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Abstract. Using an evolutionary algorithm combined with a gradient descent

method we design optical cavities with significantly enhanced strong coupling rates

between cavity photons and a single quantum emitter. Our approach allows us to find

specially designed non-spherical mirrors which lead to high-finesse cavity eigenmodes

with large field enhancement at the center of the cavity. The method is based on

adding consecutive perturbations to an initial spherical mirror shape using the gradient

descent method for optimization. We present mirror profiles which demonstrate higher

cavity cooperativity than any spherical cavity of the same size. Finally, we demonstrate

numerically how such a cavity enhances the operation frequency and purity of coupling

a Ca+ ion to an optical fiber photon.
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1. Introduction

Strong coupling of a quantum emitter, e.g., an ion, atom, NV-center, or quantum dot, to

an optical mode of a resonator and long cavity photon lifetime are essential in numerous

applications of quantum optics for fundamental research and for practical quantum

technology. Promising systems to fulfill these requirements are fiber-optic microcavities

[1–4], ion beam etched dielectric resonators [5], or micro-assembled structures [6].

Strong coupling between emitter and cavity photon can be realized by a small

cavity volume and therefore by a very short optical cavity. However, for many realistic

quantum setups the cavity mirrors cannot be placed too close to each other due to

technical difficulties: for trapped ion systems, short cavities lead to electrical charging

of the dielectric mirrors and to distortion of the radio frequency ion trapping fields [7];

for neutral atoms, short cavity lengths are limited by the requirement for delivery of

atoms into the cavity and for optical side access [8, 9] for cooling and trapping. Thus,

optical cavities utilized in quantum optical device applications need to combine a strong

coupling rate with low losses while keeping the mirrors sufficiently apart.

One way to achieve strong coupling is to operate the cavity in a (near-) concentric

configuration [10]. This minimizes the optical mode field waist at the cavity center, thus

maximizing emitter-photon coupling, but at the cost of increased clipping losses because

of a large mode field diameter on the mirrors which limits the maximum achievable cavity

performance as given by the cavity cooperativity.

Another method to increase the field amplitude in the center of the cavity is the

creation of some interference pattern by modulating the mirror profile [11]. We assume

that we are not limited by spherical cavities, i.e., we can create an arbitrary mirror

shape using, for example, focused ion beam milling or laser ablation as discussed in

more detail in Sec. 6. Here, we numerically explore modulated spherical profiles of the

cavity mirrors which give rise to highly localized cavity modes while at the same time

keeping losses low. With this approach we find a manifold of mirror profiles which can

provide a lower loss rate than a concentric cavity, thus achieving higher cooperativity.

In contrast to our earlier work [11], here we do not require a priori knowledge of the

exact mode shape we want to generate (in particular, specific superpositions of many

Laguerre-Gaussian modes), but the numerical algorithm directly uses the mirror shape

for optimization without restrictions on the mode fields. As we will see, this approach

can achieve comparable cooperativity for much simpler mirror shapes.

The goal of our work here is to present a procedure based on an evolutionary

algorithm which allows us to design mirror shapes for optical cavities with higher

coupling and cooperativity compared to spherical cavity mirrors of the same size. We

then apply the method to optimize a fiber-tip cavity by also taking into account out-

coupling of a cavity photon into an optical fiber, This yields a (slightly) larger overall

transfer efficiency of an ion excitation to a fiber photon, but significantly increases the

operating repetition frequency of such a device.

Evolutionary or genetic algorithms are used for various applications mostly for
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inverse design problems [12, 13] and have also been applied in the field of modern

optics [14–16]. In forward design of optical cavities, for given geometry and boundary

conditions the corresponding cavity optical field can be calculated by highly developed

and well known numerical, semi-analytical or analytical methods. However, it is not

often possible to find parameters to create a target optical field distribution using

forward design methods. Here we demonstrate a method which is based on consecutive

“mutations” of an initial spherical mirror shape while calculating the mode spectrum

and conducting gradient descent to optimize the mutations. The method allows us to

find mirror profiles which provide significant enhancement of a target parameter, such

as the cavity cooperativity.

This paper is organized as follows. First, in Sec. 2 we describe the problem under

investigation, our motivation, theoretical model and optimization parameters. In Sec.

3 we describe the algorithm and the role of the gradient descent method in it. In Sec. 4

we present the results of our simulations, in particular the cavity mode topology, strong

coupling rate, and cooperativity enhancement factor, and we investigate the alignment

sensitivity of our cavity designs. In Sec. 5 we apply our method for coupling a Ca+

ion in a Λ-scheme via a fiber-tip cavity to an optical fiber photon and demonstrate the

significantly faster time evolution of the improved system. Finally, we briefly discuss

fabrication opportunities to realize such mirrors experimentally and conclude in Sec. 6.

2. Problem statement

The coherent coupling between a quantum emitter, such as a quantum dot, ion or cold

atom, located at a coordinate r in an cavity with a dimensionless optical field mode

ψ(r) is characterized by the strong coupling rate [17]

g0(r) =

√√√√3λ2cΓ

4πVψ
ψ(r)= g0(rm)ψ(r), ψ(r) =

E(r)

|E(rm)|
(1)

where E(r), Γ, λ, rm are electric field of the cavity mode, the spontaneous decay rate of

the emitter Γ = ω3µ2

3πε0h̄c3
(where ω is the transition angular frequency and µ is the electric

dipole moment), its transition wavelength, and the maximum electric field intensity

point, respectively. Here we assume that the emitter dipole moment and the electric

field polarization vectors are aligned. The cavity mode volume Vψ is given by

Vψ =
∫
Vcavity

|ψ(r)|2dV. (2)

If the emitter-cavity strong coupling rate g0 is larger than the strength of any

incoherent processes, i.e., than the decay rate Γ and the loss rate κ of the cavity field, the

cavity operates in the strong coupling regime. In this case the cooperativity parameter

C0 at the field maximum,

C0 =
g2

0(rm)

κΓ
=

3λ2c

4πκVψ
, (3)

is larger than one.
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Figure 1: (a) Clipping losses Dclip and focal waist w0 versus mirror radius of curvature

for a spherical cavity near the concentric limit. Cavity parameters are L = 500 µm and

mirror diameter 200 µm. (b) Dclip and cooperativity C0 corresponding to (a) plotted

versus the coupling rate g0 for a Ca+ ion with ΓCa+ = 2π × 22 MHz, Dabs = 10−5.

We consider two contributions to the cavity loss rate κ. The first is transmission

of light through the cavity mirrors or absorption within them with a corresponding loss

per round trip of typically Dabs = 10−5 ↔ 10−3. The second contribution is clipping

losses Dclip coming from light of the cavity mode which misses the cavity mirrors due

to their finite diameter. The cavity decay rate κ and the corresponding cavity finesse F

are given by

κ =
c

2L
(Dclip +Dabs) =

cπ

L

1

F
. (4)

2.1. Concentric cavity limit

As mentioned above, one way to enhance the cavity field at the center is to operate a

spherical mirror cavity near the concentric limit. In this case, the mode volume of the

fundamental Laguerre-Gaussian mode is Vψ = π
4
w2

0L, where w0 is the waist at the focus

and L the cavity length, and the cooperativity C0, Eq. (3), can be rewritten as [10]

C0 =
3λ2c

π2κw2
0L

=
6λF√

2RL− L2
(5)

where R is the radius of curvature of the mirrors. C0 thus increases significantly for

R→ L/2, the concentric limit. (Note that Eq. (5) is valid in the paraxial approximation

and breaks down when the waist approaches the wavelength.) The strong coupling rate

scales as g0 ∼ 1/w0. However, as the waist is reduced, the spot size on the mirror (in

the far field, L/2� Rayleigh length) scales with 1/w0 and thus linearly with g0. Hence,

the clipping losses increase dramatically for stronger coupling.

Figure 1 shows a numerical example of the scaling of the cavity parameters in the

concentric limit. Figure 1(a) plots the loss per round trip (blue curve) and Gaussian

beam waist (red curve) as a function of radius of curvature for the fundamental cavity



Evolutionary algorithm to design high-cooperativity optical cavities 5

R

Ai

Pi

L L

(a)

(c)

(b)

(d)
Dclip

g0 g

Figure 2: Schematic of our cavity optimization scheme. (a) and (b) show the mirror

modification process by adding harmonic modulations to a spherical shape. (c) and (d)

indicate the cavity mode divergence by the red curves and the local field enhancement

resulting from the created interference pattern by the blue Gaussian-like curves.

mode. As R → L/2 = 250µm, the waist decreases in the center but simultaneously

the mode on the mirror increases and thus clipping losses increase due to the finite

mirror diameter. In Fig. 1 (b) we re-plot the clipping loss versus the coupling rate g0

(proportional to 1/w0 from figure (a)) which shows the increasing loss with increasing

g0. The black curve shows the corresponding cooperativity C0: it first increases as g0

increases but then rapidly falls when the spot size on the mirror exceeds the mirror

diameter, thus exhibiting a clear maximum of cooperativity that can be achieved with

spherical mirror cavities.

2.2. Strong coupling rate and cooperativity enhancement by optimized cavity designs

The goal of this paper is to overcome the limits found in Fig. 1 for the cooperativity

by allowing for non-spherical mirrors and using an evolutionary algorithm to optimize

the shape of the mirrors. We thereby aim to increase the coupling rate g0 by local field

enhancement, but without the excessive clipping losses found in the concentric limit.

A schematic of this approach is shown in Fig. 2. We start by choosing an appropriate

spherical mirror cavity with given mirror radius of curvature and cavity length, which

we use as a reference cavity. We then alter the mirror profiles, as depicted in Fig. 2,

and calculate the corresponding mode field Ψ which we normalize to the maximum of

the reference field ψ. Thus, Ψ is the field enhancement relative to the reference cavity

and we have the corresponding strong coupling rate

g(r) =

√√√√3λ2cΓ

4πVψ
Ψ(r) = g0(rm)Ψ(r) (6)
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Likewise, the cooperativity C in the center becomes

C =
g2

κΨΓ
=

3λ2c

4π

Ψ(rm)2

κΨVψ
= C0

κ

κΨ

Ψ(rm)2 (7)

where κΨ is the cavity loss rate of the modified mode Ψ. Therefore, the cooperativity

is increased by the field enhancement and/or if the cavity loss is reduced. Finally,

if we assume that the reference cavity has negligible clipping losses and that mirror

transmission and absorption Dabs is the same for the reference and modified cavities, we

can express the enhancement of cooperativity as

C

C0

=
1

Dclip

Dabs
+ 1

Ψ(rm)2 (8)

where Dclip here refers to the clipping loss of the modified cavity.

3. Evolutionary algorithm

We consider a cylindrically symmetric cavity where the mirror profile Z(r) consists of a

sphere with radius of curvature R and some harmonic perturbations with amplitude Ai
and period Pi. We work in the paraxial limit and thus can replace the spherical profile

by a parabola, leading to a modified profile described by

Z(r) =
r2

2R
+

∑
i

Ai cos(r/Pi). (9)

The purpose of this is to create some interference pattern and to enhance the mode field

in the center Ψ(rm) but at the same time we want to avoid creating large clipping losses

on the mirror Dclip. Figure 2 gives a schematic of the scheme.

For the numerical evaluation and optimization of our scheme we require a Solver

function that takes the mirror geometry as an argument and returns the cavity modes

and their clipping losses, from which we select the mode with the highest cooperativity,

Z(r)⇒ Solver(Z)⇒ Ψ(rm, z), Dclip ⇒ C. (10)

The Solver could be any numerical or analytic method. In this paper we implemented

the solver using a mode mixing method (MMM) [11,18,19] in the paraxial approximation

[20].

A schematic of our algorithm is presented in Fig. 3. We start with one mutation,

i.e., one harmonic modulation of the mirror, represented by a couple of parameters

θ = (A,P ). Several instances of this geometry are then created and every instance

is modified by adding a small, individual perturbation ε = (δA, δP ) which is drawn

randomly from a 2-dimensional normal distribution N(0, σA, σP ) with zero mean and

standard deviations σA, σP . For every instance, the Solver is then applied to find the

cooperativity C for the geometry (θ + ε). The results are then combined for a gradient

descent method (GD) where we compute the derivative by a probability approach used

in variations analysis [21, 22],

∇C(θ) ≈ 1

σ2
Aσ

2
P

Eε∼N(0,σA,σP )[εC(θ + ε)], (11)
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Figure 3: Schematic of the evolutionary algorithm and the gradient descent method

with random evolution implementation.

where E is the expectation value over the normal distribution. Once the GD is converged

we fix this mutation, i.e., we fix the harmonic modulation (A1, P1), and add a second

perturbation (A2, P2) which is then again optimized by GD as before. This continues

until satisfactory performance of the cavity is found.

The random evolution GD is graphically shown in the insert of Fig. 3. The algorithm

introduces some stochasticity to the results but adds significant advantages, such as the

possibility to move through flat areas (when the classical gradient is zero) and to go

through walls and local minima. Note that this approach includes the main features of

more standard genetic algorithms: “mutation” is present through the generation of many

instances distributed around the mean value with a normal distribution; “reproduction”

is performed by the gradient descent step based on the average of the entire pool of

instances, thus the periodic modulations of the next generation of instances depend on

modulations of all instances in the parent generation; this step therefore also includes a

type of “blend crossover” but it is not based on two individual instances of the parent

generation but on the full population. The algorithm is also easily implemented for

parallel computing with an effectiveness that grows almost linearly with computational

resources [21,22]. Our home-mode computer program was written in Python using the

libraries numpy for computation and mpi4py for distribution over a multicore processor.

4. Results and discussion

We present an example of our results in Fig. 4. Here a mirror surface with 5 harmonic

mutations has been found by optimization with the evolutionary algorithm described

in Sec. 3. The spherical reference cavity has a length of L = 500 µm, mirror radius

of curvature R = 400 µm, and the operating wavelength is set to λ = 0.866 µm. The

algorithm made mutations of the spherical shape with harmonic amplitudes and periods

in the ranges Ai = 0.1− 0.5 µm and Pi = 10− 30 µm, respectively.
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Figure 4: (a) High cooperativity mode field Ψ(r, z) for mirrors optimized by the

evolutionary algorithm. (b) Cross sections of several eigenmodes of the same cavity,

with corresponding cavity finesse F given in the legend. The dashed curve corresponds

to the fundamental mode of spherical reference cavity with parameters L = 500 µm,

R = 400 µm.

The optimized eigenmode Ψ with the highest cooperativity mode is shown in Fig.

4(a) and the cross section in the center by the orange curve in Fig. 4(b). For comparison,

the fundamental Laguerre-Gaussian mode of the spherical reference cavity is depicted

by the blue dashed line. The figure clearly shows the field enhancement achieved in the

center. At the same time, for the optimized mode the clipping loss has not increased

significantly and thus the cooperativity, Eq. (8), has been increased by a factor of 8.63.

The cavity with the optimized mirror shapes also supports other eigenmodes, some of

which are shown in Fig. 4(b); these modes have larger clipping losses and thus lower

finesse, see the legend of the figure. Note that there is no unique way of defining the

order of eigenmodes in such a complex mirror geometry and thus the eigenmode index

n is arbitrarily determined by the Solver.

We can clearly see that the designed superposition of harmonic perturbations on

the spherical mirror shapes provides a cavity eigenmode with significant strong coupling

enhancement but moderate low losses. This is a valuable enhancement for quantum

optics and quantum engineering applications; a specific example will be discussed in

more detail in Sec. 5.

We want to comment briefly on the convergence properties of our chosen algorithm.

In standard GD methods depending on the choice of initial parameters the algorithm

often converges to a local minimum instead of an overall, global optimum. Here we

eliminate this issue by two approaches. First, we produce a superposition of mutations.

Thus, if in one mutation the algorithm gets stuck in a local minimum, this is mitigated

by another starting point in the next mutation. Second, we compute the gradient using
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Figure 5: Comparison of cooperativities C achieved by our evolutionary algorithm (red

squares) with those of spherical cavities (blue curve). Parameters as in Fig. 1.

the probabilistic derivative of Eq. (11), which allows the algorithm to move through flat

areas and through walls, see insert in Fig. 3 and references [21,22].

In Fig. 4 we demonstrated an enhancement factor of 8.63 for the cooperativity

relative to a spherical reference cavity deep in the stable cavity regime, i.e., far away

from the concentric limit R = L/2. This optimization was easily achieved on an 8-core

processor, where the algorithm made 5 mutations and fewer than 20 iterations in every

GD procedure. However, the efficiency of the algorithm and the achievable cooperativity

enhancement depend on how close the reference cavity is to the concentric geometry. In

Fig. 5 we therefore show more numerical results of cooperativity enhancement achieved

with our method by modulated spherical mirrors (red squares) compared to spherical

cavities approaching the concentric limit (blue curve). We see that our approach

provides significantly higher cooperativity over a very wide range of parameters. In

fact, we notice that the cooperativities achieved with modulated mirrors are higher

than can be achieved with spherical mirrors for any radius of curvature. Thus we can

significantly exceed the limit for spherical cavities of C ' 1.15× 104 for the parameters

of Fig. 5 set by the large clipping losses close to the concentric regime, as discussed in

Fig. 1.

Near-concentric cavities are known to be sensitive to alignment errors, so it is

interesting to investigate how accurately the modulated-mirror cavities must be aligned.

We therefore performed a series of numerical simulations to calculate the modes of

cavities that are misaligned by a lateral shift ∆x or by a tilt angle ∆α between the two

mirrors, with the results shown in Fig. 6.

We expect this alignment sensitivity to depend on the complexity of the mirror

deformation and on the achieved cooperativity enhancement. We therefore select

three mirror shapes, with superpositions of one, two, and three periodic modulations,

respectively. Each mirror shape was obtained by numerical optimization as discussed

above. The deviations of the optimized mirror shapes from spherical, i.e. the summation
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Figure 6: Alignment sensitivity of our cavity designs. (a) Deviation from spherical

profile for three optimized mirror designs with 1, 2, 3 periodic terms, respectively.

(b) Corresponding cooperativity C versus transverse misalignment of cavity, and (c)

cooperativity versus angular misalignment of cavity with Dabs = 10−5, L = 500 µm,

R = 400 µm. In (b) we also show C versus misalignment for a near-concentric

spherical cavity (R = 251.944µm).

terms in Eq. (9), are shown in Fig. 6(a). For perfect cavity alignment the three mirrors

yield a cooperativity enhancement of C/C0 = 4.87, 7.10, 8.78, respectively. Note

that using the results of Ref. [11] much more complicated mirror shapes requiring the

superposition of 5, 7, and 9 Laguerre polynomials would be required to achieve the same

cooperativity enhancement.

The dependence of C/C0 versus linear lateral displacement of the mirrors is shown

in Fig. 6(b). As expected, C/C0 decreases as ∆x increases and reaches half the original

cooperativity at displacements of 0.75, 0.26, and 0.26 µm. The alignment sensitivity of

a near-concentric spherical cavity with the same cooperativity of C/C0 as the 3-term

mirror shape is 0.36 µm (dashed curve). Here C first increases as the cavity length

slightly increases with misalignment before dropping of quickly. The sensitivity of our

cavity designs to a tilt angle between the mirrors is shown in Fig. 6(c). Here the point of

half cooperativity is reached at angles of ∆α = 8.30, 5.22, and 3.70 mrad, respectively.
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Figure 7: (a) Coupling of a mode from a fiber tip optical cavity to an optical fiber

mode. J (pink curve) represents the fiber mode, Ψ (red) the cavity mode, κ the cavity

loss rate, L and R the cavity length and mirror radius of curvature, respectively. (b)

Λ-level scheme of the ion under investigation.

A corresponding near-concentric cavity is much more stable with respect to mirror tilt

with a half width of ∆α = 272 mrad as long as the two mirror centers of curvature

remain exactly on the cavity axis.

In our numerical experiments we have observed a significant dependence of the

misalignment tolerances on the actual mirror shapes. For example, we have also found

mirror shapes that are less sensitive to alignment than near-concentric cavities of the

same cooperativity. We conclude that, while in general the alignment sensitivity is of the

same order of magnitude as for concentric cavities, in future realistic cavity optimizations

using our method this should be taken into account in the optimization routine.

5. Application to quantum state transfer

5.1. Coupling to a fiber mode

The same evolutionary algorithm used above for the enhancement of cavity cooperativity

can be applied for the optimization of any parameter. As an example relevant for

quantum information processing, we will investigate the state transfer of an ion in Λ-

configuration to a single photon in an optical fiber.

The ion is trapped inside a fiber-tip cavity [23–25]. High cooperativity is required

to transfer the ion state to a cavity photon, but good mode matching between the cavity

mode through the mirror into the optical fiber mode is also necessary to optimize the

outcoupling from the cavity, see Fig. 7(a). Thus, the spot size as well as the curvature of

the wave front of the cavity mode at the mirror should match those of the optical fiber.

To determine the mode overlap we calculate the mode matching integral η between the

fundamental mode Ψ(r) of the cavity and the output field J(r) of a single-mode fiber,

η =
|
∫

Ψ(r)J∗(r) rdr|2∫
|Ψ(r)|2 rdr

∫
|J(r)|2 rdr

(12)

where the integration over the mirror surface is changed to an integration along the

line at z = L/2 from 0 to the edge of the fiber in the paraxial approximation. Note
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that for spherical cavities η can approach 1 with the help of mode matching optics [24],

but to maximize coupling from the ion to the cavity and from the cavity to the fiber

simultaneously we are interested in optimizing a combination of cooperativty C and

overlap η, which can be done by the same evolutionary algorithm presented in Sec. 3.

Below we demonstrate this explicitly for a Λ-scheme with a calcium ion in a fiber cavity.

5.2. Λ-scheme

We consider a three level Ca+ ion [26] in a Λ-configuration as shown in Fig. 7(b).

This configuration is promising for high-fidelity quantum computing and quantum

communication [27–30]. The system consists of two ground levels |1〉 , |3〉 and an

excited level |2〉. Raman transitions are induced by a coherent pump on the transition

|1〉−|2〉 and the cavity mode which couples to the transition |3〉−|2〉. The Hamiltonian

describing the coherent system dynamics is given by

H = ∆ |2〉 〈2| −∆ |3〉 〈3|+ ig(a+σ3 − aσ+
3 ) + iΩ(σ1 − σ+

1 ) (13)

where σ3 = |2〉 〈3| , σ1 = |2〉 〈1| are the transitions operators, a is the cavity photon

operator, ∆, g and Ω are detuning, strong coupling rate and coherent pumping,

respectively. Incoherent decays are given by the dissipation operators

ν = {
√

Γ1σ1,
√

Γ2σ3,
√
κa} (14)

where Γ1, Γ2 and κ are spontaneous decay rates of |2〉 to |1〉, |3〉 and cavity linewidth,

respectively. We thus solve the master equation for the density matrix ρ,

dρ

dt
= − i

h̄
[H, ρ] +

∑
ν

L(ρ, ν) (15)

where L is the Lindblad superoperator given by

L(ρ, ν) = νρν+ − 1

2
(ρν+ν + ν+νρ). (16)

For this Λ-system the expression for the cavity cooperativity needs to be corrected to

C =
Γ2

Γ1

3λ2c

4π

Ψ(rm)2

κVΨ

(17)

since we cannot eliminate Γ in Eq. (7) because of the two different decay channels of

the excited state |2〉. The branching ratio for Ca+ is Γ2/Γ1 ≈ 0.1, thus reducing the

cooperativity by a factor 10,

C

C0

=
1

Dclip

Dabs
+ 1

Γ2

Γ1

Ψ(rm)2. (18)

The efficiency of converting the ion ground state into a fiber photon is given by a

combination of photon emission probability into the cavity mode Pe and mode coupling

efficiency η, Eq. (12). High efficiency is possible in the bad cavity regime, κ� g2/κ� Γ,

if the losses Dabs provide coupling of the cavity mode into the fiber mode and are larger

than the undesired clipping losses Dclip. In this case and for sufficiently large time, the
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Figure 8: (a) Optimized cavity mode field Ψ(r, z) and (b) various cavity mode cross

sections, similar to Fig. 4 but optimized for maximum overall ion to fiber state transfer

probability O. Parameters as in Fig. 4.

photon emission probability is Pe = C
1+C

and the total efficiency O of generating a fiber

photon becomes [31]:

O = Peη =
C

1 + C
η. (19)

We can therefore use the evolutionary algorithm of Sec. 3 to design cavity modes for an

optimized total efficiency O. We will then use the full quantum model, Eqs. (13)-(16),

to check and confirm our results.

As discussed above, this approach is most valuable when we are restricted by

geometry and are not able to move mirrors close to each other for a more concentric

configuration. We start our optimization again with a spherical reference cavity with

the following parameters: L = 500 µm, R = 400 µm, Dabs = 5 · 10−3, Γ1 = 22 · 106 s−1,

Γ2/Γ1 ≈ 0.1. This represents a fairly typical fibre-tip cavity coupled to a Ca+ ion in the

bad cavity limit. Assuming optimum fiber mode matching, η0 ≈ 1, the cooperativity

of this system is C0 ≈ 0.17 and thus the ion-to-fiber coupling efficiency, Eq. (19), is

O0 = 0.145.

Using our evolutionary algorithm we can find a modification of the mirror shape

to achieve cooperativity and total efficiency enhancement, see Fig. 8. Compared to the

optimization of cooperativity alone, Fig. 4, we see that we still get field enhancement

at the center of the cavity, but now the field also maintains a maximum at r = 0 on

the mirrors for coupling into the fiber. The cooperativity has increased by C/C0 ≈ 7.2

compared to the reference cavity. The mode matching between cavity and fiber has

reduced to η ≈ 0.386 because the cavity field is no longer Gaussian, but the overall

coupling efficiency has still increased to O ≈ 0.169 from O0 ≈ 0.145. Note that the

coupling efficiency of η ≈ 0.386 is a vast enhancement compared to η ≈ 0.01 for the
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Figure 9: Quantum dynamics of the transfer of the ion ground state to a fiber photon.

(a) and (c) are the ion energy level populations for the spherical reference cavity and for

the optimized cavity, respectively. (b) and (d) show photon emission and spontaneous

emission probabilities corresponding to (a) and (c), respectively. Parameters are

L = 500 µm, R = 400 µm, κ/Γ1 = 68.18, ∆/Γ1 = 1, g/Γ1 = 3.39 for (a,b) and

10.17 for (c,d). The pump field is Ω/Γ1 = 2.

cavity of Fig. 4 optimized for cooperativity alone.

The dynamics of the quantum state transfer from the ion to a fiber photon for the

reference cavity is shown in Fig. 9(a) and (b). The detuning ∆ and laser Rabi frequency

Ω are chosen to provide maximum efficiency for the fundamental Laguerre-Gaussian

cavity eigenmode. The ion level populations are shown in Fig. 9(a): from the starting

level |1〉 (orange line) we coherently excite the |1〉 → |2〉 transition, then via emission of

a cavity photon the excited state |2〉 (blue line) is coupled to the second ground state |3〉
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(green line). Fig. 9 (b) demonstrates the corresponding ion spontaneous emission (black

dashed line) and cavity decay (pink dashed line). We observe that the unwanted ion

decay probability is higher than the desired cavity decay because of a large population

in the excited state |2〉, Fig. 9(a), and that the overall time scale of the state transfer is

rather slow because of the relatively weak ion-cavity coupling g, thus resulting in a low

operation frequency of the scheme.

Figures 9(c) and (d) show the equivalent quantum dynamics for the cavity mode

that has been optimized with the evolutionary algorithm, Fig. 8. We note that while the

total efficiency only slightly increased from 0.145 to O ≈ 0.169, the quantum dynamics

has changed dramatically compared to Figs. 9(c) and (d): the population of the excited

state |2〉 is significantly suppressed by the faster coupling coefficient g, thus reducing

the amount of unwanted spontaneous ion decay; the final population of |3〉 becomes

almost 1 within the chosen time scale; and the whole dynamics occurs much faster,

thus enabling a much faster processing time if such a scheme is employed in a quantum

information processor.

Overall, we may therefore conclude that while our optimization of O has led to a

reduction of the cavity to fiber mode coupling, we still gain a slight increase in the overall

transfer efficiency, but even more importantly the achieved enhancement of ion-cavity

coupling g allows for a several times faster operation speed.

6. Final comments and conclusions

We briefly comment here on possible experimental realizations of the mirrors designed in

this paper. As we discussed in Sec. 3, the target mirrors are based on a spherical shape

with added periodic modulations as a function of the radial coordinate r. We assume

that these deviations are small enough to not create additional scattering losses but big

enough to make fabrication possible. The typical range of perturbations predicted by

our method are amplitudes of Ai = 0.1− 1 µm and periods of Pi = 1− 100 µm.

Such mirror machining can be achieved by many modern fabrication techniques.

For example, we may shape the mirrors by laser ablation [32–34] or focused ion

beam milling [5]. Pulses of a CO2 laser can be used for thermal evaporation of

surface material [23, 24] and laser radiation focused on the cleaved fiber ends can also

produce surface qualities with extremely low roughness. Alternatively, modern micro-

machining [35–37] can provide hundreds of nm precision which is sufficient for our range

of parameters. Sinusoidal patterns might also be achieved by laser ablation techniques

using interference of laser beams to generate the required patterns.

In conclusion, we have developed an approach based on evolutionary algorithm and

gradient descent methods that allows us to design optimized optical cavities for quantum

optics and quantum technology applications. We demonstrated designs that achieve

significant enhancement of the strong coupling rate and the cooperativity beyond the

limitations of spherical, near-concentric cavities. We further demonstrated the flexibility

of our numerical approach by designing a fiber-tip cavity for optimized quantum state
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transfer with a Λ-scheme in Ca+ ions from the ion ground state to an optical fiber

photon. This optimization not only led to enhancement of the transfer success rate, but

also increased the operation speed of the scheme several times. We envisage that our

evolutionary algorithm is applicable in many optimization problems that exhibit a large

number of local minima.
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