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A B S T R A C T   

Unsustainable hunting is one of the leading drivers of global biodiversity loss, yet very few direct measures exist 
due to the difficulty in monitoring this cryptic activity. Where guns are commonly used for hunting, such as in 
the tropical forests of the Americas and Africa, acoustic detection can potentially provide a solution to this 
monitoring challenge. The emergence of low cost autonomous recording units (ARUs) brings into reach the 
ability to monitor hunting pressure over wide spatial and temporal scales. However, ARUs produce immense 
amounts of data, and long term and large-scale monitoring is not possible without efficient automated sound 
classification techniques. We tested the effectiveness of a sequential two-stage detection pipeline for detecting 
gunshots from acoustic data collected in the tropical forests of Belize. The pipeline involved an on-board 
detection algorithm which was developed and tested in a prior study, followed by a spectrogram based con-
volutional neural network (CNN), which was developed in this manuscript. As gunshots are rare events, we 
focussed on developing a classification pipeline that maximises recall at the cost of increased false positives, with 
the aim of using the classifier to assist human annotation of files. We trained the CNN on annotated data collected 
across two study sites in Belize, comprising 597 gunshots and 28,195 background sounds. Predictions from the 
annotated validation dataset comprising 150 gunshots and 7044 background sounds collected from the same 
sites yielded a recall of 0.95 and precision of 0.85. The combined recall of the two-step pipeline was estimated at 
0.80. We subsequently applied the CNN to an un-annotated dataset of over 160,000 files collected in a spatially 
distinct study site to test for generalisability and precision under a more realistic monitoring scenario. Our model 
was able to generalise to this dataset, and classified gunshots with 0.57 precision and estimated 80% recall, 
producing a substantially more manageable dataset for human verification. Using a classifier-guided listening 
approach such as ours can make wide scale monitoring of threats such as hunting a feasible option for conser-
vation management.   

1. Introduction 

Biodiversity is being lost globally at an unprecedented rate, due to 
accelerating human impacts (Barnosky et al., 2011; Ceballos et al., 2020; 
IPBES, 2019). Species overexploitation is amongst the leading drivers of 
global biodiversity loss, threatening more than a quarter of all terrestrial 
animal species (WWF, 2016). This threat is expressed particularly 
forcefully in tropical regions, and it frequently occurs within protected 
areas (Jones et al., 2018; Laurance et al., 2012), where threats such as 

habitat loss commonly co-occur with overhunting to exacerbate the 
issue (Peres, 2001). 

In contrast to the other leading drivers of global biodiversity loss 
such as habitat degradation (Hansen et al., 2013), there is limited 
spatiotemporal information on hunting. Traditional remote sensing 
methods have provided a wealth of high resolution spatial data on large- 
scale forest loss; these methods, however, cannot distinguish ‘empty’ 
forests that are structurally intact but devoid of fauna from truly healthy 
ecosystems (Benítez-López et al., 2019; Peres et al., 2006). Attempts to 
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map hunting over large spatial scales have consequently relied on pre-
dictors such as landscape accessibility (Benítez-López et al., 2019; Zie-
gler et al., 2016), yet these relationships are rarely validated on the 
ground (Deith and Brodie, 2020). Spatially explicit measures of hunting 
on a finer scale have commonly been obtained from ranger patrol data 
collected using law-enforcement monitoring software (Critchlow et al., 
2017; Critchlow et al., 2015; Hötte et al., 2016; Plumptre et al., 2014) 
and systematic camera trapping grids (Ferreguetti et al., 2018; Hossain 
et al., 2016). Encounter data from patrols present challenges due to the 
deliberate bias of patrol effort towards areas with perceived high levels 
of activity (Dobson et al., 2020; Dobson et al., 2019) combined with 
avoidance of patrol routes by hunters, while camera traps have a limited 
field of detection in dense forests and are prone to theft. 

Advances in the field of automated acoustic monitoring have opened 
up new avenues for directly monitoring anthropogenic disturbance 
(Astaras et al., 2017; Dobbins et al., 2020; Wrege et al., 2017) and 
biodiversity (Pijanowski et al., 2011; Sethi et al., 2020a; Sugai et al., 
2018) in a systematic and spatially explicit manner. Acoustic monitoring 
captures a breadth of information from a variety of vocalising taxa 
(Bergler et al., 2019; Do Nascimento, 2020; Dufourq et al., 2021; Wrege 
et al., 2017), and from human activities such as logging and gun-hunting 
(Dobbins et al., 2020; Prince et al., 2019; Sethi et al., 2020b). The advent 
of low-cost autonomous recording units (ARUs: Hill et al., 2019) has 
enabled monitoring over large spatial and temporal scales, including in 
remote areas, providing a particularly effective method for monitoring 
cryptic species or activities (Campos-Cerqueira and Aide, 2016; Dobbins 
et al., 2020; Picciulin et al., 2019), while the overall soundscape can 
provide insight into habitat quality and biodiversity health (Sethi et al., 
2020b). 

Widescale uptake of this technology for ecological monitoring and 
conservation management is limited by users’ capacity to analyse the 
information-dense data produced by the recorders. ARUs collect vast 
quantities of data in short time periods, which require processing to 
extract information on detections of acoustic events. The majority of 
ecological studies implementing acoustic monitoring currently rely on 
manual techniques such as listening to recordings and visually scanning 
spectrograms (Sugai et al., 2018), however these methods can become 
prohibitively time consuming with larger datasets. Consequently auto-
mated classification methods are a prerequisite for large-scale moni-
toring (Priyadarshani et al., 2018). 

Current automated gunshot detection methods have several major 
shortcomings. Firstly, development of methods has largely relied on a 
carefully curated dataset of idealised gunshots with minimum back-
ground noise and high SNR (signal to noise ratio), which is rarely 
representative of field recordings from forested environments. Conse-
quently, many of these algorithms can recognise specific examples but 
are unlikely to generalise to a realistic dataset (Nimmy et al., 2018; 
Valenzise et al., 2007). This issue is particularly problematic given the 
reliance on cross correlation and template matching schemes (Nimmy 
et al., 2018; Van der Merwe and Jordaan, 2013; Wrege et al., 2017), 
which are often highly sensitive to noise and fail to generalize (Nimmy 
et al., 2018). 

Secondly, many of these approaches do not consider the extensive 
and variable nature of background sounds present in natural settings 
such as a tropical forests, or the relative rarity of target events such as 
gunshots compared to background sounds in a realistic monitoring 
scenario, which applies for both forested environments and urban en-
vironments (Chacon-Rodriguez et al., 2011; Hrabina et al., 2016; Singh 
et al., 2020). A wide range of background sounds can easily be confused 
with a gunshot, such as a woodpecker drumming, or a branch cracking, 
which could easily outnumber the much rarer true gunshot detections, 
resulting in a classifier with low precision (Wrege et al., 2017). 

Thirdly, reliance on proprietary sound-analysis software and tools 
has resulted in a lack of transparency of methodology and unknown 
performance metrics. For example, Dobbins et al. 2020 used a combi-
nation of clustering and machine learning tools in the proprietary 

Kaleidoscope 5 Pro software (Wildlife Acoustics Inc.) to identify gun-
shots from field data collected in forests of Belize. However, there is no 
publicly available information on the specific methods used or the 
performance of this classifier, such as recall (proportion of gunshots 
detected) or precision (proportion of correctly predicted gunshots out of 
all gunshot predictions), which underpin the validity of the approach. 
Similarly, there is a lack of empirical evidence to validate other pro-
prietary acoustic gunshot detection systems, such as the tool provided by 
Rainforest Connection (RFCx), and the ‘Shotspotter’ software which is 
widely used in urban areas across the US. 

The recent development of spectrogram based convolutional neural 
networks (CNNs) has proved a powerful approach to automate detection 
of sound events (Dufourq et al., 2021; Kahl et al., 2021; Liu et al., 2019; 
Ruff et al., 2021), and provides a potential solution for robust gunshot 
detection (Bajzik et al., 2020; Khunarsa et al., 2010; Morehead et al., 
2019; Mushtaq and Su, 2020). The general methodology involves con-
verting the sounds to images of spectrograms, which represent the signal 
frequency and amplitude over time, and training an image-based CNN to 
classify the spectrogram images. This approach has proved very suc-
cessful for complex animal vocalisations that are easily distinguished by 
humans, although it does not perform as well for more simple sounds 
that are easily confused with background noise (Bergler et al., 2019; 
Florentin et al., 2020), and consequently it has uncertain utility for 
detecting gunshot sounds in noisy tropical forests. Use of CNNs has been 
investigated for gunshot detection in urban areas (Bajzik et al., 2020; 
Khunarsa et al., 2010; Morehead et al., 2019; Mushtaq and Su, 2020), 
but not with a realistic field dataset form a tropical forest environment. 
While case studies based on urban gunshots report metrics of high 
precision and recall, they lack validation on real world data, which is 
critical to gauge their utility in real world monitoring scenarios (Bajzik 
et al., 2020; Morehead et al., 2019; Mushtaq and Su, 2020). Publicly 
available, annotated audio datasets collected in the field are essential for 
the development of improved classifiers, and to provide a benchmark for 
validation and comparative tests of existing algorithms. However there 
is a lack of publicly archived audio data, especially from tropical regions 
(Gibb et al., 2019). 

In this study, we investigate the feasibility of using CNNs to detect 
the presence of acoustic gunshot events within tropical forests. As 
gunshots are rare events, we specifically aimed to create a classifier that 
maximises recall of gunshots (and therefore minimises false negatives) 
even at the cost of increased false positives, with the purpose of assisting 
human annotation of sound files as opposed to fully automated classi-
fication. We implemented a two-stage classification pipeline involving 
an on-board gunshot detector and CNN spectrogram image classifica-
tion. The onboard detector was developed and tested in a previous study 
(Prince et al., 2019); this study develops and tests the post-hoc classi-
fication model. To train and validate our CNN we compiled an annotated 
training and validation dataset from data collected in two study sites in 
central Belize, with additional ground-truthed gunshots from a field test, 
which we have made openly accessible with this manuscript. We 
implemented our final model on a much larger dataset of raw, unan-
notated field recordings collected from a separate site in southern Belize 
to gauge the true precision of the classifier when tested on data with a 
more realistic distribution of negative files. 

2. Methods 

2.1. Study sites 

Data were collected in three study sites across Belize’s protected 
areas network (Fig. 1). Site 1, Tapir Mountain Nature Reserve (TMNR) is 
a small non-extractive nature reserve (IUCN category Ia), that consists of 
lowland broad-leaved moist forest on rugged karst hills. Adjacent to 
TMNR is Pook’s Hill Reserve, where the field test of ground-truthed 
gunshots was conducted. Site 2 consists of a network of protected 
areas including Manatee Forest Reserve and several smaller 
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neighbouring protected areas including Monkey Bay Wildlife Sanctuary, 
Peccary Hills National Park, Runaway Creek Nature Reserve, and several 
private properties. These reserves are assigned a range of less strict 
protection statuses than Site 1, although public access and hunting is 
prohibited in all of them. Primary ecosystems consist of lowland broad- 
leaved moist forest, lowland savannah, and lowland pine forest on steep 
limestone hills. Site 3, Bladen Nature Reserve (BNR), is a strictly pro-
tected nature reserve (IUCN category Ia) in the south of the country. 
BNR encompasses some of the most pristine and biodiverse forests in the 
country, including broadleaf forests, savannah, and submontane forest, 
on limestone and granite hills. 

Gun hunting is prevalent in all three study areas, despite formal 
protection. As is typical in the Neotropics, hunting largely targets me-
dium and large bodied mammals, including peccaries, deer, paca, and 
armadillo (Foster et al., 2016). Gun hunting in Belize typically involves 
the use of shotguns as opposed to rifles, and subsequent analyses focus 
on the gunshot sound produced by 12-gauge and 16-gauge shotguns of 
the type typically used in Belize. 

2.2. Data collection 

Acoustic monitoring was conducted in Site 1 between March 2018 – 
March 2019 using AudioMoth acoustic sensors (v 1.0.0), modified to 
connect to a 6 V alkaline lantern battery, and housed in a rubber-sealed 
watertight plumbing tube with a Schlegel acoustic vent (Hill et al., 
2019). AudioMoths were deployed at ten locations determined by a 
greedy heuristic algorithm, which predicted optimal placements for 
maximising the probability of detecting gunshots anywhere in the 
reserve (Fig. 1; see Pina-Covarrubias et al. 2019 for further information 
on study design). 

Acoustic monitoring was conducted in Sites 2 and 3 from January 
2021 – June 2021. This survey period was chosen as it coincided with an 
existing camera trapping survey. In these sites we used AudioMoth 
acoustic sensors (v 1.0.0 and v 1.1.0) with lithium AA batteries and 
housed in the AudioMoth IPX7 waterproof case, with a Schlegel acoustic 
vent. We chose to use data from just 1 month at each site, from ten lo-
cations in Site 1, and five locations in Site 3 (Fig. 1). AudioMoth 
deployment in these sites did not follow the optimisation process used in 
Site 1. Sensors in these sites were instead deployed alongside a camera 

Fig. 1. Acoustic recorder deployment sites in Belize, indicated by blue boxes in the bottom right map. Site 1 is Tapir Mountain Nature Reserve (TMNR), which is 
adjacent Pook’s Hill Reserve (PHR), Site 2 consists of Manatee Forest Reserve and surrounding smaller protected areas and private property, and Site 3 is Bladen 
Nature Reserve (BNR). Sites 1 and 2 contributed training data for the CNN, and the CNN was then implemented on data collected in Site 3. Note site maps are 
projected in WGS 84 and are of different scales. 
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trapping project, which followed a 2 km grid using existing logging 
roads, trails, and newly cut trails. 

At each location, we deployed a pair of AudioMoths, one configured 
to record during the day (07:00 – 17:00 local time), and one during the 
night (17:00 – 07:00). We attached AudioMoths to the nearest suitable 
tree at shoulder height and directed the sensor towards the valley. 
AudioMoths were flashed with a custom firmware developed to detect 
and record gunshots in Belizean tropical forests (see Prince et al. 2019). 
Predicted gunshot-like sounds are recorded as 4.09 s Waveform Audio 
File Format (wav) files, collected at a sample rate of 8 kHz. To reduce the 
number of false positives, a threshold of 100 recordings per hour was set, 
after which the device went to sleep for the rest of the hour. Recall of this 
detector was 0.84 for gunshots fired within 500 m of the sensor; beyond 
this distance factors such as terrain and foliage caused a significant 
decrease in recall (Prince et al., 2019). The classification pipeline pre-
sented is thus applied within the context of gunshots occurring up to 
500 m from the sensor. 

We boosted the training dataset with a set of recordings of controlled 
gunshots collected in 2017 in Pook’s Hill Reserve. This dataset con-
tained gunshots fired during the day and the night at distances of 
0–1000 m from 13 sensors. Continuous recordings were divided into 4 s 
sections and manually classified as containing gunshot or background 
sound, producing a dataset of 357 gunshot recordings. Although the 
time of the gunshot was known in the ground-truthing exercise, there 
was still a possibility that similar types of sounds (e.g. branch cracking), 
which are hard to tell apart for human listeners, may have been falsely 
interpreted as a gunshot, and consequently falsely annotated. 

2.3. Data labelling 

To extract non-gunshot recordings, hereafter referred to as back-
ground sounds, we took a random sample of 10,000 recordings each 
from Sites 1 and 2. We manually checked for the absence of gunshots in 
these recordings and removed any recordings of human voice. 

Due to the low proportion of gunshots, this approach of random 
sampling and annotation gave too few gunshot examples for model 
training. We therefore developed and used a deterministic filter to 
produce a smaller subsample of potential gunshot recordings that could 
be manually annotated. This filter identified potential gunshots based on 
the decay of sound pressure over time, and the sound pressure of each 
frequency band (S1). The filtered files were then classified manually, 
through a combination of visual inspection of spectrograms and 
listening to the audio, to separate out the gunshot recordings (Table 1). 
We added the false positives from this filter to the background training 
data, to increase the potential for the CNN to learn background sounds 
that have similar properties to gunshots. We tested the performance of 
this filter on the ground truthed gunshots and found that it correctly 
identified 57% of the gunshot recordings. Although use of this filter 
biases the type of gunshot recordings that we trained our model with, we 
supplemented these annotated gunshots with a further 357 files that 
were recorded and labelled during the ground-truthing exercise, which 
should ameliorate this bias in the dataset (Table 1). 

2.4. Data partitioning 

The training and validation datasets comprised data collected in Sites 
1 and 2, in addition to the ground truthed gunshots. For each of these 
datasets, we ordered the recordings from each category (background 
and gunshot) according to the time the recording was made. Recordings 
made in the first 80% of the sampling period for each category at each 
site comprised the training dataset, and the remaining recordings, from 
the last 20% of the sampling period, comprised the validation dataset. 
The training data were used for model training, whilst the validation 
data were used for fine-tuning of model hyperparameters, to identify the 
optimal length of training and diagnose overfitting issues, and to define 
the decision threshold (above which predictions are counted as gun-
shots) used for model predictions on the test data. Our test dataset 
comprised the full, unannotated data collected in Site 3. This dataset was 
too large to annotate manually, however it was necessary to include the 
entire dataset to gauge the precision of our classifier when faced with a 
greater proportion of background sounds, and its generalizability to 
spatially distinct sites. 

2.5. Data balancing 

Canonical machine learning algorithms assume an equal distribution 
between each class, and in cases of highly imbalanced data, the algo-
rithm will be biased towards the majority class (Krawczyk, 2016). We 
balanced our training dataset to a ratio of 1:1 (gunshots: background) by 
oversampling the gunshot files to 28,195 to match the number of 
background sounds in the training data. Additionally, to evaluate the 
effect of increasing the amount of training background sounds on model 
performance, we created a second training dataset where background 
sounds were undersampled to 600 to match the original number of 
gunshots. We did not balance the validation dataset as we wanted to test 
how the model performs on a dataset with a more realistic distribution of 
gunshots. The validation set comprised 150 gunshots and 3995 back-
ground sounds. 

2.6. Convolutional neural network training 

CNNs are a class of neural networks designed to process data that 
come in the form of grids, such as a 2-D array of pixels that forms a 
digital image (LeCun et al., 2015). We trained our classifier in Python 
using OpenSoundscape version 0.5 (Kitzes et al., 2020). Our model 
consisted of the ResNet18 CNN architecture with a binary classifier 
output. ResNet18 consists of 17 hidden layers, and one fully connected 
classification layer. We used initial weights pretrained on over 1.24 
million images from 1000 categories from the ImageNet database. Even 
though these images were not related to our dataset, this approach 
allowed our model to adapt more quickly to identifying spectrograms. 
Because of the substantial difference of the images from our training set, 
we trained the entire model on our training dataset without freezing any 
layers. 

Training the CNN required preprocessing the training and validation 
data into tensors. A tensor is a multidimensional array of numbers used 
as the common structure for input data. Our preprocessing pipeline 
involved creating spectrogram images from the audio clips, applying 
augmentations, and converting the image to a PyTorch Tensor for model 
training. We created spectrograms using a window length of 256 and 
overlap of 128. Spectrograms were bandpassed to include only the fre-
quency bands between 0 and 2000 Hz. 

We included augmentations in the pre-processing pipeline to in-
crease the generalisability of our model (Fig. 2; Dufourq et al., 2021; 
Mushtaq et al., 2021; Sandfort et al., 2019). Augmentations included in 
the pipeline comprised: i) image overlay, which blends a randomly 
selected background sample to each sample in the training dataset with 
an overlay weight of 0.4; ii) colour jitter, which randomly changes the 
brightness, contrast, saturation, and hue of the image; iii) time mask, 

Table 1 
Summary of data collected from each site, with the addition of gunshot re-
cordings from a ground truthing exercise. Data from Site 1 and 2 were sub-
sampled and annotated for model training and validation, while data from Site 3 
were not annotated, and were used for testing the workflow on a full raw dataset 
from a survey.  

Site Dataset Total files Gunshot Background 

Site 1 Train / Val 2,112,924 325 23,911 
Site 2 Train / Val 235,531 67 11,404 
Site 3 Test 168,959   
Controlled gunshots Train / Val – 357    

Total 749 35,315  
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which adds up to 20 vertical bars over the image to mask random time 
bands; iv) frequency mask, which adds up to 20 horizontal bars over the 
image to mask random frequency bands; v) addition of Gaussian noise to 
the tensor, with standard deviation of 0.2.; and vi) random affine 
transformation to the image. We limited the augmentation pipeline for 
training data only, while the preprocessing pipeline for the validation 
and test data included no augmentations. We also trained the model 
without augmentations to evaluate the effect of augmentation on model 
performance. 

We optimised the model using mini-batch gradient descent, with a 
batch size of 64 samples (Ruder, 2016). We used the default model 
training parameters provided by OpenSoundscape. We trained the 
model for 50 epochs (iterations) and selected the epoch with the highest 
F1 score (the harmonic mean of precision and recall) on the validation 
data. 

2.7. Threshold moving 

The model produced real-number numerical scores reflecting confi-
dence of gunshot presence and absence for each sample. These scores 
were transformed to [0, 1] using the softmax activation function. The 
scores were subsequently transformed into a binary class label using a 
decision threshold, above which the class was assigned as a gunshot. 

The choice of decision threshold impacts the performance of the 
classifier due to the trade-off between recall and precision (Knight and 
Bayne, 2019). A high score threshold will maximise precision, but will 
have lower recall, and therefore may be more appropriate for ubiquitous 
and commonly repeated target sounds (e.g. a frequently vocalising frog 
species Lapp et al. 2021). In contrast, for detecting rare sound events, 
such as gunshots or vocalisations of a rare species, a lower threshold is 
more suitable, which maximises recall at the cost of decreased precision. 
In this case the classifier may be used to guide manual verification of 
recordings, known as classifier guided listening. 

We chose a decision threshold that maximised recall of gunshot 
events from the validation dataset. We selected a minimum recall of 0.95 
to identify the decision threshold score for each of our models. 

2.8. Model validation 

We evaluated the performance of the models by performing pre-
dictions on the validation dataset. The scores were converted into binary 
predictions using the decision threshold that coincided with 95% recall 
for each model (Fig. 3). We evaluated model performance by comparing 
these labels with true class labels. 

Fig. 2. Examples of the PyTorch tensors created after application of augmentations from the preprocessing pipeline: a) overlay of random background sound with a 
blending weight of 0.4, b) random change to brightness, contrast, saturation, and hue of image, c) time mask – random application of up to 20 vertical bars to the 
image, d) frequency mask – random application of up to 20 horizontal bars to the image, e) addition of Gaussian noise with a standard deviation of 0.2, and f) random 
affine transformation to the image. 
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2.9. Model implementation 

We used our final model to perform predictions on an unseen test 
dataset from a spatially distinct study site (Site 3). This dataset 
comprised the full set of recordings obtained from the recording period 
and was too large to annotate manually. Implementing the model on this 
larger dataset was essential to gauge the true precision of our model 
given a much greater source of potential false positive sounds. To 
evaluate the precision of our model, we performed ‘top down’ listening, 
whereby we ranked the prediction scores from highest to lowest, and 
then listened to all the files that were above the chosen threshold. We 
manually classified these files as gunshot or background sound to 
calculate the precision of the classifier (the proportion of true positives 
out of all the predicted positive files). 

3. Results 

3.1. Convolutional neural network 

The CNN classified gunshots from the validation dataset with high 
recall (95%) and precision (85%) (Fig. 3). Predictions performed on our 
test data confirmed that our model generalised well to data from a novel 
study site and was able to classify gunshots with relatively high preci-
sion (57%) despite much greater volumes of potential false positives in 
this more extensive dataset. Although we could not calculate the recall 
of the CNN on this unannotated dataset, we assumed it was approxi-
mately 95%, as we used the same 95% decision threshold from the 
validation dataset. 

Comparison of models trained with different training datasets and 
levels of data augmentation showed that the combination of extensive 
background sounds in the training data along with data augmentation 
substantially improved model performance (Table 2). Evaluating each of 
these models using a threshold that coincided with 95% recall showed 

that the precision of the model was greatly improved under these con-
ditions (Table 2). 

A more accurate estimate of precision and model generalisability was 
estimated from performing predictions followed by top down listening 
on a full dataset obtained from one month of recordings in a distinct 
study site (Site 3), situated over 60 km away from the study sites used for 
the training data. Predictions performed on this dataset of over 160,000 
files produced 35 files with scores above the threshold. Listening to these 
files confirmed that 20/35 were true gunshot events, giving precision of 
57%. 

3.2. Combined pipeline 

We calculated the overall recall of our combined pipeline starting 
from the on-board detector through to the CNN by taking the product of 
recall from each stage. Recall of the on-board detector was estimated at 
0.84, while recall of the CNN was estimated at 0.95, giving an overall 
recall of 0.80. 

4. Discussion 

Unsustainable hunting is one of the foremost threats to global 
biodiversity, yet we have a scant understanding of it on a spatial scale 
due to our inability to monitor this cryptic activity. Our results 
demonstrate the utility of deep learning for automated gunshot detec-
tion from acoustic data collected in tropical forests. Our CNN classifier 
achieved high recall (0.95) of gunshots on the validation data with a 
precision of 0.85. We implemented the pipeline on a full dataset of re-
cordings collected at a spatially distinct site and found that gunshots 
were identified with a precision of 0.57 and estimated recall of 0.80. 
Crucially our approach maximises recall of rare gunshot events, whilst 
reducing the number of the possible gunshot files to a more manageable 
dataset for human verification. 

The performance of this approach, including the maximum overall 
recall that can be achieved, is constrained by the on-board gunshot 
detection algorithm implemented on the AudioMoths. Survey design 
decisions such as recording duration, overall survey length, and use of 
on-board detectors are highly dependent on the application and 
behaviour of the target species. For ecological research, on-board 
detection algorithms are often not ideal, as they discard data that may 
be important for future research. However, for use by conservation 
managers with specific goals and limited data management resources, 
they may be the most practical route forward as their use can increase 
the overall survey duration by reducing power consumption and storage 
used on SD cards, while reducing overall data storage and management 
demands. In this case, the on-board detector allowed 24 h listening for 
gunshots for a manyfold longer overall duration than would be possible 
with 24 h continuous recording (Prince et al., 2019). 

Comparison of models trained with different training datasets 
showed that incorporation of a wide variety of background sounds from 

Fig. 3. A) Precision and recall scores of pre-
dictions on validation dataset at all possible de-
cision thresholds, with the chosen threshold that 
coincides with 95% recall highlighted. The no 
skill line is calculated as the proportion of true 
positives in the validation dataset. B) Distribution 
of softmax scores for gunshot presence, obtained 
from performing predictions on the validation 
dataset using the decision threshold identified in 
panel A. True labels of the validation data are 
represented by the colours of the bars.   

Table 2 
Comparison of performance of CNNs trained with different training datasets. 
Metrics refer to predictions performed on the validation dataset at the chosen 
threshold for each model that coincides with 95% recall. Model a was trained 
with a small subset of background sounds, and no data augmentation, Model b 
was trained with the same training set as Model a, but with the addition of data 
augmentation in the training pipeline. Model c was trained with the entire 
dataset of background sounds with no augmentation, while the Final model, 
which is used throughout this study was trained with the entire dataset of 
background sounds and data augmentation.   

Model a Model b Model c Final model 

Augmentation No Yes No Yes 
Training background sounds 600 600 28,195 28,195 
Recall 0.95 0.95 0.95 0.95 
Precision 0.05 0.05 0.10 0.85 
False positives 2952 2759 1266 26  
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our study environment in the training dataset substantially improved 
model performance (Bergler et al., 2019; Florentin et al., 2020). Our 
annotated dataset was collected over 14 months at 25 sensor locations in 
Belize. Although this is not considered a particularly large dataset by 
machine learning standards, crucially it captured the highly heteroge-
neous and noisy soundscapes characteristic to tropical forests. Our 
realistic, noisy field data provided both realistic gunshot recordings and 
a wide range of potential false positive sounds. Given how rare gunshot 
events are in comparison to these potential false positives, the ability of 
the classifier to learn the gunshot-like (prone to false positive) sounds 
occurring within a forest environment was critical, as any learning in 
this domain can substantially reduce the amount of false positive 
predictions. 

Data augmentation techniques were also key to improving the per-
formance of our model. CNNs are sensitive to overfitting on training 
data, as they are narrowly focussed on the annotated training dataset. To 
avoid this issue, CNNs require extremely large annotated datasets, that 
are typically unachievable in an ecological monitoring scenario. 
Consequently the transferability of models to novel contexts is often an 
issue (Gibb et al., 2019). The use of data augmentation techniques can 
address this issue by introducing novel data to the model, thereby 
reducing the chance of overfitting on the training dataset. In our case, 
augmentation substantially improved the precision of our classifier 
when tested on the validation dataset. 

Implementation of our classification model on a full dataset collected 
at a novel study site over 60 km away from the training and validation 
data sites indicated good generalizability of our model. Predictions 
performed on this dataset of over 160,000 sound clips filtered out the 
vast majority of the negative clips, leaving just 35 sounds for manual 
review. Out of these predicted positives, 20 were identified as gunshots, 
giving our model a precision of 57%. Although true recall cannot be 
measured using this approach, we are comfortable with the assumption 
that the 95% recall from our validation data (and 80 % recall of the 
combined pipeline) should transfer to this new dataset. The reduction in 
precision of the classifier from the validation to the test dataset was 
expected, as the validation dataset had a smaller distribution of negative 
files compared to the test dataset (96.38 % background sounds in the 
validation data compared to ~ 99.99 % background sounds in the test 
data), which results in increased overlap of classification scores for 
positive and negative classes. Although our classifier generalised well to 
this spatially distinct study site, the generalisability to more spatially 
distant tropical forests is uncertain, as is the model’s generalisability to 
different types of landscapes and firearms type. Use of this approach in 
novel regions would require testing the pipeline on data collected in the 
new area, quantifying recall and precision, and potentially retraining 
the model with additional data. 

Our workflow has demonstrated the inherent challenges associated 
with robust acoustic detection of gunshots. The main challenge with 
gunshot detection is the fact that the acoustic signal is simple and 
nondescript and is easily confused with background sounds such as 
branch cracks, knocks, and mechanical sounds, by both human listeners 
and detection algorithms. Just as it is legitimately difficult for humans to 
distinguish these sounds using both listening and spectrogram inspec-
tion, it follows that the CNN will also struggle. Target sounds that are 
similarly simple and nondescript include woodpecker drums and ceta-
cean clicks, and studies have similarly struggled to train a spectrogram 
based CNN to robustly detect these sounds without including a sub-
stantial number of false positives (Bergler et al., 2019; Florentin et al., 
2020). In contrast, complex bird songs may be more easily learned by 
CNNs as they produce more distinctive spectrogram images (Florentin 
et al., 2020). Despite achieving lower performance metrics on these 
simple sounds, these studies still found value in using spectrogram based 
CNNs to reduce the vast datasets into more manageable, tentatively 
annotated datasets of potential positives that can be manually reviewed 
(Florentin et al., 2020). Likewise, application of our detection workflow 
could make wide-scale gunshot monitoring in forests a more feasible 

option. 
To our knowledge, just two other studies have applied automated 

detection for acoustic monitoring of gun hunting in tropical forests 
(Dobbins et al., 2020; Wrege et al., 2017). Wrege et al. (2017) imple-
mented a template cross-correlation method to detect gunshots from 
field data collected in Central African tropical forests, using a template 
that included nine example gunshots. While this approach achieved high 
recall, it resulted in a high level of false positive predictions, and the 
precision was as low as 0.0003. Classifiers with such low precision 
would be inappropriate for scaling up to larger sensor deployments, as 
they would require inordinate amounts of time dedicated to manual 
classification of the false positive predictions. Dobbins et al. (2020) took 
a different approach, involving clustering and machine learning using 
Kaleidoscope 5 software. As the details of this methodology, including 
metrics of precision and recall were not reported, it is not possible to 
compare this method to ours, or for other users to reproduce the study. 

An alternative technique has recently been proposed, for unsuper-
vised deep learning of anomalous sounds, including gunshots and 
chainsaws (Sethi et al., 2020b). Instead of classifying target sounds, this 
method passes sounds through a CNN and removes the final classifica-
tion layer, producing a set of numerical features for each clip. Anoma-
lous sounds are then identified by fitting a probability distribution to 
these features. Although this anomaly-detection method has potential 
for generalisability across a variety of different landscapes (Sethi et al., 
2020b), as yet we know of no reported performance metrics for this 
approach in terms of false positive rate and how many different sound 
classes are classified as anomalies. As this method is less targeted than 
supervised approaches, it likely sacrifices accuracy for generalizability. 
Gunshots were only reliably identified using this approach at distances 
of 25 m, while further gunshots could not be distinguished from back-
ground sound (Sethi et al., 2020b). This highly constrained detection 
distance would miss many gunshots from sensors such as AudioMoths, 
which record gunshots from up to 1 km away in tropical forests (Prince 
et al., 2019). The choice of classification method ultimately reflects the 
objectives of the study and the availability of annotated training data; 
unsupervised techniques such as this prioritise generalisability over 
detection of specific target sounds and may be more useful for explor-
atory analysis of soundscapes across wide extents, whereas supervised 
classifiers are more appropriate for maximising the detection of a spe-
cific target sound in a chosen study system. 

The purpose of our approach is to provide conservation managers 
with a long term retrospective dataset of hunting pressure, which can be 
used to assess the effectiveness of their current strategies and to plan 
more effective future patrols. Key information from this dataset includes 
i) temporal trends in hunting activity, and ii) spatial hotspots of hunting 
activity. This adaptive management approach (Astaras et al., 2020; 
Hötte et al., 2016) contrasts to other systems that provide real time alerts 
with the aim of allowing managers to act quickly on live data (O’Do-
noghue and Rutz, 2016; Sarma and Baruah, 2015). In cases such as ours, 
where the protected areas are rugged, remote, difficult to access, and 
managers have limited resources, we believe this retrospective approach 
is more beneficial than a system of real time detections. From our 
experience of working in this region, rangers would unlikely be able to 
act on real time alerts of gunshots due to limited personnel and difficulty 
in physically getting to each location. As patrols in this region require 
careful advanced planning, information to guide this process would be 
of greater value than real time alerts. Furthermore, the concept of real- 
time alerts brings to light two additional issues. Firstly, it is evident from 
our study and others, that highly precise detection of gunshots (without 
substantially sacrificing recall) remains a major challenge, even in urban 
areas with far greater resources. For example, the use of ‘Shotspotter’ 
acoustic gunshot detection technology by the Chicago Police Depart-
ment found that under 10% of gunshot alerts were associated with a 
likely gunshot event, resulting in over 37,000 police department re-
sponses in one year to locations with no evidence of gun crime (Ferguson 
and Witzburg, 2021). Consequently, a real time detection system would 
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likely provide too many false alarms to be practical. Secondly, real-time 
alerts present substantial social and ethical issues around compromising 
the personal safety and wellbeing of rangers and poachers alike (Sand-
brook, 2015; Simlai and Sandbrook, 2021). Ultimately the case of 
gunshot detection highlights the need to reflect on the objective of each 
monitoring scenario to appropriately optimise the trade-off between 
factors such as recall and precision, and generalisability and accuracy. 

5. Conclusion 

Acoustic technology offers a multitude of opportunities for moni-
toring biodiversity, environmental health, and human disturbance such 
as gun hunting. However, there is currently a mismatch between the 
speed that affordable hardware is being developed and the ability of 
ecologists to process the vast amounts of data collected. Prerequisites for 
bridging this gap include case studies that utilise open access software 
and provide fully reproducible workflows. An additional barrier is the 
lack of public audio datasets obtained from the field, especially in 
tropical regions, which can be used for model training or benchmarks for 
comparative tests of algorithms. In the case of gunshot detection in the 
tropics, to our knowledge there are no publicly archived datasets, which 
is a substantial limitation to development of useful detectors. Lifting 
these barriers would hasten development of detection algorithms with 
field utility, and ultimately would allow the development of open access 
and more user-friendly software that is accessible to ecologists. 
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Benítez-López, A., Santini, L., Schipper, A.M., Busana, M., Huijbregts, M.A., 2019. Intact 
but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. 
PLoS Biol. 17, e3000247. 
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