
Formulating bulk viscosity for neutron star simulations

T. Celora1, I. Hawke1, P.C. Hammond1, N. Andersson1, G. L. Comer2

1 Mathematical Sciences and STAG Research Centre,

University of Southampton, Southampton SO17 1BJ, United Kingdom

2 Department of Physics, Saint Louis University, St Louis, MO 63156-0907, USA

Abstract

In order to extract the precise physical information encoded in the gravitational and electro-

magnetic signals from powerful neutron-star merger events, we need to include as much of the

relevant physics as possible in our numerical simulations. This presents a severe challenge, given

that many of the involved parameters are poorly constrained. In this paper we focus on the role

of nuclear reactions. Combining a theoretical discussion with an analysis connecting to state-of-

the-art simulations, we outline multiple arguments that lead to a reactive system being described

in terms of a bulk viscosity. The results demonstrate that in order to properly account for nuc-

lear reactions, future simulations must be able to handle different regimes where rather different

assumptions/approximations are appropriate. We also touch upon the link to models based on the

large-eddy-strategy required to capture turbulence.
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I. INTRODUCTION

Neutron star mergers involve violent dynamics of high-density matter in the live spacetime

of general relativity. These events provide an opportunity to explore many extremes of

physics, from the state of matter beyond the nuclear saturation density (the elusive equation

of state [1–4]) to the formation of a long-lived merger remnant (likely a black hole [5–

7]). Matter outflows and the associated rapid nuclear reactions determine the (hopefully)

observable kilonova signature [8] and the twisting of the stars’ magnetic field may help

collimate an emerging jet and hence explain observed short gamma-ray bursts [9, 10]. The

spectacular GW170817 event [11, 12] demonstrated the range of exciting features [13–17].

With more sensitive instruments coming on-stream in the future (like the Einstein Telescope

[18] and the Cosmic Explorer [19, 20] for gravitational waves) higher precision observations

are anticipated and one may hope to extract more detailed information about the involved

physics. This is obviously an exciting prospect, but it prompts us to consider two important

issues. First, from the observational point of view, can we ascertain that the physics we

hope to explore is cleanly associated with a particular observational feature? Second, from

the modelling perspective, are we sure that these features are faithfully represented by our

theoretical models? Specifically, how do we know that we “get the physics right” in our

numerical simulations? Given the complexity of the problem—involving the dynamics and

thermodynamics of out-of-equilibrium matter at extreme densities and temperatures—this

is a very challenging question.

In this paper we take modest steps towards a partial answer of the modelling question.

We consider the role of bulk viscosity associated with nuclear reactions—which may, or may

not, leave an observable imprint on (say) the gravitational-wave signal [21]—and ask how

this mechanism can be implemented in nonlinear simulations. In particular, we highlight

the formal aspects of the problem and establish how the inevitable “limitations” of a nu-

merical simulation (in terms of resolution) enter the discussion. The aim is to establish to

what extent simulations based on an effective bulk viscosity are viable and (perhaps more

importantly) when they are not. This understanding will be crucial for future numerical

implementations.
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II. STATING THE PROBLEM

The underlying physical model of a neutron star merger is expected to be a system of mul-

tiple interacting “fluids” of different charged particle species, coupled to an electromagnetic

field and radiation through, for example, neutrinos, all evolving on a dynamical relativistic

spacetime [22]. The complexity of this model makes it impractical for use in either theor-

etical calculations or numerical simulations. Instead, simplifications must be made, with

heuristic arguments needed to justify each assumption that is introduced.

To illustrate the key argument with a simple toy model, consider the problem of heat

propagation. When the underlying model is required to be causal, the starting point is often

taken to be the Cattaneo equation (here given in 1 + 1 dimensions, see [23])

∂T

∂t
+
∂q

∂x
= 0, (1a)

∂q

∂t
= −τ−1

[
κ
∂T

∂x
+ q

]
. (1b)

In the “equilibrium limit”, when the relaxation time τ → 0, we recover Fourier’s law

q = −κ∂T
∂x

(2)

relating the heat flux q to the temperature T , from eq. (1b). This then reduces eq. (1a) to

the familiar heat equation. While the underlying model is hyperbolic, the fast relaxation

limit is parabolic and hence not causal.

Specifically, working out the characteristic velocities in the problem (through the stand-

ard dispersion relation) one finds that the Cattaneo equation eq. (1) is causal with finite

propagation speeds bounded by ±(κ/τ)1/2. At the same time, there is a critical wavenumber

& (κτ)−1/2 below which the behaviour is purely parabolic and the solution is diffused away.

An illustration of the transition from second sound to diffusion can be found in Figure 16

of [22].

From a theory point of view it would be natural to argue that we should base our models

on the Cattaneo formulation, but from a numerical perspective this may be problematic.

We would need to resolve the (presumably fast) relaxation towards equilibrium and this may

not be possible/practical. In this sense, the parabolic prescription may be preferable.

A heuristic argument for using the parabolic heat equation within a relativistic model—

for which causality would be a prerequisite—would be as follows. We assume that on the
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length scales L relevant for our model we have τ ∼ L/c, where c is the speed of light. By

causality there can be no (propagating!) scales of physical relevance faster than c, hence

with timescales smaller than τ or (equivalently) frequency scales larger than τ−1. Therefore

the only relevant behaviour for heat propagation is the purely parabolic case where heat

fluctuations are rapidly damped, which is well modelled by the standard heat equation. It is

possible to use the internal consistency of the underlying model to check when this heuristic

argument is valid. For example, to be consistent with causality the dispersion relation at

low frequencies requires that κ ≤ τc2 ∼ cL.

The key point here is the existence of a single scale (length, time, or frequency) at

which some physical effect acts or changes type. This issue is often considered for turbu-

lence (for example, are the length scales probed sufficient to trigger the magneto-rotational

instability [24–27]), for reactions (are physical regions of parameter space probed so that

out-of-equilibrium physics, such as a bulk viscosity has to be accounted for [28]), and for

radiation (are neutrinos propagating or trapped, see e.g. [29]). When this key scale is outside

that which can be included in the model then the physical effect is either ignored (by using

a purely ideal model, or by assuming instantaneous relaxation to an equilibrium) or mod-

elled (by approximating the additional physics through a closure term, such as an effective

equation of state, or a large-eddy approach [29–32]).

The fundamental issue regards how the physics, and hence the model, should behave

when key scales cross or overlap at different parts of the required parameter space. This

is particularly relevant for nonlinear numerical simulations, where the discretization length

introduces a scale (or multiple scales with uneven grids or mesh refinement), and nonlin-

earity can lead to the relevant physical scales varying over many orders of magnitude. The

interaction between the different scales makes heuristic simplifications dubious.

With these issues in mind we will study, analytically and numerically, issues relating

to bulk viscosity in reactive fluids. Here the underlying model involves nuclear reactions,

specifically the direct and modified Urca reactions (although the analytical calculations

presented apply more generally). These microphysical reactions can, in some regimes, be

approximated as a (resonant) bulk viscosity. However, the timescales on which the reactions

take place strongly depend on (for example) the temperature and may as a result be close

to those that can be captured in numerical calculations. The timescales may also interact

with, for example, large eddy closure terms required for turbulent regions (cf. section VII).
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Before we proceed, it may be worth commenting on the layout of the paper. The problem

we consider requires us to bring together a number of different aspects, some theoretical

(relating to the involved physics) while others relate to the numerical implementation (the

impact of a finite resolution etcetera). In order to avoid confusion, many of the details are

provided in (unusually lengthy) appendices. The aim is to keep the presentation as “linear”

as possible, allowing the reader to appreciate the main points and the spirit of the proposed

formulation. A more detailed reading would involve a closer study of the appendices, which

back up the arguments in the main text.

III. HYDRODYNAMICS OF A REACTIVE SYSTEM

We want to consider the hydrodynamics of an isotropic reactive system consisting of

comoving neutrons, electrons and protons, the simplest meaningful matter composition for

a neutron star core.1 Further, because we assume charge neutrality, there are only two

independent number densities (or, equivalently, one density and one species fraction). These

are conveniently taken as n, representing the baryon number density, and Ye = ne/n the

electron (lepton) fraction. The proton fraction then follows as Yp = np/n = Ye while the

neutron fraction is given by Yn = nn/n = 1 − Ye. Because we assume isotropy, the stress-

energy tensor takes the perfect fluid form

T ab = εuaub + p(gab + uaub) , (3)

where a and b are spacetime indices and the four-velocity ua is defined uniquely as the one

associated with the flow of all particle species. The pressure and energy are identified with

the corresponding thermodynamical quantities. As we will not impose that the system is in

chemical equilibrium (we allow reactions) we assume the equation of state to involve three

parameters. That is, the pressure follows from p = p(n, ε, Ye). This relation is assumed to be

provided in tabulated form (suitable for a numerical simulation, see appendix A and [33]).

1 This may seem somewhat reductionist, given that the high density region is likely to bring other matter

constituents into play, but our main interest is to establish the principles involved. If richer matter models

are required then the extension of our discussion will be conceptually straightforward.
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The energy-momentum conservation laws can be written as usual as

ub∇bε = −(p+ ε)θ , (4a)

(p+ ε)ab = − ⊥cb ∇cp , (4b)

where ab = ua∇au
b, θ = ∇au

a is the fluid expansion and ⊥ab= gab + uaub. We also need

equations for the particle number densities. These are

ua∇an+ nθ = 0 (5)

for the baryon number density (which is obviously conserved), and

ua∇aYe =
Γe

n
(6)

where the rate Γe is generally non-vanishing as we are considering a reactive system. Once

the reaction rate is provided by the microphysics (and tabulated as a function of the other

variables), these equations constitute a closed system.

From the perspective of thermodynamics, it is natural to introduce the affinity β =

µn − µp − µe as it quantifies how far the system is out of cold beta equilibrium. This

has the advantage that we can work within the so-called Fermi surface approximation [34]

and express relevant quantities, like the reaction rates, as expansions for small values of β

(with the coefficients in the expansion evaluated at equilibrium, β = 0). In the following,

and notably in the illustrations we provide, we assume that this strategy is appropriate.

Pragmatically, this makes sense as we are only aiming to establish a proof of principle

and these assumptions allow us to work out all required parameters for the model from

a standard tabulated equation of state. However, it is important to keep in mind that

the assumptions will not be appropriate for much of the parameter space (temperature and

density) explored in the binary neutron star merger/post-merger phase, and they completely

exclude any neutrino effects. At finite temperatures, the true notion of beta equilibrium is

more complex, and may require the addition of an isospin chemical potential in the definition

of β (see [29, 34–38]). A complete model should account for the correct notion of equilibrium,

but this will require the equation of state table to be extended to include all necessary

information. As such data is not yet available for simulations, we are (pragmatically) doing

the best we can given the information at hand.
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As we will see in section IV, the affinity is (thermodynamically) conjugate to Ye, meaning

that either of the two variables can be used “equivalently” in the discussion. This is im-

portant because state-of-the-art simulations tend to involve Ye while the theory is somewhat

more transparent when expressed in terms of β. In the following we will develop the model

in terms of β, but the analogous arguments for Ye can be found in appendix D. The evolution

equation for β is easily obtained by considering it as a function of (ε, n, Ye). We arrive at

ua∇aβ =

(
∂β

∂Ye

)
n,ε

Γe

n
− nBθ (7)

with

B =

(
∂β

∂n

)
ε,Ye

+
p+ ε

n

(
∂β

∂ε

)
n,Ye

. (8)

We again see that the system of equations is closed once the reaction rate (as well as the

relevant thermodynamical coefficients) is provided.

A useful simplification occurs when the system is sub-thermal, when β/T � 1. Then we

can expand the rate with respect to chemical equilibrium β = 0 to write it as2 Γe = −γβ.

The evolution equation for the affinity β then simplifies to

ua∇aβ = −Aβ − nBθ (9)

where we introduced the new coefficient (with units of inverse time)

A =
γ

n

(
∂β

∂Ye

)
n,ε

. (10)

The information encoded in the reaction rate Γe is now “stored” in γ. We can then make

progress and compute γ from the equation of state tables provided in the compOSE database

[33] only as long as we ignore finite temperature effects [34–38]. While the coefficient B can

be introduced without reference to an expansion around equilibrium, this is not the case for

A. In the sub-thermal limit we retain only terms linear in β, so that A must be evaluated

at β = 0.

For completeness, let us also comment on the entropy density, viewed as a function of

(ε, n, Ye). Using the equations of motion for these quantities (as well as the generalized

2 There is a sign convention here, and we are following [39]. The logic is, if β > 0 then µn > µe + µp

and neutron decay is favoured (over electron-capture) as this will release energy. Therefore, we want the

electron rate to be positive when β is positive and vice versa. The sign of γ should then be negative.
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Gibbs relation provided in section IV below) we arrive at

T∇a (sua) = βΓe . (11)

As long as β has the same sign as Γe the entropy increases. This is guaranteed to be the

case in the sub-thermal limit if γ < 0. Note that this assumes that a negligible amount

of energy is deposited in neutrinos by the reactions, which will be a poor approximation

at high temperatures. This important caveat will quantitatively affect our results without

changing the qualitative conclusions.

IV. THERMODYNAMICS OF A REACTIVE SYSTEM

Having discussed the hydrodynamics, let us turn to the associated thermodynamics.

Because the underlying model is required to be causal, and hence based on Cattaneo-type

laws, it is natural to set the discussion within the Extended Irreversible Thermodynamics

(EIT) framework [22]. We here provide a streamlined discussion, and refer to the monograph

[23] and references therein (see also [40] for a recent analysis focused specifically on bulk

viscosity). The first step is to assume that the Gibbs relation takes the usual form—noting

that the various quantities may not be in thermodynamical equilibrium

p+ ε =
∑

x=n,p,s,e

nxµx = nµn − neβ + Ts (12)

and

dp =
∑

x=n,p,s,e

nxdµx = ndµn − nedβ + sdT. (13)

As we will be working at the fluid level with either (n, ε, Ye) or (n, ε, β), we can use the

entropy as a thermodynamical potential (see appendix D 1 for an equivalent discussion and

results that make explicit use of a notion of equilibrium electron fraction). This is convenient

because if we also assume that the system is close to thermodynamical equilibrium, we can

expand the entropy as

s = seq(n, ε) +
1

2
s2(n, ε)β2 , where s2 =

(
∂2s

∂β2

∣∣∣
β=0

)
n,ε

. (14)

From this we can compute the out-of-equilibrium expansion of the thermodynamical vari-

ables. Linearizing in deviations from equilibrium, and assuming that the equation of state
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is expressed in terms of Ye rather than β, we obtain

T = T eq

[
1− n

(
∂β

∂ε

)
n,Ye

(
∂β

∂Ye

)−1

n,ε

β

]
+O(β2) , (15a)

µn = µeq −

[
nµeq

(
∂β

∂ε

)
n,Ye

+ n

(
∂β

∂n

)
ε,Ye

− Ye

](
∂β

∂Ye

)−1

n,ε

β +O(β2) , (15b)

s = seq +
1

2

n

T eq

(
∂β

∂Ye

)−1

n,ε

β2 . (15c)

Note that the thermodynamical requirement on the entropy reaching a maximum at equi-

librium, namely s2 < 0, implies that ∂β/∂Ye must be negative. Recalling eqs. (9) and (10),

and the fact that the restorative term γ < 0, we see that A > 0 and therefore plays the role

of an (inverse) relaxation rate.

Now that we have expansions (in β) of the thermodynamical variables, we can use the

Gibbs relation to work out the pressure. To linear order in the deviation from equilibrium

we then have

p = p(n, ε, β) = peq + p1β , where peq = p(n, ε, β = 0) , and p1 =

(
∂p

∂β

∣∣∣
β=0

)
n,ε

, (16)

or, explicitly,

peq = −ε+ nµeq + T eqseq , (17)

and

p1 = −n2

(
∂β

∂Ye

)−1

n,ε

[
peq + ε

n

(
∂β

∂ε

)
n,Ye

+

(
∂β

∂n

)
ε,Ye

]
. (18)

In essence, the thermodynamical expansion provides us with an expression for the out-of-

equilibrium contribution to the pressure, which would naturally be interpreted as a bulk

viscosity. We identify

Πt =

(
∂p

∂β

∣∣∣
β=0

)
n,ε

β = p1β . (19)

Note that, even though we have outlined the derivation in the simplest case (where the

system is subthermal and close to equilibrium), the argument applies more generally. A

broader discussion would rely on a detailed description of the out-of-equilibrium physics,

which is not included in equation of state tables currently used for numerical simulations.

Specifically, as described in appendix A, starting from a three-parameter equation of state

from the compOSE database, the derivatives we need can be worked out before carrying out

a simulation. We are relying on this in the specific example discussed later.
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V. A MULTI-SCALE ARGUMENT

At this point we have formulated the relaxation problem for the reactive system. The

equations from section III are, in principle, all we need to evolve the system. However, it

may not be numerically practical to solve the full nonlinear system, for example when the

physical reactions are fast compared to numerically resolvable timescales. Given this, it is

natural to consider approximations.

A. The bulk-viscosity approximation

To set up the discussion let us introduce the (proper) time derivative d/dt = ua∇a.

We can then write the hydrodynamical equations in non-dimensional form (assuming for a

moment that we work with the lepton fraction instead of β, an assumption that makes no

practical difference here)

dε

dt
= − 1

εSt
(ε+ c2

rp)θ , (20a)

ab = − 1

εSt

1

ε2Ma

1

ε+ c2
rp
⊥cb ∇cp , (20b)

dn

dt
= − 1

εSt
nθ , (20c)

dYe

dt
= − 1

εA
(Ye − Y eq

e ) , (20d)

where we have defined the dimensionless parameters

εSt =
lr
urtr

, εMa =
ur
cr
, εA =

1

Atr
, (21)

and introduced a reference sound speed cr as well as lr, tr, ur as reference lengthscale, times-

cale and fluid velocity—so that ab has dimensions ur/tr. From this we see that n, ε, ua evolve

on similar timescales (in terms of the proper time associated with ua), while the electron

fraction evolution timescale is given by εA. Assuming—as expected for large regions in neut-

ron star merger simulations—that reactions occur on a fast timescale (so that εA � 1), we

may consider three different regimes: i) The expansion rate3 θ varies only (or primarily) on

slow timescales—which makes sense for numerical simulations where the spatial dynamics

3 As can be seen from e.g. eq. (7), the expansion rate is a “source-term” in the affinity equation.
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are resolvable but the reaction timescale is not; ii) The expansion θ varies on the fast times-

cale and hence this must be resolved in a simulation; iii) The flow is turbulent and therefore

all scales are coupled. In the last two cases, we cannot analytically simplify the problem

much—expensive direct numerical simulations are required, although the large-eddy strategy

[32, 41–43] (see also section VII) may provide a useful alternative. As our main interest here

is to consider the regime where progress can be made through approximations, we focus on

the first case, where we can use standard multi-scale methods (see, e.g. [44]) to “integrate

out” the fast behaviour.

Bringing the multiscale argument from [45] to bear on the problem and assuming that

we continue to work with β (see appendix C for more detailed steps), we have to compute

the late-time behaviour for the affinity by integrating the β equation considering the other

variables as parameters, and then taking the limit t→∞. The approximated equations for

the remaining variables are then unchanged to lowest order, but we have to evaluate every

function of β using the late-time result. This is intuitively motivated by the underlying

assumption that the affinity evolves on a faster timescale, so that the remaining degrees

of freedom are approximately frozen on short timescales. The inclusion of the first order

corrections then guarantees the approximated equations to be correct up to O(ε2A) up to

times O(1). The net result is that the pressure in the energy and number density, as well

as in the Euler equation, will be approximated as

p = peq −
(
∂p

∂β

)
n,ε

n

A
Bθ (22)

The “interpretation” of the second term as the Navier-Stokes bulk-viscosity is supported

by the analysis in section IV (cf. eq. (19)). This result, while in line with “expectations”,

is non-trivial. In fact, common arguments in favour of a representation of the net effect

of under-resolved reactions via a bulk-viscous pressure are typically perturbative in nature

[39, 46].

In appendix D we provide the corresponding results obtained in terms of the electron

fraction. The results agree—as they should—and the approximate equations we obtain by

integrating out the electron fraction degree of freedom describe a Navier-Stokes bulk-viscous

fluid, as well. A relevant consequence of the electron fraction analysis from appendix D

relates to the “double counting” issue raised in [29]. The discussion in [29] points out

that the effects of under-resolved reactions are already accounted for in schemes aimed at
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modelling neutrinos, and hence adding a bulk-viscous pressure on top of that may lead to

a double-counting. Specifically, in appendix D 3 we provide a proof of principle argument

that supports this. We consider—even though this may be/sound somewhat ad-hoc—the

case where we can split the reactions in two families, fast ones (representative of, say, direct

Urca processes) that cannot be captured by the numerics, and slow ones (representative

of, say, modificed Urca processes) that can be resolved. It would seem reasonable after

the discussion we just had, to model the impact of unresolved reactions as a bulk-viscosity.

Whilst this may be a valid strategy, one has to be careful because the multi-scale methods

result of eq. (D19) suggests that the resolvable reaction rates should pick up a correction

term as well.

B. Making contact with simulations

Having discussed the approximate equations we obtain from the multi-scales approach,

it makes sense to “step back” and ask to what extent we expect this approximation to make

sense for numerical simulations. To set the stage for the discussion, let us rewrite eq. (9) as

dβ

dt
= −Aβ + Bdn

dt
. (23)

The parabolic limit—which corresponds to neglecting the time derivative of the affinity

dβ/dt—in the Fourier domain is

βNS(ω) =
B
A
nω , (24)

while the extended irreversible thermodynamics (EIT) result takes the form

βEIT (ω) = nBA ω

ω2 +A2
= βNS(ω)

A2

A2 + ω2
. (25)

The two results are compared in fig. 1, from which we see that the EIT behaviour shows

the “expected” resonance feature [35, 37–39, 46, 47]. We note, however, that this is not the

usual figure (see, for example, figure 2 in [35]), as we are plotting the affinity β and not the

bulk-viscosity coefficient. To link the results, we need to recall that Π = p1β and then define

ζ via Π = −ζθ . Then we can use eq. (5) to write θ = −ṅ/n to obtain

ζNS = p1
B
A
n , and ζEIT = ζNS

A2

ω2 +A2
. (26)
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log
(ω
A
)

log
(
β

nB

)

(
ω
A = 1,

β

nB = 1
2

)

Figure 1: Illustrating the behaviour of β(ω) in two cases: the solution to the Cattaneo

equation (i.e. the full extended irreversible thermodynamics (EIT) relaxation towards the

Navier-Stokes limit, blue solid curve) and the parabolic case (the Navier-Stokes limit,

orange dashed line). The shaded region indicates frequencies we assume we may not have

“access” to numerically (this region moves towards higher frequencies when the numerical

resolution is increased).

The difference is subtle as both βEIT and ζEIT present resonant features. However, ζEIT

does so when the frequency ω is kept fixed and A is varied, while βEIT exhibits the resonance

even if we fix A and vary the frequency.

The difference may not seem particularly relevant, but the illustration in fig. 1 allows

us to draw useful conclusions. The figure shows that the parabolic limit (i.e. the limit we

represent with the multi-scale argument) is a “good” approximation at low frequencies (see

appendix E), but becomes less accurate at higher frequencies4. Keeping in mind that we

4 The illustration also provides an intuitive demonstration of why the high-frequency behaviour is non-causal
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consider the problem in the context of numerical simulations, we may also note that there

will inevitably be frequencies that we do not have access to. This high-frequency cut-off

is (schematically) represented by the shaded region in fig. 1. Specifically, the resolution

is limited by ω ∼ ∆t−1 where ∆t is the numerical timestep. Now, because the resonance

frequency is given by ω = A, we are left with two options: either the numerical timestep is

large enough (∆t−1 < A) that the peak is not resolved, or the simulation is precise enough

that the region to the right of the resonant peak is (at least partially) resolved. In the first

case, our simulation cannot resolve the (fast) relaxation towards the Navier-Stokes limit

(and it is also likely that the expected instability [48] associated with the Navier-Stokes

behaviour will be suppressed). In the second case, the relaxation towards Navier-Stokes can

be resolved by the numerics, so working with the Navier-Stokes approximation is just wrong.

VI. HOW RELEVANT IS BULK VISCOSITY IN MERGERS?

In the previous sections we have described how a reactive system near equilibrium can

be approximated as a single fluid model with a bulk viscous pressure. One question to

tackle is whether this approximation is of any relevance for, for instance, a neutron star

merger simulation. In order for the argument to be of interest we need multiple criteria to

be met. First, the timescales that we can resolve in the simulation must not include the

key timescales for the reactions. If we can resolve the reactions then we should, as the bulk

viscosity approximation (as well as the Cattaneo-type law eq. (9)) only includes the linear

effects, whilst the reactions account for the full nonlinear behaviour. Besides, the illustration

in fig. 1 shows that the approximation would simply break down in a resolved simulation.

Second, we would require that the correction to the total pressure from the bulk viscous

approximation should not be negligible. If the bulk viscous term due to the reactions is tiny

in comparison to the standard fluid pressure then it is pointless to include the reactions in

the numerical simulation. Instead we should impose chemical equilibrium directly, and solve

without reactions or a bulk viscosity approximation.

Figure 2 combines both these criteria in a single plot (based on data for the APR equation

and associated with a linear instability [48].
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of state [33, 49] used in the simulations discussed in [29]). In order for the bulk viscous

approximation to be useful the timescale from the simulation must be slower, or at a lower

angular frequency, than that given by the peak frequency of the resonance. This peak is

defined by A. Therefore every point in the (T, n) plane below a contour of fixed A has

reactions acting on time or frequency scales that can (and hence should) be resolved by

the numerical simulation. The contours given show that as the numerical grid resolution is

improved, more of the (T, n) plane should be modelled by solving directly for the reactions.

The bottom two contours in the figure bracket frequencies relevant for bulk gravitational

wave generation (1 − 10kHz), and so must be captured by any numerical simulation. The

top contour lines are indicative of the grid frequencies achievable by current simulations

(an angular frequency of 107s−1 roughly corresponds to a grid spacing of 200m) and the

state of the art in maybe ten years (an angular frequency of 109s−1 roughly corresponds

to a grid spacing of 2m). However, there remain points at densities above 10−2nsat and

temperatures above 10MeV where reactions can only be modelled using the bulk viscous

approximation, even with the best resolution currently available. Current simulations such

as [29] do see substantial amounts of matter in the post-merger remnant within this part

of phase space, meaning that the bulk viscous approximation will remain necessary for the

foreseeable future.

In addition, fig. 2 shows the maximum relative magnitude of the bulk viscosity pressure,

again in the (T, n) plane, with contours of fixed A overlaid. In this calculation the bulk vis-

cous approximation requires a range of additional approximations, including assuming the

Fermi surface approximation is valid in order to compute the rates. These approximations

are laid out in detail in appendix A. However, for the purposes of our argument, the key is

to note that we are interested in regions of phase space where the bulk viscosity approxim-

ation may be valid (above the contours), and where the bulk viscosity makes a significant

contribution to the pressure. We see that this holds again in the region with densities above

10−2nsat and temperatures above 10MeV.

As a final important point we note that there is no sharp transition between regions

where the effects of the bulk viscous approximation are sizeable and where they are not,

when considering contours of fixed A (which can be linked to the numerical resolution).

Unless the numerical resolution can be increased by many orders of magnitude beyond the

current state of the art, there will always be regions in spacetime where the bulk viscosity
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is significant but the approximation itself is debatable. Therefore we have to consider a

model that is able to model reactions by directly evolving, for example, the species fraction

in some parts of spacetime, makes the bulk viscous pressure approximation in other parts

of the spacetime, and transitions between the two appropriately. This is difficult to do

correctly.

VII. THE IMPACT OF LARGE-EDDY FILTERING

We have demonstrated how the Navier-Stokes limit for bulk viscosity due to reactions can

be obtained through a multi-scale argument, effectively integrating out the fast timescales of

the problem. The argument is quite intuitive. However, the discussion is not yet complete.

In the context of numerical simulations we also have to consider other “filtering” aspects.

In particular, we need to explore the link to (or conflict with) the large-eddy strategy. This

problem is not straightforward. In a sense, the large-eddy approach is “complementary” to

the approximate scheme as it aims to represent the regimes where multi-scale arguments

do not apply—namely turbulent flows and when all dynamics take place on fast timescales.

One may be tempted to view the multi-scale method and large-eddy space-filtering as “or-

thogonal”. A space filter cuts off short length-scales, while the invariant manifold method

integrates out the fast dynamics (removing short timescales). However, the two issues are

linked.

An actual numerical implementation introduces an implicit filtering associated with the

discretized numerical grid. On a grid with fixed spacing ∆x, the implicit filtering requires

that any spatial feature on shorter lengthscales cannot be captured and must be modelled

by some closure relation, as discussed in [31, 32, 50–52]. Equally, the CFL bound (linked to

causality) imposes that the timestep ∆t ∝ ∆x, and so any physical feature happening on

shorter timescales cannot be captured. Thus, increasing the accuracy by modifying the grid

spacing automatically means the ∆t in fig. 1 decreases and therefore the amount of the fast

reactions that cannot be captured, shown by the grey area, decreases. There is a direct link

between the amount of physics that must be modelled via a spatial filtering and via a time

filtering or multi-scale argument.

In order to examine how the filtering associated with the large-eddy strategy impacts on
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Figure 2: The maximum (for each point we assume that ω = A) potential relative

contribution of the bulk viscous approximation Πmax/peq at each point in phase space

using the APR [33, 49] equation of state. We see that the bulk viscous pressure

contribution can be large for most temperatures when n & 10−3nsat. However, the bulk

viscous approximation should only be used where the reaction rate cannot be resolved by

the numerical simulation, which is where the grid frequency is greater than A. Also shown

are contours at A = {103, 104, 107, 109} s−1 (solid, dashed, dot-dash, dot). For current

simulations, frequencies of ∼ 106 s−1 are resolvable. This shows that the bulk viscous

approximation should only be used for T & 10MeV, and as the grid resolution improves

becomes less necessary.
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the discussion of bulk viscosity, let us frame the argument using the “fibration” framework

developed in [43]. We refer to the original paper for a discussion of why—and under which

assumptions—we may assume that the filtering operation (represented by angled brackets)

“commutes” with the covariant derivative, so that we have 〈∇aA〉 = ∇a〈A〉.

Let us first consider what happens when filtering is applied to the continuity equations

for baryons and electrons, eqs. (5) and (6). As discussed in [43], the equation for the

baryons remains unchanged if (and only if!) we choose to work with the density-weighted

four-velocity:

∇an
a = 0 =⇒ ũa∇añ+ ñ∇aũ

a = 0 , (27)

where 〈na〉 = ñũa defines the filtered baryon number density current (indicated with a tilde).

In the case of the electrons, we need to introduce the “electron fraction residual”

τaYe
= 〈Yen

a〉 − 〈Ye〉〈na〉 (28)

and work with a coarse-grained electron fraction, defined by ñe = −ũa〈neu
a〉 and leading to

Ỹe =
ñe

ñ
= − ũa

ñ
〈neu

a〉 . (29)

The filtered equation for the electron fraction then becomes5

ñũa∇aỸe = 〈Γe〉 − ∇aν̃
a
e , (30)

where

Ỹe = 〈Ye〉 −
1

ñ
ũbτ

b
Ye
, and ν̃ae = ⊥̃ab〈neu

b〉 = ⊥̃abτ bYe
(31)

The take home message is simple. The large-eddy filtering introduces an effective creation

rate in addition to the faithful microphysical one. As the effect of the reactions can be

modelled as a bulk-viscosity this may clearly have an impact on the analysis (cf. eq. (7)).

Now turn to the remaining equations of motion, e.g. eq. (4), which follow from the

conservation of the stress-energy-momentum tensor. As this retains exactly the same form

5 Note that we could choose a different coarse-grained observer in such a way that the effective creation rate

is re-absorbed in the macroscopic fluid four-velocity. However, this would come at a cost since the equation

for the filtered baryon current would then have an additional diffusion term on the right-hand-side.
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as in the perfect fluid case, we can simply draw on the results from [43]. The only difference

is in the pressure and the Gibbs relation, as we are now considering a reactive system:

〈p〉 = 〈 − ε+ Ts+ µnn− neβ〉 . (32)

The neβ term was not considered in [43] as the fine-scale model considered there did not

account for reactions. Nonetheless, we may simply adapt the same strategy: introduce an

effective three-parameter equation of state at the resolved scale, and use it to define the

macroscopic thermodynamic variables

1

T̃

.
=

(
∂s̃

∂ε̃

)
ñ,Ỹe

, (33a)

− µ̃n

T̃

.
=

(
∂s̃

∂ñ

)
ε̃,Ỹe

− Ỹe

ñ

(
∂s̃

∂Ỹe

)
ñ, ε̃

, (33b)

β̃

T̃

.
=

1

ñ

(
∂s̃

∂Ỹe

)
ñ,ε̃

. (33c)

With these definitions in hand, we can rewrite the filtered Gibbs relation as

〈p〉 = −ε̃+ ñµ̃n + T̃ s̃− ñỸeβ̃ +M (34)

with the enhanced closure term

M =
[
(〈nµn〉 − ñµ̃n) +

(
〈Ts〉 − T̃ s̃

)
− (〈ε〉 − ε̃)−

(
〈neβ〉 − ñỸeβ̃

)]
. (35)

It makes sense to introduce the effective pressure p̃ = 〈p〉 −M as this will satisfy a Gibbs

relation of the pre-filtered form (but now in terms of the coarse-grained equation of state

and the associated variables). Then, because the filtered energy and Euler equations will

contain 〈p〉 (cf. the discussion in section V of [43]), the M term will enter the final equations

as a correction to the pressure—effectively providing a bulk-viscous-like contribution. Let

us stress that while we are only providing a minimal discussion of a large-eddy model, this

is everything we need here. To make real progress we would need to introduce an explicit

closure scheme and perform numerical experiments, both of which go beyond the scope of

the present work.

The essence of the argument is that the large-eddy filtering introduces an “effective bulk-

viscosity” contribution to the coarse-grained equations. This happens in (at least) two ways:

i) through the residual term M stemming from filtering the Gibbs relation ii) by adding an
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effective creation rate, and the two effects are not (necessarily) linked as they depend on the

introduced closure relations. In particular, the effective creation rate (which follows from

the four-divergence of νae ) affects the effective restoring term γ, and in turn A—as is evident

from inspection of eq. (10). As the resonance frequency in fig. 1 is given by ω = A, and this

essentially dictates whether or not the Navier-Stokes approximation is applicable, it makes

sense to consider applying the filtering and the multi-scale approach at the same time.

We can intuitively see (and check explicitly) that the coarse-grained equations will have a

bulk-viscous contribution stemming from having integrated out the electron fraction degrees

of freedom, and one from the filtering. The analytic expressions of these two terms depend

on the order with which we take the steps: either we apply the multi-scale methods first

and then filter, or the other way around. The results are unlikely to be the same. To see

this, simply note that the multi-scale/invariant manifold method essentially boils down to

an approximation of the equations around the equilibrium surface Ye = Y eq
e . If we take

the filtering step first, the notion of equilibrium changes—both because the (potentially

different) equation of state is evaluated in terms of the coarse grained variables, and because

of the effective rate. This highlights the importance of including all the relevant physics

when constructing the closure terms in a large eddy model. This is problematic as the best

closure terms require direct fine scale numerical simulations, and the analysis in this paper

shows these expensive simulations need repeating each time additional physics is added. It

is bound to be an expensive endeavour.

VIII. CONCLUDING REMARKS

Binary neutron star mergers offer a unique opportunity to explore several extremes of

physics, but we need to significantly improve our numerical simulation technology if we want

to realize the discovery potential of future gravitational-wave instruments (required to catch

the high-frequency dynamics of the merger events). In particular, we need to make sure that

efforts to infer the detailed physics are not stumped by systematic errors associated with the

numerical implementation. An important step towards realism involves dealing with nuclear

reactions. Motivated by this, we have considered the issue of reactions from the perspective

of numerical simulations (and the associated limited resolution), aiming to provide “new

insights on an old problem”. Specifically, we have discussed to what extent it makes sense to
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capture the net effect of reactions via a bulk viscosity prescription. Our analysis was based

on standard multi-scale methods and provide an argument flagging the issue of possible

“double-counting” (see [29] and appendix D 3). Our discussion also explicitly considered the

issue of resolution limitations. In essence, we assessed the impact of the reaction timescales

on the way we should frame the modelling, and represent the net effect of reactions.

Our key messages link the reaction timescales to the numerical (grid) timescales. When

the reactions are slow the ground truth result is found by evolving the reactions directly.

When the timescales are comparable, particularly when the physical timescales are (slightly)

faster, this is not numerically practical. Instead the evolution system must be approximated.

To leading order the reactions relax the system to equilibrium instantly. However, the error

incurred is proportional to the ratio in the timescales. The first order (in the ratio of scales)

approximation introduces correction terms that act as a bulk viscosity. This demonstrates

how a multi-component reactive system can be approximated as a dissipative single fluid.

This bulk viscous structure emerges regardless of whether we formulate the problem in terms

of β (which would be natural from a thermodynamics perspective) or Ye (to connect more

directly with simulations).

In a neutron star merger simulation the ratio of scales covers all ranges, with the scales

being comparable (and hence a bulk viscosity approximation necessary) particularly in the

core shortly after merger. We also show that the prescription for the bulk viscosity — either

algebraically in a “Navier-Stokes” like fashion, or by providing an equation of motion in

a “Cattaneo” or “Israel-Stewart” like fashion — is irrelevant, as they agree (to the order

of the approximation) in the regime where the approximation is useful (at low frequencies

where the ratio of scales is comparable). Finally, we show explicitly how the equations of

motion are modified when some, but not all, of the scales are comparable. This flags up

how the introduction of a bulk viscosity (either directly through approximating reactions, or

indirectly through using large-eddy simulation techniques) can conflict with the definition of

equilibrium. Consistently accounting for these issues to avoid “double-counting” is possible,

as outlined in appendix D 3, but difficult. A formulation that encompasses both fast and slow

reaction rates will ultimately be required, but presents a challenge as it needs to consistently

deal with the equilibrium and equation of state issues associated with the modified reaction

rates seen in appendix D 3.

Our main conclusions are intuitive but we believe this is the first time that they have
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been spelled out in detail. Contrasting theoretical work against the simulations in [29], we

find that different regions of the parameter space relevant for mergers would require different

prescriptions. In particular, there are regions of the density-temperature phase space where

reactions are slow enough that they can (and hence, should) be captured directly, and

other regions where they are not—even with the best resolution available, now and in the

foreseeable future—with no sharp boundaries between the two regimes. This indicates that,

to properly account for reactions, we need to develop numerical codes capable of handling

both regimes (reactions fast/slow compared to the resolved timescales), and the transition

between them on the fly.

Finally, the issue of bulk viscosity is closely linked to the role of large-eddy filtering—

which enters the discussion implicitly or explicitly. Noting this, we provided general filtering

arguments that help set the stage for further work, and highlighted the coupling between

bulk viscosity and large-eddy modelling. A “definitive” prescription for reactive systems

will require explicit numerical experiments and the introduction of an appropriate closure

model.
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Appendix A: Working with the CompOSE database

Our analysis of the reactive problem is—ultimately—aimed at numerical implementa-

tions. Given this target, it makes sense to consider how the discussion impacts on the

matter model that needs to provide the input physics. To be specific, we will spell out the

connection with the compOSE database, which provides a useful collection of state-of-the-

art equation of state models. As a result, the arguments draw heavily on the compOSE

manual [33], in particular section 4.1.2 (“Thermodynamic consistency”) of version 2.0. The

aim here is to explain how the various thermodynamical coefficients introduced in the main

text can be worked out from an actual equation of state table. This is obviously a necessary

step in the process. It also helps highlight to what extent existing tabulated data needs to
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be augmented in the future.

All equations of state relevant for our work in the compOSE database are provided as

tables of (T, n, Yq), where Yq is the fraction of charged strongly interacting particles, which

for a system without muons corresponds to the electron fraction Yq = Ye (as local charge

neutrality is assumed to hold). The central thermodynamical potential is the Helmholtz free

energy density f = ε− Ts, and some key quantities in the construction of the tables are{
p

n
,
s

n
,
µb

mn

− 1,
µq

mn

,
µl

mn

,
f

nmn

− 1,
ε

nmn

− 1

}
, (A1)

where mn is the neutron mass—also provided in the tables and specific to each model—

while µb, µq, µl are the baryon, charge and lepton “chemical potentials” (respectively). The

energy cost of adding a neutron, proton or electron to the system is then

µn = µb , µp = µb + µq , µe = −µq + µl (A2)

as follows straightaway from the respective baryon, charge6 and lepton number. The baryon,

charge and lepton chemical potentials are (in general) used to build the free energy, even

though in the charge-neutral case with leptons this reduces to

f = (µb + µlYe)n− p . (A3)

From this we see that there are only two independent chemical potentials at the thermody-

namical level—consistent with a three-parameter equation of state—that can be written as

derivatives of the Helmholtz free energy, namely µb and µl.

Now, we need to connect with the quantities used in the main text. We have (following

from the Gibbs relation eq. (12))

f = ε− Ts , df = −sdT + µndn− βdne (A4)

where β = µn − µp − µe in the cold equilibrium assumed throughout this paper. From this

differential we see that, by definition

µn =

(
∂f

∂n

)
T,ne

=

(
∂f

∂n

)
T,Ye

− Ye

(
∂f

∂ne

)
T,n

, (A5a)

−β =

(
∂f

∂ne

)
T,n

=
1

n

(
∂f

∂Ye

)
T,n

. (A5b)

6 This is the total charge, not the charge of the strongly interacting particles corresponding to nq = nYq.
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Contrasting this with the results in section 4.1.2 of the compOSE manual, it is easy to see

that7 µn = µb and β = −µl. In practice, the affinity β can be either read off from the tables

directly, or computed as above. Because the equation of state table is three-dimensional,

the quantity extracted is inevitably a function of β = β(n, T, Yq). This is consistent with

the results of section III, where we accounted for the fact that β depends on either the

temperature or the energy density.

Now, the coefficients A and B introduced in section III can be obtained as combinations

of derivatives of β considered as a function of (n, ε, Ye). We need to link these expressions to

derivatives that can be computed from the available tables (or, which may be more practical

for the future, enhance the table with the required information). That is, we have to change

variables to arrive at(
∂β

∂n

)
ε,Ye

=

(
∂β

∂n

)
T,Ye

−
(
∂ε

∂n

)
T,Ye

(
∂ε

∂T

)−1

n,Ye

(
∂β

∂T

)
n,Ye

, (A6a)(
∂β

∂ε

)
n,Ye

=

(
∂ε

∂T

)−1

n,Ye

(
∂β

∂T

)
n,Ye

, (A6b)(
∂β

∂Ye

)
ε,n

=

(
∂β

∂Ye

)
T,n

−
(
∂ε

∂Ye

)
T,n

(
∂ε

∂T

)−1

n,Ye

(
∂β

∂T

)
n,Ye

. (A6c)

Recalling that these quantities should be evaluated at equilibrium, we see that we also need

to construct the corresponding equilibrium table. Operationally, this can be done as follows.

We fix n, T and vary Ye until we find a value for which β = 0. The corresponding value

of Ye is then what we call Y eq
e and the equilibrium composition will automatically only be

a function of (n, T ). Evaluating the original three-parameter model at Ye = Y eq
e gives the

corresponding equilibrium energy density and pressure etc. Later in appendix D we derive

an equivalent formula for p1 that involves derivatives of Y eq
e with respect to the energy

density ε and n. Using expressions analogous to eq. (A6), we can rewrite the result in terms

of derivatives of Ye with respect to (n, T ), that can be extracted from the tables.

With the results in eq. (A6) and evaluating the relevant quantities at equilibrium, we can

work out (for a given equation of state) the value of B, as required for fig. 2. In order to

compute A though, we also need to evaluate the restoring term γ (effectively, a measure of

the reaction timescale). In fig. 3 we show A as obtained from the modified Urca rates for the

7 Note that µq potential is not an independent thermodynamic quantity as the system cannot create protons

alone because of the charge neutrality assumption.
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Figure 3: Plot of A for the APR equation of state used in [29]. The restoring term γ is

calculated assuming the Fermi surface approximation remains valid. Contours are at

A = {103, 104, 107, 109}s−1 (solid, dash, dot-dash, dot).

APR equation of state [33, 49] used in [29]. For this figure we have calculated γ assuming

the Fermi surface approximation, which allows us to use the analytic formulae from [34].

Appendix B: Neutrino-based estimate of the reaction timescale

In appendix A we discuss the extraction ofA from a three-dimensional tabulated equation

of state (see figure 3). This parameter is the inverse of the fluid equilibration timescale, and

we calculate it using the Fermi surface approximation for the reactions. The result should be

valid for low temperatures (T . 1 MeV), however the timescales relevant for our purposes
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occur in the range of (according to A as calculated above) 2 MeV . T . 20 MeV for

the densities relevant to the neutron star core, begging the question of how accurate the

approximation is.

Instead of calculating out-of-equilibrium rates without the Fermi surface approximation,

we can take a different approach, and estimate the equilibration timescale using neutrino

opacities, which can be readily calculated using software such as NuLib [53]. The mean free

path of the neutrinos before equilibration `eq is then calculated from the absorption and

scattering opacities, κab and κsc respectively, through

1

`eq

= κeq =
√
κab (κab + κsc), (B1)

and we use the energy averaging method from [54] to give κ̃eq, where the energy averaging

is denoted by a tilde, and the corresponding ˜̀
eq = 1/κ̃eq. We then define an equilibration

timescale τeq = ˜̀
eq/c, by assuming the neutrinos are travelling at c.

In figure 4 we plot 1/τeq = κ̃eqc for the electron neutrinos, using the same fluid composition

as in figure 3. Comparing these results to figure 3 we see that there are some similarities.

Both plots agree that the timescales for T . 1 MeV are too long to be relevant for our

purposes, and they are also similar for most densities in the 1 MeV . T . 10 MeV region.

However, at high temperatures there are qualitative differences. We see the contours curving

upwards much more noticeably here than for A, and the timescales here are also generally

slightly longer. We also note that at very high densities, where nb & nsat, there is an upwards

trend to the contours, and they are also much closer together here than for the previous

calculation. This suggests that an equivalent bulk viscous approximation will be relevant

over less of the phase space when a timescale measure based on neutrino equilibriation is

used compared to the Fermi surface approximation. The quantitative differences between

the timescales shown in the two figures illustrates the uncertainties in the precise values due

to not including all of the physics.

Despite the qualitative differences between the equilibration timescales obtained through

the two different methods, it is encouraging that there are some broad similarities between

the two, particularly the regions of interest at relevant temperatures and densities. For

completeness, we also include a version of figure 2 with contours from figure 4 as figure 5.

Figures 2 to 5 use the APR equation of state. We have in checked that analogous figures
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Figure 4: Plot of the inverse of the neutrino equilibriation timescale 1/τeq. Contours are at

1/τeq = {103, 104, 107, 109}s−1 (solid, dash, dot-dash, dot).

constructed using the SLy and SFHx equations of state are qualitatively similar, so that

the key aspects of the discussion in this paper hold also for those equations of state. This

suggests that the central results here are insensitive to the broad choice of equation of state.

Appendix C: Multi-scale arguments and the invariant manifold method

In order to support the arguments in the main text, we briefly summarize key results

from [44, 45].
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Figure 5: Copy of figure 2 with contours from figure 4.

1. Invariant manifold approach

We assume we have a system of ordinary differential equations written as

ẋ = f(x, y), (C1a)

ẏ = ε−1g(x, y). (C1b)

The variables x are called slow, and the variables y are called fast, whilst ε � 1 is a

parameter.

In the invariant manifold approach we assume that there exists an equilibrium (fast) state

ϕ(x) such that

g(x, ϕ(x)) ≡ 0. (C2)

We can then write the fast variables y as an expansion in the small parameter ε about the
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equilibrium state as

y = ϕ(x) + εy1 +O(ε2). (C3)

Using the equations of motion eq. (C1) we find that the behaviour of the slow variables x is

approximated, to second order in ε, by the solution to

Ẋ = F0(X) + εF1(X) (C4a)

= f(X,ϕ(X)) + ε∇yf(X,ϕ(X)) (∇yg(X,ϕ(X)))−1∇xϕ(X)f(X,ϕ(X)). (C4b)

2. Two timescale approach

Strictly, the invariant manifold approach is only valid for ordinary differential equations.

A more general approach that applies to partial differential equations is the two-scale ap-

proach. Using the two timescale approach as an example, this introduces the fast time

τ = t/ε which is then treated as an independent variable. Applied to eq. (C1) this leads to

∂tx+ ε−1∂τx = f(x, y), (C5a)

∂ty + ε−1∂τy = ε−1g(x, y). (C5b)

By gathering terms in powers of ε, the fast behaviour can be integrated out by taking the

integral average in τ .

The result of the mathematical calculation is identical to the invariant manifold approach,

when applied to ordinary differential equations. The calculation is general enough to include

partial differential equations, and illustrates a different interpretation and potential prob-

lems. The interpretation is that the reduced system is valid for the integral average of the

slow variables: the fast scales have been integrated out. The potential problem is the re-

quirement that the integral average of the fast behaviour is assumed to not contribute at

leading order in ε. This “resonance” behaviour cannot be captured by these approaches.
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3. Linear fast dynamics

A particularly relevant example is where the fast behaviour is linear, or can be linearised.

In this case we write the full system eq. (C1) as

ẋ = f(x, y), (C6a)

ẏ = ε−1(−Ay +B), (C6b)

with A = A(x) and B = B(x) are constants in the fast variables y. The equilibrium solution

is therefore ϕ(x) = B/A, and the simplified system is

Ẋ = f(X,ϕ(X))
[
1 + εA−1∇yf(X,ϕ(x))∇xϕ(X)

]
. (C7)

The solution to the simplified system approximates the solution to the full system eq. (C1)

to O(ε2) up to times O(1). The first order correction term needs to be applied consistently

to all variables in the reduced system for this accuracy result to hold.

4. Constructing the fast terms

The construction in this section relies on the ratio of scales ε being explicit in the equations

of motion. Usually a non-dimensionalisation of the system is needed to make the scales

explicit. However, with complex nonlinear terms (such as tabulated net reaction rates which

include many reaction channels) the precise form of the terms may not be obvious.

Here we need only the leading order terms and so can proceed as follows. We start from

a system of equations which we expect to have fast behaviour

ż = h(x, z), (C8)

where x are any variables we expect to be slow. We assume that we know how h scales

asymptotically with the ratio of scales. That assumption means we can explicitly compute

hfast = lim
ε→0

(εh) . (C9)

This defines the source term for the fast behaviour as the piece that diverges linearly with

the ratio of scales in the limit of infinitely fast speeds. We then split the source into fast

and slow pieces using

hslow = h− ε−1hfast, (C10)
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and perform the equivalent split on the variables z as

żfast = ε−1hfast, (C11a)

żslow = hslow. (C11b)

We can then identify the fast variables y with zfast and augment the slow variables x with

zslow.

5. The reactive system

The equations of motion using the affinity can be written

d

dt


n

ε

β

 =


−nθ

−(p+ ε)θ

−Aβ − nBθ

 . (C12)

The dimensional analysis of section V indicates that the reaction timescale εA enters through

A and through no other parameter—and it can be easily seen that B relates to how quickly

the equilibrium electron fraction adjusts to a change in number and energy density. Assum-

ing only A to be fast, and using appendix C 4 we split the affinity into fast and slow pieces,

writing

d

dt


n

ε

βslow

 =


−nθ

−(p+ ε)θ

−nBθ

 , (C13a)

d

dt

(
βfast

)
=
(
−ε−1

A Aβ
)
, (C13b)

where βfast +βslow = β. By construction A is independent of β, so the fast dynamics are now

linear and the results of appendix C 3 apply. We see that the invariant manifold is given by

ϕ(X) = −βslow, which is equivalent to saying β = 0 on the invariant manifold. That is, the

invariant manifold corresponds to beta equilibrium, as expected.

The reduced system is

d

dt


n

ε

βslow

 =


−nθ

−(p+ ε)θ

−nBθ

− εAnBθA


0

∂p
∂β
θ

0

 , (C14)
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where all terms (pressure and its derivatives, and B) have to be evaluated at beta equilibrium.

The final equation decouples as all quantities in the first two equations depend on the total β

evaluated at equilibrium, which is β = 0. We see from the energy equation that the pressure

correction appears as

Πd = −εA
(
∂p

∂β

)
n,ε

nBθ
A

= −
(
∂p

∂β

)
n,ε

nBθ
A

, (C15)

where in the second equality we have re-absorbed the scaling parameter into the reaction

rate ε−1
A A → A.

If we instead make the assumption that B is also a fast parameter, then it is easy to see

that the affinity would be an entirely fast variable, that is βslow = 0 automatically. Repeating

the analysis, the invariant manifold would now be ϕ(X) = −nBθ/A, and as a consequence

the pressure in the energy (as well as Euler) equation

p = p

(
n, ε,−nBθ

A

)
= peq + Πd . (C16)

This shows that, in the case when B is fast the bulk-viscous correction enters already at

lowest order. The corrections to this are second order in β, beyond the regime of validity of

the theory (linear in β), and hence cannot be trusted. In essence, whatever assumption we

make for B (being fast or slow), the bulk viscosity result is the same.

Appendix D: Integrating out the electron fraction

1. Revisiting the thermodynamics

As explained in section III, where we developed the bulk-viscosity argument in terms of

the affinity β, we may equivalently work with the electron fraction Ye. Given this, we want

to revisit the path that we followed in the main text, and run through the two-timescale

argument again, now working with the electron fraction. As we will see, this also results in

a correction term to the pressure, which will be naturally expressed in terms of derivatives

involving the equilibrium electron fraction. Given this, it is natural to set the stage by

revisiting the relevant thermodynamics results.

As the affinity β is (roughly speaking) the thermodynamically conjugate variable to the

electron fraction, it makes intuitive sense to start by considering the following thermody-
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namical potential

g = s− ne
β

T
(D1)

such that

dg =
1

T
dε− µn

T
dn− ned

(
β

T

)
(D2)

Exactly as we did for the entropy in section IV, we can then expand g around equilibrium.

There will now be a first order term in β, which provides the “formal definition” of the

equilibrium electron number density, neq
e . We get

g(n, ε, β/T ) = seq(n, ε)− neq
e

β

T
+

1

2
g2

(
β

T

)2

, (D3)

where

neq
e =

∂g

∂(β/T )

∣∣∣
β=0

, and g2 =
∂2g

∂ (β/T )2

∣∣∣
β=0

(D4)

We can then work out the expansion (to first order in β) for ne as

ne(n, ε, β) = neq
e (n, ε)− g2

β

T
(D5)

and use it in the definition of g to arrive at

g = seq +
1

2
s2β

2 − neq
e

β

T
+ g2

(
β

T

)2

. (D6)

Comparing this with the expansion above we identify

g2(n, ε) = −T 2
eqs2 = −Teq

(
∂β

∂ne

)−1

n,ε

(D7)

Using this result and working out the expansion for the thermodynamical variables from g,

we obtain (after linearizing in β and introducing Y eq
e = neq

e /n)

T = T eq + n

(
∂Y eq

e

∂ε

)
n

T eqβ , (D8a)

µn = µeq +

[
µeqn

(
∂Y eq

e

∂ε

)
n

+ n

(
∂Y eq

e

∂n

)
ε

− Y eq
e

]
β , (D8b)

Ye = Y eq
e −

(
∂β

∂Ye

)−1

n,ε

β . (D8c)

Combining the result with the Gibbs relation we can work out the pressure (and the “ther-

modynamical” bulk viscosity)

p(n, ε, β) = peq(n, ε) + p1β = peq + Πt (D9)
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with

p1 = n

[
(peq + ε)

(
∂Y eq

e

∂ε

)
n

+ n

(
∂Y eq

e

∂n

)
ε

]
. (D10)

The take home message is that we have two equivalent expressions for the bulk-viscosity

purely from thermodynamical arguments: this is always written as Πt = p1β, where p1 can

be either written as in eq. (15) or (D10). These results are thermodynamically correct as

long as the linearization in β is valid (i.e., the system is close to chemical equilibrium),

independently of the modelling of the relaxation towards equilibrium.

2. Invariant manifold method with the electron fraction

Let us now run through the invariant manifold argument working with the electron frac-

tion. The first step is to rewrite the equation of motion for the electron fraction as

ua∇aYe =
Γe

n
= −A(Ye − Y eq

e ) (D11)

where we have first taken the sub-thermal limit Γe = −γβ and then expanded around

equilibrium8. We then assume, as in section V, that the electron fraction evolves on faster

timescales than the other variables. This means we are effectively considering the system of

equations

d

dt

n
ε

 = −

 nθ

(p+ ε)θ

 , (D12a)

d

dt

(
Ye

)
= −

(
ε−1A(Ye − Y eq

e )
)
. (D12b)

where we have made explicit that the fast behaviour arise from A as explained in ap-

pendix C 4. Again, the linear fast case of appendix C 3 is relevant, giving that the invariant

manifold is the equilibrium surface. This immediately tells us that, to lowest order, the

approximated equations describe a reactive fluid for which chemical equilibrium is restored

immediately on the dynamical timescale. Including the first order corrections to the approx-

imated equations—simply drawing on the results from [45] and appendix C 3—we obtain

8 Let us note that, as is clear from the last of eq. (D8), Ye = Y eq
e if and only if β = 0, and that in the

sub-thermal limit this means Γe(Ye = Y eq
e ) = 0.
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d

dt

n
ε

 = −

 nθ

(peq + ε+ Πd)θ

 (D13a)

where

Πd =
n

γ

(
∂β

∂Ye

)−1

n,ε

(
∂p

∂Ye

)
n,ε

[
(peq + ε)

(
∂Y eq

e

∂ε

)
n

+ n

(
∂Y eq

e

∂n

)
ε

]
θ (D14)

Now, using the fact that (
∂p

∂β

)
n,ε

=

(
∂p

∂Ye

)
n,ε

(
∂β

∂Ye

)−1

n,ε

(D15)

along with the two alternative formulae for p1 eqs. (18) and (D10) we observe the (pleasing)

consistency with the result in appendix C 5. Exactly as in section V, by integrating out the

fast variable we pick up an additional contribution to the pressure that corresponds to a

bulk-viscous response.

3. Partially resolved reactions and double counting

Let us now consider the situation where some part of the reactions are slow enough that

we can capture them, and the rest is not. As an example, we may think the separation

between the modified and direct Urca processes. Even though this might be somewhat

artificial, the key point is that we assume a clear scale-separation between two types of

reactions. We do so as we are only interested in a proof of principle argument here. We

want to show the problems in constructing a consistent bulk viscous approximation in this

case.

Let us start from the equation for the electron fraction, written in terms of the reaction

rate. We define the fast/slow part of the total creation rate as discussed in appendix C 4

Γf = lim
ε→0

(εΓe) , Γs = Γe −
1

ε
Γf , (D16)

and hence split the electron fraction into its fast and slow contributions Ye = Ys + Yf

according to
d

dt
Ys =

Γs
n
, and

d

dt
Yf =

1

ε

Γf
n
. (D17)

We can think of Γf as a function of (n, ε, Ys + Yf ) and define a fast equilibrium fraction

Y eq
f such that Γf (n, ε, Ys + Y eq

f ) = 0. It is then possible to expand the equation for the fast
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variable as
d

dt
Yf =

1

ε

∂Γf
∂Ye

∣∣∣
Ye=Ys+Y eq

f

(Yf − Y eq
f ) . (D18)

Note that, because the two fractions must add up to the total electron fraction, we have

Y eq
f = Ye − Ys, namely the equilibrium fast fraction Y eq

f = Y eq
f (n, ε, Ys). As for the slow

reaction rate, we do not need to expand it around equilibrium because this is assumed to

be resolved in the simulation. Applying the results of appendix C (including the first order

corrections) we obtain

d

dt


n

ε

Ys

 =


−nθ

−(p+ ε+ Πd)θ

Γs − 1
n

(
∂Γs

∂Ye

)
n,ε

(
∂p
∂Ye

)−1

n,ε
Πd

 , (D19)

with

Πd =

{[
(p+ ε)

(
∂Y eq

f

∂ε

)
n,Ys

+ n

(
∂Y eq

f

∂n

)
ε,Ys

]
θ −

(
∂Y eq

f

∂Ys

)
n,ε

Γs
n

}(
∂Γf
∂Ye

)−1

n,ε

(
∂p

∂Ye

)
n,ε

,

(D20)

and everything is evaluated at Yf = Y eq
f . This argument then shows that, if there are

both fast and slow reactions in the system, and we are trying to capture the effect of

the fast/unresolved ones via a bulk-viscosity like contribution, we need to tread carefully,

as the introduction of the bulk viscosity also impacts on the resolved reaction rates, and

the rates impact on the definition of equilibrium. This argument provides a quantitative

demonstration of the “double counting” issue raised in [29].

Appendix E: What bulk viscous pressure approximation is suitable?

In the regime where the reactions need to be approximated as a bulk viscous pressure there

are many possible ways in which such an approximation can be constructed. The standard

first order form could be used, where the bulk pressure depends on a (data dependent)

coefficient multiplied by the expansion associated with the fluid motion [21]. Alternatively, in

frequency space the bulk pressure can be written as a term depending on the thermodynamics

multiplied by a function of frequency. In this case the “true” (Cattaneo) result differs from

the first order (“Navier Stokes”) result only in the form of the frequency term.

Intuitively (see the discussion around fig. 1) we have argued that these two different
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bulk viscous approximations should be close to each other, as long as we are considering

frequencies below the resonant peak. Here we make that argument more quantitative.

1. Limiting frequency space

We are interested in the low frequency part of the pressure that can be captured in a

numerical simulation. We will therefore assume that we are only interested in frequencies

ω̂ < 1 (“to the left of the peak”), and that there is a hard cut-off at ω̂∆ ∼ 2π/(A∆t)

(the numerical scheme is spectral like and captures all frequencies available on the grid).

Therefore

Π =

∫ ∞
−∞

dω̂ H

(
1−

∣∣∣∣ ω̂ω̂∆

∣∣∣∣) p1β = 2

∫ ω̂∆

0

dω̂ p1β. (E1)

2. Bounding the difference

We want the relative difference between the two bulk viscous pressure approximations,

which is

E =
|ΠCattaneo − ΠNS|

|ΠNS|
. (E2)

To compute this we assume that we can bound the correction terms as powers of the fre-

quency, as

C−ω̂
a < nBp1 < C+ω̂

b, (E3)

where 0 > a > b > −2 is needed for the results to converge. This seems reasonable for

Kolmogorov turbulence, but the range of these coefficients (C±, a, b) has an impact on the

result.

From this assumption we have

2

∫ ω̂∆

0

dω̂ C−ω̂
1+a < |ΠNS| < 2

∫ ω̂∆

0

dω̂ C+ω̂
1+b, (E4)

giving
2C−
2 + a

ω̂2+a
∆ < |ΠNS| <

2C+

2 + b
ω̂2+b

∆ . (E5)

To bound the pressure difference, first write

|ΠCattaneo − ΠNS| =
∣∣∣∣nBp1ω̂

(
ω̂2

1 + ω̂2

)∣∣∣∣ (E6a)

=
∣∣nBp1ω̂

3
∣∣+O(ω̂5). (E6b)
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From this we get
2C−
4 + a

ω̂4+a
∆ < |ΠCattaneo − ΠNS| <

2C+

4 + b
ω̂4+b

∆ . (E7)

Using the appropriate bound for numerator and denominator in E , it follows that

E < C+

C−

2 + a

4 + b
ω̂2+b−a

∆ . (E8)

3. Interpretation

As a > b and a − b < 2 we see the difference between the two approximations is, in the

frequency range (ω̂∆ < 1) of interest, of order E < O(ω̂c∆) where c ∈ (0, 2). If we expect

a ' b then E < O(ω̂2
∆). Therefore the difference between the two approximations will be

small until we are close to ω̂∆ = 1, which is the resonant frequency peak. This supports the

arguments made in connection with the results in fig. 1.
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