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Abstract

Spatially disaggregated income indicators are typically estimated by using model-based methods
that assume access to auxiliary information from population micro-data. In many countries like
Germany and the UK population micro-data are not publicly available. In this work we propose small
area methodology when only aggregate population-level auxiliary information is available. We use
data-driven transformations of the response to satisfy the parametric assumptions of the used models.
In the absence of population micro-data, appropriate bias-corrections for small area prediction are
needed. Under the approach we propose in this paper, aggregate statistics (means and covariances)
and kernel density estimation are used to resolve the issue of not having access to population micro-
data. We further explore the estimation of the mean squared error using the parametric bootstrap.
Extensive model-based and design-based simulations are used to compare the proposed method to
alternative methods. Finally, the proposed methodology is applied to the 2011 Socio-Economic Panel
and aggregate census information from the same year to estimate the average income for 96 regional
planning regions in Germany.

Keywords: Census; Density estimation; Official statistics; Unit-level models; Small area estimation

1 Introduction

Reliable knowledge of the spatial distribution of income and wealth is essential for evidence-based poli-

cymaking. High spatial resolution direct estimates of income that use household surveys are likely to be

unreliable because of the small sample sizes at the spatial scale of interest. A possible way to overcome

this problem is by using small area estimation (SAE) methods (Rao and Molina, 2015; Tzavidis et al.,

2018). The estimation of income indicators, including non-linear ones, for example the poverty gap and

poverty severity, has been researched extensively (Elbers et al., 2003; Molina and Rao, 2010; Tzavidis

et al., 2018). These indicators are typically estimated by using model-based methods that assume access

to auxiliary information from population micro-data. In developed countries like Germany and the UK,

population micro-data are not publicly available and access to such data is even challenging within gate-

keeper organizations. Instead, population-level auxiliary data are often only available at some aggregate

level.

1



One predominant approach - for estimating the average income in small areas - is the nested error

regression (NER) model proposed by Battese et al. (1988) that borrows strength by using auxiliary

information from the census. The model relies on the assumption that the error terms follow a Gaussian

distribution. In a variety of real-world examples, this assumption may not be satisfied. Especially skewed

variables, like income and consumption, can often not be adequately described by the available auxiliary

variables and therefore lead to error terms that are not normally distributed. One promising approach to

satisfy the assumptions of the NER model is to use fixed logarithmic (Molina and Martı́n, 2018) or data-

driven (Sugasawa and Kubokawa, 2019; Rojas-Perilla et al., 2020) transformations for the dependent

variable. Data-driven transformations contain a transformation parameter that adapts to the particular

shape of the data. Many publications focus on the estimation of the average income under a logarithmic

transformation within the NER model (lognormal model). A general problem is the correction of the bias

when the response is back-transformed to the original scale. For the lognormal model, Karlberg (2000)

proposes a bias-corrected estimator for the small area mean. Chandra and Chambers (2011) present

model-calibrated weights to obtain a bias-correction for a log transformed response variable. Berg and

Chandra (2014) suggest an estimator with minimal mean squared error (MSE). Molina and Martı́n (2018)

also focus on this estimator and develop an analytical MSE estimator. However, in all the research work

mentioned, auxiliary information from population micro-data is required for the bias-correction due to

the back-transformation, which is a strong limitation for data analysts. In contrast, Li et al. (2019)

propose a bias-correction when only aggregate population-level auxiliary information is available. Their

estimator uses the smearing approach of Duan (1983) to build a pseudo-population from the sample data,

which is later adjusted by incorporating population means from the auxiliary information. However, Li

et al. (2019) only discuss results for point estimation and they do not present a MSE estimator. It

should also be mentioned that the estimation of small area means/ averages can be also implemented

with area-level linear mixed regression models (Fay and Herriot, 1979) when only aggregated data for

the survey and the population data are available. For these area-level models, Slud and Maiti (2006)

present an estimator for small area means and its analytical MSE estimator under a log transformed Fay-

Herriot model. Sugasawa and Kubokawa (2017) discuss area-level models for data-driven dual power

transformations.

In this work, we propose methodology for estimating small area means based on the transformed

NER model when only aggregate population-level auxiliary information is available. In the absence of

population micro-data, appropriate bias-corrections for small area prediction are presented. Under the

proposed approach we do not make any parametric assumptions about the auxiliary variables and instead

use aggregate statistics (means and covariances) and kernel density estimation (KDE) to resolve the issue

of not having access to population micro-data. Regarding the estimation of the MSE, we propose a para-

metric bootstrap that captures the uncertainty due to the use of transformations and KDE. We study our

proposed estimator in extensive model-based and design-based simulations and compare the proposed

method to alternative methods for example, the EBP (Molina and Rao, 2010) under transformations (as-

suming the availability of unit-level census data) and the estimator of Li et al. (2019). Results show that,

compared to alternative methods, the proposed methodology leads to comparable results. We also show

that the proposed uncertainty estimation works.

The proposed methodology is applied to the 2011 Socio-Economic Panel (SOEP) and aggregate

census information from the same year to estimate the average individual income for 96 regional planning
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regions (RPRs) in Germany. Knowledge of the spatial distribution of income in Germany is of great

interest: Kosfeld et al. (2008) investigate disparities of regional German income at district level for the

year 2004. They note that income varies considerably between districts. The districts with the highest

and lowest incomes in Germany differed by a factor of 1.8. For Eastern Germany, income is on average

86.3% of that in Western Germany. Within Germany, there is a strong interest in income differentials,

particularly between Western and Eastern Germany, which are politically relevant and widely discussed

(Frick and Goebel, 2008; Görzig et al., 2008; Fuchs-Schündeln et al., 2010; Kohn and Antonczyk, 2013).

The rest of the paper is structured as follows. Section 2 describes the SOEP survey and discusses

initial direct estimators. Furthermore, the auxiliary aggregated information from the census is presented.

In Section 3 the methodology is explained. To start with, the classical NER model is reviewed in Sub-

section 3.1. Afterwards, the transformed NER models and corresponding small area estimators - when

population micro-data are available - are discussed in Subsection 3.2. Finally, the proposed method -

when only aggregate population-level auxiliary information is available - is introduced in Subsection

3.3. MSE estimation is discussed in Section 4. The proposed methods are evaluated against existing

competitors using model-based (Section 5) and design-based simulation studies (Section 6). For the

design-based simulation study, individual income data from the Mexican census are used to assess the

proposed estimator on real-world data. In Section 7 we apply the proposed method to the SOEP data for

estimating average income for German RPRs, where population micro-data are not available. Section 8

summarizes the main findings and outlines further research.

2 Data Sources and Initial Analysis

The current section describes the data sources used in the application. First, the survey Socio-Economic

Panel is described and the corresponding direct estimates for German RPRs are shown in Subsection 2.1.

The direct estimates indicate the need for using SAE methods. In Subsection 2.2, the available auxiliary

variables from the German census are described. Finally, this subsection closes with a motivation for the

use of transformations in order to meet the model assumptions in the application.

2.1 The German Socio-Economic Panel and initial estimates on spatial gross income

To estimate income in Germany we use the SOEP (Socio-Economic Panel, 2019). This survey was

established in 1984, is one of the most important German surveys, and is located at the German Institute

for Economic Research (DIW Berlin). The SOEP provides representative longitudinal data of private

households in Germany for multidisciplinary issues (Goebel et al., 2019). This sample is highly valuable

not only for governmental institutions, but also for researchers from various fields. It collects a large

variety of variables and offers different sub-samples with a specific focus. Being interested in estimating

the average individual income in Germany for different RPRs, the SOEP is a valuable data source. In

other important German surveys, such as the Microcensus, income is provided only in interval-censored

groups.

The analysis is conducted with the open-source software R (R Core Team, 2020). We use the re-

freshment sample from 2011 for our analysis. The sampling design for the 2011 refreshment sample

is a multistage stratified sampling procedure. In the first stage, 370 primary sampling units (PSUs) are

selected proportionally to their size. For this purpose, stratification into federal states, governmental
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Figure 1: (a) Map with direct estimated mean gross individual income per month [e] where out-of-
sample areas and areas with sample size under ten are greyed out and (b) the respective CVs

regions, and municipalities is carried out. In the second stage, using the random walk methodology,

addresses are sampled within each PSU. Within this selection process, migration background was ac-

counted for so that migrant households were twice as common in the 2011 Refreshment sample. The

persons living in the respective households are interviewed (Kroh et al., 2018). Our target variable is

the gross individual income in Euro of the respondent in the month before the interview during the year

2011. We choose this year because the census was carried out in the same year and so this choice en-

ables us later to include census covariates. The target population is the working age population, which is

defined as those aged 15 to 64 (OECD, 2020). We are interested in estimating the mean gross individual

income in 96 German RPRs. Figure 1 (a) shows the direct estimates, calculated with the emdi-package

(Kreutzmann et al., 2019). The mean gross individual income varies from 1173 e (Bremen) to 5059 e

(Donau-Iller). General trends can be seen from the map: East Germany has a lower mean gross individ-

ual income, the Munich, Stuttgart, or Frankfurt areas have higher mean incomes. However, small sample

sizes lead to estimated mean gross individual incomes with high variances. With dark grey we present

the six out-of-sample regions. Furthermore, for 23 regions, the sample size is less than ten (presented in

light grey). In these cases, we are not allowed to report directly estimated mean gross individual incomes

due to confidentiality agreements with the data provider. Therefore, direct estimates are presented for

67 out of 96 regions. The sample sizes over the RPRs vary from 0 to 107 (1st Quartile: 8, Median:

16.5, Mean: 20.83, and 3rd Quartile: 26.5). We use a calibrated bootstrap method (Alfons and Templ,

2013) which accounts for the survey design to estimate the variance of the direct estimates implemented

in the R package emdi (Kreutzmann et al., 2019). From these variances the corresponding coefficients

of variation (CV) are obtained (cf. Figure 1 (b)). In particular, Eurostat considers estimators with a CV

less than 20% to be reliable (Eurostat, 2019). Here, 26 out of 90 CVs exceed this threshold for reliable

estimates. The highest CVs were found for Osthessen (72.7%), Bayerischer Untermain (56.5%), and

Donau-Iller (56.13%). When looking at the individual sample data, on the one hand the sample sizes are
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small for these RPRs and on the other hand the variability of the reported individual incomes is high.

Therefore, exploring the use of SAE may be necessary if interest is in improving the estimation accu-

racy for RPRs. Since some of the SOEP auxiliary variables are measured in the same way within the

German census, census covariate data can serve as auxiliary information in small area models. However,

information from the German census is only available at aggregated (RPR) level.

2.2 Auxiliary data from the German census and preliminary model selection

SAE methods use survey data and population-level auxiliary information to improve the available direct

estimates. Especially for small sample sizes, as in the 2011 SOEP data disaggregated into the 96 Ger-

man RPRs, the methods might be helpful in order to achieve more reliable estimates. As the German

census is not available at population micro-level, we use aggregated auxiliary information (means and

covariances) from the German census 2011 (Statistisches Bundesamt, 2015) to estimate the mean gross

individual income. We first made a pre-selection of suitable variables that are available in the SOEP and

in the German census. Subsequently, we use model selection criteria (the conditional Akaike information

criterion from the cAIC4-package (Saefken et al., 2021)) to select the best model based on the survey

data (SOEP) at individual-level. Due to the sampling process, migration background was included by

default as a variable in the model. The additionally selected five variables are sex, age, position in the

household, employment status and tenant or owner of dwelling. Table 5 in the appendix provides further

information about each variable. In order to implement the proposed methodology, we requested the cor-

responding means and covariances of the six variables from the 2011 German census from the Statistical

Office (DESTATIS).

For skewed variables, like gross individual income in our case, transforming the response is often

necessary and offers a promising approach to satisfying the assumptions of the commonly used mod-

els (Rojas-Perilla et al., 2020). Therefore, NER models have been constructed using the sample data,

whereby the dependent variable was on the original scale, log, and log-shift transformed scales. The

log-shift transformation is a data-driven transformation which extends the log transformation by a shift-

parameter λ: log(y + λ) estimated using the data. For more information about this transformation, see

Subsection 3.2. The validity of the normality assumptions for both error terms (unit-level and area-level)

of the underlying NER models are checked with QQ-plots (cf. Figure 2). If the original scale or the log

transformation is used, deviations from the normal distribution can be seen for the residuals at both levels.

Furthermore, we compute the conditional coefficient of determination (Nakagawa and Schielzeth, 2013):

11.99% (no transformation), 36.01% (log transformation), and 41.98% (log-shift transformation). From

these preliminary investigations, the decision to use a log-shift transformation for estimating mean gross

individual income for German RPRs becomes clear. In Table 5 in the appendix, the coefficients for the

chosen NER model with log-shift transformed response (with estimated shift-parameter: λ̂ = 358.73)

are shown. Furthermore, the likelihood ratio test leads to clear significance (p = 7.02310−15) of the

random effect.
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Figure 2: QQ-plots for the individual-level residuals (1st row) and the area-level residuals (2nd row)
among the NER models under different transformations

3 Unit-level small area models

The structure of this section is as follows. First, the NER model of Battese et al. (1988) is presented

in Subsection 3.1. Subsequently, the NER model is extended to allow the use of transformations on

the dependent variable (Berg and Chandra, 2014; Molina and Martı́n, 2018; Rojas-Perilla et al., 2020).

Computing the small area estimators requires access to population micro-data to avoid introducing back-

transformation bias. As a result, we propose an estimator which can be used when the response is

transformed and we have access only to limited auxiliary information in the form of population-level

aggregates of the covariates.

3.1 The nested error regression model

The finite population U of size N is divided into D areas U1, U2, ..., UD consisting of N1, N2, ..., ND

units. The index i = 1, ..., D indicates the respective area and j = 1, ..., Ni the corresponding units.

The continuous dependent variable yij is available for every unit in the sample s. The sample s consists

of n units partitioned into sample sizes n1, n2, ..., nD for the particular areas. With si we refer to the

in-sample units in area i and with si to the Ni − ni non-sampled units in area i. Furthermore, a vector

xij = (1, x1, x2, ..., xp)
T consisting of the intercept and p explanatory variables is available for every

unit j in every area i within the sample. The matrix Xs contains all covariates of every individual in the

sample across all areas. Battese et al. (1988) use a NER model, which models the relationship between

xij and yij as follows:

yij = xTijβ + ui + eij , ui
iid∼ N (0, σ2u) and eij

iid∼ N (0, σ2e), (1)
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where β = (β0, β1, β2, ..., βp)
T is the vector of regression coefficients, which describes the linear rela-

tionship of xij and yij . ui denotes the area-specific random effect and eij is the unit-level error. The

error terms ui and eij are assumed to be independent and σ2u and σ2e denote the corresponding variances.

The best linear unbiased predictor (BLUP) for every out-of-sample unit j ∈ si is given by

µij = xTijβ + ui = xTijβ + γi

∑
j∈si

(
yij − xTijβ

) , (2)

where γi = σ2
u

σ2
u+σ

2
e/ni

denotes the shrinkage factor. The target parameter is the population mean for each

area i. The empirical best linear unbiased predictor (EBLUP) for the population area mean (yi) is defined

as

Ŷ
BHF

i =
1

Ni

(∑
j∈si

yij +
∑

j∈si
µ̂ij

)
= γ̂i

 1

ni

∑
j∈si

yij +

xi −
1

ni

∑
j∈si

xij

T

β̂

+ (1− γ̂i)xTi β̂, (3)

where γ̂i = σ̂2
u

σ̂2
u+σ̂

2
e/ni

. The vector xTi = 1
Ni

∑
j∈Ui x

T
ij denotes the p population means for each area i.

For estimating fixed effects and the variance components σ2u and σ2e , several methods are available, for

example maximum likelihood (ML) or restricted maximum likelihood (REML) (Rao and Molina, 2015).

Note that the estimator in (3) requires access only to population-level aggregates (xTi ) and to unit-level

survey data.

3.2 Small area estimation under the nested error regression model and transformations

In a large number of applications, the dependent variable has a skewed distribution, and its shape can-

not be sufficiently explained by the available auxiliary variables. Consequently, the Gaussian assump-

tions for the random effects and the error terms in the NER model might be violated. One common

solution to address this problem is to use one-to-one transformations h(yij) = y∗ij . In many applica-

tions related to income, a fixed logarithmic transformation is used for this purpose due to its simplic-

ity. More flexible solutions depending on the particular shape of the dependent variable are offered by

data-driven transformations (Gurka et al., 2006; Rojas-Perilla et al., 2020). For instance, the log-shift

transformation (Yang, 1995) extends the log transformation by including a transformation parameter λ:

y∗ij = h(yij) = log(yij + λ), which is estimated from the sample. For further details we refer the reader

to Rojas-Perilla et al. (2020).

The use of a transformation for the dependent variable defines a model on the transformed scale

(transformed NER model):

h(yij) = y∗ij = xTijβ + ui + eij , ui
iid∼ N (0, σ2u) and eij

iid∼ N (0, σ2e). (4)

The BLUP on the transformed scale for out-of-sample units is analogous to (2) µ∗ij = xTijβ + ui. In

most applications, the goal is to estimate the target parameter (here the mean) on the original scale.

From Jensen’s inequality, it is obvious that the naive back-transformation for the BLUP of the out-
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of-sample predictions doesn’t lead to the same result as the best prediction on the original scale. If

the transformation h() is a real convex or concave function the following applies because of Jensen’s

inequality (Jensen et al., 1906)

µtrans, naive
ij = h−1

(
µ∗ij
)︸ ︷︷ ︸

naive back-transformation of the BLUP

6= E[h−1(y∗ij)|ys,Xs].︸ ︷︷ ︸
best prediction on original scale

In this paper, we focus on the log and log-shift transformation, so the back-transformation h−1() = exp()

or h−1() = exp() − λ is in both cases convex. Consequently, µtrans, naive
ij leads to lower estimates than

E[h−1(y∗ij)|ys,Xs] and thus the estimated small area means using the naive back-transformation

Ŷ
trans, naive

i =
1

Ni

∑
j∈si

yij +
∑
j∈si

µ̂trans, naive
ij

 =
1

Ni

∑
j∈si

yij +
∑
j∈si

h−1
(
xTij β̂ + ûi

) (5)

are smaller than the small area means constructed fromE[h−1(y∗ij)|ys,Xs]. In the case of a log-transfor-

mation, Berg and Chandra (2014) and Molina and Martı́n (2018) propose an analytical bias-correction.

The best predictor for the out-of-sample units is defined for general transformations via an integral which

can be solved analytically for h() = log() by using y∗ij |ys,Xs ∼ N
(
µ∗ij , σ

2
u(1− γi) + σ2e

)
- with

corresponding density fy∗ij |ys,Xs
- which comes directly from model (4),

µtrans, bc
ij = E[h−1(y∗ij)|ys,Xs] =

∫ +∞

−∞
h−1(y)fy∗ij |ys,Xs

(y)dy

and for the model under log-transformation with h−1() = exp() applying the property for the expected

value of an exponential transformed normally distributed random variable (E[exp(X)] = exp(E[X] +

0.5V ar[X])) we get

µtrans, bc
ij = exp

(
µ∗ij +

σ2u(1− γi) + σ2e
2︸ ︷︷ ︸

=αi (bias-correction)

)
.

To the BLUP (2) on the transformed scale µ∗ij a bias-correction αi is added before applying the back-

transformation. By using µtrans, bc
ij and the estimated coefficients from the sample we obtain the bias-

corrected estimator of the small area mean by

Ŷ
trans, bc

i =
1

Ni

∑
j∈si

yij +
∑
j∈si

µ̂trans, bc
ij

 =
1

Ni

∑
j∈si

yij +
∑
j∈si

exp
(
xTij β̂ + ûi + α̂i

) . (6)

As can be seen in (6) for the log-transformation, out-of-sample population micro-data are required for

computing the estimator. Again, due to the Jensen’s inequality a (second-order) bias is introduced if

we use a naive back-transformation of the synthetic part exp
(
xTi β̂

)
instead of

∑
j∈si exp

(
xTij β̂

)
. The

estimator with first-order bias-correction (αi) and naive back-transformation of the population-level ag-

8



gregates, is denoted by

Ŷ
bc-naive-agg

i =
1

Ni

∑
j∈si

yij +
∑
j∈si

exp
(
xTi β̂ + ûi + α̂i

) . (7)

Due to the use of aggregated auxiliary data this estimator has a second-order bias. If we exactly know the

underlying distribution of the covariates (for example covariates coming from a normal distribution) it is

possible to add an analytical second-order bias-correction, which corrects for the back-transformation of

the covariates. Otherwise, alternative solutions to this problem are needed. The assumptions of having

access to population micro-data or knowing exactly the joint distribution of the covariates are both strong

assumptions in real applications. Thus, the research question that motivates our work is how to estimate

small area means under the transformed NER model when only aggregated population-level auxiliary

information is available.

3.3 Small area means under limited auxiliary information

Due to the use of a transformation, a bias-correction for the back-transformed estimator of the small

area mean is necessary as shown above. This back-transformed bias-corrected estimator (6) requires

population-level auxiliary data. In the absence of population micro-data, a second-order bias is in-

troduced if the aggregated covariates are used instead of individual data (7). Our proposed method

aims to reduce - additionally to the first-order bias-correction - the second-order bias due to the back-

transformation of the synthetic part. Therefore, it offers a solution to deal with bias under limited aux-

iliary information. The aim of this subsection is to propose an approximation of xTij β̂ in the absence of

population micro-data which is needed to deal with the second-order bias and combining this with the

first-order bias-correction (αi) for small area means.

Kernel-density estimation for the synthetic part: As mentioned above in the presence of limited aux-

iliary information we are not able to obtain
(∑

j∈si exp
(
xTij β̂

))
necessary for computing (6). There-

fore, we have to rely on estimation methods for the unknown synthetic part (xTij β̂) under limited auxiliary

information. We propose the use of a KDE approach to estimate the distribution of the synthetic part.

We use KDE based on the synthetic part of the model (instead of the auxiliary variables), because the

estimated distribution of the synthetic part is sufficient to deal with the second-order bias. We decide

to take this approach for the following reasons: First, we can use univariate KDE for the synthetic part(
xTij β̂

)
compared to multivariate KDE which is needed for estimating the joint multivariate distribution

of the auxiliary variables. To the best of our knowledge, implementations of multivariate KDEs are only

possible with the available packages in R for a maximum number of six auxiliary variables. Especially

if categorical variables are used in the model, this limit presents a significant restriction in many ap-

plications. Second, no parametric assumptions about the covariates are necessary and only aggregate

auxiliary information at the population-level is required, while availability of unit-level sample data is

still assumed. Please note, in case of exclusively categorical covariates, the established EBP-method

(Molina and Rao, 2010) under transformations (Rojas-Perilla et al., 2020) is suitable after expanding the

counts from the cross-tables. The introduced KDE-based method is only appropriate for metric variables

or a mixture of metric and categorical variables.
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KDE is one of the most popular non-parametric density estimation techniques first mentioned by

Rosenblatt (1956) and Parzen (1962). For a general overview, we refer to Scott (2015). Given a sample

X = {X1, ..., Xn} KDE estimates the density f by

f̂h(x) =
1

nh

n∑
i=1

k

(
x−Xi

h

)
, (8)

where the function k() is the kernel and h is the bandwidth. Here we opt for the use of the Epanechnikov

kernel (Epanechnikov, 1969), which is implemented using the density-function of stats-package (R
Core Team, 2020). Furthermore, for bandwidth selection we use the method from Sheather and Jones

(1991), which is widely recommended (Venables and Ripley, 2002). However, other bandwidth selectors

can be also applied.

The first step in computing the estimator involves standardising the predictions using the synthetic

part of the NER model, which will be later adjusted by using population-level auxiliary information. The

standardised predicted values zij for area i and unit j are computed as follows,

zij =
xTij β̂ − 1

ni

∑
j∈si x

T
ij β̂√

1
ni

∑
j∈si

(
xTij β̂ −

1
ni

∑
j∈si x

T
ij β̂
)2 .

For this purpose, the standardisation step uses the mean and the standard derivation from the predictions

of the synthetic part of the model.

In a second step, we adjust the predictions with the aggregated population-level auxiliary data: The

mean xTi β̂ and the empirical variation σi,XT β̂ =
√∑p

k=0

∑p
l=0 β̂kβ̂lCov[xik,xil], where Cov[xik,xil]

is the known covariance between the k-th and l-th explanatory variable for area i. In addition to the

requirements of the NER model, we assume that these covariances are also known or obtained from the

data owner. Since they are area-level values, usually no confidentiality issues arise for statistical offices.

This step adds the small area idea to the proposed method by using the aggregated census means and

covariances to adjust the standardised predicted values. Since in many small area applications sample

sizes considerably differ among the areas, we propose the following distinction. For large sample sizes,

we use the standardized data (zij) from the respective area i (conditional). In contrast, for small sample

sizes, we use the standardized data (zij) from all areas (unconditional). To distinguish between small

and large sample sizes, we define a threshold t. If the respective area has a small sample size below the

threshold (ni < t) - or is even an out-of-sample area - we use the standardized data from all areas to

generate adjusted data for area i. The following formula illustrates how the input values for the KDE

(rim) are obtained from the standardised values zm. The index m ranges from 1, ..., n for sample sizes

below t (unconditional) and from 1, ..., ni for sample sizes above t (conditional). Note that depending

on the sample size within the actual area i and the chosen threshold t a different number of standardised

values are used to determine the input values. With

rim = zm σi,XT β̂ + xTi β̂ for

m ∈ s ni < t

m ∈ si ni ≥ t

as input we estimate the respective density using the KDE (8) for each area i. We denote the resulting
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density for area i by f̂h,i.

Small area means under limited auxiliary information: If the naive back-transformed estimator (5)

is used under limited auxiliary information with a naive back-transformation of the synthetic part, we

would obtain

Ŷ
trans, naive-agg

i =
1

Ni

∑
j∈si

yij +
∑
j∈si

h−1
(
xTi β̂ + ûi

) . (9)

This estimator does not correct for the first- and second-order bias due to the use of a transformation.

In order to account for both types of bias the proposed method relies on the approximated area-specific

density f̂h,i of the synthetic part and the first-order bias-correction αi. Starting with (6) we get

Ŷ
trans, bc

i =
1

Ni

∑
j∈si

yij +
∑
j∈si

exp (µ̂ij + α̂i)


≈ 1

Ni

∑
j∈si

exp
(
xTij β̂

)
exp (ûi + α̂i) +

∑
j∈si

exp
(
xTij β̂

)
exp (ûi + α̂i)


=

1

Ni

(
Ni∑
j=1

exp
(
xTij β̂

)
︸ ︷︷ ︸

Ti

exp (ûi + α̂i)

)
,

where µ̂ij = xTij β̂ + ûi is defined analogously to (2). Under limited auxiliary information, the problem

is reduced to determining the unknown back-transformed total (Ti). We use numerical integration and

the estimated density of the synthetic part f̂h,i to estimate this total T̂i from the available sample data

and the population-level auxiliary information - without using population micro-data. In detail, the total

can be expressed as T̂i =
∑Ni

j=1 exp
(
xTij β̂

)
= NiE[exp(xTij β̂)] = Ni

∫ +∞
−∞ exp(x)f̂h,i(x)dx. This

integral can be determined by using numerical integration. By inserting the estimated back-transformed

area-specific totals T̂i, we obtain the small area estimator of the mean when access to population-level

auxiliary information is limited to population-level aggregates

Ŷ
trans, bc-agg

i =
1

Ni
T̂i exp (ûi + α̂i) . (10)

For the log-shift transformation, the only change is the use of the data-driven shift-parameter λ̂ resulting

in

Ŷ
trans, bc-agg

i =
1

Ni
T̂i exp (ûi + α̂i)− λ̂.

In Sections 5 and 6 the properties of the proposed estimator are investigated in model-based and design-

based simulation studies and compared with other competitors.

4 Uncertainty estimation

Quantifying the uncertainty of small area estimates can be challenging. For the log-transformed NER

model, Molina and Martı́n (2018) derive an analytic MSE estimator and also present a parametric boot-
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strap MSE estimator that follows the ideas in González-Manteiga et al. (2008). Rojas-Perilla et al.

(2020) propose two bootstrap schemes for estimating the MSE under data-driven transformations. How-

ever, both papers assume access to population micro-data. For the proposed estimator (10) when only

population-level aggregates are available, we develop a parametric bootstrap MSE that captures the addi-

tional uncertainty due to KDE and the estimation of the adaptive shift parameter in the case of a log-shift

transformation. The steps of the parametric bootstrap are as follows.

1. Transform the data: y∗ij = h(yij), where h is the log or the log-shift transformation.

2. Estimate β̂, σ̂2u, and σ̂2e using the transformed NER model (4) and the sample data. In the case of

the log-shift transformation, estimate λ̂ from the sample data as proposed by Rojas-Perilla et al.

(2020).

3. For b = 1, ..., B

(a) Generate u(b)i ∼ N (0, σ̂2u) and e(b)ij ∼ N (0, σ̂2e) for all areas i and j ∈ si.
(b) Generate bootstrap samples for all areas i on the transformed scale:

y
∗(b)
ij = xTij β̂ + u

(b)
i + e

(b)
ij , with j ∈ si

and for each bootstrap replication b estimate the small area mean using the proposed estimator

Ŷ
trans, bc-agg, (b)

i (10). If the adaptive log-shift transformation is used, λ is re-estimated for each

bootstrap replication b.

(c) Determine the true mean for each area i in each bootstrap replication b. Note that we can-

not reconstruct a bootstrap population because population micro-data for x are not avail-

able. However, from the available aggregated population-level values (area-specific means

and covariances for the auxiliary information), which are kept constant across the bootstrap

replications, we can construct an area-specific distribution on the transformed scale for each

bootstrap replication b. The distribution is defined as

y
∗(b)
ij |y

(b)
s ,Xs, u

(b)
i ∼ N

(
xTi β̂ + u

(b)
i , σ2

i,XT β̂
+ σ̂2e

)
, (11)

where σi,XT β̂ =
√∑p

k=1

∑p
l=1 β̂kβ̂lCov[xik,xil] is determined from known covariances

and estimated regression coefficients and σ̂2e is estimated in step 2. For the derivation of

the distribution (11), see the additional information in the appendix. Since the aim is to

identify the true mean (Y (b)
i ) on the original scale, we need to combine the distributional

assumptions on the transformed scale (11) with the properties of the back-transformation

function h−1() = exp(). Because the area-specific distribution y∗(b)ij for each replication

b is assumed to be normally distributed with known mean and variance, we can apply the

property for the expected value of an exponential transformed normally distributed random

variable (E[exp(X)] = exp(E[X] + 0.5V ar[X])). Therefore, we obtain

Y
(b)
i =

1

Ni

∑
j∈Ui

h−1
(
y
∗(b)
ij

)
|y(b)
s ,Xs, u

(b)
i

h−1()=exp()
=

1

Ni

∑
j∈Ui

exp
(
y
∗(b)
ij

)
|y(b)
s ,Xs, u

(b)
i

= exp
(
xTi β̂ + u

(b)
i + 0.5

(
σ2
i,XT β̂

+ σ̂2e

))
.
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If we use the data-driven log-shift transformation, the analogous equation is

Y
(b)
i = exp

(
xTi β̂ + u

(b)
i + 0.5

(
σ2
i,XT β̂

+ σ̂2e

))
− λ̂,

where λ̂ is the shift-parameter estimated from step 2.

4. Determine the MSE over the B bootstrap replications:

M̂SEi =
1

B

B∑
b=1

(
Ŷ

trans, bc-agg, (b)

i − Y (b)
i

)2

.

5 Model-based simulation study

In this section, we present results from a model-based simulation study. We evaluate point estimators

and the parametric bootstrap MSE estimator under the four scenarios presented in Table 1. For each of

the four scenarios we generate finite populations U of size N = 50000. The population U is partitioned

into 50 areas U1, U2, ..., UD consisting of Ni = 1000 units. From each population, we draw a sample by

stratified random sampling, where the strata are defined by the 50 areas. The area-specific sample sizes

ni vary between 2 and 58 with median sample size equal to 33. We chose these sample sizes for three

reasons: Firstly, we are interested in evaluating the estimators under a scenario where some areas have

very small sample sizes. Secondly, we are interested in having areas with a sample size exceeding the

threshold of t = 40 for using the (conditional) small area KDE estimator. In this case, 19 out of 50 areas

exceed this threshold in each drawn sample. Thirdly, the sample sizes are similar to those in the real data

application.

The scenarios are labelled Normal, Log-Scale, Log-Scale Gamma, and GB2 (Generalised Beta dis-

tribution of the second kind). Each scenario is repeated independently M = 500 times. In the case of

the Normal scenario, the generating model is linear and both error terms (ui and eij) follow a normal

distribution. Therefore, it is a reference scenario where no transformation is required. In contrast, the

Log-Scale scenario represents a typical situation related to income data where the dependent variable fol-

lows a lognormal distribution such that a fixed log transformation is required. Under the third scenario

(Log-Scale Gamma) the auxiliary variable is not normally distributed. We chose this scenario in order

to assess the ability of the proposed method to handle non-normally distributed auxiliary variables. The

GB2 scenario provides a more realistic scenario for income. In this case, the unit-level error terms are

simulated by using a GB2 distribution and the random effects are generated by using a normal distribu-

tion. Under the GB2 scenario the use of a data-driven transformation should be more suitable than the

use of the untransformed model or of the fixed log transformation.

5.1 Evaluation of the estimated back-transformed totals

In this subsection we investigate the behaviour of the estimated back-transformed totals, before ex-

ploring small area means. We compare the back-transformed totals estimated using population micro-

data
(
Ti =

∑Ni
j=1 exp(xTij β̂)

)
as in the bias-corrected estimator (bc) (6), the proposed KDE-version of

T̂i as in the proposed estimator using population-level aggregates (bc-agg) (10), and the naive back-

transformed totals
(

exp
(
xTi β̂

))
as in the two types of naive back-transformed estimators using popu-
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Table 1: Model-based simulation scenarios

Scenario Normal Log-Scale Log-Scale Gamma GB2

Model 4500 − 400xij +
ui + eij

exp(10 − xij −
0.5zij + ui + eij)

exp(10 − xij −
0.5zij + ui + eij)

8000−400xij+ui+eij−e

xij N(µi, 9) N(µi, 0.25) Γ(µi, 2) + 1 N(µi, 25)
zij - N(0, 1) N(0, 1) -
µi U [2, 3] U [2, 3] U [0.8, 1.6] U [−1, 1]
ui N(0, 5002) N(0, 0.16) N(0, 0.16) N(0, 5002)
eij N(0, 10002) N(0, 0.8) N(0, 0.3) GB2(2.5, 1700, 18, 1.46)

Log−Scale Gamma GB2

Normal Log−Scale
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Figure 3: Estimated back-transformed totals bc
(
Ti =

∑Ni
j=1 exp(xTij β̂)

)
, bc-agg

(
T̂i

)
, and naive-agg(

exp
(
xTi β̂

))
over the domains for one arbitrarily chosen Monte-Carlo simulation

lation-level aggregates (bc-naive-agg and naive-agg) (7) and (9).

Figure 3 shows the back-transformed totals for one arbitrarily chosen Monte-Carlo replication under

the log-shift transformation. For all four scenarios, the estimated back-transformed totals using popu-

lation micro-data (bc) and the KDE-version (bc-agg) show the same behaviour. In the Log-Scale, the

Log-Scale Gamma and the GB2 scenarios distinctly lower estimates of the domain totals are derived by

using the naive back-transformation and this is because of Jensen’s inequality. These results underline the

importance of the second-order bias-correction if population micro-data are not available and therefore

the need of the proposed KDE for estimating the synthetic part.

5.2 Performance of point estimators of the small area means

We compare the proposed estimator (10), denoted bc-agg, with existing SAE methods. This includes

the direct estimator (direct) and the estimator of Battese et al. (1988) under the NER model using the
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untransformed data (BHF) implemented in the R package sae (Molina and Marhuenda, 2015). Further-

more, we use different estimators under the log and log-shift transformations. In particular, we compare

the proposed bias-corrected estimator to the naive back-transformed estimator using population micro-

data (5) and two types of naive back-transformed estimator under limited auxiliary information one with

no bias-correction (9), denoted naive-agg, and one with a first-order bias-correction (7), denoted bc-

naive-agg. An additional competitor that also aims to tackle the issue of not having access to population

micro-data is the TNER2 estimator of Li et al. (2019) which requires only aggregated population-level

data. The TNER2 estimator uses the smearing approach of Duan (1983) to build a pseudo-population,

which is then back-transformed to the original scale and finally adjusted with the aggregated population

means. For the TNER2 estimator no MSE estimator has been proposed. Finally, we compare the pro-

posed estimator to the EBP of Molina and Rao (2010) (EBP). The EBP is implemented by fitting the

NER model under the different simulation scenarios using the original data, a log transformation and an

adaptive log shift transformation (Rojas-Perilla et al., 2020). The EBPs are estimated using L = 100

Monte-Carlo replications following the recommendations of Molina and Rao (2010). Because the EBPs

use auxiliary information from population micro-data they can be treated as a gold standard.

To compare the different estimators, we compute the relative bias and root mean squared error

(RMSE) over M = 500 Monte-Carlo replications as follows:

Relative Biasi =
1

M

M∑
m=1

 Ŷ (m)

i − Y (m)
i

Y
(m)
i

 ∗ 100 (12)

RMSEi =

√√√√ 1

M

M∑
m=1

(
Ŷ

(m)

i − Y (m)
i

)2

, (13)

where Ŷ
(m)

i is the estimated mean in small area i based on any of the methods mentioned above and

Y
(m)
i denotes the true mean in small area i. Table 2 presents the results for the four scenarios and shows

mean and median values of RMSE and relative bias averaged over small areas. Since the use of a log

transformation is not reasonable in the Normal scenario, we omit these results. The same applies to the

EBP without transformation for the Log-Scale and Log-Scale Gamma scenario.

Under the Normal scenario the BHF estimator and the EBP without transformation are, as expected,

the best in terms of RMSE. For the methods based on a log-shift transformation, we see a small increase

in terms of RMSE compared to the methods using untransformed data (EBP and BHF). Regarding the

Log-Scale scenario, we find the best results for estimators using a fixed log transformation. The BHF

estimator does not perform as well as the transformed (log and log-shift) bc-agg, TNER2, and EBP es-

timators in terms of relative bias and RMSE. For the naive, the bc-naive-agg, and especially for the

naive-agg estimator, the relative bias and RMSE are the highest. The reason for this is the underestima-

tion due to the first-order back-transformation bias (naive), the second-order back-transformation bias

(bc-naive-agg), and the simultaneous first- and second-order back-transformation bias (naive-agg). In

contrast, the proposed estimator Ŷ
trans, bc-agg

i reduces the back-transformation bias and leads to results

that are similar to those of the EBP. The same picture emerges for the Log-Scale Gamma scenario. This

demonstrates that the proposed methodology also works well when using skewed covariates and adapts

to the corresponding shape of the synthetic part. In the GB2 scenario, we see that the adaptive log-shift
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Table 2: Summaries of relative bias and RMSEs over domains for different model-based scenarios

Scenario Normal Log-Scale Log-Scale Gamma GB2

Transformation Estimator Mean Median Mean Median Mean Median Mean Median

Relative bias [%]

Gen. competitors
No transformation

direct -0.112 -0.090 -0.289 0.044 -0.228 -0.141 -0.081 -0.059
BHF 0.174 0.144 6.871 6.457 3.986 2.480 0.189 0.205
EBP 0.250 0.260 0.267 0.231

Log-shift

bc-agg 0.621 0.604 5.179 4.501 3.430 2.436 0.517 0.459
bc-naive-agg -0.951 -0.880 -7.873 -8.568 -8.146 -9.118 -2.869 -2.846
naive -0.654 -0.618 -38.301 -38.366 -22.313 -22.493 -4.082 -4.131
naive-agg -1.178 -1.751 -45.131 -45.121 -30.283 -30.420 -6.960 -6.936
TNER2 -0.015 -0.005 0.626 0.983 -0.160 0.090 -0.337 -0.245
EBP 0.259 0.322 4.287 3.446 2.786 1.846 0.193 0.138

Log

bc-agg 5.415 4.744 3.540 2.554 6.270 6.173
bc-naive-agg -7.745 -8.436 -8.134 -9.103 -0.293 -0.148
naive -38.364 -38.422 -22.331 -22.502 -5.070 -4.978
naive-agg -45.221 -45.214 -30.353 -30.485 -10.184 -10.049
TNER2 0.825 1.179 -0.076 0.187 4.655 4.689
EBP 4.515 3.672 2.887 1.953 5.685 5.580

RMSE

Gen. competitors
No transformation

direct 369.16 263.14 1666.97 1248.21 1788.30 1323.01 874.34 648.38
BHF 197.69 161.48 1120.53 986.96 1364.04 1145.07 400.48 382.82
EBP 198.84 165.03 403.43 386.07

Log-shift

bc-agg 200.04 163.14 853.08 743.12 1159.65 958.61 358.82 339.01
bc-naive-agg 205.74 168.84 985.55 896.39 1414.44 1231.07 431.25 413.71
naive 202.55 164.54 1948.82 1910.00 2207.02 2055.35 489.44 471.50
naive-agg 218.18 182.08 2205.69 2175.61 2716.05 2581.19 668.34 652.34
TNER2 281.54 243.25 936.89 819.29 1346.73 1120.87 417.25 406.16
EBP 200.15 166.18 853.29 743.15 1161.87 964.22 358.80 342.83

Log

bc-agg 854.23 743.32 1160.38 959.12 685.44 692.48
bc-naive-agg 981.42 890.86 1412.83 1229.57 433.94 425.20
naive 1949.77 1910.87 2206.92 2055.27 567.36 561.69
naive-agg 2207.99 2177.83 2719.66 2584.76 906.22 907.40
TNER2 936.29 818.26 1346.76 1122.15 639.24 647.17
EBP 853.56 742.47 1161.86 964.12 649.13 647.49

transformation leads to better results compared to using a fixed log transformation for all estimators. In

addition, the proposed estimator (bc-agg) and the EBP under the log-shift transformation show the best

results in terms of RMSE.

Overall, the simulation study leads to the following conclusions: 1) as expected, when using auxiliary

information from population micro-data the EBP estimator performs better than the proposed estimator

that is based only on aggregated population-level auxiliary information. However, despite not having ac-

cess to population micro-data, the loss in efficiency is not high. 2) The proposed bias-corrected estimator

reduces the relative bias compared to all three types of naive back-transformed estimators.

5.3 Performance of the bootstrap MSE estimator

We now turn our attention to the performance of the proposed parametric bootstrap presented in Section

4. We investigate the behaviour of the MSE estimator of Ŷ
trans, bc-agg

i (10) under the previous four sce-

narios. The proposed MSE estimator is evaluated using the estimated RMSE with B = 500 bootstrap

replications introduced in Section 4 and the empirical RMSE (13) over M = 500 Monte-Carlo replica-
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Figure 4: Estimated and empirical domain-specific RMSEs using the proposed estimator (10) with log-
shift transformation in model-based simulations

tions, which we consider to be the true one. The properties of the proposed MSE estimator for each area

i are assessed using the following two measures

Relative Bias RMSEi =

√
1
M

∑M
m=1 MSE(m)

esti − RMSEempi

RMSEempi
∗ 100 (14)

Relative RMSE RMSE =

√
1
M

∑M
m=1

(√
MSE(m)

esti − RMSEempi

)2

RMSEempi
∗ 100, (15)

where MSE(m)
esti is the estimated MSE for area i in Monte-Carlo replication m and RMSEempi is the

empirical RMSE over M = 500 Monte-Carlo replications.

Table 3 shows the median and mean values of relative RMSE and relative bias over areas and Monte-

Carlo replications of the proposed MSE estimator for the bias-corrected estimator (10) with log and

log-shift transformation. For all scenarios, the proposed bootstrap MSE estimator under the log-shift

transformation has reasonably low relative bias. Figure 4 shows how well the estimated RMSE tracks

the empirical RMSE under log-shift transformation over the domains. These plots suggest that the esti-

mated RMSE follows the empirical RMSE well in all four scenarios. For both Log-Scale scenarios, the

estimated MSE under the log transformation is comparable to the corresponding MSE for the log-shift

transformation.
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Table 3: Performance of the MSE estimator for the proposed estimator (10) in model-based simulations

Normal Log-Scale Log-Scale Gamma GB2

Transformation Mean Median Mean Median Mean Median Mean Median

Relative bias RMSE [%]

Log-shift 2.2514 2.5114 -2.1263 -2.6910 6.0185 5.3279 7.9957 8.6105
Log -1.6072 -1.9258 6.2006 5.4005 -20.8445 -20.3301

Relative RMSE RMSE[%]

Log-shift 6.4549 5.7627 30.3741 29.7741 15.2840 15.0982 13.4362 12.9401
Log 30.5179 29.9245 15.3057 15.2126 28.0718 25.8790

6 Design-based simulation study

In Section 5 we evaluated the performance of the point estimates and the MSE estimates in model-based

simulations. In this section, we conduct a design-based simulation to assess the behaviour of different

estimators in a close-to-reality environment when the true data generation mechanism is unknown. The

study is based on the Mexican census of 2010. The census includes a variable closely related to income

(the earned income from work) which is used as dependent variable in the study. Furthermore, different

continuous and categorical variables are available in the census which may serve as potential auxiliary

information in the models. After the description of the setup of the design-based simulation study, we

discuss the performance of the proposed estimator and alternative competitors.

The initial data for the design-based simulation are population micro-data from the 2010 Mexican

census from the State of Mexico. The State of Mexico consists of 125 municipalities which are the areas

of interest. We draw M = 500 samples by stratified random sampling from the fixed census/pseudo-

population following the design of the Mexican Household Income and Expenditure Survey (ENIGH)

survey from 2010. The stratum is specified by the 125 municipalities. The sample size is 2748 as in the

ENIGH survey with a minimum of 3 and a maximum of 527 (median: 21). The variable of interest is the

earned income from work per capita (inglabpc) measured in Mexican pesos. As auxiliary data we use

the following 6 continuous and categorical covariates:

• percentage of employees who are older than 14 years in the household;
• the highest degree of education completed by the head of household;
• the social class of the household;
• the percentage of income earners and employees in the household;
• the total number of communication assets in the household;
• the total number of goods in the household.

Modelling inglabpc by these covariates leads to a conditional coefficient of determination (Nakagawa

and Schielzeth, 2013) for the NER model ranging from 49.6% to 59.2% for the data-driven log-shift

transformation over the Monte-Carlo replications. Using the log transformation, the conditional co-

efficient of determination is between 46.2% and 57.6% and under no transformation the range of the

conditional coefficient of determination is 26.9% to 47.1%. We evaluate the different point estimates

by using the relative bias (12) and the RMSE (13) over M = 500 samples from the fixed population.

As in the model-based simulation, the same competitors are compared with the proposed bias-corrected

estimator Ŷ
trans, bc-agg

i (10) (bc-agg). In contrast to the model-based simulation, we do not show the re-
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Table 4: Performance (in terms of the distribution of relative bias and RMSE) of estimators of mean
income over municipalities in design-based simulation study

Transformation Estimator Q0.1 Q0.25 Mean Median Q0.75 Q0.9

Relative bias [%]

Gen. competitors
No transformation

BHF -6.2471 -1.2958 7.2244 6.7426 14.6169 24.9505
EBP -6.7169 -1.1130 7.1482 6.3409 15.5975 24.3026

Log-Shift

bc-agg -5.9052 -2.1816 6.9543 5.2935 12.3645 24.5303
bc-naive-agg -22.3306 -15.8239 -8.3422 -9.3838 -2.5686 7.3689
naive -21.0108 -17.4476 -9.9295 -10.9967 -4.9272 4.9207
naive-agg -34.9229 -29.4864 -23.2362 -23.8893 -18.6247 -10.3107
EBP -6.0973 -1.0638 7.3163 5.1184 13.8139 24.5727

Log

bc-agg -3.3077 -0.7194 8.1014 6.4667 12.9045 25.3294
bc-naive-agg -22.3074 -15.7831 -8.6267 -9.3442 -3.3046 7.0525
naive -22.0931 -18.6291 -11.8209 -13.2609 -7.3448 2.3839
naive-agg -36.7214 -31.5616 -25.7840 -26.4056 -21.4856 -13.2655
EBP -3.8318 -0.0302 8.5413 6.2421 14.3214 25.7412

RMSE

Gen. competitors
No transformation

BHF 91.2780 123.0972 227.9718 193.3669 281.1682 366.0222
EBP 82.9916 137.4112 228.5845 185.2426 296.9533 374.2862

Log-Shift

bc-agg 97.8038 128.1649 215.9485 175.2353 262.5073 372.1697
bc-naive-agg 63.0396 119.0798 303.6137 208.9238 355.9612 595.5469
naive 65.6649 126.2201 300.1576 224.3113 378.9602 604.9108
naive-agg 149.1410 297.8022 533.3376 458.4745 653.1614 912.5232
EBP 97.8839 123.8100 224.0689 180.8314 266.7279 388.3502

Log

bc-agg 109.3511 139.6032 224.3459 189.3673 268.7067 372.1409
bc-naive-agg 64.1356 126.7677 305.2655 217.3750 350.9832 599.1836
naive 70.1345 137.8691 324.5263 256.2682 417.7256 641.3092
naive-agg 193.8965 349.7551 579.3393 496.0587 702.0675 960.4961
EBP 115.0639 141.9267 232.5953 200.0447 274.2513 395.7143

sults for the TNER2 estimator due to numerical instability associated with this estimator in the case of

the design-based simulation.

Table 4 presents summary statistics of relative bias and RMSE over municipalities. The proposed

estimator (bc-agg) leads to comparable results in terms of relative bias as the EBP under the same

transformation, which requires population micro-data. Using naive back-transformed estimators (naive,

naive-agg, and bc-naive-agg) lead on average to higher absolute values for the relative bias compared

to the proposed bias-corrected estimator. In particular, the naive-agg estimator that ignores both bias-

corrections performs worst. If we compare the proposed estimator with the methods using untransformed

data (EBP and BHF), we observe that the proposed estimator leads on average to smaller absolute values

in terms of relative bias. Regarding the RMSE, the proposed bias-corrected estimator (bc-agg) is almost

as efficient as the EBP - despite the bc-agg estimator is using less information. All three naive estimators

lead on average to high values in terms of RMSE. The general competitors build on untransformed data

(BHF and EBP) does not keep up in terms of efficiency to the adaptive log-shift transformed bc-agg

estimator. Comparing the untransformed estimators and the log transformed bc-agg estimator in detail,

we note that in general neither estimator has superior performance over the other. This could be at least

partly explained by the higher relative bias of the log transformed estimator compared to the log-shift

transformed one. Working with real-world income data as is the case in the design-based simulation, we

recognize that the adaptive log-shift transformation adjusts to the underlying data and therefore yields

better results than the fixed log transformation (bias and uncertainty). These results are in line with the
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Figure 5: Estimated and empirical municipal-specific RMSE using the proposed estimator (10) with log-
shift transformation in design-based simulation study

results for the GB2-scenario from the model-based simulation study and the findings by Rojas-Perilla

et al. (2020) and Walter et al. (2021).

We now turn our attention to the behaviour of the MSE estimator - presented in Section 4 - of the pro-

posed Ŷ
trans, bc-agg

i with an adaptive log-shift transformation. The proposed MSE estimator is evaluated

in Figure 5 by using the estimated RMSE with B = 500 bootstrap replications and the empirical RMSE

(13) over M = 500 samples from the fixed population. The figure indicates that the estimated RMSE

tracks the empirical RMSE well especially for the in-sample municipalities. In design-based simulations,

the estimation of out-of-sample municipalities is always a particular challenge. For the out-of-sample

municipalities, the estimated RMSE has on average the same order of magnitude as the empirical one,

but the tracking is not quite as good as for the in-sample municipalities.

In summary, the design-based study shows that the proposed point estimator performs almost on the

same level as the EBP which requires micro population-level covariates and better than all types of naive

back-transformed estimators. Furthermore, the quality of it uncertainty estimator could be demonstrated.

7 Application: Estimating income in Germany using the SOEP data

In this section we present estimates of the mean gross individual income for the 96 German RPRs using

the SOEP data and aggregated auxiliary census information. The results are based on the proposed

bias-corrected estimator (10) under the NER model with a log-shift transformation. MSE estimation is

conducted with the parametric bootstrap we presented in Section 4 with B = 500 bootstrap replications.

A detailed description of the survey and census datasets is given in Section 2. The use of the log-shift

transformation is motivated using the previously discussed model diagnostics from Section 2.
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Figure 6: Area-specific CVs for the direct (blue) and the proposed model-based (green) estimates, or-
dered from low to high CVs for direct estimates and the associated boxplots. The grey line in the left plot
separates the non-sampled areas. The red line marks the 20%-threshold for defining reliable estimates.

7.1 Gain in accuracy

The accuracy of the proposed estimator (10) is assessed by the estimated MSE. The variance of the direct

estimates is obtained by using calibrated bootstrap variances (Alfons and Templ, 2013) which accounts

for the survey design implemented in the R package emdi (Kreutzmann et al., 2019). CVs for the model-

based and direct estimates are computed using the point estimates and the corresponding estimates of

MSE and variance estimates. As mentioned in Subsection 2.1, 26 CVs for the direct estimates exceed

the 20%-threshold and 6 areas (RPRs) are out-of-sample. In comparison, only 2 CVs based on the

proposed model-based estimator exceed the 20% threshold. Figure 6 shows area-specific CVs for both

methods. We observe that the CVs of the model-based estimates, based on aggregated population-level

covariates, are on average smaller compared to the CVs of the direct estimates (mean of the model-based

CVs 15.57% vs. mean of the direct CVs 17.99%) and have a smaller interquartile range. As expected,

especially for areas where the direct estimates are not reliable due to small sample sizes, the model-

based estimates have improved accuracy. All in all, extreme CVs are prevented with our method and

good results with higher accuracy are obtained especially for areas with small sample sizes. From these

results we can conclude that the proposed approach helps with deriving improved small area estimates.

7.2 Discussion based on the application results

Figure 7 (b) shows the regional distribution of the estimated mean gross individual income with the

proposed estimator (10). This map can be compared to the map of direct estimates in Figure 1 (a). It

is immediately apparent that the unrealistically high range of average individual income across RPRs

obtained from the direct estimates no longer exists in the model-based estimates. The line plot in Figure

7 (a) shows more clearly the relation between the proposed model-based and the direct estimates and the

impact of shrinkage for areas with small sample sizes. In addition, Figure 8 and Table 6 in the appendix

provide information on the mean gross individual income estimated with the TNER2 method (Li et al.,

2019) for German RPRs. Note that no MSE estimator exists for TNER2, therefore only point estimates

are shown.

The regions around economically strong cities in the West, for instance Munich and Frankfurt are the
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Figure 7: (a) The proposed model-based estimates (10) and direct estimates for mean gross individual
income per month [e] for German RPRs ordered from low to high sample size and (b) spatial repre-
sentation of corresponding model-based estimates. The grey line in the left plot separates out-of-sample
areas from in-sample areas. For the former only model-based estimates are available.

RPRs with the highest mean gross individual income estimates. The other end of the income distribution

includes regions in the Ruhr Area, which was affected by the breakdown of the steel industry. The lowest

mean gross individual income was estimated for RPR Göttingen. Looking at the survey data, it seems

that many students are in the sample (the city Göttingen within the RPR has a student rate of around 20%)

and they often report low incomes under 1000e. The map shows a small difference between Eastern and

Western Germany. Lower mean gross individual incomes are estimated for the eastern German states

of Saxony and Thuringia. However, the RPRs in the East with the highest income report on average

higher income than the West German regions with lowest income estimates. The difference between

East and West Germany is considerably smaller in the model-based estimates than in the direct estimates

in Figure 1 (a). Unfortunately, no other meaningful variables are available from the census that have the

same definition as the variables in the SOEP data. Variables such as highest degree or work experience

would be important in order to improve the predictive power of the models.

8 Conclusion

In this paper we investigate the estimation of the small area mean for income under transformations. In

particular, we propose a small area estimator when only aggregate population-level auxiliary information

is available. Related literature assumes access to registers or census auxiliary micro-data (Karlberg,

2000; Chandra and Chambers, 2011; Molina and Martı́n, 2018) which is a limitation for data analysts.

From a methodological point of view, we investigate bias-correction in the case of log and log-shift

transformations under aggregated population-level auxiliary information. If limited auxiliary information

is present, we propose to use KDE to approximate the back-transformed totals. We don’t make any
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parametric assumptions about the shape of the covariates. Instead non-parametric small area KDE is used

to obtain an estimator for the synthetic part of the model which is used in order to reduce the second-

order back-transformation bias. We further explore the use of a parametric bootstrap for estimating

the MSE that captures the additional uncertainty due to the transformation and KDE. Model-based and

design-based simulations are used to explore the properties of the proposed point and MSE estimators.

The proposed point estimator performs comparably to the EBP under transformations (Molina and Rao,

2010; Rojas-Perilla et al., 2020) that uses micro population-level auxiliary information and leads to more

efficient results compared to the TNER2 estimator of Li et al. (2019) that uses aggregated population-

level auxiliary information. The proposed bias-corrected estimator outperforms naive back-transformed

estimators and general competitors where no transformation is needed.

There are research questions that we do not investigate in the paper and are left open for further re-

search: First, the proposed small area estimator doesn’t allow for the use of survey weights in estimation,

which carries risks if the assumption of non-informative sampling does not hold after conditioning on

the covariates. Approaches to allow for survey weights have been proposed by Pfeffermann et al. (1998);

Rabe-Hesketh and Skrondal (2006); Pfeffermann and Sverchkov (2007); You and Rao (2002); Guadar-

rama et al. (2018) and Burgard and Dörr (2021). Extending these approaches to allow for the use of

adaptive transformations in the context of limited access to population-level auxiliary information is an

open research problem. Second, in the current paper we focus on estimating small area averages. An ex-

tension of the proposed approach to estimating linear and non-linear income indicators would be valuable

in obtaining a more detailed picture of the spatial distribution of income and wealth for evidence-based

policymaking when population micro-data are not available. Third, we propose a parametric bootstrap

MSE for quantifying the uncertainty of the small area estimates. Developing analytic MSE estimators

similar to the one proposed in Molina and Martı́n (2018) and assessing the theoretical properties of the

proposed bias-correction term offer additional avenues for future research.
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Appendix

Supporting information for Section 4

Derivation of the area-specific distribution for each replication b in (11): Following González-

Manteiga et al. (2008) bootstrap populations are built on a superpopulation model with u(b)i and e(b)ij
following a normal distribution. Therefore, for bootstrap replication b and area i, y∗(b)ij is normally

distributed with
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Additional figures and tables

Table 5: Model coefficients for the chosen linear mixed model with log-shift transformed (λ = 358.73)
response variable (mean gross individual income) using the SOEP data

Fixed effects Levels Coefficient Std. error

Constant 7.859 ∗∗∗ (0.069)
Sex male

female −0.534 ∗∗∗ (0.024)
Age (years) 0.006 ∗∗∗ (0.001)
Position in household married

marriage-like 0.144 ∗∗∗ (0.053)
single parent 0.051 (0.064)
child −0.217 ∗∗∗ (0.055)
living alone 0.061 ∗ (0.034)

Employment status employed (paying national insurance)
civil servants 0.236 ∗∗∗ (0.050)
unemployed −0.228 (0.142)
other −0.622 ∗∗∗ (0.032)

Tenant or owner owner
tenant −0.119 ∗∗∗ (0.027)

Migration background non
direct −0.129 ∗∗∗ (0.035)
indirect 0.017 (0.044)

Random effects Estimated variance

RPRs (σ̂2u) 0.0156
Residuals (σ̂2e ) 0.2694

Note:∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 6: Summaries for direct, model-based (with the proposed method ((10)), and TNER2 estimates for
the mean gross individual income per month [e] over German RPRs.

Estimator Min. 1st Qu. Median Mean 3rd Qu. Max.

direct 1144 1824 2244 2267 2554 5059
model-based (bc-agg) 1752 2220 2324 2373 2501 3381
TNER2 1720 2004 2152 2159 2290 2992
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Figure 8: Spatial representation of TNER2 estimates for mean gross individual income per month [e] for
German RPRs

References

Alfons, A. and Templ, M. (2013) Estimation of social exclusion indicators from complex surveys: the R
package laeken. Journal of Statistical Software, 54, 1–25.

Battese, G. E., Harter, R. M. and Fuller, W. A. (1988) An error-components model for prediction of

county crop areas using survey and satellite data. Journal of the American Statistical Association, 83,

28–36.

Berg, E. and Chandra, H. (2014) Small area prediction for a unit-level lognormal model. Computational

Statistics & Data Analysis, 78, 159–175.
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Acta Mathematica, 30, 175–193.

Karlberg, F. (2000) Population total prediction under a lognormal superpopulation model. Metron, 58,

53–80.

Kohn, K. and Antonczyk, D. (2013) The aftermath of reunification: sectoral transition, gender and rising

wage inequality in East Germany. Economics of Transition, 21, 73–110.

Kosfeld, R., Eckey, H.-F. and Lauridsen, J. (2008) Disparities in prices and income across German NUTS

3 regions. Applied Economics Quarterly, 54, 123–141.

Kreutzmann, A.-K., Pannier, S., Rojas-Perilla, N., Schmid, T., Templ, M. and Tzavidis, N. (2019) The R
package emdi for estimating and mapping regionally disaggregated indicators. Journal of Statistical

Software, 91, 1–33.

Kroh, M., Kühne, S., Siegers, R. and Belcheva, V. (2018) Soep-core-documentation of sample sizes and

panel attrition (1984 until 2016). SOEP Survey Papers - Series C - Data Documentations, 480.

Li, H., Liu, Y. and Zhang, R. (2019) Small area estimation under transformed nested-error regression

models. Statistical Papers, 60, 1397–1418.

Molina, I. and Marhuenda, Y. (2015) sae: an R package for small area estimation. The R Journal, 7,

81–98.

Molina, I. and Martı́n, N. (2018) Empirical best prediction under a nested error model with log transfor-

mation. The Annals of Statistics, 46, 1961–1993.

Molina, I. and Rao, J. N. K. (2010) Small area estimation of poverty indicators. Canadian Journal of

Statistics, 38, 369–385.

Nakagawa, S. and Schielzeth, H. (2013) A general and simple method for obtainingR2 from generalized

linear mixed-effects models. Methods in ecology and evolution, 4, 133–142.

26



OECD (2020) Working age population (indicator). OECD, Paris. (Available from

https://www.oecd-ilibrary.org/social-issues-migration-health/

working-age-population/indicator/english_d339918b-en).

Parzen, E. (1962) On estimation of a probability density function and mode. The Annals of Mathematical

Statistics, 33, 1065–1076.

Pfeffermann, D., Skinner, C. J., Holmes, D. J., Goldstein, H. and Rasbash, J. (1998) Weighting for

unequal selection probabilities in multilevel models. Journal of the Royal Statistical Society. Series B

(Statistical Methodology), 60, 23–40.

Pfeffermann, D. and Sverchkov, M. (2007) Small-area estimation under informative probability sampling

of areas and within the selected areas. Journal of the American Statistical Association, 102, 1427–

1439.

Rabe-Hesketh, S. and Skrondal, A. (2006) Multilevel modelling of complex survey data. Journal of the

Royal Statistical Society: Series A (Statistics in Society), 169, 805–827.

Rao, J. N. K. and Molina, I. (2015) Small Area Estimation. Hoboken: John Wiley & Sons.

R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statis-

tical Computing, Vienna.

Rojas-Perilla, N., Pannier, S., Schmid, T. and Tzavidis, N. (2020) Data-driven transformations in small

area estimation. Journal of the Royal Statistical Society: Series A (Statistics in Society), 183, 121–148.

Rosenblatt, M. (1956) Remarks on some nonparametric estimates of a density function. The Annals of

Mathematical Statistics, 27, 832–837.

Saefken, B., Ruegamer, D., Kneib, T. and Greven, S. (2021) Conditional model selection in mixed-effects

models with cAIC4. Journal of Statistical Software, 99, 1–30.

Scott, D. W. (2015) Multivariate density estimation: theory, practice, and visualization. John Wiley &

Sons.

Sheather, S. J. and Jones, M. C. (1991) A reliable data-based bandwidth selection method for kernel

density estimation. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 53,

683–690.

Slud, E. V. and Maiti, T. (2006) Mean-squared error estimation in transformed Fay–Herriot models.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68, 239–257.

Socio-Economic Panel (2019) data for years 1984-2017, version 34, SOEP. Socio-Economic Panel,

Berlin. doi: 10.5684/soep.v34.

Statistisches Bundesamt (2015) Zensus 2011 Methoden und Verfahren. Statistisches Bundesamt,

Wiesbaden. (Available from https://www.zensus2011.de/SharedDocs/Downloads/

DE/Publikationen/Aufsaetze_Archiv/2015_06_MethodenUndVerfahren.pdf?

__blob=publicationFile&v=6).

Sugasawa, S. and Kubokawa, T. (2017) Transforming response values in small area prediction. Compu-

tational Statistics & Data Analysis, 114, 47–60.

Sugasawa, S. and Kubokawa, T. (2019) Adaptively transformed mixed-model prediction of general finite-

population parameters. Scandinavian Journal of Statistics, 46, 1025–1046.

Tzavidis, N., Zhang, L.-C., Luna, A., Schmid, T. and Rojas-Perilla, N. (2018) From start to finish: a

27



framework for the production of small area official statistics. Journal of the Royal Statistical Society:

Series A (Statistics in Society), 181, 927–979.

Venables, W. and Ripley, B. (2002) Modern Applied Statistics with S. New York: Springer.

Walter, P., Groß, M., Schmid, T. and Tzavidis, N. (2021) Domain prediction with grouped income data.

Journal of the Royal Statistical Society: Series A (Statistics in Society), 184, 1501–1523.

Yang, L. (1995) Transformation-density estimation. Ph. d. thesis, University of North Carolina, Chapel

Hill.

You, Y. and Rao, J. (2002) A pseudo-empirical best linear unbiased prediction approach to small area

estimation using survey weights. Canadian Journal of Statistics, 30, 431–439.

28


