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Global analysis of the energy landscapes of
molecular crystal structures by applying the
threshold algorithm
Shiyue Yang1 & Graeme M. Day 1✉

Polymorphism in molecular crystals has important consequences for the control of materials

properties and our understanding of crystallization. Computational methods, including crystal

structure prediction, have provided important insight into polymorphism, but have usually

been limited to assessing the relative energies of structures. We describe the implementation

of the Monte Carlo threshold algorithm as a method to provide an estimate of the energy

barriers separating crystal structures. By sampling the local energy minima accessible from

multiple starting structures, the simulations yield a global picture of the crystal energy

landscapes and provide valuable information on the depth of the energy minima associated

with crystal structures. We present results from applying the threshold algorithm to four

polymorphic organic molecular crystals, examine the influence of applying space group

symmetry constraints during the simulations, and discuss the relationship between the

structure of the energy landscape and the intermolecular interactions present in the crystals.
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Computational approaches for exploring the energy land-
scapes of molecular crystals continue to develop rapidly as
applications of crystal structure prediction (CSP) methods

expand beyond the main application of anticipating pharma-
ceutical polymorphs1–3 into screening of co-crystals4 and
solvates5, and incorporation of CSP into computer-guided dis-
covery of functional materials6–10.

CSP typically relies on an exploration for the local energy
minima on the high-dimensional energy surface as a function of
the structural variables that determine the packing of a molecule
into a crystal11. The structures corresponding to each local energy
minimum are usually considered as possible polymorphs, with
the assumption that the lowest energy predicted structures cor-
respond to the most likely candidates to be observed experi-
mentally. One limitation of the output of such methods is that,
while they provide the geometry and energy of each potential
structure, no information is gained about the depth of each
energy minimum, nor possible transition paths and energy bar-
riers between structures. This is currently a limiting factor in the
analysis of the results of CSP.

One reason for needing a more global picture of the crystal
energy landscape is to distinguish between structures occupying
deep and shallow energy minima, i.e., are the energy barriers sur-
rounding the structure large or small? An important observation
that has been made is that structures corresponding to known
polymorphs are often connected to multiple, shallow energy
minima by small energy barriers12; traditional CSP methods would
suggest each of these minima as possible alternative polymorphs,
while a knowledge of small energy barriers separating such struc-
tures would show that they can merge into fewer distinct structures
due to thermal energy at the temperature of interest. Thus, not
distinguishing between deep and shallow energy minima con-
tributes to the over-prediction of polymorphism13.

Another area of particular interest is the identification of crystal
structures that do not correspond to the thermodynamically most

stable structure, but occupy sufficiently deep energy basins to be
isolable and kinetically stable. Knowing about such structures is
important for anticipating polymorphism that could occur through
crystallization routes where kinetics can lead the crystal structure
away from the thermodynamically preferred, global energy mini-
mum. One example of such a process is the desolvation of solvate
crystal structures14,15, where solvent incorporated into the crystal
structure stabilizes an alternative arrangement of molecules, so that
removal of solvent leaves the structure in a metastable polymorph.
Some recent studies6,8,16 have identified very high energy poly-
morphs through desolvation of solvates. The importance of these
structures is demonstrated by their very attractive properties, such
as for high gas storage capacity, selectivity for molecular
separations6 and high photocatalytic activity8.

Molecular dynamics approaches have been applied to study the
transitions between polymorphs17 and, in the context of CSP, to
identify structures that interconvert at non-zero temperatures18–21

and methods using metadynamics can also quantify the barriers
between structures22,23. In this study, we present the imple-
mentation of the threshold algorithm, which is based on Monte
Carlo sampling of the energy landscape24, to molecular crystals,
using an accurate force field with an atomic multipole description
of electrostatics. The aim of the threshold algorithm is to find the
lowest energy at which transitions are possible between local energy
minima. By combining trajectories from multiple starting struc-
tures, a global picture of the connectivity of minima can be con-
structed. The threshold algorithm has previously been applied to
fairly simple inorganic crystal structures, to investigate the energy
landscape of MgF225 and to study the entropic stabilization of high
energy phases of CaF226. Here, we investigate its application to
more complex molecular organic crystals, which are characterized
by a balance of several types of intermolecular interactions, and
discuss the insight that this method provides to help understand
their polymorphism.

Results and discussion
Choice of systems. Four crystal systems (Fig. 1), including single-
component crystals and a co-crystal, were chosen for study, each
of which has known polymorphism. All molecules have reason-
ably rigid molecular structures, so that rigid-molecule simulations
should provide a realistic picture of the crystal energy landscape.

Indigo and tetrolic acid are both small, hydrogen bonding
molecules, each with two known polymorphs. Both indigo
polymorphs have the same space group symmetry and the same
network of hydrogen bonds. In contrast, the polymorphs of
tetrolic acid occupy different space groups and differ in hydrogen
bonding. We also study the co-crystal formed between nicotina-
mide and benzoic acid, which is referred to by the Cambridge
Structural Database27 reference code of its known crystal
structure28, GAZCES. The co-crystal system has both experi-
mental structures in the same space group, P21/c, but with
changes in the arrangement of hydrogen bonds. Triptycene
trisbenzimidazolone (TTBI), has a more complex energy land-
scape and five experimentally observed polymorphs distributed
over a wide energy range.

These differences allow us to test how changes in the network
of strong intermolecular interactions are reflected in the energy
landscape. The systems with known structures in the same or in
different space groups are used to assess sampling with and
without symmetry constraints.

Computational details: the threshold algorithm and dis-
connectivity graph. The threshold algorithm was developed as a
method for finding the energy barrier between structures without
the requirement of energy gradient and Hessian matrix
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Fig. 1 Molecular crystal systems studied in this work. a Indigo, b tetrolic
acid, c TTBI and d the 1:1 co-crystal of nicotinamide and benzoic acid (GAZCES).
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calculations24,29. Initiated from a local minimum on the energy
landscape, a Monte Carlo trial is generated by random local
perturbations with the restriction that the single point (i.e.
unminimized) energy of the perturbed structure is below a
defined threshold energy, called the lid energy. All attempted
moves that remain below the current lid energy are accepted and
all moves that increase the energy above the lid energy are
rejected. Thus, the trajectory can only explore a local pocket on
the lattice energy surface and can never reach regions with energy
higher than the lid. If the energy barrier between the current
structure and another is higher than the lid, the transition
between the two energy basins in which these structures are
located cannot be sampled.

After a period of simulation, the lid energy is shifted to higher
energy to increase the configurational space that is available to the
trajectory, allowing transitions to new structures separated by
energy barriers lower than the new energy lid. Therefore, when a
trajectory visits the energy basin of a new local minimum, the
energy barrier between the new and initial minima can be
estimated as the current energy lid. An assumption here is that
the step size of allowed perturbations is small enough that
attempted moves cannot jump through energy barriers. The
sampling under each energy lid needs, in principal, to be ergodic,
although this is hindered by the required small step size.

From a sequence of pockets sampled with increasing lid energies,
a tree structure, often called a disconnectivity graph, can be
constructed to represent the energy landscape30–32. The disconnec-
tivity graph condenses the continuous, high-dimensional potential
energy surface into the set of discrete local minima and information
on the energy barriers that separate them. To construct the
disconnectivity graph, the energy landscape is analysed at a set of
energies along the vertical axis. The nodes at a given energy, Ei,
represent superbasins on the energy surface: the set of local minima
that are connected by pathways below Ei. Moving up in energy,
nodes are connected as higher energy pathways connect groups of
superbasins, while moving down on the graph leads to disconnec-
tions until the end of each branch, corresponding to single local
energy minima. The horizontal axis has no direct physical meaning
and is introduced for visualization, so that structures connected by
lower energy barriers are grouped together. Vertices along the
branches between nodes and minima are also for visualization only.
A schematic of a one-dimensional potential energy surface and its
associated disconnectivity graph is shown in Fig. 2.

In most simulations presented in this work, the lid energy was
increased in increments of 5 kJ mol−1, which is chosen as a
balance between precision in the calculated energy barriers and
the need to explore a wide energy range. For each threshold
simulation, the lid energy was increased from the minimized
energy of the initial structure. Sampling was started from multiple
initial structures, usually corresponding to the energy minimized
versions of observed polymorphs, which leads to different energy

grids from different start points. When plotting the disconnec-
tivity, we used a new energy grid starting from the lowest energy
among all the initial structures, with the increment of 5 kJ mol−1,
to merge trajectories into one graph. Any lid energy from a single
threshold algorithm was rounded up to the closest lid energy in
the new grid.

The types of move allowed in the threshold simulations were
molecular translations, rotations, perturbations of unit cell
lengths and angles, as well as unit cell volume changes. Cutoffs
on each move type (see ‘Methods’) were chosen to give similar
energy changes for different move types. Probabilities for each
move type were set according to the proportion of the total
number of degrees of freedom for each move type, in the same
way as in our implementation of basin hopping for CSP33. The
sampling at each lid energy and total lengths of simulations
differs between systems, depending on the number of degrees of
freedom and energy window that needed to be covered. In the
current work, a fixed number of steps was performed at each lid
energy. An adaptive schedule was investigated (see Supplementary
Methods) but due to the difficulty of choosing the convergence
criteria, it did not improve the completeness of sampling. With
energy minimization performed on all accepted steps (see
‘Methods’), and similar numbers of accepted steps to the numbers
of structures generated during CSP searches, the computational
cost involved in performing the threshold simulations is similar
to the cost of performing CSP for the molecules studied here.

We have studied rigid molecules in this work, so molecular
geometries were constrained to their optimized geometries from
density functional theory (DFT) calculations. Lattice energy
calculations were performed with the DMACRYS software34,
using an empirically parametrized exp-6 intermolecular
repulsion-dispersion potential with electrostatics described by
atomic multipoles calculated from the DFT electron distribution
(see ‘Methods’). Extending the method to molecules with
conformational flexibility will require two major modifications:
the inclusion of intramolecular degrees of freedom in the Monte
Carlo steps and the use of an energy model that treats inter- and
intra-molecular interactions during energy minimisation. Cutoffs
on intramolecular distortions will need to be determined based on
the typical energy changes resulting from different types of
intramolecular perturbations.

To put more emphasis on the connections between low-energy
structures, the disconnectivity graph is not presented for the
whole energy range. The highest energy barrier between initial
structures is taken as the upper limit and any local minima
connected at lid energies higher than this upper limit are not
presented on the disconnectivity graph. The disconnectivity
graphs over the entire sampled energy range are presented in
the Supplementary Notes.

For comparison to the energy landscape generated from the
threshold algorithm, CSP was performed for each molecule using
quasi-random sampling (see ‘Methods’).

Sampling within a space group. We start with two examples
where polymorphs exist with the same space group symmetry, so
that a transformation between their corresponding local energy
minima should be possible with space group symmetry con-
strained, i.e. Monte Carlo moves are only allowed which maintain
the original symmetry. This is performed by perturbing the
asymmetric unit of the crystal structure and applying symmetry-
related perturbations to all other molecules in the unit cell.
Constraints are also applied to unit cell parameters, where these
are required to maintain space group symmetry.

The connections between structures found in this way exclude
pathways that break symmetry, which might be lower in energy.

a) b)

Fig. 2 Disconnectivity graph. An example of tree-like representation (b) of
an example energy landscape (a).
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However, the symmetry constraints simplify the simulation and
we examine the picture of the landscape that we obtain with these
constraints.

Indigo. Indigo (Fig. 1a) is known to form two polymorphs35,36,
named A and B, both containing layers of hydrogen-bonded
molecules. The structure of these layers is almost unchanged
between polymorphs A and B, but their structures differ in the
arrangement of these layers (see overlay, Fig. 3a). Thus, the lowest
energy pathway between polymorphs should not disrupt the
hydrogen bonding and is expected to involve a relatively low
energy barrier.

Both polymorphs have space group symmetry P21/c with half a
molecule in the asymmetric unit of the unit cell (both molecules
lying on centres of inversion) and thus two molecules in the unit
cell. To allow free molecular translations, unconstrained by the
position of crystallographic inversion centres, the most symmetric
representation used for simulation of these structures was P21
with whole molecules in the asymmetric unit. Crystal structure
prediction in P21 finds polymorphs A and B as the two lowest
energy crystal structures (see Supplementary Fig. 1), with B
having a calculated lattice energy 4.0 kJ mol−1 below A. For
comparison, the two polymorphs are reported to be nearly equi-
energetic when evaluated using periodic DFT with a plane wave
basis set and many-body dispersion correction37.

Monte Carlo simulations were started from the CSP structures
matching both polymorphs, which were continued for 10 lid
energies, incremented by 5.0 kJ mol−1 with 1000 attempted steps
under each lid (covering a total 50.0 kJ mol−1 energy window).
From threshold simulations in space group P21, the first
connection between polymorphs A and B is found when the lid
is 26.0 kJ mol−1 above A (30.0 kJ mol−1 above B) (Fig. 3b). Below
this energy, no other structures are connected to B, one slightly
higher energy structure is connected to A and two additional
structures connect to A and B at the same lid energy. All three of
the additional crystal structures within the basin connected to A
and B maintain the same hydrogen bond motif, but with greater
differences in molecular orientation around the hydrogen bonds
than between polymorphs A and B. No further structures are
connected to the basin containing these five local energy minima
(A, B and the three higher energy structures) until the lid energy
is raised a further 15 kJ mol−1. Globally, the results give a picture
of an energy landscape that is funneled towards a small set of
structures, all featuring the same favoured hydrogen bonding
motif, with the two known polymorphs as the lowest energy local
minima within this energy superbasin.

To investigate the effect of performing the threshold Monte
Carlo simulation with different symmetry constraints, simula-
tions were also performed with larger unit cells, containing four
molecules in space group P21/c. Both known polymorphs can also
be described with this symmetry. The resulting disconnectivity
graph is shown in Fig. 3c. The overall picture of a single funnel
towards polymorphs A and B is maintained, but a notably lower
energy transition is found between the known polymorphs, when
the lid is 11.0 kJ mol−1 above A, 15.0 kJ mol−1 above B. As a
result, the connection between A and B occurs at a lower energy
than their connection to any other local minimum on the
landscape. While both indigo simulations yield useful informa-
tion on the structure of the crystal energy landscape, the results
confirm our expectation that the symmetry constraints applied
during sampling can have an important influence on the details of
the disconnectivity graph.

The 5 kJ mol−1 increments in threshold energy limit the
precision with which the energy barrier between the two
polymorphs can be estimated. Knowing that the transition occurs
when the threshold is 15 kJ mol−1 or less above polymorph B, we

re-sampled the landscape in space group P21/c (four molecules in
the unit cell), with smaller threshold increments of 1 kJ mol−1 and
1000 steps under each lid energy (5 ×more sampling per kJ mol−1

increase in the lid energy). Again, simulations were started from
both polymorphs, for 15 increases in the lid energy. With this
increased sampling, the energy barrier is now located when the
threshold is 10 kJ mol−1 above polymorph B, 6 kJ mol−1 above A,
and no other local energy minima are visited up to the highest
energy threshold.

The negligible change with smaller lid energy steps and
increased sampling gives us confidence that we have sampled the
landscape sufficiently. The results illustrate a strategy that can be
used to explore energy landscapes: an initial simulation with large
energy threshold increments to capture the global structure of the
energy landscape, followed by targeted re-sampling using smaller
steps to refine the results in important regions of the energy
landscape.

1:1 Nicotinamide:benzoic acid co-crystal. As a second example, we
studied the 1:1 nicotinamide:benzoic acid (GAZCES) co-crystal as
a system with more degrees of freedom (due to two molecules in
the asymmetric unit), but where the known polymorphs again
have the same space group symmetry. Nicotinamide:benzoic acid
is a highly polymorphic co-crystal; four polymorphs have been
observed under mechanochemical co-crystallization conditions,
but only polymorphs I and II have had their structures
determined28. Both characterized polymorphs are in space group
P21/c.

Unlike indigo, the polymorphs of this co-crystal differ in their
hydrogen bonding (Fig. 4): polymorph I has nicotinamide doubly
hydrogen-bonded dimers connected by hydrogen bonds to
benzoic acid molecules, while polymorph II contains an extended
hydrogen-bonded nicotinamide chain with benzoic acid hydro-
gen bonding to the nicotinamide pyridyl nitrogen atoms at the
edges of these chains.

Threshold simulations were started from the structures
corresponding to I and II from the CSP simulations. I and II
have very similar calculated lattice energies (I has a calculated
lattice energy 0.6 kJ mol−1 below II) and are located in the low
energy region of the landscape (Supplementary Fig. 3). Due to the
greater complexity of the landscape, 3000 steps were performed at
each value of the lid energy, which was increased in 5.0 kJ mol−1

steps up to 150.0 kJ mol−1 above the initial structures, i.e., 30
increases in the threshold energy and a total of 90,000 attempted
perturbations from each starting structure.

The threshold simulations reveal a dual-funneled energy
landscape with deep basins centred on polymorphs I and II
(Fig. 4c). Polymorph I is the lowest energy structure in its funnel
(left of Fig. 4c), while one lower energy structure is located in the
funnel containing II (right of Fig. 4c). Several lower energy
structures are located by CSP in space group P21/c, but not
sampled during the threshold simulations; these structures might
lie outside of the two funnels, where little sampling has been
performed. A complete picture of the energy landscape would
require threshold sampling from some of the unobserved
polymorphs as well as I and II.

The lowest energy connection between the funnels is
approximately 120 kJ mol−1 above I and II. Thus, the threshold
simulation is able to locate a pathway connecting these two very
different crystal structures and the rearrangement in hydrogen
bonding required to transform between them results in a high
energy barrier. A lower energy connection between I and IImight
be found if space group symmetry constraints were removed from
the Monte Carlo sampling, but it is unlikely that the global
structure of the landscape would be changed. The funneled
landscape gives an impression that polymorph selection will be
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Fig. 3 Structures and disconnectivity graphs for indigo. a Overlay of the packing of polymorphs A (blue) and B (orange) of indigo. Intermolecular
hydrogen bonds are shown as blue dashed lines. Non-hydrogen bonding hydrogen atoms are hidden. b, c Disconnectivity graph from threshold simulations
for indigo space group b P21 and c P21/c. Blue points are minimised structures. Orange points represent the initial structures. The horizontal axis labels the
number of structures located during the threshold simulation. The number of structures differs between (b) and (c) due to the different number of
structures sampled in the two space groups. The order of structures is chosen to group together structures separated by low energy barriers. A
disconnectivity graph showing the entire sampled energy range is shown in Supplementary Fig. 2.
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strongly influenced by crystallization conditions, which could
lead crystal growth into one funnel or the other, and that, once
grown, interconversion of the polymorphs is unlikely without a
large energetic input. Indeed, both I and II are reported to be
stable for months once isolated28.

Sampling between space groups in a P1 cell. Simulations of the
indigo and co-crystal examples were simplified by their poly-
morphs having the same space group symmetry. However, in
practice, transformations between structures have no symmetry
constraints. Therefore, we expect to obtain a better estimation of
the actual energy barrier between structures by sampling with as
many constraints as can practically be removed from the simula-
tion. We also want to be able to analyse energy landscapes invol-
ving crystal structures with different symmetries. Here, we look at
two examples involving known crystal structures with different
space group symmetry. To remove the symmetry constraints, we
use P1 unit cells. In the following examples, we construct P1 unit
cells containing sufficient molecules to be able to represent all the
known polymorph crystal structures, i.e., the lowest common
multiple of Z (the number of formula units in the unit cell) for all
known structures. Thus, the simulations presented below are not
fully unconstrained—translational symmetry is imposed by the
unit cell—but the models have sufficient flexibility to describe the
polymorphs of interest. The approach could be extended to be able
to visit more possible packing symmetries by expanding the unit
cell to contain more molecules.

Tetrolic acid. Tetrolic acid has two known polymorphic forms: a
triclinic structure in space group P1 and a monoclinic structure in
space group P2138, referred to as α and β, respectively. The two
structures have different hydrogen bond motifs: the carboxylic
acid groups form cyclic, doubly hydrogen-bonded dimers in α
and infinite hydrogen bond chains in β (Fig. 5a). Both crystal
structures have two molecules in the unit cell, so simulations were
performed using P1 unit cells containing two molecules. The
number of degrees of freedom to sample this system was the same
as the nicotinamide:benzoic acid co-crystal, so we applied the
same number of Monte Carlo steps (3000) at each lid energy,
which was raised in 5 kJ mol−1 increments, starting simulations
from the structures of α and β.

An interesting detail for tetrolic acid is that the molecular
geometry is chiral: the molecule and its mirror image differ by

rotation of the methyl group. This is important for the
interconversion of the two polymorphs because space group P1
contains an inversion centre while space group P21 does not.
Therefore, the unit cell of the α polymorph contains two
molecules with different methyl hydrogen orientations, while β
contains two copies with the same geometry. In the rigid-
molecule approach used here, structures sampled from these two
starting points cannot agree perfectly. However, because the
difference in methyl hydrogen positions has very little impact on
intermolecular interactions, we find pseudo-P1 structures in the
simulation started from β and pseudo-P21 structures in the
simulation started from α. Thus, the structure matching methods,
which ignore hydrogen atom positions, find matching structures
in the two trajectories and we can find connections between the
structures. In the more general case, the rigid-molecule constraint
must be removed and intramolecular perturbations included in
the simulations, to allow interconversion between chiral mole-
cular conformations.

Threshold simulations reveal a similar energy landscape
structure as found for the GAZCES co-crystal, with separate
funnels containing structures α and β (Fig. 5b). Because the
simulations were run without space group constraints, a pathway
could be found between the polymorphs. This connection was
located when the lid energy was 40 kJ mol−1 above α, which has
the slightly (1.4 kJ mol−1) lower calculated lattice energy of the
two known polymorphs. The relatively high energy barrier is
unsurprising, considering the breaking of hydrogen bonds
required to transform between α and β, along with substantial
reorientation of the molecules.

To confirm that the structure of the landscape is determined
largely by the hydrogen bond interactions, the local minima
within each funnel were classified by their hydrogen bond motifs
(Fig. 5b). Indeed, all structures connected to α or β by barriers
lower than 25 kJ mol−1 maintain the same hydrogen bonding as
the starting structure, i.e. dimers within the α funnel and chains
within the β funnel. At thresholds 30 and 35 kJ mol−1 above α, we
start to see changes in hydrogen bond motifs: two structures with
hydrogen bond chains within the α funnel and several crystal
structures within both funnels that are not classified as either
chains or dimers. Finally, at 40 kJ mol−1 above α, the two funnels
are connected.

Although there is a clear relationship between the structure of
the disconnectivity graph and the strongest interactions between

Fig. 4 Structures and disconnectivity graph of the nicotinamide:benzoic acid co-crystal. Hydrogen bonding in polymorphs a I and b II of the
nicotinamide:benzoic acid co-crystal. Carbon atoms are grey, oxygen red, nitrogen blue and hydrogen white. Hydrogen bonds are shown as dashed blue
lines. c Disconnectivity graph from threshold simulations for the 1:1 nicotinamide:benzoic acid co-crystal in space group P21/c. The horizontal axis labels the
number of structures located during the threshold simulation. The order of structures is chosen to group together structures separated by low energy
barriers. A disconnectivity graph showing the entire sampled energy range is shown in Supplementary Fig. 4.
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molecules, we cannot necessarily relate the transitions observed
during the threshold simulations to physically realistic pathways.
In particular, we found that some transitions occur via structures
with large separations between layers of molecules (see Supple-
mentary Methods). These pathways create space for large-scale
rearrangement of molecules and might indicate the lack of
reasonable single-crystal to single-crystal transition pathways that

maintain translational symmetry between some pairs of
structures.

We now compare the results of the threshold sampling to the
output from CSP on tetrolic acid, in this case restricting CSP to
the space groups of the two known polymorphs (P1 and P21). The
resulting structures are shown in Fig. 6 in the representation often
used in CSP studies: plotting the energy vs density of all predicted

a) b)

Fig. 5 Hydrogen bonding and disconnectivity graph for tetrolic acid. a Hydrogen bonding in the two known polymorphs of tetrolic acid. Carbon atoms are
grey, oxygen red and hydrogen white. Hydrogen bonds are shown as dashed blue lines. b Disconnectivity graph from threshold simulations for tetrolic acid
with two molecules in a P1 unit cell. The horizontal axis labels the number of structures located during the threshold simulation. The order of structures is
chosen to group together structures separated by low energy barriers. A disconnectivity graph showing the entire sampled energy range is shown in
Supplementary Fig. 5. Colours of edges represent the hydrogen bond motif of connected minimized structures where black edges are structures identified
as having neither of the motifs. Hydrogen bond motifs were identified with Mercury59, identifying hydrogen bonds as H...O contacts with a separation less
than the sum of van der Waals radii +0.1Å and an O–H...O angle >125∘.

Fig. 6 Lattice energy vs density plot of the landscape of predicted crystal
structures of tetrolic acid. Local minima located after optimisation of
structures from the threshold sampling are classified as belonging to either
main basins (α and β) or not within one of these basins (black circles,
labelled 'Out'). Crystal structure prediction results from quasi-random
sampling (QR) are shown for comparison, with searches performed in
space groups P1 and P21.

Fig. 7 Lattice energy vs density plot of the landscape of predicted crystal
structures of TTBI. Lattice energy vs density plot of the landscape of
predicted crystal structures of TTBI from CSP (quasi-random sampling),
with predictions performed in P1 with four molecules in the unit cell. The
experimentally observed structures are labelled α, β, γ, δ and ε. The energy
landscapes generated from threshold simulations are presented in
Supplementary Figs. 6, 7.
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structures. Structures sampled during threshold searches are also
shown and labelled by whether they belong to the funnels around
α, β or are disconnected from those superbasins at a lid energy
40 kJ mol−1 above α. A first observation is that crystal structures
in the α and β funnels occupy overlapping regions of energy-
density space, so that the traditional CSP energy-density
representation does not convey the important information about
which structures belong to connected regions of the high-
dimensional energy landscape. The disconnectivity graph conveys
this information more clearly.

We also find that some structures are found in the threshold
search, but not CSP, and vice versa. The threshold search is able
to locate structures that are not accessible in the CSP because of
lower symmetry constraints: some structures do not belong to
either space group included in CSP. On the other hand, structures
found by CSP, but not the threshold search indicate that the
threshold sampling has not fully explored the energy landscape.
However, we note that overlap between QR and threshold
structures is very good in the important low-energy region of the
landscape.

TTBI. The final molecule investigated is TTBI (Fig. 1c), which has
five known polymorphs6,39,40, four of which occupy high energy
regions of the crystal structure landscape. The positions of the
observed structures are indicated on the crystal energy landscape
(Fig. 7). While the ε polymorph corresponds to the energetic
global minimum, the other four observed structures fall outside
the usual energetic range of polymorphism41. The proposed
explanation for the observation that these very high energy
structures can be isolated as stable materials is that they occupy
deep, isolated regions of the energy landscape, which is hinted at
by the ‘spikes’ of structures that fall below the bulk of structures
on the energy-density landscape6; α, β and γ are low energy
structures within these spikes. We apply the threshold algorithm
to add information to the CSP landscape and improve our
understanding of the observed polymorphism of TTBI.

Of the five experimentally observed TTBI structures, four (all
but α) have space group symmetries that could be sampled in
either space group P1 or P21/c with one independent molecule
(Z0 ¼ 1). The results of threshold simulations performed in P1
and P21/c, starting trajectories from β, γ, δ and ε, are shown in
Fig. 8a, b. All searches used 5 kJ mol−1 increments in the lid
energy and 1000 steps were attempted at each lid energy.

The threshold simulations in P1 and P21/c yield disconnectivity
graphs with similar structures and high energy barriers between
the initial structures (lid energies at which transitions are found
are summarised in Table 1). The connectivity structure shows a
deep energy basin centred on ε with very few connected local
minima until the energy lid is increased to very high energies. In
the P1 simulation, β, δ and ε are all connected at the same lid
energy, +155 kJ mol−1 above ε (+110 kJ mol−1 above δ and
67 kJ mol−1 above β). The results are very similar in P21/c. As with

the indigo polymorphs, there is a slight lowering of the lid energies
at which several of the transitions occur in this larger unit cell: the
connection between β and δ is lowered by 10 kJ mol−1 compared to
the P1 results, while their connection to ε is lowered by only
5 kJ mol−1.

The basin containing the low-density γ polymorph is separated
by an even larger energy barrier from β, δ and ε. This energy
barrier connecting the γ trajectory to the other three structures
shows the largest difference between results in the two space
groups. The lid energy at which γ connects to the others is −89.2
and −59.2 kJ mol−1 in P1 and P21/c, respectively, representing a
barrier of 80 or 110 kJ mol−1 for the transformation of γ into the
global energy minimum ε or one of the other known polymorphs.
Despite the large quantitative difference found when sampling
with different symmetry constraints, the same qualitative picture
emerges: globally, γ is separated by a high energy barrier from the
main pocket formed by ε, β and δ, occupying its own funnel on
the connectivity graph. This finding agrees with the surprisingly
good reported thermal stability of the γ polymorph, despite its
exceptionally low density6.

The results shed light on the stability of the δ polymorph.
Although δ does not occupy a clear spike on the energy-density
representation of the landscape (Fig. 7), the threshold simulations
demonstrate that this structure does occupy a deep energy basin
with high energy barriers preventing transformation to lower
energy structures.

The α polymorph of TTBI crystallizes in space group P42/m
with four molecules in the unit cell39 and cannot be represented
in the unit cells included in the P1 and P21/c simulations. To
include α, we performed a further set of simulations in a P1 unit
cell containing four symmetry-independent molecules, starting
trajectories from all five structures (α, β, γ, δ, ε) and attempting
5000 steps per lid energy. Due to the wide range of initial
energies, the number of lids varied between trajectories, with the
longest simulation started from ε involving 250,000 total Monte
Carlo steps.

The resulting disconnectivity graph from the P1 threshold
simulation is shown in Fig. 8c, where the branches corresponding
to each local energy minimum are coloured by the density of the
corresponding crystal structure. Apart from now including α, a
difference with respect to the P1 and P21/c results is that the
lower symmetry allows more distinct local minima to be
identified within the superbasins corresponding to the known
polymorphs; this is particularly noticeable around δ, where
17 structures are connected to δ at lower energy barriers than the
connection of the δ superbasin to those of ε, α and β. To more
clearly visualise the relationships between the five polymorphs, a
simplified disconnectivity graph is shown in Fig. 8d, in which all
structures other than the five starting structures are hidden. The
lid energies at which transitions are found between the five
structures are summarised in Table 2.

As with the results from the higher symmetry simulations, we
find the barrier separating the γ polymorph from other
observed forms to be the highest; the connection between γ
and the other polymorphs is found at the same lid energy in the
P1 simulation as the simulation with P1 symmetry constraints
in the smaller unit cell. This fulfills our expectation that
sampling in P1 should find a transition path with an energy
barrier equal to or lower than that found in space group-
constrained trajectories.

The pair of polymorphs related by the lowest energy barrier is
α and β, where the lid energy at which their trajectories meet is
just under 50 kJ mol−1 above the calculated energy of α. The
result is in line with the experimental observation that a
transformation occurs between the α and β polymorphs6, as well

Table 1 Lid energies at which transitions are located
between γ, β, δ and ε in threshold sampling in space groups
P1 (upper right entries) and P21/c (lower left entries).

ε δ β γ

ε −259.2 −104.2 −104.2 −89.2
δ −109.2 −214.5 −104.2 −89.2
β −109.2 −114.2 −192.1 −89.2
γ −59.2 −59.2 −59.2 −169.7

Energies in italics along the diagonal are the calculated lattice energies of the four structures. All
energies are in kJ mol−1.
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as molecular dynamics studies6 in which the structures of all
other observed TTBI polymorphs showed only fluctuations about
their known crystal structures at 300 K, apart from α, which
partially transformed to β in a short, 500 ps, simulation. These
structures also occupy the same ’spike’ on the energy-density
representation of the crystal structure landscape. We note that the
disconnectivity graph tends to group structures of similar density;
the lowest energy barriers tend to be found between structures
that are close in density.

Energy landscape featuring. The disconnectivity graph that is
generated from the threshold simulations could be viewed as a form
of clustering of local energy minima, grouping those that are related
by the lowest energy barriers. The results for tetrolic acid demon-
strate that there is a link between the basin structure on the crystal
energy landscape and geometric features of the crystal structures—in
this case, hydrogen bonding motif. The results for TTBI also suggest
that crystal density differences explain some of the grouping of local
energy minima into the superbasins on the energy landscape.
Therefore, we asked the question whether structural descriptors
commonly used in machine learning applications could provide a
more general geometrical descriptor of structural similarity that
correlates with the clustering of local minima based on heights of
energy barriers. If so, this could improve our physical understanding
of the information gained by applying geometrical descriptors to
CSP landscapes, which has started to gain attention for identifying
families of related structures, with the goal of discovering structure-
property relationships42–44. Furthermore, a successful geometrical
clustering could replace the computationally expensive local energy
minimization procedure to identify the basin to which each point on
the Monte Carlo trajectory belongs.

We have taken the GAZCES co-crystal energy landscape in space
group P21/c as an example. This system was chosen for investigation
due to the clear structure of the energy landscape and the sufficiently
large number of structures in each basin from threshold simulations.

Fig. 8 Disconnectivity graphs from threshold simulations for TTBI. Threshold results are shown from sampling in space groups: a P1 (two molecules per
unit cell), b P21/c (four molecules per unit cell) and c P1 with four independent molecules per unit cell. d A simplified graph from the simulation in P1 with all
local minima apart from the five landmark structures (α, β, δ, γ and ε) hidden. The branches in (c) are coloured to show the crystal density of each
structure. The horizontal axis labels the number of structures located during the threshold simulation. The order of structures is chosen to group together
structures separated by low energy barriers. Disconnectivity graphs showing the entire sampled energy range are shown in Supplementary Figs. 8, 9.

Table 2 Lid energies at which transitions are located
between γ, α, β, δ and ε in threshold sampling in space group
P1 with four independent molecules in the unit cell (upper
right entries).

ε δ β α γ

ε −259.2 −94.2 −114.2 −114.2 −89.2
δ −109.2 −214.5 −94.2 −94.2 −89.2
β −109.2 −114.2 −192.1 −134.2 −89.2
α – – – −183.1 −89.2
γ −89.2 −89.2 −89.2 – −169.7

The entries in the lower left are the lowest energy lid at which transitions are found in the
simulations in P21/c and P1. Energies in italics along the diagonal are the calculated lattice
energies of the four structures. All energies are in kJ mol−1.
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For analysis, the total energy landscape was divided into three
regions: two funnels, each containing an initial structure (polymorph
I or II) and the structures outside the two basins. Two common
descriptors for crystal systems—smooth overlap of atomic positions
(SOAP)45 and atom-centred symmetry functions (ACSFs)46—were
applied with common data featuring methods.

We first investigated dimensionality reduction using PCA of the
ACSFs and the SOAP kernel. In both cases, the descriptors were
flattened over all atoms and, for symmetry functions, radial and
angular functions were merged into one vector. With either
descriptor, the eigenvalues corresponding to the first two principle
components had twice the magnitude of the third. We plot the
structures onto these first two principal components in Fig. 9a (see
Supplementary Fig. 10 for the corresponding plot using ACSFs). In
neither case is there clear differentiation of structures corresponding
to basins I and II, as identified by the threshold algorithm; the
structures from both basins, and those outside of the two basins,
overlap in this projection onto the first two principal components.

In case the overlap of basin I and basin II structures seen in the
PCA visualization is due to the dimensional reduction, we also tested
density-based clustering in the original, high-dimensional descriptor
space. The HDBSCAN* algorithm47 was applied to the same dataset
(the GAZCES co-crystal set of local energy minima in P21/c).
However, trying different minimum cluster sizes and, for ACSFs,
different measures of the pairwise distance between structures (see
Supplementary Figs. 11–14), no clustering could be obtained that
aligns with the grouping of structures from the threshold simulation
results. To understand these results, we examined the distributions
of distances between structures within each basin and between
basins. The distribution of distances between structures was found to
be similar within and between energy basins (Fig. 9b and
Supplementary Figs. 11–14), indicating that geometrical similarity
based on these atom-centred geometrical descriptors is not
necessarily a good indicator of structures that are ’closer’, in terms
of energetic accessibility, on the energy landscape.

Similar results were observed for tetrolic acid (see Supplemen-
tary Figs. 15–18): descriptors of local atomic environment do not
effectively distinguish between structures belonging to either
superbasin identified during the threshold simulations.

Conclusions
We have implemented the threshold algorithm to study the
energy landscapes of molecular crystal structures with a force

field energy model using atomic multipole electrostatics. The
method has been applied to four molecular organic crystal sys-
tems to examine the energy barriers between known polymorphs
and the global structure of their crystal energy landscapes, which
we visualize using disconnectivity graphs.

The structures of the energy landscapes vary between the
systems studied here, from a single funnel for the crystal struc-
tures of indigo, where hydrogen bonding is conserved between
polymorphs, to multiple energy funnels when polymorphs differ
in the arrangement of their strong intermolecular interactions.
Thus, the threshold simulation results reinforce our chemical
intuition and provide a quantification of the differences in energy
barriers between different polymorphic systems.

Although the structures of the energy landscapes for the mole-
cules studied here can be rationalized in terms of intermolecular
interactions, we find that for two systems where threshold simula-
tions show clearly separate funnels on the energy landscape that the
grouping of crystal structures in energy basins is not reproduced by
clustering or dimensionality reduction based on commonly-used
structural descriptors. Thus, the results are complementary to
unsupervised machine learning approaches that have been applied to
the analysis of crystal structure landscapes.

The influence of space group constraints on energy barriers has
been examined; for the systems studied here, the qualitative global
picture of the energy landscape is not strongly influenced by
imposing symmetry constraints, but the magnitude of energy
barriers is affected. Therefore, space group-constrained simula-
tions can be used to gain initial insight into crystal energy
landscapes, but more computationally demanding, unconstrained
simulations are the best route for more quantitative results.

Our implementation of the threshold algorithm is currently
limited to rigid molecules and, thus, only requires evaluation of
intermolecular interactions. The extension to flexible molecules
would be needed to apply the method to systems where changes in
molecular conformation between polymorphs are important. The
extension should be straightforward and would require perturba-
tions that involve intramolecular distorsion, and an energy model
that includes the inter- and intra-molecular energy contributions.

We believe that the method presented here is a powerful tool
that can be applied in different situations to enhance our
understanding of polymorphism. The work presented here has
focussed on known polymorphs, where their structures provide
the starting points for threshold simulations, which reveal the

Fig. 9 PCA of the nicotinamide:benzoic acid co-crystal predicted structures. a The first two principle components of the SOAP kernel for structures for
co-crystal GAZCES in space group P21/c, coloured according to the basin identified from threshold simulations. Structures labelled in black fall outside of
the two main basins (see Fig. 4c). b Distribution of pairwise dissimilarities by the SOAP REMatch kernel between and within energy basins I and II.
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energetic relationship between the polymorphic structures. More
generally, the method could be combined with crystal structure
prediction methods without prior knowledge of the observed
crystal structures. In this situation, all low energy structures,
along with other landmark structures on the predicted energy
landscape, could provide starting points and the threshold
simulations would produce a global picture of the energy land-
scape and the molecule’s predicted polymorphs.

Methods
Monte Carlo perturbation. Five types of perturbation are implemented, including
molecular translation and rotation, unit cell length, unit cell angle as well as volume
expansion and contraction. The direction of molecular translation is defined by a
random unit vector generated from a uniform distribution. The implementation of
rotation first involves the generation of a random unit vector as rotation axis as well as
the rotation angle to be rotated around that axis from a uniform distribution; these are
then turned into a quaternion and applied to the target molecule. For lattice parameter
perturbations, a flexible parameter is chosen whose value is changed directly. As to
volume expansion and contraction, the volume fractional change is calculated as the
volume after perturbation dividing the original volume and the coordinates of mole-
cules in the unit cell are scaled with the cubic root of the volume fractional change.

In threshold simulations, the step size of each perturbation is taken from a
uniform distribution among the range within the corresponding cutoff, except for
the unit cell angles. Only unit cell angles ranging from 45 to 135 degrees are taken
to be valid, other than trigonal crystal systems where the upper limit is 120 degrees,
and are more likely to be changed to 90 degrees to avoid the problematic local
minimization caused by a flat unit cell. Added with a shift based on how much it
diverges from 90 degrees, the unit cell angle follows a symmetric triangular
distribution with a peak located at 90 degrees. This perturbation surely breaks the
detailed balance, which is acceptable since the purpose is structure prediction
rather than ensemble sampling.

The following cutoffs were used as maximum perturbations in an attempted
Monte Carlo move during threshold simulations: 0.50Å for molecular translations;
0.05 radians for molecular rotations; 0.50Å for unit cell length perturbations; 0.50
degrees for unit cell angle perturbations and 25Å3 for unit cell volume changes.
These were chosen to given similar distributions of energy changes for each type of
perturbation. The cutoff of the volume change depended on the number of
molecules in primitive unit cell, Z. The more molecules in the unit cell, the more
pairs of interaction are affected by a volume change, and thus, the greater the
energy changed. Therefore the actual maximum change of volume is Z multiplied
by the cutoff. The magnitudes of individual moves were calculated by
multiplication of a random number ranging from 0 to 1 by the move cutoff.

Quasi-random sampling. Crystal energy landscapes generated from CSP are com-
pared with results from threshold simulations as a reference. The procedure and
methods included are described in detail in our earlier paper48. The structure gen-
eration used quasi-random sampling where a low-discrepancy sequence generated by
Sobol method49 is mapped to the molecular position, orientation and lattice para-
meters not constrained by space group symmetry. Due to the use of the Buckingham
potential, the interaction between two close atoms is nonphysical and such structures
must be modified or removed before local lattice energy minimization. The idea used
here is to detect whether two molecules are overlapping and expand the unit cell to
remove the collision (if any). The convex hull50 is calculated for each molecule as its
physically occupied space, and the separating axis theorem51 is used to expand the unit
cell when two convex hulls overlap. The generated structure is lattice energy optimized
to its local minimum with the molecule held rigid at its DFT optimized geometry. The
energy calculation is the same as used in the threshold algorithm, described below.

Quasi-random structure generation was continued until 10,000 structures were
successfully lattice energy minimized in each space group, for single-component
crystal structures. For the co-crystal, the search was extended to 100,000 structures,
and CSP with four independent molecules (Z0 ¼ 4) in P1 was continued until
1,000,000 crystal structures were successfully energy minimized.

Lattice energy calculations. Lattice energy minimizations were performed with an
anisotropic atom-atom force field model for intermolecular interactions, using the
DMACRYS software34. Space group symmetry was constrained throughout all
optimizations, apart from where we specify that calculations were performed in P1.
We make the rigid-molecule approximation in this work, which assumes that the
geometry of a molecule is unaffected by intermolecular interactions when forming
a crystal. All molecular geometries were optimized using DFT at the B3LYP/6-
311G** level of theory, starting from the geometries extracted from structures in
the Cambridge Structural Database52. All DFT calculations were performed within
the Gaussian09 software53.

Repulsion-dispersion interactions were modelled with the empirically
parameterized FIT exp-6 force field54. Electrostatic interactions were described with
a distributed multipole electrostatic model based on the molecular charge densities
calculated from a distributed multipole analysis55 of the B3LYP/6-311G** electron
density, with multipole rank up to hexadecapole on each atom. Thus, the

intermolecular atom-atom potential function has the form:

Elattice ¼
1
2
∑
M;N

∑
i2M;k2N

Aικ expð�BικrijÞ � Cικr
�6
ik þ EDMA

elec ðrik;ΩikÞ
h i

; ð1Þ

where Aικ, Bικ and Cικ are empirically determined potential parameters describing the
interactions between atoms of type ι and κ, rik is the distance between atoms i and k (in
moleculesM and N), of types ι and κ, and Ωik represents the relative orientation of the
interacting atoms. Charge-charge, charge-dipole and dipole-dipole interactions were
evaluated using Ewald summation. Higher order electrostatic and exp-6 interactions
were summed to a direct-space cut-off. The cut-off for both dispersion and electrostatic
interactions was calculated as Rcutoff ¼ max (15.00Å, Rintra), where Rintra is the largest
intramolecular atom-atom length, to ensure that the intermolecular interaction cutoff
extends beyond the first shell of neighbours. To avoid the unphysical region of the exp-
6 interatomic potential, the distances between molecules were calculated after
perturbation and the Monte Carlo move was rejected if any interatomic distance was
shorter than the sum of covalent radii of the two elements +0.3Å.

Identification of connections between trajectories. The threshold algorithm does
not involve local optimization of structures in principle. However, we require a method
to identify whether a perturbation has led to a new energy basin. For this, perturbed
structures are locally energy minimized if the perturbation is accepted (i.e., the
unminimized energy was under the current lid energy). The minimized structures are
compared to each other to identify where trajectories meet. Energy minimization is
performed for every accepted perturbed structure because lattice energy landscapes are
known to often contain many local minima around observed structures12, so every
perturbation was assumed to potentially lead to a new local energy basin.

We found that this sometimes leads to huge unit cell with empty gaps between
layers of molecules (see Supplementary Methods and Supplementary Fig. 19). To solve
this issue, a three-step minimization process was applied as (1) initial optimization
using FIT+DMA; (2) a second minimization with FIT+DMA with a small
(0.1 GPa) pressure applied; (3) final reoptimization with FIT+DMA and no pressure.
The first minimization without pressure is to ensure that the energy does not go uphill
so that no energy barrier is overcome during local minimization. The second
minimization with pressure applied is to compress the unit cell to remove artificial
voids and the third step is to give the energy on the original energy landscape.

Two minima are considered to be connected at a given lid energy if the
trajectories that start at or visit these minima are found to sample a common local
minimum. Thus, the identification of identical structures (corresponding to the
same local minimum) is an essential process to obtain the disconnectivity graph.

We use a two-step strategy: (1) a fast initial screen for duplicates is performed
by comparison of simulated X-ray diffraction patterns, followed by (2) checking of
duplicates using the COMPACK algorithm56, which compares interatomic
distances and angles within a cluster of 30 molecules taken from the compared
crystal structures (see full details in the Supplementary Methods).

Discussion of the convergence of threshold sampling is given in the
Supplementary Methods (and Supplementary Figs. 20, 21).

Structural descriptors and data featuring. Two descriptors of structural simi-
larity—atom-centred symmetry functions (ACSFs)46 and the smooth overlap of
atomic positions (SOAP)45—were used to investigate geometric clustering of
crystal structures and their clustering into superbasins based on threshold simu-
lations. Both approaches provide a measure of structural similarity based on
comparison of local atomic environments.

ACSFs capture structural information from a series of radial and angular
functions, which depend on neighbouring atomic positions out to a cutoff radius
Rc. We use ACSFs grouped by element, i.e. the functions are evaluated separately
for all pairs (for radial functions) and triples (angular functions) of elements. The
spacing and width of ACSFs is chosen as in the ANI-1 neural network force field57.

In the SOAP kernel, the local region of each atom is described individually by a
sum of Gaussians centred on all atoms within the local environment. The approach
applied here to calculate the similarity between two structures based on similarity
of their atomic environments is the regularized-entropy match (REMatch) kernel.

Full details of ACSF and SOAP are provided in the Supplementary Methods.
Principal component analysis (PCA)58 and the clustering method

HDBSCAN*47 are used to analyse the distribution of crystal structures in
descriptor space, for comparison with the clustering into energy basins determined
by the threshold simulations.

Data availability
Crystal structures generated by the threshold simulations, and details of their
connectivity are available at https://doi.org/10.5258/SOTON/D2079.

Code availability
The code used in this work is part of a wider code developed for crystal structure
calculations and crystal structure prediction. This code is being prepared for release.
Access can also be granted for non-commercial use by contacting Prof. Graeme Day.
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