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Introduction  

Motile cilia (Figure 1a) are organelles that extend from the apical membranes of differentiated 

epithelial cells [1].  Cilia waveform is coordinated by their ultrastructure and microtubule 

arrangement e.g., ‘9+2’ cilia (Figure 1b) perform metachronal ‘whip-like’ movement, ‘9+0’ 

embryonic nodal cilia have rotational movement.  Axonemal dyneins are adenosine triphosphate 

(ATP) driven, mechano-chemically regulated, motor proteins responsible for cilia motility.  Over 200 

‘9+2’ cilia per cell, line mucosal surfaces of several body sites (e.g., airway, reproductive oviducts, 

brain ependyma) where mucociliary clearance (MCC) and fluid flow is required.  Airway MCC is 

critical for host defense, removing inhaled pathogens, particulates and mucus (Figure 1c).   

Primary ciliary dyskinesia (PCD) is mostly an autosomal recessive condition (except rare autosomal 

dominant and X-linked cases) affecting approximately 1:7554 individuals [2].  MCC impairment 

causes recurrent airway infection, chronic wet cough, progressive irreversible lung damage, 

bronchiectasis and mucus obstruction [3].  Mutations in over 50 different genes cause different cilia 

abnormalities, some causing a worse prognosis than others.  Genetic testing (sequencing a panel, 

whole exome or whole genome) can identify up to 70% of PCD [4, 5]. Variants of unknown 

pathogenicity require functional and structural diagnostic tests to elevate the status of these 

variants or discount them.  Secondary ciliary dyskinesia (SCD) is not inherited or caused by 

structurally defective cilia.  Airways diseases such as idiopathic bronchiectasis [6], chronic 
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obstructive pulmonary disease [7], and asthma [8] incur SCD due to cellular damage.  Thick mucus in 

cystic fibrosis can prevent normal ciliary waveform [9].  

Airway MCC in vivo has been studied with clearance time for dye [10], saccharin and/ or 

charcoal [11, 12] or radioactive isotopes [13].  Recently, in vivo MCC has been advanced through 

optical coherence tomography [14, 15].  Ciliary function can be studied using ciliated single cell 

organelles e.g., Chlamydomonas R. [16], small organisms e.g., planaria [17], nasal/ tracheal brushing 

biopsies, or surgical explants from larger animals such as mouse [18, 19], rat, guinea-pig, rabbit, dog, 

pig and cow [20] as well as human ex vivo and in vitro cell culture samples.  

 

State-of-the-art ciliary function testing   

Airway cilia sampling 

Thin layers/ clusters of epithelial cells are preferable for live cilia imaging. Nasal epithelial cell 

samples may be acquired by curette [21] or brushing biopsy [22, 23].  Tracheal or bronchial epithelial 

cell samples can be obtaining by brushing biopsy during bronchoscopy [24].  Excessive nasal mucus 

that impedes access to ciliated epithelium can be reduced by nasal douching with saline prior to 

sampling [22].  Excess mucus may be reduced post-sampling by adding additional medium, agitating 

and centrifuging to re-pellet ciliated cells. ALI-cultures may be washed in processing to reduce 

mucus build-up before use [22].  Inhaled anaesthetics depress ciliary function [25, 26], therefore 

anaesthetic or topical nasal agents that potentially modify ciliary function should be avoided or 

washed out before baseline measurements.  Sampling and infection damage increase SCD [27, 28].  

Donors should be 4-6 weeks free of infection, sampling methods need to be practiced, and cell 

culture considered to maximise sample quality and ciliary function interpretation [29, 30]. 

Ciliary beat frequency analysis  

Ciliary beat frequency (CBF) is a quantitative measure of cilia speed.  CBF is environmentally 

dependent (e.g., temperature, pH, medium type, chemical additives, mechanical vibration and time 

from sampling) and varies by sample, donor or organism.  CBF is reduced on single cells therefore 

measurements from intact cell clusters are representative [31].  Chilvers and O’Callaghan [32] 

demonstrated that different methods of CBF measurement are not interchangeable.  The 

photomultiplier [33] and photodiode [34] methods both significantly under-recorded mean CBF 

compared to digital high-speed video with manual analysis, under standardised 37°C and pH 7.3 

conditions (n=200 measurements per method across 20 donors) [32].  The relationship between CBF 

and temperature is sigmoidal (linear between 7°C and 32°C) [35].  Testing at unregulated ambient 



temperature or below 32°C risks increased CBF variability and reduced reproducibility.  Local 

normal/ reference CBF ranges need to be established with own methods and equipment, and are 

not transferable across centres.   

Advances in ciliary beat pattern analysis  

High-speed video microscopy analysis (HSVA) facilitates both CBF and ciliary beat pattern (CBP) and 

waveform analysis in real-time and slow motion adding invaluable evidence.  A light microscope 

(inverted or upright) requires a long working distance, high numerical aperture (plan apochromatic) 

and magnification objective lens (e.g., 63x and above).  Lower lens magnifications or lower camera 

digital resolutions (Southampton uses a Photron FASTCAM MC2 with 512x512 pixel resolution) risk 

poor resolution image data that is more challenging and often impossible to interpret e.g., for subtle 

reductions in ciliary beat amplitude and flexibility.  A high-speed video camera should be able to 

image upwards of 120 frames per second (fps), ideally 500 fps, to acquire enough frame-by-frame 

ciliary beat pattern detail.  For example, if cilia moving at 20 Hz [22, 23, 36] were recorded, 25 

frames per ciliary beat would be taken at 500 fps opposed to only 6 frames if recorded at 120 fps.  

For PCD diagnostics, CBP analysis is conducted using software that facilitates slow-motion 

playback (30-60 fps recommended [30]).  CBP analysis is mostly subjective with arbitrary measures 

of side and top views [36] (see [22] with supplementary videos https://zenodo.org/record/4115168, 

Figure 1e, f). It is imperative that investigators develop ciliary function analysis expertise to conduct 

reproducible data.  The European Respiratory Society (ERS) Clinical Research Collaboration (CRC) 

BEAT-PCD http://beat-pcd.squarespace.com, the European Reference Center for Rare Lung Diseases 

(ERN-LUNG) https://ern-lung.eu/ and the UK Cilia Network https://www.cilianetwork.org.uk provide 

training and access to researchers and clinicians with expertise in cilia structure and function.  The 

UK PCD diagnostic centers have shared standard protocols and analyse ciliary function (after sample 

equilibration at the microscope, heated to 37°C) within hours of sampling to maintain sample 

integrity [37], also enabling same day results for PCD-likely cases [36].  We [38] and others [39] have 

reported that cooling cilia from 37°C to ambient temperature caused the abnormal ciliary waveform 

in several PCD samples to become less evident, which could risk PCD mis-diagnosis if TEM is normal, 

or testing resources/expertise are limited.   

As well as maintaining a stable sample pH 7.3 (e.g., HEPES buffering or 5% CO2 equilibration), 

addition of a broad-spectrum antibiotic (e.g., penicillin-streptomycin) is advisable to inhibit bacterial 

growth.  It is also important to avoid mechanical-vibrational cilia stimulus and consider how sample 

additives such as ATP, calcium, anaesthetics or mucolytics may affect sample health and ciliary 

function.  If the effect of drug treatment on ciliary function is being assessed, it is important to 
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consider pre-treatment baseline and temporal variability of ciliary function with drug action and 

half-life.  Time-lapse coupled HSVA can facilitate continuous temporal cilia analysis of multiple 

experimental conditions in different wells, from specific x, y, z locations offering data repeatability 

[40, 41].  The caveat of this method is that it relies on the ciliated cells remaining in situ e.g., nasal 

brushing samples grown on plastic or ALI-cultures on membranes, rather than free floating 

spheroids able to move out of position.  

HSVA recordings can be post-hoc analysed to determine mean CBF across a whole field of 

view (FOV) or within a region of interest (ROI).  Manually calculated, CBF (Hz) is equal to the 

recording frame rate (fps) divided by the number of frames for 1 ciliary beat (averaged from 6-10 

separate areas) [36].  CBF and percentage area of ciliary movement can also be measured 

computationally e.g., Sisson-Ammons Video Analysis (SAVA) , ciliaFA [42], Fiji ImageJ with Fast 

Fourier Transform (FFT) custom plugin [22] (Figure 1d) or CiliarMove [43], to name common 

software platforms. When there are mixed beat pattern phenotypes (e.g., static and hyperfrequent 

twitching [4, 18, 36] with high variation in CBF in PCD, a mean CBF is not representative.  When 

subtle beat pattern PCD abnormalities occur in PCD (e.g., HYDIN mutation cases) often with normal 

CBF [5, 36, 44], then only cilia waveform assessment is diagnostically informative.  ALI-culture can be 

employed to regrow cilia in vitro to help identify PCD and reduce patient recall, by removing 

confounding secondary health/ infection issues [22, 23, 45, 46]. Marthin et al., [47] described how 

3D organoids (spheroids) can be cultured from nasal brush samples by preventing cell attachment 

with repeated agitation during the initial 4 hours of incubation.  Single spheroids can be 

immobilised, by flattening between glass slide and cover slip, permitting HSVA on side views of the 

spheroids.  HSVA is a staple validation tool for cilia culture models e.g., employed to determine CBF 

of the advanced ‘airway-on-a-chip’ ALI-cultures amongst other tests [48]; airway epithelial cells are 

differentiated at an ALI under continuous perfusion via a basolateral microchannel.   

HSVA is an important diagnostic and research tool in the field of PCD [4, 49] and when 

conducted by experts has good accuracy to identify PCD patients [36].  Whilst HSVA has good 

diagnostic accuracy it is not available at every diagnostic centre due to limited resources [50].  A 

major challenge for HSVA remains the lack of unified language or quantitative measures to describe 

CBPs for PCD or SCD [51, 52]. 

Quantitative ciliary beat pattern analysis  

Novel quantitative parameters can track the position of a single cilium over an entire cycle of 

beating.  The position of the cilium base as well as the positions of the cilium tip at the start and the 

end of the active stroke are measured in a series of frames, but require repeating on at least 10 



spatially distant individual cilia (per sample) to be representative. The distance travelled by the 

cilium tip or the angle described by the cilium may be calculated through trigonometry [53, 54].  The 

entire cilium position from base to tip can be ‘curve-fitted’ providing data on waveform in space and 

time.  Waveform shape, curvature, and bend amplitude can be mathematically described, and 

kinematics can be applied to measurements of flow velocity [55-59]. Lack of commercial software 

prevents widespread application of these quantitative mathematical descriptors of CBP.  

MCC analysis 

The mucociliary interface consists distinctive gel-like layers, a watery Periciliary Ciliary Layer (PCL) 

and a soluble transporting mucus layer.  Cilia move asymmetrically within the PCL to create flow (at 

low Reynolds number, where viscous forces overcome inertial effects).  The transporting mucus 

layer contains two major heavily glycosylated mucins, MUC5AC and MUC5B and many other globular 

proteins, produced by mucus secreting goblet cells [60].  Mucins enable dynamic mucus attachment 

to cilia to facilitate MCC to protect the airway [61].  MCC, or cilia driven flow, can be quantified by 

dynamically imaging the transport of cellular debris, synthetic microbeads (1 to 3 µm, with or 

without fluorescence) or fluorescent dyes across the surface of tissue explants or ALI-cultures when 

added to the sample’s media.  The benefit of using uniformly shaped microbeads opposed to 

tracking debris, particularly with added fluorescence, is the ease of particle identification by 

microscopy and for velocimetry analysis.  It is important to measure the distance (in x, y, z plane) 

between cilia and microbead or debris item when tracking the velocity, as mucociliary flow rate 

decreases with increased distance from the cilia [62].  Differentiated epithelial cell ALI-cultures 

develop mucus vortices as an artefact of their environment [63].  Microfluidic devices to direct fluid 

flow [64] or culture membrane modifications such as collagen substrate patterning [65] help polarize 

epithelial cell growth which promotes unidirectional cell-cilia alignment. No specific studies have 

assessed the quality of ciliary function in these instances. 

 

Summary  

State-of-the-art ciliary function analysis of airway epithelium underpins PCD diagnostics but also 

enables understanding of how cilia move in health or when temporarily damaged.  Ciliary function 

analysis can underpin investigations of epithelial cell differentiation, integrity, disease, infection and 

drug therapy evaluation in airway culture models [41, 66-68].  

Ciliary function assessment through HSVA is predominantly manually done and requires 

expertise to meaningfully assess CBP.  Quantitative cilia analysis could replace non-standardised, 



subjective assessment to better study subtle CBP changes; the lack of commercially available 

software hinders this.  Artificial Intelligence (AI), used for the first time in the transmission electron 

microscopy assessment of cilia for PCD diagnostics [69], could potentially quantify cilia waveforms 

and to model the ciliary function.  If developed, such platforms will enable future standardisation of 

testing and time-saving.   

 

1984 words 

 

Figure 1: Microscopic cilia assessment by various methods 

a) Scanning electron microscopy of ciliated airway epithelium (scale 10 µm). 

b) Transmission electron microscopy of airway cilia in cross-section.  

c) Diagram demonstrating ciliated airway epithelium and goblet cell secreting mucus into 

the peri-ciliary layer, with direction of ciliary movement and MCC (MCC).  

d) High-speed video microscopy analysis (HSVA) (at 37°C ) of ALI-cultured airway epithelium 

on Transwell insert (20x objective), with Fast Fourier Transform (FFT) 'heat-map' analysis of 

CBF in Fiji ImageJ (scale 100 µm). 

e) Image of ciliated nasal brushing biopsy taken by HSVA (100x objective; scale 10 µm). 

f) QR code for representative HSVA video data before and after ALI-culture to remove 

secondary dyskinesia and verify PCD. 
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