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One-inflation in zero-truncated count data has recently found considerable attention. There are currently two
views in the literature. In the first approach, the untruncated model is considered as one-inflated whereas
in the second approach the truncated model is viewed as one-inflated. Here, we show that both models
have identical model spaces as well as identical maximum likelihoods. Consequences for population size
estimation are illuminated and and the findings are illustrated at hand of two case studies.
Keywords: capture-recapture; one-inflation; inflation of singletons; zero-truncation; population size esti-
mation.

Key words: capture-recapture; Inflation of singletons; One-inflation; Population size estimation;
Zero-truncation.

1 Introduction

In a nutshell, this paper makes the following point. The use of the one-inflated zero-truncated count model
approach has become quite common as it is easy to deal with due to the fact that one inflation can be coped
with by simply truncating the ones, in addition to the zeros (Böhning and Ogden, 2021). The zero-truncated
one-inflated model has been viewed thus far as a different model because, for example, both models have
different maximum likelihood estimators. The latter is also more difficult to treat as the weight for the
one-inflation component enters non-linearly. The result in this work shows that both models are equivalent
from an inference point of view and there is no loss in working with the simpler, one-inflated zero-truncated
model.

To be more precise, we consider a count random variable Y taking values in the set of non-negative
integers. The application we have in mind is that Y represents the number of identifications in a capture-
recapture experiment or study. We assume a generic count density p(y; θ) for Y where y takes values in
the set of non-negative integers and θ is real-valued parameter or vector. We call this the base-distribution.
Typical examples of the base-distribution include the Poisson, geometric, binomial or negative-binomial
distribution among others. In applications we sometimes see the occurrence of a large amount of ones,
the so-called singletons, relative to the base distribution. In this case we speak of the occurrence of one-
inflation. One-inflation models have recently found a lot of attention (see Böhning and Ogden 2021,
Böhning and van der Heijden 2019, Böhning and Friedl 2021, Godwin 2017, Godwin and Böhning 2017,
Godwin 2019). Such a phenomenon of one-inflation can be easily addressed using the model

p1(y; θ, w) = (1 − w)I1(y) + w p(y; θ), (1)

where y takes values in the set of non-negative integers and I1(.) is the indicator function defined as
I1(y) = 1 if y = 1 and 0 otherwise, and w ∈ (0, 1] is a weight. (1 − w) represents the amount of
one-inflation (the extra ones) in the population, relative to the base-distribution p(y; θ).
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2 Dankmar Böhning: Zero-truncation and one-inflation

In uni-list capture-recapture settings the number Y of identifications of units of the target population
with the characteristic of interest is positive as those with zero identifications do not occur in the observed
sample. Hence, we need to consider the associated zero-truncated distribution. This brings the topic
into the area of capture-recapture methods (see for example Böhning et al. (2018); McCrea and Morgan
(2014)). For a general discrete mass probability function g(y) for y = 0, 1, 2, ... the associated zero-
truncated probability mass function is given as g(y)/(1 − g(0)) for y = 1, 2, .... Hence the zero-truncated
discrete probability mass function associated with (1) is

p1+(y; θ, w) =
(1 − w)

1 − w p(0; θ)
I1(y) +

w

1 − w p(0; θ)
p(y; θ), (2)

for y = 1, 2, .... As we zero-truncate a one-inflation model we call (2) the zero-truncated one-inflated
model associated with the base distribution p(y; θ).

In a different approach the one-inflation is only applied to the positive part of the distribution such as

p̃1(y; θ, w) =

{
p(0; θ) if y = 0
(1 − w)(1 − p(0; θ))I1(y) + w p(y; θ) if y > 0

(3)

where y = 0, 1, 2, .... Now, the zero-truncated discrete probability mass function associated with (3) is
provided as

p+1(y; θ, w) = (1 − w)I1(y) +
w

1 − p(0; θ)
p(y; θ), (4)

which we can think of as the one-inflated distribution associated with the zero-truncated distribution
p(y;θ)

1− p(0;θ) . Hence we call (4) the one-inflated zero-truncated model associated with the base distribution
p(y; θ). The wording is conventional, so in a way arbitrary. However, the logic here is as follows. Model
(1) assumes that the base distribution experiences one-inflation which becomes truncated in the observa-
tional model (2). This is the zero-truncated one-inflated model (ZTOI). In contrast, model (4) assumes
that the observational, zero-truncated model is one-inflated. This is the one-inflated zero-truncated model
(OIZT).

Any inference must refer to the observable discrete mass probability functions (2) and (4). As (2) and
(4) are different models, interest arises how they are connected.

Case-study on dice snake in Graz (Austria). Before we come to the main objectives of the paper let us
illustrate the issue with data from a case study presented in Böhning and Friedl (2021) on estimating the
population size of dice snakes in a closed area at the river Mur in Graz (Austria). The work was motivated
by a resettlement project of the population due to the development of a water power plant in the vicinity
of the living ground of the dire snakes. The major question here was: how many dice snakes are there?
We focus here on the year 2014 in which there were 31 capture occasions during the year. As above, Y
denotes the identification count per dice snake. The empirical distribution of Y is provided in Table 1.
The frequency f0 of dice snakes never sighted is unknown and aimed to be estimated. The concern here
is that the frequency f1 = 59 of singletons is large in size, potentially too large to be compatible with
a conventional count distributional model. This could lead to overestimation bias in the population size
estimator of dice snake prevalence in the target area (Böhning and Friedl 2021).

Table 1 Frequency of count of sightings per dice snake in the target area in 2014

count y of sightings 0 1 2 3 4 5 n
frequency fy - 59 8 1 1 1 70

This paper has the following objectives:
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1) we will show that (2) and (4) have identical maximum likelihoods,

2) and also show that there exists a one-to-one mapping that transfers respective maximum likelihood
estimates into each other,

3) and also demonstrate how population size estimates based on the likelihoods (2) and (4), respectively,
can be achieved by means of Horvitz-Thompson estimation.

The following section 2 contains the central results.

2 Main results

We will consider the following two sets. The first set is related to (4) and defined as

Γ = {(p+1(1; θ, w), · · · , p+1(y; θ, w), · · · )′|w ∈ (0, 1], θ ∈ Θ}. (5)

Here ′ refers to transposing a vector and Θ is the parameter set, a subset of the real line or finite-dimensional
real space. The second set is related to (2) and defined as

Γ̃ = {(p1+(1; θ, w), · · · , p1+(y; θ, w), · · · )′|w ∈ (0, 1], θ ∈ Θ}. (6)

We have the following
Theorem 2.1

Γ̃ = Γ

P r o o f. We show that if

p+1(1; θ, w), · · · , p+1(y; θ, w), · · · )′ ∈ Γ

then also
p+1(1; θ, w), · · · , p+1(y; θ, w), · · · )′ ∈ Γ̃.

Now, for any positive integer y,

p+1(y; θ, w) = (1 − w)I1(y) +
w

1 − p(0; θ)
p(y; θ)

can be written as

p1+(y; θ, w̃) =
(1 − w̃)

1 − w̃ p(0; θ)
I1(y) +

w̃

1 − w̃ p(0; θ)
p(y; θ)

where
w̃ =

w

1 − p(0; θ) + w p(0; θ)
∈ (0, 1).

This shows that p+1(1; θ, w̃), · · · , p+1(y; θ, w̃), · · · )′ ∈ Γ̃.
Now, we show that if

p1+(1; θ, w̃), · · · , p1+(y; θ, w̃), · · · )′ ∈ Γ̃

then also
p1+(1; θ, w̃), · · · , p1+(y; θ, w̃), · · · )′ ∈ Γ.

Again, for any positive integer y,

p1+(y; θ, w̃) =
(1 − w̃)

1 − w̃ p(0; θ)
I1(y) +

w̃

1 − w̃ p(0; θ)
p(y; θ)
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can be written as
p+1(y; θ, w) = (1 − w)I1(y) +

w

1 − p(0; θ)
p(y; θ),

where

w =
w̃(1 − p(0; θ))
1 − w̃ p(0; θ)

∈ (0, 1).

This shows that p1+(1; θ, w̃), · · · , p1+(y; θ, w̃), · · · )′ ∈ Γ and ends the proof.

In Figure 1 we see an illustration of the result above for singletons (those units where y = 1) and
doubletons (those units where y = 2).
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Figure 1 Probability for a singleton (left panel) and a doubleton (right panel) according to Γ (dashed)
and according to Γ̃ (solid) for fixed θ = 0.9 and w varying in (0, 1]

Suppose that a random sample y1, · · · , yn of size n is available. Also, let fy denote the frequency of
those yi in the sample y1, · · · , yn such that yi = y. So, f1 is the frequency of singletons, f2 the frequency
of doubletons, f3 the frequency of tripletons, and so forth. Then the log-likelihood with respect to (2) can
be written as

˜̀(θ, w) =
m∑

y=1

fy log[p1+(y; θ, w)], (7)

where m is the largest count observed and (θ, w)′ ∈ Γ̃. The log-likelihood with respect to (4) is given as

`(θ, w) =
m∑

y=1

fy log[p+1(y; θ, w)], (8)

where (θ, w)′ ∈ Γ. As Γ and Γ̃ coincide we have the following

Theorem 2.2
sup(θ,w)′∈Θ×(0,1]

˜̀(θ, w) = sup(θ,w)′∈Θ×(0,1] `(θ, w)
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Theorem 2.2 means that maximum likelihoods agree irrespective which model, (2) or (4), they come
from. This also means that there is no way to identify, on the basis of the likelihoods, from which of the
two models the sample has arisen from. An illustration of the result is provided in Figure 2 using the
drink-driving data of Britain.

It also follows from the invariance principle for maximum likelihood estimation that maximum likeli-
hood estimates can be easily found for one model if they are available for the other. So, if ŵ and θ̂ are
maximum likelihood estimates for (8) then θ̂ and

ŵ

1 − p(0; θ̂) + ŵ p(0; θ̂)

are the associated maximum likelihood estimates for (7). Vice versa, if ŵ and θ̂ are maximum likelihood
estimates for (7) then θ̂ and

ŵ(1 − p(0; θ̂))

1 − ŵ p(0; θ̂)

are the associated maximum likelihood estimate for (8).
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Figure 2 Log-likelihoods for (2) (solid) and (4) (dashed), respectively, for fixed θ = 0.4 and w varying
in (0, 1] using the dice snake data of Graz (Austria) in 2014

A benefit of Theorems 2.1 and 2.2 is that it does not matter which one of the models, (2) or (4), is used as
they are equivalent. However, model (4) is mathematically easier to deal with as the weight occurs linearly,
and also model (4) fits better to the existing theory of one-inflation models of zero-truncated distributions
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Böhning and Friedl (2021). Although the results of this section are of interest in themselves the question
arises how they affect population size estimation which is addressed in the next section 3.

3 Population size estimation

We have said that for a general discrete mass probability function g(y) for y = 0, 1, 2, ... the associated
zero-truncated probability mass function is given as g(y)/(1 − g(0)) for y = 1, 2, .... So, given a sample
of size n the Horvitz-Thompson estimator of E(f0) is given by

f̂0 = n
g(0)

1 − g(0)
. (9)

The estimator (9) is unbiased as

E(f̂0) =
g(0)

1 − g(0)
E(n) =

g(0)
1 − g(0)

N(1 − g(0)) = Ng(0) = E(f0),

assuming that n is binomial with size parameter N , the true population size, and event probability 1−g(0).
In model (3) we have that g(0) is simply p(0; θ) as the inflation parameter w does not occur here. Hence

f̂0,OIZT = n
p(0; θ)

1 − p(0; θ)
. (10)

In model (1) we have that g(0) = wp(0; θ) so that the probability for count zero involves the inflation
parameter w. If we replace w by its maximum likelihood estimate 1−f−1/n

1−p(1;0)−p(0;θ)f1/n we find

f̂0,ZTOI = (n − f1)
p(0; θ)

1 − p(0; θ) − p(1; θ)
. (11)

The result can be interpreted in the following way. Consider the reduced sample size n1 = n − f1, the
original sample size reduced by the number of singletons, then n1 is binomial with size parameter N and
event probability 1 − p(0; θ) − p(1; θ). We formally state this as the following

Theorem 3.1
f̂0,ZTOI = n1

p(0; θ)
1 − p(0; θ) − p(1; θ)

P r o o f. We abbreviate p0 = p(0; θ) and p1 = p(1; θ) with θ known. Now, we use that the maximum
likelihood estimate of wis w̃ = 1−f1/n

1−p1−p0f1/n so that

f̂0 = n

1−f1/n
1−p1−p0f1/np0

1 − 1−f1/n
1−p1−p0f1/np0

= n
(1 − f1/n)p0)
1 − p1 − p0)

= (n − f1)
p0

1 − p1 − p0
.

The associated Horvitz-Thompson estimators of the population size N are then given by

N̂0,OIZT = n1 + f1︸ ︷︷ ︸
n

+f̂0,OIZT

and
N̂0,ZTOI = n + f̂0,ZTOI.

Note that the population size estimator does not involve w and solely depends on θ. In practice, a plug-in
estimator for θ needs to be used.
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4 Applications

Case-study on dice snake in Graz (Austria) (continued). The major aim of the paper is to show the equiv-
alence of the zero-truncated one-inflated with the one-inflated zero-truncated distributional model. How-
ever, it is also important to see how this result can be used. We use the latter model for the data of the
case study on estimating the population size of dice snakes in a closed area at the river Mur in Graz (Aus-
tria). We choose the geometric distribution p(y; θ) = θ(1 − θ)y (y = 0, 1, 2, ...) as it turns out to be
well fitting in this situation (Böhning and Friedl 2021). In addition, it can be shown that maximum like-
lihood estimation in one-inflated zero-truncated models can be accomplished by considering maximum
likelihood estimation in zero-one truncated models (Böhning and Ogden 2021). The zero-one truncated
geometric distribution is given by θ(1 − θ)y−2 for y = 2, 3, ... and its maximum likelihood estimate by
θ̂1 = n−f1

S−n = (70 − 59)/(87 − 70) = 0.6471 where S =
∑

x xfx. It is shown in Böhning and Ogden
(2021) that the maximum likelihood for the one-inflated zero-truncated model (see also (8)) is given by

log L1 = (S+f1−2n) log(1− θ̂1)+(n−f1) log(θ̂1)+f1 log(f1/n)+(n−f1) log(1−f1/n) = −41.48.

Here the merit of the one-inflated zero-truncated model emerges as the likelihood can be achieved by
simply truncating counts of zero (naturally occurring) as well as truncating ones. Given θ̂1 = n−f1

S−n =

0.6471, the maximum likelihood estimate of w is provided as ŵ = 1−f1/n

1−θ̂
= 0.4452 (Böhning and Ogden

2021).
For illustration, we also provide the zero-truncated one-inflated maximum likelihood (see also (7)) as

log L̃1 = (S−f1) log(1− θ̂)+(n−f1) log θ̂+f1 log

(
1 − ˆ̃w + ˆ̃wθ̂(1 − θ̂)

1 − ˆ̃wθ̂

)
+(n−f1) log

(
ˆ̃w

1 − ˆ̃wθ̂

)

which also takes on the value −41.48. Note that θ̂ agree for both models, only the weight estimates differ
with ˆ̃w = ŵ/(1−θ̂+ŵθ̂) where ŵ is the maximum likelihood estimate from the one-inflated zero-truncated
model. These results are also summarized in Table 2.

We have also provided confidence intervals for population size estimates in Table 2. These are based
on a non-parametric bootstrap as follows. Based on the estimated N̂ , random samples of size N̂ (rounded
to the next integer) are drawn from the distribution of interest using the sampling probabilities f̂0/N̂ ,
f1/N̂ , f2/N̂ , ..., and for each sample the population size estimate determined. As the distribution of N̂ is
highly skewed we use the log-transformation first to calculate approximate normal-based 95% confidence
intervals and then use the anti-log to achieve lower and upper confidence limits, respectively, for a 95%
confidence interval for N . The details are again provided in Table 2.

Table 2 Log-likelihood, AIC, maximum likelihood estimates of θ and w (or w̃) for the one-inflated
zero-truncated model (OIZT) given in (4), the zero-truncated one-inflated (ZTOI) given in (2) and the non-
inflated model in the case of the dice snake data of Graz followed by population size estimates with 95%
confidence intervals based on a non-parametric bootstrap

model log-likelihood AIC θ̂ weight N̂ 95% CI
OIZT -41.48 86.96 0.6471 0.4452 (ŵ) 198 123 – 342
ZTOI -41.48 86.96 0.6471 0.6946 ( ˆ̃w) 127 74 – 248

no inflation -42.97 87.95 0.8046 - 358 247 – 547

Ignoring one-inflation in the zero-truncated geometric model entirely, we find θ̂0 = n/S and the asso-
ciated maximum likelihood

log L0 = (S − n) log(1 − θ̂0) + n log(θ̂0) = −42.97.
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The likelihood ratio tests delivers 2.90 with p-value of 0.0838. The corresponding values of the Akaike
information criterion are 86.96 (for the one-inflated zero-truncated model) and 87.95 for the zero-truncated
model without one-inflation, indicating borderline evidence for one-inflation. It is also interesting to see
the effect of ignoring one-inflation in the population size estimates. For the model with one-inflation we
find N̂ = 198 under OIZT sampling and N̂ = 127 under ZTOI sampling, whereas for the model ignoring
one-inflation we find N̂ = 358 which is considerably higher than the estimates without one-inflation. The
associated 95% confidence intervals are given in Table 2. As the dice snake data set has small sample size
it is not surprising that the confidence show considerable overlap. Nevertheless, the approach allowing for
one-inflation seems to provide the more realistic estimate of the size of the dice snake population as the
non-inflated model is prone to overestimation of the size. This underlines the importance of considering
one-inflation, especially when considering population size estimation.

Case-study on family violence in the Netherlands in 2009. The previous case-study is characterized
by a weak evidence for one-inflation which nevertheless had considerable impact on the population size
estimate. In this case study, there is much stronger evidence for one-inflation. Family violence data for
the Netherlands in the year 2009 provided by van der Heijden et al. (2014)(also discussed in Böhning
et al. 2019). Here the perpetrator study is reported with the data given in Table 3. There were 15,169
perpetrators identified being involved in a domestic violence incident exactly once, 1957 exactly twice,
and so forth. In total, there were 17,662 different perpetrators identified in the Netherlands for 2009. The
data represent the Netherlands except the police region for The Hague. The results of the analysis for these
data is presented in Table 4. Again, the geometric was used (as suggested in Böhning et al. 2019) as base
distribution. Here there is clear evidence for one-inflation and the confidence intervals for the population
size estimates are narrow and do not overlap. In a nutshell, the result implies that there are about 3.5 to
4.5 times more perpetrators in total than have been observed (based on the respective one-inflation model).
Ignoring one-inflation, the factor would about 7.5 which is likely an overestimate.

Table 3 Frequency of the number of times perpetrators have been identified in a domestic violence
incident in the Netherlands in the year 2009

count y of identifications 0 1 2 3 4 5 6 n
frequency fy - 15,169 1957 393 99 28 16 17,662

Table 4 Log-likelihood, AIC, maximum likelihood estimates of θ and w (or w̃) for the one-inflated
zero-truncated model (OIZT) given in (4), the zero-truncated one-inflated (ZTOI) given in (2) and the
non-inflated model in the case of the family violence data followed by population size estimates with 95%
confidence intervals based on a non-parametric bootstrap

model log-likelihood AIC θ̂ weight N̂ 90% CI
OIZT -8926.91 17,857.82 0.7713 0.6173 (ŵ) 77,244 73,602 – 80,996
ZTOI -8926.91 17,857.82 0.7713 0.8759 ( ˆ̃w) 54,443 50,741 – 58,683

no inflation -9000.12 18,002.23 0.8453 - 114,180 111,288 – 117,093

Further examples can be found in the supplementary material.

5 Discussion

We end the paper with a short discussion. Model (1) can be thought of a mixture model with two subpopu-
lations. In one subpopulation the baseline distribution p(y; θ) holds, in the other a one-point distribution is
giving all its mass to the singletons. In the latter subpopulation there is no positive probability given to any
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count other than the singletons. Model (4) can be viewed as model one-inflation model given the knowl-
edge of a positive capture count Y . We have seen that both models lead to the same inference with repsect
to the likelihoods involved. When it comes to population size estimation by means of Horvitz-Thompson
it matters which of the two sampling models holds.

Hence it is important to view how one-inflation occurs. For example, let us look at a misclassification
perspective. It can be thought that some of the singletons are in fact doubletons, triplets, ... but have been
counted as singletons. For example, it could be speculated that some of the drivers identified once have
been drink-driving more than once but have not been identified at these occasions. In an extreme situation,
this means that the over-inflated units are redistributed to the first distribution p(y; θ). This would not
change inference w.r.t. θ but w.r.t. the population size. In this case, it would be more meaningful to use
N̂ = n/[1 − p(0, θ)] as all the inflated counts would in some way belong to the base distribution and
would need to be up-weighted with the Horvitz-Thompson estimator. Hence here OIZT-sampling would
be appropriate,

Yet, in another scenario that can be envisioned, doubletons, for example, are not identified as being
the same unit counted twice but as different units and, hence, lead to an inflation of ones. This scenario
of undermatching will unlikely be true for the drink-driving study, but if we imagine a biodiversity study
where it might be only possible to identify identical genetic material to a certain percentage degree, this
case could occur. Bunge et al. (2012) consider such a situation:

This is the case, for example, when dealing with high-throughput DNA sequencing data, which
are prone to errors of various types. These errors may arise at various stages, in particular the
identification of the sequences and the clustering algorithms used to combine sequences into
clusters or taxa may be questionable. The end result is that the number of low frequency counts
especially the singletons (f1) may be artificially inflated compared to what would be obtained by
a data-collection process with a lower error rate.

In this case it is unclear what f1 really represents. How many are true singletons, how many are double-
tons, tripletons ....? Hence a population size estimator would be difficult to determine. However, assuming
that the frequency of doubletons, tripletons, ..., in other words the frequencies f2, f3, ... are correct (but
not f1), a valid estimator of the hidden or unobserved units can be given using f̂0,OIZT as it only builds
on n1 = n − f1. This could still provide useful information. In closing, it is important to develop an
understanding of the mechanisms which lead to the occurrence of one-inflation.
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