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Fluctuations of the optical length induced by fundamental thermal noise are known to set the ultimate phase
resolution of fiber-based interferometers. Although this noise has been studied in detail for optical fibers made
of solid glass material, its impact on the performance of hollow-core optical fibers has not yet been assessed.
In such fibers, the guided light interacts only weakly with the glass material whose thermal and thermo-optic
properties normally determine the thermal noise level, suggesting that a difference in performance should
be expected. Based on the comparison of several interferometers optimized for phase sensitivity, we present
measurements of thermal noise in the 20 to 200 kHz range in hollow-core nested antiresonant nodeless fibers
(NANF) with their core filled with air at different pressures. In this frequency range, our measurements are in
good agreement with the adapted thermoconductive noise model we introduce, suggesting that the thermo-
optic contribution from the gas that fills the core is generally dominant, regardless of the exact hollow-core
fiber design. While we show that an antiresonant hollow-core fiber filled with air at atmospheric pressure is
noisier at 1550 nm than a silica fiber of equal optical length and mode field area, we also demonstrate the
lowest thermal noise power per unit optical length ever measured in a fiber (≈ 1.3×10-17 (rad2/Hz)/m at
30 kHz) using a large-mode-area NANF evacuated and sealed at 0.15 atm. In addition to lowering the internal
pressure, we predict that the noise density in this spectral range can be reduced by filling the core with a
low-polarizability noble gas. Our results indicate that low-loss antiresonant hollow-core fibers can compete
with ultrastable cavities for the purpose of laser frequency stabilization; when evacuated, such fibers will
constitute the best option to significantly decrease the fundamental noise floor in interferometric applications
currently based on conventional solid-core fibers.

PACS numbers: PACS number go here

I. INTRODUCTION

Optical fibers are widely used in interferometric ap-
plications thanks to their flexibility and ultra-low loss,
which enable the propagation of light over several kilo-
meters in a practical format. Yet, stabilizing the optical
path length of a long fiber well within a single wave-
length, a typical requirement in interferometry, poses a
considerable challenge in the presence of environmental
perturbations such as vibrations and temperature drifts.
This challenge is especially acute in standard single-mode
fiber (SMF) which displays a temperature sensitivity
on the order of 10 ppm/K at 1550 nm, dominated by
the thermo-optic coefficient of silica (TOC), a relatively
large value which often warrants temperature stabiliza-
tion at the sub-mK level1,2. Even when such environ-
mental perturbations are controlled or suppressed, early
studies have shown that the optical path length stabil-
ity of an SMF (related to the phase accumulated by a
propagating laser field), just like the propagation time
stability (related to the group index), is limited by the
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thermodynamic motion of the elementary charges in the
medium through which light propagates3,4. Such funda-
mental thermal noise, associated to apparent local tem-
perature fluctuations of the fiber, depends on the ther-
mal properties of the fiber material sampled by the opti-
cal mode and displays a variance or power which scales
with the square of the fiber temperature and with the
inverse of the mode volume5. Though this scaling with
mode volume strongly favors long fibers over, say, whis-
pering gallery mode microresonators6 or active7 and pas-
sive8 fiber Bragg gratings (in which a similar fundamental
noise is observed), thermal noise in SMF has nonethe-
less been shown to constitute an important limitation
for fiber optic gyroscopes9,10, optical fiber links11,12, op-
toelectronic oscillators13, and fiber references used for
laser stabilization14,15. This is due once again to the rel-
atively large temperature sensitivity of standard SMF,
which also describes the conversion of thermodynamic
temperature fluctuations to path length fluctuations or
output phase noise16.

Fundamental thermal noise in SMF can be lowered by
increasing the fiber length, which directly increases the
mode volume. However, noise reduction appears chal-
lenging once the length is maximized in a given appli-
cation. Increasing the mode field area also increases the
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mode volume, but only a modest improvement can be
considered before bending loss becomes problematic17.
Though it complicates instrument operation, lowering
the fiber temperature appears as the best approach since
it reduces both the strength of fundamental thermal noise
and the thermal sensitivity in bare SMF18,19. However,
experimental evidence suggests that temperature reduc-
tion may not work well below 150 K as the thermal prop-
erties of silica undergo significant changes20. Finally,
although significant effort has been deployed to reduce
the intrinsic low-frequency thermal sensitivity of SMF
(relevant for environmental temperature drift), for ex-
ample through specialized coatings and jackets21–23, low-
sensitivity fiber supports24,25, and dopants with negative
TOC26,27, commensurate reduction of fundamental ther-
mal noise in SMF has never been demonstrated. Fur-
thermore, it is not clear whether such approaches, which
focus on tuning the low frequency thermal behavior of
the whole fiber to minimize the effect of environmental
temperature changes, would also succeed to reduce phase
noise induced by fundamental thermal noise at the higher
frequencies where this contribution can be dominant.

Recently, interest in fundamental thermal noise mini-
mization has been renewed by the emergence of new op-
tical fibers that guide the light through a central hole,
hollow-core fibers (HCF), which are now surpassing con-
ventional solid glass-core SMF in almost all key proper-
ties. Critically, several HCF designs now display propa-
gation loss close to or even below that of the best SMF
and allow effective single-mode operation (i.e. the loss of
the higher order modes is significantly higher than that of
the fundamental mode), making them suitable in a host
of interferometric applications28. Hollow-core fibers have
already been shown to be less temperature-sensitive than
conventional SMF1,2,29,30, a property related to the weak
interaction of the mode field with the glass microstruc-
ture in addition to the relatively low TOC of the inter-
nal gas medium (which promises improvements with core
evacuation31). Clearly, this low temperature sensitivity
should translate to a weak conversion of thermodynamic
temperature fluctuations to path length fluctuations, as
suggested by a first experiment with short, early-design
commercial HCFs at the limit of measurement noise32.
Yet, a model of HCF fundamental thermal noise that
goes beyond a simple scaling of the SMF model is still
lacking, and measurements at a sufficient dynamic range
to reveal its most important properties have never been
performed.

In this work, we study fundamental thermal noise in
the latest generation of hollow-core fibers33, which guide
light using an antiresonant reflection mechanism (or in-
hibited coupling34). We first review the model of funda-
mental thermal noise that is usually adequate for SMF
above 1 kHz, giving simplified expressions which expose
the important design parameters. We then explain how
we adapt this model to the case of an antiresonant HCF,
stating our main working hypotheses. With a carefully
designed characterization setup supporting an order of

magnitude more power than what is usually achieved,
and using two long-length nested antiresonant nodeless
fibers (NANFs28, 219 m), we measure fundamental ther-
mal noise in the 20 to 200 kHz range with large dynamic
range and show that its spectrum agrees with the simple
model presented here, at least at room temperature and
for internal gas pressures in the 0.1 to 1 atm range. In
particular, the noise reduction associated to partial core
evacuation indicates that this fundamental noise, under
these experimental conditions, is driven by the thermo-
optic contribution of the gas that fills the core, which
constitutes a fundamental hypothesis of our model. Ex-
trapolating our results, we finally discuss a potential ap-
proach to minimize fundamental thermal noise in HCFs
beyond the demonstrated core evacuation.

II. THEORY

A. Solid-core fiber

A fundamental result of thermodynamics35 is that a
system in thermal equilibrium with a heat reservoir, such
as an optical fiber or any waveguide held at a constant
temperature T , displays fluctuations of its internal en-
ergy u(t). Though by definition the temperature itself
does not fluctuate, it is convenient to define an “effective”
or “apparent” temperature representative of the volumet-
ric energy fluctuations, ∆T (t) ≡ ∆u(t)/cv, where ∆u(t)
denotes the fluctuations of u(t) about the equilibrium
value 〈u(t)〉 while cv is the isochoric volumetric heat ca-
pacity of the system3. The apparent temperature fluctu-
ations are local and can be seen to be the result of random
exchanges of energy between neighboring domains of the
system, which still globally obeys the law of conserva-
tion of energy36. From the point of view of an optical
mode, the variance of the apparent temperature noise,
spatially averaged over the mode volume Vm, is given by
the simple expression:〈

∆T 2
m(t)

〉
=
kBT

2

Vmcv
, (1)

where kB is the Boltzmann constant3. For the funda-
mental mode in a fiber, it is usually adequate to define
Vm = AmL = πa2L, where Am is the effective mode
area37, L is the physical fiber length, and a is the equiv-
alent Gaussian mode radius (e−2).

By solving the heat equation with a Langevin source16,
or alternatively by computing the thermal admittance
function and invoking the fluctuation-dissipation theo-
rem38, it can be shown that the one-sided power spectral
density (PSD) of the apparent temperature fluctuations
takes the following general form:

S
(1)
∆Tm

(f) =
〈
∆T 2

m(t)
〉
Q(f), (2)

where Q(f) is a spectral shape function which depends
on the thermal boundary conditions, thermal properties
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of the material, and mode field area. For a very large,
thermally uniform fiber (“infinite” boundary conditions,
neglecting the potential impact of index-raising dopants
over the thermal properties), Q(f) has unit area and can
be simplified as:

Q(f) =
2

πfc
Re
[
ejf/fcE1 (jf/fc)

]
, (3a)∫ ∞

0

Q(f)df = 1, (3b)

where Re = [·] denotes the real part, j is the imagi-
nary unit, and E1 is the exponential integral function.
Though this expression is different from those found
in16,38, it is ultimately equivalent but has the advan-
tage of clearly separating the variance term (total power
or PSD area) from the spectral shape which is only
parametrized through fc, a cutoff frequency defined as:

fc =
2kt
Amcv

, (4)

where kt and cv are the thermal conductivity and heat
capacity of the fiber material, respectively. In a typi-
cal SMF operated around 1550 nm, fc ≈ 20 kHz, giv-
ing the shape function illustrated in blue in Figure 1.
Since Q(f) has unit area, a larger cutoff frequency sim-
ply means that the noise power of Eq. 1 is spread over a
larger bandwidth, lowering the low-frequency PSD level.
In silica SMF, such an increase of the cutoff frequency
can be achieved through reduction of the mode area (e.g.
by decreasing the operating wavelength or decreasing the
core diameter under certain conditions), as illustrated in
orange in Figure 1 for a case where the effective mode
radius is 2.45 times smaller than that of a typical SMF.

When other, more realistic thermal boundary condi-
tions are assumed, the spectral shape function Q(f) takes
a different form which is less insightful and does not nec-
essarily maintain a unit area16. However, Eq. 3a still
accurately describes the spectrum of high frequency tem-
perature fluctuations. Indeed, the cutoff frequency fc can
be seen to be a ratio of thermal diffusivity to mode area;
it is associated to the averaging of temperature fluctua-
tions, which are correlated in time and space because of
thermal conduction, over the mode cross-sectional area.
It is thus useful to define the frequency-dependent ther-
mal correlation length:

lt(f) =

√
kt

2πcvf
=
a

2
(f/fc)

−1/2. (5)

At those frequencies for which lt(f) is a few times smaller
than the cladding radius, it is appropriate to ignore the
exact form of the boundary conditions and thus use the
simple form of Q(f), valid for an infinite cladding. In
SMF, this condition is true above approximately 100 Hz.

To relate the apparent temperature fluctuations
∆Tm(t) to phase fluctuations φ(t) which can be measured
interferometrically, it is usually assumed that the optical
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FIG. 1. Spectral shape function for the case of infinite
boundary conditions. The blue curve is valid for fc = 20 kHz
while the orange curve is valid for fc = 120 kHz. In the latter
case, low-frequency and high-frequency asymptotes are shown
(dotted).

length at any instant is directly related to the apparent
temperature4,16,38:

φ(t) =
2π

λ

d(nL)

dT
∆Tm(t) =

2πnLξ

λ
∆Tm(t), (6a)

ξ ≡ αL +
1

n

dn

dT
, (6b)

where n is the effective index of the fundamental guided
mode, λ is the vacuum wavelength, αL is the thermal ex-
pansion coefficient (TEC), and dn/dT is the thermo-optic
coefficient for the effective index (or “effective TOC”). If
this relation holds, the phase fluctuations PSD is given
by:

S
(1)
φ (f) =

(
2πnLξ

λ

)2

S
(1)
∆Tm

(f), (7)

which is the main result of this section. The noise de-
scribed by Eqs. 1, 2, and 7 has been called “thermocon-
ductive” by Foster16 and it is qualitatively similar to the
noise previously described by Wanser4. It is also simi-
lar to thermorefractive noise measured in microcavities39

and dielectric mirrors40 when the TEC is much smaller
than the TOC, as is the case in fused silica. It is however
distinct from thermomechanical noise driven by internal
damping38, akin to Brownian noise in ultrastable cavi-
ties41, which is predicted to be important in the sub-kHz
spectral range only42 and whose theoretical description
is not entirely supported by experimental data43. Since
our experimental demonstration is centered on the 20 to
200 kHz range, we ignore thermomechanical noise in this
paper. Note that because the temperature noise PSD
is proportional to 1/L (Eq. 2), the phase noise PSD of
Eq. 7 is proportional to L and not L2; this expresses the
fact that the total optical path length fluctuation is given
by the incoherent sum of all optical path length fluctua-
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TABLE I. SMF parameters used in the thermoconductive
noise model16,45

Symbol Name Value

cv Volumetric heat capacitya 1.67×106 J m-3 K-1

kt Thermal conductivity 1.37 W m-1 K-1

a Mode field radius (e−2) 5.25×10-6 m

n Effective index 1.45

dn/dT Thermo-optic coefficient 8.84×10-6 K-1

αL Thermal expansion coefficient 1.05×10-6 K-1

a At constant volume.

tions along the fiber length (i.e. any longitudinal spatial
correlation is short ranged).

To model thermoconductive phase noise, we choose to
use physical values representative of the material close
to the mode field, that is, within a few thermal corre-
lation lengths of the fiber axis. We thus completely ig-
nore the potential contributions of the fiber coating and
jacket. Although these do matter at low frequencies18,44,
we heuristically argue that these should not contribute
to the apparent temperature noise sampled by the mode
field above a few kHz. Furthermore, since our experimen-
tal demonstration is based on a polarization-maintaining
single-mode fiber (PM-SMF) of PANDA configuration,
we use values tabulated in45 for the slow axis of a PANDA
fiber; in addition to the dominant thermo-optic coef-
ficient of the core and cladding material, these take
into account the impact of geometry deformation and
stress-optical effect over the effective index n, yielding
n−1dn/dT = 6.10 ppm/K. The contribution of the boron
stress-applying parts to the TEC is also considered, yield-
ing αL = 1.05 ppm/K for a naked fiber and presumably
also for the material close to the core. Overall, the sen-
sitivity of the PM-SMF is thus ξ ≈ 7.15 ppm/K, which
is comparable to the values used in standard SMF-28 for
the purpose of thermoconductive noise modeling around
1550 nm3,16,38,43,46. All physical parameters used in this
paper for SMF are summarized in Table I.

B. Gas-filled hollow-core fiber

The thermoconductive noise model has been explicitly
developed (by other authors) for solid-core fibers, and
here we only considered the effect of the material close
to the core region to describe the noise at high frequen-
cies. In this work, we suppose that the same model still
adequately describes thermal noise in gas-filled antireso-
nant hollow-core fibers, heuristically replacing the glass
core by a gas core with suitable thermo-optic and ther-
mal properties. To this end, we make a series of simplify-
ing assumptions; these are later shown to adequately ex-
plain phase noise measured in antiresonant HCFs above
20 kHz. First, we consider only the fundamental mode
and neglect the contribution the microstructure may have

over the thermal properties. Basing the model on the
properties of the gas that resides in the core cavity is es-
pecially justified in antiresonant HCF for which the frac-
tion of power guided in glass is 10-4 or lower28. Second,
we suppose that thermal expansion is negligible (αL ≈ 0),
following our reasoning that material far from the fiber
axis (in this case the silica cladding, that is, the tube
which supports the microstructure) should not signifi-
cantly contribute to phase noise at high frequencies. This
also implies we neglect the small structural deformation
(microstructure, cladding, endfaces) associated to fluc-
tuations of the gas’ apparent temperature in addition to
the impact of thermal boundary conditions. Third, we
neglect convective effects, which should be much slower
than conduction and should only manifest at low frequen-
cies47. Finally, to keep the model simple and to expose
the main trends, we assume the hollow core is filled with
nitrogen (N2) at a pressure such that the Knudsen num-
ber Kn, defined as the ratio of mean free path to cap-
illary diameter, stays below 0.01. This constitutes the
condition to remain in the hydrodynamic flow regime48.
For the HCF used in our experimental demonstration,
this condition is respected for an internal pressure above
0.2 atm (20 kPa), approximately, if the capillary diame-
ter is taken to be similar to the core diameter (35 µm).
While the gas inside a typical hollow core fiber is better
described as a mixture of molecules with exact partial
pressures dependent on the fabrication procedure and
handling history, it should be safe to assume that ni-
trogen is the dominant species under most conditions;
the error introduced by the presence of atmospheric con-
stituents (O2, CO2, etc.) is predicted to be relatively
small since the thermal and optical properties of air at
standard temperature and pressure (STP) are very sim-
ilar to those of nitrogen (cv = 855 J/(m3·K) and kt =
0.026 W/(m·K)49, dn/dT = 910 ppb/K50). The same
reasoning applies to argon which is often used as pres-
surization gas during fabrication (see Section IV).

Given the simplifications made here, only the thermal
(cv, kt) and thermo-optic (dn/dT ) properties of the gas
that fills the hollow core are required to describe funda-
mental thermal noise in HCF (in antiresonant HCFs, the
fundamental mode’s effective index n is a few hundreds of
ppm smaller than unity51; it is hence adequate to simply
set n = 1 in Eq. 7). First, the volumetric heat capacity
of diatomic molecules can be expressed as:

cv =
5p

2T
, (8)

where p is the pressure52. This evaluates to cv =
860 J/(m3K) at STP. The thermal conductivity, on the
other hand, is independent of pressure in the hydrody-
namic flow regime and has a value of approximately 25.4
mW/(m·K) in N2 at 20◦C53. Taking the mode area of
SMF, this means that the cutoff frequency (Eq. 4) is
670 kHz in nitrogen gas, 35 times larger than it is in
silica, spreading the total noise power over a much wider
bandwidth. In our demonstration, however, the mode
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field radius of the HCF is 12.5 µm, much larger than in
SMF, yielding fc ≈ 120 kHz as shown in orange in Fig-
ure 1. Finally, to estimate the thermo-optic coefficient
dn/dT required to model ξ (Eq. 6b), we describe the in-
dex of the gas within the core nc using the Lorentz-Lorenz
equation54:

n2
c − 1

n2
c + 2

=
4παN

3
≈ 2

3
(nc − 1), (9)

where α is the molecular polarizability volume, N is the
number density, and the last approximation is valid if
nc ≈ 1, which is the case for gases at ordinary densi-
ties. The thermo-optic coefficient of a gas obeying this
equation can be found through differentiation of nc:

dnc
dT
≈ 2π

(
dα

dT
N + α

dN

dT

)
. (10)

The factor dN/dT would normally be assumed to be zero
in a sealed hollow-core fiber31 since the number of gas
molecules is constant and since we ignore fluctuations of
the internal volume, making the number density invari-
ant. The ideal gas law can be used to writeN = p/(kBT ),
and the corollary is that the pressure is normally assumed
to be directly proportional to temperature. However, the
thermo-optic coefficient used in the noise model relates to
local apparent temperature fluctuations. The assumption
here is that if locally the temperature fluctuates, the pres-
sure is still constant in the vicinity of the fluctuation and
therefore the local density also fluctuates (dN/dT 6= 0)
according to the gas law, leading to a phase fluctuation
in the propagating light. Note that these density fluctu-
ations should be uncorrelated along the fiber length, at
least at those frequencies much larger than the ratio of
acoustic velocity to fiber length, provided that the fiber
mode does not fill the entirety of the hollow core such
that gas molecules have the possibility of moving in and
out of the guided mode. The thermo-optic coefficient
should thus be computed assuming constant local pres-
sure (dp/dT = 0) instead of constant volume (p ∝ T ),
even if the fiber is sealed. This agrees with the models
used in photothermal interferometry, which have been
developed and successfully compared with experimental
data over a frequency range similar to that of interest
here55–58. Under this perspective, we can rewrite Eq. 10
using dN/dT = −p/(kBT 2) (constant pressure):

dnc
dT
≈ 2πp

kBT

(
dα

dT
− α

T

)
. (11)

The second term within parentheses is typically much
larger than the first one; for example, in N2 at STP,
dα
dT = 1.85×10-36 m3/K while α

T = 5.95×10-33 m3/K59.
We can thus simplify:

dnc
dT
≈ − 2πpα

kBT 2
, (12)

which gives ξ ≈ -936 ppb/K when combining all our hy-
potheses, critically that dn/dT ≈ dnc/dT . The param-

TABLE II. HCF parameters used in the thermoconductive
noise model.

Symbol Name Value

cv Volumetric heat capacitya 860
(
p
p0

)
J m-3 K-1

kt Thermal conductivityb 0.025 W m-1 K-1

a Mode field radius (e−2) 12.5×10-6 m

n Effective index 1.00

dn/dT Thermo-optic coefficient 936×10-9
(
p
p0

)
K-1

a At constant volume.
b Kn < 0.01.

eters of the HCF used in our demonstration, at a tem-
perature T = 20◦C, are summarized in Table II; this in-
cludes the pressure dependence when appropriate (p0 =
101.3 kPa = 1 atm).

To compare the fundamental thermal noise in fibers
having distinct lengths and indices, the phase PSD can
be normalized by the optical length nL, yielding:

S
(1)
φ (f)

nL
= n

(
2πξ

λ

)2
kBT

2

Amcv
Q(f). (13)

Though another normalization could certainly be chosen,
this one is justified by the fact that the signal of inter-
est scales with the optical instead of physical length in
most applications. Furthermore, it gives a quantity that
is independent of physical length, which is not the case
of the signal-to-noise ratio (SNR) which increases with
it. From this normalized phase PSD, and assuming the
same wavelength, mode area, and temperature, it is ap-
parent that a HCF filled with nitrogen at STP displays
a much larger temperature variance than a SMF because
its heat capacity is lower by more than two orders of
magnitude. This is partially compensated by a higher
cutoff frequency, which spreads the noise over a larger
bandwidth (through Q(f)), and a weaker conversion of
temperature to optical length (through ξ). Finally, for
equal optical lengths, the mode volume is larger in a gas
than in a transparent solid since the effective index is
close to unity; this explains the remaining factor n in the
right-hand side of Eq. 13.

The SMF to HCF comparison is quite different if the
HCF’s pressure is assumed to be lower than 1 atm, as
shown in Fig. 2, mostly because the detrimental impact
of a reduced heat capacity is largely compensated by the
higher cutoff frequency and lower TOC. Let us suppose
here that we are interested in frequencies below the cutoff
fc so that Eq. 3a can be replaced by its low-frequency
asymptote:

Q(f)

∣∣∣∣
f�fc

≈ −2

πfc
ln

(
2f

fc

)
. (14)

Neglecting the weak logarithmic dependence, this expres-
sion shows that the spectral shape function at low fre-
quencies is roughly proportional to f−1

c or cv/kt. For
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FIG. 2. Modeled optical-length-normalized phase PSD at
λ = 1539.8 nm. Comparison between SMF and HCF filled
with N2 at three different pressures. The parameters are T =
20◦C and a = 5.25 µm (SMF and HCF have the same mode
field area, in contrast to the figures shown in Section III).

pressures such that Kn < 0.01, the thermal conductivity
is pressure-independent and the phase noise PSD at low
frequencies is therefore proportional to p2 because ξ ∝ p,
as suggested by the orange curves in Fig. 2. Considerable
noise reduction should thus be possible with core evacua-
tion. However, it is worth stating that other fundamental
noise sources can start to dominate the spectrum at low
and high frequencies if the thermoconductive noise con-
tribution is lowered. Ultimately, a more accurate and
detailed model able to address this point could be ob-
tained through finite-element simulation41.

III. EXPERIMENT

The fundamental thermal noise of several fiber samples
was measured by comparing pairs of unbalanced Mach-
Zehnder interferometers illuminated by the same laser
signal. The advantage of this approach is that laser
noise, which is usually much larger than fundamental
thermal noise, is common to both interferometric phase
outputs and can be canceled through subtraction. This
subtraction can then be tuned in post-processing to ac-
count for unequal interferometric lengths and laser noise
gains. Traditionally, this would instead be achieved us-
ing a balanced fiber interferometer, with laser noise re-
jection highly dependent on the fine adjustment of the
arm lengths. Subtracting the two phase signals also sup-
presses environmental fluctuations that are partially cor-
related between the interferometers and, critically, ex-
poses the independent thermal noise contributions that
are of interest here. In this section, we first give infor-
mation about the instrumentation we developed and the
fiber samples we manufactured, explaining the trade-offs
associated to thermoconductive noise measurement. We
then briefly describe the signal processing approach be-
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fore presenting the main results.

A. Instrumentation

The experimental setup in which two fiber samples
are used is illustrated in Fig. 3. For clarity, we show
the specific case of a SMF to HCF comparison, but
all possible fiber combinations (SMF-SMF, HCF-HCF,
SMF-HCF) are studied below. The laser is an OE-
waves WGM Gen3 with 195 THz mean frequency (λ =
1539.8 nm) and 7 mW output power. It is amplified
using a custom-made, polarization-maintaining erbium-
doped fiber amplifier so that the optical power at the in-
put of each interferometer is approximately 10 mW. The
laser can be frequency-modulated (internally) and phase-
modulated (externally, using an EOSpace PM-085-20-
PFA-PFA-1550) for signal processing purposes described
below.

After recombination using optical 90◦ hybrids (Kylia
COH24 for SMFs and Optoplex HB-T0AFAS001-R1
for HCFs), the interferometric signals are routed to
four custom-made balanced photodetectors (Thorlabs
FGA01FC photodiodes) with 2000 Ω transimpedance
gain, 0.8 quantum efficiency, 10 MHz bandwidth, and
a 17 V saturation level sufficient to handle the max-
imum possible power per photodiode (5 mW). In or-
der to maintain a high dynamic range, custom-made
crossover filters (COF) are used to separate the AC and
DC part of each signal. Each AC signal, carrying the
phase noise information, is amplified using an EG&G
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5113 preamplifier (16 V/V, 300 Hz to 1 MHz), filtered
by a 500 kHz antialiasing filter (Thorlabs EF506 low-
pass electrical filter), and finally digitized using a GaGe
CSE8389 digitizer set in the voltage range that provides
the best dynamic range (± 2 V for a noise level of approx-
imately 2×10-12 V2/Hz below a 50 kHz resonance, and
5×10-13 V2/Hz above it). For this setup, digitizer noise
is dominant over detector noise and preamplifier noise,
but significantly weaker than shot noise. Each DC sig-
nal, carrying the information about the fringe position,
is attenuated by 20 dB in the COF to prevent damage to
the digitizer. The four AC signals and four DC signals
are simultaneously sampled at a rate of 10 MS/s for a
total duration of 0.4 s.

B. Fiber samples

Two PM-SMFs (Fujikura SM15-PS-U25A, PANDA,
hereafter referred to as SMFs) with nominal length L =
102 m and mode field radius a = 5.25 µm were used for
this demonstration (other relevant properties are shown
in Table I). Each fiber was spooled in a single layer on
the surface of an aluminum cylinder of diameter 10.2 cm
and height 7.6 cm. We did not attempt to minimize the
length of the couplers’ pigtails that contribute to the path
imbalance, which we measured to be 3 m in total (the rel-
evant length for fundamental thermal noise computation
is 105 m while the length relevant for laser noise conver-
sion is 102 m). Similarly, two antiresonant HCF sam-
ples (NANF) with nominal length L = 219 m and mode
field radius a = 12.5 µm were used (Table II). These
fibers were fabricated using the same stack, fuse, and
two-stage draw process reported in33. They were drawn
to a core diameter of approximately 35 µm and average
cladding membrane thickness of 550 nm and their loss
was measured via cutback to be 1.3 dB/km at our oper-
ating wavelength. Note that effective single-mode prop-
agation can be assumed for such a length of NANF28,33.
One HCF sample was spooled on an aluminum cylinder
similar to those used for the SMFs (diameter 12.6 cm,
height 12.7 cm) and the other HCF was loosely spun on
a standard plastic shipping spool. The total length of
the SMF pigtails contributing to the path imbalance was
estimated to be 4.5 m in both cases. Additional informa-
tion about these HCFs, including details about the HCF
to SMF interconnections, can be found in60.

C. Fiber length optimization

The total phase noise measured by an interferometer
based on a 90◦ hybrid output coupler, hereafter referred
to as an IQ interferometer (for “in-phase and quadra-
ture”), which is adjusted to introduce a negligible delay
in one arm and a phase delay τ = nL/c in the other arm,
can be modeled as:

θ(t, τ) = ν(t) ∗ g(t, τ) + φ(t, τ) + ε(t, τ) + µ(t, τ), (15)

where ν(t) is the frequency noise of the laser illumi-
nating the interferometer, ∗ is the convolution operator,
g(t, τ) = 2πΠ(t/τ − 1/2) is the impulse response describ-
ing the conceptual filter that converts laser frequency into
interferometric phase, with Π as the unit-width boxcar
function61, φ(t, τ) is the phase noise induced by funda-
mental thermal noise as defined in Section II, ε(t, τ) is
the phase noise induced by environmental noise (vibra-
tions, temperature drift, etc.), and µ(t, τ) is the measure-
ment noise contribution that is converted to phase. Fig-
ure 4 illustrates phase contributions that roughly repli-
cate our experimental conditions at 20 kHz. When shot
noise is dominant, the PSD of µ(t, τ) is white with level

S
(1)
µ (f) = 2hν0(1 +γ(τ)−1)/(ηP0), where h is the Planck

constant, ν0 = c/λ is the laser mean frequency, γ(τ) is
the transmittance of the delay arm, η is the photode-
tector’s quantum efficiency, and P0 is the optical power
measured at the input of the interferometer62. From the
Fourier transform of g(t, τ), the phase noise PSD associ-
ated to converted laser frequency noise can be expressed

as [2πτ · sinc(fτ)]
2
S

(1)
ν (f). The bandwidth of the laser

noise contribution therefore diminishes with increasing
path imbalance while its low-frequency gain increases.
Furthermore, the PSD of ε(t, τ) is usually proportional
to τ2 since environmental perturbations tend to affect the
whole fiber in a coherent fashion. Changing the phase de-
lay τ , i.e. changing the path imbalance or fiber length,
therefore changes the PSD level of the four independent
noise signals.

From Eq. 15 and Fig. 4, two simple conclusions can
be drawn. Firstly, a minimum fiber length is required to
bring fundamental thermal noise above shot noise, and
this minimum length ultimately depends on the maxi-
mum power which can be handled by the fiber compo-
nents and photodetectors (and also on the finesse if a res-
onator configuration is used63). In Fig. 4, given the input
power and thermal noise model, this minimum length is
nL ≈ 0.2 m at 20 kHz, but it would increase to 0.9 m
at 120 kHz and 6.5 m at 500 kHz. Secondly, increas-
ing the fiber length raises laser noise and environmental
noise much faster than it does fundamental thermal noise;
longer unbalanced interferometers are therefore more dif-
ficult to stabilize and require strong laser noise suppres-
sion, extreme laser stability, or both. For this demon-
stration, we assembled 219-m HCF samples (nL) since
we calculated that laser noise suppression would be suf-
ficient (given the frequency noise of the laser we used)
for such an optical length and since our goal was to ex-
pose fundamental thermal noise at high frequencies with
a large dynamic range. However, and as detailed be-
low, we found out that environmental noise, which is
much more difficult to model before the fact, constitutes
the limitation of our measurements below approximately
20 kHz. To expose fundamental thermal noise in this
acoustic frequency range, shorter interferometers would
be preferable since they are less sensitive to thermal drift
and vibrations (which tend to be much stronger at low
frequencies), though this comes at the expense of a re-
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FIG. 4. Modeled contributions to the total phase noise
PSD at 20 kHz. The laser noise curve (blue) assumes

S
(1)
ν (20 kHz) = 0.8 Hz2/Hz and shows a cutoff due to band-

width reduction with increase in nL, the fundamental thermal
noise (orange) is based on Eq. 7 for an antiresonant HCF at
1 atm internal pressure, and the measurement noise curve
(yellow) supposes that shot noise is dominant with P0 =
10 mW, η = 0.8, and a fiber transmission loss of 1.3 dB/km.
Environmental noise (purple) is traced as a possible distribu-
tion to illustrate the typical trend; it is difficult to model from
first principles.

duced shot-noise-limited signal-to-noise ratio and com-
mensurate lower measurement bandwidth. Ultimately,
the fiber length that is optimal to expose fundamental
thermal noise depends on the exact experimental condi-
tions, in particular environmental noise, and is necessar-
ily frequency-dependent.

D. Signal processing

A series of pre-characterizations of the setup were first
performed. Using an amplitude-modulated laser to di-
rectly illuminate each of the 8 photodiodes, the fre-
quency responses Hd(f) were measured in order to guar-
antee adequate bandwidth and common-mode rejection
(Fig. 5(a)). Similarly, a synthesizer was connected at
the input of the cross-over filters for the measurement of
the frequency response Hf (f) in both the AC and DC
branches (Fig. 5(b)). Finally, with the setup configured
as in Fig. 3, the laser was frequency-modulated over ap-
proximately ∆ν = 1/(500 ns) = 2 MHz in order to trace
a complete interferometric fringe (Fig. 5(d)). This al-
lowed the extraction of the IQ parameters of the optical
90◦ hybrids through an elliptic fit62. Final measurements
were taken with the frequency modulation turned off,
and the DC and AC signals (see an example in Fig. 5(c))
were both digitally equalized to compensate the appro-
priate frequency response, low-pass filtered at 500 kHz
(a frequency beyond which the frequency response inver-
sion is difficult because of the antialiasing filter roll-off),
recombined digitally, and then corrected for ellipticity.
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FIG. 5. Typical responses and signals. (a) Photodetector cir-
cuit frequency responses (modulus). “PD+” and “PD-” stand
for positive and negative photodiode channels, respectively,
while “∆” refers to the modulus of the difference, an indica-
tor of the common-mode rejection level. (b) Crossover filter
frequency response (modulus). “A” stands for “attenuated”
(DC part), “H” stands for “high-pass” (AC part). The black
dotted line marks the transition frequency. (c) Corrected and
calibrated AC signals for both interferometers (0.4 s dura-
tion). The larger excursions observed in HCF are due to a
stronger laser noise conversion (due to the larger path imbal-
ance) and stronger acoustic noise pickup. (d) IQ ellipses for
the case illustrated in Fig. 3. The dotted lines are the as-
sociated elliptical fits. Also shown in yellow and purple are
the corrected and calibrated composite signals (no laser FM)
which are the complement to those shown in (c).

From the fully corrected composite IQ signals, the total
phase noise θ(t) could be extracted unambiguously, re-
gardless of the operating phase (fringe position)64. Sim-
ilarly, synthetic measurement noise signals could be con-
structed by instead using AC noise signals acquired with
the laser turned off. We found that the complete pre-
characterization procedure only had to be performed ev-
ery hour to maintain adequate accuracy, mostly due to
the slow drifts in polarization in the HCF interferome-
ters.

As suggested in Figure 4, laser noise is largely dom-
inant in the output phase of each interferometer, even
if a highly stable laser is used. To suppress as much of
this noise as possible, the laser signal was phase modu-
lated following a triangle waveform so as to create a pilot
signal (in this case a square wave) in the output phase.
This pilot signal was then used to estimate the differ-
ence in phase delay between both interferometers. From
the complex ratio of the harmonics found in each output
spectrum, a correction function of the following form was
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computed:

Hc(f) =
1− e−j2πfτA
1− e−j2πfτB

≈ τA
τB
e−jπf(τA−τB), (16)

where τA (τB) is the phase delay in interferometer A (B)
and the approximation is adequate for the conditions of
interest here. Constructing a corrected phase difference
of the form ∆θ′(t) = θA(t) − θB(t) ∗ hc(t), where hc(t)
is the impulse response associated to Hc(f), instead of
∆θ(t) = θA(t) − θB(t) improves laser noise suppression;
this improvement is shown in Figure 6(a) for the case of
a SMF to SMF comparison (interferometers A and B are
made of SMF), in which the delays are nearly identical
(τA/τB ≈ 0.996), and in Figure 6(c) for the case of a
SMF to HCF comparison, in which the delays are more
distinct (τA/τB ≈ 0.705). Obviously, such a correction
scales all terms that contribute to the phase measured
in interferometer B (see Eq. 15), in particular the funda-
mental thermal noise that is of interest here. However,
recognizing that this noise is independent in both inter-
ferometers and assuming that it is dominant over envi-
ronmental noise and measurement noise (which is the cri-
terion for the thermal noise measurement to be valid), it
is straightforward to take this scaling into account during
analysis. Indeed, the PSD of the corrected phase differ-
ence simply becomes:

S
(1)
∆θ′(f) = S

(1)
φA

(f) + |Hc(f)|2 S(1)
φB

(f)

≈ S(1)
φA

(f) +

(
τA
τB

)2

S
(1)
φB

(f).
(17)

The measurement noise scales in the same fashion since
it is also independent in both interferometers. It is worth
stating that this last equation is strictly valid only if the
delay in each reference arm is null. Because of pigtails,
this is not true in practice, but small corrections can be
brought to Eq. 17 once laser noise is canceled. From the
corrected phase difference ∆θ′(t), we finally computed
phase power spectral densities using Welch’s method with
80 non-overlapping segments, a Kaiser window (β = 10),
and a zero-padding factor of 4 to lightly smooth the dis-
play.

E. Results

We first compared the two SMF interferometers for
verification purposes. In Figure 7, the thermoconductive
noise model (Eq. 17 with τA/τB ≈ 0.996 and the param-
eters found in Table I) is superimposed on the measured
phase difference PSD, showing good agreement between
20 and 200 kHz. Above 200 kHz, the PSD approaches the
measurement noise (MN) floor and then quickly drops
off due to the digital low-pass filter. The small hump
around 400 kHz is attributed to nonlinear conversion of
laser relative intensity noise. At the lowest displayed fre-
quencies, the measurement is limited by building vibra-
tion noise, which we confirmed by installing both SMF
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FIG. 6. Improved laser noise suppression using a periodic
pilot signal. In (a), the blue and orange curves represent
the noise spectrum measured for each interferometer, with
harmonics of 10 kHz clearly visible. The yellow and purple
curve represent the PSD of the phase difference, without and
with delay correction, respectively. A slight improvement is
visible at high frequencies. The modulus of the correction
function is shown in (b) along with the fit (dashed black).
The signal-to-noise ratio quickly decreases above 100 kHz and
is below 1 above 500 kHz (not displayed). Panels (c) and (d)
show an example of the same correction for a SMF to HCF
comparison. In this case the pilot signal’s frequency is 1 kHz
and the suppression improvement is striking since the path
imbalances are very different.

interferometers on vibration isolation platforms (Minus
K, 25BM-10); deactivating the platforms led to a signif-
icant increase in the measured phase noise below 3 kHz
(the curve shown here is with the platforms activated).
Between 3 and 20 kHz, the measured noise is larger than
the model by 1 to 2 dB. While it could be tempting to at-
tribute this offset to inadequate modeling of the thermal
boundary conditions, the impact of the cladding bound-
ary manifests at lower frequencies in SMF and it tends
to decrease the noise level, not increase it16. Our hy-
pothesis is that this is again due to vibrations, though
of acoustic instead of structural origin. Finally, the mea-
surement noise, shown in orange in Fig. 7, appears dom-
inated by the sum of the two shot noise contributions
(P0,A = 8.5 mW and P0,B = 9.5 mW), in particular above
the 50 kHz noise resonance where the digitizer noise level
drops abruptly. This agrees with our measurement noise
model.

We then compared the two hollow-core fibers using
the same setup (Fig. 8). In this case, we found a much
higher vibration contribution below 20 kHz; this is not
surprising given the higher intrinsic acoustic sensitivity of
HCFs65 in addition to the fact that we did not shield the
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FIG. 7. Difference phase PSD at λ = 1539.8 nm and T =
20◦C, SMF vs SMF comparison.

HCF interferometers as much as the SMF interferome-
ters in order to facilitate polarization tuning. Between 20
and 200 kHz, we measured a phase PSD that sits within
2 dB of our adapted thermoconductive noise model (Ta-
ble II), with a spectral shape clearly distinct from that
in SMF (see red curve for comparison). However, we
found that we could significantly improve the match be-
tween measurement and model, in both shape and level,
by assuming the internal pressure of both HCFs to be
0.7 atm instead of 1.0 atm. Though it is difficult to cor-
roborate such an observation, recent investigations have
shown that the pressure inside a HCF right after fab-
rication is significantly below 1 atm66. Depending on
the time a hollow-core fiber is left open to the atmo-
sphere before being sealed, and depending on its total
length48,67, it is possible for the internal pressure to set-
tle to a fraction of atmospheric pressure. While we do
not know how long our HCF samples were left unsealed
post-fabrication, both were cut from adjacent sections of
the drawn fiber. Furthermore, we followed the same pro-
cedure to build the HCF to SMF interconnections, only
breaking the seal at the moment of splicing. It therefore
appears reasonable for both samples to display a similar
internal pressure of approximately 0.7 atm.

To validate this first thermoconductive noise measure-
ment in HCF, we also compared each of the HCF to the
same SMF, in this case applying a strong subtraction cor-
rection to better suppress laser noise (Fig. 9). In both
cases, we found a good agreement between measurement
and model, once again assuming an internal pressure of
0.7 atm for each HCF. The three independent measure-
ments of HCF noise are therefore broadly consistent with
one another. Obviously, we cannot rule out the possibil-
ity that the internal pressure is actually 1 atm and that
the noise model is inaccurate. However, tuning only the
mode field radius or thermo-optic coefficient (for exam-
ple) does not improve the match as well as simply reduc-
ing the internal pressure, which we take as an argument
to favor the latter explanation.
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curve represents the total noise model.

We then set out to verify the central assumption of the
adapted thermoconductive noise model, which is that the
noise is driven by the thermo-optic contribution from the
gas inside the core. Following a procedure presented in68,
we unsealed the first HCF and inserted the fiber end into
a vacuum chamber so as to lower the internal gas pres-
sure, heating the whole 219-m fiber to 70◦ C to accel-
erate the evacuation process. After two weeks, we re-
spliced the connector (thus sealing the fiber) and let the
fiber cool down to room temperature. During the splic-
ing operation, the HCF was left open to the atmosphere
for approximately 15 minutes, allowing some ingress of
atmospheric air. The phase noise of this partially evacu-
ated fiber, interferometrically compared to a SMF fiber,
is shown in blue in Figure 10. Although there is a lot
of contamination by high-frequency tones in this specific
case, it is clear that SMF thermal noise dominates the
total phase noise between 20 and 100 kHz. Moreover,
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FIG. 10. Difference phase PSD, SMF to HCF comparison
(after evacuation). In both cases, the HCF contribution (in-
terferometer B) is scaled by (τA/τB)2 ≈ 0.5; the associated
model (yellow) takes this scaling into account. The solid lines
are for the first HCF, the dot-dashed lines for the second
HCF (longer evacuation). The purple curves represent the
total noise models.

a reasonable match between measurement and model is
attained by assuming that the HCF’s internal pressure is
0.30 atm (solid purple curve). We then repeated the pro-
cedure for the second HCF sample, leaving the open fiber
end in the vacuum chamber for 6 weeks. This time, we
significantly improved the splicing procedure and man-
aged to seal the fiber within 4 minutes. This fiber’s
noise PSD, still compared to that of the reference SMF,
is shown in orange in Figure 10; its level is slightly be-
low that of the first HCF and reasonably matches the
thermal noise model if we assume p = 0.15 atm (dashed
purple curve). Finally, we compared the HCFs to one
another in order to remove the dominant SMF contri-
bution (Fig. 11). Clearly, venting the HCFs lowered the
phase noise PSD and slightly modified its spectral shape,
as predicted by the model. Moreover, the total PSD is
well represented by the two pressures guessed from the
comparisons to SMF in Fig. 10. From numerical simu-
lations (Fig. 12), these two internal pressures (0.30 and
0.15 atm) appear physically reasonable given the evacu-
ation time and the time it took to seal the fibers once
their ends were exposed to the atmosphere.

Figure 13 constitutes a summary of the most impor-
tant experimental results of this paper, displaying phase
PSDs that are normalized to the total optical length.
Even though it has a larger mode area, the HCF is noisier
per unit optical length than a typical SMF, at least above
approximately 10 kHz and when the internal pressure is
close to atmospheric. Reducing the internal pressure re-
duces the noise as predicted by our model, yielding a nor-
malized phase noise level below that of SMF between 20
and 75 kHz (assuming a pressure that is the average be-
tween that of the two evacuated samples, (0.30+0.15)/2
≈ 0.23 atm). To the best of our knowledge, the normal-
ized phase noise in this spectral range is the lowest ever
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FIG. 12. Numerical solution to the diffusion equation in the
hydrodynamic regime (Poiseuille flow) for a 219-m HCF open
at a single end48. Only the properties of nitrogen (N2) are
considered. Venting is performed at 70◦C in a fiber with an
initial pressure that is spatially uniform at a level of 0.7 atm.
Filling is performed at 20◦C and assumes a perfectly evacu-
ated fiber is suddenly exposed to atmospheric pressure at one
open end. The displayed pressure is the spatial average over
the fiber length (steady-state distribution after sealing) and
the capillary diameter is assumed to be equal to the HCF’s
core diameter, d ≈ 35 µm. This model only provides a rough
estimate of the relevant timescales since the initial filling pres-
sure is not properly considered, since the diffusion equation
becomes inaccurate as the slip-flow regime is approached be-
low 0.2 atm (slows down processes), since the gas should be
assumed to be compressible (speeds up processes), and since
the core is not cylindrical like assumed here (slows down pro-
cesses)69.

measured in a fiber. Our model predicts that this im-
provement with respect to SMF should extend to lower
frequencies, but our measurements are contaminated by
environmental fluctuations in this spectral range, pre-
venting a definitive conclusion. Finally, if we were able
to isolate only the contribution from the better-evacuated
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FIG. 13. Optical-length-normalized phase PSD. Summary
of the main experimental results.

HCF, for which we infer an internal pressure of 0.15 atm,
we would expect to see that the HCF is significantly qui-
eter than a typical SMF below 100 kHz (pale blue curve).

IV. DISCUSSION

To our knowledge, measurement of fundamental ther-
mal noise in a HCF has only been previously reported
by Cranch et al.32. The authors built a balanced
Mach-Zehnder interferometer with hollow-core photonic
bandgap fibers (PBGF): a 10-m sample of HC1550
(NKT, a = 4.5 µm) in one arm and a 10-m sample of
HC19 (NKT, a = 6.5 µm) in the other arm. In contrast
to the approach used here, they held the interferometer at
the quadrature point to measure the phase fluctuations.
Although the measured noise spectrum in the 100 Hz
to 100 kHz range changed over time, a phenomenon at-
tributed to multipath interference due to higher-order
mode propagation, the minimum noise level in the 20
to 60 kHz range was shown to be approximately 2 dB
lower than the thermoconductive phase noise of a ref-
erence SMF with the same physical length L (and thus
larger optical length nL), but only a few dBs above the
detector noise. As stated in32, the parameters of the ref-
erence SMF are described by Bartolo et al.46. While the
minimum HCF noise measured by Cranch et al. is lower
than the thermal noise of their reference SMF, the differ-
ence narrows to 0.4 dB when the phase PSD is normal-
ized by the optical length (2 − 10 log10(1.45) = 0.4 dB),
which we consider to be the fairest basis of comparison
as explained in Section II. Moreover, their reference SMF
has an anomalously small mode field radius a = 2.61 µm,
much below the mode field radius of their two HCF sam-
ples or that of a standard SMF used in the telecommu-
nications field. The noise they measured, as far as we
can tell, is thus 3 to 5 dB above that of a standard SMF
(a = 5.25 µm) of equal optical length and is comparable
to the noise we measured in a large-mode-area HCF at
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FIG. 14. Phase PSD at λ = 1550 nm for nL = 20 m. The
blue curve is the thermoconductive noise model for a standard
SMF with a = 5.25 µm. The HCF noise measured by Cranch
et al. for nL = 2×10 m is shown in orange; it is a few dBs
below their reference curve, calculated with nL = 29 m and
a = 2.61 µm, in the 20 to 60 kHz range (not shown), but a few
dBs above the noise of a typical SMF of equal optical length
(blue). The yellow, purple, green, and teal curves represent
the thermoconductive noise model for our large-mode-area
HCF sample, normalized to the same 20-m optical length, at
1.00, 0.70, 0.23, and 0.15 atm, respectively.

an internal pressure of 0.7 atm (Figure 14). Though the
PSD they measured is lower than that predicted by the
model we developed here (when accounting for the mode
field radii), it is likely also limited by the atmospheric air
inside the HCF since there is no evidence that the HCFs
were evacuated. The discrepancy between our model and
their measurements could be explained by the observed
multipath interference: higher order modes should sam-
ple apparent temperature fluctuations that are similar
to that seen by the fundamental mode. Heuristically, it
is therefore possible for the minimum noise to be smaller
than that which would be found in the fundamental mode
only (because of interference), preventing an adequate es-
timate of fundamental thermal noise. In any case, it is
clear that the newer generation HCF used here does not
show such multipath interference and, when held at an
internal pressure of 0.23 atm, displays fundamental ther-
mal noise that is up to 5.4 dB weaker than that of a
typical SMF in the 20 to 60 kHz range. This is due in
part to the large mode area in the HCF we used, but this
remains true up to 40 kHz even if we force identical mode
areas in SMF and HCF (3.3 dB instead of 5.4 dB weaker
noise at 20 kHz).

Until now, it has been assumed that the hollow-core
fiber is filled with nitrogen since it very well approxi-
mates the thermal and optical behavior of air while be-
ing much simpler to model. Yet, it is possible to fill a
HCF with other gases than air, and the equations pre-
sented in subsection II B show how this can yield a phase
noise reduction even if the core pressure is maintained
at 1 atm. From Eq. 12, the thermo-optic coefficient is
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FIG. 15. Modeled optical-length-normalized phase PSD at
λ = 1539.8 nm. Comparison between SMF and HCF filled
with different species at a pressure of 1 atm. A mode field
radius a = 5.25 µm is considered for the SMF and a = 12.5
µm for the HCFs. The curve for helium can be considered to
constitute a noise ceiling since this molecule would normally
out-diffuse of the hollow-core over time, leaving a vacuum.

directly proportional to the polarizability α; in general,
lighter molecules should thus produce smaller phase noise
for a given pressure and temperature. Optimizing the
thermal properties is somewhat more difficult since an
assumption must be made about the frequency range of
operation. Let us suppose once again that we are inter-
ested in frequencies below the cutoff so that Q(f) ∝ cv/kt
(Eq. 14). From Eq. 13, we can then identify kt/α

2 as a
useful figure of merit for gases. This figure of merit ap-
pears to be maximized in helium53,59, a molecule small
enough to diffuse through the silica cladding and out of
the hollow-core over a reasonable timeframe70; this con-
stitutes a positive side-effect since phase noise is also pro-
portional to pressure. In theory, neon gas is also associ-
ated to a lower noise PSD than nitrogen (Fig. 15), while
argon is only slightly better (not illustrated). Hence, fill-
ing a HCF with gaseous He or Ne appears as a promising
approach to minimize phase noise and improve the fun-
damental length stability. Nevertheless, such predictions
have to be verified experimentally since the simplifying
assumptions made here may break down and since other
forms of noise may become dominant as thermoconduc-
tive noise is lowered below the 10-17 rad2/Hz/m mark,
the lowest measured value here (see Fig. 13).

V. CONCLUSION

In summary, we measured fundamental thermal noise
in the latest generation of antiresonant hollow-core fibers
using 219-m samples and high throughput photodetec-
tors to minimize shot noise and attain an adequate dy-
namic range. We found that the spectrum of this noise
is distinct in both shape and level from that measured

in standard solid-core silica fibers (SMF). Moreover, it
is well explained by an adapted thermoconductive noise
model, which only considers the thermal and thermo-
optic properties of the gas trapped within the hollow core,
in the 20 to 200 kHz frequency range and 0.1 to 1 atm
pressure range. For equal mode field areas and optical
lengths, we showed that an antiresonant HCF at atmo-
spheric pressure displays significantly larger thermocon-
ductive phase noise than a SMF, at least at frequencies
above 1 kHz. Yet, the model we developed also indicates
that this noise can be lowered by filling the core with
low-polarizability gas such as neon or helium or by simply
evacuating the core, a prediction supported by the exper-
iments we performed over partially-vented HCF samples.
At an internal pressure approaching 0.2 atm and around
30 kHz, our measurements reveal the lowest phase noise
PSD per unit optical length ever measured in a fiber,
1.3×10-17 (rad2/Hz)/m.

These results should help refine the estimation of the
fundamental noise floor in instruments already based on
HCF, for example photothermal interferometers, but also
in those instruments which can benefit from an SMF-to-
HCF switch such as fiber optic gyroscopes, optical fiber
links, optoelectronic oscillators, and fiber interferometers
used for laser frequency stabilization. In all related appli-
cations, a large-mode-area NANF at a sub-atmospheric
internal pressure may surpass standard SMF in terms
of fundamental optical length stability. Though a more
elaborate noise model and better low-frequency measure-
ments are required to quantify the extent of the potential
improvement, an order of magnitude gain already ap-
pears within reach in the 10 to 100 kHz range. This high
stability potential comes in addition to other desirable
properties of NANF such as high polarization purity71,
low nonlinearity72, weak backscattering60, and low ther-
mal sensitivity44 (which can all benefit from core evacua-
tion) in antiresonant HCFs displaying a transmission loss
competitive with SMF at 1550 nm33 and lower than SMF
below 1100 nm73. Kilometer-scale antiresonant hollow-
core fibers, properly shielded from environmental fluctu-
ations and illuminated by high laser power, can therefore
be considered for the most demanding interferometric ap-
plications.
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