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Abstract 
An axially traveling string system, which is a kind of traveling material, attracts 
considerable attention owing to its broad applications. In this paper, an analytical 
wave solution for the vibration and energy of an axially traveling string with fixed and 
viscous damper (dashpot) boundaries in any propagation cycle is considered. Firstly, a 
novel recursive and simplified technique is proposed to expand the analytical solution 
for a traveling string to any propagation cycle, which was limited to only one 
propagation cycle due to complexity in previous work. As a kind of analytical 
solution, the traveling wave method has more accuracy and efficiency compared to 
numerical methods. Secondly, different from the previous result, the modified 
Hamilton’s principle is applied to the derivation of the dashpot boundary condition for 
the mass changing of the traveling string. Following the pipeline hydrodynamics 
theory, the energy gradient for the ‘control volume’ and the ‘system’ of traveling 
string are accurately obtained, respectively. Thirdly, from the point of view of 
vibration suppression, the optimal damping at the right end of the string is defined and 
the optimal damping value is derived, which is of considerable practical interest in 
vibration suppression at boundaries for axially traveling materials. 
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1. Introduction 

The model of the traveling material is widely applied in many mechanical 
engineering systems, such as slurry wire saw [1], zinc galvanization, textile and 
composite fibers, pipes conveying fluid, etc [2, 3]. With negligible bending stiffness 
of the traveling material [2], such as threads in the textile processes and narrow belts, 
the system can be simplified as a model of an axially traveling string. In these systems, 
the mechanical vibration of the transported materials is a significant problem that has 
an adverse effect on the overall performance. Hence, appropriate vibration control can 
reduce noise, make a good performance of the structures, and even avoid security 
issues. To determine the parameters for the design of vibration control, vibration 
behaviors are usually studied by solving the governing equation of motion. The earlier 
investigations have been reviewed by Hong and Pham [4]. Recent developments of 
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the traveling wave solution (or d’Alembert’s solution) of an axially traveling string, 
which is the focus of this paper, can be achieved by Gaiko and Van Horssen [5] and 
Chen et al.[6-9]. 

As a classical solution, the Fourier series method has been used for stationary 
continuous systems such as beams [10] and shells [11], as well as for axially traveling 
string with fixed boundaries [12-14], yet it has not been applied to nonclassical 
boundaries with mass, damping or spring, due to the difficulty of satisfying the 
complex boundary conditions. In addition, Fourier series method is approximate since 
the limited number of terms to be expanded. The method of d’Alembert is another 
classical solution, which is suitable for an infinite non-traveling string. The method of 
d’Alembert was applied to a string without boundaries in earlier investigations. 
Swope and Ames [15] extended it to an infinite traveling string. From the time 
domain, the d’Alembert solution gives an exact solution for the translating motion of 
the string. Nevertheless, when boundaries are considered, the situation becomes more 
complex for the reflection and transmission of traveling waves.  

Recently, there has been some headway for the application of traveling wave 
solution on a finite or traveling medium. The response of a finite rod with two 
damped boundaries is obtained by Sirota and Halevi [16]. Gaiko and van Horssen [5] 
studied the reflection phenomena of a semi-infinite traveling string with a 
non-classical boundary. And this investigation exerts a profound effect on our studies. 
Chen et al.[6-9, 17] extended the d’Alembert’s solution to a finite traveling string with 
various boundary conditions. Due to multiple reflections, the reflected wave 
superposition method was proposed for a traveling string with two boundaries. 
Compared to some numerical solutions (e.g., the Galerkin method, the finite element 
method, the Runge-Kutta method, etc.) and approximate solutions (e.g., the 
perturbation technique, the Fourier series method, etc.) [2], the proposed reflected 
wave superposition method is analytical, which has high accuracy, can strictly satisfy 
the classical and nonclassical boundary conditions and does not need the frequency 
spectrum and eigenfunctions [5].  

 However, the analytical solutions are only suitable for the first propagation cycle 
T. Based on prior investigations about the reflected wave superposition method, some 
extensions and modifications will be presented in this paper. 

As a mass variable system with the axial motion, a traveling string with boundaries 
is treated as a special kind of fluid-conveying [3, 18] because they have a familiar 
governing equation. It is essential to add or modify some theories and methods 
according to fluid mechanics, which is a relatively mature theory. Firstly, as usually 
formulated, traditional Hamilton’s principle isn’t suitable for an open system of 
changing mass. Modified Hamilton’s principle has been derived and proved by [19, 
20]. For example, Kim [21] used the modified Hamilton’s principle when studied the 
boundary control of an axially traveling string. However, in recent decades, some 
investigations ignore this modification. Secondly, it is essential to clarify whether the 
gradient of system or that of control volume is analyzed when analyzing the change of 
energetics. Initially, Renshaw et al. [22] analyzed the energetics of traveling string 
from Lagrangian viewpoint and Eulerian viewpoint. Drawing on concepts from fluid 
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mechanics, Zhu [23] distinguished energy gradient of translating media from system 
and control volume viewpoints, which correspond to Lagrangian and Eulerian 
viewpoints respectively. It is instructive to consider the energy change of a traveling 
string from these two different perspectives for this paper. 

This paper pays attention to the response and energy of an axially traveling string 
with mixed boundaries. Analytical solutions of transverse displacement and energy 
are obtained by using a traveling wave method. Firstly, the solution for an axially 
traveling string with fixed_dashpot boundaries is extended to any propagation cycle 
by a novel recursive and simplified technique. Secondly, the change of energy for a 
traveling string is considered from two different viewpoints. Based on fluid 
mechanics, control volume characterizes the stability, and system links energy with 
instantaneous work [23]. Thirdly, with a different method, the result of the optimal 
damping in this paper is the same as [24]. And the optimal damping is obtained, 
proved and explained in time domain. Obtaining an optimal damping at the dashpot 
boundary is very valuable for the design of active or passive control of dampers 
involving axially moving devices, such as wire saw, textile equipment, conveyor belt, 
etc. 

This paper is organized as follows. Section 2 shows the governing equation of 
motion and the boundary value problem. In section 3, the displacement response in 
the form of traveling waves is derived by the application of the traveling wave method. 
In section 4, the energy and its gradient of the traveling waves at any time interval are 
derived. In section 5, results of the simulations are shown for the response and energy. 
Finally, section 6 provides the conclusions. 

 
2. Equations of motion and boundary value problem 

This paper focuses on the analytical method for the vibration of traveling string in 
any propagation cycle. It is worth to note that this method is applicable to general 
boundary conditions, including classical and nonclassical ones. For simplicity, a 
traveling string with the left end fixed and the right end supported by a viscous 
damper presented in Fig.1 is adopted, which are subsequently named fixed_dashpot 
boundaries in this paper. For the actual engineering case of traveling string, more 
complex boundaries, such as mass-dashpot-spring boundaries, are required, yet the 
calculation principle and process are consistent with the method of fixed_dashpot 
boundaries. For general impedance boundary cases of traveling string models, such as 
mass-dashpot-spring boundary, the main recursive formulas for the waves reflected 
from this boundary are given in Appendix B. 

In Fig.1, l0 is the length of the string between the boundaries; x is a fixed spatial 
coordinate system, which represents the axial position of a point in the string from the 
fixed end; u(x, t) represents the transverse displacement of the axially traveling string 
at the coordinate x and time t; v is the constant translational speed of the string and ƞ 
is the viscous damping coefficient at the right boundary. In this paper, the vibrational 
response and energy of the traveling string system in any propagation cycle shown in 
Fig. 1 are investigated. 
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Fig. 1 Traveling string with fixed_dashpot boundaries. 

 

The governing equation of motion can be obtained [5, 7, 24] 

 ( )2 22 0tt xt xxu vu v c u+ + − =  (1) 

and the boundary conditions are given as follows. 

 ( )
( ) ( )0 0

0, 0
, ,t x

u t
u l t Pu l tη

 =
 = −

 (2) 

where the subscripts denote the partial derivatives of u(x, t) with respect to the 
corresponding variable. The parameter of c is the free wave propagation speed given 

by /c P ρ= , where P is the uniform tension in the string and ρ is the uniform string 

mass per unit length. For the reliability of the predictions from linear theory [25], the 
case of super-critical speed is not considered. Hence, the string translational speed v is 

assumed to be less than the free wave propagation speed c, i.e. v c< . It should be 

noted that the damping boundary conditions given in Eq. (2) are different from the 
one given in [5] shown as follows. 

 ( ) ( )2
0 0( ) , ( ) ,t xv u l t v P u l tη ρ ρ− = −  (3) 

The main reason is that the modified Hamilton’s principle, instead of the traditional 
one, should be used for the mass change system such as axially traveling string. For a 
closed system, the traditional Hamilton’s principle is  

 2 2

1 1

d d 0
t t

L t W t
t t

δ δ+ =∫ ∫  (4) 

Here, δ is a variation in a function and δW is the virtual work done by 
nonconservative forces. The Lagrangian of L is equal to Ek - Ep, where Ek and Ep are 
the kinetic energy and potential energy of the system, respectively. The integration 
interval is between two instants of time t1 and t2. For an axially traveling string system, 
the modified Hamilton’s principle [20] is  

 2 2 2 0

1 1 1

d d ( ( ) ) d 0
0t x

t t t l
L t W t v u vu u t

t t t
δ δ ρ δ+ − + =∫ ∫ ∫  (5) 

which is used for the correct derivation of the damping boundary condition Eq. (2). 
The complete derivation process for the damping boundary condition in Eq. (2) is 
given in Appendix A. 
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3. Solution 

The general solution for the second-order partial differential Eq. (1) is [6, 15] 

 ( , ) ( ) ( )r lu x t F x v t G x v t= − + +  (6) 

where F(x - vrt) is the right-propagating wave with a speed of vr = c + v and G(x + vlt) 
is the left-propagating wave with a speed of vl = c - v, related to the fixed coordinate 
system. The initial transverse displacement and velocity conditions for the string 
vibration are given as follows. 

 ( ) ( )
( ) 0

,0
0

,0 ( )
,

t

u x x
x l

u x x

φ

ψ


=
≤

=



≤




 (7) 

where Φ(x)∈C2([0,l0]; R) and ψ(x)∈C1([0,l0]; R). Substituting Eq. (6) into Eq. (7), 

one obtains the expressions for F(x) and G(x) as follows. 

 
1

1

1
( ) ( ) - ( ) d

1
( ) ( ) + ( ) d

xl

x
r l r l

x

x
r l r l

r

v
F x x

v v v v

v
G x x

v v v v

φ ψ ξ ξ

φ ψ ξ ξ

=
+ +

=
+ +







∫

∫
 (8) 

where x1 is an arbitrary constant and, in this paper, x1= 0 for convenience. 

3.1 The expressions of traveling waves for the first cycle 

G1

F1

t = 0

F2
G2

G1
F1

t∈[0, ta]

F2 G2

 

G1 F1

t=ta

F2

G2 G3

 
(a)                    (b)                     (c) 

G1

 t∈[ta, tb]
F2

G2

G3
G1

 t= tb

F2

G2

G3

F3

 t∈[tb, T]

F2G2

G3F3

 
            (d)                    (e)                     (f) 
Fig. 2 The propagating waves in a traveling string during three time intervals in one cycle. (a) 
is for t = 0, (b) is for t∈[0, ta], (c) is for t = ta, (d) is for t∈[ta, tb], (e) is for t = tb and (f) is for 
t∈[tb, T]. The waves of F2, G2, F3 and G3 are the reflections of waves G1, F1, G2 and F2, 
respectively. 

Fig. 2 shows the reflection process of the left-propagating waves Gi and the 
right-propagating waves Fi (i = 1, 2, 3) in one cycle. The cycle T for a propagating 
wave in a traveling string, which is defined in the introduction section, is given by [3] 

 0
2 2

0 0 2

r l

cl
T

l
c v

l
v v

= + =
−

 (9) 

and the definitions as well as the detailed expressions for ta and tb are shown in the 
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reflected wave superposition method given in [22] 

 0

0

a r

b l

t l v
t l v
=

 =
 (10) 

The traveling waves are divided into several segments artificially for reflection. G1 
and F1 are initial traveling waves. G3 and F3 are final traveling waves. Gi+1 and Fi+1 
are reflected by incident waves Fi and Gi respectively. 

By substituting Eq. (6) into Eq. (2), the boundary reflection relationships at the left 
and right hand boundaries respectively are 

 ( ) ( )r lF v t G v t− = −  (11) 

 ( ) ( )0 0l rG l v t = F l v tβ′ ′+ −  (12) 

where r

l

v P
v P

η
β

η
−

=
+

. Combing Fig. 2, Eq. (11) states that the left-propagating waves Gi 

produces the right-propagating waves Fi+1 when Gi reaches the upstream (x = 0). 
Similarly, Eq. (12) states that Fi produces Gi+1 when Fi reaches the downstream (x = 
l0). Eq. (11) and Eq. (12) become  

 ( ) ( )l

r

v
F r G r

v
= − −  (13) 

and 

 02
( ) ( )r

l l

cl vG s F s
v v

β′ ′= −  (14) 

respectively, by setting r = -vrt and s = l0+vlt. 
Since the time periods of G2 and G3 are [0, ta]and [ta, T] respectively, the integral 

intervals corresponding to Eq. (14) are [l0, x] and [l0+vlta, x], respectively. After 
integrating and simplifying Eq. (14) in the above integral intervals, G2 and G3 can be 
obtained 

 ( ) ( ) ( )2 0 0 0
2l l r

2 1 1
r r l l

v v vcG x =G l F l F l x
v v v v

β β
 

+ − − 
 

 (15) 

 ( ) ( ) ( )3 0 0 0
2l l r

3 l a 2 r a 2
r r l l

v v vcG x =G l v t F l v t F l x
v v v v

β β
 

+ + − − − 
 

 (16) 

The waves F2 and F3 are obtained by using Eq. (13) as follows. 

 2 1( ) ( )l

r

v
F x G x

v
= − −  (17) 

 3 2( ) ( )l

r

v
F x G x

v
= − −  (18) 

The corresponding traveling wave expressions are

 ( ) ( ) ( ) 0
2 0 0

2
( ( ))l l r

l 2 1 1 l
r r l l

v v cl vG x v t =G l F l F x v t
v v v v

β β+ + − − +  (19) 

 ( )2 1( ( ))l
r r

r

v
F x v t G x v t

v
− = − − −  (20) 
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 ( ) ( ) ( ) 0
3 0 0

2
( ( ))l l r

l 3 l a 2 r a 2 l
r r l l

v v cl vG x v t =G l v t F l v t F x v t
v v v v

β β+ + + − − − +  (21) 

 ( )3 2 ( ( ))l
r r

r

v
F x v t G x v t

v
− = − − −  (22) 

where G2(l0)=G1(l0) and G3(l0+vlta)= G2(l0+vlta) due to the continuity condition. Eqs. 
(19) to (22) are the boundary reflection relationships for the fixed_dashpot boundary 
condition.  

3.2 The expressions of the traveling waves for the nth cycle 

By applying techniques similar to Section 3.1, the relationship between Fi
n(x - vrt) 

and Gi
n(x + vlt) (i = 1, 2, 3) similar to Eqs. (19) to (22) can be obtained where Fi

n(x - 
vrt) and Gi

n(x + vlt) are the right-propagating wave and the left-propagating wave in 
the nth cycle, respectively 

 ( ) ( ) ( )2 0 0 0
2( 1) ( 1) ( )n n n nl l r

2 l 1 r 1
r r l l

v v vcG x =G l v n T F l v n T F l x
v v v v

β β+ − + − − − −  (23) 

 ( ) ( ) ( )3 0 0 0
2(( 1) ) (( 1) ) ( )n n n nl l r

3 l a 2 r a 2
r r l l

v v vcG x =G l v n T t F l v n T t F l x
v v v v

β β+ − + + − − + − −  (24) 

 2 1( ) ( )n n l

r

v
F x G x

v
= − −  (25) 

 3 2( ) ( )n n l

r

v
F x G x

v
= − −  (26) 

By substituting Eq. (25) into Eq. (24) and substituting Eq. (23) into Eq. (26), the 
relationships between the initial waves (G1

n and F1
n) and the end waves (G3

n and F3
n) 

in the nth cycle can be obtained as follows. 

( ) ( ) ( ) 0
3 3 0 0 1

2
(( 1) ) (( 1) ) ( ( ))n n n nl l

l l a 2 r a l
r r r

v v cl
G x v t =G l v n T t F l v n T t G x v t

v v v
β β+ + − + + − − + + − + +

 (27) 

 ( ) ( ) ( ) 0
3 0 0

2
( 1) ( 1) ( ( ))n n n nl l

r 2 l 1 r 1 r
r r l

v v cl
F x v t G l v n T F l v n T F x v t

v v v
β β− = − + − − − − + + −  (28) 

It should be noted that the initial waves (F1
n + 1 or G1

n + 1) in the (n + 1)th cycle are 
exactly the end waves (F3

n or G3
n) in the nth cycle due to periodicity. Therefore, the 

relationship between the right-propagating waves (or the left-propagating wave) in 
two adjacent cycles can be obtained as follows. 

 1 1
3 1 3 1( ) ( )n n n n

r rF x nv T F x nv T or F F+ +− = − =  (29) 

 1 1
3 1 3 1( ) ( )n n n n

l lG x nv T G x nv T or G G+ ++ = + =  (30) 

Finally, according to Eqs. (27) to (30), one can obtain the relationships between the 
initial waves in the nth cycle and the initial waves in the first cycle as follows. 

 

1 1
1

1 2 0 1 0
1 1

1 1 0
1

( ) ( ) ( ( 1) ) ( ) ( ( 1) )

2
( ) (( 1) )

n n
n n j j n j jl l

r l r
j jr r

nl
r

r l

v v
F x v t G l v j T F l v j T

v v
v cl

F n x v t
v v

β β

β

− −
− − −

= =

−

− = − + − − − −

+ − + −

∑ ∑
 (31) 
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1 1
1

1 3 0 2 0
1 1

1 1 0
1

( ) ( ) ( ( ( 1) )) ( ) ( ( ( 1) ))

2
( ) ( ( 1) )

n n
n n j j n j jl l

l l a r a
j jr r

nl
l

r r

v v
G x v t G l v t j T F l v t j T

v v
v cl

G n x v t
v v

β β

β

− −
− − −

= =

−

+ = + + − + − + −

+ − − + +

∑ ∑
 (32) 

Further, the relationships between other waves of F2
n, F3

n, G2
n and G3

n for the nth 

cycle and the initial waves of G1
1 and F1

1 for the first cycle can be obtained as follows 
according to the boundary reflection relationships. 

 
( ) ( ) ( )

( )

1 1
1

2 3 0 2 0
1 1

1 1 0
1

( ( 1) ) ) ( ( 1) )

2
( ) ( 1 ( ))

n n
n n j j n j jl l

r l a r a
j jr r

nl l
r

r r r

v v
F x v t G l v t j T F l v t j T

v v
v cl v

G n x v t
v v v

β β

β

− −
− − −

= =

−

− = − + + − − − + −

− − − − −

∑ ∑（ ） （

  

(33) 

 
( ) ( ) ( )1

2 2 0 1 0
1 1

1 0
1

) ( 1) ( ) ( 1)

2
( ) ( ( ))

n n
n n j j n j jl l

l l r
j jr r

nl r
l

r l l

v v
G x v t = G l v j T F l v j T

v v
v cl vF n x v t
v v v

β β

β

− − +

= =

+ + − + − −

− − +

∑ ∑（

     (34) 

 
( ) ( ) ( )1

3 2 0 1 0
1 1

1 0
1

( ) ( 1) ( ) ( 1)

2
( ) ( )

n n
n n j j n j jl l

r l r
j jr r

nl
r

r l

v v
F x v t G l v j T F l v j T

v v
v cl

F n x v t
v v

β β

β

− − +

= =

− = − + − − − −

+ + −

∑ ∑
 (35) 

( ) ( ) ( )1
3 3 0 2 0

1 1

1 0
1

( ( 1) ) ( ) ( ( 1) )

2
( ) ( )

n n
n n j j n j jl l

l l a r a
j jr r

nl
l

r r

v v
G x v t = G l v t j T F l v t j T

v v
v cl

G n x v t
v v

β β

β

− − +

= =

+ + + − + − + −

− − + +

∑ ∑（ ）

 
 (36) 

where  
G2

j(l0 + vl(j - 1)T) = G1
j(l0 + vl(j - 1)T) 

and 
G3

j(l0 + vl(ta + (j - 1)T)) = G2
j(l0 + vl(ta + (j - 1)T) 

due to the continuity conditions. It should be noted that the first two terms on the right 
of the equal signs of Eqs. (31) to (36) are in the form of constant superposition, which 
means that the multi-cycle algorithm is very efficient. 
4. Energy of traveling waves in any propagation cycle 

In this section, the research object is the change of energy for an axially traveling 
string, which should be analyzed from two different viewpoints, i.e. the energy 
gradient for control volume and the energy gradient for system. Here, control volume 
means a selected region in space [26], and system means a quantity of matter that 
consists of a fixed amount of mass, which are shown in Fig. 3. 

Whether to study the energy of traveling string system from the perspective of 
control volume or system mainly depends on whether a volume in space or a fixed 
amount of material is suitable for study [26]. ‘Control volume’ is more suitable for the 
axially traveling string with two boundaries, which provides a method for what effect 
the response of the string has on a particular volume in space. Sometimes, one may 
focus on what happens to a particular part of a string as it moves through the domain. 
Then, the energy gradient for ‘system’ becomes the main object for study. 
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Fig. 3 Illustration of the description of the control volume and system for a translating string 
at time t and t+∆t 

In Fig. 3, the relationships of energy for control volume ECV and energy for system 
Esys at time t and t+∆t, respectively, are shown and given as follows. 

 sys CV( ) ( )E t E t=  (37) 

 sys CV I II( ) ( ) ( ) ( )E t t E t t E t t E t t+ ∆ = + ∆ − + ∆ + + ∆  (38) 

By combining Eq. (37) and Eq. (38), the change of Esys in the time interval ∆t divided 
by this time interval is given by  

 sys sys CV CV I II
( ) ( ) ( ) ( ) ( ) ( )E t t E t E t t E t E t t E t t

t t t t
+ ∆ − + ∆ − + ∆ + ∆

= − +
∆ ∆ ∆ ∆

 (39) 

As ∆t→0, using the definition of derivative yields the relationship between the 
gradient for Esys and the gradient for Ecv, i.e. the Reynolds transport theorem [23, 
26-28]. 

 sys 0CV CV
0

d d d
(0, ) ( , )

0d d d
E lE E

v t v l t v
t t t

ε ε ε= − + = +  (40) 

where ε is the total energy density. 
The traveling wave energy is given by [9] 

 

0

0

CV

2
0

2 2 2

2 22

0

'
0

'

1 1 1( )
2 2 2

1
2

( ) d

d( )

t x x

l

l

v u vu P

l

u

v =

 t

c

E

xF

x

G

ρ

ρ

ρ

ρ

 + + +

+


 

+

= ∫

∫
 (41) 

here 

 t r l

x

u v F v G
u F G

′ ′= − +
 ′ ′= +

 (42) 

which can be obtained by Eq. (6). The energy in Eq. (41) belongs to energy for a 
control volume (open system) [26]. The gradient for ECV(t) is given by 

 
0

2 2
0 0 02 2 2 2CV

2 2 2
0

( )( )
0 0 0d 2 2

[ ( ) ( )]

d
t x t x

l
r r l l

l l lv c v vc v u u u u
t

= c v F x v t v G x v t

E ρ ρρ

ρ

−
= − − +

′ ′− − + +

 (43) 

The total energy density ε in Eq. (40) is given by 
9 

 



 2 2 21 1 1( )
2 2 2t x x= v u vu Puε ρ ρ+ + +  (44) 

Substituting Eq. (42) into Eq. (44), one can obtain 

 2 2 2 21 ( )
2

= v c F Gε ρ ρ ′ ′+ +  (45) 

Substituting Eq. (45) and Eq. (43) into Eq. (40) yields the energy gradient for system 

 
0 0

sys 0 02 2

2 2 2 3 2 2 2
0 0

d
( ) ( )( )

0 0

( 1[ ( ) )] [ ( ( ) ( )]
2

d

)

t x x

l l
r r l l r l

x t x

c v F x v t v G x v t v c v F x v t G v
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 (46) 

Eq. (46) reveals that the energy gradient for system equals the rate of work done by 
the transverse forces (Pux) at both boundaries on the string with transverse velocity 
(ut+vux). Simplifying Eq. (46) yields 

 0 02 2 2 3 2 2
0

s
0

ysd
[( ) ( ) ( ) ( )] [ ( ]

d
) ( )l l

r r l l r lc v v F x v t v v G x v t = c F x v t G x v t
E

t
ρ ρ′ ′ ′ ′− += − + + − − + +  (47) 

4.1 Derivation of the energy expressions in any propagation cycle 
The expressions for the traveling waves were obtained in section 3, the 

corresponding energy and its gradient are derived as follows. 
Differentiating Eq. (31) yields 
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1 1 0

21
n

n l
r r

r l

v cF x v t F n l x v t
v v

β
−

  ′ ′ − = − + −    
   

 (48) 

Substituting Eq. (48) into Eq. (41) yields 
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 (49) 

where ( )
1 2,1

n x xFE t  represents the mechanical energy of the propagating wave F1 in the 

range of x1 to x2, 0 < x1 < x2 < l0. In the same way, the energy expressions for the 
propagating waves F2, F3, G1, G2 and G3in the nth cycle can be written as 
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Taking the derivative of Eqs. (49) to (54) yields 
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Eqs. (55) to (60) are the expressions of the energy gradient for a control volume in 
terms of the waves. 

Likewise, the total energy in the nth cycle can be expressed separately in three time 
intervals of this cycle as follows. 
4.1.1 (n-1)T < t < (n-1)T + ta 

The total energy is the combination of the energy of these four propagating waves 
F1

n, F2
n, G1

n, G2
n in the nth cycle and the energy associated with the rigid-body 

translation of the traveling string. So the energy and its gradient for the string can be 
written as 
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 (61) 

where ( )
1
nFE t , ( )

2
nFE t , ( )

1
nGE t  and ( )

2
nGE t  are the energy of F1, F2, G1 and G2 in 

the nth cycle, respectively. 
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As one can see from Eq. (43), the energy gradient for the control volume is only 
related with the boundaries. So Eq. (62) can be simplified as follows. 
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4.1.2 (n-1)T + ta < t < (n-1)T + tb 
The energy is due to the waves G1, G2, G3 and F2 in the nth cycle. The total energy 

expression and its gradient for control volume can be written as 
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          (65) 

4.1.3 (n-1)T + tb < t < nT 
The energy is due to the waves F2, F3, G2, and G3 in the nth cycle. The total energy 

expression and its gradient for control volume can be written as 
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 (67) 

So the total energy of the traveling string can be calculated using the initial conditions 
and Eqs. (61), (64) and (66). 
4.2 Vibration suppression at boundaries 

When β = 0, after the first cycle (n ≥ 2), the energy gradient for the control volume 
is equal to zero from Eqs. (55) to (60), which means the traveling string just has axial 

12 
 



kinetic energy and it does not vibrate. Hence an optimal damping expression for the 
total elimination of vibration is as follows. 

 
2

opt
r

P c=
v c v

ρη =
+

 (68) 

On one hand, the optimal damping can be validated by [24] which shows optimality 
and effectiveness of the control method by a finite difference scheme. On the other 
hand, the optimal damping can be explained from the boundary reflection 
relationships in Eqs. (12) and (11). Substituting β =0 into Eq. (12), yields 

 ( )0 0lG l v t =′ +  (69) 

which means the response of G(l0+vlt) at the damping boundary is a constant after the 
first cycle. Thus G(x+vlt) always equals G1(l0) which can be obtained by Eq. (19). 
From Eq. (11), when G reaches the fixed boundary, the reflected wave F is always 
equal to a constant which is opposite in magnitude and phase to G. As a result, the 
response equals zero, which is the same as mentioned above from the view of energy. 
 
 

5. Simulations and discussions 

Table 1 Chosen parameters for the simulations 
l0 ρ P v A0 

3m 0.06kg/m 5N 0.3c 0.01m 
 
The parameters given in Table 1 were used for the subsequent simulations. Other 

parameters are not independent and can be calculated by these basic parameters. 
the initial conditions for displacement and velocity are 

 
( )

( )

2 2
0 0

4
0

16 ( )

0

A x l x
x

l

x

φ

ψ

 × −
=



 =

 (70) 

5.1 The process of traveling waves reflection 
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(a)                                    (b) 

Fig. 4 Displacement responses for the first propagating cycle with boundary damping 
coefficient η=0.7 Ns/m. (a) shows the right and the left propagating waves at different 
moment in the first cycle; (b) shows the real displacement. The curves are identified by:  
the right propagating wave,      the left propagating wave,       the real displacement. 

As an example, the process of propagating waves reflection is plotted in Fig. 4. At 
the fixed boundary, the reflected wave is exactly the odd, periodic extension ([29]) of 
the incident wave. The odd extension can be explained by Eq.(11). However, the 
reflection relationship at the dashpot boundary, which can’t be obtained by the odd 
extension, is more complex and suited to Eq.(12). 

5.2 Displacement responses 
 

×10-3

 
(a)                             (b) 

 

14 
 



(c)                              (d) 
Fig. 5 Displacement responses of transverse free vibration with fixed_dashpot boundary 
condition and the initial conditions of Eq. (67) over two cycles at location of (a) x = 0.25l0, (b) 
x = 0.5l0, (c) x = 0.75l0 and (d) x = l0, respectively. The curves are identified by: η = 0.1 
Ns/m, η = 0.3 Ns/m,  η = 0.4213 Ns/m (the optimal value of the boundary 
damping ηopt),  η = 0.7 Ns/m and × × × × × η = 0.9 Ns/m. 
 

Fig. 5 demonstrates the response of axially traveling string for the fixed_dashpot 
boundary conditions over two cycles. The displacement responses of transverse free 
vibration are shown at selected fixed coordinate positions (x = 0.25 l0, 0.5 l0, 0.75 l0 
and l0) are given, for different levels of viscous damping at the right hand boundary (ƞ 
= 0.1 Ns/m, 0.3 Ns/m, 0.493 Ns/m, 0.7 Ns/m and 0.9 Ns/m).  

From Fig. 5 (a) to (d), after the first cycle, the reduction of vibration is most 
obvious for the optimal value of the boundary damping ηopt. After the first cycle, the 
axially traveling string does not have vibration because the energy gradient is zero 
with η = ηopt, which is mentioned in section 4.2. In Fig. 5 (a) to (c), five curves 
overlap completely in the time interval of (0, t1), (0, t2) and (0, t3) respectively, 
because the reflected waves, i.e. G2 that was attenuated at the right boundary have not 
yet reached the respective coordinate position (x = 0.25 l0, x = 0.5 l0 and x = 0.75 l0). 
Here the dimensionless times are t1 = 0.75 l0 / (Tvl) = 0.4875, t2 = 0.5 l0 / (Tvl) = 0.32 
and t3 = 0.25 l0 / (Tvl) = 0.1625. 

 
5.3 Energy simulations 

 
Fig. 6 The total transverse free vibration energy of an axially traveling string with 
fixed_dashpot boundary conditions over two cycles. Curves are identified by the level of the 
viscous damping constant:  η = 0 Ns/m,  η = 0.1 Ns/m, η = 0.3 Ns/m, 

 η = 0.4213 Ns/m (the optimal value of the boundary damping ηopt), η = 0.7 Ns/m, 
× × × × ×η = 0.9 Ns/m. 

Fig. 6 shows the total transverse free vibration energy of an axially traveling string 
with fixed_dashpot boundary conditions over multiple cycles for different damping 
levels compared. The situation of ƞ = 0 Ns/m corresponds to fixed-free boundaries. 
Since the tension of P acting on the string at the left fixed end is opposite to the 
traveling direction of the string, the left boundary does negative work on the string 
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and the free end at the right end does no work on the string, so the system energy is 
always decreasing with time. The rate for the decrease in the energy fluctuates with 
time and the total energy is close to zero after two periods, but never equal to zero 
since the existence of kinetic energy for axial motion. When 0 < η < ηopt, the energy 
of the traveling string system decreases in the cycle, and the larger that the viscous 
damping is, the more rapid is the attenuation. When η > ηopt, the larger that the 
viscous damping is, the less rapid is the attenuation. 

  
(a)                                (b) 

 

     (c) 
Fig. 7 The energy and energy gradient for the control volume over multiple cycles where η = 
0.1 Ns/m. The energy and energy gradient for the control volume are identified by:  
energy;  energy gradient for the control volume. (a) is for the right-propagating wave F, 
(b) is for the left-propagating wave G and (c) is for the total energy 

 
Fig. 7 shows the total energy and its gradient, as well as the energy in the right and 

left propagating waves F and G respectively. The energy in the two propagating 
waves does not always keep decreasing, though the general trend is down. 
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Fig. 8 The energy ratio of the left-propagating wave G to the right-propagating wave F for 
different levels of boundary viscous damping. Curves are identified by the level of the viscous 
damping constant:  η = 0 Ns/m,  η = 0.1 Ns/m,  η = 0.3 Ns/m,  η = 
0.7 Ns/m, × × × × × η = 0.9 Ns/m. 
 

Fig. 8 shows the energy ratio of the left-propagating wave G to the 
right-propagating wave F. With arbitrary viscous damping constant besides ηopt, the 
energy ratio of G to F goes back to the original value after an integer cycle of 
propagating around the string between the boundaries. Combining Eq. (31) and Eq. 
(32), the same value for the energy ratio of G to F at the beginning of every cycle can 
be calculated 
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−

′′ ′+ − +
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′ ′ ′− − −

∫∫ ∫

∫ ∫ ∫

 (71) 
The energy ratio of G to F is cyclical, even though the sum of energy for G and F 
keeps changing. 

For studying the inflow and outflow of power at the boundaries, the gradient of the 
propagating wave energy is presented in the following figures.  

 
(a)                              (b) 
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(c)                             (d) 

 
(e) 

Fig. 9 The gradient of the propagating wave energy at boundaries in the multiple cycles (v = 
0.3c). Here, the energy gradient is for the control volume. (a) is for the left-propagating wave 
G and the right-propagating wave F at upstream (fixed boundary), (b) is for total traveling 
wave (F + G) at upstream, (c) is for F and G at downstream (dashpot boundary), (d) is for 
total traveling wave (F + G) at downstream and (e) is for total energy gradient of traveling 
wave (F + G). Curves are identified by the level of the viscous damping constant: η = 
0.1 Ns/m,  η = 0.4213 Ns/m (the optimal value of the boundary damping ηopt), × × × × × 
η = 0.9 Ns/m. 

Fig. 9 demonstrates that the incident wave has outflow of energy and the reflected 
wave has inflow of power at both boundaries. As time progresses, the amplitude of the 
energy gradient for left and right propagating waves decreases. 

As Fig. 9 (a) and (b) show, in the first cycle before tb/T0=0.65, the curves are 

overlapping because 
1

2 ( )
0

d

d
F t

x

E

t =  and 
1

1 ( )
0

d

d
G t

x

E

t =  are not related to η as well as β since 

n = 1, which was obtained by Eq. (55) and Eq. (58). That means they do not change, 
though the damping value changes downstream. After the first cycle, the closer the 
damping value is to ηopt, the smaller the value of power inflow or outflow. 

From inspection of Fig. 9 (c) to (d), similar conclusions can be drawn. In the first 

18 
 



cycle, curves are overlapping for wave F because
1

1

0

( )
d

d
F t

x l

E

t =  and 
1

2

0

( )
d

d
F t

x l

E

t = are not 

related to η, which can be obtained from Eq. (55) and Eq. (56). While curves are not 

overlapping for wave G, because of 
1

2

0

( )
d

d
G t

x l

E

t =  and 
1

3

0

( )
d

d
G t

x l

E

t = are related to η which 

can be obtained from Eq. (59) and Eq. (60). In particular as shown in Fig. 9 (c), 

0

( )d
d

G t
x l

E
t =  equal zeros for η = ηopt identified by the yellow dash line, which means the 

optimal damping dissipates all incident energy. 
Shifting the focus to the energy gradient for the system, the results differ from the 

above energy gradient for the control volume can be shown as follows. 

 
(a)                                 (b) 

 
(c)                                (d) 
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    (e) 

Fig. 10 The energy gradient for the propagating wave at boundaries over multiple cycles (v = 
0.3c). Here, the energy gradient is for the system. (a) is the energy gradient for the 
left-propagating wave G and the right-propagating wave F at upstream (fixed boundary), (b) 
is the energy gradient for total traveling wave (F + G) at upstream, (c) is the energy gradient 
for F and G at downstream (dashpot boundary), (d) is the energy gradient for total traveling 
wave (F + G) at the downstream end and (e) is the energy gradient for total energy gradient of 
traveling wave (F + G). Curves are identified by the level of the viscous damping constant: 

 η = 0.1 Ns/m,  η = 0.4213 Ns/m (the optimal value of the boundary damping ηopt), 
× × × × × η = 0.9 Ns/m. 

Fig. 10 and Fig. 9 are similar because the expressions are similar, which can also be 
obtained from Eq. (47) and Eq. (43). Particularly, in Fig. 10 (e), the energy gradient of 
system equals the rate of work done by boundaries. 

 
      (a)                                  (b) 
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(c) 

Fig. 11 The net flow rate of energy out of control volume by the flow of the string material. (a) 
is for the upstream, (b) is for the downstream and (c) is the superposition of (a) and (b). 
Curves are identified by the level of the viscous damping constant:  η = 0.1 Ns/m,    η 
= 0.4213 Ns/m (the optimal value of the boundary damping ηopt), × × × × × η = 0.9 Ns/m. 

In Fig. 11 (a) and (b), the inflow and outflow of power always exist, even for the 
optimal damping value, because the string still has axial kinetic energy even though it 
doesn’t vibrate. Also, the net inflow or outflow rate of energy is 0.5ρv3=0.6162W. Fig. 
10 (e) is the superposition of Fig. 9 (e) and Fig. 11 (c) which represents the net flow 
rate of energy out of control volume caused by the flow of the string material. 

Given the excellent performance of the optimal damping boundary in vibration 
suppression, in engineering practice, the dampers or variable dampers with 
appropriate damping values can be installed at the boundary of the moving material 
which can be modeled as a traveling string system to ensure the normal operation of 
the equipment. 

In this paper, there are two kinds of energy gradient examined, namely the energy 
gradient for the control volume and the system, both of which are shown using the 
traveling wave method. The reason of using these two perspectives is the complex 
variation of total mechanical energy which is caused by two sources [22]: the 
transport of the string through the domain (0, l0) and the rate of work done by the 
external forces and moments (support forces and damping forces). The Reynolds 
transport theorem provides a link for energy between the control volume and the 
system. 
5.4 Application and verification 

A yarn in the textile industry matches the traveling string model closely. According 
to practical yarn parameters in textile processing, some of the parameters in Table 1 
change as follows: l0=1.6m, ρ=0.0002kg/m, P=0.005N, v=0.81m/s. The initial 
conditions are the same as Eq. (70). The plots in Fig. 12 show the displacement 
responses of the yarn with fixed_dashpot boundary conditions using the proposed 
method, which are compared with the numerical solutions of a finite element model 
solved using the Newmark-β method [30]. The results of the two methods are 
consistent with each other. Especially for the optimal damping, both methods show 
good performance of vibration suppression. 
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(a)                               (b) 

Fig. 12 Displacement responses at locations of x = 0.5l0 and x = l0 with fixed_dashpot 
boundary conditions for the first two propagation cycles. Curves are identified by:   the 
Newmark-β method with η=0.00050Ns/m;   the traveling wave method with 
η=0.00050Ns/m;  the Newmark-β method with η=0.00088Ns/m ( the optimal value of 
the boundary damping ηopt); and    the traveling wave method with η=0.00088Ns/m. 
 
6. Conclusions 

Based on d’Alembert’s method and a reflected wave superposition method, the 
exact solution for a finite traveling string with initial conditions in any cycle can be 
obtained. As a kind of nonclassical boundary, dashpot boundary is considered. The 
boundary reflection law is essential and provides an understanding of how waves are 
reflected by the boundaries. As a result, research into identifying an optimal value of 
the boundary damping provides a basis for active vibration control of axially traveling 
materials with dissipative boundaries.  

For the greatest vibration attenuation, this study shows that having a higher level of 
viscous damping at the corresponding boundary is not necessarily any better. There is 
an optimal value for the boundary damping, which is system dependent, after the first 
cycle. This was identified by numerical simulations of either the displacement 
response or energy. In the form of traveling waves, the energy ratio of the 
left-propagating wave to the right-propagating wave goes back to the original value 
cyclically after an integer number of cycles. For the system, the gradient of energy has 
a clear physical interpretation as it relates the gradient of the vibrational energy with 
the rate of work (power) done by forces at the two boundaries. 
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Appendix A: Derivation of the governing equation of motion and boundary conditions 

An axially traveling string with two boundaries is a system of changing. The 
modified Hamilton’s principle for system of changing material is ([20, 24]) 
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where Ek is the kinetic energy, Ep is the potential energy and Fη =-ηut(l0, t) is the 
damping force. 
The expressions of Ek and Ep can be obtained by [9] as follows. 
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Eq. (A1) is simplified as follows. 
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Appling integration by parts to the first four terms of the left side of Eq. (A4), yields 
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Assuming δu=0 for t=t1 and t=t2, and substituting Eqs. (A5)-(A8) to Eq. (A4), yields 
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Since the variation δu is arbitrary, Eq. (A9) can be satisfied only when the individual 
terms of Eq. (A9) are equal to zero 
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So the dashpot boundary condition obtained from (A11) in Fig. 1 is 

 ( ) ( )0 0, ,t xu l t Pu l tη = −  (A12) 

and Eq. (A10) is the governing equation of motion. 
When η=0 Ns/m, the boundary condition of the right boundary becomes the free 

boundary: ux(l0, t)=0. 
 
Appendix B: Fixed_mass-dashpot-spring boundaries case 
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Fig. 13 Traveling string with fixed_ mass-dashpot-spring boundaries. 

  The mass-dashpot-spring boundary condition in Fig. 13 is 
 0 0 0 0( , ) ( , ) ( , ) ( , )tt t xmu l t ku l t u l t Pu l tη+ + +  (B1) 

where k is the stiffness of the spring, and m is the mass at the right boundary. The 
boundary reflection relationship of the right hand boundary is 
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boundary reflected waves are given here only instead of response results, and the 
process of response calculation can be referred to the case of fixed_dashpot 
boundaries in the main text. 
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Following results are for the case of β ≠ 1. 
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Following results are for the case of β=1. 
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