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ABSTRACT 56 

Background and Aims: Over 10% of hepatocellular carcinoma (HCC) cases recur 57 

each year, even after surgical resection. Currently, there is a lack of knowledge about 58 

the causes of recurrence and the effective prevention. Prediction of HCC recurrence 59 

requires diagnostic markers endowed with high sensitivity and specificity. This study 60 

aims to identify new key proteins for HCC recurrence and to build machine learning 61 

algorithms for predicting HCC recurrence.  62 

Methods: The proteomics data for analysis in this study were obtained from the 63 

Clinical Proteomics Tumor Analysis Consortium (CPTAC) database. We analyzed 64 

different proteins based on cases with or without recurrence of HCC. Survival 65 

analysis, Cox regression analysis, and area under the ROC curves (AUROC > 0.7) 66 

were used to screen for more significant differential proteins. Predictive models for 67 

HCC recurrence were developed using four machine learning algorithms.  68 

Results: A total of 690 differentially expressed proteins between 50 relapsed and 77 69 

non-relapsed hepatitis B-related HCC patients were identified. Seven of these proteins 70 

had an AUROC > 0.7 for 5-year survival in HCC, including BAHCC1, ESF1, 71 

RAP1GAP, RUFY1, SCAMP3, STK3, and TMEM230. Among the machine learning 72 

algorithms, the random forest algorithm showed the highest AUROC values 73 

(AUROC: 0.991, 95%CI 0.962-0.999) for identifying HCC recurrence, followed by 74 

the support vector machine (AUROC: 0.893, 95%Cl 0.824-0.956), the logistic 75 

regression (AUROC: 0.774, 95%Cl 0.672-0.868), and the multi-layer perceptron 76 
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algorithm (AUROC: 0.571, 95%Cl 0.459-0.682).  77 

Conclusions: Our study identifies seven novel proteins for predicting HCC 78 

recurrence and the random forest algorithm as the most suitable predictive model for 79 

HCC recurrence. 80 

 81 

Keywords: Recurrence of hepatocellular carcinoma, Proteomics, CPTAC database, 82 

Machine learning models 83 
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INTRODUCTION 88 

Hepatocellular carcinoma (HCC) is the most common form of liver cancer and 89 

accounts for ~90% of cases 1, 2. The estimated number of new cases of HCC 90 

worldwide in 2020 is about 906,000, and the number of deaths was about 830,0003. 91 

HCC ranks 6th in the total of new cases and 3rd in the number of deaths amongst all 92 

cancers 3. The prognosis of HCC is quite poor, and the data from the Global Cancer 93 

Survival Trends Surveillance demonstrates that the 5-year net survival rate of HCC 94 

worldwide from 2000-2014 ranged from ~5% to 30%; the 5-year net survival rate of 95 

HCC in China from 2010-2014 was about 14% 4. Hepatitis B virus (HBV) and 96 

hepatitis C virus (HCV) remain the most important risk factors for HCC 5. An 97 

essential element for improving the prognosis of patients with HCC is the early 98 

identification of recurrence and the implementation of appropriate therapeutic 99 

strategies. Circulating levels of alpha-fetoprotein and PIVKA-II are used to detect 100 

HCC and are closely associated with HCC prognosis. However, these two biomarkers 101 

are sometimes increased in patients with hepatitis 6. Therefore, exploring new 102 

biomarkers with greater sensitivity and specificity for HCC recurrence is an urgent 103 

challenge in clinical practice. 104 

 105 

Proteomics plays an important role in cancer research, both in terms of biomarkers, 106 

antitumor drugs and new therapeutic targets7. Proteomics approaches based on mass 107 

spectrometry have gained popularity in oncological research. These proteomics 108 
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approaches have powerful capabilities for protein characterization, quantification, and 109 

post-translational modification analysis, and several results have been reported 8-10. 110 

The CPTAC (Clinical Proteomic Tumor Analysis Consortium) database has abundant 111 

proteomic data for mining. The advantages of this database are that while most other 112 

databases analyze gene expression at the mRNA level, the CPTAC database describes 113 

gene expression at the protein level, closer to the most primitive manifestation of the 114 

disease. Furthermore, the CPTAC database contains a large amount of clinical data, 115 

allowing analysis of the relationship between protein, survival and clinical conditions 116 

11-13. Hence, the CPTAC database was used for proteomic data mining to find new 117 

protein biomarkers for HCC recurrence. 118 

 119 

It is known that algorithms built on markers tend to have better diagnostic efficacy 120 

than single indicators. Machine learning algorithms (MLA) have several advantages 121 

over traditional statistical models. For example, MLA is less likely to overlook 122 

unexpected predictor variables, can help identify important influences and more 123 

marginal ones, and facilitates continuous updating and optimization of algorithms14. 124 

MLA is a useful tool in the field of liver disease research, and the random forest 125 

algorithm has been used to build a predictive model for significant fibrosis in non-126 

alcoholic fatty liver disease14. The support vector machine (SVM), the random forest 127 

algorithm, the logistic regression, and other algorithms have also been used to detect 128 

HCC 15. Though some algorithms have been previously established to predict HCC 129 

recurrence, they still fall short of meeting clinical requirements. A few models have 130 
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been developed specifically to detect tumor recurrence after liver surgical resection, 131 

including the Singapore liver cancer recurrence score and the Surgery-Specific Cancer 132 

of the Liver Italian Program (SS-CLIP). However, none of these has been 133 

independently validated and none have excellent area under the ROC curve (AUROC) 134 

16. Therefore, a more precise prognostic and recurrent prediction model is urgently 135 

needed. We tried to use MLA to build predictive models for HCC recurrence to 136 

provide insights to improve the prognosis of HCC. 137 

 138 

METHODS 139 

Data sources  140 

The data analyzed in this study were obtained from the publicly available CPTAC 141 

(Clinical Proteomic Tumor Analysis Consortium) database. In the CPTAC database, 142 

genomic and proteomic data were integrated to identify and characterize the full range 143 

of proteins found in normal and tumor tissues and to identify potential biomarkers for 144 

tumors 11, 17. We downloaded the data entitled integrated proteogenomic 145 

characterization of HBV-related HCC for this analysis18. From the CPTAC database, 146 

recurrence group (n = 50) and non-recurrence group (n = 77) of hepatitis-B-related 147 

HCC samples were obtained after excluding HCC patients with no recurrence 148 

information. The Tumor Immune Estimation Resource (TIMER) database was used 149 

for the relationship between key differentially expressed proteins (DEPs) and immune 150 

infiltrating cells. The Human Protein Atlas (HPA) and TIMER databases were used to 151 
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explore the relationship between DEPs and HCC 19-21. Data from 152 

immunohistochemistry were extracted in the HPA database. The flow chart shown in 153 

Figure 1 summarizes the study's research idea. 154 

 155 

Machine learning algorithms 156 

According to the learning method, machine learning can be divided into supervised, 157 

unsupervised, and reinforcement learning22. Supervised learning refers to computer 158 

training with some known inputs and corresponding correct output data to predict the 159 

results of other input data; supervised learning is the most common form of learning 160 

in medical research, which is commonly used in classification and regression 161 

problems. We developed four supervised learning algorithms for predicting HCC 162 

recurrence, including the support vector machine (SVM), the multi-layer perceptron 163 

(MLP), the logistic regression, and the random forest algorithms, respectively. The 164 

random forests are integrated by decision trees, which emerged to address the 165 

relatively weak generalization ability of decision trees23. The different decision trees 166 

in a random forest are not correlated. Whenever a classification task was conducted, 167 

each decision tree in the random forest was assessed separately, and each decision tree 168 

yielded its own classification result. The random forest would take the final result of 169 

whichever decision trees had the most classifications 14. The random forest can be 170 

highly synchronized for the training process, which has a speed advantage for training 171 

large samples in the era of big data. SVM is a sparse and robust classifier using a 172 

hinge loss function to compute empirical risk and adds a regularization term to the 173 
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solution system to optimize structural risk 24. The core of SVM was proposed between 174 

1992 and 1995 and is the next hot research topic after neural networks. SVM is 175 

characterized by its ability to simultaneously minimize empirical error and maximize 176 

geometric edge areas and to solve small sample size problems25. MLP has a long 177 

history of application in medical research, especially in image classification, detection 178 

and prediction26, 27. MLP is a forward-structured artificial neural network, which can 179 

have multiple hidden layers in between, in addition to the input and output layers. It is 180 

proposed mainly to solve the nonlinear problems that a single-layer perceptron cannot 181 

solve28. The MLP does not specify the number of hidden layers; therefore, the number 182 

of layers can be chosen according to the individual needs 29. There is also no limit to 183 

the number of neurons in the output layer. Logistic regression is a classical algorithm, 184 

which is often used for dichotomous information. 185 

 186 

Statistical analysis 187 

This study used R (version 4.0.1), R Bioconductor, and the Perl language for 188 

statistical analyses. Fold change (FC) indicates the expression ratio between two 189 

samples (groups). We selected differentially expressed proteins based on |log2FC|>1 190 

and a P-value < 0.05 30. Survival analysis, Cox regression analysis, and ROC curves 191 

were used to further assess differentially expressed proteins. Survival-related proteins 192 

were those with significant p-values that were selected based on the Kaplan-Meier 193 

analysis. The random forest prediction model was mainly based on the random forest 194 

and varSelRF packages31. The SVM model used mainly the svm function from the 195 
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e1071 package, and the MLP model was built mainly using the keras package 32. 196 

 197 

RESULTS 198 

Differentially expressed proteins (DEPs) and functional enrichment analysis  199 

Using |log2FC|>1 and a P-value < 0.05, 690 DEPs were attained between the 200 

recurrence and non-recurrence HCC groups (Supplementary Table 1). To determine 201 

the function of the DEPs, gene ontology (GO) enrichment and KEGG pathway 202 

analyses were utilized. GO analysis revealed that DEPs exhibited significant 203 

enrichment in three biological processes (BPs): mitochondrial electron transport, 204 

mitochondrial respiratory chain complex I assembly, and Cajal body protein 205 

localization. Molecular function (MF) was significantly enriched in oxido-reductase 206 

activity, Ras GTPase binding, phospholipid binding, and NADH dehydrogenase 207 

activity. Cell components (CC) were mainly enriched in the early endosome, oxido-208 

reductase complex, respiratory chain complex, and respiratory chain complex 1 209 

(Figure 2A). As per the KEGG pathway analysis, DEPs were enriched in pathways 210 

related to neurodegeneration, PD-L1 expression, and PD-1 checkpoint pathways 211 

involved in cancer, chemical carcinogenesis, oxidative phosphorylation, nonalcoholic 212 

fatty liver disease, and hepatitis B (Figure 2B). 213 

 214 

Constructing and analyzing protein-protein interaction (PPI) network  215 

A PPI network based on the interactions between DEPs was developed to delve into 216 

the link between DEPs at the protein level (Supplementary Figure 1). The PPI 217 
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network was constructed using a total of 1,054 interactions and 297 nodes, with the 218 

top ten most contiguous nodes between genes, being UBA52, AKT1, LCK, SHC1, 219 

PTGES3, CD4, NDUFB7, NDUFB8, CCT4 and PTPN6. 220 

 221 

Survival analysis 222 

Survival information was garnered from the CPTAC database, and we found 39 223 

survival-related proteins by Kaplan-Meier analysis (all P < 0.05) (Supplementary 224 

Table 2). Based on this result, we conducted univariable and multivariable Cox 225 

regression analyses. Subsequently, 32 (Supplementary Table 3) and 18 226 

(Supplementary Table 4) differential proteins were obtained. Next, 1-year, 3-year, 5-227 

year survival ROC curves were performed from the 18 independent prognostic 228 

proteins. According to the criterion of the area under the 5-year survival ROC 229 

curves > 0.7, seven important proteins, including BAHCC1, ESF1, RAP1GAP, 230 

RUFY1, SCAMP3, STK3, TMEM230, were screened (Supplementary Figure 2). 231 

The Kaplan-Meier survival curves for seven DEPs are shown in Figure 3. In the 232 

Figure 4 are reported the heat map of 7 key differentially expressed proteins between 233 

the recurrence and non-recurrence HCC groups. 234 

 235 

Performance of machine-learning models for HCC recurrence 236 

Figure 5 (A) illustrates the performance of four machine-learning models based on 237 

seven key proteins in predicting HCC recurrence. The AUROC curves for SVM, 238 

MLP, logistic regression, and random forest were 0.893 (95%Cl 0.824-0.956), 0.571 239 
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(95%Cl 0.459-0.682), 0.774 (95%Cl 0.672-0.868), and 0.991 (95%Cl 0.962-0.999), 240 

respectively. Among these four models, the random forest model performed best. 241 

Figure 5 (B) also shows a feature-importance plot from the random forest model. The 242 

seven variables with the highest importance (from high to low) were: ESF1, 243 

SCAMP3, RAP1GAP, BAHCC1, STK3, RUFY1, TMEM230. 244 

 245 

Immune cell infiltration analysis and immunohistochemistry  246 

We also examined the relationship between key differential proteins and immune cell 247 

infiltration. We found that ESF1, SCAMP3, RAP1GAP, BAHCC1, STK3, and 248 

RUFY1 were correlated to B Cell, CD8+ T Cell, CD4+ T Cell, Macrophage, 249 

Neutrophil, and Dendritic Cell (Figure 6). In the HPA database, we used 250 

immunohistochemistry to compare the expression of these key differential proteins in 251 

the normal liver tissue and HCC tissue. In Supplementary Figure 3, RUFY1, 252 

TMEM230, and STK3 were absent or only weakly expressed in the normal hepatic 253 

tissue, but were moderately to strongly expressed in the HCC tissue. Meanwhile, 254 

ESF1 was expressed at a low level in non-tumor tissues but at a high level in HCC 255 

tissues. Additionally, the TIMER database revealed that ESF1, SCAMP3, RAP1GAP, 256 

BABCC1, STK3, and RUFY1 were highly overexpressed in HCC patients 257 

(Supplementary Figure 4).  258 

 259 

DISCUSSION 260 

To our knowledge, there are no reliable and accurate predictive tools for HCC 261 
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recurrence so far. Our study has uncovered important proteins closely associated with 262 

HCC recurrence from a proteomic perspective and has constructed the most 263 

appropriate machine learning prediction model for HCC recurrence.  264 

 265 

In the present study, we found that 690 differential proteins were associated with HCC 266 

recurrence. To find proteins of more clinical value, Cox regression and ROC curve 267 

analyses were performed. The most important seven of these proteins (ESF1, 268 

SCAMP3, RAP1GAP, BAHCC1, STK3, RUFY1, TMEM230) were independent 269 

influencers of HCC prognosis and had a good predictive value for 5-year survival in 270 

HCC. 271 

 272 

The key proteins identified have also been confirmed in previous studies. ESF1 was 273 

significantly associated with survival in HCC33. Kang et al. found that SCAMP3 274 

might become a target for HCC therapy due to its potential role in promoting 275 

metastasis in HCC cells through the EGFR-MAPK p38 signaling pathway 34. 276 

Additionally, Zhang also showed that SCAMP3 expression was correlated with 277 

several survival-related genes. Therefore, SCAMP3 might be a diagnostic or 278 

prognostic biomarker for HCC35. Kim et al. reported that when Hippo kinases Mst1 279 

and Mst2 in the liver were abrogated in mammals, they led to the rapid formation of 280 

HCC and activated various molecules and associated signaling, including STAT3 36. 281 

Chen et al. suggested that RUFY1 was involved in the function of Rab14, promoting 282 

the metastasis of HCC cells 37. 283 
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 284 

In this study, we used multiple machine learning algorithms to build predictive 285 

models for HCC recurrence, and found that the random forest algorithm had the best 286 

diagnostic performance. The random forest is highly accurate due to its use of 287 

integrated algorithms, and outperform most individual algorithms. The introduction of 288 

randomness makes the random forest algorithm less prone to over-fitting and 289 

performs well on the test set. Due to the combination of trees, a random forest 290 

algorithm can process non-linear data. Moreover, the random forest algorithm can 291 

handle high-dimensional data that is either categorical or continuous data. Moreover, 292 

the random forest algorithm does not require normalization of the dataset, and it is 293 

quick to train. 294 

 295 

To explore whether these seven key DEPs have other values, we analyzed their links 296 

to the immune microenvironment and the occurrence of HCC. We found that these 297 

key differential proteins were associated with immune infiltrating cells. The tumor 298 

microenvironment (TME) is a complex and evolving environment whose composition 299 

varies by tumor type and consists mainly of immune cells, stromal cells, blood 300 

vessels, and extracellular base (ECM), of which immune cells are key components of 301 

TME38. Furthermore, an increasing number of investigators have found that 302 

infiltrating immune cells in hepatocellular carcinoma TME may be related to 303 

prognosis of HCC38. Studies have also shown that M1-type macrophages, CD4+T 304 

cells, CD8+T cells and B cells are all associated with a good prognosis of HCC39, 40. 305 
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Conversely, M2-type macrophages, regulatory T cells, regulatory B cells are 306 

associated with a poor prognosis of HCC 41, 42. The relationship between these DEPs 307 

and immune cells will provide more evidence to further enhance the efficacy of 308 

immunotherapy for HCC and find new strategies to effectively curb HCC recurrence 309 

and metastasis prevention 43, 44. In the HAP and TIMER databases, we also found that 310 

these key proteins were differentially expressed in both HCC and normal liver tissues, 311 

meaning that these proteins are related to both the occurrence of HCC and the 312 

recurrence of HCC, and are HCC important markers that merit further investigations.  313 

 314 

There are also some limitations to this study. Firstly, the sample size of the study was 315 

limited to the training set data, and there was insufficient data to validate the 316 

diagnostic performance of the random forest prediction model. Secondly, the findings 317 

of this study were only derived from data mining and were not confirmed in clinical 318 

specimens or basic research. Thirdly, as machine learning resembles black blindness, 319 

the algorithms cannot derive a specific formula. Besides, this study is only a 320 

preliminary exploration of the priority of the algorithms, not the application of the 321 

algorithms. Fourthly, the association between these key proteins and microvascular 322 

infiltration of liver cancer cells has not been clearly illustrated.  323 

 324 

In conclusion, we screened key proteins associated with recurrence of HCC by 325 

bioinformatics methods and found that the random forest algorithm has an excellent 326 

predictive value for recurrence of HCC. These screened proteins may account for new 327 
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diagnostic biological markers for HCC recurrence or targets for therapies, setting a 328 

new direction for future scientific exploration in this field.  329 
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FIGURE LEGENDS 450 

Figure1. The flow chart summarizing the screening process of important proteins. 451 

Figure 2. Functions of the identified differentially expressed proteins using GO 452 

enrichment (A) and KEGG pathway analysis (B). 453 

Figure 3. Kaplan-Meier survival curve analysis for seven differentially expressed 454 

proteins. 455 

Figure 4. Heat map of 7 key differentially expressed proteins between the HCC non-456 

recurrence group (marked as “A”) and the HCC recurrence group (marked as “B”) 457 

Figure 5. (A) ROC curve comparisons of the different algorithms. 458 

(B) Ranking of the importance of the seven differentially expressed proteins.  459 

Figure 6. The relationship between key differentially expressed proteins and 460 

infiltrating immune cells. 461 
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SUPPLEMENTARY MATERIAL 472 

Supplementary Table 1. 690 differentially expressed proteins.  473 

Supplementary Table 2. 39 survival-related proteins by Kaplan-Meier survival curve 474 

analysis (P < 0.05). 475 

Supplementary Table 3. Univariable Cox regression analysis of the proteins (P < 476 

0.05). 477 

Supplementary Table 4. Multivariable Cox regression analysis of the proteins (P < 478 

0.05). 479 

Supplementary Figure1. The protein-protein interaction network. 480 

Supplementary Figure2. Survival ROC curves of seven important proteins (area 481 

under of 5-years survival ROC curves > 0.7). 482 

Supplementary Figure 3. Representative protein expressions of RUFY1, TMEM230, 483 

STK3, and ESF1 explored in the HPA database. 484 

Supplementary Figure 4. ESF1, SCAMP3, RAP1GAP, BABCC1, STK3, and 485 

RUFY1 proteins significantly over-expressed in HCC. LIHC: Liver Hepatocellular 486 

Carcinoma. 487 
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