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Abstract

We study strongly coupled mass-deformed-CFT on a fixed de Sitter spacetime in three
dimensions via holography. We elucidate the global causal structure of the four-dimensi-
onal spacetime dual to the de Sitter invariant vacuum state. The conformal boundaries
of de Sitter appear as spacelike defects sourced by the mass deformation, which extend
into the bulk as curvature singularities in AdS. We compute all one- and two-point func-
tions of the deformed-CFT stress tensor and a scalar operator order-by-order in the mass
deformation for a simple holographic model. These correlation functions admit a spec-
tral representation as a sum of simple poles corresponding to normalisable modes in the
bulk.
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1 Introduction

De Sitter spacetime is both physically relevant and mathematically significant. Its physical
relevance is its description of a universe expanding at an accelerating rate, applicable at early
times in inflationary cosmology, and at late times as we enter an era dominated by a cosmolog-
ical constant. It is also of mathematical significance as one of only three maximally symmetric
Lorentzian geometries. For these reasons it is important to develop a good understanding of
quantum field theories (QFT) on de Sitter backgrounds.

Weakly coupled QFTs on fixed de Sitter is a well-studied and rich field of research. Light
scalars in de Sitter backgrounds (|m| � H) exhibit infrared divergences if interactions are
treated as perturbatively small. In Starobinksky’s stochastic approach [1–3], this is addressed
by splitting fields into long- and short-wavelength parts compared to the Hubble scale. The
long wavelength parts then evolve classically and stochastically according to a Langevin equa-
tion with a white noise term arising from short wavelength modes. Starobinsky’s approach,
and generalisations of it, have been the focus of many subsequent studies [4–22]. For reviews
on infrared issues in de Sitter see [23,24].

In this work we adopt a fresh perspective and compute QFT correlation functions on de
Sitter directly at strong coupling. This sidesteps issues encountered by working with perturba-
tively small coupling constants, and at the same time provides a complementary insight into
general properties of correlation functions on de Sitter backgrounds at any value of the cou-
pling. Strong coupling is made accessible through holographic duality, where we may set the
QFT to live on a fixed de Sitter metric with Hubble parameter H,

ds2
dS3
= −d t2 + e2Ht d ~y2 =

−dη2 + d ~y2

H2η2
, (1)

where the conformal time η = −H−1e−Ht . Conformal field theories (CFT) provide the best
understood examples of holographic duality, however since de Sitter spacetime (1) is in the
same conformal class as Minkowski they do not capture any dynamics for which the curved de
Sitter background plays an important role.1 This motivates the study of non-conformal field
theories.

1Up to the role played by possible conformal anomalies.
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Therefore here we turn our attention to non-conformal holographic QFTs. This is achieved
by introducing a mass as a deformation parameter of a CFT,

S = SCFT +

∫

dd x m(x)O(x) . (2)

Since m breaks conformal symmetry there is no longer a relation to vacuum QFT on Minkowski
spacetime under a Weyl transform, instead, Weyl transformations reveal an equivalence to
studying QFT on Minkowski spacetime in the presence of a spacelike defect. The defect is
located at the future conformal boundary of de Sitter, η→ 0. The vacuum state in de Sitter is
characterised by constant energy density despite the accelerated expansion; one interpretation
of this is a balance between particle production and its dilution due to the expansion of the
universe. The bulk global structure of the vacuum is given by domain wall solutions in a dS-
invariant foliation of the bulk, where the leaves of the foliation are appropriately marshalled
by the defect. The geometries are akin to a Janus solution, but where the defect is spacelike
and separates two copies of de Sitter.

Such states have been considered in a series of previous works [25–29] and also more
recently in [30–34]. In these papers they are shown to exhibit properties commensurate with
dynamical attractors; homogeneous deviations from vacuum relax exponentially fast in time
(power law in the scale factor) exhibiting features which elicit comparison to hydrodynamic
equilibrium and quasinormal modes. It is interesting to ask how far the analogy to hydrody-
namic equilibrium and quasinormal modes goes, especially since the state is not an equilibrium
state. To this end, we compute two-point functions of currents as the ultimate arbiter of relax-
ation towards any given state. We do this for scalar, vector and tensor channels and at finite
spatial momentum. We find no further similarities to hydrodynamics; the underlying reason
is the high amount of residual isometries. Since the domain walls are dS invariant there can
be no meaningful dispersion at finite momentum as would be the case in hydrodynamics, only
modes organised into de Sitter eigenfunctions.

For completeness we would like to point out several other holographic treatments of cos-
mological spacetimes in the literature. In this work we place importance on breaking away
from conformal theories and we do so with a mass term. Another way to break conformality
is to work with confining spacetimes, for instance by spatially compactifying the spacetime to
dSd×S1 [35–38]. In a distinct paradigm, one may consider working with the quantum theory
of gravity with dSd+1 future asymptotics working through a Euclidean QFT dual [39–41]. Or
holographic treatments of the static patch of dSd , [42]. Within fluid-gravity, a cosmological
expansion can be introduced provided the scale factor is treated within a derivative expan-
sion [43].

The paper is organised as follows. In section 2 we present the holographic model, the
geometry corresponding to the vacuum state in the presence of a mass, including its global
causal structure as it embeds into AdS4. In section 3 we compute the one-point functions for
this state. In section 4 we perform a gauge-invariant decomposition of fluctuations organised
by dS isometries and compute two-point functions and normalisable mode spectra. In section
5 we present a novel Bessel function basis for expressing CFT two-point functions, a by-product
of our analysis. In section 6 we present a free fermion calculation and compare with our strong-
coupling holographic results. We finish with a discussion of results and future directions in
section 7.
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2 Bulk geometry for the massive dS3 vacuum

Throughout this work, where a specific holographic model is required we adopt the following
bulk action,

S =
1

2κ2

∫

M4

p
−Gd4 x

�

R+ 6−
1
2
(∂ φ)2 +φ2

�

, (3)

where the AdS4 radius L = 1 and the bulk scalar mass term (distinct from the mass deformation
we consider) corresponds to a ∆= 2 scalar operator in the dual field theory. To construct the
corresponding bulk solutions we adopt the following domain wall ansatz,

ds2 = GDW
ab dX adX b = dz2 − P(z)ds2

dS3
, φ = φ̄(z) , (4)

where ds2
dS3

is the dS3 metric given in (1), resulting in the following equations of motion,

φ̄′′ +
3P ′

2P
φ̄′ + 2φ̄ = 0 , (5)

6H2 +
3(P ′2)

2P
−

1
2

P
�

12+ 2φ̄2 + (φ̄′)2
�

= 0 . (6)

See [44] for a general treatment of such domain walls. In accordance with the preceding
discussion, we wish to impose boundary conditions at the conformal boundary (here taken
to be z → −∞) which implements the mass-deformation of the theory. In detail, near the
boundary as z→−∞ we have the following expansion

P = e−2z
�

P(0) + P(2)e
2z + P(3)e

3z + . . .
�

, (7)

φ̄ = φ̄(1)e
z + φ̄(2)e

2z + . . . , (8)

and we impose that the boundary metric is given by ds2
dS3

and the scalar sources a mass de-
formation, viz.

P(0) = −1 , φ̄(1) = m . (9)

The bulk solutions are constructed by imposing regularity for a certain region of the space-
time. This is best understood by referring to the global structure of the spacetime which we
will elucidate momentarily. The final outcome of this analysis is the following bulk solution,
which can be constructed analytically as a perturbative expansion in m,

P = −e−2z

�

1−
H2

4
e2z

�2

−
(−144+ 112Hez − 32H2e2z + 4H3e3z +H4e4z)

1152
�

1+ H
2 ez

�2 m2 +O(m)4 ,

φ̄ =
ez

�

1+ H
2 ez

�2 m−
e2z(40+ 12Hez + 14H2e2z +H3e3z)

576H
�

1+ H
2 ez

�6
m3 +O(m)5 . (10)

This corresponds to the solutions detailed in ingoing coordinates in [27]. In appendix A we
present the coordinate transformation between the ingoing coordinate system and the domain
wall coordinates used here. The corresponding one point functions for these geometries are
presented in section 3 after performing appropriate renormalisation.

2.1 Global structure

The above solutions are constructed in coordinates such that the boundary covers the inflation-
ary patch of dS3, and the portion of the bulk region covered depends on whether domain wall
(4) or ingoing (110) coordinates are used. The goal of this section is to elucidate the global
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structure by appealing to the complete spacetime. We start this discussion on the boundary
where we identify the requisite Weyl transformation, and then turning to the bulk coordinate
transformations which implement it. Our approach is to start at m = 0 where the leading
scalar behaviour is a probe, remarkably this leads to the identification of a convenient ansatz
which elucidates the global structure of the geometry at finite m.

2.1.1 Weyl

On the boundary, we first perform a Weyl transformation which maps from the inflationary
patch of dS3 to Minkowski spacetime. This is straightforward once considering conformal
time parameter η= −H−1e−Ht for which the boundary metric (1) becomes,

−dη2 + d ~y2

H2η2

Weyl
−−−−−−→−dη2 + d ~y2 . (11)

Under this Weyl transformation, the deformation (9) transforms as follows,

φ̄(1) = m
Weyl

−−−−−−→
m
−Hη

, (12)

and hence the future conformal boundary of dS3 is described by a singular spacelike source
function in R1,2 resembling a defect. This singularity extends into the bulk as we shall now
show.

2.1.2 Global bulk, m= 0

At m= 0 where the bulk geometry is identically AdS4, given by the first term for P(z) in (10).
Consider the following bulk coordinate transform which implements the Weyl transform (11),

z = log

�

−
r

Hτ
2τ2 − 2

p
τ4 − r2τ2

r2

�

, η= τ
τ2 − r2 −

p
τ4 − r2τ2

τ2 −
p
τ4 − r2τ2

. (13)

In addition this transform obeys the following features: it preserves the time coordinate on the
boundary, i.e. limr→0η = τ, and satisfies z → −∞ as r → 0 when η < 0 in accordance with
the boundary limit. Under this transformation the leading bulk line element takes on standard
Poincaré form together with the leading bulk scalar contribution (10),

ds2 = r−2(dr2 − dτ2 + d ~y2) +O(m)2 , φ̄ =
r

r −τ
m
H
+O(m3) . (14)

Hence the singularity on the boundary at τ = 0 extends into the bulk along the null surface
τ= r, to leading order in m. Whilst informative, the Poincaré patch is still only a portion of the
full spacetime. The next step along the path to the global structure is mapping from the plane
to the Lorentzian cylinder, Rt × S2, such that the bulk solution at m = 0 is written in global
AdS4 coordinates. First switching to polar coordinates on the boundary, d ~y2 = dR2 + R2dΦ2,
then let

r =
sin r̄

cos T + cosθ cos r̄
, τ=

sin T
cos T + cosθ cos r̄

, R=
sinθ cos r̄

cos T + cosθ cos r̄
(15)

the bulk metric and scalar become

ds2 = csc2 r̄
�

−dT2 + d r̄2 + cos2 r̄dΩ2
2

�

+O(m)2 , φ̄ =
sin r̄

sin r̄ − sin T
m
H
+O(m)3 , (16)

where dΩ2
2 = dθ2 + sin2 θdφ2. Here the boundary is at r̄ = 0 and the origin is at r̄ = π/2.

The profile of φ̄ shows that the singularity (within the domain T ∈ [−π,π]) is located along
the null surfaces T = r̄ and T = π− r̄, to leading order in m.
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2.1.3 Global bulk, m 6= 0

Remarkably, the chain of coordinate transformations which implements the boundary Weyl
transformation to the Lorentzian cylinder, discussed above at m = 0, generalises straightfor-
wardly to arbitrary m. The final general vacuum solution takes the form of AdS4 written in
global coordinates up to an overall conformal factor, Ω, as follows:

ds2 = Ω(Y )2 csc2 r̄
�

−dT2 + d r̄2 + cos2 r̄dΩ2
2

�

, (17)

φ̄ = F (Y ) , (18)

where we have introduced

Y ≡
sin T
sin r̄

. (19)

As such, identification of the causal structure of the solutions is now straightforward as the
conformal diagram is identical to AdS4, up to the locations of bulk singularities. The resulting
equations of motion are ODEs in the variable Y alone, a manifestation of the underlying dS3
isometries of (17). In particular, the isometries of (17) are given by the dS3 isometry group,
realised by the following 6 Killing vectors,

ξD = sin T cos r̄ cosθ∂T + cos T sin r̄ cosθ∂r̄ + cos T sec r̄ sinθ∂θ , (20)

ξP1
= − sin T cos r̄ sinθ cosΦ∂T − cos T sin r̄ sinθ cosΦ∂r̄

+(1+ cos T sec r̄ cosθ ) cosΦ∂θ − (cotθ + cos T cscθ sec r̄) sinΦ∂Φ , (21)

ξP2
= − sin T cos r̄ sinθ sinΦ∂T − cos T sin r̄ sinθ sinΦ∂r̄

+(1+ cos T sec r̄ cosθ ) sinΦ∂θ + (cotθ + cos T cscθ sec r̄) cosΦ∂Φ , (22)

ξK1
= sin T cos r̄ sinθ cosφ∂T + cos T sin r̄ sinθ cosΦ∂r̄

+(1− cos T sec r̄ cosθ ) cosΦ∂θ − (cotθ − cos T sec r̄ cscθ ) sinΦ∂Φ , (23)

ξK2
= sin T cos r̄ sinθ sinφ∂T + cos T sin r̄ sinθ sinΦ∂r̄

+(1− cos T sec r̄ cosθ ) sinΦ∂θ + (cotθ − cos T sec r̄ cscθ ) cosΦ∂Φ , (24)

ξM = ∂Φ , (25)

where θ ,Φ are the polar and azimuthal angle on the S2, and the vectors have been labelled in
a way which indicate their role in the Euclidean global conformal algebra in two dimensions.
Each of these leave Y invariant. The boundary of this spacetime is the Einstein static universe
R× S2, and the dS3 region of interest is conformal to a piece of this, as illustrated in figure 1.

Some comments on the privileged coordinate Y are now in order. The AdS boundary to
the past of η = 0 is reached by Y → −∞ (i.e. the blue square region in figure 1), and the
AdS boundary to the future of η = 0 is reached by Y → +∞ (i.e. the white square region
in figure 1), with a fixed point corresponding to the location of the defect, i.e. the singularity
in the source function. The values Y = ±1 correspond to radial null lines departing from
and arriving at the defect, respectively. This is illustrated in figure 2 where contours of Y are
shown on the conformal diagram for the solution, which is identical to the conformal diagram
for global AdS up to the inclusion of the new singularities in red.

Starting with this new ansatz, (17), (18) we can revisit the perturbative analysis. In par-
ticular, the solution at leading order in m is given by,

Ω2(Y ) = 1+O(m)2 , (26)

F(Y ) =
Y + cF

(Y + 1)(1− Y )
m
H
+O(m)3 . (27)

This leaves a clear choice to either eliminate the incoming singularity at Y = −1 or the outgoing
singularity at Y = 1. Eliminating the incoming singularity (choosing cF = 1) and continuing

6
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I+(dS3)

I−(dS3)

T = π

T = 0

T = −π
θ = 0 θ = π

N
or

th
p

o
le

S
o
u

th
p

o
le

Inflationary
patch

Figure 1: dS3 is conformal to a portion of R× S2, here shown as a blue region (the
azimuthal angle Φ is suppressed). The spacelike conformal boundaries of dS are
shown in red, and correspond to the singular loci of a mass deformation of a CFT
living in dS3. The infilling bulk geometry is conformal to AdS4, given by (17) when
foliated by constant Y surfaces. The blue square region corresponds to the part of
the conformal boundary reached when Y → −∞ and the white square region to
Y → +∞.

to higher orders in m gives,

Ω2(Y ) = 1−
1

12(Y − 1)2
m2

H2
−

5
432(Y − 1)3

m4

H4
+O(m)6 , (28)

F(Y ) =
1

1− Y
m
H
+

3− 5Y
72(Y − 1)3

m3

H3
+
−175+ 619Y − 645Y 2 + 129Y 3

51840(Y − 1)5
m5

H5
+O(m)7 ,

(29)

which matches the geometry (10) up to a coordinate transformation.
We now turn our attention to the location of the singularity at finite m. The perturbative

expressions for the scalar F(Y ) make this identification subtle, since each order in m comes
with an additional factor of (1−Y )−1 which naively appears to invalidate the perturbative ex-
pansion there. Non-perturbatively, we find that this coincides with the existence a logarithmic
singularity by constructing a solution in the neighbourhood of a fiducial singular point Y∗,

F = ±
p

3 log(Y − Y∗) + F0 + F1(Y − Y∗) + . . . , Ω2 = h0(Y − Y∗) + . . . . (30)
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m = 0 m 6= 0

Y
=
�1

Y
=
�
1

Y
=

1

Y
=

1

Y = 0

Y
!

+
1

Y
!
�
1

Y
=
�1

Y
=
�
1

Y
=

Y
�
⇤

Y
=

Y
+⇤

Y
=

Y �⇤

Y = 0

Y
!

+
1

Y
!
�
1

 I+ (dS3)  I+ (dS3)

 I� (dS3)  I� (dS3)

Figure 2: Conformal diagrams corresponding to the global extension (17), showing the
e↵ect of introducing the mass deformation to the field theory on dS3, m. Each point
is an S2 which shrinks to zero size at the origin of coordinates indicated by the dashed
line, and the remaining lines are level sets of Y = sin T

sin r̄
. Y ! �1 corresponds to a

portion of the AdS boundary R⇥ S2 before the defect, i.e. the blue line in this figure,
corresponding to the blue square region shown in figure 1. Y ! +1 corresponds to
the complement of the blue region on the boundary, i.e. the white square region shown
in figure 1. The green shaded region shows the development of data prescribed in the
blue dS3 region at the boundary together with suitable choice of vacuum along the
past portion of null surface at Y = �1. Left panel: At m = 0 the bulk is exactly
AdS4 and the probe scalar singularity is null, as shown by the red lines along Y = 1
in the left panel. Right panel: With m 6= 0 the bulk is conformal to AdS4 and the
singularity is split into timelike and spacelike components at Y = Y ±

⇤ in (31), shown
in red.

9

Figure 2: Conformal diagrams corresponding to the global extension (17), showing
the effect of introducing the mass deformation to the field theory on dS3, m. Each
point is an S2 which shrinks to zero size at the origin of coordinates indicated by the
dashed line, and the remaining lines are level sets of Y = sin T

sin r̄ . Y → −∞ corre-
sponds to a portion of the AdS boundary R× S2 before the defect, i.e. the blue line
in this figure, corresponding to the blue square region shown in figure 1. Y → +∞
corresponds to the complement of the blue region on the boundary, i.e. the white
square region shown in figure 1. The green shaded region shows the development of
data prescribed in the blue dS3 region at the boundary together with suitable choice
of vacuum along the past portion of null surface at Y = −1. Left panel: At m = 0
the bulk is exactly AdS4 and the probe scalar singularity is null, as shown by the red
lines along Y = 1 in the left panel. Right panel: With m 6= 0 the bulk is conformal to
AdS4 and the singularity is split into timelike and spacelike components at Y = Y±∗
in (31), shown in red.

This behaviour has been confirmed by direct numerical construction in the Y -variable. With the
singularity characterised, Y∗ can be computed perturbatively in m by matching the functional
form of (F ′)−1 in the vicinity of the singularity, finding two such solutions Y∗ = Y±∗ ,

Y±∗ = 1±
1

2
p

3

m
H
+O(m)2 . (31)

Thus, m causes the singularity to split into a timelike and spacelike component, as illustrated
in the right panel of figure 2. Additionally, at this point Ω vanishes order by order in m. Going
beyond perturbation theory, we can numerically construct solutions by solving the ODEs in Y

8
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at finite m. This is achieved by a shooting method, between an expansion near the boundary
at Y = −∞ where we impose the source amplitude m, and an expansion about Y = −1
constructed to be manifestly regular there. By counting data appearing in these expansions
and comparing to the order of the ODEs one concludes that there is indeed a one-parameter
family of solutions which can be labelled by m. Once such a solution is constructed, it can
be further integrated from Y = −1 towards Y = 1, reading off the location of the singularity
encountered along the way at Y−∗ . The results of this exercise are shown in figure 3 and show
agreement with the perturbative calculation (31) for small m.

0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y−∗

m/H

←perturbation theory O(m)

Figure 3: The location of the spacelike singularity Y−∗ as a function of the mass defor-
mation parameter m. The red line shows the leading slope predicted by perturbation
theory, i.e. the negative branch of (31).

3 One-point functions

The only two scales available are the mass deformation m and the Hubble constant H. Fur-
thermore, the bulk geometry is manifestly dS3 invariant. The one point functions therefore
must take the form,

〈O〉0 =
H2

2κ2
F
�m

H

�

, (32)




Tµν
�

0 = −
H3

2κ2

m
3H

F
�m

H

�

gdS
µν , (33)

where the relationship between the two expressions is in accordance with the trace Ward
identity, (126), ensuring that the same functionF appears in both. The background geometries
are given in the domain wall form (4), and to convert these to Fefferman-Graham gauge is
straightforward, requiring only a change of the bulk radial variable,

z =
1
2

logρ . (34)

With this mapping complete we can simply read off the one-point functions from the near
boundary data according to (132) and (133). See appendix B for details of the holographic

9

https://scipost.org
https://scipost.org/SciPostPhys.12.6.182


SciPost Phys. 12, 182 (2022)

renormalisation procedure. In a neighbourhood around m= 0 utilising the perturbative solu-
tions we find,

F = −m
H
−

5
72

m3

H3
+

43
17280

m5

H5
+O(m)7 , (35)

in agreement with the results of [27]. As m/H →∞ the scale m dominates and is the only
scale that enters the expressions (32) and (33). This is reflected in the asymptotic behaviour
of F at large argument, given by

F = Fasy
m2

H2
, (36)

for some constant Fasy. We can determine this constant by appealing to the bulk equations
of motion, and appropriately scaling the bulk radial coordinate by m and taking the large
m limit. This leads to an exact set of equations governing the large m behaviour.2 Such a
numerical analysis gives the approximate value Fasy ' −0.37. These two asymptotic regions
are connected numerically for all m as shown in figure 4.

-8 -6 -4 -2 0 2 4

-5

0

5

log(−F)

log m/H

small m perturbation theory→

← leading large m behaviour

Figure 4: Asymptotic behaviour of the one-point functions as given by the function
F appearing in (32) and (33) shown on a log-log plot. The red line gives the small
m behaviour as in (35) and the blue line gives the asymptotically large m behaviour
where the one-point functions are independent of H as in (36). The black points are
the numerical results at finite m.

4 Fluctuations and two-point functions

In order to compute correlation functions we first need to solve the equations of motion for
linearised fluctuations on top of the domain wall background,

Gab = GDW
ab (z) +Hab(z, x) , φ = φ̄(z) +Hφ(z, x) , (37)

where GDW
ab (z), p(z) are given in (4). These fluctuations must obey suitable regularity con-

ditions in the bulk and be consistent with the choice of vacuum. Once solved, we may read

2This procedure is not dissimilar to taking the planar limit of a black hole in global AdS by parametrically
suppressing the curvature scale of the sphere. Here it is the de Sitter expansion which is suppressed.
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off the corresponding sources h(0)µν, hφ(1) by moving to Fefferman-Graham gauge, and in par-
ticular their effect on the near-boundary data required to evaluate normalisable modes and
two-point functions.

This calculation is facilitated by an appropriate spin-decomposition of the fluctuations,

Hzz = X , (38)

Hzµ = P(z)
�

∂µV + Vµ
�

, (39)

Hµν = P(z)
�

−2ψgdS
µν + 2∇dS

(µ ∂ν)χ + 2∇dS
(µων) + γµν

�

, (40)

Hφ = S , (41)

where γµν is transverse traceless andωµ, Vµ are divergence free with respect to gdS
µν.3 The func-

tions appearing here, X , V, Vµ,ψ,χ,ωµ,γµν, S each depend on all coordinates, z, t, x i . There is
gauge-dependence which can be reached by performing linearised diffeomorphisms by a vec-
tor ξa, whose overall effect is to adjust the metric and scalar perturbations by Lie derivatives
of the fields,

Hab→ Hab + 2∇(aξb) , Hφ → Hφ + ξ
a∂aφ̄ . (42)

A convenient way to proceed is to partially fix this gauge dependence by choosing the fluc-
tuations to obey Hzz = Hzµ = 0 which makes later comparison to Fefferman-Graham gauge
straightforward. This corresponds to X = V = Vµ = 0. There is then a residual gauge redun-
dancy which preserves this choice, given by ξa obeying,

∂zξz = 0 , (43)

∂µ

�

ξz

P

�

+ ∂z

�

ξµ

P

�

= 0 , (44)

for which we can write the most general solution,

ξz(z, x) = fz(x) , ξµ(z, x) = P(z)

�

fµ(x)− ∂µ fz(x)

∫ z
dq

P(q)

�

. (45)

Among the remaining variables, performing this residual transformation corresponds to adjust-
ing the set of metric fluctuations. We further decompose ξµ = Zµ+∂µZ such Zµ is divergence-
free and further discuss the tensors, vectors and scalars separately in their respective sections
4.1, 4.2, 4.3 below.

In all cases it will become convenient to further decompose the fluctuations Φ ∈ {X , V, Vµ,
ψ,χ,ωµ,γµν, S} via separation of variables according to the de Sitter symmetries present in
the background domain wall. We choose to do this utilising commuting labels corresponding
to the two translation generators, ∂

∂ y i (i = 1, 2), and the Casimir operator �dS3
, such that

∂ jΦ= ik jΦ , �dS3
Φ= λΦ . (46)

Under separation of variables keeping the regular solution this leads to fluctuations of the
form4

Φ= Φk,λ(z)ηJν(kη) e
iki y i

, (47)

where the Bessel index ν is determined by λ through λ= H2
�

1− ν2
�

. This separation results
in the bulk fluctuation equations becoming ODEs in domain wall radial variable z only, with
λ, ki appearing as parameters.

3This ansatz is the decomposition adopted in [45] generalised to a dS3 boundary metric.
4The other eigenfunction of �dS3

, ηYν(kη) diverges.
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4.1 Tensors: γµν

The transverse traceless tensor γµν is unaffected by the residual gauge transformations de-
scribed above and is automatically gauge invariant. The most general form of γµν is given as
follows,

γ00 = 0 , (48)

γ0i = −hiJν(kη)e
ik·yγ(z) , (49)

γi j =
1

k2η2
(η∂η − 2)(ηJν(kη))∂(ie

ik·yh j)γ(z) , (50)

where hi is a constant polarisation 2-vector satisfying hik
i = 0. The field γ(z) obeys the

following radial equation of motion,

γ′′ +
3P ′

2P
γ′ −

λ

P
γ= 0 , (51)

which we solve order-by-order in m, expanding λ =
∑

k=0λk

�m
H

�k
, γ(z) =

∑

k=0 γk(z)
�m

H

�k

alongside the expansion of P, subject to regularity in the bulk. From this solution we may read
off the asymptotic data near the AdS boundary and extract the fluctuation γ’s contribution to
g(3)µν and g(0)µν (see Appendix B for details). Using the expression for the one-point function
in the presence of sources, (125), we may perform a variation of




Tµν
�

with respect to this
transverse traceless fluctuation and recover the appropriate two-point function,




Tµν(ν1, k1)Tρσ(ν2, k2)
�

= Πµνρσ(ν1, k1;ν2, k2)A(ν1, k1) , (52)

where Πµνρσ is a projection tensor which encodes the variation for transverse traceless per-
turbations,

Π ρσ
µν (ν1, k1;ν2, k2) =

δgTT
(0)µν(ν1, k1)

δgTT
(0)ρσ(ν2, k2)

. (53)

The projector (53) encodes conservation of spatial momenta and is also diagonal in Bessel
index, proportional to δν1ν2

. To illustrate the structure of the remaining amplitude A, we
present it to order m4,

A(ν, k) =
H3

2κ2

�

ν(ν2 − 1) +
3ν2 + 8ν− 19

24(ν− 2)
m2

H2

+
�

35
864
−

23
1536(ν− 2)

+
3

256(ν− 2)2
+

1
18(ν− 3)

+
25

512(ν− 4)

�

m4

H4

+ O
�m

H

�6 �

. (54)

The most salient observation here is that (54) contains poles appearing at specific integer
values of the Bessel index, ν= 2,3, . . .. Not only simple poles, but higher order poles too. The
higher order poles appearing in this m expansion are symptomatic of the simple pole locations
receiving perturbative corrections order-by-order in m. These corrected simple pole locations
correspond precisely to normalisable modes in the bulk which can be computed directly by
setting fluctuations of the source to zero and imposing bulk regularity. This fixes a discrete
spectrum of modes, reminiscent of a quasinormal mode calculation in a black hole background.
See Appendix E for further details. This calculation reveals modes located at ν= νt

n = n+O(m)
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for n= 2,3, . . .. The first few modes are given as follows,

νt
2 = 2+

1
32

m2

H2
−

103
36864

m4

H4
+

50929
212336640

m6

H6
+O(m)8 , (55)

νt
3 = 3+

1
864

m4

H4
−

49
311040

m6

H6
+O(m)8 , (56)

νt
4 = 4+

5
12288

m4

H4
−

119
5308416

m6

H6
+O(m)8 , (57)

νt
5 = 5+

13
518400

m6

H6
+O(m)8 , (58)

νt
6 = 6+

35
4718592

m6

H6
+O(m)8 , (59)

and to the order we are working we also require νt
j = j+O(m)8 for j = 7, 8. With these modes

known, we find the following spectral representation of the two point function, after a suitable
resummation to incorporate the corrected mode locations,

A(ν, k) =
3H3

2κ2

 

ν

3
(ν2 − 1) +

ν

24
m2

H2
+
∞
∑

j=2

r t
j

ν− νt
j

!

−
7

12
m 〈O〉0 , (60)

where the expectation value 〈O〉0 given by in section 3 (which takes the perturbative expansion
(35)) captures all corrections toA that are independent of ν. Thus it takes the form of a contact
term multiplied by a projection operator, and as such it is reminiscent of a Dilaton pole, see
section 5.1 of [46]. The residues r t

j are determined order-by-order in this procedure and we
present the first few in Appendix C.

4.2 Vectors: ωµ

Among the vectors the residual diffeomorphisms act to transform the perturbation variables
as follows:

ωµ → ωµ + P−1Zµ , (61)

where P−1Zµ = fµ(x) by (45), hence an appropriate gauge invariant variable is simply

v̂µ =ω
′
µ . (62)

For functions with arbitrary dependence on (t, x , y) the momentum constraints reveal that

v̂µ = 0 , (63)

trivialising the vector perturbations in d = 3.

4.3 Scalars: ψ,χ, S

Among the scalars the residual diffeomorphisms act to transform the perturbation variables as
follows:

ψ → ψ+
P ′

2P
ξz , (64)

χ → χ +
1
P

Z , (65)

S → S + φ̄′ξz . (66)
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From this we can identify gauge invariant combinations,

ζ = −ψ+
P ′

2P
S

φ̄′
, (67)

φ̂ = −
�

S

φ̄′

�′

, , (68)

ν̂ = χ ′ +
S

Pφ̄′
, (69)

where in constructing φ̂ we utilised (43) and constructing ν̂we utilised (44). The Hamiltonian
and momentum constraint equations give,

φ̂ =
2PH2

P ′
ν̂−

2P
P ′
ζ′ , ν̂= −

2(3H2 +λ)P ′

Qλ
ζ+

Q−3H2

H2Qλ
ζ′ , (70)

where for convenience we have defined the background quantity Qα(z) ≡ 12H4P
− 2H2P2(6 + φ̄2) − α(P ′)2. Thus, once ζ is determined all other gauge invariant variables
are determined by the above relations. All equations of motion are satisfied once ζ obeys the
following ODE in the bulk radial direction, z,

ζ′′ +

�

Q′−3H2

Q−3H2
−

Q′
λ

Qλ
−

12H4P ′

Q−3H2
+

3P ′

2P

�

ζ′ (71)

−H2

�

Qλ(Qλ + 3(3H2 +λ)(P ′)2) + 2(3H2 +λ)P(−P ′Q′
λ
+Qλ(2H2 + P ′′))

PQ−3H2Qλ

�

ζ= 0 .

Equivalently, we may use the following second order differential equation for φ̂(z),

φ̂′′ +
�

−
4φ̄

φ̄′
+

2H2

P ′
−

2P
P ′
−
φ̄2P
3P ′
−

Pφ̄′2

6P ′

�

φ̂′ (72)

+
�

− 10− φ̄2 −
8φ̄2

φ̄′2
+

40H2φ̄

φ̄′P ′
−

40φ̄P

φ̄′P ′
−

20φ̄3P

3φ̄′P ′
−

10φ̄Pφ̄′

3P ′
−
λ

P

�

φ̂ = 0 ,

which we solve by expanding order-by-order in m/H: λ =
∑

k=0λk

�m
H

�k
, φ̂(z) =

∑

k=0 φ̂k(z)
�m

H

�k
alongside an expansion of the background fields φ̄, P. The equation of mo-

tion (72) gives rise to two integration constants, one corresponding to the choice of source and
one determined through regularity. The physical fields are then uniquely determined through
(70) and (67), (68), (69) up to gauge transformations completing the calculation of the scalar
two point functions. Consider the variation of the action with respect to the scalar sources,

δSscalars =

∫

d3 x
p

g(0)

�

1
2




Tµν
�

δgµν(0) + 〈O〉δφ(1)
�

(73)

=

∫

d3 x
p

g(0) 〈O〉
�

S(1) +mψ(0)
�

= −m

∫

d3 x
p

g(0) 〈O〉ζ(0) , (74)

with 〈O〉= 〈O〉0+S(2) and where here it is understood that δgµν(0) corresponds only to the scalar
pieces. That is to say, the piece of the source fluctuation which implements a Weyl transform
does not appear as guaranteed by the trace Ward identity, leaving only the linear combination
ζ(0). Hence

〈O(x1)O(x2)〉=
−1
m

1
p

g(0)

δS(2)(x1)

δζ(0)(x2)

�

�

�

�

ζ(0)=0
, (75)
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or, for our decomposition into Bessel functions,




Oν1
(k1)Oν2

(k2)
�

=
S(2)

S(1) +mψ(0)
δν1ν2

δ(2)(k1 + k2) . (76)

We find for the first few orders

〈〈Oν(k)Oν(−k)〉〉 = H
�

ν+
�

1
6(ν− 1)

+
5

54(ν− 2)

�

m2

H2

+
�

−
1

24(ν− 1)
+

1
72(ν− 1)2

+
2017

27648(ν− 2)
+

19
1152(ν− 2)2

−
5

192(ν− 2)3
−

1
36(ν− 3)

−
71

13824(ν− 4)
+

5
3072(ν− 6)

�

m4

H4

+ O
�m

H

�6 �

, (77)

where the double angle brackets indicate we have dropped the Kronecker and Dirac delta
factors.

As in the tensor case, the m-expanded scalar two point function contains poles (both single
and higher order) at integer values of the Bessel index ν. These correspond to the leading
behaviour of normalisable modes where sources are turned off and regularity imposed in the
bulk. Performing an explicit calculation to compute the mode spectrum, we find they are
located at ν = νs

n = n + O(m) where n ∈ Z+. Our computation of these modes extends the
analogous calculation performed in [27] to finite k.5 The first few modes are given by

νs
1 = 1+

1
12

m2

H2
−

1
54

m4

H4
+

1591
622080

m6

H6
+O(m)8 , (78)

νs
2,± = 2∓

i
p

2
4

m
H
+

11
192

m2

H2
∓

37i
p

2
12288

m3

H3
+

1855
221184

m4

H4
±

2076503i
p

2
1132462080

m5

H5
+O(m)6 ,

(79)

νs
3 = 3−

1
216

m4

H4
+

337
777600

m6

H6
+O(m)8 , (80)

νs
4 = 4−

5
4096

m4

H4
−

589
15925248

m6

H6
+O(m)8 , (81)

νs
5 = 5−

37
1036800

m6

H6
+O(m)8 , (82)

νs
6 = 6−

35
2359296

m6

H6
+O(m)8 , (83)

and to the order we are working we also require νs
j = j+O(m)8 for j = 7,8, 10,12, 14. Again,

as with the tensor calculation, knowing the location of these poles order-by-order in m allows
a suitable resummation of the scalar two point function (77) such that it is entirely expressible
as a sum over simple poles located at the mode indices νs

j with residues rs
j ,

〈〈Oν(k)Oν(−k)〉〉= H

 

ν+
rs
1

ν− νs
1

+
∑

±

rs
2,±

ν− νs
2,±
+
∞
∑

j=3

rs
j

ν− νs
j

!

. (84)

Note the lack of higher order poles. This procedure uniquely determines the residues rs
j order-

by-order in m, the first few of which can be found in Appendix C.

5The corresponding frequencies given in [27] are obtained through ωthere = −i(ν+1)H, which can be seen at
small η or k since ηJν(kη)∼ ην+1 ∼ e−(ν+1)Ht .
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Finally we note that there are two additional scalar two-point functions,



TµµO
�

and



TµµTνν
�

which follow from Ward identities given in (126). In particular taking further varia-
tions of the trace Ward identity gives




TµµO
�

= −〈O〉0 and



TµµTνν
�

= 0.

5 A Bessel function decomposition of CFT two-point functions

In this paper we have obtained expressions for two-point functions perturbatively in m –
see (84) for scalars and (60) for tensors. As previously discussed, these are naturally ex-
pressed using spatial wavevector ki and a Bessel index ν leading to the separation of variables
∼ ηJν(kη)eik·y . The leading m = 0 terms in (84) and (60) correspond to the CFT result, and
as such represent a novel decomposition of standard CFT two-point functions. The goal of
this section is to demonstrate this decomposition explicitly; starting with two point functions
expressed in the Bessel function basis, we perform a change of basis and recover standard
momentum-space expressions for CFT two-point functions, namely, for a scalar operator of
dimension ∆ in d-dimensional Minkowski spacetime [47,48],6




O(ω, k)O(ω′, k′)
�

=
�

�k2 −ω2
�

�

∆− d
2 δ(ω+ω′)δ(d−1)(k+ k′) . (85)

First, we generalise our result for the scalar two-point function (84) to general∆, d, work-
ing at m = 0. Consider a scalar operator of dimension ∆, Oφ , with a source function φ(d−∆)
in dSd . We set the source φ(d−∆) to be an eigenfunction of the type discussed above, and via a
probe holographic calculation imposing regularity, read off the resulting vev in the presence of
the source,




Oφ
�

φ(d−∆)
. After Weyl transforming to Minkowski space, −dτ2+ d y2

d−1, we find,7

φ(d−∆)(ν) = τ
δ−1

2 Jν(kτ)e
ik·y ,




Oφ(ν)
�

φ(d−∆)
= −

2−δe−iπδΓ
�

1− δ
2

�

Γ
�1

2 − n+ δ
2

�

Γ
�

1+ δ
2

�

Γ
�1

2 − n− δ
2

� τ−
δ+1

2 Jν(kτ)e
ik·y , (86)

where δ = 2∆− d. When ∆= 2, d = 3, (δ = 1) this reduces to the result considered earlier in
this paper, i.e. the m= 0 limit of (84).

Next, we wish to change the basis so that all τ dependence appears as a plane wave,
e−iωτ, by summing (86) over the index ν with appropriately chosen coefficients. This is a
simple exercise when δ = 1, due to the following generating function for Jν(x),

e
x
2 (t− 1

t ) =
∞
∑

n=−∞
tnJn(x) , (87)

which informs the correct choice of coefficients when summing the source term in (86) to
obtain,

∞
∑

ν=−∞
tνφ(d−∆)(ν) = eik·y−iωτ , where t −

1
t
= −2i

ω

k
. (δ = 1) (88)

Applying the same sum to the vev, we obtain,

∞
∑

ν=−∞
tν



Oφ(ν)
�

φ(d−∆)
=

∞
∑

ν=−∞
−
ν

τ
tνJν(kτ)e

ik·y (δ = 1)

= −
t
τ
∂t

�

e
kτ
2 (t− 1

t )
�

eik·y = ±
p

k2 −ω2eik·y−iωτ , (89)

6Reached from de Sitter by a Weyl transformation.
7Here and in appendix D we have set 2κ2 = 1.
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thus completing the derivation of the standard CFT two-point function in momentum space
(85) at δ = 1, up to normalisation factors. In appendix D we extend this result to all odd
δ, which requires several additional steps due to the powers of τ appearing in the source
function.

5.1 Mass corrections

In the presence of the mass deformation, m, we may go beyond the CFT result and compute
corrections to (85). As shown in both the tensor (60) and scalar (84) two-point function
calculations, corrections in m lead to the addition of simple poles at non-integer values of the
Bessel index (after suitable resummation of the perturbative expansion). Let us consider one
such correction of this type, which we denote by the sum S, and compute its contribution to the
momentum space result in flat space. The general correction to the flat-space vev of interest
takes the form,

S =
∞
∑

n=−∞
an tnτ−1Jn(kτ) , (90)

for a source with frequency and momentum ω, ki , where an are independent of τ. We now
perform the Fourier transform of this expression from τ to ω′ which gives us the contribution
to the two-point function describing the response at ω′ for a source at ω. At m = 0 the two-
point function was proportional to δ(ω+ω′) but this is no longer the case at m 6= 0 since the
deformation breaks time-translation invariance. Restricting for concreteness to 0 < ω′ < k
the Fourier transform is given by,

S̃ = −i
∞
∑

n=−∞
an tn

�

sin(nπ)
2πn

−
in sin

�

n
�

π
2 +ψ

′
��

nπ

�

, (91)

where ψ′ is an angle. This angle arises since we have the quantity t ′ = −iω′+
p

k2−(ω′)2
k which

for the conditions 0 < ω′ < k is unit norm and thus may be represented by −π2 < ψ
′ < 0

where t ′ = eiψ′ . For a simple pole at n0, i.e. an =
1

n−n0
, the sum (91) can be evaluated directly,

2πn0S̃ =
� t

t ′

�n0
�

B
� t

t ′
; 1− n0, 0

�

− B
�

t ′

t
; 1+ n0, 0

��

+
�

−t t ′
�n0

�

B
�

−1
t t ′

; 1+ n0, 0
�

− B
�

−t t ′; 1− n0, 0
�

�

+ iπ , (92)

where B(z; x , y) is the incomplete Euler beta function and t = −iω+
p

k2−ω2

k .

6 Free fermion

A mass deformation in dS3 corresponds to a ∆ = 2 operator, which we denoted above as O.
In three dimensions this is the dimension of a mass term for a fermion. In this section we
consider a massive free fermion theory on dS3 to assess which features of the above analysis
are sensitive to the coupling strength and which are intrinsic to massive theories placed on
dS3.

We begin with the two-, three- and four-point functions for O = ψ̄ψwhereψ is a Euclidean
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free massless two-component fermion on R3. As it is a CFT, these take the general form,

〈O(x1)O(x2)〉0 =
α

|x12|
4 , (93)

〈O(x1)O(x2)O(x3)〉0 =
αC

|x12|
2 |x23|

2 |x31|
2 , (94)




O(x1)O(x2)O(x3)O(x4)
�

0 =
1

x4
12 x4

34

f (u, v) , (95)

where the subscript 0 indicates that these are computed for the massless theory. Appearing in
these expressions are the conformally invariant cross ratios

u=
x2

12 x2
34

x2
13 x2

24

, v =
x2

14 x2
23

x2
13 x2

24

. (96)

We evaluate the remaining data α, C , f by direct calculation in position space. The propagator
is given by




ψ(x1)ψ̄(x2)
�

=
i/x12

4π|x12|2
. (97)

Each O insertion introduces a single factor of the Dirac matrices γµ. For the two point
function using tr(γµγν) = 2δµν we recover the normalisation α = 1/(8π2). For the three
point function the result can only depend on two differences x12, x23 with the third de-
termined x31 = −x12 − x23. Since tr(γµγνγρ) = 2εµνρ we can see that the three point
function must therefore vanish since there are not enough linearly independent variables
to construct a nonzero contraction with εµνρ. Thus C = 0. For the four point function, a
more detailed calculation is required. There are 4 contractions for each diagram that con-
tributes to




O(x1)O(x2)O(x3)O(x4)
�

0 and 6 total diagrams. It is useful to note the identity
tr(γµγνγργσ) = 2(δµνδρσ − δµρδνσ + δµσδνρ) used in evaluating the final trace. Summing
all diagrams gives the final result,

f (u, v) = α2 u1/2

2v3/2

�

1− u− v − u3/2 − v3/2 + u5/2 + v5/2 − uv3/2 − vu3/2
�

. (98)

As a check one may verify that this expression obeys the required crossing identities,
� v

u

�2
f (u, v) = f (v, u) , f (u, v) = f

�

u
v

,
1
v

�

. (99)

The above expressions (93), (94), (95) can be used within conformal perturbation theory
to evaluate two point functions for the massive theory. Consider a conformal field theory SCFT
deformed by a scalar operator O of dimension ∆ with spacetime-dependent coupling

S = SCFT +

∫

dd x m(x)O(x) . (100)

Then a correlation function in the full theory can be constructed by computing CFT correlation
functions with the following insertion,

e−
∫

dd x m(x)O(x) =
∞
∑

n=0

(−1)n

n!

∫

dd x1 . . . d3 xn (m(x1)O(x1) . . . m(xn)O(xn)) . (101)

Let us first consider the leading correction to the one point function,

〈O(x1)〉= 0−
∫

d3 x2m(x2) 〈O(x1)O(x2)〉0 +O(m)2 . (102)
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First performing the two spatial integrals we obtain,

〈O(x1)〉=
im

8πH

∫

dτ2
1
τ2

1

τ2
12

+O(m)2 , (103)

and hence choosing a contour for the τ2 integral which picks up the pole at τ2 = 0 we find

〈O(x1)〉=
m

4Hτ2
1

+O(m)2 . (104)

The final step is to perform a Weyl transformation with Ω = (Hiτ)−1 and analytic continu-
ation τ = iη to go from a theory on g = dτ2 + d ~x2 to a theory on dS3 with line element
Ω2 g = (H2η2)−1(−dη2 + d ~x2),

〈O〉Ω2 g = −H2 1
4

m
H
+O(m)2 , (105)

which matches the holographic result at this order (32) up to a constant.
Next we consider two point functions evaluated perturbatively in m up to order m2. We

have,

〈O(x1)O(x2)〉 = 〈O(x1)O(x2)〉0 (106)

−
∫

dd x3m(x3) 〈O(x1)O(x2)O(x3)〉0

+
1
2

∫

dd x3dd x4m(x3)m(x4)



O(x1)O(x2)O(x3)O(x4)
�

0 .

At order m2 there are a set of integrals to perform, explicitly given here by inserting the above
expression (95) with the result (98). To order m,

〈O(x1)O(x2)〉=
1

8π2 |x12|
4 +O(m)2 . (107)

Which matches the holographic result for the scalar two-point function, including the vanish-
ing of the order m term. In future work it would be interesting to evaluate the contribution of
the data appearing in the four-point function through f (u, v) which here appears at order m2.

Finally, for completeness we also present the free fermion result (107) on de Sitter space-
time, labelled by spatial momenta ki . Let x = (τ, ~x). Fourier transforming in ~x1, ~x2 gives

¬

O~k1
(τ1)O~k2

(τ2)
¶

=
1

32π3

k
τ12

K1 (kτ12)δ
(2)(~k1 + ~k2) +O(m)2 , (108)

where K1 is a modified Bessel function. Finally we perform the Weyl transformation,

D

OL
~k1
(η1)O

L
~k2
(η2)

E

Ω2 g
= −

1
32π3

H4η2
1η

2
2

η2
12

(−ikη12K1 (−ikη12))δ
(2)(~k1 + ~k2) +O(m)2 , (109)

where OL(η)≡ O(iη). Note that the term in parenthesis goes to 1 in the limit k→ 0.

7 Discussion

In this work we have studied strongly-coupled non-conformal QFTs in fixed de Sitter back-
grounds via holography. Non-conformality was introduced via a mass deformation of a CFT.
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We computed scalar, vector and tensor two-point functions directly at strong coupling for a
particular holographic model in d = 3.

One of our motivations was gaining a new perspective on correlation functions of massive
quantum fields in fixed de Sitter backgrounds. By working directly at strong coupling one may
hope to evade infrared issues which arise in perturbative approaches [1,2]. Our work is based
around a deformed holographic CFT and when m→ 0 we recover standard CFT results in a
controlled fashion. It would be interesting to revisit weak coupling calculations starting from
the perspective of a CFT.

Through holography, the dS3-invariant vacuum state for a massive theory is realised as an
asymptotically-AdS4 geometry [27]. Here, we have elucidated the global causal structure of
this geometry. The mass deformation leads to a defect-like singular source on the boundary of
AdS that propagates into the bulk forming a spacelike singularity. The spacetime is of domain-
wall form, foliated by dS-invariant slices. This dS-invariant foliation already existed for the
CFT case at m= 0 where the bulk is exactly AdS, but we have found that it is robust to adding
the mass deformation and persists at finite m 6= 0 too. The warp-factor changes and the sliding
freedom of the m = 0 foliation is pinned by the defect when m 6= 0. As a consequence, the
dS-invariant slices naturally organise the holographic computation of correlation functions,
where fluctuations sit in representations of the dS isometry algebra.

An interesting outcome of the two-point function calculations was their simplicity when
expressed in a spectral representation as a sum over simple poles. These poles correspond to
normalisable modes of the bulk spacetime. To see this emerge when working perturbatively
in small m requires an additional resummation step which corresponds to shifting the pole
locations. The scalar normalisable modes had been computed before at k = 0 [27] and we
have extended them to k 6= 0 and also computed tensor modes. The vector modes were
trivial. When m= 0 the 2-point functions take the expected CFT form and our ability to resum
the small m results in pole shifts provides evidence that the deformed theory is stable and
smoothly limits to the CFT as m→ 0. This can be seen in the late time expansion where the
Bessel function with a shifted index corresponds to a decaying fluctuation as a power-law in
conformal time.

While it is tempting to think of these modes as akin to QNMs of black holes, we have
shown that their k-dependence does not contain any non-trivial dispersive information; the
k dependence is entirely determined by the dS-isometries present in the state. Thus we do
not see any further analogies to hydrodynamic-like excitations as was enticingly conjectured
in [27]. In particular, consider adding a normalisable mode fluctuation to the dS3-invariant
vacuum state. It has a rate of decay governed by the Bessel index for the fluctuation. We
have shown that the spectrum of Bessel indices, akin to a QNM spectrum for a black hole,
is independent of the spatial wavenumber of the fluctuation, ~k. Moreover, the bulk mode
functions themselves depend only on ~k in a way that is determined by symmetries. This is in
stark contrast to hydrodynamics where the decay towards thermal equilibrium, as governed by
a QNM, depends on ~k in a manner consistent with the conservation of energy and momentum.

There is another way to understand this, rooted in the isometries of the system. In the fluid-
gravity setup [49], dilatations and boosts are isometries of AdS4 that are broken by the black
brane geometry. However, they are still asymptotic symmetries, and acting with these on the
black brane geometry generate energy and velocity parameters which become hydrodynamic
fields when promoted to slowly varying functions of spacetime [50]. The bulk solution in our
case preserves 6 out of the maximum of 10 AdS4 isometries (i.e. all of the dS3 isometries).
However, one can check that the 4 generators broken by the solution (two boosts J0i , time
translation P0 and the special conformal transformation K0) are also explicitly broken by the
scalar field boundary conditions; i.e. they are not asymptotic symmetries. Thus the broken
generators in the dS3-invariant vacuum state cannot be used to generate additional parameters
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of the solution, ruling out hydrodynamic-like behaviour.
Our work provides several interesting directions going forward. Here for simplicity we

have focussed our attention on dS3, but of course extending our work to correlation functions
on dS4 and making appropriate connections to cosmological observations is a desirable next
step. To understand the role of strong coupling, in section 6 we set in motion a calculation of
a free-fermion in conformal perturbation theory. The composite operator ψ̄ψ plays the role
of the ∆= 2 operator Oφ in the holographic calculation and it would be valuable to continue
this calculation to higher orders in m to identify which features are robust under changes in
coupling strength.

Finally, and tangentially, the existence dSd -foliation of AdSd+1 at m = 0 leads to a novel
basis in which to expressing CFTd correlation functions in Minkowski space. Fluctuations are
plane waves in spatial directions and their time dependence are given by Bessel functions. We
have explicitly provided a map between this representation and the standard momentum space
expression. In future work it would be interesting to explore whether this (apparently simpler)
Bessel basis provides computational conveniences or conceptual advantages for computations
of CFT correlators in general.
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A Ingoing coordinates

In [27] the following ansatz was utilised,8

ds2 =
−Hdvd x −H2 g(x)dv2 + e2HvH2 f (x)2d ~y2

x2
, φ = p(x) , (110)

with bulk equations of motion consisting of a second order equation for f and p with g deter-
mined algebraically. In [27] bulk regularity was required for x ∈ (0, xAH] where xAH labels the
location of an apparent horizon in the bulk, whose location is determined by the condition,9

( f (2x + g)− x g f ′)
�

�

x=xAH
= 0 . (111)

It is a simple matter to show that the solutions constructed in these coordinates can be mapped
to domain wall form (4) under the following coordinate transformation

x = X (z) , v = t +
1

2H
log

�

g(X (z))
f (X (z))

�

. (112)

The resulting d tdz cross terms vanishing courtesy of the bulk equations of motion leaving a
metric of the form (4) with warp factor

P(z) = −
H2 g(X (z))

X (z)2
, (113)

8Here m= Hp1 where p1 is the deformation parameter defined in [27].
9This expression corrects a typo in (2.22) of [27].
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where the remaining function X (z) simply determines the domain wall choice of radial coor-
dinate through,

(X ′(z))2 = X (z)2 g(X (z)) . (114)

Finally we can comment on the apparent horizons and the regularity criterion adopted
by [27] to enforce bulk regularity. There, regularity was required up to xAH given by (111).
In the AdS coordinate extension, this surface corresponds to a fixed value Y = YAH , though
note that the generator of this apparent horizon is not a radial geodesic and carries angular
momentum. In particular, to leading order its location is given by

YAH = 1−
1

61/3

�m
H

�
2
3
+O(m)4/3 . (115)

Note that while YAH < Y−∗ which ensures that it plays its desired role of delineating the region
containing the singularity, it does not appear to carry any particular physical significance (as
is to be expected from an apparent horizon).

B Holographic renormalisation

In order to compute one and two-point functions from holography, a consistent treatment of
UV divergences is required [51–53]. Our starting point, as is standard, is to change coordinates
so that the metric takes Fefferman-Graham form,

ds2 =
dρ2

4ρ2
+

1
ρ

gµν(ρ, x)d xµd xν , (116)

where xµ are coordinates on dS3. This only needs to be done near the boundary, where the
bulk fields gµν,φ take the following small ρ expansions,

φ(ρ, x) = φ(1)(x)ρ
1
2 +φ(2)(x)ρ +O(ρ)

3
2 , (117)

gµν(ρ, x) = g(0)µν(x) + g(2)µν(x)ρ + g(3)µν(x)ρ
3
2 +O(ρ)2 , (118)

where we have explicitly included up to the required order where VEVs appear, and the labels
indicate the scaling dimension of each term. For instance, the operator dual to the bulk field
φ is dimension 2 and so we keep O(ρ), while the boundary stress tensor is dimension 3 and
so we keep O(ρ)

3
2 . Among the data appearing here, φ(0) and g(0) are source data while the

equations of motion determine g(2) as

g(2)µν = −R(0)µν +
1
4

g(0)µνR(0) −
1
8
φ2
(1)g(0)µν (119)

and place constraints on the remaining data g(3),φ(2),

gµν(0)g(3)µν = −
2
3
φ(1)φ(2) , (120)

∇µ(0)g(3)µν = −
1
3
φ(1)∂νφ(2) . (121)

Next we introduce a regulator at ρ = ε and analyse the structure of divergences that appear in
the regulated action as ε→ 0. The small ε expansion can be systematically inverted in terms
of local terms intrinsic to the boundary, and give a divergent action −Sct where

Sct =
1

2κ2

∫

p

−γ
�

−R(γ)− 4−
1
2
φ2
�

. (122)
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Subtracting these divergences from the regulated bulk action gives

Ssub = Sreg + Sct . (123)

with the renormalised action Sren = limε→0 Ssub. Variations of the renormalised action give
general expressions for the one point functions in the presence of sources,

〈O〉 =
1

p

g(0)

δSren

δφ(1)
=

1
2κ2

φ(2) , (124)




Tµν
�

=
2

p

g(0)

δSren

δgµν(0)
= −

1
2κ2

�

3g(3)µν + g(0)µνφ(1)φ(2)
�

. (125)

Combining this with constraints on the near boundary data arising from bulk equations of
motion (120), (121) give rise to the following trace and diffeomorphism Ward identities,

¬

Tµµ
¶

= −φ(1) 〈O〉 , ∇µ



Tµν
�

= −〈O〉∂νφ(1) . (126)

We are now in a position to compute correlation functions by successive derivatives with
respect to sources. In this paper we consider up to two point functions and for this purpose
we examine solutions to the bulk equations of motion consisting of the background domain
wall solution with metric and scalar fluctuations around it. In Fefferman-Graham form,

gµν(ρ, x) = ḡµν(ρ, x) + hµν(ρ, x) , (127)

φ(ρ, x) = φ̄(ρ) + hφ(ρ, x) , (128)

where the background domain wall solution is labelled with a bar, whose source functions are

ḡ(0)µν = gdS
µν , φ̄(1) = m . (129)

In accordance with the use of Fefferman-Graham coordinates the fluctuations have a near-
boundary form,

hµν(ρ, x) = h(0)µν(x) + h(2)µν(x)ρ + h(3)µν(x)ρ
3
2 +O(ρ)2 (130)

hφ(ρ, x) = hφ(1)(x)ρ
1
2 + hφ(2)(x)ρ +O(ρ)

3
2 . (131)

Here h(0)µν(x), hφ(1)(x) are recognised as linearised source functions, while h(2)µν(x) is deter-
mined by the near boundary equations of motion as in (119). These sources appear as Dirichlet
boundary conditions to the bulk solution, and through the requirement of bulk regularity de-
termine the remaining data as linear functionals of them, i.e. h(3)µν

�

h(0)µν(x), hφ(1)(x)
�

and
h(2)φ

�

h(0)µν(x), hφ(1)(x)
�

. We thus arrive at the following formal expressions for the desired
one-point functions,

〈O(x)〉0 =
1

p

ḡ(0)

δSren

δhφ(1)(x)

�

�

�

�

hφ(1)=h(0)µν=0
=

1
2κ2

φ̄(2) , (132)




Tµν(x)
�

0 =
2

p

ḡ(0)

δSren

δhµν(0)(x)

�

�

�

�

hφ(1)=h(0)µν=0
= −

1
2κ2

�

3 ḡ(3)µν + ḡ(0)µνφ̄(1)φ̄(2)
�

. (133)
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C Spectral decomposition residues

The residues appearing in the tensor two point function of (60) are as follows:

r t
2 = −

m2

8H2

�

1−
23

576
m2

H2
−

14477
6635520

m4

H4
+

66506857
133772083200

m6

H6
+ . . .

�

, (134)

r t
3 = −

1
54

m4

H4

�

1−
1
9

m2

H2
+

607
51840

m4

H4
+ . . .

�

, (135)

r t
4 = −

25
1536

m4

H4

�

1−
193

4320
m2

H2
−

10541
6635520

m4

H4
+ . . .

�

, (136)

r t
5 = −

13
6480

m6

H6

�

1−
53

312
m2

H2
+ . . .

�

, (137)

r t
6 = −

1225
1179648

m6

H6

�

1−
88633
907200

m2

H2
+ . . .

�

, (138)

r t
7 = −

257
1814400

m8

H8
(1+ . . .) , (139)

r t
8 = −

1225
25165824

m8

H8
(1+ . . .) . (140)

The residues appearing in the scalar two point function of (84) are as follows:

rs
1 =

m2

6H2

�

1−
1
4

m2

H2
+

109
4536

m4

H4
+

109672267
10059033600

m6

H6
+ . . .

�

, (141)

rs
2,± =

5
48

m2

H2

�

1± i
7
p

2
160

m
H
+

2017
5760

m2

H2
± i

982129
p

2
22118400

m3

H3
−

164027
8847360

m4

H4

±i
12471749309

p
2

7927234560000
m5

H5
−

3680038951367
535088332800000

m6

H6
+ . . .

�

, (142)

rs
3 = −

1
36

m4

H4

�

1−
7

225
m2

H2
+

1543
90720

m4

H4
+ . . .

�

, (143)

rs
4 = −

71
13824

m4

H4

�

1+
2317
20448

m2

H2
−

1619171
94224384

m4

H4
+ . . .

�

, (144)

rs
5 = −

37
103680

m6

H6

�

1−
103

14504
m2

H2
+ . . .

�

. (145)

rs
6 =

5
3072

m4

H4

�

1−
1111

14400
m2

H2
+

9812941
995328000

m4

H4
+ . . .

�

, (146)

rs
7 = −

4723
362880000

m8

H8
(1+ . . .) , (147)

rs
8 =

101
2419200

m6

H6

�

1−
14102555
104251392

m2

H2
+ . . .

�

, (148)

rs
10 =

25
1572864

m6

H6

�

1−
7788127

108864000
m2

H2
+ . . .

�

, (149)

rs
12 =

55200281
64377815040000

m8

H8
(1+ . . .) , (150)

rs
14 =

65
301989888

m8

H8
(1+ . . .) . (151)
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D CFT two point functions for odd δ

In this appendix we generalise a result obtained in the main text in section 5 from δ = 1 to
general odd δ = 1+ 2M . This demonstrates recovery of standard CFT two point function in
momentum space from an appropriate sum of Bessel functions.

We have the following pair of source, s, and vev, vM , in the presence of source,

s = τM
∞
∑

n=−∞
cnJn(kτ)e

ik·y , (152)

vM = 2−1−2Mτ−1−M Γ (1/2−M)
Γ (3/2+M)

∞
∑

n=−∞
cn
Γ (1+M − n)
Γ (−M − n)

Jn(kτ)e
ik·y , (153)

where the summation coefficients cn are to be determined in order to get a plane wave source
function. The obstacle here compared with the δ = 1 (M = 0) case is the appearance of τM

in the source which prevents a direct application of the generating function (87). However,
powers of τ can introduced into (87) to create a new generating function by applying the
following identity,

Jn(kτ) =
kτ
2n
(Jn−1(kτ) + Jn+1(kτ)) (154)

recursively M times to generate τM , giving,

e
t2−1

2t kτ =
∞
∑

n=−∞
cnτ

M Jn(kτ) , (155)

with cn(k) =
�

k
2

�M M
∑

q=0

�

M
q

�

Γ (n− q)n
Γ (n+M − q+ 1)

tn+M−2q . (156)

Thus, (156) is precisely the choice of cn we make in our summation to ensure the summed
source in (153) becomes a plane wave, s = e−iωτ+ik·y where ω is given by t, k as in (88). To
find the two point function we now need the vev in the presence of this source under this sum.
With (156) the vev becomes,

vM =
�

k
2

�M

2−1−2Mτ−1−M (157)

×
M
∑

q=0

�

M
q

� ∞
∑

n=−∞

Γ (1+M − n)
Γ (−M − n)

Γ (n− q)n
Γ (n+M − q+ 1)

tn+M−2qJn(kτ)e
ik·y ,

a somewhat unwieldy infinite sum over Jn(kτ). Since the result will be a momentum space
two point function, we can express the result of this sum in the following form,

vM = fM (ω, k)e−iωτ+ik·y , (158)

with the two-point function fM (up to momentum conservation delta functions) to be deter-
mined. We have already computed f0 in the main text. We now proceed inductively. Our
result hinges on the following relation,

−�vM =
QM

QM+1
vM+1 , where QM ≡

(−1)M

(2M − 1)!!(2M + 1)!!
, (159)

which we will shortly prove using (157). Once this is established, by (158) we have

fM+1 =
QM+1

QM
(k2 −ω2) fM , (160)
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and with f0 = ±(k2 −ω2)
1
2 we have our final result,

fM = ±
(−1)M

(2M − 1)!!(2M + 1)!!

�

k2 −ω2
�

1+2M
2 . (161)

This matches the known result for a CFT two point function in momentum space (85) up to
normalisation.

D.0.1 Proof of (159)

Let us write (157) as follows,

vM = kMτ−1−M
∞
∑

n=−∞
aMnJn(kτ)e

ik·y , (162)

where aMn are τ-independent coefficients that which can be easily read off from (157),

aMn =
�

1
2

�M

2−1−2M Γ (1/2−M)
Γ (3/2+M)

Γ (1+M − n)
Γ (−M − n)

M
∑

q=0

�

M
q

�

Γ (n− q)n
Γ (n+M − q+ 1)

tn+M−2q

=
tM+n

21+3M

Γ (1/2−M) Γ (1+M − n) Γ (1+ n)
Γ (3/2+M) Γ (−M − n) Γ (1+ n+M)2F1

�

−M ,−M − n, 1− n,−
1
t2

�

.

(163)

The calculation then proceeds by computing the left hand side and right hand side of (159)
and showing equality.

Left hand side. Compute �vM = (−k2 − ∂ 2
τ )vM . Where τ derivatives act on Jn(kτ) they

can be removed by successive use of the formula,

J ′n(z) =
1
2
(Jn−1(z)− Jn+1(z)) . (164)

What remains is an expression with mixed index Jn with non-homogeneous powers of τ in the
prefactors. Next, homogenise the powers of τ by raising powers of τ where appropriate using
the identity (154). Doing this step a handful of times gives an expression whose coefficients
are all proportional to τ−1−M . Finally, shift the summation index n such that all terms appear
as Jn. The result is,

�vM = −k2+Mτ−1−M
∞
∑

n=−∞

�

(M + n)(M + n− 1)
4(n− 1)(n− 2)

aM ,n−2 (165)

+
n2 +M2 +M − 1

2(n2 − 1)
aM ,n +

(M − n)(M − n− 1)
4(n+ 1)(n+ 2)

aM ,n+2

�

Jn(kτ)e
ik·y .

Right hand side. Starting with vM+1 raise the powers of τ from τ−2−M to τ−1−M using
(154), and subsequently adjust the summation index n such that all terms once again appear
as Jn. The result is

vM+1 =
k2+Mτ−1−M

2

∞
∑

n=−∞

�aM+1,n−1

n− 1
+

aM+1,n+1

n+ 1

�

Jn(kτ)e
ik·y . (166)

Equality. By comparing the coefficients of Jn in (165) and in (166) using the expression
for aMn in (163) one can easily verify that (159) holds.
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E Regularity conditions for normalisable modes

For the normalisable mode computations presented in this paper we have required a regularity
condition in the bulk. The purpose of this section is to provide further technical details on this
procedure.

We begin with separation of variables, (47). To assess regularity of the resulting mode we
turn to the ingoing coordinates presented in Appendix A. This involves changing z,η to x , v
where x is the new radial coordinate and v labels the ingoing null slice. There are non-regular
terms at x = x∗ ≡ 1/3 which must be removed. The computation is performed order-by-order
in m. We expand both the radial field Φk,λ(z) and the Bessel function ηJν(kη) order-by-order

in m. To expand the Bessel note that near x = x∗ we have η∼ (x− x∗)
1
2

�

1+
∑∞

k gk(x)
�m

H

�k�

where g(k) are finite around x = x∗. We also perturbatively correct the index of the Bessel,

ν =
∑

k νk

�m
H

�k
where λ = H2(1 − ν2). At leading order in m eliminating the non-regular

terms at x = x∗ – which take the form (x − x∗)p and log(x − x∗) – requires that ν0 ∈ Z. To go
to higher orders in m requires that the index of the Bessel is expanded perturbatively around
this integer value ν0. Thus in doing so we are led to evaluate expressions of the form for small
ε,

Jν0+ε(kη)≈ Jν0
(kη) + ε∂νJν(kη)

�

�

ν=ν0
+ ε2 1

2!
∂ 2
ν Jν(kη)

�

�

ν=ν0
+O(ε)3 . (167)

A compendium of these derivatives can be found in [54]. In summary, analysing the regularity
involves studying Bessel functions and their derivatives for small argument.

For the tensors, the procedure to turn off the sources is clear since the γµν are gauge
invariant fluctuations. The solution of the second order differential equation for the radial
dependence produces two constants at each order, which together with the λk correction at the
given kth order, are the only free parameters. Expanding around the boundary x = 0 (47), the
sourcelessness condition is imposed by requiring the vanishing of the coefficient going with x .
This already fixes one constant of integration in terms of the others. The regularity condition
gives the remaining constraint, allowing us to determine λk and leaving a free parameter
which gives the amplitude of the mode at a given order.

For the scalars, the sourcelessness and regularity conditions are imposed as follows. We
solve the second order equation for the gauge invariant combination φ̂, getting two free pa-
rameters at each order in m. With it we solve the equation for S, getting one extra parameter
and we completely determine the gauge invariant combination ζ. Therefore, together with λk,
we have four undetermined parameters at each order. We impose regularity around x∗ in φ̂.
We impose the vanishing of the coefficient going with x in the near boundary expansion of S
and the vanishing of the constant coefficient in the near boundary expansion of ζ. These three
conditions determine λk and impose two extra relations on the remaining constants, giving as
a result a free parameter for the amplitude at each order.

References

[1] A. A. Starobinsky, Fundamental interactions, MGPI Press, Moscow, (1984).

[2] A. A. Starobinsky, Stochastic de Sitter (inflationary) stage in the early Universe, in Field
theory, quantum gravity and strings, Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN
9783540164524 (1988), doi:10.1007/3-540-16452-9_6.

[3] A. A. Starobinsky and J. Yokoyama, Equilibrium state of a self-interacting scalar field in
the de Sitter background, Phys. Rev. D 50, 6357 (1994), doi:10.1103/PhysRevD.50.6357.

27

https://scipost.org
https://scipost.org/SciPostPhys.12.6.182
https://doi.org/10.1007/3-540-16452-9_6
https://doi.org/10.1103/PhysRevD.50.6357


SciPost Phys. 12, 182 (2022)

[4] L. H. Ford, Quantum instability of de Sitter spacetime, Phys. Rev. D 31, 710 (1985),
doi:10.1103/PhysRevD.31.710.

[5] I. Antoniadis, J. Iliopoulos and T. N. Tomaras, Quantum Instability of de Sitter Space, Phys.
Rev. Lett. 56, 1319 (1986), doi:10.1103/PhysRevLett.56.1319.

[6] D. S. Salopek and J. R. Bond, Nonlinear evolution of long-wavelength metric fluctuations
in inflationary models, Phys. Rev. D 42, 3936 (1990), doi:10.1103/PhysRevD.42.3936.

[7] N. C. Tsamis and R. P. Woodard, Stochastic quantum gravitational inflation, Nucl. Phys. B
724, 295 (2005), doi:10.1016/j.nuclphysb.2005.06.031.

[8] S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D 72, 043514
(2005), doi:10.1103/PhysRevD.72.043514.

[9] A. Riotto and M. S. Sloth, On resumming inflationary perturbations beyond one-loop, J.
Cosmol. Astropart. Phys. 04, 030 (2008), doi:10.1088/1475-7516/2008/04/030.

[10] C. P. Burgess, R. Holman, L. Leblond and S. Shandera, Breakdown of semiclassical meth-
ods in de Sitter space, J. Cosmol. Astropart. Phys. 10, 017 (2010), doi:10.1088/1475-
7516/2010/10/017.

[11] D. Marolf and I. A. Morrison, Infrared stability of de Sitter space: Loop corrections to scalar
propagators, Phys. Rev. D 82, 105032 (2010), doi:10.1103/PhysRevD.82.105032.

[12] A. Rajaraman, Proper treatment of massless fields in Euclidean de Sitter space, Phys. Rev.
D 82, 123522 (2010), doi:10.1103/PhysRevD.82.123522.

[13] A. M. Polyakov, Infrared instability of the de Sitter space, arXiv:1209.4135.

[14] J. Serreau and R. Parentani, Nonperturbative resummation of de Sitter infrared logarithms
in the large-N limit, Phys. Rev. D 87, 085012 (2013), doi:10.1103/PhysRevD.87.085012.

[15] D. Anninos, T. Anous, D. Z. Freedman and G. Konstantinidis, Late-time structure of
the Bunch-Davies de Sitter wavefunction, J. Cosmol. Astropart. Phys. 11, 048 (2015),
doi:10.1088/1475-7516/2015/11/048.

[16] E. T. Akhmedov, U. Moschella, K. E. Pavlenko and F. K. Popov, Infrared dynamics of massive
scalars from the complementary series in de Sitter space, Phys. Rev. D 96, 025002 (2017),
doi:10.1103/PhysRevD.96.025002.

[17] V. Gorbenko and L. Senatore, λφ4 in dS, arXiv:1911.00022.

[18] M. Mirbabayi, Infrared dynamics of a light scalar field in de Sitter, J. Cosmol. Astropart.
Phys. 12, 006 (2020), doi:10.1088/1475-7516/2020/12/006.

[19] M. Baumgart and R. Sundrum, De Sitter diagrammar and the resummation of time, J.
High Energy Phys. 07, 119 (2020), doi:10.1007/JHEP07(2020)119.

[20] D. Green and A. Premkumar, Dynamical RG and critical phenomena in de Sitter space, J.
High Energy Phys. 04, 064 (2020), doi:10.1007/JHEP04(2020)064.

[21] T. Cohen and D. Green, Soft de Sitter effective theory, J. High Energy Phys. 12, 041 (2020),
doi:10.1007/JHEP12(2020)041.

[22] M. Baumgart and R. Sundrum, Manifestly causal in-in perturbation theory about the inter-
acting vacuum, J. High Energy Phys. 03, 080 (2021), doi:10.1007/JHEP03(2021)080.

28

https://scipost.org
https://scipost.org/SciPostPhys.12.6.182
https://doi.org/10.1103/PhysRevD.31.710
https://doi.org/10.1103/PhysRevLett.56.1319
https://doi.org/10.1103/PhysRevD.42.3936
https://doi.org/10.1016/j.nuclphysb.2005.06.031
https://doi.org/10.1103/PhysRevD.72.043514
https://doi.org/10.1088/1475-7516/2008/04/030
https://doi.org/10.1088/1475-7516/2010/10/017
https://doi.org/10.1088/1475-7516/2010/10/017
https://doi.org/10.1103/PhysRevD.82.105032
https://doi.org/10.1103/PhysRevD.82.123522
https://arxiv.org/abs/1209.4135
https://doi.org/10.1103/PhysRevD.87.085012
https://doi.org/10.1088/1475-7516/2015/11/048
https://doi.org/10.1103/PhysRevD.96.025002
https://arxiv.org/abs/1911.00022
https://doi.org/10.1088/1475-7516/2020/12/006
https://doi.org/10.1007/JHEP07(2020)119
https://doi.org/10.1007/JHEP04(2020)064
https://doi.org/10.1007/JHEP12(2020)041
https://doi.org/10.1007/JHEP03(2021)080


SciPost Phys. 12, 182 (2022)

[23] D. Seery, Infrared effects in inflationary correlation functions, Class. Quantum Grav. 27,
124005 (2010), doi:10.1088/0264-9381/27/12/124005.

[24] B.-L. Hu, Infrared behavior of quantum fields in inflationary cosmology – issues and ap-
proaches: An overview, arXiv:1812.11851.

[25] A. Buchel, Gauge-gravity correspondence in an accelerating Universe, Phys. Rev. D 65,
125015 (2002), doi:10.1103/PhysRevD.65.125015.

[26] A. Buchel and A. Karapetyan, De Sitter vacua of strongly interacting QFT, J. High Energy
Phys. 03, 114 (2017), doi:10.1007/JHEP03(2017)114.

[27] A. Buchel, Ringing in de Sitter spacetime, Nucl. Phys. B 928, 307 (2018),
doi:10.1016/j.nuclphysb.2018.01.021.

[28] A. Buchel, χSB of cascading gauge theory in de Sitter, J. High Energy Phys. 05, 035 (2020),
doi:10.1007/JHEP05(2020)035.

[29] A. Buchel, Entanglement entropy of N = 2 de Sitter vacuum, Nucl. Phys. B 948, 114769
(2019), doi:10.1016/j.nuclphysb.2019.114769.

[30] J. Casalderrey-Solana, C. Ecker, D. Mateos, and W. van der Schee, Strong-coupling dy-
namics and entanglement in de Sitter space, arXiv:2011.08194.

[31] A. Buchel, Dynamical fixed points in holography, arXiv:2111.04122.

[32] D. Giataganas and N. Tetradis, Entropy of thermal CFTs on curved backgrounds, Phys. Rev.
D 104, 066024 (2021), doi:10.1103/PhysRevD.104.066024.

[33] D. Giataganas and N. Tetradis, Entanglement entropy in FRW backgrounds, Phys. Lett. B
820, 136493 (2021), doi:10.1016/j.physletb.2021.136493.

[34] C. Ecker, W. van der Schee, D. Mateos, and J. Casalderrey-Solana, Holographic evolution
with dynamical boundary gravity, arXiv:2109.10355.

[35] J. A. Hutasoit, S. Prem Kumar and J. Rafferty, Real time response on dS3: The topological
AdS black hole and the bubble, J. High Energy Phys. 04, 063 (2009), doi:10.1088/1126-
6708/2009/04/063.

[36] D. Marolf, M. Rangamani and M. Van Raamsdonk, Holographic models of de Sitter QFTs,
Class. Quantum Grav. 28, 105015 (2011), doi:10.1088/0264-9381/28/10/105015.

[37] J. Maldacena and G. L. Pimentel, Entanglement entropy in de Sitter space, J. High Energy
Phys. 02, 038 (2013), doi:10.1007/JHEP02(2013)038.

[38] A. P. Reynolds and S. F. Ross, Complexity in de Sitter space, Class. Quantum Grav. 34,
175013 (2017), doi:10.1088/1361-6382/aa8122.

[39] A. Strominger, The dS/CFT correspondence, J. High Energy Phys. 10, 034 (2001),
doi:10.1088/1126-6708/2001/10/034.

[40] J. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary
models, J. High Energy Phys. 05, 013 (2003), doi:10.1088/1126-6708/2003/05/013.

[41] P. McFadden and K. Skenderis, Holography for cosmology, Phys. Rev. D 81, 021301
(2010), doi:10.1103/PhysRevD.81.021301.

29

https://scipost.org
https://scipost.org/SciPostPhys.12.6.182
https://doi.org/10.1088/0264-9381/27/12/124005
https://arxiv.org/abs/1812.11851
https://doi.org/10.1103/PhysRevD.65.125015
https://doi.org/10.1007/JHEP03(2017)114
https://doi.org/10.1016/j.nuclphysb.2018.01.021
https://doi.org/10.1007/JHEP05(2020)035
https://doi.org/10.1016/j.nuclphysb.2019.114769
https://arxiv.org/abs/2011.08194
https://arxiv.org/abs/2111.04122
https://doi.org/10.1103/PhysRevD.104.066024
https://doi.org/10.1016/j.physletb.2021.136493
https://arxiv.org/abs/2109.10355
https://doi.org/10.1088/1126-6708/2009/04/063
https://doi.org/10.1088/1126-6708/2009/04/063
https://doi.org/10.1088/0264-9381/28/10/105015
https://doi.org/10.1007/JHEP02(2013)038
https://doi.org/10.1088/1361-6382/aa8122
https://doi.org/10.1088/1126-6708/2001/10/034
https://doi.org/10.1088/1126-6708/2003/05/013
https://doi.org/10.1103/PhysRevD.81.021301


SciPost Phys. 12, 182 (2022)

[42] D. Anninos, S. A. Hartnoll and D. M. Hofman, Static patch solipsism: Conformal symmetry
of the de Sitter worldline, Class. Quantum Grav. 29, 075002 (2012), doi:10.1088/0264-
9381/29/7/075002.

[43] A. Buchel, M. P. Heller and J. Noronha, Entropy production, hydrodynamics, and resur-
gence in the primordial quark-gluon plasma from holography, Phys. Rev. D 94, 106011
(2016), doi:10.1103/PhysRevD.94.106011.

[44] K. Skenderis and P. K. Townsend, Hidden Supersymmetry of Domain Walls and Cosmolo-
gies, Phys. Rev. Lett. 96, 191301 (2006), doi:10.1103/PhysRevLett.96.191301.

[45] P. L. McFadden and K. Skenderis, The holographic Universe, J. Phys.: Conf. Ser. 222,
012007 (2010), doi:10.1088/1742-6596/222/1/012007.

[46] M. Bianchi, D. Z. Freedman and K. Skenderis, How to go with an RG flow, J. High Energy
Phys. 08, 041 (2001), doi:10.1088/1126-6708/2001/08/041.

[47] A. Bzowski, P. McFadden and K. Skenderis, Implications of conformal invariance in mo-
mentum space, J. High Energy Phys. 03, 111 (2014), doi:10.1007/JHEP03(2014)111.

[48] A. Bzowski, P. McFadden and K. Skenderis, Conformal n-point functions in momentum
space, Phys. Rev. Lett. 124, 131602 (2020), doi:10.1103/PhysRevLett.124.131602.

[49] S. Bhattacharyya, S. Minwalla, V. E. Hubeny and M. Rangamani, Nonlinear fluid
dynamics from gravity, J. High Energy Phys. 02, 045 (2008), doi:10.1088/1126-
6708/2008/02/045.

[50] M. Rangamani, Gravity and hydrodynamics: Lectures on the fluid-gravity correspondence,
Class. Quantum Grav. 26, 224003 (2009), doi:10.1088/0264-9381/26/22/224003.

[51] S. de Haro, K. Skenderis and S. N. Solodukhin, Holographic reconstruction of spacetime
and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217, 595
(2001), doi:10.1007/s002200100381.

[52] M. Bianchi, D. Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys.
B 631, 159 (2002), doi:10.1016/S0550-3213(02)00179-7.

[53] K. Skenderis, Lecture notes on holographic renormalization, Class. Quantum Grav. 19,
5849 (2002), doi:10.1088/0264-9381/19/22/306.

[54] Yu. A. Brychkov, Higher derivatives of the Bessel functions with respect to the order, Integral
Transforms Spec. Funct. 27, 566 (2016), doi:10.1080/10652469.2016.1164156.

30

https://scipost.org
https://scipost.org/SciPostPhys.12.6.182
https://doi.org/10.1088/0264-9381/29/7/075002
https://doi.org/10.1088/0264-9381/29/7/075002
https://doi.org/10.1103/PhysRevD.94.106011
https://doi.org/10.1103/PhysRevLett.96.191301
https://doi.org/10.1088/1742-6596/222/1/012007
https://doi.org/10.1088/1126-6708/2001/08/041
https://doi.org/10.1007/JHEP03(2014)111
https://doi.org/10.1103/PhysRevLett.124.131602
https://doi.org/10.1088/1126-6708/2008/02/045
https://doi.org/10.1088/1126-6708/2008/02/045
https://doi.org/10.1088/0264-9381/26/22/224003
https://doi.org/10.1007/s002200100381
https://doi.org/10.1016/S0550-3213(02)00179-7
https://doi.org/10.1088/0264-9381/19/22/306
https://doi.org/10.1080/10652469.2016.1164156

	Introduction
	Bulk geometry for the massive dS3 vacuum
	Global structure
	Weyl
	Global bulk, m=0
	Global bulk, m=0


	One-point functions
	Fluctuations and two-point functions
	Tensors: 
	Vectors: 
	Scalars: ,,S 

	A Bessel function decomposition of CFT two-point functions
	Mass corrections

	Free fermion
	Discussion
	Ingoing coordinates
	Holographic renormalisation
	Spectral decomposition residues
	CFT two point functions for odd  
	Proof of (159)

	Regularity conditions for normalisable modes
	References

