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Abstract. The dynamic characterisation of  elastic tubes is relevant to many 
fields in the industry. They are a key component for many processes involving 
fluid flow, heating, or cooling, etc., where grooves are frequently introduced to 
alter flow, and thus enhance heat transfer. Thin-walled tubes with helical features 
have been previously studied numerically and analytically, but experimental 
observation is still missing. In this paper, the wave propagation characteristics of 
a cylindrical tube with helicoidal grooves are investigated experimentally. The 
Wave Finite Element method is applied to a 3D model of this structure and a 
correlation method is used on a physical tube to experimentally observe the 
splitting of the degenerate dispersion branch into two. As opposed to a tube 
without grooves, both numerical and experimental methods show that the tubes 
with helicoidal grooves possess two distinctive but closely valued bending wave 
branches in the dispersion curves. The effect of the grooves is also visible in the 
mode shapes of the tubes of finite length, which will also be presented, where 
bending modes become unrestricted to lying in a single preferential direction. 
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1 Introduction 

The characterisation of wave properties of mechanical structures has gained increased 
interest for topics such as damage detection, wave focusing and general understanding 
of the dynamic behavior of structures, to name a few. In this context, long slender 
structures with helical aspects have been analysed to identify existing propagating 
waves ([1-4]).  

A characteristic effect of the helical geometry in the wave properties of these 
structures is that two distinctive flexural branches are visible in their dispersion curves. 
This contrasts to the two identical flexural branches related to degenerate modes 
occurring in orthogonal planes in an equivalent non-helical structure. This effect has 
been reported for helical waveguides in the form of beams through an analytical 
approach by Frikha [5], rods and wires through the Semi-Analytical Finite Element 
(SAFE) method in Tresseyde’s work [3], through the Scaled Boundary Finite Element 
Method (SBFEM) in Liu’s et al work [4], and for helical springs through the Wave 
Finite Element (WFE) method in Renno and Mace’s work [6]. A similar phenomenon 
was observed for a non-helical but curved pipe in work of Demma et al. [7], in which a 
mode that is described by one dispersion curve for a straight pipe splits into two 
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dispersion curves in the curved pipe. Having observed this effect through these 
analytical and numerical investigations, this work is motivated by the need to 
experimentally observe the two distinctive flexural branches in a structure with helical 
features. 

Among the existing experimental methods for the estimation of wavenumbers in one-
dimensional waveguides, this paper focuses on the method used for the estimation of 
free wavenumbers introduced by Ferguson et al. [8]. It is based on a correlation between 
measurements in the form of transfer functions and a wave considering trial 
wavenumbers, where the maxima indicate the wavenumber values present in the 
response. It was used by Souza et al. [9] to estimate the wavenumber of propagating 
waves in metamaterial beams and by El Masri et al. [10] in reinforced concrete beams. 
A similar correlation-based method was also presented by Berthaut et al. [11] where 
complex-valued trial wavenumbers were introduced along with directional flexibility 
and a scaling to restrict the correlation results to lie within the unity range. This method 
has been used in many works for the estimation of wavenumbers for varied types of 
structures ([12]). 

In the current work, a numerical investigation using WFE is described in section 2. 
A unit cell of the real pipe is modelled and discretised to obtain the mass and stiffness 
matrices necessary for the calculation of wavenumbers. These results serve as reference 
and are supported by experimental observations, which are obtained through the 
correlation technique. The test setup and methodology are described in section 3, 
followed by implementation details for the experiments. Finally, section 4 contains a 
visual representation of how these two bending branches manifest in the mode shapes 
of the structure through the results of experimental and numerical modal analyses.  

2 Numerical analysis 

A 1D WFE approach is proposed to estimate the propagating wavenumbers of the 
helically grooved pipe. A periodic cell is modelled as a 11 mm long tube with cross-
sectional dimensions extracted from a microscopic picture of a segment of the real 
structure. The 3D CAD model was meshed in Ansys Workbench 18.1 with different 
types of elements as with several levels of refinement until mesh convergence was 
achieved with a solid shell type of element with three solid shell elements through the 
thickness. The material properties were selected as the nominal values for stainless steel.  
The mesh of the model is shown in Fig. 1. 

   
Fig. 1 - Meshed finite element model of a periodic cell of the helically grooved tube. 
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The FE model was used to extract the mass and stiffness matrices, 𝑴𝑴 and 𝑲𝑲, which 
compose the dynamic stiffness matrix 𝑫𝑫 = 𝑲𝑲−𝜔𝜔2𝑴𝑴. Damping was considered 
negligible. The equation of motion is expressed as 

 𝑴𝑴𝒒𝒒
¨

 + 𝑲𝑲𝒒𝒒
˙

= 𝒇𝒇 (1) 
where 𝒇𝒇 and 𝒒𝒒 are (2n x 1) vectors representing the loads and nodal displacement at the 
n DOFs on each side of the cell. It can be written in terms of the dynamic stiffness matrix 
𝑫𝑫 as 

 𝑫𝑫𝒒𝒒 = 𝒇𝒇. (2) 
Writing Eq. (2) in matrix form to reveal the association of the right or left nodes of the 
segment gives 

 �𝑫𝑫𝐿𝐿𝐿𝐿 𝑫𝑫𝐿𝐿𝐿𝐿
𝑫𝑫𝐿𝐿𝐿𝐿 𝑫𝑫𝐿𝐿𝐿𝐿

� �
𝒒𝒒𝐿𝐿
𝒒𝒒𝐿𝐿� = �𝒇𝒇L𝒇𝒇R

� ′ (3) 
where the subscripts L and R discriminate between the left and right sides of the periodic 
cell (in this case, the top and bottom cross-section of the model shown in Fig. 1). The 
corresponding nodes from left and right sides can also be related through periodic 
conditions by defining a propagation constant λ, where the displacements and loadings 
are related through the expressions 

 𝒒𝒒R = 𝝀𝝀 𝒒𝒒L, 𝒇𝒇R = −𝝀𝝀 𝒇𝒇L (4) 
with  
 𝜆𝜆𝑗𝑗 = 𝑒𝑒−𝑗𝑗𝑘𝑘𝑗𝑗△ (5) 

where k is the unknown wavenumber, of which there are n solutions and △ is the length 
of the periodic cell. The internal nodes of the periodic cell were dealt with by performing 
a dynamic condensation. 

Among the existing formulations for the WFE eigenproblem, the one used in this 
work can be reached by rewriting Eq. (3) with the substitutions from Eq. (4), and 
projecting the equations of motion onto the left-hand DOFs, leading to the eigenvalue 
problem ([13], [14]): 

 �� 𝟎𝟎 𝑫𝑫𝐑𝐑𝐑𝐑
−𝑫𝑫𝐑𝐑𝐑𝐑 −(𝑫𝑫𝐑𝐑𝐑𝐑 +𝑫𝑫𝐑𝐑𝐑𝐑)� − 𝜆𝜆 �𝐃𝐃𝐑𝐑𝐑𝐑 𝟎𝟎

𝟎𝟎 𝐃𝐃𝐑𝐑𝐑𝐑
�� �

𝒒𝒒𝐑𝐑
𝜆𝜆 𝒒𝒒𝐑𝐑

� = 𝟎𝟎 
(6) 

This eigenproblem has been reportedly useful for the estimation of free propagating 
waves in undamped waveguides ([14]). Numerical errors in the form of FE 
discretization error, round-off errors in the dynamic stiffness matrix and conditioning 
issues were verified in accordance to the guidelines from [14].  
The handling of the stiffness and mass matrices into the eigenproblem of Eq. (6) and its 
solution were performed through a MATLAB script. The wavenumbers related to the 
free propagating waves were selected as the real-valued solutions from 𝑘𝑘 = −ln 𝜆𝜆 (𝑖𝑖Δ)⁄  
and are also shown in Fig. 2. For reference, the wavenumbers resulting from the same 
analysis applied to a pipe without helical grooves but with otherwise identical geometry 
and material properties are shown in Fig. 2. Only the positive wavenumber axis is shown 
for simplicity. The main difference observed in this frequency range is the existence of 
two distinct flexural wavenumber branches, labelled 𝐹𝐹(1,1)+ and 𝐹𝐹(1,1)− for the 
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helically grooved pipe. For the non-grooved tube, only one branch is visible, labelled 
𝐹𝐹(1,1) – or in fact two identical-valued branches representing the bending waveguide 
modes of degeneracy two in orthogonal directions of the pipe.  

 
Fig. 2 - Predicted wavenumbers calculated through the WFE for the helically grooved tube (black 
dashed line) and for the non-grooved tube (grey continuous line). 

The additional branches containing lower values of wavenumbers presented in Fig. 2 are 
for the torsional and longitudinal propagating waves and are not investigated 
experimentally in this work. In the following section of this paper, the experimental 
observations of the distinctive flexural branches in the dispersion curves of the helically 
grooved pipe are described. 

3 Experimental investigation 

The experimental approach to estimate wavenumbers considered herein is the 
correlation technique introduced by Ferguson [8]. It consists in finding, for each 
frequency, the wavenumber value that produces the maximum absolute value of the 
complex correlation function: 

 
𝑊𝑊�𝑘𝑘𝑡𝑡𝑡𝑡 ,𝑘𝑘𝑡𝑡𝑡𝑡 ,𝜔𝜔� = � � 𝑤𝑤(𝑥𝑥,𝑦𝑦,𝜔𝜔)

∞

−∞

𝑒𝑒−𝑗𝑗𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒−𝑗𝑗𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦
∞

−∞

 (7) 

where the correlation of the measurements 𝑤𝑤(𝑥𝑥, 𝑦𝑦,𝜔𝜔) with the wavefield 𝑒𝑒−𝑖𝑖𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒−𝑖𝑖𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡 
[for a 2D -plate] is evaluated. This can be assessed for any (𝑘𝑘𝑡𝑡𝑡𝑡 𝑘𝑘𝑡𝑡𝑡𝑡) pair and these are 
designated as the trial wavenumbers. For a 1D waveguide with discrete measurement 
locations, Eq. (7) simplifies to: 

 
𝑊𝑊� (𝑘𝑘𝑡𝑡𝑡𝑡 ,𝜔𝜔) ≈ �

𝑙𝑙𝑡𝑡
𝑁𝑁
��𝑤𝑤(𝑥𝑥𝑖𝑖 ,𝜔𝜔)

𝑁𝑁

𝑖𝑖=1

𝑒𝑒−𝑗𝑗𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 . (8) 

The correlation technique is an approach to convert the measured data from the spatial 
domain to the wavenumber domain, with the same purpose and in a  fashion similar to 
that of a Spatial Discrete Fourier Transform (SDFT). In relation to the SDFT, the 
correlation technique has the advantage of having the wavenumber resolution 
determined arbitrarily by the user, which improves the estimation of wavenumbers for 
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a given dimension of the measurement grid ([8]). However, the energy leakage that 
exists in the SDFT is also present in the wavenumber spectrum generated by the 
correlation technique. It can affect the estimation of wavenumbers when they are closely 
spaced at a given frequency.  

The measurements 𝑤𝑤(𝑥𝑥,𝜔𝜔) are mobility functions measured along the length of the 
pipe with a roving hammer technique. The pipe was placed on a soft foam to simulate 
free boundary conditions. A laser Doppler vibrometer Polytec PDV100 was placed in a 
single location while an instrumented hammer PCB 086E80 excited 35 points (impact 
rover test), equally separated at a distance of 22 mm. The data was acquired and 
processed through the Data Physics Quattro data acquisition module along with its 
SignalCalc ACE software for signal processing.  

Measurements for two pipes were made, one with and one without helical groove. 
Taking the non-grooved pipe as a reference and applying the correlation technique with 
the measured data, with trial wavenumbers ranging between ±100 rad/m and scaling 
each frequency step so that the maximum correlation amplitude is unitary led to the plot 
shown in Fig. 3a. Fig. 3b contains the plot with the dominant wavenumbers extracted 
from the colormap of Fig. 3a.  

(a) (b) 

Fig. 3 - Predicted wavenumber with WFE (in black) versus estimated wavenumbers (in color) of 
the non-grooved pipe in (a) colormap of correlation and (b) extracted dominant wavenumbers. 

The plots in Fig. 3 show that the predictions using WFE and the experimentally 
estimated wavenumbers are in good agreement and only one branch of the flexural mode 
is visible in the measured direction. The same procedure was applied to the helically 
grooved pipe, yielding the results shown in the plots of Fig. 4.  

(a) (b) 
Fig. 4 - Predicted wavenumber with WFE (in black) versus estimated wavenumbers (in color) of 
the helically grooved pipe in (a) colormap of correlation and (b) extracted dominant 
wavenumbers. 

From the numerical and experimental results, it is possible to observe two distinct 
branches in Fig. 4, though some quantitative disagreement exists. At frequencies below 
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4 kHz, the correlation technique is unable to distinguish two separate wavenumbers due 
to the leakage effect of converting the spatial samples into the k-space. Above 4 kHz, 
although two separate branches are discernible in the experimental results, there is some 
deviation in the results which could arise from differences in the material or geometrical 
properties used in the FE model. 
Empirically, and inspired by the work of Manconi et al [1], it was observed that 
decreasing the Young’s modulus of the grooved section of the pipe by a factor of 3 leads 
to a better fit between the results. This is shown in Fig. 5. Further investigation of the 
material properties in this structure would be necessary to make the numerical model 
more accurate, although this is not envisaged in this work. 

(a) (b) 
Fig. 5 - Predicted wavenumber with WFE (in black) versus estimated wavenumbers (in color) of 
the helically grooved pipe in (a) colormap of correlation and (b) extracted dominant 
wavenumbers. 

4 The effect on the mode shapes due to the helical groove 

The presence of the two distinctive flexural wave branches indicates potentially 
different mode shapes exist and this was analysed through an experimental modal 
analysis. The mobilities obtained previously were used and the experimental modal 
analysis performed along one direction of the pipes yielding the selected mode shapes 
shown in Fig. 6.  

 
(a) (b) 

Fig. 6 - Mode shapes of the 12th order obtained experimentally for (a) the non-grooved pipe (at 
5785 Hz and k=47.5 rad/m) and (b) the helically grooved pipe: two modes with varying magnitude 
at distinct and slightly different frequencies (4022 and 4042 Hz and k ≈ 47 and 50.3 rad/m).  

The mode shapes of the helically grooved pipe distinguish themselves from the ones of 
the non-grooved pipe through the change in magnitude at certain locations of each mode 
shape and through the existence of two mode shapes at slightly different frequencies for 
each mode order. Due to the one-directional view of the experimental modal analysis, a 
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numerical modal analysis performed in Ansys Workbench for a pipe with simplified 
helical groove is used to visualize the three-dimensional behaviour of the pipe.  

(a) 

 

(b) 
 

 

(c) 

 

(d) 
 

 

Fig. 7 – Two mode shapes of the helically grooved tube representing the 12th mode order: Mode 
12-1 from it’s (a) front view and (b) side views, Mode 12-2 (c) front view and (d) side views. 

The mode shapes shown in Fig. 7 provide a clearer insight into the bending behaviour 
of the helically grooved tube. The fluctuations in magnitude that can be seen in Fig. 6b 
are explained in the side views of Fig. 7b and Fig. 7d as deflections that take place in a 
different direction than the one that was measured. The end result is a bending mode 
that is not restricted to lying in one direction only but occurs in a continuously rotating 
direction, as shown in Fig. 7a and 7c.   

5 Conclusions 

In this paper, the effect of a helical pattern on breaking degeneracy of the bending modes 
of a pipe has been shown experimentally. Both wave and modal approaches were 
investigated. The wavenumbers were initially estimated numerically through the WFE 
method and a real structure was tested with the correlation technique to estimate the 
wavenumbers experimentally. The excellent qualitative and quantitative agreement 
between the experimental and the numerical results corroborates the existence of two 
distinctive flexural branches. These contrast with the two identical branches existent on 
degenerate structures and are brought by the break of symmetry arising due to the helical 
pattern along the pipe. Mode shapes obtained experimentally and numerically evidence 
the effect of these distinctive propagating waves on the modal behaviour of the helically 
grooved pipe. The bending motion is seen not to be restricted to one fixed direction of 
the pipe for each mode (as it occurs for an axisymmetric pipe), but to a direction that 
continuously rotates along the length of the pipe.  

Improvements can still be made on the material properties of the FE model for a more 
accurate representation of the effect of the manufacturing technique on the real structure.  
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