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Abstract: The vigorous development of green markets and the effective mitigation of 10 

economic policy fluctuations are current hotspots that intrigue our interest in exploring 11 

the causal relationships between green market returns and economic policy uncertainty 12 

(EPU). Green bonds, corporate environmental responsibility, green technology 13 

investment, and the carbon trading market are our research objects to comprehensively 14 

understand the interaction among them, from both macro and micro perspectives. 15 

Considering the importance of temporal heterogeneity and spillover direction in 16 

causation, we employ the time-varying Granger causality method to obtain 17 

bidirectional real-time identification. We find that green market returns exhibit a time-18 

varying bidirectional causality with EPU over most of the sample period. In contrast, 19 

green markets are more a risk spillover than a recipient. Notably, this causality is 20 

vulnerable to exogenous financial risks, especially structural changes caused by the 21 

COVID-19 pandemic. Overall, this paper provides insights into the deep-seated causes 22 

of price fluctuations, volatile market uncertainty, and the interaction mechanism 23 

between them, as well as implications for market participants and policymakers. 24 
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1. Introduction 28 

Recently, there has been worldwide recognition of the problems associated with 29 

effectively addressing climate challenges and promoting a decarbonized economy. 30 

Policy documents such as the Paris Agreement and the Sustainable Development Goals 31 

(SDGs), launched in 2015, put curbing global temperature rise, building climate 32 

resilience and moving towards a sustainable development path on the international 33 

agenda (Iacobuţă et al., 2022). Against the backdrop of the global environmental 34 

movement’s enthusiasm, green markets with core values of promoting the realization 35 

of dual carbon goals and sustainable development have received considerable attention. 36 

In this context, the transition to the decarbonized investment pattern and green 37 

financing channel has become crucial (McCollum et al., 2018).  38 

From a macro perspective, this is based on collective rationality corresponding to 39 

the efforts of international governments to mitigate climate risks (Braouezec and Joliet, 40 

2019). On the one hand, as an important guarantee and primary condition for the 41 

implementation of sustainable development agendas, green finance funds green 42 

technology and enables the implementation of environmental responsibility (Madaleno 43 

et al., 2022). On the other hand, the up-and-coming green bond and well-established 44 

carbon trading markets share commitments to construct an environmentally friendly 45 

society and curb global warming (Ren et al., 2022c). From a micro perspective, this is 46 

based on individual rationality corresponding to companies’ spontaneous 47 

environmental protection behaviors (Braouezec and Joliet, 2019). Considering the 48 

externality of carbon emissions (Sajid et al., 2021), only companies with a high sense 49 
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of social and environmental responsibility are motivated to reduce greenhouse gas 50 

emissions through a series of low-carbon and environmentally friendly initiatives, 51 

including green technology investments and green bond purchases among others.  52 

Most of the existing research has focused on the nexus of specific green markets 53 

and other financial markets (Elsayed et al., 2022; Rannou et al., 2021), the 54 

interrelationships between corporate green behavior and economic performance 55 

(Algarni et al., 2022; Farza et al., 2021), and green technology innovation (Li et al., 56 

2022; Liao and Li, 2022). However, little literature has examined green markets and 57 

sustainable development through the lens of economic policy uncertainty (EPU). 58 

Therefore, our study fills the gap in the existing literature by providing a fresh 59 

perspective in investigating the bidirectional causality between EPU and green market 60 

prices via the time-varying Granger causality test. 61 

The SDGs report claims that increasingly intractable climate problems are to 62 

blame for the existing economic development patterns (United Nations Global Compact, 63 

2019). History warns us that if we blindly stick to the traditional development path and 64 

promote economic growth at the expense of ecological civilization, not only the 65 

efficient operation of the economy will be jeopardized, but also market uncertainty will 66 

increase (Gu et al., 2021). The green market is regarded as the main engine of 67 

sustainable development due to its huge development potential and economic value. 68 

Improving green bonds and carbon trading market mechanisms, establishing corporate 69 

environmental responsibility, and increasing investment in green technology may be an 70 

effective way to get out of the current economic predicament and help reduce uncertain 71 
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policy fluctuations. In this pursuit, the means to find the point of convergence and 72 

balance between green sustainable development and the EPU is a top priority. 73 

The COVID-19 pandemic is currently eroding the global economy with endless 74 

financial turmoil and sudden risks that have exacerbated the volatility of EPU (Rjiba et 75 

al., 2020). Moreover, with the deepening of economic globalization and financial 76 

integration, the cross-market spillover and contagion effects of EPU have become 77 

increasingly prominent (Bai et al., 2019). EPU affects green market returns directly by 78 

impacting investors’ expectations and behaviors and indirectly through macroeconomic 79 

channels. Also, market returns will react on EPU, because the public can accurately 80 

perceive the signals released by return fluctuations and respond accordingly, and these 81 

corresponding actions are important references for government policy arrangements. 82 

Therefore, analyzing the bidirectional causality and interaction mechanism between 83 

EPU and green market returns helps understand the deep-seated causes of price 84 

fluctuations and volatile market uncertainty, as well as provides implications for 85 

investors' risk management and government regulation policies (Bai et al., 2021). 86 

Using the time-varying Granger technique and daily data from February 2012 to 87 

March 2022, we clearly illustrate the dynamic interaction mechanism between EPU and 88 

the green markets and the trajectory of their causality over time. We find some 89 

intriguing results: The causality between the EPU and the green markets is vulnerable 90 

to disruption by unexpected events or economic turmoil, especially structural mutations 91 

in the causal relationship caused by the COVID-19 pandemic. In addition, as global 92 

low-carbon ambitions intensify and green strategic action deepens, green markets play 93 
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the role of risk spillovers to a greater extent, and have permeated significantly into the 94 

realm of economic policy. When we consider the spillover effect of EPU, this 95 

significant causal effect exists only in specific periods, not generally. And the impact 96 

on corporate behavior is more pronounced, while the impact on the green bonds is 97 

minimal. Our conclusions provide reasonable explanations for abnormal market price 98 

fluctuations and substantial changes in EPU during the crisis period. 99 

With this research article, we contribute to the existing literature as follows. First, 100 

we provide the first systematic consideration of how green finance, corporate 101 

environmental responsibility, green technology investment, and carbon trading systems 102 

respond to the challenges of economic policy volatility and affect market uncertainty. 103 

In the context of carbon-neutral sustainable development, it is of practical significance 104 

to weigh the interactive spillovers of green ecological benefits and economic policy 105 

fluctuations, and will open up new avenues for the examination of the interrelationship 106 

between green markets and uncertainty in the future. Second, the nexus of financial 107 

market prices and economic policy changes is fragile and sensitive to different periods, 108 

making real-time detection of causal relationships an imperative. Here, the time-109 

varying Granger approach was adopted to allow a deep insight into the time-varying 110 

characteristics in the case of dynamic changes in the economic environment and market 111 

conditions. This constitutes a novel attempt in EPU and market price research. Third, 112 

the superiority of the time-varying Granger technique proposed by Shi et al. (2018, 113 

2020) is that it adopts robust econometric methods and can accurately identify the onset 114 

and collapse dates of causality, which has been widely practiced in the macroeconomic 115 
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field (Dogan et al., 2022; Hammoudeh et al., 2020). Therefore, the conclusions of this 116 

paper can provide policymakers and market participants with a powerful dynamic 117 

analysis tool, especially in risk mitigation, strategic planning and asset management. 118 

Fourth, our study provides rounded, detailed illustrations of the bidirectional interaction 119 

mechanism between EPU and green market prices and captures abnormal fluctuations 120 

in market prices and economic policy simultaneously, making it a useful complement 121 

to the existing literature. 122 

The study is presented as follows. Section 2 reviews the relevant literature. Section 123 

3 describes the methods and data. Section 4 analyzes and discusses the empirical results. 124 

The last section summarizes the manuscript. 125 

 126 

2. Literature review 127 

To unravel some of the mysteries surrounding the interrelationship between the 128 

EPU and green markets, we briefly review the existing literature concerning the green 129 

bond and carbon trading markets, corporate environmental responsibility, green 130 

technology, the bidirectional spillover relationships between EPU and specific financial 131 

markets, and the connections between EPU and the aforementioned individual market. 132 

The first category of literature is a review of green bonds, carbon market, corporate 133 

environmental responsibility and green technology. As a powerful platform for 134 

implementing carbon peaking and carbon neutralization, the green bond and carbon 135 

trading markets jointly play a crucial role in improving green financing channels and 136 

optimizing the green market system (Rannou et al., 2021), and have stimulated the 137 
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research interest of a large number of scholars. With the advantages of low financing 138 

costs and effective allocation of excessive costs, green bonds are a momentous financial 139 

tool for the transformation to a low carbon energy structure (Sartzetakis, 2021). 140 

Consequently, as a nonnegligible fresh force in the financial derivatives market, 141 

attention has recently focused on the provision of its connections with other markets 142 

(Pham, 2021; Tiwari et al., 2022) or macro and micro factors (Boutabba and Rannou, 143 

2021; Simeth, 2021). In the same vein, as a mature capital market with a complete 144 

trading system, the carbon market plays a pivotal role in curbing carbon emissions and 145 

optimizing investment portfolios (Ren et al., 2022a), triggering a surge of interest in the 146 

carbon market and its connection with the fossil energy (Gong et al., 2021; Kartal, 2022) 147 

and carbon price prediction (Ren et al., 2022b; Zhang and Xia, 2022). 148 

In addition to policy guidance at the macro level, the enterprise level is also a 149 

crucial relationship in enhancing green and sustainable development. On one hand, 150 

companies that consciously fulfill their social responsibility contribute to enhancing 151 

their competitiveness and continuous superiority (Yuan et al., 2022). Supporting this 152 

view, Han and Cao (2021) demonstrate that corporate environmental responsibility 153 

promotes energy conservation, emission reduction, and sustainable development. 154 

Likewise, Garel and Petit-Romec's (2021) comprehensive review concludes that 155 

enterprises adopting environmental responsibility strategies during crises boost equity 156 

returns. Not only that, given the innovation-driven development strategy, green 157 

technology has also played an important role in the balanced development of 158 

environmental governance and economic growth (Lin and Ma, 2022), attracting the 159 
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research interest of scholars on green technology innovation (Deng et al., 2022; Li et 160 

al., 2022). 161 

The second category of literature is a review of the bidirectional spillover 162 

relationship between EPU and specific financial markets. There has been extensive 163 

literature confirming the strong links between EPU and macro markets (Gu et al., 2021; 164 

Hu et al., 2020). In addition, instability amid global economic turmoil has led to prolific 165 

research on the spillover relationships between EPU and special financial markets. 166 

Considering EPU as the spiller and financial markets as the receiver, Stolbov and 167 

Shchepeleva (2020) emphasized that EPU transmits uncertainty to specific financial 168 

markets or the real economy through macro-fundamental channels, thereby, affecting 169 

commodity prices and the market structure (Ermoliev et al., 2015). Ma et al. (2019), 170 

using the GARCH-MIDAS method, suggested that EPU significantly and positively 171 

affects oil return fluctuations. They also confirm the EPU's predictability of oil price 172 

volatility, a view that is also supported by Wang et al. (2022). Xu et al. (2021) examine 173 

the interaction between the EPU index and the Chinese stock markets, corroborating 174 

that EPU decreased the expected return on stocks. As for the global stock markets, Gong 175 

et al. (2022) demonstrate a similar result. Moreover, there is abundant published 176 

literature (e.g., Huynh, 2020; Zhang et al., 2021) that describes the nexus of EPU and 177 

the gold market. 178 

Considering the opposite direction, relevant studies mainly focused on the 179 

spillover effect of crude oil on EPU. For example, Su et al. (2021) indicate the 180 

asymmetrical causality of oil price on EPU in BRICS countries by applying the quantile 181 
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Granger causality approach. Aimer and Lusta (2022) complement this conclusion by 182 

arguing that oil price shocks do not impact EPU in the long run and the spillover effects 183 

are only observed in the short term. On the contrary, Dash and Maitra (2021) argue that 184 

oil’s future and spot prices have a negligible impact on EPU. Other scholars have 185 

provided evidence on spillovers from gold prices (Chai et al., 2019) and climate risks 186 

(Ye, 2022) to EPU. 187 

The third category of literature is a review of the relationship between EPU and 188 

the four green markets analyzed in this paper. Undoubtedly, there is abundant literature 189 

on the link between EPU and the aforementioned markets. Using the MSDR model, 190 

Pham and Nguyen (2022) explore the time-varying correlations and asymmetric 191 

dependencies between EPU and green bond returns. Hou et al. (2022) examine the 192 

nexus of EPU and corporate green behaviors, showing that this relationship is 193 

heterogeneous and negative. Li et al. (2022) claim a positive impact of EPU on carbon 194 

allowances via the nonlinear ARDL model. However, Tiwari et al. (2021) hold the 195 

opposite stance, arguing that EPU negatively affects carbon prices.  196 

Regarding the research on green technology, only a few articles focus on its 197 

relationship with EPU, especially, on how to drive green technology innovation (Hu et 198 

al., 2022; Tang et al., 2021). To sum up, the literature on incorporating green bonds, 199 

environmental responsibility, green technology, and carbon markets into an empirical 200 

analysis framework, simultaneously considering the bidirectional spillover 201 

relationships between EPU and market prices, remains scant. Here, we address this 202 

issue with in-depth research. 203 
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 204 

3. Methodology and data 205 

Here, we introduce the applied methodology and dataset. First, the time-varying 206 

Granger approach based on three algorithmic frameworks, which is used to figure out 207 

the bidirectional causality between green market prices and EPU, is described. Then, 208 

the statistical description and preliminary analysis of the variables are presented. 209 

 210 

3.1. The time-varying Granger causality test 211 

The conventional Granger causality test following the predictability framework is 212 

widely used in the field of econometrics owing to its relaxed model setting and 213 

randomness to variables (Shi et al., 2018). However, this approach is sensitive to sample 214 

periods and lacks clarity in capturing the causal relationships over time (Psaradakis et 215 

al., 2005). In view of this, we adopt a novel time-varying Granger technology reported 216 

by Shi et al. (2018, 2020) to delve deeper into the causal relationships between green 217 

market returns and EPU. The method is based on the lag-augmented VAR (LA-VAR) 218 

specification (Yamada and Toda, 1998) and considers three algorithms used in 219 

generating test statistics, namely, the forward expanding (FE), rolling (RO), and 220 

recursive evolving (RE) windows, and their schematic diagrams are shown in Fig. 1. 221 

Since this procedure leverages past information, it enables the real-time identification 222 

of causal relationships.  223 

The cardinal advantages of the time-varying Granger test are the following. First, 224 

it is data-driven, thus, it allows for accessing in-depth information on the changes of 225 
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causality in different periods or directions and mines the temporal heterogeneity of 226 

causal relationships. Second, the estimation adopts a recursive algorithm that yields 227 

robust results even without pre-trending the data or precise prior information on the 228 

existence of a unit root. Third, it accurately identifies the switch-on and switch-off dates 229 

of the Granger causation in the time dimension and data-stamps the timing of changes. 230 

Thus, we chose the time-varying Granger test to achieve our research objectives. 231 

Consider a time series {𝑥𝑡} defined as: 232 

𝑥𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜇𝑡 ,       (1) 233 

where 𝜇𝑡 follows a VAR(q) progress: 234 

𝜇𝑡 = 𝛾1𝜇𝑡−1 +⋯+ 𝛾𝑞𝜇𝑡−𝑞 + 𝜀𝑡,     (2) 235 

with an error term 𝜀𝑡. Integrating Eq. (2) into Eq. (1) results in:  236 

𝑥𝑡 = 𝛼0 + 𝛼1𝑡 + 𝛾1𝑥𝑡−1 +⋯+ 𝛾𝑞𝑥𝑡−𝑞 + 𝜀𝑡,   (3) 237 

where 𝛼𝑖 denotes the function of 𝛽𝑖 and 𝛾𝑗 with i = 0,1 and j = 1, ..., q. 238 

Following the specification of the LA-VAR model developed by Dolado and 239 

Lütkepohl (1996) and Toda and Yamamoto (1995), the Granger test for the possible 240 

integrated variable 𝑥𝑡 is as follows: 241 

𝑥𝑡 = 𝛼0 + 𝛼1𝑡 +∑ 𝛾𝑖𝑥𝑡−𝑖
𝑞

𝑖=1
+∑ 𝛾𝑗𝑥𝑡−𝑗 +

𝑞+𝑑

𝑞+1
𝜀𝑡 242 

= Α𝜏𝑡 + Θ𝑦𝑡 +Ψ𝑧𝑡 + 𝜀𝑡,         (4) 243 

where 𝛾𝑞+1 = ⋯ = 𝛾𝑞+𝑑 = 0 , 𝐴 = (𝛼0, 𝛼1)𝑛×2 , 𝜏𝑡 = (1, 𝑡)′2×1 , 𝑦𝑡 =244 

(𝑥′𝑡−1, ⋯ , 𝑥
′
𝑡−𝑞)′𝑛𝑞×1,  𝑧𝑡 = (𝑥

′
𝑡−𝑞−1, ⋯ , 𝑥

′
𝑡−𝑞−𝑑)′𝑛𝑑×1,  𝛩 = (𝛾1,⋯ , 𝛾𝑞)𝑛×𝑛𝑞 , 245 

𝛹 = (𝛾𝑞+1, ⋯ , 𝛾𝑞+𝑑)𝑛×𝑛𝑑, where d denotes the maximum order of integration in 𝑥𝑡. 246 

It can be expressed in a more compact form: 247 
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 𝑋 = 𝜏Α′ + YΘ′ + ZΨ′ + ε,      (5) 248 

where 𝑋 = (𝑥1, ⋯ , 𝑥𝑇)′𝑇×𝑛,   𝜏 = (𝜏1, ⋯ , 𝜏𝑇)′𝑇×2,   𝑌 = (𝑦1, ⋯ , 𝑦𝑇)′𝑇×𝑛𝑞 ,   𝑍 =249 

(𝑧1,⋯ , 𝑧𝑇)′𝑇×𝑛𝑑, and 𝜀 = (𝜀1,⋯ , 𝜀𝑇)𝑇×𝑛. 250 

The null hypothesis for Granger non-causality is based on the restriction, such that: 251 

𝐻0: 𝑹𝜃 = 0,        (6) 252 

considering the row vectorization for the parameter 𝜃 = 𝑣𝑒𝑐(Θ). 𝑹 denotes the 𝑚 ×253 

𝑛2𝑞  matrix, and m denotes the number of restrictions. Since the last d-order lag 254 

elements in the matrix 𝛹 equal zero, they can be ignored. Following the Shi et al.  255 

(2018), the OLS estimators are given by: 256 

Θ̂ = 𝑋′𝑄𝑌(𝑌′𝑄𝑌)−1,      (7) 257 

where Q =𝑄𝜏 − 𝑄𝜏𝑍(𝑍′𝑄𝜏𝑍)
−1𝑍′𝑄𝜏 and 𝑄𝜏 = 𝐼𝑇 − 𝜏(𝜏

′𝜏)−1 𝜏′. In addition, let 𝜃 =258 

𝑣𝑒𝑐(Θ̂) and Ω̂𝜀 =
1

𝑇
𝜀̂′𝜀̂, and then the Wald statistics with asymptotically 𝜒𝑚

2  can be 259 

defined as: 260 

𝑊 = (𝑹𝜃)′[𝑹 {Ω̂𝜀⊗ (𝑌′𝑄𝑌)
−1

} 𝑹′]−1𝑹𝜃.   (8) 261 

The real-time causality approach is based on the modified Wald (MWald) statistics 262 

from subsamples. Consider 𝑓1 and 𝑓2 as the (fractional) beginning and ending points 263 

of estimated samples. Assume that 𝜏1 = [𝑓1𝑇] and 𝜏2 = [𝑓2𝑇] are the integer parts of 264 

the product with T representing the number of observations. Likewise, 𝜏0 = [𝑓0𝑇] 265 

represents the minimum observation numbers required for the estimation procedure. 266 

Based on the observations over [𝑓1, 𝑓2] with a sample size fraction of 𝑓𝑤 = 𝑓2 − 𝑓1 ≥267 

𝑓0 represented by 𝑊𝑓2(𝑓1), the supremum (sup) Wald statistics are given by:  268 

𝑆𝑊𝑓(𝑓0) =
𝑠𝑢𝑝

(𝑓1,𝑓2)∈Π0,𝑓2=𝑓
{𝑊𝑓2(𝑓1)},     (9) 269 
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where Π0 = {(𝑓1, 𝑓2): 0 < 𝑓0 + 𝑓1 ≤ 𝑓2 ≤ 1, 𝑎𝑛𝑑 0 ≤ 𝑓1 ≤ 1 − 𝑓0}  for some 270 

minimal sample size 𝑓0 ∈ (0,1) in the regression1. 271 

[Insert Fig. 1 here] 272 

 273 

3.2. Data and preliminary analysis 274 

To examine the bidirectional causality between green markets and economic 275 

policies, we choose the S&P’s Green Bond Select Index, Environmental and Social 276 

Responsibility Index, Renewable Energy & Clean Technology Index, and GSCI Carbon 277 

Emission Allowances as proxies for the green markets. The sample time started on 278 

February 29, 2012, and ended on March 29, 2022, with a total of 2,486 observations 279 

from S&P Dow Jones Indices LLC2. The paper adopts logarithmic preprocessing for 280 

the original price series to improve data stability and reduce the estimation error. 281 

The trajectory of the analyzed price series shown in Fig. 2 reveals that all of them 282 

are trending. Specifically, green bonds show a volatile upward trend, while 283 

environmental responsibility, green technology, and carbon allowance present a 284 

continuing upward trend throughout the sample period. The four graphs demonstrate 285 

that green markets have undergone severe turbulence during the COVID-19 pandemic, 286 

leading to a marked surge or sudden drop in prices in 2020. A brief pullback in green 287 

bonds and green technology prices is noted after 2021. Overall, the frequently changing 288 

price series reaffirms the necessity of using time-varying techniques. 289 

                                                   
1 Due to space limitations, we put the introduction of the specific differences between the three algorithms and the 

formulas for generating Wald statistics in the appendix. 
2 The data is obtained from the official website of S&P Dow Jones Indices: http://www.spglobal.com/spdji/en/. 

http://www.spglobal.com/spdji/en/
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[Insert Fig. 2 here] 290 

Table 1 shows the results of the descriptive statistics analysis. As it can be seen, 291 

the carbon price has the largest fluctuation degree (0.820), contrary to green bond prices 292 

(0.065). This may be closely related to the fact that green bonds act as the fixed income 293 

financing instrument, while carbon allowances are continually traded and auctioned by 294 

market participants (Ren et al., 2022c). The right skewness and positive kurtosis 295 

suggest that prices in green markets are characterized by a fat-tailed and asymmetric 296 

distribution, which is also authenticated by the Jarque-Bera test, meaning that they are 297 

significant at the 1% level. 298 

[Insert Table 1 here] 299 

We measured changes in policy-related market uncertainty using the EPU Index 300 

developed by Baker et al. (2016) based on newspaper coverage frequency, which has 301 

the advantages of reliability and consistency and shows strong links with other indices 302 

that measure economic uncertainties. The time-series diagram of EPU is depicted in 303 

Fig. 3. Extensive literature has demonstrated that peaks in the EPU index correspond to 304 

"black swan" incidents and serves as a strong predictor of financial market volatility 305 

(Wang et al., 2020), such as the Fed's "Fiscal Cliff" crisis in late 2012, the stagflation 306 

in some emerging countries, the stock market crash in China in 2015, the Brexit 307 

referendum and the Paris Agreement signed in 2016, as well as the Crude Oil War and 308 

the COVID-19 Outbreak in 2020. 309 

[Insert Fig.2 here] 310 

4. Empirical results 311 
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In this section, we first present the performance of a unit root test on all variables 312 

to identify the integration or cointegration properties of the time series. Then, we delve 313 

into the bidirectional time-varying causality between EPU and green market returns. 314 

Based on the empirical results, we answer two questions of interest from the perspective 315 

of dynamical framing and temporal heterogeneity: whether the policy fluctuations 316 

cause exogenous shocks to green markets and whether the rise and fall of market prices 317 

affect the level of economic uncertainty. 318 

 319 

4.1. The unit root test 320 

To identify the integration order for the selected variables, since it is considered 321 

necessary for the time-varying Granger method and a core parameter required for the 322 

estimation process, we first employ two unit root tests, namely Augmented Dickey-323 

Fuller (Cheung and Lai, 1995) and Phillips-Perron (Phillips and Perron, 1988). As 324 

shown in Table 2, we find a unit root in green bonds, environmental responsibility, 325 

green technology, and carbon allowance, as well as the stationarity of EPU. In other 326 

words, the four green market prices are stationary at their respective first differences, 327 

i.e., an I(1) process, while EPU is stationary at its level. Thus, choosing d = 1 as the lag 328 

parameter of the LA-VAR model is optimal.  329 

As pointed out by Shi et al. (2018), the most accurate performance for detecting 330 

time-varying features of causality is obtained when the Granger frame contains an 331 

integrated variable and a stationary variable, which lay a solid theoretical foundation 332 

for our follow-up empirical research. Following the principle of minimizing the 333 
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information criterion and the practice of Shahzad et al. (2021), we set the lag order of 334 

the VAR model as p = 4 and use a robust heteroskedasticity estimation. 335 

[Insert Table 2 here] 336 

 337 

4.2. One direction: From EPU to green markets  338 

EPU stems from the governmental policies to adjust the allocation of market 339 

resources. Hence, the mismatch and time lag between policies and economic variability 340 

are linked to the distortion and fluctuation of relevant market prices. Green markets are 341 

the support and foundation of the development of a green economy, acquiring a nature 342 

of "public goods". As an institutional arrangement, the operation of green markets is 343 

affected by the macro-policy regulation of an authoritative government. Based on this, 344 

we discuss the first issue of concern of this paper: the directional time-varying Granger 345 

causality of EPU on green markets in the view of maintaining the smooth functioning 346 

of green markets.  347 

Table 3 reports the Wald tests of Granger causality, indicating that the FE method 348 

provides only some evidence of non or weak Granger relations. Additionally, economic 349 

policy fluctuation does not significantly put pressure on green bond pricing. The 350 

graphic representation of time-varying Granger causation between the four pairs (i.e., 351 

EPU-green bond, EPU-environment responsibility, EPU-green technology, EPU-352 

carbon allowance) and the corresponding bootstrapped critical values are displayed in 353 

the left panel of Fig. 4–7. What stands out in these figures is the vivid time-varying 354 

features of causality. 355 
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As shown in Fig. 4a, the EPU causality over green bonds is less obvious; only the 356 

RE algorithm shows a brief significant causal relationship in early 2020, which is 357 

consistent with the conclusions of Table 3. This may be related to the large-scale social 358 

shutdown and the blocking of short-term capital flows in the initial stage of the 359 

pandemic when market participants are not optimistic about the issuance of green bonds 360 

due to credit risks (Yi et al., 2021). The view is also supported by Ren et al. (2022c), 361 

who claims that green bonds are more vulnerable to EPU during downturns. In addition, 362 

the insignificant Granger causality can be explained by the nature and characteristics of 363 

green bonds, such as over-reliance on private governance mechanisms and lack of 364 

unified public supervision, making the link between green bond markets and macro 365 

EPU alienated.  366 

The causal link between EPU and environmental responsibility is quite different 367 

(Fig. 5a). Under the RO and RE windows, causality exhibits high volatility. The 368 

diagram of the RE method shows that EPU continuously caused exogenous impacts on 369 

corporate environmental responsibility for most of the period 2016–2020, possibly 370 

attributed to the inhibitory impact of high EPU on environmental responsibility in the 371 

context of insufficient market confidence, financing constraints, and policy alienation 372 

(Hou et al., 2022). The causation seemingly has declined after 2020, suggesting that the 373 

COVID-19 pandemic likely plays a long-term catalytic role on environmental 374 

responsibility, rather than having an instantaneous effect (Garel and Petit-Romec, 2021). 375 

Another alternative explanation is that companies with high environmental 376 

responsibility hold more social trust capital that helps them withstand external shocks 377 
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caused by public emergencies (Zhang et al., 2022). 378 

The results of the FE window exceed the critical value only at individual points, 379 

while the RO window is above the critical line for rejecting the null hypothesis for a 380 

slightly longer period, and the RE window exhibits a significant Granger causality of 381 

EPU on green technology at a larger scale (Fig. 6a). As argued by Shi et al. (2018), the 382 

RE algorithm has the best performance in the case of limited samples compared with 383 

the FE and RO algorithms. Thus, we focus on the conclusions drawn from the RE 384 

algorithm. The figure indicates that from mid-2016 to early 2020, economic uncertainty 385 

and policy volatility had significant predictive power on green technology prices. A 386 

possible explanation for this is that the immaturity of green technology makes it 387 

vulnerable to market risk interference (Feng et al., 2022). Therefore, when faced with 388 

the shock of policy uncertainty, the development of green technology encounters strong 389 

financial constraints and insufficient supply in the financing markets (Feng et al., 2020). 390 

It is somewhat surprising that the causality of EPU on green technology has plummeted 391 

during the pandemic, which indicates that the predictive power of EPU has declined 392 

due to the sudden health crisis.  393 

In Fig.7 a, the FE algorithm provides no evidence for a significant cause-and-effect 394 

link between EPU and the carbon market. However, the RO and RE algorithms 395 

demonstrate a consistent time-varying causal relationship between them. Considering 396 

that the carbon market is built based on a market-oriented trading mechanism (Dou et 397 

al., 2022), it is frequently affected by external economic turmoil and financial pressure. 398 

We also note that this causal effect has been sharply exacerbated by the outbreak of 399 
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COVID-19, which has seen carbon market transactions across the globe experience 400 

price declines and large swings. However, with the economic recovery after 2021, the 401 

EU has also proactively launched a series of green support programs, which have 402 

played a role in mitigating carbon price fluctuations. Overall, this dynamic evidence 403 

and comprehensive information stemming from EPU are beneficial for market 404 

participants and policymakers to accurately predict the carbon price fluctuations. 405 

In conclusion, we can draw the following inferences: The green bond market, due 406 

to its lack of unified regulation and reliance on private governance, is shielded from 407 

economic policy fluctuations. The environmental awareness and strategic actions of 408 

enterprises are easily dominated by the entire economic policy environment; the 409 

innovative development of green technology benefits from the incentives and support 410 

of government economic policies (Shen et al., 2021); and the price mechanism of 411 

frequent trading in the carbon market and the sensitivity to financial markets, these 412 

factors make them vulnerable to EPU. 413 

[Insert Table 3 here] 414 

 415 

4.3. Another direction: From green markets to EPU 416 

Market price acts as an indicator of changes in supply and demand. Therefore, its 417 

excessive volatility not only leads to market disorder and flooding of speculation but 418 

also the fragility of the financial system and high uncertainty of economic policies. 419 

Furthermore, the green market is an emerging financial derivative market, and various 420 

operating mechanisms and regulations are still imperfect. Thus, relevant policy 421 
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interventions occur from time to time, with external effects on the macroeconomy that 422 

exacerbate the increase of EPU levels. For this, we further discuss the second focus of 423 

this article: exploring the retroaction of changes in green market prices to the EPU index 424 

from a fresh perspective. 425 

Table 4 presents the summary statistics of the Wald test. Almost all green market 426 

prices are significant Granger causes of EPU except for green bond markets based on 427 

FE algorithms. To gain a more comprehensive and explicit understanding of the time-428 

varying causality from green markets to EPU, the graph of the evolution of the Granger 429 

relationship between the four pairs (i.e., green bond-EPU, environment responsibility-430 

EPU, green technology–EPU, carbon allowance-EPU) over time is shown in the right 431 

panel of Fig. 4–7. We still distinctly capture the dynamics of this causality. 432 

The results based on the FE window are below the critical value, and the 433 

predictability of green bond prices for EPU is not detected, as seen in Fig. 4b. This 434 

might be due to green bond markets having a late start and immature development, thus, 435 

acting as a receiver of financial information or external shocks in most cases (Reboredo, 436 

2018). In contrast, the RO and RE algorithms depict situations different from that of an 437 

unambiguous failure of no causality, with green bond causality over EPU changes being 438 

significant after the beginning of 2020. A possible explanation for this is that the 439 

investors' active participation in the green bond market has contributed to increasing 440 

capital flows and exacerbating risk spillovers from green bond price volatility to the 441 

macroeconomic and other financial markets. This, coupled with the resilience of the 442 

green finance market, has resulted in record issuance of green bonds, and a sustained 443 
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rebound is expected. In addition, this contagion effect has been amplified in the context 444 

of public security emergencies (Gao et al., 2021).  445 

As shown in Fig. 5b, the three algorithms give causal relationship curves with a 446 

consistent trend. From 2014 to 2016, the causality gradually declines and changes from 447 

significant to insignificant. Then, from 2016 to 2019, there is a slightly undulating 448 

insignificant transition period. Finally, at the beginning of 2020, there is an extreme 449 

jump in causality that subsequently remains constant with a high level of significance. 450 

This underscores the forward-looking predictive power of corporate environmental 451 

responsibility during the pandemic crisis. Notably, the COVID-19 pandemic is also 452 

acting as an important medium for changing the environmental awareness and social 453 

responsibility of investors and enterprises (Severo et al., 2021). In this scenario, they 454 

may increase their investments in green finance, creating a situation where related price 455 

fluctuations increase the levels of economic uncertainty. 456 

In Fig 6b, the causal relationship based on RO windows reveals more obvious 457 

fluctuation characteristics compared with the FE and RE algorithms. Nonetheless, all 458 

three procedures provide us with strong evidence that the predictability of green 459 

technology for EPU reached an extreme peak during the COVID-19 crisis, which is 460 

related to the global shift of strategic focus to green areas in 2020 and an emphasis on 461 

promoting energy security and sustainability through green technologies. Feng et al. 462 

(2021) point out that the development of green technology plays an intermediary role 463 

between environmental information disclosure and economic operation. In view of this, 464 

we believe that the stock price fluctuations of companies that develop green 465 
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technologies and sustainable construction will lead to the introduction of relevant 466 

environmental regulations and policy systems, thereby, affecting the EPU level. These 467 

conclusions also agree with our findings that the green technology causality over EPU 468 

is significant during most sample periods (Wang et al., 2022).  469 

From Fig. 7b, it can be inferred that although the results of the RO algorithm show 470 

more frequent and erratic changes in causality, all three estimation processes support a 471 

significant causal impact of carbon markets on EPU. This performance could be 472 

attributed to the frequent trading patterns and abnormal price volatility in the carbon 473 

market and its synchronization with macroeconomic fluctuations (Jiao et al., 2018). 474 

Unsurprisingly, the causality rose sharply in the early stages of the COVID-19 475 

pandemic, probably due to the production stagnation that curbed carbon emission. This 476 

impact has further spread to the carbon trading market, thereby, jointly increasing EPU 477 

levels. 478 

To sum up, the green markets are in most cases spillovers of price risk to the 479 

economic policy arena. The operating mechanism of the green bond market is not yet 480 

mature, and its risk contagion effect is amplified only in times of crisis due to increased 481 

capital flows. Whether a company has a sense of environmental responsibility will have 482 

a disparate impact on its development path and spread to the economic society; green 483 

technology plays an intermediary role in economic operation and environmental 484 

information disclosure; carbon markets profoundly affect energy structure and 485 

synchronize with macroeconomic fluctuations, which cause them to significantly affect 486 

EPU in most periods. 487 
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[Insert Table 4 here] 488 

[Insert Fig. 4 here] 489 

[Insert Fig. 5 here] 490 

[Insert Fig. 6 here] 491 

[Insert Fig. 7 here] 492 

5. Conclusion 493 

In the context of a low-carbon sustainable economy and dual-carbon goals, 494 

governments and enterprises around the world are actively guiding and nurturing the 495 

development of green markets. Coupled with the continuous turmoil in the global 496 

financial market, the levels of EPU rise constantly, resulting in obvious spillover shocks. 497 

Inspired by this, this study detects the real-time bidirectional causal relationship 498 

between green market returns and EPU via the fresh time-varying Granger causality 499 

approach. We chose the green bond market, corporate environmental responsibility, 500 

green technology investment, and the carbon trading market as proxies for green 501 

markets to comprehensively understand the interaction mechanism between and 502 

spillover effect of the green market and economic policy fluctuations from a macro and 503 

micro perspective. Notably, the RE algorithm provides the best estimation performance 504 

based on finite samples. 505 

The major findings that emerged from this study are summarized as follows. First, 506 

time-varying bidirectional causal effects between green market returns and EPU are 507 

present for most of the sample period. In this vein, we need to pay extra attention to the 508 

vulnerability of this causal relationship to external turbulent events. Particularly, 509 
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structural changes that arise from the COVID-19 pandemic may be attributable to 510 

changes in the behavior and preferences of market participants and the introduction of 511 

a series of policy measures triggered by crises or health events. Second, looking at the 512 

direction of spillover from EPU to green markets, economic policy fluctuation does not 513 

appear to significantly put pressure on green bond pricing. Besides, corporate 514 

environmental responsibility, the green technology market, and the carbon trading 515 

market are all significant recipients of risk spillovers during special periods. In 516 

particular, whether a company adopts green behavior largely depends on the level of 517 

EPU. Third, looking at the direction of spillover from green markets to EPU, nearly all 518 

green markets are price risk spillovers, especially in the wake of the COVID-19 crisis, 519 

warning us of the spillover risks of abnormal market price fluctuations during public 520 

emergencies. 521 

Our results have meaningful implications for investors, companies, and 522 

governments. They can inspire market participants to reduce irrational investments 523 

during periods of extreme volatility and help them timely optimize their portfolios. 524 

They can also alleviate the adverse impact of market uncertainty on the implementation 525 

of corporate green strategies and help governments effectively predict future economic 526 

fluctuations, therefore, achieving the win-win goal of green and low-carbon 527 

development and stable economic operation. 528 

To sum up, although we examine time heterogeneity and bidirectional spillovers 529 

in the causality between green markets and EPU, these are limited to qualitative 530 

analysis. The magnitude of this causal effect and whether it is positive or negative 531 
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cannot be understood and requires further investigation in the future. Moreover, the role 532 

of developing countries, such as China, in green economic development and low-carbon 533 

transformation should not be underestimated and needs further research. 534 

  535 



26 

 

Ethics approval and consent to participate  536 

Not applicable.  537 

Consent for publication  538 

Not applicable.  539 

Availability of data and materials  540 

Most of the basic data are publicly available, mainly from the Wind and IFind financial 541 

databases. Other data are calculated by authors, and the calculation method is shown in the text 542 

of this paper. 543 

Competing interests  544 

The authors declare that they have no known competing financial interests or personal 545 

relationships that could have appeared to influence the work reported in this paper. 546 

Authors' contributions  547 

Xiong Wang: Conceptualization, Supervision, Funding Acquisition 548 

Jingyao Li: Data Collection, Data Analysis, Software, Writing – Original draft preparation 549 

Xiaohang Ren: Conceptualization, Methodology, Writing - Editing and Writing – Reviewing 550 

Zudi Lu: Writing – Reviewing 551 

 552 

Funding 553 

This paper was funded by National Natural Science Foundation of China (Nos.72131011)   554 



27 

 

Appendix 555 

As mentioned earlier, three algorithms are used to generate Wald statistics. With 556 

respect to the FE methodology (Thoma, 1994), the Wald test statistic first computes the 557 

minimum window size, 𝜏0 = 𝑇𝑟0 , and successively expands the length of the 558 

observations until all samples are used (Fig. 1a). The RO procedure (Arora and Shi, 559 

2016; Swanson, 1998) moves forward by a fixed window length at a time and calculates 560 

the Wald statistics for each subsample separately (Fig. 1b). The RE approach (Phillips 561 

et al., 2015) provides common endpoints for each subsample given a specific 562 

observation interval; then, the algorithm calculates the Wald statistics for each 563 

subsample with the window length of 𝜏0 or greater when repeating the process (Fig. 564 

1c). Notably, the three algorithms may generate different conclusions in practical causal 565 

tests due to their performance differences in limited samples. In a single switch 566 

procedure, the dating rule is giving by the crossing times, specifically, for each 567 

algorithm we have: 568 

FE: 𝑓𝑒 =
𝑖𝑛𝑓

𝑓∈[𝑓0,1]
{𝑓:𝑊𝑓(0) > 𝑐𝑣} 𝑎𝑛𝑑 𝑓𝑓 =

𝑖𝑛𝑓

𝑓∈[𝑓�̂�,1]
{𝑓:𝑊𝑓(0) < 𝑐𝑣},   569 

 (1) 570 

RO: 𝑓𝑒 =
𝑖𝑛𝑓

𝑓∈[𝑓0,1]
{𝑓:𝑊𝑓(𝑓 − 𝑓0) > 𝑐𝑣} 𝑎𝑛𝑑 𝑓𝑓 =

𝑖𝑛𝑓

𝑓∈[𝑓�̂�,1]
{𝑓:𝑊𝑓(𝑓 − 𝑓0) < 𝑐𝑣}, (2) 571 

RE: 𝑓𝑒 =
𝑖𝑛𝑓

𝑓∈[𝑓0,1]
{𝑓: 𝑆𝑊𝑓(𝑓0) > 𝑠𝑐𝑣} 𝑎𝑛𝑑 𝑓𝑓 =

𝑖𝑛𝑓

𝑓∈[𝑓�̂�,1]
{𝑓: 𝑆𝑊𝑓(𝑓 − 𝑓0) < 𝑠𝑐𝑣},  572 

(3) 573 

where cv denotes the critical value of 𝑊𝑓 and scv denotes the critical value of 𝑆𝑊𝑓.  574 

𝑓𝑒 and 𝑓𝑓 denote the start and end points of the causal relationship, respectively. They 575 

are identified as the first observation that exceeds or falls below the causal test threshold. 576 
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We search the start and end points of episode i in the sample ranges of [𝑓𝑖−1𝑓 , 1] and 577 

[𝑓𝑖𝑒 , 1] respectively. 578 
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Table 1 805 

Descriptive statistics of price series. 806 

 BOND RESP  TECH EUA 

Minimum 4.916 7.056 4.670 2.403 

Maximum 5.204 8.623 6.119 5.820 

25th Quartile 4.991 7.523 4.875 3.082 

75th Quartile 5.068 8.057 5.274 4.467 

Mean 5.037 7.798 5.151 3.759 

Stdev 0.065 0.402 0.339 0.820 

Skewness 0.620 0.224 0.786 0.688 

Kurtosis 2.805 2.252 2.776 2.313 

JB test 496.747***     183.157***   582.694*** 374.697*** 

Note: (i) The sample period is from February 29, 2012 to March 29, 2022. (ii) The 807 

Jarque-Bera (JB) statistics test for the null hypothesis of normality of target series. (iii) 808 

* denotes the 10% significance level; ** denotes the 5% significance level; *** denotes 809 

the 1% significance level. (iv) BOND denotes the S&P’s Green Bond Select Index, 810 

RESP denotes the Environmental and Social Responsibility Index, TECH denotes the 811 

Renewable Energy & Clean Technology Index, and EUA denotes the Carbon Emission 812 

Allowances. 813 

 814 

  815 
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Table 2 816 

Results from unit root tests.   817 

 

 

Levels  First-differences 
Outcome 

ADF PP  ADF PP 

BOND -1.639 -1.612  -33.420*** -48.402*** I(1) 

RESP -2.881 -3.134*  -35.317*** -58.494*** I(1) 

TECH -2.574 -2.560  -33.404*** -51.049*** I(1) 

EUA -2.263 -2.232  -37.478*** -51.288*** I(1) 

EPU -11.050*** -15.324***  / / I(0) 

Note: (i)The Augmented Dickey-Fuller (ADF) test and the Phillips-Perron (PP) test 818 

report unit root test results with the null hypothesis of non-stationarity. (ii) * denotes 819 

the 10% significance level; ** denotes the 5% significance level; *** denotes the 1% 820 

significance level.  821 

 822 

  823 
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Table 3  824 

Wald tests of Granger causality: From EPU to green markets. 825 

Causality Forward   Rolling  Recursive  

 Wald 95th 99th  Wald 95th 99th  Wald 95th 99th  

𝐸𝑃𝑈
𝐺𝐶?
→ 𝐵𝑂𝑁𝐷 4.661 9.33 14.10 

 
9.630** 9.07 12.37 

 
12.594** 9.50 14.09 

 

𝐸𝑃𝑈
𝐺𝐶?
→ 𝑅𝐸𝑆𝑃 10.472** 8.52 14.48 

 
17.538*** 8.46 14.87 

 
19.360*** 9.14 14.87 

 

𝐸𝑃𝑈
𝐺𝐶?
→ 𝑇𝐸𝐶𝐻 10.535** 8.74 12.65 

 
14.899*** 8.84 11.67 

 
19.877*** 9.20 12.65 

 

𝐸𝑃𝑈
𝐺𝐶?
→ 𝐸𝑈𝐴 4.338 7.90 14.06 

 
18.458*** 8.17 14.06 

 
18.615*** 8.60 14.06 

 

Note: (i) The table reports the robust Wald test statistics of Granger causality and the 826 

95th and 99th quantiles of the empirical distributions of the bootstrap statistics. (ii) * 827 

denotes the 10% significance level; ** denotes the 5% significance level; *** denotes 828 

the 1% significance level. 829 

830 
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Table 4  831 

Wald tests of Granger causality: From green markets to EPU. 832 

Causality Forward   Rolling  Recursive  

 Wald 95th 99th  Wald 95th 99th  Wald 95th 99th  

𝐸𝑃𝑈
𝐺𝐶?
→ 𝐵𝑂𝑁𝐷 7.434* 9.03 11.92 

 
21.234*** 8.89 11.76 

 
22.775*** 9.31 11.97 

 

𝐸𝑃𝑈
𝐺𝐶?
→ 𝑅𝐸𝑆𝑃 28.735*** 8.03 11.10 

 
32.579*** 8.13 11.10 

 
35.355*** 8.29 11.10 

 

𝐸𝑃𝑈
𝐺𝐶?
→ 𝑇𝐸𝐶𝐻 32.649*** 9.31 17.30 

 
29.667*** 8.71 19.02 

 
41.810*** 9.31 19.02 

 

𝐸𝑃𝑈
𝐺𝐶?
→ 𝐸𝑈𝐴 15.920*** 9.22 13.29 

 
23.039*** 9.41 13.22 

 
23.063*** 9.68 13.55 

 

Note: (i) The table reports the robust Wald test statistics of Granger causality and the 833 

95th and 99th quantiles of the empirical distributions of the bootstrap statistics. (ii) * 834 

denotes the 10% significance level; ** denotes the 5% significance level; *** denotes 835 

the 1% significance level. 836 

  837 
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Figures 838 

Fig. 1. The three algorithms used in generating test statistics of time-varying Granger 839 

causality. 840 

Fig. 2. Time plots of green bond, environmental responsibility, green technology, and 841 

carbon allowance from February 29, 2012 to March 29, 2022. 842 

Fig. 3. Time plots of daily EPU Index in the US from February 2012 to March 2022. 843 

Fig. 4. Time-varying Granger causality tests between green bond with EPU. 844 

Fig. 5. Time-varying Granger causality tests between environmental responsibility 845 

with EPU. 846 

Fig. 6. Time-varying Granger causality tests between green technology with EPU. 847 

Fig. 7. Time-varying Granger causality tests between carbon allowance with EPU. 848 

 849 

850 
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   851 

(a) Forward expanding window             (b) Rolling window 852 

 853 

(c) Recursive evolving window  854 

Fig. 1. The three algorithms used in generating test statistics of time-varying Granger 855 

causality. 856 
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       858 

(a) green bond                (b) environmental responsibility  859 

       860 

(c) green technology                    (d) carbon allowance  861 

Fig. 2. Time plots of green bond, environmental responsibility, green technology, and 862 

carbon allowance from February 29, 2012 to March 29, 2022. 863 
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 865 

Fig. 3. Time plots of daily EPU Index in the US from February 2012 to March 2022. 866 
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Forward Expanding 871 

     872 

Rolling Window 873 

    874 

Recursive Evolving 875 

  876 

(a) 𝐸𝑃𝑈
𝐺𝐶
→ 𝐵𝑂𝑁𝐷                   (b) 𝐵𝑂𝑁𝐷

𝐺𝐶
→ 𝐸𝑃𝑈 877 

Fig. 4. Time-varying Granger causality tests between green bond with EPU. 878 
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 880 

Forward Expanding 881 

   882 
Rolling Window 883 

    884 

Recursive Evolving 885 

    886 

(a) 𝐸𝑃𝑈
𝐺𝐶
→ 𝑅𝐸𝑆𝑃                   (b) 𝑅𝐸𝑆𝑃

𝐺𝐶
→ 𝐸𝑃𝑈 887 

Fig. 5. Time-varying Granger causality tests between environmental responsibility 888 

with EPU. 889 
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Forward Expanding 891 

    892 

Rolling Window 893 

   894 

Recursive Evolving 895 

    896 

(a) 𝐸𝑃𝑈
𝐺𝐶
→ 𝑇𝐸𝐶𝐻                   (b) 𝑇𝐸𝐶𝐻

𝐺𝐶
→ 𝐸𝑃𝑈 897 

Fig. 6. Time-varying Granger causality tests between green technology with EPU. 898 
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Forward Expanding 900 

  901 

Rolling Window 902 

   903 

Recursive Evolving 904 

    905 

(c) 𝐸𝑃𝑈
𝐺𝐶
→ 𝐸𝑈𝐴                   (d) 𝐸𝑈𝐴

𝐺𝐶
→ 𝐸𝑃𝑈 906 

Fig. 7. Time-varying Granger causality tests between carbon allowance with EPU. 907 
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