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Abstract 17 

Purpose of review: This review aims to discuss the potential roles of omega-3 (ω-3) and omega-18 

6 (ω-6) polyunsaturated fatty acids (PUFAs) in the prevention and treatment of metabolic 19 

diseases, to provide the latest evidence from epidemiological and clinical studies, and to 20 

highlight novel insights into this field. 21 

Recent findings: Higher dietary or circulating ω-3 PUFA levels are related to a lower risk of 22 

metabolic syndrome. Novel findings in obesity indicate higher proportions of ω-6 and ω-3 23 

PUFAs, a modulated oxylipin profile and an altered transcriptome in subcutaneous white 24 

adipose tissue, that seem resistant to the effects of ω-3 PUFAs compared with what occurs in 25 

normal weight individuals. ω-3 PUFAs may improve the blood lipid profile and glycemic 26 

outcomes in patients with type 2 diabetes mellitus and reduce liver fat in non-alcoholic fatty 27 

liver disease; the findings of several recent meta-analyses support these effects. Genetic 28 

background affects inter-individual variability in the insulin sensitivity response to ω-3 PUFA 29 

supplementation. ω-3 PUFAs have prebiotic effects, altering the gut microbiota. 30 

Summary: Although evidence for health benefits of ω-3 PUFAs is strong, recent findings 31 

suggest a more personalized approach to ω-3 PUFA intake for individuals at high risk for 32 

metabolic diseases.  33 

 34 
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Introduction 36 

Metabolic syndrome (MetS) is a multifactorial disease that includes various health issues such 37 

as abdominal obesity, dyslipidemia, insulin resistance (IR) and hypertension [1*]. Altered lipid 38 

metabolism and glycemic control appear to be major risk factors in developing non-alcoholic 39 

fatty liver disease (NAFLD) and cardiovascular disease (CVD) [2, 3]. Furthermore, oxidative 40 

stress, systemic inflammation, gut dysbiosis, cytokines, adipokines, hepatokines and genetics 41 

make a large contribution to complex metabolic disturbances [4]. Together with promoting a 42 

healthy lifestyle and a more personalized medication approach, there is growing interest in the 43 

use of nutraceuticals and dietary supplements in the treatment or co-treatment of 44 

cardiometabolic disease and related features such as dyslipidemia [5*]. The 2019 European 45 

Society of Cardiology/European Atherosclerosis Society Guidelines list several nutraceuticals 46 

and nutritional supplements including phytosterols (i.e., sterols and stanols), red yeast rice 47 

extract, dietary fibers, and omega-3 (ω-3) fatty acids to be considered for the management of 48 

dyslipidemias [6]. However, the most relevant and recent American and European guidelines 49 

do not encourage any nutraceutical or food supplement approach concerning obesity due to 50 

insufficient safety and efficacy data (see [5*] for references). Although several nutraceuticals 51 

have been suggested for glycaemic control, alone or as an adjunct to standard medical care (e.g., 52 

berberine, Morus alba extract) [7, 8], the updated Standards of Medical Care in Diabetes has 53 

not supported the implementation of any nutraceutical or supplement products in the 54 

management of type 2 diabetes mellitus (T2DM) [9]. This is similar to a consensus report 55 

published in 2018 by the American Diabetes Association and the European Association for the 56 

Study of Diabetes [10]. Despite a lack of consensus on the recommendation for patients at high 57 

cardiometabolic risk, ω-3 and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) have been 58 

recognized to offer multiple mechanisms of action to counteract a cluster of metabolic 59 
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disorders. The aim of this article is to discuss the role of PUFAs in the prevention and treatment 60 

of metabolic diseases, reviewing the latest evidence and highlighting novel insights in this field. 61 

 62 

Epidemiology of polyunsaturated fatty acids and metabolic health 63 

Much evidence has accumulated from prospective and case-control studies indicating that a 64 

higher intake of long-chain PUFAs, especially ω-3 PUFAs, is related to an improved profile of 65 

risk factors of MetS. These studies have been summarized in systematic reviews and meta-66 

analyses and are discussed in detail elsewhere recently [11*]. For example, early 67 

epidemiological data showed that Greenland Inuit had a much lower prevalence of 68 

cardiometabolic disease, including diabetes mellitus and atherosclerosis, considered to be the 69 

result of the high ω-3 PUFA content and more optimal ω-6/ω-3 PUFA ratio of their traditional 70 

diet. However, over the last half-century, due to lifestyle changes (e.g., replacing traditional 71 

with imported foods, being sedentary) and possibly gene-lifestyle interactions, the Inuit in 72 

Greenland have experienced a significant rise in incidence and prevalence of obesity and 73 

metabolic disorders [12]. A recent meta-analysis of data from cross-sectional and case-control 74 

trials identified that higher blood levels of ω-3 PUFAs are associated with a lower risk of MetS 75 

[13]. Another meta-analysis pooled results from prospective cohort studies and confirmed that 76 

higher dietary or circulating ω-3 PUFA levels were associated with 26% lower MetS risk than 77 

lower dietary or circulating levels (odds ratio (OR)/relative risk (RR) 0.74; 95% confidence 78 

interval (CI) 0.62, 0.89) [14*]. Interestingly, docosahexaenoic acid (DHA) appeared to have 79 

greater effectiveness (OR/RR 0.66; 95% CI 0.49, 0.88) than other ω-3 PUFAs (i.e., alpha-80 

linolenic acid (ALA), docosapentaenoic acid (DPA) and eicosapentaenoic acid (EPA)), which 81 

did not show significant effects. Also, null results were observed concerning the association 82 

between circulating or dietary ω-6 PUFAs and MetS. However, a recent meta‑analysis of cohort 83 

studies evaluated the association between intake of PUFAs and incidence of T2DM, and found 84 
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that DHA increased risk while the ω-6 linoleic acid (LA) decreased risk of T2DM (RR 1.164; 85 

95% CI 1.048 to 1.294 and RR 0.956; 95% CI 0.930 to 0.983, respectively) [15*]. A de novo 86 

pooled analysis of 17 prospective cohort studies with 42,466 individuals reported the 87 

association between a lower risk for death from cardiovascular disease in patients with the 88 

highest versus the lowest quintile of circulating long-chain ω-3 PUFAs [16*].  89 

 90 

Biological actions of PUFAs 91 

Blood triglyceride (TG) levels, blood pressure, fasting blood glucose (FBG), high-density 92 

lipoprotein (HDL) cholesterol, and insulin resistance are all improved by ω-3 PUFAs, probably 93 

explaining their protective effects on MetS and cardiovascular disease [11*]. Similarly, ω-6 94 

PUFAs, instead of saturated fat, can positively impact blood lipid management (especially low-95 

density lipoprotein (LDL) cholesterol) and insulin resistance [11*]. As a structural component 96 

of cell membranes, bioactive PUFAs act through various mechanisms influencing the function 97 

of membrane proteins, intracellular signalling pathways and gene expression, and altering the 98 

production of lipid mediators (i.e., eicosanoids and docosanoids) [17]. Oxylipins are bioactive 99 

metabolites generated from PUFAs, including EPA and DHA and the ω-6 PUFA arachidonic 100 

acid (AA), through enzymatic and non-enzymatic oxidation [18, 19*, 20, 21*]. Enzymatic 101 

oxidation of ω-3 and ω-6 PUFAs shares the same enzymes, i.e., lipooxygenases (LOXs), 102 

cyclooxygenases (COXs), and cytochromes P450 (CYP-450) [18, 19*, 20, 21*]. These 103 

enzymes are expressed in various cells and tissues. Oxylipins may act as both pro- and anti-104 

inflammatory molecules [20, 21*]. Although oxylipins are triggered in response to 105 

inflammatory stimuli, a recent study reported that these same stimuli also programme their 106 

removal, for example by upregulation of mitochondrial β-oxidation [22*]. In general, an 107 

increased presence of ω-3 PUFAs in cell membranes leads to an increased generation of less-108 

inflammatory and pro-resolving mediators as a result of LOX and COX action on ω-3 rather 109 
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than ω-6 PUFAs [20, 23, 24]. Uncontrolled (unresolved) inflammation and continuous release 110 

of pro-inflammatory mediators can cause metabolic changes, tissue damage, and loss of 111 

function, and oxylipins produced from EPA and DHA are able to both prevent and reverse these 112 

effects [25*]. For example, pro-inflammatory activities of AA-derived oxylipins lead to altered 113 

lipid metabolism and remodelling and expansion of adipose tissue (see [26*] for references). 114 

On the other hand, reduced inflammatory actions and pro-resolving activities of oxylipins 115 

derived from EPA and DHA, so-called specialized pro-resolving mediators (SPMs), better 116 

regulate the expression of inflammatory cytokines [25*, 27*]. SPMs have been described in 117 

human blood and other fluids including breast milk and in human tissues [28*]. The production 118 

of SPMs is favoured by the higher EPA and DHA status brought about by increased oral intake 119 

of these fatty acids [28*]. SPMs may be responsible for many of the biological actions ascribed 120 

to EPA and DHA [28*]. DPA is also a substrate for synthesis of SPMs [29]. Recent findings 121 

suggest that genetic/pharmacological targeting of carnitine palmitoyl transferase 1, enhances 122 

oxylipin removal via mitochondrial β-oxidation independently of oxidative phosphorylation 123 

and energy production [22*]. Upregulation of many genes is observed in a regulatory metabolic 124 

checkpoint for oxylipins during inflammation [22*]. Thus, lipidomic profiling targeting 125 

oxylipins may contribute to deeper understanding the role of these bioactive metabolites in the 126 

development and progression of human diseases. In addition to biological activities, ω-3 PUFAs 127 

appear to affect the gut microbiome [30*]. This seems to result in three related effects: altered 128 

diversity and abundance of the gut microbial community, modulated levels of pro-inflammatory 129 

molecules such as intereleukin-17 and lipopolysaccharides, and altered concentrations of short-130 

chain fatty acids and their salts [30*, 31]. Firmicutes (F) and bacteroidetes (B) are the two major 131 

bacterial phyla representing about 90% of the human gut microbiota, and an increase in the F/B 132 

ratio due to an inappropriate diet including a high ratio of ω-6 to ω-3 PUFAs may lead to 133 

overweight, obesity, non-alcoholic fatty liver disease and CVD [32-35]. 134 
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  135 

Latest clinical trials and meta-analysis of trials related to PUFA supplementation and 136 

metabolic disease 137 

A recently published double-blind randomised controlled trial has reported novel insights into 138 

fatty acid composition, oxylipin profile and transcriptome in human subcutaneous white 139 

adipose tissue (scWAT) in obese individuals [26*]. Fifty healthy normal weight individuals and 140 

50 individuals living with obesity were randomly assigned to receive a supplement providing 141 

1.1 g EPA + 0.8 g DHA or corn oil (as the comparator oil) and were followed up for 12 weeks. 142 

Significantly higher proportions of ω-6 and ω-3 PUFAs in scWAT were observed in individuals 143 

with obesity compared to normal weight individuals at study entry. The proportion of EPA in 144 

scWAT was positively correlated with adipose-IR (ρ 0.248, P = 0.043) and the proportion of 145 

DPA with homeostatic model assessment of insulin resistance (HOMA2-IR) and adipose-IR (ρ 146 

0.258, P = 0.038, and ρ 0.342, P = 0.005 respectively). Regarding the oxylipin profile of the 147 

whole scWAT, 33 fatty acid metabolites of 111 identified were significantly modified in 148 

individuals living with obesity compared to normal weight subjects; typically scWAT from 149 

indivduals with obesity has lower levels of hydroxy-DHAs and some SPMs. Proportions of 150 

several oxylipins were inversely correlated with HOMA2-IR, indicating a link between lower 151 

levels of oxylipins with increased insulin resistance [26]. The expression of the genes encoding 152 

CYP1B1, ALOX5 (which encodes 5-LOX), and PTGS1 (which encodes COX-1) was 153 

upregulated in scWAT from obese individuals. Transcriptional changes, including 622 154 

upregulated and 174 downregulated genes in scWAT in individuals living with obesity, 155 

indicated upregulation of inflammatory and immune responses in scWAT in obesity. In addition 156 

to dysregulated expression of inflammatory and immune response related genes, nearly 20% of 157 

these genes were associated with lipid and carbohydrate metabolism and signalling which may 158 

contribute to an upregulation in the T2DM signalling pathway and interruption of whole tissue 159 
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homeostasis occurring in these early stages of obesity. Following 12 weeks of ω-3 PUFA 160 

intervention, an altered response was noticed in individuals with obesity compared with those 161 

of normal weight. Although a decrease of AA metabolites in scWAT was observed, modulation 162 

of ω-3 PUFA derived oxylipins was impaired in those with obesity compared with what was 163 

seen in normal weight individuals suggesting a lack of response in SPM formation and reduced 164 

ability to self-resolve inflammation, even when additional ω-3 PUFAs are provided. Despite 165 

the incorporation of EPA and DHA resulting in similar levels in scWAT in both groups, this 166 

was not sufficient to change ω-6 and ω-3 proportions enough to promote the generation of ω-3 167 

PUFA derived oxylipins or have a greater effect on gene expression in obese individuals 168 

compared to normal weight individuals. In response to ω-3 PUFA supplementation, 51 and 21 169 

genes were differentially expressed in scWAT in normal weight and obese individuals, 170 

respectively. The modulation of these genes was linked with the overall downregulation of 171 

inflammatory and immune responses as well as upregulation of glucose homeostasis in normal 172 

weight individuals, with the absence of these effects in individuals living with obesity. 173 

Decreased levels of SPMs and increased expression of genes associated with immune and 174 

inflammatory signalling in scWAT, appear to affect whole-body homeostasis. 175 

Another study reported the importance of genetic background in interindividual 176 

variability in the insulin sensitivity response to ω-3 PUFA supplementation using a genetic 177 

score approach [36]. Treatment was with 1.9-2.2 g EPA + 1.1 g DHA per day for six weeks. 178 

HOMA-IR was used to classify participants as high or low risk depending on their HOMA-IR 179 

change following the ω-3 PUFA supplementation compared to pre-treatment values (some 180 

individuals (23.2%) had increased HOMA-IR after ω-3 PUFAs). Of the 210 participants, 181 

genome-wide genotyping data were obtained for 138 subjects: eight gene loci had frequency 182 

differences between high-risk and low risk participants and a genetic risk score (for increased 183 

HOMA-IR with supplemental ω-3 PUFAs) was created. This had a predictive accuracy of 0.85 184 
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and explained 40% of the variation in HOMA-IR change. These results suggest that genetic 185 

background has a role in determining the interindividual variability observed in the insulin 186 

sensitivity response following ω-3 PUFA supplementation. The authors suggested that people 187 

at risk of insulin sensitivity lowering following ω-3 PUFA supplementation may be able to be 188 

identified using genetic-based approaches. 189 

In a double-blind clinical trial, the effects of marine-based and plant-based ω-3 PUFAs 190 

on glucose and lipids profiles in 150 patients with T2DM were investigated [37]. Patients were 191 

randomized in three groups to receive fish oil containing 143 mg EPA and 172 mg 192 

DHA/capsule, perilla oil providing 322 mg ALA/capsule, or linseed and fish oil providing 193 

105 mg EPA, 60 mg DHA and 140 mg ALA/capsule. All patients were supplemented with 6 194 

capsules (3 g of oil) each day for six months. Treatment with perilla oil significantly lowered 195 

FBG while fish oil prompted a favorable reduction of serum TG levels compared to baseline 196 

values. Additionally, supplementation with ω-3 PUFAs significantly decreased serum total 197 

cholesterol, apolipoprotein A1, insulin, C-peptide and IL-6 levels in all the treatment groups 198 

compared to initial values. Hence, marine-derived and plant-derived ω-3 PUFAs showed 199 

different but overlapping effects on glucose and lipid metabolism. 200 

The potential prebiotic effects of ω-3 fatty acids were investigated in 69 participants 201 

who were randomised to take ω-3 capsules containing 165 mg EPA and 110 mg DHA daily or 202 

20 g of inulin fiber for a period of 6 weeks [38*]. ω-3 PUFA supplementation resulted in marked 203 

increases in Bacteroides spp and Coprococcus spp and significant decreases in the fatty-liver 204 

related Collinsella spp. On the other hand, similar to the inulin fiber arm which resulted in 205 

significant increases in butyrate, iso-butyrate and iso-valerate, ω-3 PUFA supplementation 206 

showed favorable increases in iso-butyrate and isovalerate and an almost significant increase in 207 

butyrate. Coprococcus, which was significantly higher after the treatment with ω-3 PUFAs, was 208 

found to be positively correlated with isobutyric acid and negatively correlated with serum 209 
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lipids such as VLDL-TG after adjusting for confounders.  Thus, ω-3 PUFA supplementation 210 

altered gut microbiota composition and some microbiota-mediated metabolic effects, indicating 211 

that ω-3 PUFAs may be a helpful prebiotic nutrient. 212 

Ten RCTs were summarized in a meta-analysis to evaluate the effects of supplemental 213 

ω-3 PUFAs on proteinuria, estimated glomerular filtration rate (eGFR) and metabolic 214 

biomarkers among patients with T2DM and type 1 diabetes mellitus (T1DM) [39]. Although 215 

ω-3 PUFAs reduced the rate of proteinuria among diabetic patients, this was significant only in 216 

patients with T2DM (SMD = -0.29; 95% CI: -0.54, -0.03; p = 0.03). Additionally, patients who 217 

were supplemented for at least 2 years with EPA or EPA+DHA showed significant lower 218 

proteinuria compared to controls (SMD = -0.30; 95% CI: -0.58, -0.02; p = 0.04). Regarding 219 

eGFR, there was an increasing trend in the ω-3 PUFA group, but the effect was not statistically 220 

significant (WMD = 1.56 mL/min/1.73 m2; 95% CI:-1.53, 4.65; p = 0.32). A pilot RCT included 221 

27 subjects with T1DM who were assigned to receive 3.3 g/day of encapsulated ω-3 PUFAs 222 

(i.e., 2.8 EPA + 0.8 DHA g/day) or encapsulated corn oil placebo for 6 months [40]. No 223 

significant differences were found between ω-3 PUFA and placebo groups in metabolic, 224 

glycemic or vascular outcomes. It is important to note the low sample size of this trial. 225 

A meta-analysis of 30 RCTs published in 2021 reported the effects of ω-3 PUFA 226 

supplementation on metabolic and inflammatory biomarkers, weight, and body mass index 227 

(BMI) in patients with T2DM [41*]. Glycemic factors including FBG, glycated hemoglobulin 228 

(HbA1c), and HOMA-IR were significantly reduced in ω-3 PUFA supplemented groups [-0.36 229 

(-0.71 to -0.01), -0.74 (-1.13 to -0.35), -0.58 (-1.13 to -0.03), respectively]. ω-3 PUFAs were 230 

associated with statistically significant reductions in concentrations of total cholesterol (-0.60 231 

(-0.88 to -0.32)), LDL cholesterol (-0.54 (-0.85 to -0.23)), HDL cholesterol (0.60 (0.23 to 0.96)) 232 

and TG (-0.27 (-0.37 to -0.18)). Inflammatory biomarkers such as tumor necrosis factor-alpha 233 

(TNF-α) and C-reactive protein (CRP) were not significantly decreased. Furthermore, there was 234 
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no significant reduction in weight and BMI. Sub-group analysis of supplemental ω-3 PUFAs 235 

according to prior defined doses (i.e., <1, 1 to 2, and >2 g/d) and duration ≤8 week/>8 week 236 

showed that supplementation with 1 to 2 g/d for more than 8 weeks significantly affected FBG 237 

level and HOMA-IR, while a significant reduction was found for HbA1c at all the 3 dose sub-238 

groups and both ≤8 week/>8 weeks. All 3 dose sub-groups significantly lowered TG and total-239 

cholesterol levels during both ≤8 week/>8 weeks. The findings revealed that ω-3 PUFA doses 240 

>1 g/d significantly changed LDL and HDL levels. However, the statistically significant 241 

reduction in LDL concentration occurred only when ω-3 PUFAs were consumed for more than 242 

8 weeks, while improvement in HDL level was noticed during all analyzed periods (41*). A 243 

previous meta-analysis of 45 RCTs, involving 2647 patients with T2DM, showed an association 244 

between ω-3 PUFA supplementation and favorable improvement in lipid profile, inflammatory 245 

markers and HbA1c level [42]. 246 

Lee et al. [43*] included 22 RCTs with 1366 participants in a meta-analysis of the effect 247 

of ω-3 PUFAs in treating NAFLD. The dosage of ω-3 PUFAs used in the included trials was in 248 

range of 0.25 to 5 g/day and duration was 3 to 18 months. Treatment with ω-3 PUFA 249 

supplements significantly reduced liver fat compared to placebo (pooled RR 1.52; 95% CI: 250 

1.09, 2.13). ω-3 PUFA supplementation also improved the levels of TG, total cholesterol and 251 

HDL cholesterol, and BMI, with a pooled mean difference and 95% CI being -28.57 (-40.81 to 252 

-16.33), -7.82 (-14.86 to -0.79), 3.55 (1.38 to 5.73), and -0.46 (-0.84 to -0.08), respectively. 253 

These effects were obtained mainly with the treatment course of at least six months. Liver 254 

enzymes, LDL cholesterol, HOMA-IR, or FBG did not show a remarkable improvement in 255 

NAFLD patients taking supplemental ω3 PUFAs. 256 

 257 

Summary, discussion & conclusion 258 
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Current epidemiological studies and intervention trials suggest that higher ω-3 PUFA intake 259 

may effectively lower the prevalence of metabolic diseases and mechanistic studies suggest that 260 

this is through multiple actions of bioactive fatty acids (EPA and DHA) and their bioactive 261 

metabolites. DHA has attracted more attention with its greater effectiveness in reducing MetS 262 

risk and incidence of T2DM than other ω-3 PUFAs. The main biological activities of ω-3 263 

PUFAs are improvement in blood lipids, fasting blood glucose and insulin resistance, and 264 

promoting anti-inflammatory and pro-resolving actions. Additionally, prebiotic activities of ω-265 

3 PUFAs have recently been recognized: these fatty acids appear to modulate gut microbiota 266 

composition with promising effects on metabolic disease risk. 267 

Over the last years, there has been increasing evidence from clinical trials suggesting 268 

that dysregulated expression of inflammatory and immune response-related genes and 269 

processes in obesity may be a reason for the lack of response to ω-3 PUFA interventions in 270 

obese individuals [26*, 44]. Altered adipose tissue fatty acid composition, modified oxylipin 271 

profile, and dysregulation of endocannabinoid concentrations and gene expression profiles in 272 

the early stages of obesity seem to be closely related. On the other hand, the genetic background 273 

affects inter-individual variability in the insulin sensitivity response to ω-3 PUFA 274 

supplementation [36]. Several studies and meta-analyses confirmed favorable improvement in 275 

lipid profile and glycemic outcomes in patients with T2DM taking supplemental ω-3 PUFAs. 276 

However, similar findings were not observed in patients with T1DM. Evidence from 277 

metabolomic studies implicates that a sub-optimal fatty acid profile in early life may signal the 278 

risk of pancreatic islet autoimmunity [45-47]. The possible effect of ω-3 PUFAs regarding the 279 

prevention of T1DM is unclear. A meta-analysis of patients with NAFLD revealed that ω-3 280 

PUFA supplementation considerably improved liver fat and blood lipids except for LDL 281 

cholesterol, while liver enzymes and glycemic parameters remained unchanged [43*]. 282 
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The evidence base for the relationship between ω-3 PUFA (i.e. EPA and DHA) intakes 283 

and blood levels on one hand and “health”, including biomarkers, risk factors and clinical 284 

outcomes, on the other hand includes both observational studies and intervention studies. It is 285 

important to consider the intakes and blood levels that these different study types might reflect, 286 

particularly in the context of intake recommendations. Different organisations make different 287 

recommendations for the combined intake of EPA and DHA that is thought necessary to support 288 

good health. For example, the Food and Agricultural Organisation of the United Nations 289 

recommends a minimum of 250 mg EPA+DHA per day for adult males and non-pregnant or 290 

non-lactating adult females [48] and the European Food Safety Authority states the adequate 291 

intake as 250 mg/day for adult males and non-pregnant adult females [49]. The French Agency 292 

for Food, Environmental and Occupational Health Safety sets a target of 400 to 500 mg/day for 293 

adults in the general population [50], while the United Kingdom recommendation based upon 294 

fish consumption is a minimum of 450 mg/day [51]. The Australian National Health and 295 

Medical Research Council recommends a target of 430 to 610 mg EPA+DHA per day for adults 296 

in the general population [52]. In comparison to these recommendations most adults consume 297 

less than 200 mg EPA+DHA per day [53,54]. Higher intakes can be achieved by eating fatty 298 

fish regularly or by using supplements that contain EPA and DHA. A standard one g fish oil 299 

capsule will provide about 300 mg EPA+DHA [55]. Observational studies that associate ω-3 300 

PUFA intakes to health-related outcomes report intakes of EPA and DHA across the range of 301 

tens to hundreds of mg/day. Intervention studies using ω-3 PUFA supplements typically 302 

provide EPA and DHA intakes in excess of recommendations, often over 1000 mg/day, as 303 

described earlier. Blood levels of EPA and DHA strongly relate to intakes of these fatty acids; 304 

this is clearly demonstrated in intervention studies that report linear associations between intake 305 

and levels of EPA and DHA in blood lipids and blood cells [56-59]. Most intervention studies 306 

with ω-3 PUFAs have a duration of 4 weeks to 3 months, although there are studies of longer 307 
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duration. With increased daily intake of ω-3 PUFAs from supplements, net incorporation of the 308 

fatty acids into blood lipids and some blood cells becomes detectable within a few days [60], 309 

although a new steady state is not reached for blood lipids until after a few weeks [56-59]. 310 

Incorporation into blood cells is slower, because cells turn over at a slower rate than blood 311 

lipids; incorporation into erythrocytes is slower than into platelets and leukocytes because 312 

erythrocytes turn over more slowly. Platelets and leukocytes reach a new steady state after about 313 

one to two months and for erythrocytes this is not reached until about six months [56,59].  314 

  Recent evidence from epidemiological and intervention trials summarized here supports 315 

a role for ω-3 PUFAs (EPA and DHA) in prevention of cardiometabolic disease and in control 316 

of several recognized risk factors. However, even though ω-3 PUFAs are recommended as 317 

effective therapeutic agents in managing dyslipidemias [61], further investigations are needed 318 

to clarify the dose-dependent effects of EPA and DHA, separately and together, on metabolic 319 

disease risk factors and related clinical outcomes.  320 
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• Higher dietary and circulating ω-3 PUFAs may decrease the prevalence of metabolic 333 

diseases through multiple biological actions   334 

• DHA has a higher potential to reduce metabolic disease risks than other ω-3 PUFAs 335 

• ω-3 PUFAs modulate gut microbiota and may act as a prebiotic agents  336 

• Dysregulated expression of inflammatory and immune response-related genes in obesity 337 

may be a reason for the lack of response to ω-3 PUFA interventions in obese individuals 338 

• ω-3 PUFAs improve lipid profile and glycemic outcomes in patients with type 2 339 

diabetes mellitus and decrease liver fat in patients with non-alcoholic fatty liver disease 340 
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