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Abstract
Using an evolutionary algorithm combined with a gradient descent (GD) method we design
optical cavities with significantly enhanced strong coupling rates between cavity photons and a
single quantum emitter. Our approach allows us to find specially designed non-spherical mirrors
which lead to high-finesse cavity eigenmodes with large field enhancement at the center of the
cavity. The method is based on adding consecutive perturbations to an initial spherical mirror
shape using the GD method for optimization. We present mirror profiles which demonstrate
higher cavity cooperativity than any spherical cavity of the same size. Finally, we demonstrate
numerically how such a cavity enhances the operation frequency and purity of coupling a Ca+ ion
to an optical fiber photon.

1. Introduction

Strong coupling of a quantum emitter, e.g., an ion, atom, NV-center, or quantum dot, to an optical mode of
a resonator and long cavity photon lifetime are essential in numerous applications of quantum optics for
fundamental research and for practical quantum technology. Promising systems to fulfill these requirements
are fiber-optic microcavities [1–4], ion beam etched dielectric resonators [5], or micro-assembled
structures [6].

Strong coupling between emitter and cavity photon can be realized by a small cavity volume and
therefore by a very short optical cavity. However, for many realistic quantum setups the cavity mirrors
cannot be placed too close to each other due to technical difficulties: for trapped ion systems, short cavities
lead to electrical charging of the dielectric mirrors and to distortion of the radio frequency ion trapping
fields [7]; for neutral atoms, short cavity lengths are limited by the requirement for delivery of atoms into
the cavity and for optical side access [8, 9] for cooling and trapping. Thus, optical cavities utilized in
quantum optical device applications need to combine a strong coupling rate with low losses while keeping
the mirrors sufficiently apart.

One way to achieve strong coupling is to operate the cavity in a (near-) concentric configuration [10].
This minimizes the optical mode field waist at the cavity center, thus maximizing emitter–photon coupling,
but at the cost of increased clipping losses because of a large mode field diameter on the mirrors which
limits the maximum achievable cavity performance as given by the cavity cooperativity.

Another method to increase the field amplitude in the center of the cavity is the creation of some
interference pattern by modulating the mirror profile [11]. We assume that we are not limited by spherical
cavities, i.e., we can create an arbitrary mirror shape using, for example, focused ion beam milling or laser
ablation as discussed in more detail in section 6. Here, we numerically explore modulated spherical profiles
of the cavity mirrors which give rise to highly localized cavity modes while at the same time keeping losses
low. With this approach we find a manifold of mirror profiles which can provide a lower loss rate than a
concentric cavity, thus achieving higher cooperativity. In contrast to our earlier work [11], here we do not
require a priori knowledge of the exact mode shape we want to generate (in particular, specific
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superpositions of many Laguerre–Gaussian modes), but the numerical algorithm directly uses the mirror
shape for optimization without restrictions on the mode fields. As we will see, this approach can achieve
comparable cooperativity for much simpler mirror shapes.

The goal of our work here is to present a procedure based on an evolutionary algorithm which allows us
to design mirror shapes for optical cavities with higher coupling and cooperativity compared to spherical
cavity mirrors of the same size. We then apply the method to optimize a fiber-tip cavity by also taking into
account out-coupling of a cavity photon into an optical fiber. This yields a (slightly) larger overall transfer
efficiency of an ion excitation to a fiber photon, but significantly increases the operating repetition
frequency of such a device.

Evolutionary or genetic algorithms are used for various applications mostly for inverse design problems
[12, 13] and have also been applied in the field of modern optics [14–16]. In forward design of optical
cavities, for given geometry and boundary conditions the corresponding cavity optical field can be
calculated by highly developed and well known numerical, semi-analytical or analytical methods. However,
it is not often possible to find parameters to create a target optical field distribution using forward design
methods. Here we demonstrate a method which is based on consecutive ‘mutations’ of an initial spherical
mirror shape while calculating the mode spectrum and conducting gradient descent (GD) to optimize the
mutations. The method allows us to find mirror profiles which provide significant enhancement of a target
parameter, such as the cavity cooperativity.

This paper is organized as follows. First, in section 2 we describe the problem under investigation, our
motivation, theoretical model and optimization parameters. In section 3 we describe the algorithm and the
role of the GD method in it. In section 4 we present the results of our simulations, in particular the cavity
mode topology, strong coupling rate, and cooperativity enhancement factor, and we investigate the
alignment sensitivity of our cavity designs. In section 5 we apply our method for coupling a Ca+ ion in a
Λ-scheme via a fiber-tip cavity to an optical fiber photon and demonstrate the significantly faster time
evolution of the improved system. Finally, we briefly discuss fabrication opportunities to realize such
mirrors experimentally and conclude in section 6.

2. Problem statement

The coherent coupling between a quantum emitter, such as a quantum dot, ion or cold atom, located at a
coordinate r in an cavity with a dimensionless optical field mode ψ(r) is characterized by the strong
coupling rate [17]

g0(r) =

√
3λ2cΓ

4πVψ
ψ(r) = g0(rm)ψ(r), ψ(r) =

E(r)

|E(rm)| , (1)

where E(r), Γ, λ, rm are electric field of the cavity mode, the spontaneous decay rate of the emitter

Γ = ω3μ2

3πε0�c3 (where ω is the transition angular frequency and μ is the electric dipole moment), its transition
wavelength, and the maximum electric field intensity point, respectively. Here we assume that the emitter
dipole moment and the electric field polarization vectors are aligned. The cavity mode volume Vψ is given
by

Vψ =

∫
Vcavity

|ψ(r)|2 dV. (2)

If the emitter–cavity strong coupling rate g0 is larger than the strength of any incoherent processes, i.e.,
than the decay rate Γ and the loss rate κ of the cavity field, the cavity operates in the strong coupling
regime. In this case the cooperativity parameter C0 at the field maximum,

C0 =
g2

0 (rm)

κΓ
=

3λ2c

4πκVψ
, (3)

is larger than one.
We consider two contributions to the cavity loss rate κ. The first is transmission of light through the

cavity mirrors or absorption within them with a corresponding loss per round trip of typically
Dabs = 10−5 ↔ 10−3. The second contribution is clipping losses Dclip coming from light of the cavity mode
which misses the cavity mirrors due to their finite diameter. The cavity decay rate κ and the corresponding
cavity finesse F are given by

κ =
c

2L
(Dclip + Dabs) =

cπ

L

1

F
. (4)
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Figure 1. (a) Clipping losses Dclip and focal waist w0 versus mirror radius of curvature for a spherical cavity near the concentric
limit. Cavity parameters are L = 500 μm and mirror diameter 200 μm. (b) Dclip and cooperativity C0 corresponding to
(a) plotted versus the coupling rate g0 for a Ca+ ion with ΓCa+ = 2π × 22 MHz, Dabs = 10−5.

2.1. Concentric cavity limit
As mentioned above, one way to enhance the cavity field at the center is to operate a spherical mirror cavity
near the concentric limit. In this case, the mode volume of the fundamental Laguerre–Gaussian mode is
Vψ = π

4w
2
0L, where w0 is the waist at the focus and L the cavity length, and the cooperativity C0,

equation (3), can be rewritten as [10]

C0 =
3λ2c

π2κw2
0L

=
6λF√

2RL − L2
, (5)

where R is the radius of curvature of the mirrors. C0 thus increases significantly for R → L/2, the concentric
limit. (Note that equation (5) is valid in the paraxial approximation and breaks down when the waist
approaches the wavelength.) The strong coupling rate scales as g0 ∼ 1/w0. However, as the waist is reduced,
the spot size on the mirror (in the far field, L/2 � Rayleigh length) scales with 1/w0 and thus linearly with
g0. Hence, the clipping losses increase dramatically for stronger coupling.

Figure 1 shows a numerical example of the scaling of the cavity parameters in the concentric limit.
Figure 1(a) plots the loss per round trip (blue curve) and Gaussian beam waist (red curve) as a function of
radius of curvature for the fundamental cavity mode. As R → L/2 = 250 μm, the waist decreases in the
center but simultaneously the mode on the mirror increases and thus clipping losses increase due to the
finite mirror diameter. In figure 1(b) we re-plot the clipping loss versus the coupling rate g0 (proportional
to 1/w0 from figure 1(a)) which shows the increasing loss with increasing g0. The black curve shows the
corresponding cooperativity C0: it first increases as g0 increases but then rapidly falls when the spot size on
the mirror exceeds the mirror diameter, thus exhibiting a clear maximum of cooperativity that can be
achieved with spherical mirror cavities.

2.2. Strong coupling rate and cooperativity enhancement by optimized cavity designs
The goal of this paper is to overcome the limits found in figure 1 for the cooperativity by allowing for
non-spherical mirrors and using an evolutionary algorithm to optimize the shape of the mirrors. We
thereby aim to increase the coupling rate g0 by local field enhancement, but without the excessive clipping
losses found in the concentric limit.

A schematic of this approach is shown in figure 2. We start by choosing an appropriate spherical mirror
cavity with given mirror radius of curvature and cavity length, which we use as a reference cavity. We then
alter the mirror profiles, as depicted in figure 2, and calculate the corresponding mode field Ψ which we
normalize to the maximum of the reference field ψ. Thus, Ψ is the field enhancement relative to the
reference cavity and we have the corresponding strong coupling rate

g(r) =

√
3λ2cΓ

4πVψ
Ψ(r) = g0(rm)Ψ(r). (6)

Likewise, the cooperativity C in the center becomes

C =
g2

κΨΓ
=

3λ2c

4π

Ψ(rm)2

κΨVψ
= C0

κ

κΨ
Ψ(rm)2, (7)
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Figure 2. Schematic of our cavity optimization scheme. (a) and (b) show the mirror modification process by adding harmonic
modulations to a spherical shape. (c) and (d) indicate the cavity mode divergence by the red curves and the local field
enhancement resulting from the created interference pattern by the blue Gaussian-like curves.

where κΨ is the cavity loss rate of the modified mode Ψ. Therefore, the cooperativity is increased by the
field enhancement and/or if the cavity loss is reduced. Finally, if we assume that the reference cavity has
negligible clipping losses and that mirror transmission and absorption Dabs is the same for the reference and
modified cavities, we can express the enhancement of cooperativity as

C

C0
=

1
Dclip
Dabs

+ 1
Ψ(rm)2, (8)

where Dclip here refers to the clipping loss of the modified cavity.

3. Evolutionary algorithm

We consider a cylindrically symmetric cavity where the mirror profile Z(r) consists of a sphere with radius
of curvature R and some harmonic perturbations with amplitude Ai and period Pi. We work in the paraxial
limit and thus can replace the spherical profile by a parabola, leading to a modified profile described by

Z(r) =
r2

2R
+
∑

i

Ai cos(r/Pi). (9)

The purpose of this is to create some interference pattern and to enhance the mode field in the center Ψ(rm)
but at the same time we want to avoid creating large clipping losses on the mirror Dclip. Figure 2 gives a
schematic of the scheme.

For the numerical evaluation and optimization of our scheme we require a Solver function that takes the
mirror geometry as an argument and returns the cavity modes and their clipping losses, from which we
select the mode with the highest cooperativity,

Z(r) ⇒ Solver(Z) ⇒ Ψ(rm, z), Dclip ⇒ C. (10)

The Solver could be any numerical or analytic method. In this paper we implemented the solver using a
mode mixing method [11, 18, 19] in the paraxial approximation [20].

A schematic of our algorithm is presented in figure 3. We start with one mutation, i.e., one harmonic
modulation of the mirror, represented by a couple of parameters θ = (A, P). Several instances of this
geometry are then created and every instance is modified by adding a small, individual perturbation
ε = (δA, δP) which is drawn randomly from a two-dimensional normal distribution N(0,σA,σP) with zero
mean and standard deviations σA, σP. For every instance, the Solver is then applied to find the cooperativity
C for the geometry (θ + ε). The results are then combined for a GD method where we compute the
derivative by a probability approach used in variations analysis [21, 22],

∇C(θ) ≈ 1

σ2
Aσ

2
P

Eε∼N(0,σA,σP)[εC(θ + ε)], (11)

4
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Figure 3. Schematic of the evolutionary algorithm and the GD method with random evolution implementation.

where E is the expectation value over the normal distribution. Once the GD is converged we fix this
mutation, i.e., we fix the harmonic modulation (A1, P1), and add a second perturbation (A2, P2) which is
then again optimized by GD as before. This continues until satisfactory performance of the cavity is found.

The random evolution GD is graphically shown in the insert of figure 3. The algorithm introduces some
stochasticity to the results but adds significant advantages, such as the possibility to move through flat areas
(when the classical gradient is zero) and to go through walls and local minima. Note that this approach
includes the main features of more standard genetic algorithms: ‘mutation’ is present through the
generation of many instances distributed around the mean value with a normal distribution; ‘reproduction’
is performed by the GD step based on the average of the entire pool of instances, thus the periodic
modulations of the next generation of instances depend on modulations of all instances in the parent
generation; this step therefore also includes a type of ‘blend crossover’ but it is not based on two individual
instances of the parent generation but on the full population. The algorithm is also easily implemented for
parallel computing with an effectiveness that grows almost linearly with computational resources [21, 22].
Our home-mode computer program was written in Python using the libraries numpy for computation and
mpi4py for distribution over a multicore processor.

4. Results and discussion

We present an example of our results in figure 4. Here a mirror surface with five harmonic mutations has
been found by optimization with the evolutionary algorithm described in section 3. The spherical reference
cavity has a length of L = 500 μm, mirror radius of curvature R = 400 μm, and the operating wavelength is
set to λ = 0.866 μm. The algorithm made mutations of the spherical shape with harmonic amplitudes and
periods in the ranges Ai = 0.1–0.5 μm and Pi = 10–30 μm, respectively.

The optimized eigenmode Ψ with the highest cooperativity mode is shown in figure 4(a) and the cross
section in the center by the orange curve in figure 4(b). For comparison, the fundamental
Laguerre–Gaussian mode of the spherical reference cavity is depicted by the blue dashed line. The figure
clearly shows the field enhancement achieved in the center. At the same time, for the optimized mode the
clipping loss has not increased significantly and thus the cooperativity, equation (8), has been increased by a
factor of 8.63. The cavity with the optimized mirror shapes also supports other eigenmodes, some of which
are shown in figure 4(b); these modes have larger clipping losses and thus lower finesse, see the legend of
the figure. Note that there is no unique way of defining the order of eigenmodes in such a complex mirror
geometry and thus the eigenmode index n is arbitrarily determined by the Solver.

We can clearly see that the designed superposition of harmonic perturbations on the spherical mirror
shapes provides a cavity eigenmode with significant strong coupling enhancement but moderate low losses.
This is a valuable enhancement for quantum optics and quantum engineering applications; a specific
example will be discussed in more detail in section 5.

5
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Figure 4. (a) High cooperativity mode field Ψ(r, z) for mirrors optimized by the evolutionary algorithm. (b) Cross sections of
several eigenmodes of the same cavity, with corresponding cavity finesse F given in the legend. The dashed curve corresponds to
the fundamental mode of spherical reference cavity with parameters L = 500 μm, R = 400 μm.

Figure 5. Comparison of cooperativities C achieved by our evolutionary algorithm (red squares) with those of spherical cavities
(blue curve). Parameters as in figure 1.

We want to comment briefly on the convergence properties of our chosen algorithm. In standard GD
methods depending on the choice of initial parameters the algorithm often converges to a local minimum
instead of an overall, global optimum. Here we eliminate this issue by two approaches. First, we produce a
superposition of mutations. Thus, if in one mutation the algorithm gets stuck in a local minimum, this is
mitigated by another starting point in the next mutation. Second, we compute the gradient using the
probabilistic derivative of equation (11), which allows the algorithm to move through flat areas and through
walls, see insert in figure 3 and references [21, 22].

In figure 4 we demonstrated an enhancement factor of 8.63 for the cooperativity relative to a spherical
reference cavity deep in the stable cavity regime, i.e., far away from the concentric limit R = L/2. This
optimization was easily achieved on an 8-core processor, where the algorithm made five mutations and
fewer than 20 iterations in every GD procedure. However, the efficiency of the algorithm and the achievable
cooperativity enhancement depend on how close the reference cavity is to the concentric geometry. In
figure 5 we therefore show more numerical results of cooperativity enhancement achieved with our method
by modulated spherical mirrors (red squares) compared to spherical cavities approaching the concentric
limit (blue curve). We see that our approach provides significantly higher cooperativity over a very wide
range of parameters. In fact, we notice that the cooperativities achieved with modulated mirrors are higher
than can be achieved with spherical mirrors for any radius of curvature. Thus we can significantly exceed
the limit for spherical cavities of C � 1.15 × 104 for the parameters of figure 5 set by the large clipping
losses close to the concentric regime, as discussed in figure 1.

Near-concentric cavities are known to be sensitive to alignment errors, so it is interesting to investigate
how accurately the modulated-mirror cavities must be aligned. We therefore performed a series of

6
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Figure 6. Alignment sensitivity of our cavity designs. (a) Deviation from spherical profile for three optimized mirror designs
with 1, 2, 3 periodic terms, respectively. (b) Corresponding cooperativity C versus transverse misalignment of cavity, and
(c) cooperativity versus angular misalignment of cavity with Dabs = 10−5, L = 500 μm, R = 400 μm. In (b) we also show C
versus misalignment for a near-concentric spherical cavity (R = 251.944 μm).

numerical simulations to calculate the modes of cavities that are misaligned by a lateral shift Δx or by a tilt
angle Δα between the two mirrors, with the results shown in figure 6.

We expect this alignment sensitivity to depend on the complexity of the mirror deformation and on the
achieved cooperativity enhancement. We therefore select three mirror shapes, with superpositions of one,
two, and three periodic modulations, respectively. Each mirror shape was obtained by numerical
optimization as discussed above. The deviations of the optimized mirror shapes from spherical, i.e. the
summation terms in equation (9), are shown in figure 6(a). For perfect cavity alignment the three mirrors
yield a cooperativity enhancement of C/C0 = 4.87, 7.10, 8.78, respectively. Note that using the results of
reference [11] much more complicated mirror shapes requiring the superposition of 5, 7, and 9 Laguerre
polynomials would be required to achieve the same cooperativity enhancement.

The dependence of C/C0 versus linear lateral displacement of the mirrors is shown in figure 6(b). As
expected, C/C0 decreases as Δx increases and reaches half the original cooperativity at displacements of
0.75, 0.26, and 0.26 μm. The alignment sensitivity of a near-concentric spherical cavity with the same
cooperativity of C/C0 as the three-term mirror shape is 0.36 μm (dashed curve). Here C first increases as
the cavity length slightly increases with misalignment before dropping of quickly. The sensitivity of our
cavity designs to a tilt angle between the mirrors is shown in figure 6(c). Here the point of half cooperativity
is reached at angles of Δα = 8.30, 5.22, and 3.70 mrad, respectively. A corresponding near-concentric
cavity is much more stable with respect to mirror tilt with a half width of Δα = 272 mrad as long as the
two mirror centers of curvature remain exactly on the cavity axis.

In our numerical experiments we have observed a significant dependence of the misalignment tolerances
on the actual mirror shapes. For example, we have also found mirror shapes that are less sensitive to
alignment than near-concentric cavities of the same cooperativity. We conclude that, while in general the
alignment sensitivity is of the same order of magnitude as for concentric cavities, in future realistic cavity
optimizations using our method this should be taken into account in the optimization routine.

7



New J. Phys. 24 (2022) 073028 D Karpov and P Horak

Figure 7. (a) Coupling of a mode from a fiber tip optical cavity to an optical fiber mode. J (pink curve) represents the fiber
mode, Ψ (red) the cavity mode, κ the cavity loss rate, L and R the cavity length and mirror radius of curvature, respectively.
(b) Λ-level scheme of the ion under investigation.

5. Application to quantum state transfer

5.1. Coupling to a fiber mode
The same evolutionary algorithm used above for the enhancement of cavity cooperativity can be applied for
the optimization of any parameter. As an example relevant for quantum information processing, we will
investigate the state transfer of an ion in Λ-configuration to a single photon in an optical fiber.

The ion is trapped inside a fiber-tip cavity [23–25]. High cooperativity is required to transfer the ion
state to a cavity photon, but good mode matching between the cavity mode through the mirror into the
optical fiber mode is also necessary to optimize the outcoupling from the cavity, see figure 7(a). Thus, the
spot size as well as the curvature of the wave front of the cavity mode at the mirror should match those of
the optical fiber. To determine the mode overlap we calculate the mode matching integral η between the
fundamental mode Ψ(r) of the cavity and the output field J(r) of a single-mode fiber,

η =
|
∫
Ψ(r)J∗(r)rdr|2∫

|Ψ(r)|2r dr
∫
|J(r)|2r dr

, (12)

where the integration over the mirror surface is changed to an integration along the line at z = L/2 from 0
to the edge of the fiber in the paraxial approximation. Note that for spherical cavities η can approach 1 with
the help of mode matching optics [24], but to maximize coupling from the ion to the cavity and from the
cavity to the fiber simultaneously we are interested in optimizing a combination of cooperativity C and
overlap η, which can be done by the same evolutionary algorithm presented in section 3. Below we
demonstrate this explicitly for a Λ-scheme with a calcium ion in a fiber cavity.

5.2. Λ-scheme
We consider a three level Ca+ ion [26] in a Λ-configuration as shown in figure 7(b). This configuration is
promising for high-fidelity quantum computing and quantum communication [27–30]. The system
consists of two ground levels |1〉, |3〉 and an excited level |2〉. Raman transitions are induced by a coherent
pump on the transition |1〉–|2〉 and the cavity mode which couples to the transition |3〉–|2〉. The
Hamiltonian describing the coherent system dynamics is given by

H = Δ|2〉〈2| −Δ|3〉〈3|+ ig(a+σ3 − aσ+
3 ) + iΩ(σ1 − σ+

1 ), (13)

where σ3 = |2〉〈3|,σ1 = |2〉〈1| are the transitions operators, a is the cavity photon operator, Δ, g and Ω are
detuning, strong coupling rate and coherent pumping, respectively. Incoherent decays are given by the
dissipation operators

ν = {
√
Γ1σ1,

√
Γ2σ3,

√
κa}, (14)

where Γ1, Γ2 and κ are spontaneous decay rates of |2〉 to |1〉, |3〉 and cavity linewidth, respectively. We thus
solve the master equation for the density matrix ρ,

dρ

dt
= − i

�
[H, ρ] +

∑
ν

L(ρ, ν), (15)

where L is the Lindblad superoperator given by

L(ρ, ν) = νρν+ − 1

2

(
ρν+ν + ν+νρ

)
. (16)

8
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Figure 8. (a) Optimized cavity mode field Ψ(r, z) and (b) various cavity mode cross sections, similar to figure 4 but optimized
for maximum overall ion to fiber state transfer probability O. Parameters as in figure 4.

For this Λ-system the expression for the cavity cooperativity needs to be corrected to

C =
Γ2

Γ1

3λ2c

4π

Ψ(rm)2

κVΨ
(17)

since we cannot eliminate Γ in equation (7) because of the two different decay channels of the excited state
|2〉. The branching ratio for Ca+ is Γ2/Γ1 ≈ 0.1, thus reducing the cooperativity by a factor 10,

C

C0
=

1
Dclip

Dabs
+ 1

Γ2

Γ1
Ψ(rm)2. (18)

The efficiency of converting the ion ground state into a fiber photon is given by a combination of
photon emission probability into the cavity mode Pe and mode coupling efficiency η, equation (12). High
efficiency is possible in the bad cavity regime, κ � g2/κ � Γ, if the losses Dabs provide coupling of the
cavity mode into the fiber mode and are larger than the undesired clipping losses Dclip. In this case and for
sufficiently large time, the photon emission probability is Pe =

C
1+C and the total efficiency O of generating

a fiber photon becomes [31]:

O = Peη =
C

1 + C
η. (19)

We can therefore use the evolutionary algorithm of section 3 to design cavity modes for an optimized total
efficiency O. We will then use the full quantum model, equations (13)–(16), to check and confirm our
results.

As discussed above, this approach is most valuable when we are restricted by geometry and are not able
to move mirrors close to each other for a more concentric configuration. We start our optimization again
with a spherical reference cavity with the following parameters: L = 500 μm, R = 400 μm, Dabs = 5 × 10−3,
Γ1 = 22 × 106 s−1, Γ2/Γ1 ≈ 0.1. This represents a fairly typical fiber-tip cavity coupled to a Ca+ ion in the
bad cavity limit. Assuming optimum fiber mode matching, η0 ≈ 1, the cooperativity of this system is
C0 ≈ 0.17 and thus the ion-to-fiber coupling efficiency, equation (19), is O0 = 0.145.

Using our evolutionary algorithm we can find a modification of the mirror shape to achieve
cooperativity and total efficiency enhancement, see figure 8. Compared to the optimization of cooperativity
alone, figure 4, we see that we still get field enhancement at the center of the cavity, but now the field also
maintains a maximum at r = 0 on the mirrors for coupling into the fiber. The cooperativity has increased
by C/C0 ≈ 7.2 compared to the reference cavity. The mode matching between cavity and fiber has reduced
to η ≈ 0.386 because the cavity field is no longer Gaussian, but the overall coupling efficiency has still
increased to O ≈ 0.169 from O0 ≈ 0.145. Note that the coupling efficiency of η ≈ 0.386 is a vast
enhancement compared to η ≈ 0.01 for the cavity of figure 4 optimized for cooperativity alone.

The dynamics of the quantum state transfer from the ion to a fiber photon for the reference cavity is
shown in figures 9(a) and (b). The detuning Δ and laser Rabi frequency Ω are chosen to provide maximum
efficiency for the fundamental Laguerre–Gaussian cavity eigenmode. The ion level populations are shown
in figure 9(a): from the starting level |1〉 (orange line) we coherently excite the |1〉 → |2〉 transition, then via

9
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Figure 9. Quantum dynamics of the transfer of the ion ground state to a fiber photon. (a) and (c) are the ion energy level
populations for the spherical reference cavity and for the optimized cavity, respectively. (b) and (d) show photon emission and
spontaneous emission probabilities corresponding to (a) and (c), respectively. Parameters are L = 500 μm, R = 400 μm,
κ/Γ1 = 68.18, Δ/Γ1 = 1, g/Γ1 = 3.39 for (a) and (b) and 10.17 for (c) and (d). The pump field is Ω/Γ1 = 2.

emission of a cavity photon the excited state |2〉 (blue line) is coupled to the second ground state |3〉 (green
line). Figure 9(b) demonstrates the corresponding ion spontaneous emission (black dashed line) and cavity
decay (pink dashed line). We observe that the unwanted ion decay probability is higher than the desired
cavity decay because of a large population in the excited state |2〉, figure 9(a), and that the overall time scale
of the state transfer is rather slow because of the relatively weak ion–cavity coupling g, thus resulting in a
low operation frequency of the scheme.

Figures 9(c) and (d) show the equivalent quantum dynamics for the cavity mode that has been
optimized with the evolutionary algorithm, figure 8. We note that while the total efficiency only slightly
increased from 0.145 to O ≈ 0.169, the quantum dynamics has changed dramatically compared to
figures 9(c) and (d): the population of the excited state |2〉 is significantly suppressed by the faster coupling
coefficient g, thus reducing the amount of unwanted spontaneous ion decay; the final population of |3〉
becomes almost 1 within the chosen time scale; and the whole dynamics occurs much faster, thus enabling a
much faster processing time if such a scheme is employed in a quantum information processor.

Overall, we may therefore conclude that while our optimization of O has led to a reduction of the cavity
to fiber mode coupling, we still gain a slight increase in the overall transfer efficiency, but even more
importantly the achieved enhancement of ion–cavity coupling g allows for a several times faster operation
speed.

6. Final comments and conclusions

We briefly comment here on possible experimental realizations of the mirrors designed in this paper. As we
discussed in section 3, the target mirrors are based on a spherical shape with added periodic modulations as
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a function of the radial coordinate r. We assume that these deviations are small enough to not create
additional scattering losses but big enough to make fabrication possible. The typical range of perturbations
predicted by our method are amplitudes of Ai = 0.1–1 μm and periods of Pi = 1–100 μm.

Such mirror machining can be achieved by many modern fabrication techniques. For example, we may
shape the mirrors by laser ablation [32–34] or focused ion beam milling [5]. Pulses of a CO2 laser can be
used for thermal evaporation of surface material [23, 24] and laser radiation focused on the cleaved fiber
ends can also produce surface qualities with extremely low roughness. Alternatively, modern
micro-machining [35–37] can provide hundreds of nm precision which is sufficient for our range of
parameters. Sinusoidal patterns might also be achieved by laser ablation techniques using interference of
laser beams to generate the required patterns.

In conclusion, we have developed an approach based on evolutionary algorithm and GD methods that
allows us to design optimized optical cavities for quantum optics and quantum technology applications. We
demonstrated designs that achieve significant enhancement of the strong coupling rate and the
cooperativity beyond the limitations of spherical, near-concentric cavities. We further demonstrated the
flexibility of our numerical approach by designing a fiber-tip cavity for optimized quantum state transfer
with a Λ-scheme in Ca+ ions from the ion ground state to an optical fiber photon. This optimization not
only led to enhancement of the transfer success rate, but also increased the operation speed of the scheme
several times. We envisage that our evolutionary algorithm is applicable in many optimization problems
that exhibit a large number of local minima.
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