝑐) = 0. At this point the Pridmore-Brown equation is no longer valid and thus cannot be used to
describe the pressure field. Previous researchers ([4], [6], [7], [10], [11]) utilised a power series solution around the
singularity in order to bridge it, namely a Frobenius solution.
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Fig. 5 Critical layer along the 𝑘𝑧-axis.

However, according to Gaffney [14] the critical layer region contributes very little to the integrand in eq.(80). That
led to the conclusion that the inclusion of the critical layer region in the integration can be onitted without significant
loss in the accuracy. Although the solution with the critical layer is currently under investigation, the work presented
here does not include it. In order to ensure that, the lower limit of the integral in eq.(80) is truncated before the critical
layer region.

4. Total Far-Field
The same procedure is followed for the far-field, except the incident field has a different form, given in eq.(9). This

is written alternatively as

𝑝′
𝑖𝑛 𝑓 𝑓

(𝑟, 𝑘𝑧) = 𝜋2b𝑙𝑞𝑃𝑙𝑞 (𝑘0 + 𝑘𝑧𝑀0)Ψ𝑙𝑞 ei(𝑛−𝑙)𝛽 J𝑛−𝑙 (Γ0𝑏) H(2)
𝑛 (Γ0𝑟) for 𝑟 > 𝑏. (82)

The scattered field is unchanged because there are no restrictions on the radiation condition. The Fourier transformed
scattered field outside the boundary layer (which is the scattered field that radiates to the far-field) is given in eq.(71)
with the subscript 𝑓 𝑓 added for clarity to denote far field.
Thus, the total Fourier transformed far-field pressure is

𝑝′𝑡𝑛 𝑓 𝑓
(𝑟, 𝑘𝑧) = 𝑝′𝑖𝑛 𝑓 𝑓

(𝑟, 𝑘𝑧) + 𝑝′𝑠𝑛 𝑓 𝑓
(𝑟, 𝑘𝑧), (83)

which leads to

𝑝′𝑡𝑛 𝑓 𝑓
(𝑟, 𝑘𝑧) = 𝐹𝑛 (𝑘𝑧 , 𝜔0)

[
J𝑛−𝑙 (Γ0𝑏)

+ H(2)
𝑛−𝑙 (Γ0𝑏)

[
J′𝑛 (Γ0 (𝑎0 + 𝛿)) − 𝑅

𝐺
Y

Γ0𝑎0
(1 + 𝐾𝑀0)2J𝑛 (Γ0 (𝑎0 + 𝛿))

][
𝑅
𝐺

Y
Γ0𝑎0

(1 + 𝐾𝑀0)2H(2)
𝑛 (Γ0 (𝑎0 + 𝛿)) − H(2) ′

𝑛 (Γ0 (𝑎0 + 𝛿))
] ]
H(2)

𝑛 (Γ0𝑟),
(84)

where
𝐹𝑛 (𝑘𝑧 , 𝜔0) = 𝜋2b𝑙𝑞𝑃𝑙𝑞 (𝑘0 + 𝑘𝑧𝑀0)Ψ𝑙𝑞 e−i(𝑙−𝑛)𝛽 . (85)

Following the same procedure as in the near-field case, an inverse Fourier 𝑧-transform must be performed in order to
obtain the total field in real space, i.e.

𝑝′𝑡 𝑓 𝑓
(𝑟, 𝜙, 𝑧, 𝑡) =

1
(2𝜋)2

∞∑︁
𝑛=−∞

∫ ∞

−∞
𝑝′𝑡𝑛 𝑓 𝑓

(𝑟, 𝑘𝑧) e−i𝑘𝑧 �̄� d𝑘𝑧 e−i𝑛�̄� ei𝜔0𝑡 . (86)
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As in the uniform flow case, the integral

𝐼𝑛 =
1
2𝜋

∫ ∞

−∞
𝑝′𝑡𝑛 𝑓 𝑓

(𝑟, 𝑘𝑧) e−i𝑘𝑧 �̄� d𝑘𝑧 . (87)

is in the appropriate form to be evaluated by the method of stationery phase as presented in section VI.D of the appendix.
In fact the procedure is exactly the same, the only difference being the bracketed term in eq.(139) of section VI.D in the
appendix is relaced with the bracketed term in eq.(84). Also, the similarity variables are the same with 𝑀 replaced by
𝑀0. The rest of the procedure is unchanged and presented in the appendix.
Thus the final total far-field in real space is

𝑝′𝑡 𝑓 𝑓
(�̄�, \̄, 𝜙, 𝑡) =

ib𝑙𝑞𝑃𝑙𝑞𝑘0
2�̄�

𝑆(\̄)
Θ

Ψ𝑙𝑞 (Δ0)e−i𝑘0 �̄�𝑆 ( \̄)ei𝜔0𝑡
∞∑︁

𝑛=−∞
ℭ𝑛 (\̄)e−i(𝑙−𝑛)𝛽e

1
2 𝑛𝜋ie−i𝑛�̄� , (88)

where

ℭ𝑛 (\̄) =
[
J𝑛−𝑙 (Δ0𝑏) + H(2)

𝑛−𝑙 (Δ0𝑏)

[
J′𝑛 (Δ0 (𝑎0 + 𝛿)) −

𝑅 ( \̄)
𝐺 ( \̄)

Y (Θ1/2+𝑀0𝐶 ( \̄))2
𝑘0𝑎0 sin \̄Θ1/2

J𝑛 (Δ0 (𝑎0 + 𝛿))
][

𝑅 ( \̄)
𝐺 ( \̄)

Y (Θ1/2+𝑀0𝐶 ( \̄))2
𝑘0𝑎0 sin \̄Θ1/2

H(2)
𝑛 (Δ0 (𝑎0 + 𝛿)) − H(2) ′

𝑛 (Δ0 (𝑎0 + 𝛿))
] ]
, (89)

with

𝐺 (\̄) =
{
1 + Y2

[(
𝑛2 + a𝐶

2 (\̄)
Θ

) [𝐶 (\̄) (2𝑀0 + 𝑀𝑤 ) + 3Θ1/2

6
(
Θ1/2 + 𝑀𝑤𝐶 (\̄)

) ]
− a

Θ

[𝐶2 (\̄) (𝑀0 − 𝑀𝑤 )2
4

+
(
Θ1/2 + 𝑀𝑤𝐶 (\̄)

) (
𝐶 (\̄) ( 2

3
𝑀0 −

1
6
𝑀𝑤 ) +

1
2
Θ1/2

))] ]}
,

(90)

and

𝑅(\̄) =
{

a𝐶2 (\̄) + 𝑛2Θ(
Θ1/2 + 𝑀𝑤𝐶 (\̄)

) (
Θ1/2 + 𝑀0𝐶 (\̄)

) − a

− Y
[

𝑛2Θ

𝐶2 (\̄) (𝑀0 − 𝑀𝑤 )

[
𝐶 (\̄)

(
𝐶 (\̄) (𝑀0 − 2𝑀𝑤 ) − Θ1/2(

Θ1/2 + 𝑀𝑤𝐶 (\̄)
) (
Θ1/2 + 𝑀0𝐶 (\̄)

) )
+ 1
(𝑀0 − 𝑀𝑤 )

ln
(
Θ1/2 + 𝑀0𝐶 (\̄)
Θ1/2 + 𝑀𝑤𝐶 (\̄)

)]
+ a

(𝑀0 − 𝑀𝑤 )

[ 𝐶 (\̄)(
Θ1/2 + 𝑀𝑤𝐶 (\̄)

) − (𝑀0 − 𝑀𝑤 )
2

− 1
(𝑀0 − 𝑀𝑤 )

ln
(
Θ1/2 + 𝑀0𝐶 (\̄)
Θ1/2 + 𝑀𝑤𝐶 (\̄)

)] ]}
.

(91)

Also, Δ0 =
𝑘0 sin \̄

(1−𝑀 2 sin2 \̄)1/2 , Θ = (1 − 𝑀20 sin
2 \̄), 𝑆(\̄) =

(
Θ1/2+𝑀0 cos \̄

)
𝜎20

, 𝐶 (\̄) =
(
cos \̄+𝑀0Θ1/2

)
𝜎20

and 𝜎20 = 1 − 𝑀
2
0 .

Note that eq.(88) is the same as its uniform flow equivalent in eq.(22) apart from the bracketed term ℭ𝑛 \̄). As before
eq. (88) is validated by taking the limit as 𝛿 → 0. The bracketed term reduces to

ℭ𝑛 (\̄) =
[
J𝑛−𝑙 (Δ0𝑏) + H(2)

𝑛−𝑙 (Δ0𝑏)
J′𝑛 (Δ0𝑎0)

−H(2) ′
𝑛 (Δ0𝑎0)

]
, (92)

which is the same as the bracketed term in eq.(22) showing that the linear profile expression reduces to the uniform flow
expression.

IV. Convergence and Validation
The expressions derived in Sec. III.C are all in terms of a Fourier series. Therefore it is important to ensure the

convergence of those series. Thus, following McAlpine at al. [8], the global relative error is introduced:

𝜖 =

√√√√√√ 1
𝑀

𝑀∑ |𝑝′
𝑁 ′ − 𝑝′𝑁 |2

1
𝑀

𝑀∑ |𝑝′
𝑁
|2

, (93)
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where, 𝑝′
𝑁 ′ is the pressure calculated at the (𝑁 + 1)th harmonic and 𝑝′

𝑁
is the pressure calculated at the 𝑁th harmonic,

and 𝑀 is the number of grid points. When this error becomes sufficiently small, the series is considered to have
converged. The key equations are eq.(79) and eq.(88). These are used to calculate the fuselage surface pressure and the
far-field directivity — see examples of preliminary results in the next section. The convergence rate is dependent on
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Fig. 6 Global relative error vs number of harmonics for [(a)] fuselage surface pressure expression (eq.(79)) at
𝑘0𝑎 = 20, mode (𝑙, 𝑞) = (4, 1) and [(b)] far-field expression (eq.(88)) at 𝑘0𝑎 = 16, mode (𝑙, 𝑞) = (10, 1). The other
parameters are: 𝑎 = 0.5𝑎0, 𝑏 = 3𝑎0, 𝑀0 = 0.75.

several parameters, the most important of which is frequency. The frequency is expressed in terms of a Helmholtz
number, 𝑘0𝑎. In the examples shown in Fig. (6), convergence for the surface pressure takes about 70 harmonics at
𝑘0𝑎 = 20. Lower frequencies require fewer harmonics. However, convergence for the far-field pressure takes in excess
of 100 harmonics at 𝑘0𝑎 = 16. Although more harmonics are required for the far-field pressure, evaluation of the
far-field pressure does not require numerical calculation of the inverse Fourier 𝑧-transform, thus it is significantly faster
to compute compared to the surface pressure despite requiring more harmonics to achieve convergence.
It is important to point out that where the series converges can be estimated asymptotically. It can be proven

analytically that the dominant terms of the series for both expressions are the Bessel function terms in the bracketed
terms 𝑆𝑛 (𝑘𝑧 , 𝜔0) and 𝑌𝑙 (\̄) respectively. Indeed, by taking the asymptotic form of the Bessel function when its order
tends to infinity, the number of harmonics required for the series to converge can be determined. Furthermore, the
Bessel function characteristically exhibits the behavior seen in Fig. (6(b)), namely highly oscillatory until it abruptly
converges to zero at a sufficiently high order.
Furthermore, the expressions have been validated by taking the limit as 𝛿 → 0. As shown in Sec. III.C, the linear

boundary layer expressions reduce to the uniform flow expressions when 𝛿 → 0, and that is reflected in the results
obtained from the code as well. When the boundary layer thickness is reduced close to zero, the linear boundary layer
code produces the same results as the code generated by McAlpine et al. [8] for uniform flow.

V. Preliminary Results
The purpose of this section is to present preliminary results that demonstrate the validity of the new expressions

derived in this paper (eqs. (79) and (88)). Of particular interest is prediction of the level of boundary layer “shielding”
caused by refraction of upstream sound propagation. Relevant results that quantify the shielding are compared with
previous numerical results that can be found in Ref. [14].
The parameters used for the results presented in this section are given in Table 1. All geometrical characteristics

are normalised based on a fuselage radius of unity (𝑎0 = 1). However, the frequency is expressed in terms of the
non-dimensional Helmholtz number 𝑘0𝑎 since the characteristic lengthscale for the fan tone source is the intake duct
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radius 𝑎. A realistic Mach number at cruise condition is taken equal to 0.75, with the speed of sound estimated at
cruising altitude of 30,000 ft. The dimensions, frequency and flow characteristics are chosen to be representative of a
twin-engined aircraft for medium range flights.

Parameter Value

𝑎/𝑎0 0.5
𝑧/𝑎0 [-1,5]
𝑏/𝑎0 3
𝛽 0o

𝑀0 0.75
(𝑙, 𝑞) (4, 1)

Table 1 Dimensions and flow characteristics for the results section.

In the modelling, the boundary-layer thickness 𝛿 on the fuselage surface is fixed. An estimate of the boundary
layer thickness is obtained from the empirical model of a growing turbulent boundary layer on a flat plate, taking the
boundary layer thickness at the source plane 𝑧 = 0. For a medium twin-engined aircraft, the boundary layer thickness at
the source plane is roughly 5.5% of the fuselage radius, i.e. 𝛿 = 0.055 𝑎0. The region of interest is upstream of the
source (𝑧 > 0), where boundary layer “shielding” is prominent owing to refraction of the upstream propagating sound
that is radiated from the intake duct. Upstream of the source plane, the boundary layer is thinner, and predictions should
be realistic for values of 𝛿 < 0.055 𝑎0. It is noted that since the theory developed in this paper does not include explicitly
the duct, there is no diffraction around the intake lip, and downstream of the source (𝑧 < 0) predictions of the surface
pressure are not expected to be realistic.
Furthermore, the modelling utilises a linear boundary layer profile which is not a realistic profile shape. In this

section, results calculated using the analytical method for a linear boundary layer are compared against previous
numerical results for other profile shapes taken from Gaffney [14]. In order to be able to compare the two sets of
results, an equivalency must be established between the linear boundary layer and other profile shapes that are used for
comparison. This equivalency is achieved by equating the displacement thickness (𝛿∗) and the momentum thickness (𝜗)
of the linear boundary layer with the displacement thickness and momentum thickness respectively of the boundary
layer to compare against. Matching 𝛿∗ and 𝜗 yields appropriate values for 𝑀𝑤 and 𝛿 for the equivalent linear boundary
layer. This resulting linear boundary layer will have the same displacement and momentum thicknesses as the boundary
layers to compare against, albeit the thickness of the different boundary layers will be different.
Predictions of the pressure are plotted in terms of the sound pressure level (SPL) in decibels (dB). The metric used

to quantify the refraction effect upstream is the difference

Δ𝑏𝑙 = SPL𝑏𝑙 − SPL, (94)

where SPL𝑏𝑙 is the level that is predicted with the boundary layer, and SPL is the level that is predicted without the
boundary layer. This quantity will highlight the areas where shielding occurs due to the presence of the boundary layer.
Generally the near side of the cylindrical fuselage is of more interest because the highest levels are predicted adjacent to
the source. Thus predictions are shown on the surface of the cylinder at 𝜙 = 0o. On the other hand, on the far side of
the cylindrical fuselage (around 𝜙 = 180o) there is a shadow zone. It is difficult to evaluate the levels in the shadow
zone region with a high degree of accuracy because the predicted levels can be in excess of 100 dB lower than the
corresponding levels on the near side of the cylindrical fuselage. However, in reality there is no shadow zone since there
are engines mounted on either side of the fuselage, thus accurate evaluation of very low levels in the shadow zone is not
required for the practical application.
Figure (7) demonstrates the importance of the inclusion of the boundary layer. This result is calculated for a

quarter-sine boundary layer profile. The upstream area (𝑧 > 0) exhibits considerable shielding due to the presence of
the boundary layer. Comparing the predicted results with the same boundary layer thickness, the shielding is greater
when at the higher frequency. This is expected because at higher frequencies the ratio of the acoustic wavelength to the
boundary layer thickness is lower, leading to a more prominent refraction effect. The comparison with the numerical
results shows very good agreement for a thin boundary layer. That is expected because the validity of the asymptotic
approach used by the analytic method relies on the boundary layer thickness to be sufficiently small. On the other hand,
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for a very thick boundary layer, 𝛿 = 0.1𝑎0, the asymptotic method is less accurate. The numerical predictions can
reach shielding levels of -100 dB, and similar to predictions in the shadow zone, it is likely to be difficult to accurately
calculate differences in levels in excess of 100 dB. Nevertheless, even for very thick boundary layers, the analytical
method can still approximate the trend accurately.
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Fig. 7 Δ𝑏𝑙 at 𝜙 = 0 for different boundary layer thicknesses. [(a)] 𝑘0𝑎 = 5 and [(b)] 𝑘0𝑎 = 20. Theoretical results
produced with the asymptotic method are marked (©) and numerical results are marked (×) for boundary layer
thickness of 𝛿 = 0.01𝑎0 (solid lines) and 𝛿 = 0.1𝑎0 (dashed lines). The other parameters are: (𝑙, 𝑞) = (4, 1),
𝑎 = 0.5𝑎0, 𝑏 = 3𝑎0, 𝑀0 = 0.75 and quarter-sine profile.

The effect of the boundary layer thickness on the validity of the asymptotic approach is shown more clearly in
Fig. (8). As expected, the agreement with the numerical result improves as the boundary layer thickness reduces. It is
important to note that the results in Fig. (8) are for a high frequency. At lower frequencies the agreement between the
theoretical and numerical results would be closer because the ratio of the acoustic wavelength to the boundary layer
thickness is higher, resulting in effectively a thinner boundary layer.
The results in Figs. (7) and (8) are for a quarter-sine boundary layer profile. As previously explained, in order to

approximate the quarter-sine profile, appropriate values of 𝑀𝑤 and 𝛿 are determined for the linear profile by matching
the displacement and momentum thicknesses. In fact for the quarter-sine profile, 𝑀𝑤 is relatively small and 𝛿 for the
linear profile is very similar to the thickness of the quarter-sine profile. On the other hand, in order to approximate
a more realistic 1/7th power law profile that is commonly used to represent a turbulent boundary layer, the resulting
equivalent linear profile has a large Mach number at the wall, 𝑀𝑤 = 2

3𝑀0, and a relatively small thickness, 𝛿 = 0.75 𝛿1/7,
with subscript 1/7 denoting the 1/7th power law profile. Therefore to approximate a 1/7th power law profile, a thinner
linear profile is required, which makes the asymptotic method even more accurate.
This is observed in Fig. (9), where for the example based on the power law profile the discrepancy between the

theoretical results and the numerical results is very small. In fact it is also observed in Fig. (9) that the example of results
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Fig. 8 Δ𝑏𝑙 at 𝜙 = 0 and 𝑧 = 5𝑎0 vs boundary layer thickness. Comparison of theoretical results (solid line)
and numerical results (dashed line). The other parameters are: (𝑙, 𝑞) = (4, 1), 𝑎 = 0.5𝑎0, 𝑏 = 3𝑎0, 𝑀0 = 0.75,
𝑘0𝑎 = 20 and quarter-sine profile.

for the linear profile only, comparing calculations with the theoretical and numerical method are not quite as close. This
is because the boundary layer thickness used for the linear profiles in this example is thicker than the equivalent linear
boundary layer that is used to compare against the 1/7th power law profile. It is therefore apparent that for sufficiently
thin turbulent boundary layers, the new asymptotic approach which utilises an equivalent linear boundary layer profile
produces very similar results to numerical calculations with a 1/7th power law profile. The asymptotic approach enables
calculation of the theoretical results far more rapidly compared to the numerical approach.
Figures (10) and (11) are illustrative and show how the inclusion of the boundary layer affects the predictions of the

acoustic field. The results are generated based on a 1/7th power law boundary layer that is representative of a realistic
turbulent boundary layer on the fuselage. The far-field SPL polar directivity shown in Fig. (10) includes only the
upstream region or polar angles up to 90o. The azimuthal angle is 𝜙 = 3 𝜋

2 which corresponds to the upstream quadrant
right underneath the flight path. Determination of the directivity pattern is essential for calculation of noise propagating
towards the ground. In Fig. (10) it is observed that the inclusion of a boundary layer does not affect the predicted levels
of the far-field pressure compared to the levels that are predicted with uniform flow. The major difference is the phase
shift that can be observed regardless of the boundary layer thickness. Both thin and very thick boundary layers cause a
significant phase shift upstream, significantly altering the levels at fixed polar angles.
The cylinder plots in Fig. (11) show SPL pressure contours on the cylindrical fuselage upstream of the source.

Determination of the fuselage surface pressure is essential for calculation of cabin noise. For convenience, the levels
shown in these plots have been normalised such that the maximum SPL is 0 dB. The boundary layer shielding effect
caused by refraction of upstream sound propagation is seen in the cylinder plots, with greater shielding predicted as the
thickness of the boundary layer becomes larger. Also, the shadow zone behind the cylinder tends to become wider with
thicker boundary layers since more of the incident waves refract away from the surface.
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Fig. 9 Δ𝑏𝑙 at 𝜙 = 0 for different velocity profiles. Theoretical results produced with the asymptotic method
are marked (©) and numerical results are marked (×) for 1/7th power law profile (solid lines) and linear profile
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Fig. 10 Far-field polar directivity calculated from eq. (88). Comparison of results generated using the asymptotic
method for 𝛿 = 0.01𝑎0 (dashed line) and 𝛿 = 0.1𝑎0 (dashed-dotted line) and uniform flow (solid line). The other
parameters are: 𝑘0𝑎 = 20, (𝑙, 𝑞) = (4, 1), 𝑎 = 0.5𝑎0, 𝑏 = 3𝑎0, 𝑀0 = 0.75 and 1/7th power law profile.
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Fig. 11 SPL on the surface of the cylinder for uniform flow and two boundary layer thicknesses calculated from
eq. (79). The other parameters are: 𝑘0𝑎 = 20, (𝑙, 𝑞) = (4, 1), 𝑎 = 0.5𝑎0, 𝑏 = 3𝑎0, 𝑀0 = 0.75 and 1/7th power law
profile.
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VI. Conclusion
In this paper, the development of theoretical methods to predict scattering of fan tone noise from a turbofan engine

by the airframe fuselage is reported. A new analytical approach is presented that can be used to predict the propagation
of sound through the fuselage boundary layer, enabling predictions of boundary layer shielding caused by refraction of
upstream sound propagation. Theoretical expressions for both the near and far-field acoustic pressure have been derived
and validated. Comparisons with previous numerical results show that for thin boundary layers, the analytical method
which uses an asymptotic approach can produce accurate results. Although the new method utilises a linear velocity
profile, it proves to be very accurate at predicting the effect of a turbulent 1/7th power law profile even at relatively
high frequency. Bearing in mind that typical average turbulent layer thicknesses are below 5% of the fuselage radius
upstream of the source, the asymptotic method can be used to accurately model the scattering and refraction effect
upstream of the source. Also, the advantage of the asymptotic approach is that numerical computation of the sound field
in the boundary layer region is not required, providing a rapid engineering method to generate realistic results at very
low computational cost.
The findings presented in this paper indicate that even simpler profiles could be used to approximate more realistic

ones. A step-function velocity profile could be used that does not require any solution of the Pridmore-Brown equation,
thus further simplifying the problem by removing any direct calculations with a shear velocity profile. However, the
correct equivalency between the profiles would have to be investigated to ascertain whether matching the displacement
and momentum thickness remains the optimal strategy to produce realistic results for the simpler problem. Furthermore,
a potential issue that has not been tackled here is the critical layer as explained in Sec. III.C. This is currently under
investigation, however Gaffney [14] concluded that the critical layer does not contribute significantly to prediction
results for the range of parameters of interest in the turbofan application.

Appendix

A. Incident Field Derivation
As outlined by McAlpine and Kingan [9], the governing equation that describes the incident field due to the presence

of a rotating monopole source 𝑞 in uniform flow is the inhomogeneous convected wave equation,(
∇2 − 1

𝑐20

D2

D𝑡2

)
𝑝′ = −𝜌0

D𝑞
D𝑡
, (95)

which written in full in cylindrical polar coordinates is,

𝜕2𝑝′
𝑖

𝜕𝑟2
+ 1
𝑟

𝜕𝑝′
𝑖

𝜕𝑟
+ 1
𝑟2

𝜕2𝑝′
𝑖

𝜕𝜙2
+
𝜕2𝑝′

𝑖

𝜕𝑧2
− 1
𝑐20

(
𝜕

𝜕𝑡
−𝑈 𝜕

𝜕𝑧

)2
𝑝′𝑖 = −𝜌0

(
𝜕

𝜕𝑡
−𝑈 𝜕

𝜕𝑧

)
𝑞. (96)

A single-frequency, rotating, monopole point source is considered with volume velocity

𝑞(𝑟, 𝜙, 𝑧, 𝑡) = 𝑄0e𝑚𝑖𝜔0𝑡
𝛿(𝑟 − 𝑎)

𝑟

( ∞∑︁
𝑛=−∞

𝛿(𝜙 −Ω𝑡 − 2𝜋𝑛)
)
𝛿(𝑧), (97)

The three-dimensional delta function is used to describe the rotating monopole’s radial and axial position (taken to be
the duct’s exit plane) and its periodicity around the source’s centerline (or the duct’s centerline). The monopole rotates
around the centerline with angular velocity Ω. By taking the Fourier transform of eq. (96) the resulting equation can be
solved using the method of variation of parameters. The full details of the solution are omitted for the sake of brevity.
These details can be found in Ref. [9]. The Fourier transform involves Fourier transforms in 𝑧 and 𝑡 and the Fourier
series in 𝜙 as follows:

𝑝′
𝑖𝑚

(𝑟, 𝑘𝑧 , 𝜔) =
∫ ∞

−∞

∫ 𝜋

−𝜋

∫ ∞

−∞
𝑝′𝑖 (𝑟, 𝜙, 𝑧, 𝑡)ei(𝑘𝑧 𝑧+𝑚𝜙−𝜔𝑡)d𝑧d𝜙d𝑡, (98)

⇒ 𝑝′𝑖 (𝑟, 𝜙, 𝑧, 𝑡) =
1

(2𝜋)3
∞∑︁

𝑚=−∞

(∫ ∞

−∞

∫ ∞

−∞
𝑝′
𝑖𝑚

(𝑟, 𝑘𝑧 , 𝜔)e−i(𝑘𝑧 𝑧−𝜔𝑡)d𝑘𝑧d𝜔
)
e−i𝑚𝜙 . (99)

22



This transforms the derivatives as follows:

𝜕

𝜕𝑧
→ −i𝑘𝑧 ,

𝜕

𝜕𝜙
→ −i𝑚 and

𝜕

𝜕𝑡
→ i𝜔. (100)

The Fourier transformed eq. (96) is

d2𝑝′
𝑖𝑚

d𝑟2
+ 1
𝑟

d𝑝′
𝑖𝑚

d𝑟
+

{
Γ2 − 𝑚2

𝑟2

}
𝑝′
𝑖𝑚

= Q𝑚, (101)

where

Q𝑚 = −i𝑄0𝜌0𝑐0 (𝑘 + 𝑘𝑧𝑀𝑧)
2Ω(−1)𝑚+1 sin 𝜋( 𝜔−𝜔0

Ω
)

𝑚Ω − [𝜔 − 𝜔0]
𝛿(𝑟 − 𝑎)

𝑟

∞∑︁
𝑛=−∞

𝛿(𝜔 − [𝜔0 + 𝑛Ω]) (102)

is the Fourier transformed right hand side of the equation with the radial wavenumber

Γ2 = (𝑘 + 𝑘𝑧𝑀)2 − 𝑘2𝑧 . (103)

The method of variation of parameters requires the solution to the homogeneous version of eq. (101) which is Bessel’s
differential equation. Since a radiation condition as 𝑟 → ∞ will be applied, it is more convenient to select J𝑚 (Γ𝑟) and
H(2)
𝑚 (Γ𝑟) as the linearly independent solutions of Bessel’s equation. Then, using the method of variation of parameters,
the solution to eq. (101) is

𝑝′
𝑖𝑚

=J𝑚 (Γ𝑟)
(
𝐴𝑚 (𝑘𝑧 , 𝜔) − i

𝜋

2

∫ 𝑟

0
Q𝑚 (𝑠)H(2)

𝑚 (Γ𝑠) 𝑠d𝑠
)
+

H(2)
𝑚 (Γ𝑟)

(
𝐵𝑚 (𝑘𝑧 , 𝜔) + i

𝜋

2

∫ 𝑟

0
Q𝑚 (𝑠)J𝑚 (Γ𝑠) 𝑠d𝑠

)
.

(104)

Owing to the term 𝛿 (𝑟−𝑎)
𝑟
in Q𝑚 (102), the solution is split into two domains, 𝑟 < 𝑎 and 𝑟 > 𝑎. The constants in

eq. (104) can be found by applying the finiteness and radiation conditions. The Hankel function is singular as 𝑟 → 0,
therefore it immediately follows from eq. (104) that 𝐵𝑚 = 0. Furthermore, in order to have only outward propagating
waves as 𝑟 → ∞, it can be shown that

𝐴𝑚 =
𝜋

2
𝑄0𝜌0𝑐0 (𝑘 + 𝑘𝑧𝑀𝑧)

2Ω(−1)𝑚+1 sin 𝜋( 𝜔−𝜔0
Ω

)
𝑚Ω − [𝜔 − 𝜔0]

∞∑︁
𝑛=−∞

𝛿(𝜔 − [𝜔0 + 𝑛Ω])H(2)
𝑚 (Γ𝑎). (105)

With 𝐴𝑚 and 𝐵𝑚 known, taking the inverse Fourier time-transform gives

𝑝′
𝑖𝑚
(𝑟, 𝑘𝑧 , 𝑡) =

𝜋

2
𝑄0𝜌0𝑐0 (𝑘0𝑚 + 𝑘𝑧𝑀𝑧)H(2)

𝑚 (Γ0𝑚𝑟>)J𝑚 (Γ0𝑚𝑟<)ei(𝜔0+𝑚Ω)𝑡 , (106)

where

𝑟> =

{
𝑟, 𝑟 > 𝑎

𝑎, 𝑟 < 𝑎
; (107)

𝑟< =

{
𝑎, 𝑟 > 𝑎

𝑟, 𝑟 < 𝑎
, (108)

and 𝑘0𝑚 =
𝜔0+𝑚Ω

𝑐0
and Γ20𝑚 = (𝑘0𝑚 + 𝑘𝑧𝑀)2 − 𝑘2𝑧 .

B. Disc Source Derivation
This section briefly outlines the method used by McAlpine et al. [8]. For more details see Ref. [8]. The final incident

field 𝑝′
𝑖
is the resulting field after integrating a distribution of monopoles over the cross section of the duct’s termination.

As outlined in Ref. [8] and shown in Fig. (12), consider an annular ring source with 𝑁 monopoles distributed around a
circle of radius [. Monopole 𝑠 is located at (𝑟, 𝜙, 𝑧) = ([, 𝑠Δ𝜓, 0) where Δ𝜓 = 2𝜋/𝑁 and 𝑠 = 0, 1, 2, . . . , 𝑁 − 1.
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Fig. 12 Sketch of ring source. Taken from Ref. [8].

Equation (106) is the Fourier-transformed pressure field of a rotating monopole source derived by McAlpine and
Kingan [8]. Therefore, by setting Ω = 0 in eq. (106), and performing an inverse Fourier 𝑧-transform, the field owing to
stationary monopole source 𝑠 = 0 is recovered

𝑝
′(0)
𝑖

(𝑟, 𝜙, 𝑧, 𝑡) = 1
(2𝜋)2

∞∑︁
𝑚=−∞

(∫ ∞

−∞
𝑝
′(0)
𝑖𝑚

(𝑟, 𝑘𝑧 , 𝑡)e−i𝑘𝑧 𝑧d𝑘𝑧
)
e−i𝑚𝜙 , (109)

where from eq. (106)

𝑝
′(0)
𝑖𝑚

(𝑟, 𝑘𝑧 , 𝑡) =
𝜋

2
𝑄 (0) 𝜌0𝑐0 (𝑘0 + 𝑘𝑧𝑀𝑧)H(2)

𝑚 (Γ0𝑟>)J𝑚 (Γ0𝑟<)ei𝜔0𝑡 , (110)

and the variables are now defined as

𝑟> =

{
𝑟, 𝑟 > [

[, 𝑟 < [
; (111)

𝑟< =

{
[, 𝑟 > [

𝑟, 𝑟 < [
. (112)

It is important to note the radial wavenumber’s behavior. With Ω = 0, the wavenumber is defined as

Γ20 = (𝑘0 + 𝑘𝑧𝑀)2 − 𝑘2𝑧 . (113)

In order to ensure only outward propagating waves as 𝑟 → ∞, appropriate handling of Γ0 is required. In the range

−𝑘0
1 + 𝑀𝑧

< 𝑘𝑧 <
𝑘0

1 − 𝑀𝑧

(114)

Γ0 is real and positive, whereas outside this range it will be imaginary Γ0 = −i𝛾0 where 𝛾20 = 𝑘
2
𝑧 − (𝑘0 + 𝑘𝑧𝑀)2 > 0.
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Fig. 13 Values of Γ0 along the 𝑘𝑧-axis. Taken from Ref. [8].

As outlined in McAlpine at al. [8], the new angular coordinate 𝜙 is introduced such that monopole 𝑠 is located at
𝜙 = 0. This means that

𝜙 = 𝜙 − 𝑠Δ𝜓. (115)
For every point source 𝑠 on the ring, eqs. (109) and (110) apply, i.e.

𝑝
′(𝑠)
𝑖

(𝑟, 𝜙, 𝑧, 𝑡) = 1
(2𝜋)2

∞∑︁
𝑚=−∞

(∫ ∞

−∞
𝑝
′(𝑠)
𝑖𝑚

(𝑟, 𝑘𝑧 , 𝑡)e−i𝑘𝑧 𝑧d𝑘𝑧
)
e−i𝑚𝜙 , (116)

or

𝑝
′(𝑠)
𝑖

(𝑟, 𝜙, 𝑧, 𝑡) = 𝑄 (𝑠) 𝜌0𝑐0
8𝜋

∞∑︁
𝑚=−∞

(∫ ∞

−∞
(𝑘0 + 𝑘𝑧𝑀𝑧)H(2)

𝑚 (Γ0𝑟>)J𝑚 (Γ0𝑟<)e−i𝑘𝑧 𝑧d𝑘𝑧
)
e−i𝑚(𝜙−𝑠Δ𝜓)ei𝜔0𝑡 . (117)

In McAlpine et al. [8] each point source’s strength 𝑄 (𝑠) is calculated by using the axial particle velocity of the
spinning mode (𝑙, 𝑞) at position ([, 𝑠Δ𝜓, 0),

𝑄 (𝑠) =
b𝑙𝑞𝑃𝑙𝑞

𝜌0𝑐0
J𝑙 (^𝑙𝑞[)e−i𝑙𝑠Δ𝜓𝛿𝐴, (118)

where the elementary surface of the point source 𝛿𝐴 = [𝛿[𝛿𝜓. The total incident field is

𝑝′𝑖 (𝑟, 𝜙, 𝑧, 𝑡) =
𝑁−1∑︁
𝑠=0

𝑝
′(𝑠)
𝑖

(𝑟, 𝜙, 𝑧, 𝑡), (119)

which, by combining eqs. (109) and (118), and using the standard formula for a geometric progression, becomes

𝑝′𝑖 (𝑟, 𝜙, 𝑧, 𝑡) =𝑁
b𝑙𝑞𝑃𝑙𝑞

8𝜋

∞∑︁
𝑛=−∞

(∫ ∞

−∞
(𝑘0 + 𝑘𝑧𝑀𝑧)H(2)

𝑙−𝑛𝑁 (Γ0𝑟>)J𝑙−𝑛𝑁 (Γ0𝑟<)J𝑙 (^𝑙𝑞[)e−i𝑘𝑧 𝑧d𝑘𝑧
)

× ei𝑛𝑁 𝜙e−i𝑙𝜙ei𝜔0𝑡[𝛿[𝛿𝜓.

(120)

The full details of the derivation of eq. (120) are in Ref. [8].
The distributed source is formed by taking the limit as the number of sources in the ring 𝑁 → ∞. This also means

that 𝑁𝛿𝜓 → 2𝜋, and only the 𝑛 = 0 term is required. By integrating from [ = 0 to 𝑎, the pressure for field points
outside the duct 𝑟 > 𝑎 is recovered:

𝑝′𝑖 (𝑟, 𝜙, 𝑧, 𝑡) =
b𝑙𝑞𝑃𝑙𝑞

4

∫ ∞

−∞
(𝑘0 + 𝑘𝑧𝑀𝑧)Ψ𝑙𝑞H(2)

𝑙
(Γ0𝑟)e−i𝑘𝑧 𝑧d𝑘𝑧e−i𝑙𝜙ei𝜔0𝑡 , (121)

where the function
Ψ𝑙𝑞 =

∫ 𝑎

[=0
J𝑙 (Γ0[)J𝑙 (^𝑙𝑞[)[d[, (122)

can be evaluated exactly. For non-plane-wave excitation

Ψ𝑙𝑞 =
Γ0𝑎

^2
𝑙𝑞
− Γ20

J𝑙 (^𝑙𝑞𝑎)J′𝑙 (Γ0𝑎), Γ0 ≠ ^𝑙𝑞 , (123)

Ψ𝑙𝑞 =
1
2

(
𝑎2 − 𝑙2

^2
𝑙𝑞

)
J2𝑙 (^𝑙𝑞𝑎), Γ0 = ^𝑙𝑞 . (124)

25



C. Graf’s Addition Theorem
Graf’s Addition Theorem is used to shift the coordinate system from the duct’s centerline, (𝑟, 𝜙, 𝑧), to the adjacent

cylinder’s centerline, (𝑟, 𝜙, 𝑧). This must be done before the scattered field is introduced because the scattered field will
be determined based on the cylinder’s coordinate system.

u

v

w

χ

α

Fig. 14 Graf’s Addition theorem.

From Abramowitz and Stegun [16], Graf’s theorem is

Z𝑚 (𝑤)ei𝜒 =

∞∑︁
𝑛=−∞

Z𝑚+𝑛 (𝑢)J𝑛 (𝑣)ei𝑛𝛼, (125)

where Z𝑚 can be any of the Bessel functions or linear combinations thereof. Also the condition |𝑢 | > |𝑣𝑒±i𝛼 | applies.
The lengths 𝑤, 𝑢 and 𝑣, and angles 𝛼 and 𝜒 are part of the triangle shown in Fig. (14). Direct application of Graf’s
Theorem gives ( triangle flipped taking 𝑤 = Γ0𝑟, 𝑣 = Γ0𝑏 and 𝑢 = Γ0𝑟, while 𝛼 = 𝜙 − 𝛽 and 𝜒 = 𝜙 − 𝜙)

H(2)
𝑙

(Γ0𝑟) ei𝑙𝜒 =

∞∑︁
𝑛=−∞

H(2)
𝑙+𝑛 (Γ0𝑟) J𝑛 (Γ0𝑏) e

i𝑛𝛼 . (126)

Note that by using the far-field assumption, 𝑟 > 𝑏, the theorem’s condition, |𝑢 | > |𝑣 |, is satisfied. By rewriting
𝑙 → −𝑙 and 𝑛→ −𝑛

H(2)
−𝑙 (Γ0𝑟) e−i𝑙 (𝜙−�̄�) =

∞∑︁
𝑛=−∞

H(2)
−𝑙−𝑛 (Γ0𝑟) J−𝑛 (Γ0𝑏) e

−i𝑛( �̄�−𝛽) , (127)

which becomes

H(2)
𝑙

(Γ0𝑟) e−i𝑙𝜙 =

∞∑︁
𝑛=−∞

H(2)
𝑙+𝑛 (Γ0𝑟) J𝑛 (Γ0𝑏) e

−i(𝑙+𝑛) �̄� ei𝑛𝛽 . (128)

Renaming 𝑙 + 𝑛 = 𝑚, so that 𝑛 = 𝑚 − 𝑙

H(2)
𝑙

(Γ0𝑟) e−i𝑙𝜙 =

∞∑︁
𝑚=−∞

H(2)
𝑚 (Γ0𝑟) J𝑚−𝑙 (Γ0𝑏) e−i𝑚�̄� ei(𝑚−𝑙)𝛽 , (129)

with summation taken from 𝑚 = −∞ to∞, since the integer 𝑙 is treated as a constant.
Substitution into eq. (121) and renaming 𝑚 by 𝑛 gives

𝑝′𝑖 (𝑟, 𝜙, 𝑧, 𝑡) =
1

(2𝜋)2
∞∑︁

𝑛=−∞

∫ ∞

−∞
𝑝′
𝑖𝑛
(𝑟, 𝑘𝑧 , 𝑡) e−i𝑘𝑧 �̄� d𝑘𝑧 e−i𝑛�̄� , (130)

where
𝑝′
𝑖𝑛
(𝑟, 𝑘𝑧 , 𝑡) = 𝜋2b𝑙𝑞𝑃𝑙𝑞 (𝑘0 + 𝑘𝑧𝑀)Ψ𝑙𝑞 ei(𝑛−𝑙)𝛽 J𝑛−𝑙 (Γ0𝑏) H(2)

𝑛 (Γ0𝑟) ei𝜔0𝑡 . (131)

On the other hand, by taking the near-field assumption 𝑟 < 𝑏 and flipping the triangle again (so that 𝑢 = Γ0𝑏,
𝑣 = Γ0𝑟 , 𝑤 = Γ0𝑟 and 𝛼 = 𝜙 − 𝛽, 𝜒 = 𝜋 + 𝛽 − 𝜙) the incident field for the near-field is recovered:

𝑝′
𝑖𝑛
(𝑟, 𝑘𝑧 , 𝑡) = 𝜋2b𝑙𝑞𝑃𝑙𝑞 (−1)𝑙+𝑛 (𝑘0 + 𝑘𝑧𝑀)Ψ𝑙𝑞 e−i(𝑙−𝑛)𝛽 H(2)

𝑙−𝑛 (Γ0𝑏) J𝑛 (Γ0𝑟) e
i𝜔0𝑡 . (132)
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D. Asymptotic Evaluation of the Far-Field Integral with the Method of Stationary Phase
In order to solve eq. (15), first the inverse Fourier 𝑧-transform must be determined

𝐼𝑛 =
1
2𝜋

∫ ∞

−∞
𝑝′𝑡𝑛 (𝑟, 𝑘𝑧 , 𝑡) e−i𝑘𝑧 �̄� d𝑘𝑧 . (133)

The integral can be evaluated by the method of stationary phase

𝐼 (𝑥) =

∫ 𝑏

𝑎

𝑓 (𝑡)ei𝑥𝜙 (𝑡)d𝑡, as 𝑥 → ∞. (134)

Then, if there is a single point 𝑎 ≤ 𝑐 ≤ 𝑏 such that 𝜙′(𝑐) = 0, provided that 𝜙′′(𝑐) ≠ 0, then

𝐼 (𝑥) ∼ 𝑓 (𝑐)
(
2𝜋

𝑥 |𝜙′′(𝑐) |

)1/2
ei𝑥𝜙 (𝑐)±i𝜋/4, as 𝑥 → ∞. (135)

Since the aim is the evaluation of the far-field pressure, spherical polar coordinates are employed (�̄�, \̄, 𝜙). The
integral is calculated in the limit as �̄� → ∞. The substitutions are

𝑟 = �̄� sin \̄ and 𝑧 = �̄� cos \̄ . (136)

The dependence of the function 𝑝′𝑡𝑛 (𝑟, 𝑘𝑧 , 𝑡) on 𝑟 is through the Hankel function which for large �̄� can be replaced by
its asymptotic form

H(2)
𝑛 (Γ0𝑟) = H(2)

𝑛 (Γ0 �̄� sin \̄) ∼

√︄
2

𝜋Γ0 �̄� sin \̄
e
1
2 𝑛𝜋i e

1
4 𝜋i e−iΓ0 �̄� sin \̄ as �̄� → ∞. (137)

Also, exp(−i𝑘𝑧𝑧) → exp(−i𝑘𝑧 �̄� cos \̄) and the integral (134) can be expressed in the form

𝐼𝑛 ∼ 1
2𝜋

∫ ∞

−∞
𝑓𝑛 (𝑘𝑧 , �̄�, \̄) e−i�̄� (Γ0 sin \̄+𝑘𝑧 cos \̄) d𝑘𝑧 as �̄� → ∞, (138)

where

𝑓𝑛 (𝑘𝑧 , �̄�, \̄) = 𝜋2b𝑙𝑞𝑃𝑙𝑞 ei(𝑛−𝑙)𝛽 (𝑘0 + 𝑘𝑧𝑀)Ψ𝑙𝑞

√︄
2

𝜋Γ0 �̄� sin \̄
e
1
2 𝑛𝜋i e

1
4 𝜋i×[ J𝑛−𝑙 (Γ0𝑏)H(2) ′

𝑛 (Γ0𝑎0) − H(2)
𝑛−𝑙 (Γ0𝑏) J

′
𝑛 (Γ0𝑎0)

H(2) ′
𝑛 (Γ0𝑎0)

]
ei𝜔0𝑡 .

(139)

By introducing the similarity variables from Chapman [17],

𝜎2 = 1 − 𝑀2, (140)

�̂� =
�̄�

𝜎
(1 − 𝑀2 sin2 \̄)1/2, (141)

cos \̂ =
cos \̄

(1 − 𝑀2 sin2 \̄)1/2
, (142)

sin \̂ =
𝜎 sin \̄

(1 − 𝑀2 sin2 \̄)1/2
, (143)

𝜏 = 𝜎2
𝑘𝑧

𝑘0
− 𝑀, (144)

Γ0 =
𝑘0

𝜎
(1 − 𝜏2)1/2, (145)
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𝑘𝑧 =
𝑘0

𝜎2
(𝜏 + 𝑀), (146)

d𝑘𝑧 =
𝑘0

𝜎2
d𝜏, (147)

the integral 𝐼𝑛 (138) is rewritten in the form

𝐼𝑛 ∼ 1
2𝜋

∫ ∞

−∞
𝑔𝑚 (𝑘𝑧 , �̄�, \̄) ei�̄� �̂� (𝜏) d𝜏 as �̄� → ∞, (148)

where
𝜙(𝜏) = −

(
𝑘0

𝜎
(1 − 𝜏2)1/2 sin \̂ + 𝑘0

𝜎
(𝜏 + 𝑀) cos \̂

)
, (149)

and

𝑔𝑛 (𝜏, �̄�, \̄) = 𝜋2b𝑙𝑞𝑃𝑙𝑞 ei(𝑛−𝑙)𝛽
(
𝑘0 +

𝑘0

𝜎2
(𝜏 + 𝑀)𝑀

)
Ψ𝑙𝑞 (

𝑘0

𝜎
(1 − 𝜏2)1/2)√︄

2
𝜋
𝑘0
𝜎
(1 − 𝜏2)1/2 �̂� sin \̂

e
1
2 𝑛𝜋i e

1
4 𝜋i ei𝜔0𝑡

𝑘0

𝜎2
×[ J𝑛−𝑙 ( 𝑘0𝜎 (1 − 𝜏2)1/2𝑏)H(2) ′

𝑛 ( 𝑘0
𝜎
(1 − 𝜏2)1/2𝑎0) − H(2)

𝑛−𝑙 (
𝑘0
𝜎
(1 − 𝜏2)1/2𝑏) J′𝑛 (

𝑘0
𝜎
(1 − 𝜏2)1/2𝑎0)

H(2) ′
𝑛 ( 𝑘0

𝜎
(1 − 𝜏2)1/2𝑎0)

]
.

(150)

The equation 𝜙′(𝑐) = 0 yields 𝑐 = cos \̂. Also, when |𝜏 | > 1, Γ0 becomes imaginary, so the integrand will become
exponentially small as �̄� → ∞. That means the limits of the integral can be replaced by (−1, 1). With this substitution,
the integral 𝐼𝑛 (148) becomes

𝐼𝑛 =
1
2𝜋

𝑔𝑛 (𝑐)
(
2𝜋

�̂� |𝜙′′(𝑐) |

)1/2
ei�̂� �̂� (𝑐)+i𝜋/4, as �̂� → ∞. (151)

where
𝜙(𝑐) = − 𝑘0

𝜎
(1 + 𝑀 cos \̂), (152)

and
𝜙′′(𝑐) =

𝑘0

𝜎 sin2 \̂
. (153)

The final form of the integral 𝐼𝑛 is given by

𝐼𝑛 =
1
2𝜋
𝜋2b𝑙𝑞𝑃𝑙𝑞 ei(𝑛−𝑙)𝛽

(
𝑘0 +

𝑘0

𝜎2
(cos \̂ + 𝑀)𝑀

)
Ψ𝑙𝑞 (

𝑘0

𝜎
sin \̂)

√︄
2

𝜋
𝑘0
𝜎
�̂� sin2 \̂

e
1
2 𝑛𝜋i e

1
4 𝜋i×

ei𝜔0𝑡
𝑘0

𝜎2

[ J𝑛−𝑙 ( 𝑘0𝜎 sin \̂𝑏)H(2) ′
𝑛 ( 𝑘0

𝜎
sin \̂𝑎0) − H(2)

𝑛−𝑙 (
𝑘0
𝜎
sin \̂𝑏) J′𝑛 (

𝑘0
𝜎
sin \̂𝑎0)

H(2) ′
𝑛 ( 𝑘0

𝜎
sin \̂𝑎0)

]
×√︄

2𝜋
�̂�

𝑘0
𝜎 sin2 \̂

e−i�̂�
𝑘0
𝜎
(1+𝑀 cos \̂)+i𝜋/4,

(154)

where Ψ𝑙𝑞 ( 𝑘0𝜎 sin \̂) is Ψ𝑙𝑞 (123) calculated taking Γ0𝑐 =
𝑘0
𝜎
sin \̂. Then returning to the original coordinates using

eqs. (141)-(147), and setting Δ0 = 𝑘0 sin \̄
(1−𝑀 2 sin2 \̄)1/2 and 𝑆(\̄) =

( (1−𝑀 2 sin2 \̄)1/2+𝑀 cos \̄)
𝜎2

gives

𝐼𝑛 =
i𝜋b𝑙𝑞𝑃𝑙𝑞𝑘0

�̄�
ei(𝑛−𝑙)𝛽

𝑆(\̄)
(1 − 𝑀2 sin2 \̄)

Ψ𝑙𝑞 (Δ0)×[ J𝑛−𝑙 (Δ0𝑏)H(2) ′
𝑛 (Δ0𝑎0) − H(2)

𝑛−𝑙 (Δ0𝑏) J
′
𝑛 (Δ0𝑎0)

H(2) ′
𝑛 (Δ0𝑎0)

]
e
1
2 𝑛𝜋i ei𝜔0𝑡 e−i𝑘0 �̄�𝑆 ( \̄) .

(155)
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Finally, from eqs. (15) and (133)

𝑝′𝑡 (�̄�, \̄, 𝜙, 𝑡) =
1

(2𝜋)

∞∑︁
𝑛=−∞

𝐼𝑛 e−i𝑛�̄� , (156)

or

𝑝′𝑡 (�̄�, \̄, 𝜙, 𝑡) =
ib𝑙𝑞𝑃𝑙𝑞𝑘0
2�̄�

Ψ𝑙𝑞 (Δ0)
𝑆(\̄)

(1 − 𝑀2 sin2 \̄)

∞∑︁
𝑛=−∞

ei(𝑛−𝑙)𝛽 e
1
2 𝑛𝜋i ei𝜔0𝑡×

e−i𝑘0 �̄�𝑆 ( \̄) e−i𝑛�̄�
[ J𝑛−𝑙 (Δ0𝑏)H(2) ′

𝑛 (Δ0𝑎0) − H(2)
𝑛−𝑙 (Δ0𝑏) J

′
𝑛 (Δ0𝑎0)

H(2) ′
𝑛 (Δ0𝑎0)

]
.

(157)
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