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Abstract: Olduvai protein domains (also known as DUF1220 or NBPF) have undergone the greatest 
human-specific increase in the copy number of any coding region in the genome. Their repeat 
number was strongly associated with the evolutionary expansion of brain volumes, neuron counts 
and cognitive abilities, as well as with disorders of the autistic spectrum. Nevertheless, the domain 
function and cellular mechanisms underlying the positive selection of Olduvai DNA sequences in 
higher primates remain obscure. Here, I show that the inclusion of Olduvai exon doublets in mature 
transcripts is facilitated by a potent splicing enhancer that was created through duplication within 
the first exon. The enhancer is the strongest among the NBPF transcripts and further promotes the 
already high splicing activity of the unexpanded first exons of the two-exon domains, safeguarding 
the expanded Olduvai exon doublets in the mature transcriptome. The duplication also creates a 
predicted RNA guanine quadruplex that may regulate the access to spliceosomal components of the 
super-enhancer and influence the splicing of adjacent exons. Thus, positive Olduvai selection 
during primate evolution is likely to result from a combination of multiple targets in gene 
expression pathways, including RNA splicing. 
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1. Introduction 
Gene sequences encoding Olduvai protein domains have undergone the largest 

human-specific increase in the copy number of any coding region in the genome [1,2]. In 
a recent genome assembly (hg38), their number exceeded 300 copies. Almost all of them 
have been inserted since the first emergence of Olduvai domains in non-primate 
mammals, with over half added to the human genome since the split of the Homo and Pan 
genera [2,3]. The Olduvai copy number increase was associated with the evolutionary 
expansion of the brain and grey matter volumes, neuron counts and cognitive abilities 
[1,3], as well as with disorders of the autistic spectrum and their severity [4,5]. Olduvai 
domains are highly expressed in neocortex neurons in regions believed to be critical to 
advanced cognitive functions [1]. Despite their prominent role in structural genome 
variation in health and disease and a robust positive selection favouring the Olduvai copy 
gains over 5–7 million years of human evolution [1,6], it remains a mystery why this 
repeat expansion has been safeguarded in the human genome and transcriptome and 
which cellular mechanisms served as targets for Olduvai selection in higher primates. 

Olduvai domains are, on average, ~65 amino acids in length [1,7]. Based on their 
sequence similarity, the domains were categorised into six clades or sub-types: the 
conserved (CON1-3) sub-types can be present in non-primate mammals, whereas the 
HLS1-3 sub-types are human-lineage-specific [2]. Their order in NBPF proteins, where 
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most Olduvai domains were found, was conserved: one or more CON1 clades at the N-
terminus, followed by a single CON2 (except for NBPF2P), one or more HLS1-3 triplets 
and a C-terminal CON3 sub-type [2,6,7]. Each sub-type is encoded by an exon doublet 
(Figure 1). The first exons of the doublet are small, most often 52 nucleotides (nts), whereas 
the second exons are larger, exceeding the average size of human exons (~140 nts). The 
majority of NBPF introns remain small, consistent with their recent evolutionary history. 
However, the first exons in the expanded HLS1 sub-types are long (109 nts), as they 
accommodate a genomic insertion containing a guanine- and adenine-rich motif (denoted 
pG4), which was shown to form a DNA guanine quadruplex (G4) in vitro [6] (Figure 
1B,C). In NBPF genes, the presence of pG4 perfectly discriminates between expanded 
(58/58) and unexpanded (0/12) HLS triplets [6]. In other words, when pG4 is present only 
in the penultimate exon of C-terminal CON3 sub-types, the expansion of pG4-lacking HLS 
triplets does not take place or is not selected. The HLS expansion by pG4 is selected only 
when pG4 is present in internal NBPF exons. Why? This question may be critical to our 
understanding of Olduvai evolution and function, and I propose a possible answer in a 
hypothesis formulated below. 
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Figure 1. Splicing enhancer activities of the first exon in expanded and unexpanded Olduvai exon 
doublets and RNA G4 predictions. (A) ESE/ESSseq scores for overlapping hexamers in 
representative pG4-containing (pG4+, top panel) and pG4-lacking (pG4-, bottom panel) NBPF10 exons. 
Exon (E) numbers correspond to the longest transcripts, with E21 and E23 representing examples of 
HLS sub-types with unexpanded first exons of the Olduvai doublet and E31 representing the 
expanded version. Horizontal dotted lines at the top of each chart denote the maximum ESE/ESSseq 
values (1.034 for the strongest splicing hexamer AGAAGA, ref. [8]). The horizontal dashed line 
shows mean values for control human exons [9]. Horizontal black boxes at the top panel denote 
duplicated regions in the expanded first exons of Olduvai doublets. The 68 nt pG4 sequence [6] is 
in a red box. (B) The alignment of the NBPF10 exons that contain (+) or lack (−) pG4. Exonic 
sequences are in upper case and flanking intronic sequences are in lower case. pG4 is in a red box; 
black boxes denote duplicated regions. (C) Predicted effects of Olduvai exon expansions on RNA 
processing. Top, non-homologous allelic recombination was previously proposed to explain 
Olduvai amplifications [6]. Black dots denote pG4 sequences, red line denotes the location of an 
intron recombination breakpoint [6]. exp, expanded Olduvai sub-type. Bottom, the putative impact of 
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the recombination event on pre-mRNA splicing. Splicing is shown as diagonal lines for canonical 
(dotted lines) or alternative (dashed lines) events; the line widths correspond to expected exon usage 
frequencies. Red arrows at penultimate exons illustrate a lack of splicing dependencies downstream 
of pG4-containing exons in CON3. Retention of the last intron might also lead to stable translation 
of truncated proteins, bypassing nonsense-mediated RNA decay of transcripts with premature 
termination codons further upstream [10]. (D) The ESE/ESSseq profile in an NBPF9 region between 
the first expanded HLS1 exon and the terminal CON3 exon (top). Nt numbering is from the first 
position of the expanded HLS1 exon. Bottom, pG4-containing insertion in HLS1 predicted to form 
RNA G4 by the indicated methods. Score predictions were carried out with the G4RNA screener 
[11] (v. 0.2, window length 60, window step 10). Thresholds for the consecutive guanine over 
consecutive cytosine (cGcC) scores were >4.5, for the Genehunter (G4H) scores were >0.9 and for the 
neural network (G4NN) scores were >0.5. Each method identified the RNA G4 structures in the 
absence of ligands. 

2. Hypothesis 
2.1. Giant Exonic Splicing Enhancers Created by an Intra-Exon Duplication of a Purine-Rich 
Motif in the Expanded HLS Exons 

G4s arestable non-canonical secondary structures in DNA or RNA that are formed 
by the in-plane arrangement of four hydrogen-bonded guanines known as tetrads stacked 
one on top of another (reviewed in [12]). They have been suggested to influence the 
stability of Olduvai repeats and potentially drive structural DNA variation in the extant 
human population [6], but they could also act at the level of RNA processing and other 
gene expression steps [12]. To address the question if pG4 can act as an exonic splicing 
enhancer (ESE) and assess its capacity to promote exon inclusion in mature transcripts, 
each nucleotide in Olduvai exon doublets was assigned a hexamer ESEseq and ESSseq 
(ESS for exonic splicing silencer) score (Figure 1A). The scores, which are expressed here 
as ESE/ESSseq ratios, estimate the strength of exon selection and predict the exon–intron 
architecture by specifying a gradient of exon and intron definitions in primary transcripts 
[8,13]. In addition, the ESE/ESS and their scores carry a significant protein [14] and protein 
domain-related [9,15] information. 

This analysis showed that the first exons of HLS doublets had a higher average 
ESE/ESSseq score than control human exons, both across unexpanded (pG4-) and 
expanded (pG4+) versions (Figure 1A). The maximum activity was observed in their 
middle parts, reaching the highest ESE/ESSseq score values in the expanded exons on 
three occasions, twice in the pG4 motif itself (Figure 1A). In contrast, the pG4-lacking 
versions of HLS1, as well as the HLS2 or HLS3 sub-types, showed only one or two 
ESE/ESSseq score peaks (Figure 1A). A closer inspection of their sequences showed that 
the extra peak was created by a duplication event and was co-localized with a short 
purine-rich motif that separated the duplicated regions (horizontal boxes in the top panel 
of Figure 1A). The mean ESE/ESSseq scores across pG4 were the highest along the NBPF 
transcripts and were significantly higher than their average values (0.25 vs. 0.05, p < 0.0001, 
unpaired t-test; Figure 1D, top). The ESE/ESSseq profiles in the first exon of the HLS1 
doublets were, thus, distinct from the first exon of a CON sub-type, where most splice-
enhancing activity was found in the vicinity of the 3′ splice site (cf. Figure S9 in [9]). 

Taken together, these data showed that the splicing of expanded HLS1 exons was 
supported by a potent ESE that was created by intraexon duplication. The insertion of a 
pG4-containing purine-rich motif, thus, further enhanced the already high inclusion 
potential of the unexpanded first exons of the Olduvai exon doublets. The expected 
consequence of the CON3 > HLS1 evolutionary scenario [6] (Figure 1C) would be an 
improved exon selection, facilitating the retention of expanded HLS1 triplets in the mature 
transcriptome and serving as a selection target for Olduvai expansions at the RNA level. 
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2.2. Intragenic Duplications of Olduvai Exon Doublets and Their Possible Impact on Alternative 
Splicing 

Small exons (~60 nts or less) have been associated with poor inclusion in messenger 
RNAs [16–19]. This length limit also applies to constitutively spliced internal exons, which 
have an optimal size range between 60 and 200 nts [19]. Although smaller exons may lack 
cross-exon interactions with spliceosomal components, many mini- or even micro-exons 
are efficiently recognised in vivo in a constitutively or alternatively spliced manner 
[17,20]. Such exons are often located very close to additional exons upstream or 
downstream that are separated by short introns  withregulatory functions [17]. The 
requirement for flanking exons disappeared when mini-exons were expanded [17]. The 
splicing of an intron was also enhanced when coupled with the splicing of a downstream 
intron, possibly through a mechanism independent of exon junction complex depositions 
[19], further adding to the evidence that individual exons are not selected independently. 
These observations are in line with Nature’s experiments, showing that splice-site 
mutations in human disease genes may not affect the splicing of only the mutated exon, 
but also adjacent exons or introns, most often leading to the skipping of one or more 
downstream exon [21–26]. Such splicing dependencies may be created by exon 
duplications into a new genomic context, such as those in the NBPF genes. The Olduvai 
domain duplications involved ~4.7 kbs regions, consisting of six-exon and six-intron 
blocks [2]. Based on these studies, one can hypothesize that the improved inclusion of a 
single internal HLS exon in mRNA through pG4 gain (Figure 1A) may alter the 
recognition of adjacent exons and introns and their native splicing patterns, potentially 
also contributing to their evolutionary spread. By contrast, penultimate pG4-containing 
NBPF exons of terminal CON3 sub-types would lack this property, preventing the 
selection of CON3 expansions in the absence of internal pG4-containing exons (Figure 1C). 

Given the limitations of the next-generation RNA sequencing (RNA-seq) and other 
methods used to unambiguously identify NBPF exons in the human transcriptome (HLS 
exons are 96–100% identical, ref. [2]), our understanding of their alternative splicing 
patterns remains very limited [27]. Although the functions of distinct mRNA isoforms and 
Olduvai sub-types are unknown, systematic approaches employing an iterative deviation 
method for RNA-seq datasets from 16 human tissues identified 17 NBPF exons among 
3100 ‘switch-like’ events [28]. Switch-like exons show a high usage in one tissue and low 
usage in another, suggesting that they are regulated [28]. However, the functional 
significance and exact identities of such alternatively spliced NBPF exons remain obscure, 
awaiting experimental confirmation. 

2.3. Is Access to the Super-Enhancer in the First HLS1 Exons Regulated by RNA G4 Formation? 
The 5′ part of the first exon encoding CON1 in NBPF genes resembles a trinucleotide 

repeat (Figure S9 in [9]). Trinucleotide-containing RNAs and other microsatellites can 
form assemblies of intracellular RNA aggregates that cause more than 30 genetic disorders 
by sequestrating RNA-binding proteins, leading to downstream changes in alternative 
splicing and spliceopathies [29]. For example, a GC-rich microsatellite expansion in the 
first CNBP intron in type 2 myotonic dystrophy can trigger intron retention [30]. Both the 
trinucleotide-like exonic segment [9] and the more recent pG4-led expansions of HLS1 
sub-types [6] showed strong purine enrichment (Figure 1A). A nearly exclusive purine 
composition of pG4 is likely to diminish intramolecular Watson–Crick base-pairing in 
these regions and increase their RNA single-strandedness in the absence of non-canonical 
structures. Although the pG4-containing insertion (Figure 1B) does not meet most 
stringent requirements for G4 formation (G≥3N1–7G≥3N1–7G≥3N1–7G≥3, where G is guanine 
and N is any nucleotide), RNA G4 for this insertion was strongly predicted by multiple 
algorithms (Figure 1D), including those employing artificial neural networks without 
reliance on motif definitions [11]. This is in agreement with evidence for DNA G4 
formation obtained by circular dichroism spectroscopy of pG4 [6]. Additionally, RNA G4 
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formation would be supported by a lack of cytosines in sequences flanking pG4, except 
for the 3′ terminus of the exon (Figure 1A). A single cytosine in the middle of pG4 (Figure 
1B) is unlikely to interfere with RNA G4 folding. Thus, the pG4-led splice-enhancing 
activity of expanded HLS1 sub-types shown here may depend on RNA G4 and 
conformational switches between canonical and non-canonical RNA structures. 

The link between RNA G4 formation and the regulation of RNA processing by ESEs 
is increasingly supported in the literature. For example, a high-purine G4 has been shown 
to enhance exon inclusion in FMR1 [31]. In addition, G4-prone motifs in primary 
transcripts can activate heterologous exons if placed either downstream or upstream of 
the tested exon [32], although they may also inhibit splicing [12,33,34]. Interestingly, the 
strongest ESE hexamer AGAAGA was among those reported to require a partner motif 
or motifs within 16 nts flanking regions  [8]. Such motifs may be present in the 33 nts 
duplication in the first HLS1 exon (Figure 1A),however, it remains to be seen to what 
extent such requirements reflect specific canonical or non-canonical RNA structures. 

Finally, an underappreciated aspect of G4 biology is the intercalation of monovalent 
and divalent metal ions into the centre of or between G4 tetrads, stabilizing them in a 
metal-specific manner and enhancing their base-stacking interactions [35–37]. The 
evolution of the ESE and ESS was tailored by binding sites of divalent metals, such as Ca2+, 
reflecting their position in the Irving–Williams stability series [9,15]. Both mono- and 
divalent metal ions are pivotal for G4 stability gradients, which have been linked to their 
ionic radius, hydration energy and binding strength toward the guanine O6 [37]. For 
example, larger cations can coordinate eight oxygen atoms, while smaller ions coordinate 
only four, contributing to distinct G4 stabilities ([12,37] and references therein). Metal ions 
may also control structural switches between G4 and canonical conformations involving 
alternative RNA secondary structures in weakly paired regions, such as pG4. Ca2+ was 
shown to induce the structural transition of anti-parallel to parallel G4 via multiple steps 
[38] and also exert a strong stabilizing effect on guanine triplexes [39]. It would not be 
surprising if the metallome-dependent RNA G4 formation constituted a discernible 
selection force to shape the evolution of the auxiliary splicing code. 

Taken together, the expanded and unexpanded first Olduvai exons provide a new 
and attractive model to test the interplay between ESE and RNA G4 and their respective 
trans-acting factors. 

2.4. Conclusions 
In summary, it was proposed that the rapid evolutionary spread of Olduvai domains 

in higher primates was facilitated by prominent splicing activities of expanded internal 
NBPF exons. Their positive selection at the exon-level is likely to depend on a 
combinatorial control by a strong splicing enhancer created by intraexon duplication and 
by the formation of the RNA G4 and/or stable intermolecular RNA:DNA hybrids during 
transcription. Thus, the selection of these enigmatic domains during recent evolution may 
have acted on multiple targets, including RNA processing (Figure 1), DNA stability [6] 
and at the protein level [40]. In future studies, it is important to establish the role of 
intraexon duplication in NBPF splicing experimentally, evaluate the impact of the 
proposed NBPF non-allelic homologous recombination event [6] (Figure 1C) on RNA 
processing and structure and fully characterize alternative RNA splicing of the NBPF 
genes in brain regions where it is also most prevalent [41]. Future studies on this 
interesting exon-expansion model may provide valuable insights into our understanding 
of human brain development and the acquisition of advanced cognitive functions. 
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3. Material and Methods 
ESE/ESSseq scores were derived from exon inclusion levels measured by the RNA-

seq of unspliced and spliced central minigene exons that contained comprehensive 
libraries of 4096 hexamers cloned at five different positions [8]. Briefly, the variant 
minigene library (input) was transfected into human embryonic kidney cells and 24 h later 
the messenger RNA molecules that had included the central exon (output) were isolated 
by size selection and sequenced [8]. For each hexamer, an enrichment of output 
proportion over input proportion was calculated and expressed as ESEseq and ESSseq 
scores [8]. Greater ESE/ESSseq score values indicated that the central variant exon was 
spliced more efficiently, i.e., they contained a larger excess of ESEs over ESSs [8,9,15]. The 
ESE/ESSseq values, thus, provided reasonable estimates of exon inclusion in mature 
transcripts and their splicing activities [8]. The scores were then assigned to each 
nucleotide position of the NBPF transcripts, as described in detail for exonic sequences 
that encode Ca2+-binding sites [9]. The list of hexamers with combinatorial requirements 
for flanking RNA motifs or structures was reported by Ke et al. [8]. 

The prediction of RNA G4 structures was carried out using default options of the 
G4RNA screener [11] and the indicated pG4-containing sequence of NBPF9 as an input 
(Figure 1D). Threshold values are specified in Figure 1 legend. Alignments (Figure 1) were 
created with Clustal Omega (v. 1.2.4) [42] (www.ebi.ac.uk/Tools/msa/clustalo/, accessed 
on 3 May 2022) using Ensembl [43] (build 104; www.ensembl.org, accessed on 3 May 2022) 
NBPF gene sequences. 
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ESE: exonic splicing enhancer; ESS: exonic splicing silencer; nt (s): nucleotide (s); kb (s): 
kilobase (s); NBPF: neuroblastoma breakpoint family of genes; Olduvai (also known as DUF1220 or 
NBPF repeat): core protein domain encoded by NBPF and other genes that first appeared in 
placental mammals and rapidly expanded only in higher primates. Named after Olduvai Gorge in 
Tanzania, an important archaeological site for early humans; CON1-3: conserved Olduvai sub-
types; HLS1-3: human-lineage-specific Olduvai sub-types; G4: guanine quadruplex; pG4: 68 nts 
purine-rich motif shown to form DNA G4 in vitro [6]. 
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