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Why bananas look yellow: The dominant hue of object colours 
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A B S T R A C T   

In this study, we propose a new approach to the perceptual representation of object colours. Three-dimensional 
objects have a polychromatic colour distribution. Yet, human observers abstract from the variation along the 
three perceptual colour dimensions when describing objects, such as when we say, “a banana is yellow”. We 
propose that the perceived object colour is determined by the dominant hue. The dominant hue corresponds to 
the first principal component of an object’s chromaticities. Across three experiments, we show for a sample of 
objects that the chromatic variation away from the dominant hue is almost completely neglected by human 
observers under non-laboratory viewing conditions. This is partly due to the low visibility of this variation, and 
partly to attentional change blindness. These findings reveal the potential role of dominant hue in the perception 
of object colours. Dominant hue may enable us to determine the most representative colours of objects because 
perceived object colours tend to be maximally bright and saturated. The present findings also imply that we can 
simplify the colour distributions of objects by projecting them onto their dominant hue. This may be useful for 
computational applications.   

1. Introduction 

What colour is a banana? Or a strawberry, or lettuce? We would 
usually answer that they are yellow, red, or green, respectively. How
ever, even objects that we consider as having a single colour (henceforth 
“single-coloured” objects) produce a polychromatic distribution of 
colour signals when the light reflected by the object surface stimulates 
the photoreceptors in the eye. We abstract from the variation along the 
three dimensions of colour perception when we describe an object by a 
single colour (Vurro et al., 2013). 

It is yet unclear how human observers identify the representative 
colour of an object (for review, see Witzel & Gegenfurtner, 2018b). 
Although the average of the colour distribution may provide a rough 
estimate of object colours in a few cases (Milojevic et al., 2018); ob
servers do not always identify the lightness and saturation of an object or 
material with the average of the colour distribution (Giesel & Gegen
furtner, 2010). Instead, they focus on the brightest, most saturated area 
when judging the lightness and chroma of objects and materials (Giesel 
& Gegenfurtner, 2010; Toscani & Valsecchi, 2019; Toscani et al., 2013a, 
2013b; Xiao & Brainard, 2008). One important reason for this is most 
likely that the proximal stimulus (i.e., the cone excitation in the retina) 
is affected by the modulation of illumination intensity due to shade, 
shading, and highlights. Since observers adapt to the illumination colour 

under most natural viewing conditions, modulations of illumination 
intensity mainly affect brightness and chroma: shade and shading 
reduce brightness and chroma by deflecting light, and highlights 
maximise brightness and minimise chroma by fully reflecting light (for 
review, see also Hansen & Gegenfurtner, 2017; Shevell & Kingdom, 
2008). Consequently, the areas that are brightest and saturated because 
they are under direct illumination, best reflect the surface properties of 
the distal stimulus, i.e., object or material. 

But what about hue? In contrast to lightness and chroma, hue is 
much more tightly bound to the reflectance properties of distal stimuli 
(for review, see Shevell & Kingdom, 2008; Witzel & Gegenfurtner, 
2018b). Hue is not affected by modulations in the intensity of the illu
mination due to the interaction of object geometry and lighting. 
Furthermore, hue is comparatively stable against damage of pigments, 
such as in bleaching. The reduction of pigments affects lightness and 
chroma of surfaces due to the reduction of light absorption, and ob
servers compensate for the effects of bleaching in their estimate of ma
terial and object colours. In contrast, the hue of the proximal stimulus is 
barely affected by bleaching, hence providing a more reliable cue about 
the distal stimulus than brightness and chroma (Toscani et al., 2020). 

Most single-coloured objects have elongated colour distributions that 
are directed from the origin (black) towards a particular hue direction 
(Ennis et al., 2018; Hansen et al., 2008; Vurro et al., 2013). The reason 
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for this pattern is likely that the objects we perceive as single-coloured 
have a dominant source of colour, such as specific pigments or combi
nations of pigments. For example, the dominance of chlorophyll makes 
plants look green, various carotenoids make carrots and oranges look 
orange, and bananas look yellow (Fu et al., 2018; Lancaster et al., 1997; 
Xiong et al., 2013; Yang et al., 2009). Variations in hue across the colour 
distributions of such objects may result from density variations of pig
ments across the fruit. However, the elongation of colour distributions 
suggests that these variations might be small compared to the variation 
in chroma and lightness that results from shade and shading. 

Additional support for the important role of hue in the perception of 
the distal stimulus comes from bipolar objects, such as #theDress and 
#theShoe. #theDress and #theShoe are perceived as having two com
ponents (body/lace; body/stripes) with different colours (for review, see 
Witzel & Gegenfurtner, 2018b). However, the colour distributions of 
both components are aligned along a single opponent-hue direction 
(Cavdan et al., 2021; Witzel & Toscani, 2020). Here, we call these ob
jects bipolar because the chromaticities of each component are 
spreading towards the two opposite poles of a hue direction. The striking 
individual differences in the perception of #theDress and #theShoe are 
tightly linked to the bipolar alignment of the colour distribution. In most 
images the variation of differently coloured components along one hue 
direction would be a signature of the effect of coloured lighting. How
ever in these particular photos the bipolar variation can be interpreted 
as either an effect of lighting, or a property of the object, i.e. the dress or 
shoe (Witzel & Gegenfurtner, 2018b). These ambiguous images high
light how important hue is for disentangling illuminant and surface 
colour. 

In single-coloured and bipolar objects, chromaticities predominantly 
vary in chroma along one main hue direction due to object geometry 
(shading and highlight) and/or pigment density. The first principal 
component identifies the main hue direction based on the covariation 
inherent in the elongated distribution. We call “dominant hue” the hue 
direction represented by the first principal component. In contrast, ob
jects whose chromaticities cannot be represented by a single principal 
component or whose principal component is not oriented towards grey, 
do not have a dominant hue. 

Previously, the average hue had been proposed to approximate the 
representative hue of colour distributions. It has been observed that 
observers consider the average hue as roughly representative for en
sembles of uniform colour patches (Maule et al., 2014; Webster et al., 
2014). It has also been found that the average hue of three objects (a 
banana, a carrot, and an apple) approximates their memory colour, 
although there were also systematic deviations from memory colours 
(Vurro et al., 2013). At the same time, the average hue is affected by 
lighting colour and by asymmetries of the object colour distribution, and 
does not work with bipolar variations in hue (Rajendran et al., 2021). 

In contrast, the dominant hue is based on the physical effects of 
object geometry. It may be similar to the average hue for many single- 

coloured objects with symmetric unipolar distributions under white 
light, but it may also differ. In particular, the saturation gradient un
derlying the dominant hue goes through the white-point of an image 
even when the white-point of an image is different from the origin due to 
lighting. In addition, the dominant hue, but not the average hue, rep
resents the hue of bipolar objects, such as #theDress and #theShoe. 

The colours of the two components of #theDress (body and lace) and 
#theShoe (body and stripes) are distributed along one single dominant 
hue direction. Projecting the colour distribution of #theDress on the 
dominant hue, allows for mapping the colour distribution of #theDress 
on new images and to produce striking individual differences in colour 
perception like those for #theDress (Witzel & Toscani, 2020). This 
approach also seems to work with #theShoe (Cavdan et al., 2021). These 
preliminary observations suggest that projecting the colour distribution 
on the dominant hue barely affects the colour appearance of #theDress 
(see Fig. 1 in Witzel & Toscani, 2020) and #theShoe (Cavdan et al., 
2021). If this is so, the variation away from the dominant hue is negli
geable and irrelevant for the perception of object colours. This might 
also be the reason why we associate single-coloured objects, such as 
bananas, carrots, or lettuce, with one single hue, such as specific yellow, 
orange, or green, despite their polychromatic distributions. 

This study is aimed at testing whether the variation of chromaticity 
away from the dominant hue is small enough that observers neglect this 
variation when viewing a single-coloured or bipolar (#theDress, #the
Shoe) object. Let us call the dominant-hue effect the idea that participants 
focus on the dominant hue and neglect the variation away from the 
dominant hue. There are two possible reasons for such dominant-hue 
effects. First, the variation in hue in the colour distributions of the 
original images might be so low and/or involves so few pixels that this 
variation is simply not visible because they are close to or below 
discrimination threshold. In this case, dominant-hue effects would be 
due to limitations of chromatic sensitivity, i.e., our ability to see colour 
differences (e.g., Krauskopf & Gegenfurtner, 1992; Witzel & Gegen
furtner, 2013). We will refer to this explanation as the bottom-up 
explanation. Second, the variation of hue might be visible in principle, 
but observers focus their attention on other, more representative areas 
of the objects, similar to what has been observed for brightness and 
saturation (Giesel & Gegenfurtner, 2010; Toscani & Valsecchi, 2019; 
Toscani et al., 2013a, 2013b; Xiao & Brainard, 2008). Observes might 
expect particular areas to be more representative for an object’s hue 
based on their prior knowledge about memory colours (cf. Witzel & 
Gegenfurtner, 2020). As a result of selective attention, the changes in 
non-attended areas remain invisible as in change blindness (for review, 
see Jensen et al., 2011). We call this the top-down explanation of the 
dominant-hue effect. 

To test dominant-hue effects, we created images whose colour dis
tributions had only one hue (one-hue images) because colour signals were 
projected onto the dominant hue direction using the algorithm of Witzel 
& Toscani (2020). According to the dominant-hue effect, observers tend 

Fig. 1. Stimuli in Experiment 1. Nine single- 
coloured objects, two bipolar objects (#the
Dress & #theShoe), and three multicoloured 
objects (cherry, frog, rose). The patches 
below each object illustrate that the hue ro
tations used in this study were barely visible 
on uniform patches. The centre patch shows 
the dominant hue at a high lightness and 
saturation, and the patches to the left and 
right are negative and positive hue rotations 
away from the dominant hue (10 degrees for 
the shoe, 5 degrees for all others). One can 
also see that those patches capture the hue of 
the objects, except for the rose, for which the 
dominant hue fails due to its hue gradient 
(cf. Fig. 2.k). Colours may slightly vary 
depending on the printout or display device.   
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to miss the difference between the real images and the one-hue versions 
of those same images. We measured how difficult it is for observers to 
discriminate those one-hue images from the originals. 

Not knowing how much of dominant-hue effects are due to visibility 
and how much to change blindness, raised an important challenge: Due 
to low visibility, we cannot just test whether observers see < 100%, as 
done in typical change blindness experiments (cf. Jensen et al., 2011). At 
the same time, the difference between original and one-hue image is 
potentially visible in case of change blindness. In that case, we cannot 
expect that responses are completely at chance level either. If we leave 
observers infinite time to scrutinise the images, they may ultimately pick 
up some cue that allows them to answer above chance, even if they 
would have missed that cue under habitual (non-experimental) viewing 
conditions. This makes it difficult to decide when performance is suffi
ciently difficult to be considered evidence for dominant-hue effects. 

To obtain a benchmark of difficulty, we compared discrimination 
performance in the one-hue condition to a condition, in which we 
changed the dominant hue, but not the hue variation away from the 
dominant hue. For this comparison, we created images, whose colour 
distributions were rotated by a barely visible amount, while the shape of 
the distribution was left intact. By “barely visible” we refer to a hue- 
rotation that is roughly at, or below, the level of hue discrimination 
thresholds. We propose that variation away from the dominant hue can 
be considered as “negligible” if one-hue manipulations are more difficult 
to detect than barely visible hue-rotations. This comparison provides an 
objective criterion (benchmark) for dominant-hue effects that can be 
subjected to inference statistical tests. 

We tested dominant-hue effects in three experiments. These experi
ments were aimed at establishing the dominant-hue effect (experiment 
1), exploring limitations of the effect (all experiments), and disen
tangling bottom-up (visibility) and top-down (attention) contributions 
to the effect (experiment 2–3). Preliminary results of this study have 
been presented at conferences (Witzel, 2021; Witzel & Dewis, 2021b), 
including an available video presentation (Witzel & Dewis, 2021a). Data 
from all experiments and code for creating one-hue images are available 
at Zenodo (Witzel & Dewis, 2022). 

2. Experiment 1: Photos 

In the first experiment, we investigated dominant-hue effects with 
photos of unambiguously single-coloured objects, such as a banana, 
carrot, and lettuce (Fig. 1). We also included #theDress and #theShoe as 
bipolar objects to systematically test our preliminary observations 
(Cavdan et al., 2021; Witzel & Toscani, 2020). Multicoloured objects, i.e., 
objects that have more than a one colour, were added as control stimuli 
to explore the limits of dominant-hue effects. Projecting the colour of 
multicoloured images on the dominant hue implies that there is only one 
of the many colours left, e.g., the thin green stem of the cherries becomes 
grey. These changes are small, but clearly visible. They should coun
teract dominant-hue effects if observers pay sufficient attention to these 
changes. 

2.1. METHOD 1 

2.1.1. Participants 
The sample consisted of 417 participants (345 women, on average 

21.7 ± 7.8 years old) after excluding 15 participants because of self- 
reported or unknown colour vision deficiencies and 6 participants 
because they took longer than 60 min to complete the survey. Of the 
resulting sample, 33 participants were recruited through an online 
recruitment platform (Prolific) and 384 from the undergraduate student 
participation pool of the School of Psychology at the University of 
Southampton. The experiment was approved by the Ethics Committee at 
the University of Southampton, ERGO 59644. All participants gave 
informed consent. 

2.1.2. Apparatus 
Experiments were conducted online due to COVID-19, using Qual

trics (https://www.qualtrics.com). A pdf printout of the survey is 
attached as supplementary material. Images were rendered assuming 
chromaticities, luminance, and gamma functions of standard RGB 
(sRGB). A drawback of the online approach is that it lacks display cali
bration and control of adaptation. Yet, this format is more similar to 
typical everyday viewing conditions outside the lab (non-lab viewing 
conditions), and it allowed for high statistical power through large 
samples of participants (Woods et al., 2015). 

2.1.3. Stimuli 
There was a total of 14 stimuli, consisting of 9 single-coloured, 2 

bipolar, and 3 multicoloured control stimuli (cf. Fig. 1). As single- 
coloured objects, we chose the 8 fruits and vegetables from previous 
studies (Hansen et al., 2008; Olkkonen et al., 2008): a banana, lemon, 
carrot, orange, lettuce, grapes, courgette, and strawberry. These stimuli 
were shown to be highly recognisable and colour-diagnostic, i.e., 
strongly associated with a specific colour (Fig. 1 in Witzel et al., 2011). 
Since those photos are exclusively red, orange, yellow, and green, we 
added a photo of a pig as an exemplar with a pink colour distribution. 
#theDress and #theShoe were the bipolar stimuli (see Introduction). 

We included a frog, a cherry, and a rose as multicoloured control 
stimuli. These objects evidently appear to have more than one colour: 
The frog is green with a brown pattern; the fruits of the cherries are red, 
and the stem is green; and the rose appears to change hue from the inner 
(more pink) towards the outer part of the petals (more yellow). 

For practice trials, we added further images, for which the one-hue 
manipulation was obvious. The practice involved a Jack-O-Lantern, 
which is orange outside and yellow inside, and becomes completely 
orange through the one-hue projection. The second practice image was 
more subtle. It features a tomato with a yellowish light reflection that 
disappeared after the one-hue transformation. These images were cho
sen to make sure that participants understand the logic of the discrim
ination task. Figure S1 of the Supplementary Material provides a 
screenshot of the practice trial with the tomato. 

We represented colour distributions of all images in CIELUV space to 
implement the experimental conditions. We chose CIELUV because it 
roughly approximates perceptual uniformity (Fairchild, 2013), in 
particular in terms of hue discrimination (e.g., Witzel & Gegenfurtner, 
2018a), and it can be more easily related to the cone-opponent axes than 
CIELAB (Witzel et al., 2019). We assumed sRGB white as the adapting 
white-point. The grey local background corresponded to CIELUV co
ordinates of [70 0 0], which is a bit lower than half-maximum monitor 
luminance. The surrounding colour of the survey beyond the images was 
black with white font (cf. pdf printout of the survey). 

One-hue condition: Fig. 2 illustrates the creation of images for the 
one-hue condition. One-hue images only have colours along the domi
nant hue direction. To produce one-hue images, we identified the 
dominant hue by the first principal component of the chromatic colour 
distribution, leaving luminance untouched (black line in centre column 
of Fig. 2). The relative variance of chromaticities explained by the 
dominant hue varied between 84.1% (banana) and 98.6% (#theDress); 
for details see Figure S2 in the Supplementary Material. For single- 
coloured objects (Fig. 2.a-i), the principal component (black line) goes 
through the white-point (close to the origin), implying that the principal 
component properly describes a hue, namely the dominant hue. In 
contrast, the multicolored rose provides a counterexample. It does not 
have a single, dominant hue, but instead varies in hue. As a result, the 
principal component of the rose does not go through the white-point, 
implying that it does not describe a hue direction, but instead de
scribes a change across hues (Fig. 2.j-l). Fig. 3.a illustrates the hue 
variation in the original colour distribution and the dominant hue to 
which that variation is reduced for a selection of the stimuli. 

Rotated-hue condition: The rotated-hue condition served as a 
benchmark for evaluating the visibility of the one-hue images, assuming 
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that the hue-rotations are barely visible. Fig. 4 illustrates the hue rota
tion. We rotated the complete colour distribution by a 5-degree hue 
angle either counter-clockwise (plus rotation) or clockwise (minus 
rotation) in CIELUV space. We chose a rotation of 5 degrees because the 
rotation should be just noticeable. We considered the Just-noticeable 
Differences (JNDs) measured for uniform colour patches by Witzel and 
Gegenfurtner (2013; 2018a) as an approximate reference for discrimi
nability. One JND corresponds to a probability of 0.72 of seeing the 
differences. For all stimuli, a five-degree rotation is < 1 JND (cf. 
Figure S3 in the Supplementary Material). The uniform patches in Fig. 1 
give an impression of how small these rotations were. Although, 
discrimination of colour distributions may differ from uniform colour 
patches, the magnitude of hue discrimination thresholds is very similar 
(Fig. 7 in Giesel et al., 2009; Fig. 10 in Hansen et al., 2008). Hence, 
thresholds for uniform colours provide a good estimation of how low the 
visibility of our hue rotations is. 

In addition, the 5-deg rotation is roughly comparable to the range of 
hues that distinguishes the one-hue from the original version. Five de
gree is close to, and in most cases less than, the hue variation of the 
colour distribution that is reduced to a line in the one-hue version of the 
images. The hue distributions (cf. Fig. 3.a) of single-coloured objects 
have standard deviations between 3.0 degrees (orange) and 21.4 degrees 
(strawberry). Since standard deviations extend to both hue directions 

(minus and plus) they cover > 5 degrees. However, while the 5-deg hue 
rotation affects all pixels of an image, the one-hue manipulation only 
affects pixels away from the dominant hue, often in the mid-range of 
saturation (cf. centre panels of Fig. 2). For this reason, average colour 
changes compared to the original images tend to be larger in the rotated- 
than in the one-hue condition. In contrast, standard deviations of colour 
changes tend to be larger in the one-hue condition because some pixels 
in this manipulation involved much larger than 5-deg changes (cf. Fig. 5. 
a; see also Figure S4 and Table S1-2). 

One exception was #theShoe, for which we rotated the hue by 10 deg 
because a 5-deg rotation seemed completely invisible during pre
liminary visual inspection. #theShoe and #theDress have much broader 
hue distributions with standard deviations of 74.6 deg and 72.1 deg, 
respectively (Fig. 3.a). High chromatic variation increases discrimina
tion thresholds (Fig. 7 in Giesel et al., 2009; Fig. 6 in Hansen et al., 
2008). At the same time, the 10-deg rotation is about the size of the JND 
for that hue (cf. Figure S3). For these reasons, a 10-deg rotation may still 
be considered an adequate benchmark for the visibility of the one-hue 
transformation of #theShoe (cf. Fig. 1). 

Since the original images were tightly fit into the RGB monitor 
gamut, some of the image manipulations produced small transgressions 
of the RGB monitor gamut. These small gamut transgressions occurred 
for highly saturated colours where sensitivity is low (e.g., Witzel et al., 

Fig. 2. The Dominant Hue for Stimuli in Experiment 
1. Images in the left column are original photos. The 
coloured dots in the panels of the centre column 
illustrate the colour distribution of the original 
photos. The axes correspond to the chromatic axes u* 
and v* in CIELUV space. The size of the dots is scaled 
with the frequency of the respective colour in the 
object. The large grey dot indicates the colour of the 
background at the origin of the coordinate system. 
The large black dots in the centre panels are the 
projection of the colour distribution on the dominant 
hue. The panels in the right column render the one- 
hue images with colours corresponding to the black 
dots in the respective centre panels. Note for the ba
nana (a-c), the grapes (d-f) and the orange (g-i) how 
similar the one-hue images on the right and the 
original images on the left look. The dominant hue is 
approximately oriented towards the origin because 
the colours mainly vary in chroma. In contrast, the 
dominant hue of the rose (j-l) is not oriented towards 
the origin reflecting a visible variation in yellow-pink 
hue. As a result, the one-hue version of the rose (l) 
differs in hue and saturation from the original (j).   
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2019), and did not seem visible on thorough visual inspection. We 
accepted these out-of-gamut values for Experiment 1 because we wanted 
to use the original colour distribution of the photos. We will come back 
to the potential effects of out-of-gamut values in our Discussion and in 
later analyses (see Experiment 3). Out-of-gamut values were mapped 
onto the closest RGB on the gamut, which is either 0 or 255 (gamut 
clipping). The error introduced by RGB quantisation and gamut clipping 
was on average (across all images) 0.6 in the one-hue condition, 0.5 in 
the minus, and 1.3 in the plus-rotated condition, measured as average 
Euclidean distances in CIELUV space. 

Images were presented in a 2x2 arrangement (cf. Figure S1). Three of 
the images were the original, one was either the one-hue or one of the 
hue-rotated images depending on the experimental condition. Stimulus 

size was designed so that the 2x2 matrix covers about 75% of the 
monitor height when the browser was maximized. This was done to 
make sure the images were as visible as possible. However, full control 
of stimulus size was not possible due to the online-survey format. 

2.1.4. Procedure 
In one trial of the main task, the 2x2 display was shown, and par

ticipants had to select which of the four images differed from the other 
three. For this, they clicked on the image itself using mouse or touch 
screen. Response times were recorded. 

At the beginning of the survey, observers were asked to indicate their 
gender, their age, and whether they have known colour vision de
ficiencies (cf. survey pdf). Then, instructions and the two practice trials 
followed. The 42 main trials (14 images × 3 conditions) were presented 
in random order, and the odd-image was shown at a random position. 
The survey took between 5 and 10 min (lower and upper quartile). 

2.2. Results 1 

We discarded responses with response times below 50 ms and above 
2 min because such responses are very likely spurious. Perceptual de
cisions and motor responses require far more than 50 ms (e.g., Thorpe & 
Fabre-Thorpe, 2001) and response times over 2 min are likely the result 
of participants interrupting the task rather than reflecting task 
completion. Only 15 of 17,514 responses (0.09%) were below 50 ms, 
and 29 (0.17%) were above 2 min. Note that these exclusions produced 
small variations in degrees of freedom in the inference statistics below. 

2.2.1. Accuracies 
In the case of a dominant-hue effect, performance in the one-hue 

condition should be at chance level if the one-hue version is 
completely indistinguishable from the original. Otherwise, performance 
should be at least lower (i.e., higher response times and error rates) for 
detecting one-hue images than for both kinds of hue-rotated images. 
This should be the case, not just on average across all images, but 
independently for each single-coloured and bipolar image. For this 
reason, we compared the three conditions independently for each image. 

Fig. 6.a illustrates accuracies (proportion correct) for each object and 
condition. We compared the one-hue to the minus and plus-hue-rotated 
version through separate McNemar tests for each object; see Table S3 in 
the Supplementary Material for detailed results on each statistical test. 
In line with dominant hues effects, accuracy was lower for detecting 
one-hue than for detecting both hue-rotated versions of all objects 
except #theDress, the frog, and the rose (all chi2 > 7.5, p <.01). For 
#theDress and the frog only the comparison with the negative (chi2 =

8.2 and 20.9, both < 0.004), but not the plus-hue-rotated versions was 
significant (chi2 = 0.4, p =.51; chi2 = 0.1, p =.71). Results for the rose 
went to the direction opposite to the dominant-hue effect, with the one- 
hue version being detected more accurately than both hue-rotated ver
sions (both chi2 > 6.3, p < 0.01). 

2.2.2. Response times 
Response times further supported the results obtained with accu

racies. Fig. 6.b illustrates response times. For inference statistical tests, 
we log-transformed response times to account for the positive skew of 
response times. Logarithmic response times and accuracy were highly, 
negatively correlated across all 42 conditions (r(40) = -0.85, p <.001; cf. 
Fig. 6.c), indicating that both measures reflect the difficulty of the task 
rather than a speed-accuracy trade-off (Heitz, 2014). 

We compared the conditions through paired t-tests for each object. 
Almost all objects that showed dominant-hue effects with accuracies, 
also showed them with logarithmic response times (Fig. 6.b or Table S3). 
Again, the frog and the #theDress only yielded significant differences in 
the comparison with the minus, but not plus-hue-rotated version. In 
addition, response times for the courgette did not differ significantly in 
both (minus and plus) comparisons (t(412) = -0.4, p =.73; t(414) = 0.1, 

Fig. 3. Hue Histograms. Histograms illustrate the hue distributions of six 
example objects. Each histogram shows the frequencies of each hue within the 
respective object. Hues were binned in 5-degree steps. Hues and opponent hue 
directions were pooled and oriented towards the hue of the average colour of 
the object. Triangles indicate the hue of the average colour. Vertical dotted lines 
show the dominant hue. Note that the dominant hue differs from the mode hue 
(maximum of histogram) and the hue of the average colour. Label “stra” =
strawberry. Panels refer to the three experiments. For Experiment 3, hue dis
tributions for stimuli with inverted colours are shown; this set did not 
include #theShoe. 
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p =.89), and #theShoe missed significance in the plus-hue-rotated 
comparison (t(413) = 1.7, p =.096). The rose showed the inverse 
pattern, as was the case with accuracies (both t(414) < -2.2, both 
p <.03). 

2.3. Discussion 1 

According to the dominant-hue effect, observers should be more 
sensitive to hue-rotations, than to the projection on the dominant hue 
direction of a single-coloured object. All stimuli that we considered 
“singled-coloured” yielded a dominant-hue pattern in accuracy (Fig. 6. 
a). Stimuli that did not yield a dominant-hue pattern were either control 
objects that appear to have more than one colour, such as the frog and 
the rose, or objects where all conditions were not visible, as for #the
Dress. Response times supported most of the observations (Fig. 6.b). 

2.3.1. Technical limitations 
The lack of display calibration and control of adaptation due to the 

online format may have affected discriminability. It is likely that overall 
visibility would have been slightly higher under controlled viewing 
conditions in the laboratory. However, object colour perception occurs 
in everyday life under non-lab viewing conditions. So, the level of per
formance observed here is probably more representative for object 
colour perception than maximum performance under controlled lab 
conditions. In addition, most of our observations are based on the 
comparison between the one-hue and the rotated-hue condition. There 
is no reason to assume that the online format affected the relationship 
between these two stimulus conditions. 

Another potential problem with our method was the presence of out- 
of-gamut RGBs and gamut clipping. The effects of gamut clipping can be 
complicated. On the one hand, experimental image manipulations might 
become less obvious when they cannot be completely translated into 
RGB images. However, our results contradict such an effect. The cour
gette, the pig, #theDress, and #theShoe had the lowest number of gamut 
transgressions for all image manipulations (all < 0.1%). These were also 
the least visible (lowest accuracy, highest response times) among the 
stimuli. The higher performance for the other stimuli contradicts the 
idea that gamut transgressions made image manipulations less visible. 

On the one hand, image manipulations could become more visible if 
gamut clipping produces additional hue shifts or other visible artefacts. 
However, our results contradict such effects, too. For some stimuli 
gamut transgressions strongly differed between minus-hue rotation, 
one-hue and plus-hue rotation, such as for the lemon (0, 13.7%, and 
61%), carrot (0, 14.3%, and 34%), and orange (1.4%, 44.5%, and 
95.2%). If gamut clipping increased visibility, the condition with plus- 
hue rotations should yield much higher performance (red bars in 
Fig. 6.a-b) than both, the one-hue (grey bars) and the minus-hue-rotated 
images of those objects (blue bars). This was not the case at all. Instead, 

they all showed the pattern of a dominant-hue effect. 
These observations contradict an important role of gamut clipping in 

the performance measurements. We will come back to examining more 
subtle involvements of gamut clipping at the end of Experiment 3 when 
we model the role of out-of-gamut values as one of many possible de
terminants of discrimination performance. 

2.3.2. Evidence for dominant hue effects 
For the courgette, pig, #theDress, and #theShoe, accuracies in all 

conditions were close to chancel level (Fig. 6.a). This low performance 
indicates that observers had difficulties discriminating manipulated 
images from the original images. For the hue-rotated versions of the 
shoe, this was the case even though its colour distribution was rotated 
twice as much (10 degrees) as other images. Regardless of the rotated- 
hue condition, these observations show that the one-hue manipulation 
for those stimuli was barely distinguishable from the original images, 
hence confirming a dominant-hue effect. 

For the other single-coloured stimuli, performance was clearly above 
chance level, but lower than performance with hue-rotated images. We 
considered the performance with hue-rotated images as an upper 
boundary for judging the performance with one-hue images. The hue- 
rotations were barely visible in that they were smaller than JNDs for 
hue discrimination (Figure S3), and results confirmed that hue-rotations 
were not always correctly detected (<92% accuracy, cf. Fig. 6.a & Table 
S3). The lower accuracies for one-hue compared to rotated-hue condi
tions indicate that the difference between original and one-hue images 
was barely visible, and observers tended to miss that difference as pre
dicted by a dominant-hue effect. 

The observation that accuracies for the courgette, #theDress, and 
#theShoe were close to chance level may explain why these stimuli did 
not yield significant differences in response times across conditions. 
Response times are very noisy when the likelihood of seeing the target is 
low and observers do not see the target in many trials (e.g. Figure S1 in 
Witzel & Gegenfurtner, 2015). In addition, response times are more 
vulnerable than accuracies to extraneous variables such as distractions 
(Kyllonen & Zu, 2016; Lustig et al., 2006). The uncontrolled conditions 
of the online-survey format make response times even more vulnerable 
to measurement noise due to observer distraction or technical failures. 
These sources of noise explain why response times yielded fewer sig
nificant dominant-hue patterns than accuracies. Nevertheless, response 
times largely confirm results with accuracy. For most objects, they show 
that projections on the dominant hue were more difficult to detect than 
the barely visible hue rotations, lending further support for the 
dominant-hue effects observed with accuracies. 

The lack of dominant-hue effects for the frog and the opposite effect 
for the rose illustrate that dominant-hue effects break down when ob
jects do not have a single colour. For the frog and the rose, projecting 
chromaticities onto their principal component involves a change in hue, 

Fig. 4. Hue Rotation. Grey dots in the centre panel show the colour distribution of the original photo on the left, black dots the distribution after a minus-5-degree 
rotation. The dotted and solid red lines indicate the dominant hue of the original and the hue-rotated distribution, respectively. The minus-5-degree rotation results in 
a slightly redder object, as shown by the image on the right. 
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namely the brown parts of the frog turning grey, and the change of the 
hue gradient from the inner towards the outer part of the rose (Fig. 2.j-l). 
These two examples illustrate that the observed dominant-hue effects 
are specific to distributions with a single dominant hue, for example, due 
to a specific kind of pigments. However, the dominant-hue effects for the 
cherries suggest that observers may miss areas with another hue when 
those areas are small. 

2.3.3. Traces of change blindness 
The tendency towards smaller average colour differences of one-hue 

compared to rotated-hue manipulations may explain the lower perfor
mance in the one-hue condition to a large extent (Fig. 5.a). This idea is 

supported by significant correlations between the average Euclidean 
distances in CIELUV (Fig. 5.a) and performance (Fig. 6.a-b) in terms of 
accuracy (r(40) = 0.90, p <.001) and (logarithmic) response times (r 
(40) = -0.68, p <.001). There was no correlation between standard 
deviations and performance (both p >.26). Hence, the main reason for 

Fig. 5. Colour Changes Produced by Experimental Image Manipulations. 
Euclidean colour differences in CIELUV (ΔELuv) between original and one-hue 
image (grey bars), minus-hue-rotated (blue), and plus-hue-rotated (red) im
ages are illustrated for each stimulus (x-axis). Error bars indicate standard de
viations. Differences were calculated based on the final RGB images, hence 
taking into account RGB quantisation and gamut clipping. Figure S4 further 
illustrates hue differences and calculations in CIELAB; Tables S1-2 provide 
exact numerical values. 

Fig. 6. Results of Experiment 1. Panel (a) illustrates accuracies as the propor
tion of correct responses (y-axis) and panel (b) response times (y-axis) as a 
function of object images (x-axes) and stimulus condition (order and colour of 
bars). Error bars represent standard errors of mean. Symbols above the centre 
bars indicate the significance of the smaller difference between one-hue ver
sions (grey bars) and hue-rotated versions (blue and red). The horizontal dotted 
black line in panel (a) indicates chance level (0.25). Averages and standard 
errors in panel (b) were calculated with logarithmic response times and then 
reconverted based on the exponential function. Panel (c) illustrates the corre
lation between accuracies and average logarithmic response times. Single- 
coloured objects (banana…pig) are represented as circles, #theDress as dia
mond, #theShoe as square, and multi-coloured objects (cherry, frog, rose) as 
stars. Conditions are colour-coded as in panels a-b. The correlation between 
accuracy and logarithmic response times is given at the bottom left. In all 
panels, significance is indicated as ◦ p < 0.1, *p < 0.05, **p < 0.01, and ***p <
0.001. Note that all single-coloured objects yielded a dominant-hue effect in 
accuracy that is also reflected in response times in most cases 
(except courgette). 
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the dominant-hue effect seems to be that areas with colours away from 
the dominant hue are too few or too small to be clearly visible due to 
limits of chromatic sensitivity (bottom-up explanation). 

Nevertheless, there were also some traces of top-down effects. 
Although not singled-coloured, the cherries also yielded a dominant-hue 
pattern, and the one-hue frog was less distinguishable from the original 
than the minus-rotated version (blue bar in Fig. 6.a). This is surprising 
because the one-hue manipulation is very clearly visible: in the original, 
the stem of the cherries is green, and the frog’s feet were brown with 
bluish reflections; these parts of cherries and frog turn grey in the one- 
hue version due to the projection on the dominant hue that is almost 
perpendicular to those colours. The low performance for detecting those 
visible changes suggests that observers miss the one-hue manipulation 
because they do not pay attention to the areas of the images where those 
visible changes occur. 

This idea is in line with our top-down explanation of the dominant-hue 
effect. According to this explanation, prior knowledge and expectations 
are the origin of the dominant-hue effect because observers focus their 
attention on colour properties that they deem as most relevant for object 
identification based on their prior knowledge about object shape and 
memory colours (Witzel & Gegenfurtner, 2020; Witzel & Gegenfurtner, 
2018b). We conducted a second experiment to test this idea. 

3. Experiment 2: Eidolons 

In Experiment 2, we investigated the role of prior object knowledge 
and memory colours in the dominant-hue effect (top-down explanation). 
We tested whether the dominant-hue effect is specific to objects that are 
known to the observer, or whether it also occurs for novel, unrec
ognisable patterns. For this purpose, we created Eidolons (Koenderink, 
Valsecchi, van Doorn, Wagemans, & Gegenfurtner, 2017) that are 
unrecognisable while having colour distributions and textures similar to 
those of the real objects in Experiment 1. 

3.1. Method 2 

3.1.1. Participants 
The sample consisted of 248 participants (191 women, 21.2 ± 6.1 

years old) after excluding 9 participants to control for colour vision 
deficiencies and 4 participants because they took longer than 60 min. Of 
the resulting sample, 9 participants were recruited through social media, 
31 participants through Prolific and 208 from the student participation 
pool. The experiment was approved by the Ethics Committee at the 
University of Southampton, ERGO 64292. 

3.1.2. Apparatus & stimuli 
Apparatus was the same as in Experiment 1. A pdf printout of the 

second survey is attached as supplementary material. 
We used the Eidolon toolbox (Koenderink et al., 2017) with pa

rameters (reach = 100 %, coherence = 0.5 %, grain = 30 %) that 
strongly distorted the overall spatial structure of the objects, but left the 

colour distribution and textures of the images largely unchanged (see 
Fig. 7 and Figure S5). The images used to create those Eidolons were the 
8 photos of fruits and vegetables from Olkkonen et al (2008) and the 
photo of the pig to allow for comparability with Experiment 1. Figure S5 
in the Supplementary Material illustrates the one-hue image creation for 
the example of the banana. Averages and standard deviations of colour 
changes due to the experimental manipulations are illustrated by Fig. 5. 
b (see also Figure S4 and Tables S1-2). Average Euclidean distances 
between images before and after RGB quantisation and gamut clipping 
were 0.6 in the one-hue, 0.4 in the minus-, and 1.3 in the plus-rotated 
condition. 

A (non-distorted) disk (purple vs pink), Eidolons of the rose with 15- 
degree hue rotation, and the one-hue version of the tomato were used for 
practice trials. The size and presentation of all stimuli for Experiment 2 
matched those of Experiment 1. 

3.1.3. Procedure 
Apart from the following four changes, the procedure was the same 

as in Experiment 1: (1) We asked participants to indicate their confi
dence about identifying the odd-image. For this, we added a slider that 
varied between 0 for “not confident at all”, and 100 for “very confident” 
(cf. Figure S1). (2) We added a short second part, in which we asked 
participants to indicate whether they could guess what is shown in each 
of the 8 Eidolon images, and if so, to describe it in a text entry. Order of 
presentation of the 8 images was randomised. Participants were also 
asked to indicate their confidence about that guess. (3) We added five 
catch trials to identify deficient data, for example when participants did 
not pay attention or answered randomly to acquire credit points and 
compensation. In catch trials, four coloured disks were shown, with one 
being in a very obviously different colour, e.g., yellow instead of red. As 
in the main task, observers had to indicate which one was different. (4) 
To make sure the task was fully understood, we added feedback to 
practice trials after response (by showing a green frame around the odd 
one). The survey took between 7 and 13 min (lower and upper quartile). 

3.2. Results 2 

All 242 participants responded correctly to all five catch trials. No 
responses were below 50 ms, and 20 of 6696 (0.30%) were excluded for 
being above 2 min. Logarithmic response times, error rates, and confi
dence judgements were strongly correlated (>87% of explained vari
ance, all p <.001), indicating that all three measures consistently reflect 
task difficulty (left column of Figure S6 in the Supplementary Material). 

3.2.1. Dominant-hue effects 
Fig. 8.a illustrates accuracies in Experiment 2. In line with the 

dominant-hue effect, performance in the one-hue condition was close to 
chance-level for all stimuli but the strawberry. In addition, one-hue 
versions of all objects yielded significantly lower accuracies than 
minus and plus hue-rotated versions in McNemar tests (all chi2 > 10.4, p 
<.002), except for the Eidolon of #theDress. As for #theDress in 

Fig. 7. Eidolon-Stimuli in Experiment 2.  
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Experiment 1, the minus-rotated (chi2 = 8.6, p <.003) but not the plus- 
rotated version (chi2 = 1.9, p <.17) differed significantly from the one- 
hue version of the dress-Eidolon. 

Response times (Fig. 8.b) and confidence ratings (Fig. 8.c) provided 
further support for the idea that one-hue versions were more difficult to 
spot than hue-rotated versions. Except for the Eidolons of the pig and 
#theDress, logarithmic response times for one-hue versions were 
significantly higher than for hue-rotated versions (min t(247) = 2.9, 
max p =.004). Eidolons of pig and #theDress went on average in the 
right direction; but for the pig-Eidolon, only the difference from the 
plus-rotated version was significant (t(245) = 2.4, p =.02); for the 

dress-Eidolon both differences were not significant. 
We compared confidence ratings in paired t-tests. Confidence ratings 

were significantly lower for one-hue than for hue-rotated versions for all 
Eidolons (t(245) = -3.1, p <.002), except the one of #theDress, which 
was not significant in both (minus and plus) comparisons (min t(243) =
-1.7, p =.096). Table S4 in the Supplementary Material reports detailed 
statistics. 

3.2.2. Recognisability of Eidolons 
We considered any answer referring to the original object as correct, 

independent of typos, articles (the, a), and quantity (plural vs singular). 
For example, ‘banana peel’, ’Edited Lettuce’, and ’strawberry jam’ were 
considered correct answers for the Eidolons of the banana, lettuce, and 
strawberry, respectively. Any reference to a dress was taken as correct 
for the #theDress Eidolon. For lettuce we also accepted answers refer
ring to cabbage and salad, and for oranges we included satsumas as 
correct. 

Fig. 8.d illustrates the proportion of people who responded they had 
no idea (light grey parts), who made an incorrect guess (red parts), and 
who guessed correctly (green parts). Only the banana and grapes Ei
dolons could be identified by more than half of the participants. In 
contrast, only 10.5% participants identified the pig Eidolon, and less 
than 25% guessed the lemon, carrot, and orange. 

3.3. Discussion 2 

We observed dominant-hue effects for all single-coloured Eidolons. 
The lack of significant differences across conditions for the dress-Eidolon 
is probably due to the hue-rotated versions being too difficult to identify. 
In any case, the one-hue version of the dress-Eidolon was at chance level, 
implying that observers were not able to see the one-hue manipulation. 
The inability to detect the one-hue manipulation provides evidence for a 
dominant-hue effect, anyway. 

Our Eidolon manipulation did not completely prevent recognis
ability. However, most of the objects represented by Eidolons could not 
be recognised by the majority of the observers. At the same time, all 
objects produced dominant-hue effects. These results suggest that 
dominant-hue effects do not depend on recognisability and diagnosticity 
of objects. Instead, the hue variation in the colour distributions seems to 
be too small to be visible or to attract attention (cf. Fig. 5.b). On the one 
hand, the dominant-hue effect could result from hue differences being 
below discrimination threshold. On the other hand, differences might be 
visible, but there could still be an effect of attention being captured, not 
due to knowledge, but simply by the dominant hue itself. 

According to these observations, dominant-hue effects are likely to 
occur with all kinds of known and unknown objects. Here, we only 
investigated a few objects, mainly fruits and vegetables, and one might 
wonder how these results generalise to other objects. The fact that 
dominant-hue effects are independent of object identity implies that our 
results are valid for all kinds of objects, depending mainly on the hue 
variation in the colour distribution. One limitation in this respect is the 
range of hues investigated here. The hues of our natural stimuli only 
vary between pink and green because fruits and vegetables with satu
rated blue and purple colours are rare. We conducted a third experiment 
to address the remaining questions about the role of attention and of the 
hue of the colour distributions. 

4. Experiment 3: Cues 

Experiment 3 was aimed at (1) further examining the potential role 
of attention and prior knowledge (top-down effects), (2) testing 
dominant-hue effects for blue-purple colour distributions, and (3) 
identifying determinants of discrimination performance beyond the 
experimental conditions. First, we provided cues that indicated what 
colour differences participants should look for and where to look for 
them to test the role of attention and prior knowledge. If the differences 

Fig. 8. Results for Eidolons in Experiment 2. Format is as in Fig. 6.a-b. In 
addition to accuracy (a) and response times (b), panel c shows the confidence 
ratings. Panel (d) illustrates whether participants could guess the original ob
jects that the Eidolons showed in a distorted fashion. Green = correct guess; red 
= incorrect guess; grey = “no idea.” 
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between original and one-hue images are completely invisible, such cues 
do not help. In contrast, if the differences are not spotted because ob
servers do not pay attention or look at other parts of the objects, the cues 
should improve performance in discriminating between original and 
one-hue images. 

Second, we inverted the colour distributions of the objects in 
Experiment 1 to obtain green–blue and blue-purple colour distributions. 
This manipulation also implied that objects were not in their typical 
colours and thus allowed us to further explore the role of memory col
ours (cf. Witzel & Gegenfurtner, 2020) in how observers look at or 
attend to the objects. We tested for dominant-hue effects as in Experi
ments 1–2 with those colour-inverted objects. 

Third, several determinants beyond the experimental conditions may 
affect the discrimination of one-hue and hue-rotated images. For 
example, the sensitivity to hue differences is a candidate determinant of 
hue discrimination performance across the hue circle (Witzel & 
Gegenfurtner, 2013; 2018a). We explored the potential role of a large 
range of different candidate determinants of discrimination perfor
mance through correlational analyses. 

4.1. Method 3 

4.1.1. Participants 
The sample consisted of 452 participants (373 women, 20.15 ± 3.6 

years old) after excluding 22 participants to control for colour vision 
deficiencies and 11 participants because they took longer than 60 min. 
Of the resulting sample, 60 participants were recruited from prolific and 
392 from the student participation pool. The experiment was approved 
by the Ethics Committee at the University of Southampton, ERGO 
65220. 

4.1.2. Apparatus & stimuli 
The apparatus was the same as in Experiments 1–2. A pdf printout of 

the third survey is attached as supplementary material. 
Colour-Inverted Stimuli. To create stimuli with inverted colour 

distributions, we represented colour distributions in CIELUV and 
mirrored them at the origin of u* and v*. Due to the asymmetry of the 
monitor gamut, particularly many pixels that were within gamut in the 
original images, would be out of gamut after inverting the distribution. 
For this reason, we reduced out-of-gamut values by rescaling chroma of 
the inverted distribution. A factor of 1 implies no scaling at all. Scaling 
factors were 0.7 for the banana and the lemon, 0.4 for the carrot, 0.33 
for the orange, 1 for the grapes, the lettuce and the courgette, 0.25 for 
the strawberry, 0.5 for the pig, 1 for #theDress, and 0.3 for the cherries. 
Fig. 9 shows the resulting images. Due to the lower chroma, the exper
imental manipulations involved smaller colour changes than in Experi
ments 1–2 (cf. Fig. 5.c). One-hue, 5-plus-rotated, and 5-minus-rotated 
versions were made as described for Experiment 1. For these images, 

average ΔELuv between images before and after RGB quantisation and 
gamut clipping were 0.3 in all conditions. 

Cues. The images for the cued discrimination were the banana, 
lemon, carrot, grapes, strawberry, #theDress, #theShoe, and the cher
ries (without colour inversion). Cues indicated where and what to look 
for. To create cues, we made animated images that flickered between the 
original and the one-hue versions (see Zenodo repository Witzel and 
Dewis, 2022). In addition, we identified the parts of the objects that 
differed most strongly in colour between the original and the one-hue 
version (cf. Figure S7 in the Supplementary Material). As spatial cues, 
we drew rectangles or arrow pointers to highlight those colour-changing 
parts. Finally, we provided verbal cues in the instructions indicating 
what change in colour participants should see (cf. caption of Figure S7). 
The verbal cues indicated what change of colour to look for, and the 
spatial cues highlighted where to look for it. The flickering was meant to 
reinforce the visibility of the change. A control condition with the same 
8 images provided a comparison for the cued performance. The control 
condition also included the lettuce (for potential comparison with 
colour-inverted images). In the cued and control condition, the 
discrimination task only involved original and one-hue images, but no 
rotated-hue versions. 

4.1.3. Procedure 
As in Experiments 1-2, observers were asked to indicate their gender, 

their age, and whether they have known colour vision deficiencies at the 
beginning of the survey. There were three main parts. As in Experiment 
2, all main parts involved the 4-AFC discrimination task and a confi
dence rating (Figure S1). Trials were presented in random order within 
each part. 

The first main part consisted of the control condition for the cued 
discrimination. The control condition came first to make sure that per
formance in this part is unaffected by experience with the other parts. It 
begun with two practice trials (pumpkin & tomato) followed by one trial 
for each of the 9 stimuli. 

The second part measured discrimination of the images with the 
inverted colour distributions. There were 33 trials, three (one-hue, plus- 
rotated, and minus-rotated) for each of the 11 stimuli (Fig. 9). 

The third part consisted of the cued discrimination. It came at the 
end to avoid that knowledge about the cues influences performance in 
the other parts. Each trial started with the animated image showing the 
cues. Observers rated “how confident [they] are that [they] can see the 
change in the rectangle of the animated image.” We will call this rating 
cue confidence. Then followed the 4-AFC discrimination task of the one- 
hue version of the respective image. At the beginning of the third part, 
cues were explained with a practice trial involving the pumpkin, fol
lowed by one trial for each of the 8 stimuli. 

In addition, five catch trials were spread across the survey. Overall, 
the survey involved 50 main trials (9 + 33 + 8) and took between 11 and 

Fig. 9. Stimuli with inverted colours in Experiment 3. Format is as in Fig. 1.  

C. Witzel and H. Dewis                                                                                                                                                                                                                        



Vision Research 200 (2022) 108078

11

20 min (lower and upper quartile). 

4.2. Results 3 

Of the 406 participants, two made an error in one of the five catch 
trials. All other participants completed all catch trials correctly. Eleven 
(0.04%) and 58 of 27,120 (0.21%) data were excluded because response 
times were below 50 ms or above 2 min, respectively. The right column 
of Figure S6 in the Supplementary Material illustrates the relationships 
between accuracies, average logarithmic response times, and average 
confidence ratings across the 50 trials. As in Experiment 2, confidence 
ratings were strongly correlated with accuracies (r(48) = 0.94, p <
0.001). However, the correlation between logarithmic response times 
and accuracies was weak (r(48) = -0.31, p = 0.03), and the correlation 
between logarithmic response times and confidence ratings did not even 
reach significance (r(48) = -0.19, p = 0.18). The main reason for these 
weak correlations is that response times for colour-inverted images 
(grey, blue, red symbols) differ from those of the cued discrimination 
part (black and white symbols in Figure S6.b & f). The former response 
times (colour-inverted) did not spread as much and were lower than the 
latter ones (cued), indicating faster responses in the inverted-colour 
part. At the same time, accuracy and confidence were generally higher 
in the cued part, indicating higher performance. When we separate data 
from these two parts, correlations between response times and confi
dence, and response times and accuracy were much higher in the 
inverted-colour (r(31) = -0.60, p < 0.001; r(31) = -0.61, p < 0.001) and 
in the cued part (r(15) = -0.86, p < 0.001; r(15) = -0.91, p < 0.001). This 
difference between the two parts may be explained by participants 
taking time to identify the cued parts of the images, which in turn in
creases accuracy and confidence. 

4.2.1. Inverted colour distribution 
Fig. 10 illustrates the discrimination performance with colour- 

inverted images. For lemon, orange, carrot, courgette, strawberry, pig, 
and #theDress, performance in the one-hue condition was close to 
chance-level, suggesting that the one-hue version was almost completely 
indistinguishable from the original. As above, we calculated McNemar 
tests to compare accuracies across conditions, and t-tests for logarithmic 
response times and confidence ratings. Table S5 reports detailed 
statistics. 

Lemon, orange, carrot, grapes, and lettuce yielded significantly 
lower accuracies for discriminating one-hue images than for both ver
sions of hue-rotated images (all chi2 > 7.5, p <.01). This pattern was also 
present in the confidence ratings (all t < -3.4, all p <.001), except for the 
grapes (both p >.12). Accuracies and confidence ratings for the cherries 
yielded an opposite effect (higher performance for one-hue; all p <.05). 
For the other objects, at least one of the two comparisons (with minus 
and plus hue-rotation) did not reach significance. Also note that average 
confidence ratings were at or lower than 50, indicating that observers 
were uncertain about their responses. 

Response times showed fewer significant patterns. Only lemon and 
lettuce produced the expected dominant-hue effect, in line with the 
observations for accuracies and consistencies. For other objects, at least 
one of the two comparisons was not significant (cf. Table S5). 

4.2.2. Cued 
If the dominant-hue effect is due to attention rather than discrimi

nability, participants should be able to see the difference between 
original and one-hue version when highlighted by a cue. Fig. 11.a il
lustrates cue confidence ratings across the 8 stimuli in the cued 
discrimination task. These are the confidence ratings participants made 
after seeing the cue and before the main task, indicating how well par
ticipants were able to see the change in the cued areas of the stimuli. Cue 
confidence ratings were significantly above 50 in paired t-tests (all p 
<.001), indicating that most participants were rather confident seeing 
the changes in colour when highlighted by the cue. 

If the dominant-hue effect in the discrimination task is due to 
attention, performance should be better (accuracy higher, response 
times lower, confidence higher) when participants knew what change to 
look for. Fig. 11.b-d illustrates differences in discrimination perfor
mance between the control trials at the beginning of the survey (light 
grey bars) and the cued trials at the end of the survey (dark grey bars). 
Differences in accuracies between the two conditions were tested with 
McNemar tests, differences in logarithmic response times and confi
dence ratings were tested with paired t-tests. Accuracies (panel b) and 
confidence ratings (d) were significantly higher, response times (c) 
significantly lower in the cued than in the control condition (all p <.01, 
cf. Table S6). After cueing, accuracy rose above 80% for the banana 
(83.8%), carrot (84.3%), grapes (88.1%), strawberry (84.9%) and 
cherry (96.7%), suggesting that most people could see the one-hue 
version of those objects after cuing. 

The effect of the cue on discrimination performance is also reflected 
by the cue confidence ratings (Fig. 11.a). The variation of cue confidence 

Fig. 10. Results for colour-inverted objects in Experiment 3. Format is as in 
Figs. 6 and 8. Note that, except for banana and cherries, accuracies for the one- 
hue condition were close to chance level or at least lower than for the rotated- 
hue condition, and all confidence ratings were on average below 50. 
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across stimuli was similar to the variation of performance in the sub
sequent discrimination task. This observation is supported by correla
tions across the 8 stimuli between cue confidence and the average 
accuracy (r(6) = 0.91, p =.002), response times (r(6) = -0.89, p =.003), 
and confidence ratings (r(6) = 0.92, p =.001) in the cued discrimination 
task (black bars in Fig. 11.b-d). So, the more confident observers were to 
see a cue, the higher was their performance and confidence in the 
discrimination task. 

4.2.3. Other factors 
We considered the following 16 measures as potential predictors of 

performance in the 4-AFC discrimination task:  

• Experimental condition: Dummy variable indicating whether data was 
from the one-hue or rotate-hue condition.  

• Stimulus Type: Dummy variable indicating whether data involved a 
control object (cherry, frog, rose) or not (only in Experiment 1 and 
3). 

• Eidolon Guesses: The proportion of correctly guessing what the Ei
dolons were (only Experiment 2).  

• Chroma Factor: The chroma rescale factor in Experiment 3.  
• Maximum Chroma: The maximum chroma of an object’s colour 

distribution.  
• Out-Of-Gamut Values: The proportion of out-of-gamut values for each 

transformed image.  
• Hue SD: The standard deviation of the hue distribution (cf. Fig. 3).  
• Explained Variance: The relative variance explained by the dominant 

hue (cf. Figure S2).  
• Orthogonal Variation: The absolute variance orthogonal to the 

dominant hue.  
• Distance from Origin: The (minimum) distance of the dominant hue 

from the origin.  
• Discrimination thresholds (2 predictors): JNDs for hue discrimination 

from Witzel and Gegenfurtner (2013) interpolated at the average hue 
or at the dominant hue, respectively, for one-hue stimuli. For hue- 
rotated stimuli, JNDs have been determined for the hue at half of 
the rotation (cf. Figure S3).  

• Chromaticity Shift (2 predictors): The average Euclidean difference in 
CIELUV (Luv Shift) between original and manipulated images 
(Fig. 5). We also included this measure in CIELAB (Lab Shift) as an 
alternative model of perceived differences (Figure S4). Shifts were 
calculated based on the final image, i.e., incorporating effects of RGB 
quantisation and gamut clipping (see also Table S1). 

• Hue Shift (2 predictors): The average angular hue difference in CIE
LUV or CIELAB, respectively. In the rotated-hue conditions, the 
average hue shift in CIELUV corresponds to the 5-degree hue rota
tions except for tiny effects of RGB quantisation and gamut clipping 
(Figure S4, Table S2). 

We determined the importance of those determinants for predicting 
the discrimination performance in terms of accuracy and response times. 
For Experiment 3, we included the measurements with the three ver
sions (one-hue, minus- and plus-rotated) of the inverted-colour images 
and control measurements with the non-inverted one-hue photos. We 
did not include the cued measurements to avoid complicated effects of 
cue visibility across stimuli. 

Dominance analysis allows estimating the relative importance of 
predictors (Azen & Budescu, 2003; Budescu, 1993; Lebreton et al., 2004; 
Lindeman et al., 1980; Tonidandel & LeBreton, 2011). To conduct 
dominance analyses, we first calculated multiple regressions for all 
combinations of the above predictors. We then determined the general 
dominance weight of each predictor as the R2 (squared semipartial 
correlation) averaged across all the subsets of regressions containing the 
respective predictor. For each predictor, we contrasted the variance 
explained by the predictor with the variance that can be explained 
without the predictor. For this purpose, we subtracted the R2 averaged 
across regressions without the predictor from the average R2 with the 
predictor (as in Weiss et al., 2017). Positive values show that the average 
variance explained by a predictor cannot be achieved by the combina
tions of the other predictors. We also identified for each number of 
predictors (1, 2, 3… predictors) the combinations of predictors that 
yielded the highest explained variance (R2). Note that this is a com
plementary approach because results do not necessarily coincide with 
the dominance analyses due to predictor collinearities. 

Figure S8 in the Supplementary Material illustrates the results for 

Fig. 11. The Effect of Cues in Experiment 3. Panel a illustrates the average cue 
confidence, i.e., the confidence about seeing the cued change during the in
structions before the main task. Panels b-d report data from the main task as in 
Figs. 6, 8, and 10. The white bars refer to the control, the black bars to the cued 
condition. Note that performance was always higher (higher accuracy and 
confidence, lower response times) after participants had seen the cue (black as 
compared to white bars). 
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predicting accuracies (left column, panels a,c,e) and logarithmic 
response times (right column, panels b,d,f). According to these estima
tions, the average chromaticity shift is the most important determinant 
of performance across all three experiments: the higher the average 
chromaticity shift was, the higher the performance (higher accuracies, 
lower response times) in all experiments, except for the response times 
in Experiment 3. Although they largely overlap (all r > 0.92, p <.001), 
the chromaticity shift calculated in CIELUV (Luv Shift) did a slightly 
better job than the one in CIELAB (Lab Shift). 

Luv Shift alone explained 81.1% (cf. Discussion of Experiment 1), 
78.5% (r(25) = 0.86, p <.001), and 67.4% (r(40) = 0.89, p <.001) of the 
variance of accuracies in Experiment 1 (Figure S8.a), Experiment 2 
(Figure S8.c), and Experiment 3 (Figure S8.e), respectively. 

In experiment 1 and 2, the experimental condition also made an 
important additional contribution to accuracies. In Experiment 2, the 
experimental condition was even more important than Luv Shift (cf. 
Figure S8.c). The experimental condition reflects the dominant-hue ef
fect: accuracies tended to be lower in the one-hue condition. Including 
Luv Shift and experimental condition in a multiple regression model 
explained 86.5% in Experiment 1 (F(2,39) = 147.6, p <.001), and 83.9% 
in Experiment 2 (F(2,24) = 62.4, p <.001) of the variance of accuracies. 
In Experiment 3, the experimental condition was less important, as may 
be expected given the fewer dominant-hue effects. Instead, the 
explained variance, the hue standard deviation, and maximum chroma 
seemed to explain important amounts of variance beyond Luv Shift (cf. 
ExpVar, HueSD, and MaxChr in Figure S8.e). 

Like accuracies, logarithmic response times in Experiment 1 
(Figure S8.b) and Experiment 2 (Figure S8.d) were correlated with Luv 
shifts, explaining 45.9% (cf. Discussion of Experiment 1) and 55.4% (r 
(40) = -0.74, p <.001), respectively. Luv shifts and experimental con
dition explained 52.9% (F(2,39) = 21.9, p <.001) and 63.9% (F(2,24) =
21.3, p <.001) of the response time variance in those experiments. 
Response times of Experiment 3 (Figure S8.f) were not related to Luv 
Shift (r(40) = 0.05, p =.77). Instead, they were most strongly related to 
the experimental condition (r(40) = 0.47, p =.002), and the hue stan
dard deviation (r(40) = 0.48, p =.001). Together, these two factors 
explained 39.7% of response time variance in a multiple regression (F 
(2,42) = 12.9, p <.001). 

There was a weak negative correlation between Luv Shifts and 
experimental condition in Experiment 2 (r(25) = -0.43; p =.03), but in 
none of the other experiments (both r > -0.25, both p >.12). These 
observations imply that Luv Shifts cannot explain the observed 
dominant-hue effects across all experiments. Instead, Luv Shifts were 
strongly correlated with maximum chroma in all experiments (all r >
0.70, all p < 0.001). This result reflects the fact that hue manipulations 
in all conditions involve larger colour shifts at higher chroma. 

4.3. Discussion 3 

In sum, cues could clearly improve performance in the discrimina
tion task (Fig. 11), indicating that the dominant-hue effect is not 
exclusively a matter of discriminability. In the measurements with 
inverted-colour images, seven one-hue images (lemon, orange, carrot, 
courgette, strawberry, pig, and #theDress) yielded performance close to 
chance level, indicating they were almost completely indistinguishable 
from the original images. Another two (grapes and lettuce) showed 
dominant-hue effects in comparison with the hue-rotated images. Only 
the lack of an effect for bananas and the inverse effect for the cherries 
contradicted dominant-hue effects. Our explorative analyses suggested 
that, besides the experimental condition, the chromaticity shift (pref
erably in CIEUV) was most predictive of discrimination performance. 
This last result indicates that larger changes in chromaticity were easier 
to detect, as would be expected. 

4.3.1. Discriminability and change blindness 
The main driving force behind this series of experiments was the 

question of whether the variation of hue away from the dominant hue is 
strong enough to affect the perception of an object’s colour. In many 
cases, the performance in discriminating one-hue and original images 
was close to chance level, implying that it was almost impossible to see 
the difference between one-hue and original image. In such cases, the 
lack of a difference between one-hue and rotated-hue condition is un
important. Similarly low performance in the rotated-hue condition only 
means that the hue-rotations cannot be seen either, which is of no 
particular interest for our purposes. In other cases, performance with 
one-hue images was lower than the performance with small hue- 
rotations, indicating that differences are barely visible and easily 
missed. These findings suggest that the colour distribution of the 
respective objects may be represented by the dominant hue without loss 
of important chromatic information. 

One reason why it is difficult to see the difference between the 
original and the one-hue images lies in the fact that the hue variation of 
the colour distributions of single-coloured and bi-polar images is small. 
This is the reason why they have a dominant hue, i.e., a principal 
component that explains a large amount of variance in chromaticity of 
the colour distributions. Eliminating this small variation in hue by 
projecting chromaticities on the dominant hue produces only small 
changes to the images, i.e., smaller on average than the hue-rotated 
images (Fig. 5 and Figure S4). The magnitude of these changes (Luv 
Shift, Lab Shift) is the major determinant of discrimination performance, 
as shown by the correlational analyses. The small differences in the one- 
hue condition are difficult to see, implying that the original and the one- 
hue image are barely discriminable. The discriminability varies across 
the objects. At least for some objects (lemon, #theDress, #theShoe) 
discriminability is so low that even cues do not bring discrimination 
performance close to 100% (cf. Fig. 11.a). These observations suggest 
that the difficulty of seeing the difference between original and one-hue 
images is due to low visibility (bottom-up explanation). 

At the same time, the strong and consistent effects of cues on 
discrimination performance show that the difficulty of seeing the dif
ference is at least partly due to some sort of change blindness (Jensen 
et al., 2011). Participants miss the differences between original and one- 
hue images because they fixate either their gaze or their covert attention 
on areas of the objects that do not change in colour. This is in line with 
previous evidence showing that participants look at areas of objects that 
they consider most informative and ignore others when determining 
object colours (Giesel & Gegenfurtner, 2010; Toscani & Valsecchi, 2019; 
Toscani et al., 2013a, 2013b). 

Gaze and attention are guided by a combination of bottom-up sa
liency due to low-level stimulus features and endogenous factors, 
including the observer’s goals, motivations, and previous experience 
with the stimuli (Awh et al., 2012; Schomaker et al., 2017). In the case of 
dominant-hue effects, prior knowledge and recognition of the objects 
seem not to play a role, as shown in Experiment 2 with the Eidolons. This 
is further supported by the observation that for most objects (except 
banana and cherry) inverting colour distributions did not counteract the 
dominant-hue effect (Fig. 10.a). These results imply that it is not the 
knowledge about typical colours (i.e., memory colours, cf. Witzel & 
Gegenfurtner, 2020) that prevents observers from looking at the colour 
changes. 

Instead, areas with the dominant hue, e.g., the yellow of the banana, 
might capture the attention of observers when asked to judge the objects 
colour. The small colour changes due to the projection on the dominant 
hue happen in other areas with non-dominant colours. The colour dif
ferences between original and one-hue version seem not to be salient 
enough to exogenously attract gaze and attention towards these non- 
dominant areas (e.g. Engmann et al., 2009; Itti et al., 1998). In this 
way, the dominant-hue effect may be explained by a combination of low 
discriminability and attention to the dominant hue. 

4.3.2. Representativity of stimulus set 
The present series of experiments was aimed at showing that there 
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are objects with a dominant hue, and at understanding why observers 
neglect chromatic variation beyond the dominant hue in such objects. 
Results show that the dominant hue is largely representative for the 
chromaticity distribution in our selection of single-coloured and bipolar 
objects. The question arises of whether this is true for all single-coloured 
and bipolar objects. 

As argued in the Introduction, the sources of colour in many natural 
objects are specific pigments or combinations of pigments (Chiao et al., 
2000; Fu et al., 2018; Lancaster et al., 1997; Osorio & Bossomaier, 1992; 
Xiong et al., 2013; Yang et al., 2009). For this reason, it is likely that the 
colour distribution of such natural objects varies predominantly along 
one hue direction defined by the characteristic pigment combination. 
This hue can be detected by the computation of the dominant hue. 

This idea can be further explored with other examples of natural 
objects. Ennis and colleagues (2018) provided a database of 42 hyper
spectral images of fruits and vegetables. We calculated the variance 
explained by the first principal component of chromaticities in CIELUV 
for those objects to examine whether they may have a dominant hue. 
Figure S9 in the Supplementary Material illustrates the explained vari
ance across all 42 objects. Most fruits and vegetables yield indeed an 
explained variance above 75%, but there are also instances with lower 
explained variance. Figure S10 shows the examples with lowest (<85%, 
upper row) and highest (>97.5%, lower row) explained variance. There 
may be several reasons for cases without dominant hue. First, some of 
those fruits have clearly more than one colour, such as red and yellow of 
the apple or the nectarine (Figure S10.a,i). Another reason for the lack of 
dominant hue is that some objects are not chromatic, i.e., they lack 
chroma and saturation, such as the black plum or the mushroom 
(Figure S10.c,h). Nevertheless, a dominant hue seems to exist for most 
single-coloured, chromatic fruits and vegetables, highlighting the po
tential of the dominant-hue approach for natural objects beyond the 
sample used in this study. 

4.3.3. Computational markers of dominant hue 
The key ingredient that the dominant-hue approach is missing to be 

generally applicable, is a computational criterion that allows pinpoint
ing whether or not the colour distribution of an object has a dominant- 
hue. A necessary precondition for a dominant hue is that the first prin
cipal component of the chromaticities explains a considerable amount of 
variance (cf. Figure S2, Figure S9, and Figure S10.l-v). 

However, the variance explained by the first principal component is 
not sufficient to guarantee that an object has a dominant hue. This is 
well illustrated by the image of the rose in Experiment 1. The principal 
component of the rose explains much of the variance, but it does not go 
through the white-point and describes a hue gradient rather than a 
single, dominant hue. In case of a dominant hue, the principal compo
nent must go through the chromaticity of the adapting white-point to 
describe a single hue direction. The distance-to-origin may capture this 
property of dominant hue, assuming that the white-point in most images 
was close to the origin. 

In our explorative analyses, we had included the relative variance 
explained by the principal component and the distance-to-origin as 
candidate predictors of performance. Surprisingly, neither the explained 
variance nor the distance-to-origin turned out to play an important role 
in predicting performance. The reason for the unimportance of those 
predictors may be the low number of objects with low explained vari
ance or large distances from the origin. 

Hence, the computational markers that allow for identifying domi
nant hues need clarification. They need to be compared and validated 
with observers’ object colour perception. Useful markers should predict 
which objects observers perceive as single coloured (or bipolar), which 
they see as multicolored, and which as achromatic. In the present study, 
we only determined whether objects are single-coloured, bipolar, or 
multicolored based on visual inspection. A more objective assessment of 
perceived object colours is necessary to develop a computational marker 
of dominant hue that enables us to represent the colour of any object or 

material. 

5. Conclusion 

Our findings show for example objects that human observers neglect 
the variation of colour away from the dominant hue under non- 
laboratory viewing conditions. According to Experiments 2–3, the 
dominant-hue effect is partly because hue variation is so small that it is 
difficult to see, and partly because of attentional change blindness. 
These observations imply that the colour of such objects may be repre
sented by the dominant hue without losing relevant perceptual 
information. 

The dominant hue contributes to our understanding of object colour 
perception and representation. It may explain why we identify certain 
objects with specific, single colours, for example the banana with a 
specific, saturated yellow. To identify the representative colours of ob
jects, we may combine the dominant hue with previously observed in
dicators of perceived object lightness and chroma (Giesel & 
Gegenfurtner, 2010; Toscani & Valsecchi, 2019; Toscani et al., 2013a, 
2013b; Xiao & Brainard, 2008). According to these observations, the 
representative colour should lie at the brightest, most saturated point 
along the dominant hue (cf. centre patches in Figs. 1 and 9). 

The dominant hue may also be useful for computational applications. 
Reducing colour distributions to dominant hue provides a new approach 
to stimulus control in psychophysical experiments involving natural 
objects (e.g, Hedjar, Toscani, & Gegenfurtner, 2021; Olkkonen, Hansen, 
& Gegenfurtner, 2008; Vurro, Ling, & Hurlbert, 2013; Hansen et al., 
2006). For example, this approach can be used to map colours from one 
object to another, as has been successfully done for #theDress and 
#theShoe (Cavdan et al., 2021; Witzel & Toscani, 2020). The dominant 
hue approach may also be useful for computational compression of 
object colour information, for example in 3D rendering. One might only 
need to save 3D information about lightness and chroma, while reducing 
information about hue to the dominant hue. 

Further elaborations of this approach may allow for spectral 
compression when we assume that there is only a limited set of natural 
sources of object colours, such as chlorophyl and carotenoids (Chiao 
et al., 2000; Dannemiller, 1992; Osorio & Bossomaier, 1992). One might 
obtain an approximation of full spectral information of an object based 
on the dominant hue. For this purpose, one may express the represen
tative object colour, i.e., the brightest, most saturated dominant hue, by 
the most representative reflectance spectrum, and reduce the spectral 
information across the whole object surface to weights of that reflec
tance. Still further elaborations may aim at computationally specifying 
the perceived colours of different segments or areas in multicolored 
objects and scenes. Such elaborations would be helpful, for example, to 
identify complex colour-concept associations (Rathore et al., 2020) and 
the colour pallet of a scene (Weingerl et al., 2020). 
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