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Abstract

Spatially disaggregated income indicators are typi-
cally estimated by using model-based methods that
assume access to auxiliary information from popula-
tion micro-data. In many countries like Germany and
the UK population micro-data are not publicly avail-
able. In this work we propose small area methodology
when only aggregate population-level auxiliary infor-
mation is available. We use data-driven transforma-
tions of the response to satisfy the parametric assump-
tions of the used models. In the absence of popula-
tion micro-data, appropriate bias-corrections for small
area prediction are needed. Under the approach we
propose in this paper, aggregate statistics (means and
covariances) and kernel density estimation are used
to resolve the issue of not having access to popula-
tion micro-data. We further explore the estimation of
the mean squared error using the parametric bootstrap.
Extensive model-based and design-based simulations
are used to compare the proposed method to alternative
methods. Finally, the proposed methodology is applied
to the 2011 Socio-Economic Panel and aggregate census
information from the same year to estimate the average
income for 96 regional planning regions in Germany.
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1 | INTRODUCTION

Reliable knowledge of the spatial distribution of income and wealth is essential for evidence-based
policymaking. High spatial resolution direct estimates of income that use household surveys
are likely to be unreliable because of the small sample sizes at the spatial scale of interest.
A possible way to overcome this problem is by using small area estimation (SAE) methods
(Rao & Molina, 2015; Tzavidis et al., 2018). The estimation of income indicators, including
non-linear ones, for example the poverty gap and poverty severity, has been researched exten-
sively (Elbers et al., 2003; Molina & Rao, 2010; Tzavidis et al., 2018). These indicators are typically
estimated by using model-based methods that assume access to auxiliary information from pop-
ulation micro-data. In developed countries like Germany and the United Kingdom, population
micro-data are not publicly available and access to such data is even challenging within gate-
keeper organisations. Instead, population-level auxiliary data are often only available at some
aggregate level.

One predominant approach—for estimating the average income in small areas—is the nested
error regression (NER) model proposed by Battese et al. (1988) that borrows strength by using
auxiliary information from the census. The model relies on the assumption that the error terms
follow a Gaussian distribution. In a variety of real-world examples, this assumption may not be
satisfied. Especially skewed variables, like income and consumption, can often not be adequately
described by the available auxiliary variables and therefore lead to error terms that are not nor-
mally distributed. One promising approach to satisfy the assumptions of the NER model is to
use fixed logarithmic (Molina & Martin, 2018) or data-driven (Rojas-Perilla et al., 2020; Sugasawa
and Kubokawa, 2019) transformations for the dependent variable. Data-driven transformations
contain a transformation parameter that adapts to the particular shape of the data. Many publi-
cations focus on the estimation of the average income under a logarithmic transformation within
the NER model (lognormal model). A general problem is the correction of the bias when the
response is back-transformed to the original scale. For the lognormal model, Karlberg (2000) pro-
poses a bias-corrected estimator for the small area mean. Chandra and Chambers (2011) present
model-calibrated weights to obtain a bias-correction for a log-transformed response variable. Berg
and Chandra (2014) suggest an estimator with minimal mean squared error (MSE). Molina and
Martin (2018) also focus on this estimator and develop an analytical MSE estimator. However, in
all the research works mentioned, auxiliary information from population micro-data are required
for the bias-correction due to the back-transformation, which is a strong limitation for data ana-
lysts. In contrast, Li et al. (2019) propose a bias-correction when only aggregate population-level
auxiliary information is available. Their estimator uses the smearing approach of Duan (1983) to
build a pseudo-population from the sample data, which is later adjusted by incorporating pop-
ulation means from the auxiliary information. However, Li et al. (2019) only discuss results for
point estimation and they do not present a MSE estimator. It should also be mentioned that the
estimation of small area means/averages can be also implemented with area-level linear mixed
regression models (Fay & Herriot, 1979) when only aggregated data for the survey and the popu-
lation data are available. For these area-level models, Slud and Maiti (2006) present an estimator
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for small area means and its analytical MSE estimator under a log-transformed Fay-Herriot
model. Sugasawa and Kubokawa (2017) discuss area-level models for data-driven dual power
transformations.

In this work, we propose methodology for estimating small area means based on the trans-
formed NER model when only aggregate population-level auxiliary information is available.
In the absence of population micro-data, appropriate bias-corrections for small area prediction
are presented. Under the proposed approach we do not make any parametric assumptions about
the auxiliary variables and instead use aggregate statistics (means and covariances) and kernel
density estimation (KDE) to resolve the issue of not having access to population micro-data.
Regarding the estimation of the MSE, we propose a parametric bootstrap that captures the uncer-
tainty due to the use of transformations and KDE. We study our proposed estimator in extensive
model-based and design-based simulations and compare the proposed method to alternative
methods for example, the EBP (Molina & Rao, 2010) under transformations (assuming the avail-
ability of unit-level census data) and the estimator of Li et al. (2019). Results show that, compared
to alternative methods, the proposed methodology leads to comparable results. We also show that
the proposed uncertainty estimation works.

The proposed methodology is applied to the 2011 Socio-Economic Panel (SOEP) and
aggregate census information from the same year to estimate the average individual income
for 96 regional planning regions (RPRs) in Germany. Knowledge of the spatial distribution
of income in Germany is of great interest: Kosfeld et al. (2008) investigate disparities of
regional German income at district level for the year 2004. They note that income varies con-
siderably between districts. The districts with the highest and lowest incomes in Germany
differed by a factor of 1.8. For Eastern Germany, income is on average 86.3% of that in Western
Germany. Within Germany, there is a strong interest in income differentials, particularly between
Western and Eastern Germany, which are politically relevant and widely discussed (Frick &
Goebel, 2008; Fuchs-Schiindeln et al., 2010; Gorzig et al., 2008; Kohn & Antonczyk, 2013).

The rest of the paper is structured as follows. Section 2 describes the SOEP survey and
discusses initial direct estimators. Furthermore, the auxiliary aggregated information from the
census is presented. In Section 3 the methodology is explained. To start with, the classical NER
model is reviewed in Section 3.1. Afterwards, the transformed NER models and corresponding
small area estimators—when population micro-data are available—are discussed in Section 3.2.
Finally, the proposed method—when only aggregate population-level auxiliary information is
available—is introduced in Section 3.3. MSE estimation is discussed in Section 4. The pro-
posed methods are evaluated against existing competitors using model-based (Section 5) and
design-based simulation studies (Section 6). For the design-based simulation study, individual
income data from the Mexican census are used to assess the proposed estimator on real-world
data. In Section 7 we apply the proposed method to the SOEP data for estimating average income
for German RPRs, where population micro-data are not available. Section 8 summarises the main
findings and outlines further research.

2 | DATA SOURCES AND INITIAL ANALYSIS

The current section describes the data sources used in the application. First, the survey SOEP is
described and the corresponding direct estimates for German RPRs are shown in Section 2.1. The
direct estimates indicate the need for using SAE methods. In Section 2.2, the available auxiliary
variables from the German census are described. Finally, this subsection closes with a motivation
for the use of transformations in order to meet the model assumptions in the application.
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2.1 | The German SOEP and initial estimates on spatial gross income

To estimate income in Germany we use the SOEP (Socio-Economic Panel, 2019). This survey was
established in 1984, is one of the most important German surveys, and is located at the German
Institute for Economic Research (DIW Berlin). The SOEP provides representative longitudinal
data of private households in Germany for multidisciplinary issues (Goebel et al., 2019). This sam-
ple is highly valuable not only for governmental institutions, but also for researchers from various
fields. It collects a large variety of variables and offers different sub-samples with a specific focus.
Being interested in estimating the average individual income in Germany for different RPRs, the
SOEP is a valuable data source. In other important German surveys, such as the Microcensus,
income is provided only in interval-censored groups.

The analysis is conducted with the open-source software R (R Core Team, 2020). We use the
refreshment sample from 2011 for our analysis. The sampling design for the 2011 refreshment
sample is a multistage stratified sampling procedure. In the first stage, 370 primary sampling
units (PSUs) are selected proportionally to their size. For this purpose, stratification into federal
states, governmental regions and municipalities is carried out. In the second stage, using the ran-
dom walk methodology, addresses are sampled within each PSU. Within this selection process,
migration background was accounted for so that migrant households were twice as common in
the 2011 Refreshment sample. The persons living in the respective households are interviewed
(Kroh et al., 2018). Our target variable is the gross individual income in Euro of the respon-
dent in the month before the interview during the year 2011. We choose this year because the
census was carried out in the same year and so this choice enables us later to include census
covariates. The target population is the working age population, which is defined as those aged
15-64 (OECD, 2020). We are interested in estimating the mean gross individual income in 96
German RPRs. Figure 1a shows the direct estimates, calculated with the emdi-package (Kreutz-
mann et al., 2019). The mean gross individual income varies from 1173 €(Bremen) to 5059 €
(Donau-Iller). General trends can be seen from the map: East Germany has a lower mean gross
individual income, the Munich, Stuttgart, or Frankfurt areas have higher mean incomes. How-
ever, small sample sizes lead to estimated mean gross individual incomes with high variances.
With dark grey we present the six out-of-sample regions. Furthermore, for 23 regions, the sam-
ple size is less than 10 (presented in light grey). In these cases, we are not allowed to report
directly estimated mean gross individual incomes due to confidentiality agreements with the data
provider. Therefore, direct estimates are presented for 67 out of 96 regions. The sample sizes over
the RPRs vary from 0 to 107 (first Quartile: 8, Median: 16.5, Mean: 20.83, and third Quartile:
26.5). We use a calibrated bootstrap method (Alfons & Templ, 2013) which accounts for the sur-
vey design to estimate the variance of the direct estimates implemented in the R package emdi
(Kreutzmann et al., 2019). From these variances the corresponding coefficients of variation (CV)
are obtained (cf. Figure 1b). In particular, Eurostat considers estimators with a CV less than 20%
to be reliable (Eurostat, 2019). Here, 26 out of 90 CVs exceed this threshold for reliable esti-
mates. The highest CVs were found for Osthessen (72.7%), Bayerischer Untermain (56.5%), and
Donau-Iller (56.13%). When looking at the individual sample data, on the one hand the sample
sizes are small for these RPRs and on the other hand the variability of the reported individual
incomes is high. Therefore, exploring the use of SAE may be necessary if interest is in improving
the estimation accuracy for RPRs. Since some of the SOEP auxiliary variables are measured in the
same way within the German census, census covariate data can serve as auxiliary information in
small area models. However, information from the German census is only available at aggregated
(RPR) level.
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FIGURE 1 (a)Map with direct estimated mean gross individual income per month [€] where
out-of-sample areas and areas with sample size under 10 are greyed out and (b) the respective coefficients of
variation. [Colour figure can be viewed at wileyonlinelibrary.com]

2.2 | Auxiliary data from the German census and preliminary
model selection

SAE methods use survey data and population-level auxiliary information to improve the available
direct estimates. Especially for small sample sizes, as in the 2011 SOEP data disaggregated into the
96 German RPRs, the methods might be helpful in order to achieve more reliable estimates. As
the German census is not available at population micro-level, we use aggregated auxiliary infor-
mation (means and covariances) from the German census 2011 (Statistisches Bundesamt, 2015)
to estimate the mean gross individual income. We first made a preselection of suitable vari-
ables that are available in the SOEP and in the German census. Subsequently, we use model
selection criteria (the conditional Akaike information criterion from the cAlC4-package (Saefken
et al., 2021)) to select the best model based on the survey data (SOEP) at individual-level. Due to
the sampling process, migration background was included by default as a variable in the model.
The additionally selected five variables are sex, age, position in the household, employment
status and tenant or owner of dwelling. Table S1 provides further information about each vari-
able. In order to implement the proposed methodology, we requested the corresponding means
and covariances of the six variables from the 2011 German census from the Statistical Office
(DESTATIS).

For skewed variables, like gross individual income in our case, transforming the response
is often necessary and offers a promising approach to satisfying the assumptions of the com-
monly used models (Rojas-Perilla et al., 2020). Therefore, NER models have been constructed
using the sample data, whereby the dependent variable was on the original scale, log, and
log-shift-transformed scales. The log-shift transformation is a data-driven transformation which
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FIGURE 2 QQ-plots for the individual-level residuals (first row) and the area-level residuals (second row)
among the nested error regression models under different transformations. [Colour figure can be viewed at
wileyonlinelibrary.com]

extends the log transformation by a shift-parameter A: log(y + 4) estimated using the data.
For more information about this transformation, see Section 3.2. The validity of the normal-
ity assumptions for both error terms (unit-level and area-level) of the underlying NER models
are checked with QQ-plots (cf. Figure 2). If the original scale or the log transformation is used,
deviations from the normal distribution can be seen for the residuals at both levels. Further-
more, we compute the conditional coefficient of determination (Nakagawa & Schielzeth, 2013):
11.99% (no transformation), 36.01% (log transformation) and 41.98% (log-shift transformation).
From these preliminary investigations, the decision to use a log-shift transformation for estimat-
ing mean gross individual income for German RPRs becomes clear. In Table S1, the coefficients
for the chosen NER model with log-shift transformed response (with estimated shift-parameter:
A= 358.73) are shown. Furthermore, the likelihood ratio test leads to clear significance
(p = 7.02310715) of the random effect.

3 | UNIT-LEVEL SMALL AREA MODELS

The structure of this section is as follows. First, the NER model of Battese et al. (1988) is presented
in Section 3.1. Subsequently, the NER model is extended to allow the use of transformations on
the dependent variable (Berg & Chandra, 2014; Molina & Martin, 2018; Rojas-Perilla et al., 2020).
Computing the small area estimators requires access to population micro-data to avoid introduc-
ing back-transformation bias. As a result, we propose an estimator which can be used when the
response is transformed and we have access only to limited auxiliary information in the form of
population-level aggregates of the covariates.
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3.1 | The NER model

The finite population U of size N is divided into D areas U, U,, ... ,Up consisting of
Ni,N;, ... ,Np units. The index i =1, ... ,D indicates the respective area and j=1, ... ,N;
the corresponding units. The continuous dependent variable y; is available for every unit
in the sample s. The sample s consists of #n units partitioned into sample sizes ny,n,, ... ,np for
the particular areas. With s; we refer to the in-sample units in area i and with s; to the N; — n;
non-sampled units in area i. Furthermore, a vector x; = (1, X1, X4, ... ,xpij)T consisting of the
intercept and p explanatory variables is available for every unitj in every area i within the sample.
The matrix X; contains all covariates of every individual in the sample across all areas. Battese
et al. (1988) use a NER model, which models the relationship between x;; and y;; as follows:

iid iid
Vi = X8+ i + ey, u; ~ N(0,07) and e; ~ N(0,02), 1)
where f = (fo, f1, B2, ... ,ﬂp)T is the vector of regression coefficients, which describes the linear

relationship of x; and y;;. u; denotes the area-specific random effect and ¢;; is the unit-level error.
The error terms u; and e;; are assumed to be independent and o2 and 62 denote the correspond-
ing variances. The best linear unbiased predictor (BLUP) for every out-of-sample unit j € s; is
given by

MU=X§ﬂ+ui=X5ﬂ+7i<Z <yij_X§ﬂ>>, (2)
JES;

2
%y

where y; =

vy denotes the shrinkage factor. The target parameter is the population mean for

each area i. The empirical best linear unbiased predictor (EBLUP) for the population area mean
() is defined as

~ BHF

s 1 .

Y, = N, Zyy + Z Hj

JES; Jes;
T
NE 1 A .
=7 EZW"‘(&'— EZXU) Pl+A—-7)x B, (3)
]ESi _]ESI-

A2

N T 1 . ;
where 7; = . The vector x; = ZjeU_ xg denotes the p population means for each area i.

O
&ﬁ+&u§ /n; N,
For estimating fixed effects and the variance components ¢2 and o2, several methods are avail-
able, for example maximum likelihood (ML) or restricted maximum likelihood (REML) (Rao &
Molina, 2015). Note that the estimator in (3) requires access only to population-level aggregates

()_(iT) and to unit-level survey data.

3.2 | SAE under the NER model and transformations

In a large number of applications, the dependent variable has a skewed distribution, and
its shape cannot be sufficiently explained by the available auxiliary variables. Consequently,
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the Gaussian assumptions for the random effects and the error terms in the NER model
might be violated. One common solution to address this problem is to use one-to-one trans-
formations h(yy) = y:; In many applications related to income, a fixed logarithmic transfor-
mation is used for this purpose due to its simplicity. More flexible solutions depending on
the particular shape of the dependent variable are offered by data-driven transformations
(Gurka et al., 2006; Rojas-Perilla et al., 2020). For instance, the log-shift transformation
(Yang, 1995) extends the log transformation by including a transformation parameter
A y;*j = h(y;) = log(y; + 4), which is estimated from the sample. For further details we refer the
reader to Rojas-Perilla et al. (2020).

The use of a transformation for the dependent variable defines a model on the transformed
scale (transformed NER model):

h@y) =y = xgﬂ +u; + ¢y, u; wd N(0,07) and e e N0, 62). 4)

The BLUP on the transformed scale for out-of-sample units is analogous to (2) ylf; = xgﬁ + u;. In
most applications, the goal is to estimate the target parameter (here the mean) on the original
scale. From Jensen’s inequality, it is obvious that the naive back-transformation for the BLUP
of the out-of-sample predictions does not lead to the same result as the best prediction on the
original scale. If the transformation () is a real convex or concave function the following applies
because of Jensen’s inequality (Jensen, 1906)

)
N J

trans, naive __ . —1 * —1 /%
e =n (wy)  # ERODIYLX)
naive back-transformation of the BLUp  best prediction on original scale

In this paper, we focus on the log and log-shift transformation, so the back-transformation
h=1() = exp() or h™'() = exp() — 4 is in both cases convex. Consequently, ;4;.““3’ "¢ Jeads to
lower estimates than E [h‘l(y;']‘.)lys, X;] and thus the estimated small area means using the naive

back-transformation

trans, naive

= _ 1 - ~trans, naive | _ 1 B -1 TA L 7.
e IS ST 73] NS

JES; jeEi JES; jeEi

are smaller than the small area means constructed from E[h‘l(y;)lys,Xs]. In the case of a
log-transformation, Berg and Chandra (2014) and Molina and Martin (2018) propose an ana-
lytical bias correction. The best predictor for the out-of-sample units is defined for general
transformations via an integral which can be solved analytically for h() =log() by using

y;“jlyS,XS ~N ( /,:; c2(1—y)+ a?)—with corresponding density fyyys,xs—which comes directly
from model (4),

+

plrensbe = E[h™' oply, Xl = / h= O lyx, 0y,

)
—o0

and for the model under log-transformation with h='() = exp() applying the property for
the expected value of an exponential transformed normally distributed random variable
(E[exp(X)] = exp(E[X] + 0.5Var[X])) we get
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c2(1—y) +o?

2
—_——

=a; (bias-correction)

trans, bc __ ®
i = EXP | Ky +

To the BLUP (2) on the transformed scale y; a bias-correction «; is added before applying the

back-transformation. By using s "™ ® and the estimated coefficients from the sample we obtain

the bias-corrected estimator of the small area mean by

~ trans, be

=5 prrns.be 1 T p o A
Y; —]vi Zyij+z_ﬂijrans c _]vl- Zyij+2exp<xijﬁ+ui+ai) ) (6)

JES; JEs; JES; JjEs;

As can be seen in (6) for the log-transformation, out-of-sample population micro-data are
required for computing the estimator. Again, due to the Jensen’s inequality a (second-order)

bias is introduced if we use a naive back-transformation of the synthetic part exp ()_(ZT ﬁ)

instead of ZJEE_ exp <x§ﬁ) The estimator with first-order bias-correction («;) and naive
back-transformation of the population-level aggregates, is denoted by

_~ be-naive-agg 1 —T & N A

Jes; JEs;

Due to the use of aggregated auxiliary data this estimator has a second-order bias. If we exactly
know the underlying distribution of the covariates (e.g. covariates coming from a normal dis-
tribution) it is possible to add an analytical second-order bias-correction, which corrects for
the back-transformation of the covariates. Otherwise, alternative solutions to this problem are
needed. The assumptions of having access to population micro-data or knowing exactly the
joint distribution of the covariates are both strong assumptions in real applications. Thus,
the research question that motivates our work is how to estimate small area means under
the transformed NER model when only aggregated population-level auxiliary information is
available.

3.3 | Small area means under limited auxiliary information

Due to the use of a transformation, a bias-correction for the back-transformed estimator of
the small area mean is necessary as shown above. This back-transformed bias-corrected esti-
mator (6) requires population-level auxiliary data. In the absence of population micro-data, a
second-order bias is introduced if the aggregated covariates are used instead of individual data
(7). Our proposed method aims to reduce—additionally to the first-order bias-correction—the
second-order bias due to the back-transformation of the synthetic part. Therefore, it offers a
solution to deal with bias under limited auxiliary information. The aim of this subsection is to
propose an approximation of xgﬁ in the absence of population micro-data which is needed to deal
with the second-order bias and combining this with the first-order bias-correction («;) for small
area means.
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3.3.1 | Kernel-density estimation for the synthetic part

As mentioned above in the presence of limited auxiliary information we are not able to obtain
<Zje§i exp (xgﬁ ) ) necessary for computing (6). Therefore, we have to rely on estimation methods

for the unknown synthetic part (xgﬁ) under limited auxiliary information. We propose the use of
a KDE approach to estimate the distribution of the synthetic part. We use KDE based on the syn-
thetic part of the model (instead of the auxiliary variables), because the estimated distribution of
the synthetic part is sufficient to deal with the second-order bias. We decide to take this approach

for the following reasons: First, we can use univariate KDE for the synthetic part (xgﬁ ) com-

pared to multivariate KDE which is needed for estimating the joint multivariate distribution of
the auxiliary variables. To the best of our knowledge, implementations of multivariate KDEs are
only possible with the available packages in R for a maximum number of six auxiliary variables.
Especially if categorical variables are used in the model, this limit presents a significant restric-
tion in many applications. Second, no parametric assumptions about the covariates are necessary
and only aggregate auxiliary information at the population-level is required, while availability
of unit-level sample data is still assumed. Please note, in case of exclusively categorical covari-
ates, the established EBP-method (Molina & Rao, 2010) under transformations (Rojas-Perilla
et al., 2020) is suitable after expanding the counts from the aggregated census cross-tables to pop-
ulation micro-data. The introduced KDE-based method is only appropriate for metric variables
or a mixture of metric and categorical variables.

KDE is one of the most popular non-parametric density estimation techniques first mentioned
by Rosenblatt (1956) and Parzen (1962). For a general overview, we refer to Scott (2015). Given a
sample X = {Xj, ... ,X,} KDE estimates the density f by

~ 1 - X—Xi
fh<x>=%;k< - ) (8)

where the function k() is the kernel and h is the bandwidth. Here we opt for the use of the
Epanechnikov kernel (Epanechnikov, 1969), which is implemented using the density-function of
the stats-package (R Core Team, 2020). Furthermore, for bandwidth selection we use the method
from Sheather and Jones (1991), which is widely recommended (Venables & Ripley, 2002).
However, other bandwidth selectors can be also applied.

The first step in computing the estimator involves standardising the predictions using the
synthetic part of the NER model, which will be later adjusted by using population-level auxiliary
information. The standardised predicted values z; for area i and unit j are computed as follows,

Th_ 1 TA
Xijﬂ n; Zjesi Xijﬁ

\/%z(xifﬁ—izjesi i)

'jes;

Zij =

For this purpose, the standardisation step uses the mean and the standard derivation from the
predictions of the synthetic part of the model.
In a second step, we adjust the predictions with the aggregated population-level auxiliary

data: The mean )_(lTﬁ and the empirical variation OixTj = \/ ZizOZfzoﬁkﬁlCOV[xik,xil], where
Cov[xy, X;;] is the known covariance between the kth and Ith explanatory variable for area i.
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In addition to the requirements of the NER model, we assume that these covariances are also
known or obtained from the data owner. Since they are area-level values, usually no confidential-
ity issues arise for statistical offices. This step adds the small area idea to the proposed method by
using the aggregated census means and covariances to adjust the standardised predicted values.
Since in many small area applications sample sizes considerably differ among the areas, we pro-
pose the following distinction. For large sample sizes, we use the standardised data (z;;) from the
respective area i (conditional). In contrast, for small sample sizes, we use the standardised data
(zij) from all areas (unconditional). To distinguish between small and large sample sizes, we define
athreshold t. If the respective area has a small sample size below the threshold (n; < t) —oris even
an out-of-sample area—we use the standardised data from all areas to generate adjusted data for
area i. The following formula illustrates how the input values for the KDE (r;,,) are obtained from
the standardised values z,,. The index m ranges from 1, ... , n for sample sizes below ¢ (uncon-
ditional) and from 1, ... , n; for sample sizes above ¢ (conditional). Note that depending on the
sample size within the actual area i and the chosen threshold ¢ a different number of standardised
values are used to determine the input values. With

mes n <t

—T A
Yim = Zm O;x75 +Xi B for
mes; n >t
as input we estimate the respective density using the KDE (8) for each area i. We denote the
resulting density for area i by f, ;.

3.3.2 | Small area means under limited auxiliary information

If the naive back-transformed estimator (5) is used under limited auxiliary information with a
naive back-transformation of the synthetic part, we would obtain

trans, naive-agg

Y, = ]% S+ Y (h+a)|. 9)

JES; JES;

This estimator does not correct for the first- and second-order bias due to the use of a transforma-
tion. In order to account for both types of bias the proposed method relies on the approximated
area-specific density f),; of the synthetic part and the first-order bias-correction e;. Starting with
(6) we get
_a trans, bc
Y: = Zyl]+ Zexp (ﬁl]-i-&l)

JES; JES;

Z|=

P

Z|=

z exp (xgﬁ) exp (i; + &) + Z exp <x5ﬁ> exp (i; + &)

JEs; jEEi

Z|=

Ni
Z exp <x§ﬁ> exp (U + &) |,
=1

— —
T

i
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where 4, = xlT[? +1; is defined analogously to (2). Under limited auxiliary information, the
problem is reduced to determining the unknown back-transformed total (T;). We use numeri-
cal integration and the estimated density of the synthetic part f n; to estimate this total T; from
the available sample data and the population-level auxiliary information—without using popula-

tion micro-data. In detail, the total can be expressed as T; = ZjN=’1 exp (xgﬁ ) = N;E [exp(x;ﬁ)] =

N; f_t:’ exp(x)f 1.i(*)dx. This integral can be determined by using numerical integration. By insert-
ing the estimated back-transformed area-specific totals T;, we obtain the small area estimator
of the mean when access to population-level auxiliary information is limited to population-level
aggregates

Y

~ trans, bc-agg
i

14 N N
= ETI- exp (; + @;) . (10)

For the log-shift transformation, the only change is the use of the data-driven shift-parameter A
resulting in

_ trans, be-agg 1 R
Y; ==T; exp @; + @;) — A
N;

In Sections 5 and 6 the properties of the proposed estimator are investigated in model-based and
design-based simulation studies and compared with other competitors.

4 | UNCERTAINTY ESTIMATION

Quantifying the uncertainty of small area estimates can be challenging. For the log-transformed
NER model, Molina and Martin (2018) derive an analytic MSE estimator and also present a
parametric bootstrap MSE estimator that follows the ideas in Gonzélez-Manteiga et al. (2008).
Rojas-Perilla et al. (2020) propose two bootstrap schemes for estimating the MSE under
data-driven transformations. However, both papers assume access to population micro-data. For
the proposed estimator (10) when only population-level aggregates are available, we develop a
parametric bootstrap MSE that captures the additional uncertainty due to KDE and the estima-
tion of the adaptive shift parameter in the case of a log-shift transformation. The steps of the
parametric bootstrap are as follows.

1. Transform the data: y;. = h(y;), where h is the log or the log-shift transformation.

2. Estimate f, 67, and 67 using the transformed NER model (4) and the sample data. In the case
of the log-shift transformation, estimate A from the sample data as proposed by Rojas-Perilla
et al. (2020).

3. Forb=1, ... ,B

(a) Generate ugb) ~ N(0,6%) and eg’) ~ N(0,62) for all areas i and j € s;.
(b) Generate bootstrap samples for all areas i on the transformed scale:
#(b)

—xT4h
Vi _xijﬁ+u

® b R
; +eij , with j € s,

and for each bootstrap replication b estimate the small area mean using the proposed
_~ trans, be-agg, (b)
estimator Y; (10). If the adaptive log-shift transformation is used, 4 is

re-estimated for each bootstrap replication b.
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(c) Determine the true mean for each area i in each bootstrap replication b. Note that we
cannot reconstruct a bootstrap population because population micro-data for x are not
available. However, from the available aggregated population-level values (area-specific
means and covariances for the auxiliary information), which are kept constant across the
bootstrap replications, we can construct an area-specific distribution on the transformed
scale for each bootstrap replication b. The distribution is defined as

«(b b b b
O X ul ~ (R B+l 02+ 62). §8))

where o, yr; = \/ Zizl leﬂkﬂlCov[xik,xil] is determined from known covariances and

estimated regression coefficients and &; is estimated in step 2. For the derivation of the
distribution (11), see the additional information in Appendix. Since the aim is to identify

the true mean (?Eb)) on the original scale, we need to combine the distributional assump-
tions on the transformed scale (11) with the properties of the back-transformation function
h~1() = exp(). Because the area-specific distribution y;(b) for each replication b is assumed
to be normally distributed with known mean and variance, we can apply the property for
the expected value of an exponential transformed normally distributed random variable
(Elexp(X)] = exp(E[X] + 0.5Var[X])). Therefore, we obtain

—(b) h= 1() exp() 1
_ _Zh ( *(b)> Eb),Xs, gb) Xp Zexp< *(b)> |y§b’,Xs,u§’”

‘eU

_exp<xlﬂ+u(b)+05< Xrﬁ+6§)).

If we use the data-driven log-shift transformation, the analogous equation is

®) T4 ) .
Y, =exp <Xl-T/3 + ugb) +0.5 (tFiszﬁ + a?)) -4,

where 1 is the shift-parameter estimated from step 2.
4. Determine the MSE over the B bootstrap replications:

- ~ trans, bc-agg, (b) —(b) 2
MSE; = Z( -Yi ).

5 | MODEL-BASED SIMULATION STUDY

In this section, we present results from a model-based simulation study. We evaluate point estima-
tors and the parametric bootstrap MSE estimator under the four scenarios presented in Table 1.
For each of the four scenarios we generate finite populations U of size N = 50,000. The population
U is partitioned into 50 areas Uy, U, ... , Up consisting of N; = 1000 units. From each population,
we draw a sample by stratified random sampling, where the strata are defined by the 50 areas.
The area-specific sample sizes n; vary between 2 and 58 with median sample size equal to 33. We
chose these sample sizes for three reasons: Firstly, we are interested in evaluating the estimators
under a scenario where some areas have very small sample sizes. Secondly, we are interested in
having areas with a sample size exceeding the threshold of t = 40 for using the (conditional) small
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TABLE 1 Model-based simulation scenarios

Scenario Normal

Log-Scale

Log-Scale Gamma

GB2

4500 — 400x;;+

exp(10 — x;; — 0.5z;;+

exp(10 — x;; — 0.5z;;+

Model  u; +¢; u; + e;) u; + e;) 8000 — 400x;; + u; + e; — e
Xjj N(ui,9) N(p;,0.25) F(pi2) +1 N(u;,25)

z; — N(0,1) N(0,1) —

m U[2,3] U[2,3] U[0.8,1.6] U[-1,1]

u; N(0, 500%) N(0,0.16) N(0,0.16) N(0, 500%)

e N(0,1000%) N(0,0.8) N(0,0.3) GB2(2.5,1700, 18, 1.46)

area KDE estimator. In this case, 19 out of 50 areas exceed this threshold in each drawn sample.
Thirdly, the sample sizes are similar to those in the real data application.

The scenarios are labelled Normal, Log-Scale, Log-Scale Gamma, and GB2 (Generalised Beta
distribution of the second kind). Each scenario is repeated independently M = 500 times. In the
case of the Normal scenario, the generating model is linear and both error terms (u; and e;;) follow
a normal distribution. Therefore, it is a reference scenario where no transformation is required.
In contrast, the Log-Scale scenario represents a typical situation related to income data where
the dependent variable follows a log-normal distribution such that a fixed log transformation
is required. Under the third scenario (Log-Scale Gamma) the auxiliary variable is not normally
distributed. We chose this scenario in order to assess the ability of the proposed method to handle
non-normally distributed auxiliary variables. The GB2 scenario provides a more realistic scenario
for income. In this case, the unit-level error terms are simulated by using a GB2 distribution and
the random effects are generated by using a normal distribution. Under the GB2 scenario the use
of a data-driven transformation should be more suitable than the use of the untransformed model
or of the fixed log transformation.

5.1 | Evaluation of the estimated back-transformed totals
In this subsection we investigate the behaviour of the estimated back-transformed totals,
before exploring small area means. We compare the back-transformed totals estimated using

population micro-data (T,- = ZJN=’1 exp(xgﬁ)) as in the bias-corrected estimator (bc) (6), the
proposed KDE-version of T; as in the proposed estimator using population-level aggregates

(bc-agg) (10), and the naive back-transformed totals <exp ()_c,Tﬁ )) as in the two types of naive

back-transformed estimators using population-level aggregates (bc-naive-agg and naive-agg)
(7) and (9).

Figure 3 shows the back-transformed totals for one arbitrarily chosen Monte-Carlo replication
under the log-shift transformation. For all four scenarios, the estimated back-transformed totals
using population micro-data (bc) and the KDE-version (bc-agg) show the same behaviour. In the
Log-Scale, the Log-Scale Gamma and the GB2 scenarios distinctly lower estimates of the domain
totals that are derived by using the naive back-transformation and this is because of Jensen’s
inequality. These results underline the importance of the second-order bias-correction if popula-
tion micro-data are not available and therefore the need of the proposed KDE for estimating the
synthetic part.
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Estimated back-transformed total —— bc —— bc-agg —— naive-agg

Normal Log-Scale
15.5-
®
o 15.0-
S
=
o 145~
S
o
~— 14.0-
£
Tg 13.5~-
e
° Log-Scale Gamma GB2
g 55- 55-
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@ 50- 5.0-
o
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@
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FIGURE 3 Estimated back-transformed totals bc (T,— = ZJZI eXp(xiﬁ)), bc-agg (T,-) and naive-agg

(exp (ilTﬁ )) over the domains for one arbitrarily chosen Monte-Carlo simulation. [Colour figure can be viewed
at wileyonlinelibrary.com]

5.2 | Performance of point estimators of the small area means

We compare the proposed estimator (10), denoted bc-agg, with existing SAE methods. This
includes the direct estimator (direct) and the estimator of Battese et al. (1988) under the
NER model using the untransformed data (BHF) implemented in the R package sae (Molina
& Marhuenda, 2015). Furthermore, we use different estimators under the log and log-shift
transformations. In particular, we compare the proposed bias-corrected estimator to the
naive back-transformed estimator using population micro-data (5) and two types of naive
back-transformed estimator under limited auxiliary information one with no bias-correction (9),
denoted naive-agg, and one with a first-order bias-correction (7), denoted bc-naive-agg. The R
package saeTrafo (Wiirz, 2022) provides naive-agg, bc-naive-agg, and bc-agg to enable straight-
forward use. An additional competitor that also aims to tackle the issue of not having access to
population micro-data is the TNER2 estimator of Li et al. (2019) which requires only aggregated
population-level data. The TNER2 estimator uses the smearing approach of Duan (1983) to build
a pseudo-population, which is then back-transformed to the original scale and finally adjusted
with the aggregated population means. For the TNER2 estimator no MSE estimator has been pro-
posed. Finally, we compare the proposed estimator to the EBP of Molina and Rao (2010) (EBP).
The EBP is implemented by fitting the NER model under the different simulation scenarios using
the original data, a log transformation and an adaptive log shift transformation (Rojas-Perilla
et al., 2020) and for this the R package emdi (Kreutzmann et al., 2019) was utilised. The EBPs are
estimated using L = 100 Monte-Carlo replications following the recommendations of Molina and
Rao (2010). Because the EBPs use auxiliary information from population micro-data they can be
treated as a gold standard.
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To compare the different estimators, we compute the relative bias and root mean squared error
(RMSE) over M = 500 Monte-Carlo replications as follows:

LM ?“") 7
Relative Bias; = — L' %100, 12)
Mm—l ?(m)
= i
M 2
a(m)
RMSE; = 1\% 3 <Yl- - Yﬁ"”) , (13)
m=1

where ?Em) is the estimated mean in small area i based on any of the methods mentioned above
and 1_/?") denotes the true mean in small area i. Table 2 presents the results for the four scenarios
and shows mean and median values of RMSE and relative bias averaged over small areas. Since
the use of a log transformation is not reasonable in the Normal scenario, we omit these results.
The same applies to the EBP without transformation for the Log-Scale and Log-Scale Gamma
scenario.

Under the Normal scenario the BHF estimator and the EBP without transformation are,
as expected, the best in terms of RMSE. For the methods based on a log-shift transforma-
tion, we see a small increase in terms of RMSE compared to the methods using untrans-
formed data (EBP and BHF). Regarding the Log-Scale scenario, we find the best results for
estimators using a fixed log transformation. The BHF estimator does not perform as well
as the transformed (log and log-shift) bc-agg, TNER2, and EBP estimators in terms of rela-
tive bias and RMSE. For the naive, the bc-naive-agg, and especially for the naive-agg estima-
tor, the relative bias and RMSE are the highest. The reason for this is the underestimation
due to the first-order back-transformation bias (naive), the second-order back-transformation

bias (bc-naive-agg), and the simultaneous first- and second-order back-transformation bias
_~ trans, bc-agg
(naive-agg). In contrast, the proposed estimator Y; reduces the back-transformation bias

and leads to results that are similar to those of the EBP. The same picture emerges for the
Log-Scale Gamma scenario. This demonstrates that the proposed methodology also works well
when using skewed covariates and adapts to the corresponding shape of the synthetic part.
In the GB2 scenario, we see that the adaptive log-shift transformation leads to better results
compared to using a fixed log transformation for all estimators. In addition, the proposed esti-
mator (bc-agg) and the EBP under the log-shift transformation show the best results in terms
of RMSE.

Overall, the simulation study leads to the following conclusions: (1) as expected, when using
auxiliary information from population micro-data the EBP estimator performs better than the
proposed estimator that is based only on aggregated population-level auxiliary information. How-
ever, despite not having access to population micro-data, the loss in efficiency is not high. (2) The
proposed bias-corrected estimator reduces the relative bias compared to all three types of naive
back-transformed estimators.

5.3 | Performance of the bootstrap MSE estimator

We now turn our attention to the performance of the proposed parametric bootstrap presented
_ trans, bc-agg

in Section 4. We investigate the behaviour of the MSE estimator of Y; (10) under the
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TABLE 3 Performance of the mean squared error estimator for the proposed estimator (10) in
model-based simulations

Normal Log-Scale Log-Scale Gamma GB2

Transformation Mean Median Mean Median Mean Median Mean Median

Relative bias RMSE (%)
Log-shift 2.2514  2.5114 —-2.1263 —-2.6910 6.0185 5.3279 7.9957 8.6105
Log —-1.6072 —1.9258 6.2006 5.4005 —20.8445 —20.3301
Relative RMSE RMSE (%)
Log-shift 6.4549  5.7627 30.3741  29.7741 15.2840 15.0982 13.4362 12.9401
Log 30.5179  29.9245 15.3057 15.2126 28.0718 25.8790

previous four scenarios. The proposed MSE estimator is evaluated using the estimated RMSE
with B = 500 bootstrap replications introduced in Section 4 and the empirical RMSE (13)
over M = 500 Monte-Carlo replications, which we consider to be the true one. The properties
of the proposed MSE estimator for each area i are assessed using the following two
measures

L > MSE( — RMSEemy,

est;

Relative Bias RMSE; = x 100, (14)
RMSEemp,
2
1 vM (m)
7 Zom=t <, /MSEe’S'L_ - RMSEempi>
Relative RMSE RMSE = % 100, (15)
RMSEepmp,

where MSESS'S is the estimated MSE for area i in Monte-Carlo replication m and RMSEcp,, is the
empirical RMSE over M = 500 Monte-Carlo replications.

Table 3 shows the median and mean values of relative RMSE and relative bias over
areas and Monte Carlo replications of the proposed MSE estimator for the bias-corrected
estimator (10) with log and log-shift transformation. For all scenarios, the proposed boot-
strap MSE estimator under the log-shift transformation has reasonably low relative bias.
Figure 4 shows how well the estimated RMSE tracks the empirical RMSE under log-shift
transformation over the domains. These plots suggest that the estimated RMSE follows the
empirical RMSE well in all four scenarios. For both Log-Scale scenarios, the estimated MSE
under the log transformation is comparable to the corresponding MSE for the log-shift
transformation.

6 | DESIGN-BASED SIMULATION STUDY

In Section 5 we evaluated the performance of the point estimates and the MSE esti-
mates in model-based simulations. In this section, we conduct a design-based simulation
to assess the behaviour of different estimators in a close-to-reality environment when the
true data generation mechanism is unknown. The study is based on the Mexican census
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RMSE type —— empirical —— estimated
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FIGURE 4 Estimated and empirical domain-specific root mean square errors using the proposed
estimator (10) with log-shift transformation in model-based simulations. [Colour figure can be viewed at
wileyonlinelibrary.com]

of 2010. The census includes a variable closely related to income (the earned income from
work) which is used as dependent variable in the study. Furthermore, different continu-
ous and categorical variables are available in the census which may serve as potential aux-
iliary information in the models. After the description of the setup of the design-based
simulation study, we discuss the performance of the proposed estimator and alternative
competitors.

The initial data for the design-based simulation are population micro-data from the 2010 Mex-
ican census from the State of Mexico. The State of Mexico consists of 125 municipalities which
are the areas of interest. We draw M = 500 samples by stratified random sampling from the fixed
census/pseudo-population following the design of the Mexican Household Income and Expen-
diture Survey (ENIGH) survey from 2010. The stratum is specified by the 125 municipalities.
The sample size is 2748 as in the ENIGH survey with a minimum of 3 and a maximum of 527
(median: 21). The variable of interest is the earned income from work per capita (inglabpc) mea-
sured in Mexican pesos. As auxiliary data we use the following six continuous and categorical
covariates:

«+ percentage of employees who are older than 14 years in the household;
« the highest degree of education completed by the head of household;

« the social class of the household;

« the percentage of income earners and employees in the household;

« the total number of communication assets in the household;

« the total number of goods in the household.
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Modelling inglabpc by these covariates leads to a conditional coefficient of determina-
tion (Nakagawa & Schielzeth, 2013) for the NER model ranging from 49.6% to 59.2% for the
data-driven log-shift transformation over the Monte Carlo replications. Using the log transfor-
mation, the conditional coefficient of determination is between 46.2% and 57.6% and under
no transformation the range of the conditional coefficient of determination is 26.9% to 47.1%.
We evaluate the different point estimates by using the relative bias (12) and the RMSE (13)

over M = 500 samples from the fixed population. As in the model-based simulation, the same
_~ trans, bc-agg
competitors are compared with the proposed bias-corrected estimator Y; (10) (bc-agg).

In contrast to the model-based simulation, we do not show the results for the TNER2 estima-
tor due to numerical instability associated with this estimator in the case of the design-based
simulation.

Table 4 presents summary statistics of relative bias and RMSE over municipalities. The pro-
posed estimator (bc-agg) leads to comparable results in terms of relative bias as the EBP under
the same transformation, which requires population micro-data. Using naive back-transformed
estimators (naive, naive-agg and bc-naive-agg) leads on average to higher absolute values for the
relative bias compared to the proposed bias-corrected estimator. In particular, the naive-agg esti-
mator that ignores both bias-corrections performs worst. If we compare the proposed estimator
with the methods using untransformed data (EBP and BHF), we observe that the proposed estima-
tor leads on average to smaller absolute values in terms of relative bias. Regarding the RMSE, the
proposed bias-corrected estimator (bc-agg) is almost as efficient as the EBP—despite the bc-agg
estimator is using less information. All three naive estimators lead on average to high values in
terms of RMSE. The general competitors build on untransformed data (BHF and EBP) does not
keep up in terms of efficiency to the adaptive log-shift transformed bc-agg estimator. Compar-
ing the untransformed estimators and the log-transformed bc-agg estimator in detail, we note
that in general neither estimator has superior performance over the other. This could be at least
partly explained by the higher relative bias of the log-transformed estimator compared to the
log-shift transformed one. Working with real-world income data as is the case in the design-based
simulation, we recognise that the adaptive log-shift transformation adjusts to the under-
lying data and therefore yields better results than the fixed log transformation (bias
and uncertainty). These results are in line with the results for the GB2-scenario from
the model-based simulation study and the findings by Rojas-Perilla et al. (2020) and
Walter et al. (2021).

We now turn our attention to the behaviour of the MSE estimator—presented in Section 4—of
_a trans, bc-agg
the proposed Y; with an adaptive log-shift transformation. The proposed MSE estimator

is evaluated in Figure 5 by using the estimated RMSE with B = 500 bootstrap replications and the
empirical RMSE (13) over M = 500 samples from the fixed population. The figure indicates that
the estimated RMSE tracks the empirical RMSE well especially for the in-sample municipalities.
In design-based simulations, the estimation of out-of-sample municipalities is always a particular
challenge. For the out-of-sample municipalities, the estimated RMSE has on average the same
order of magnitude as the empirical one, but the tracking is not quite as good as for the in-sample
municipalities.

In summary, the design-based study shows that the proposed point estimator performs almost
on the same level as the EBP which requires micro population-level covariates and better than all
types of naive back-transformed estimators. Furthermore, the quality of it uncertainty estimator
could be demonstrated.
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TABLE 4 Performance (in terms of the distribution of relative bias and root mean squared error [RMSE]) of
estimators of mean income over municipalities in design-based simulation study

Transformation Estimator Qo1 Qo2s Mean Median Qo.75 Qo0

Relative bias (%)

Gen. competitors BHF —6.2471 —1.2958 7.2244 6.7426 14.6169 24.9505

No transformation EBP —-6.7169  —1.1130 7.1482 6.3409 15.5975 24.3026

Log-Shift bc-agg —-59052 -2.1816 6.9543 5.2935 12.3645 24.5303
bc-naive-agg —22.3306 —15.8239 —8.3422 —9.3838 —2.5686 7.3689
naive —21.0108 -17.4476  —9.9295 -10.9967 —4.9272 4.9207
naive-agg —34.9229 —-29.4864 —23.2362 —23.8893 —18.6247 -10.3107
EBP —-6.0973  —1.0638 7.3163 5.1184 13.8139 24.5727

Log bc-agg -3.3077 —0.7194 8.1014 6.4667 12.9045 25.3294
bc-naive-agg —22.3074 —15.7831 —8.6267 —9.3442  —3.3046 7.0525
naive —22.0931 -18.6291 -—11.8209 -—13.2609 —7.3448 2.3839
naive-agg —-36.7214 -31.5616 —25.7840 —26.4056 —21.4856 —13.2655
EBP —3.8318 —0.0302 8.5413 6.2421 14.3214 25.7412

RMSE

Gen. competitors BHF 91.2780 123.0972 227.9718 193.3669 281.1682 366.0222

No transformation EBP 82.9916 137.4112 228.5845 185.2426 296.9533 374.2862

Log-Shift bc-agg 97.8038 128.1649 2159485 175.2353 262.5073 372.1697
bc-naive-agg 63.0396 119.0798 303.6137 208.9238 355.9612 595.5469
naive 65.6649 126.2201 300.1576 224.3113 378.9602 604.9108
naive-agg 149.1410 297.8022 533.3376 458.4745 653.1614 912.5232
EBP 97.8839 123.8100 224.0689 180.8314 266.7279 388.3502

Log bc-agg 109.3511 139.6032 224.3459 189.3673 268.7067 372.1409

bc-naive-agg 64.1356 126.7677 305.2655 217.3750 350.9832 599.1836
naive 70.1345 137.8691 324.5263 256.2682 417.7256 641.3092
naive-agg 193.8965 349.7551 579.3393 496.0587 702.0675 960.4961
EBP 115.0639 141.9267 232.5953 200.0447 274.2513 395.7143

7 | APPLICATION: ESTIMATING INCOME IN GERMANY
USING THE SOEP DATA

In this section we present estimates of the mean gross individual income for the 96 German RPRs
using the SOEP data and aggregated auxiliary census information. The results are based on the
proposed bias-corrected estimator (10) under the NER model with a log-shift transformation.
MSE estimation is conducted with the parametric bootstrap we presented in Section 4 with
B = 500 bootstrap replications. A detailed description of the survey and census datasets is given
in Section 2. The use of the log-shift transformation is motivated using the previously discussed
model diagnostics from Section 2.
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FIGURE 5 Estimated and empirical municipal-specific root mean squared error using the proposed
estimator (10) with log-shift transformation in design-based simulation study. [Colour figure can be viewed at
wileyonlinelibrary.com]

7.1 | Gainin accuracy

The accuracy of the proposed estimator (10) is assessed by the estimated MSE. The variance
of the direct estimates is obtained by using calibrated bootstrap variances (Alfons &
Templ, 2013) which accounts for the survey design implemented in the R package emdi
(Kreutzmann et al., 2019). CVs for the model-based and direct estimates are computed using the
point estimates and the corresponding estimates of MSE and variance estimates. As mentioned
in Section 2.1, 26 CVs for the direct estimates exceed the 20%-threshold and six areas (RPRs) are
out-of-sample. In comparison, only two CVs based on the proposed model-based estimator exceed
the 20% threshold. Figure 6 shows area-specific CVs for both methods. We observe that the CVs
of the model-based estimates, based on aggregated population-level covariates, are on average
smaller compared to the CVs of the direct estimates (mean of the model-based CVs 15.57% vs.
mean of the direct CVs 17.99%) and have a smaller interquartile range. As expected, especially
for areas where the direct estimates are not reliable due to small sample sizes, the model-based
estimates have improved accuracy. All in all, extreme CVs are prevented with our method and
good results with higher accuracy are obtained especially for areas with small sample sizes. From
these results we can conclude that the proposed approach helps with deriving improved small
area estimates.

7.2 | Discussion based on the application results

Figure 7b shows the regional distribution of the estimated mean gross individual income with the
proposed estimator (10). This map can be compared to the map of direct estimates in Figure 1a. It
is immediately apparent that the unrealistically high range of average individual income across
RPRs obtained from the direct estimates no longer exists in the model-based estimates. The line
plotin Figure 7a shows more clearly the relation between the proposed model-based and the direct
estimates and the impact of shrinkage for areas with small sample sizes. In addition, Figure S1
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FIGURE 6 Area-specific coefficients of variation (CVs) for the direct (blue) and the proposed
model-based (green) estimates, ordered from low to high CVs for direct estimates and the associated boxplots.
The grey line in the left plot separates the non-sampled areas. The red line marks the 20%-threshold for defining
reliable estimates. [Colour figure can be viewed at wileyonlinelibrary.com|
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FIGURE 7 (a)The proposed model-based estimates (10) and direct estimates for mean gross individual
income per month (€) for German RPRs ordered from low to high sample size and (b) spatial representation of
corresponding model-based estimates. The grey line in the left plot separates out-of-sample areas from in-sample
areas. For the former only model-based estimates are available. [Colour figure can be viewed at
wileyonlinelibrary.com]

and Table S2 provide information on the mean gross individual income estimated with the TNER2
method (Li et al., 2019) for German RPRs. Note that no MSE estimator exists for TNER2, therefore
only point estimates are shown.

The regions around economically strong cities in the West, for instance Munich and Frank-
furt are the RPRs with the highest mean gross individual income estimates. The other end
of the income distribution includes regions in the Ruhr Area, which was affected by the
breakdown of the steel industry. The lowest mean gross individual income was estimated for RPR
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Gottingen. Looking at the survey data, it seems that many students are in the sample (the city Got-
tingen within the RPR has a student rate of around 20%) and they often report low incomes under
1000€. The map shows a small difference between Eastern and Western Germany. Lower mean
gross individual incomes are estimated for the eastern German states of Saxony and Thuringia.
However, the RPRs in the East with the highest income report on average higher income than
the West German regions with lowest income estimates. The difference between East and West
Germany is considerably smaller in the model-based estimates than in the direct estimates in
Figure 1a. Unfortunately, no other meaningful variables are available from the census that have
the same definition as the variables in the SOEP data. Variables such as highest degree or work
experience would be important in order to improve the predictive power of the models.

8 | CONCLUSION

In this paper we investigate the estimation of the small area mean for income under transfor-
mations. In particular, we propose a small area estimator when only aggregate population-level
auxiliary information is available. Related literature assumes access to registers or census auxil-
iary micro-data (Chandra & Chambers, 2011; Karlberg, 2000; Molina & Martin, 2018) which is a
limitation for data analysts. From a methodological point of view, we investigate bias-correction
in the case of log and log-shift transformations under aggregated population-level auxiliary infor-
mation. If limited auxiliary information is present, we propose to use KDE to approximate
the back-transformed totals. We do not make any parametric assumptions about the shape of
the covariates. Instead nonparametric small area KDE is used to obtain an estimator for the
synthetic part of the model which is used in order to reduce the second-order back-transformation
bias. We further explore the use of a parametric bootstrap for estimating the MSE that captures
the additional uncertainty due to the transformation and KDE. Model-based and design-based
simulations are used to explore the properties of the proposed point and MSE estimators. The
proposed point estimator performs comparably to the EBP under transformations (Molina &
Rao, 2010; Rojas-Perilla et al., 2020) that uses micro population-level auxiliary information and
leads to more efficient results compared to the TNER2 estimator of Li et al. (2019) that uses
aggregated population-level auxiliary information. The proposed bias-corrected estimator out-
performs naive back-transformed estimators and general competitors where no transformation
is needed.

There are research questions that we do not investigate in the paper and are left open for
further research: First, the proposed small area estimator does not allow for the use of sur-
vey weights in estimation, which carries risks if the assumption of non-informative sampling
does not hold after conditioning on the covariates. Approaches to allow for survey weights have
been proposed by (Pfeffermann et al., 1998; Rabe-Hesketh and Skrondal, 2006; Pfeffermann and
Sverchkov, 2007; You and Rao, 2002; Guadarrama et al., 2018) and Burgard and Ddrr (2021).
Extending these approaches to allow for the use of adaptive transformations in the context of
limited access to population-level auxiliary information is an open research problem. Second,
in the current paper we focus on estimating small area averages. An extension of the proposed
approach to estimating linear and non-linear income indicators would be valuable in obtain-
ing a more detailed picture of the spatial distribution of income and wealth for evidence-based
policymaking when population micro-data are not available. Third, we propose a parametric
bootstrap MSE for quantifying the uncertainty of the small area estimates. Developing analytic
MSE estimators similar to the one proposed in Molina and Martin (2018) and assessing the
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theoretical properties of the proposed bias-correction term offer additional avenues for future
research.
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