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Abstract

The Blandford and Znajek (BZ) split-monopole serves as an important theoretical example
of the mechanism that can drive the electromagnetic extraction of energy from Kerr black
holes. It is constructed as a perturbative low spin solution of Force Free Electrodynam-
ics (FFE). Recently, Armas et al. put this construction on a firmer footing by clearing
up issues with apparent divergent asymptotics. This was accomplished by resolving the
behavior around the outer light surface, a critical surface of the FFE equations. Build-
ing on this, we revisit the BZ perturbative expansion, and extend the perturbative ap-
proach to higher orders in the spin parameter of the Kerr black hole. We employ matched-
asymptotic-expansions and semi-analytic techniques to extend the split-monopole solution
to the sixth-order in perturbation theory. The expansion necessarily includes novel loga-
rithmic contributions in the spin parameter. We show that these higher order terms result
in non-analytic contributions to the power and angular momentum output. In particular,
we compute for the first time the perturbative contributions to the energy extraction at
seventh- and eighth-order in the spin parameter. The resulting formula for the energy
extraction improves the agreement with numerical simulations at finite spin. Moreover, we
present a novel numerical procedure for resolving the FFE equations across the outer light
surface, resulting in significantly faster convergence and greater accuracy, and extend this
to higher orders as well. Finally, we include a general discussion of light surfaces as critical
surfaces of the FFE equations.
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1 Introduction and summary of the results

The seminal paper of Blandford and Znajek (BZ) [1], demonstrating the existence of a Penrose-
like mechanism to extract the rotational energy from a Kerr black hole (BH), opened up one of
the most fascinating research endeavours in astrophysics. In the BZ mechanism, the plasma-filled
magnetosphere surrounding the rotating BH is described by force-free electrodynamics (FFE),
which is an effective approximation of ideal relativistic magnetohydrodynamics (MHD) in a
regime where the inertia of the plasma can be neglected. The FFE approximation is supported
by numerical simulations [2–13] in the region away from the accretion disc and especially in the
funnel region around the jets, where the plasma density is several orders of magnitude smaller
than the energy density of the electromagnetic field.

To demonstrate their energy extraction mechanism, BZ explored perturbatively the split-
monopole and paraboloidal profiles of the magnetosphere around a slowly rotating Kerr BH.
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In recent years, there has been renewed interest in extending these perturbative constructions
[14–20] and exploring other profiles [21–25]. The BZ mechanism has been investigated in the
intermediate-spin regime [26–32] using numerical simulations. Finally, the high spin regime has
been examined with analytical techniques [33–38] exploiting the enhancement of symmetries in
the near-horizon region of a near-extreme Kerr BH.1

An important feature of the FFE configurations around the Kerr black hole is the presence
of critical surfaces, which are the regular singular point of the second-order differential equation
for the magnetosphere. Understanding the behavior of the magnetosphere near these surfaces is
pivotal to find the correct solution. These critical surfaces include the event horizon and a surface
at asymptotic infinity where one obtains what is know as Znajek conditions. Furthermore, they
include the inner light surface (ILS) and the outer light surface (OLS), on which a co-rotating
observer would need to travel at the speed of light. These critical surfaces play a crucial role in
this work.

For the particular case of the split-monopole profile, BZ originally solved the FFE equations
perturbatively to second order in α = J/M2 in the low spin limit α � 1, with M and J being
respectively the mass and angular momentum of the Kerr black hole. Subsequently, in [14]
it was noticed that the perturbation scheme to extend the split-monopole configuration up to
fourth-order breaks down asymptotically. Despite this result, there were further attempts to
push forward the perturbative BZ split-monopole solution to higher orders in α [15–17]. More
recently in [18, 19], further inconsistencies in the perturbation analysis were explored, pointing
to apparent issues with imposing the correct asymptotic behavior even at second order in α.

In [20] a resolution was found to the apparent inconsistencies in the perturbative approach
to the BZ split-monopole at low spin. The crucial observation is that one needs to provide a
smooth solution across the OLS. For a slowly rotating Kerr black hole α� 1, the OLS emerges
from infinity at a Boyer-Lindquist radius proportional to α−1. Introducing a rescaled radial
coordinate, that resolves the behavior near the OLS, one can numerically find a magnetosphere
configuration that is continuous across the OLS and which behaves correctly in the asymptotic
region. This was accomplished to third order in α in the region near the OLS [20], being the
first order for which these issues appear.

In this work we build on the approach of [20] and pay particular attention to the non-analytic
behavior in α that it results in. Already in [20] non-analytic terms in α were found in the region
near the OLS in the magnetic flux function ψ, since one needs to include terms proportional to
α2n|α| if one should impose the physical requirement that ψ is even under α → −α. However,
this non-analytic behavior did not reveal any consequences for the physical quantities in [20].

In our work, we extend the perturbative analysis to include higher-order terms in α. The
space-time is divided into two regions, one being the region that includes the horizon, in this
paper called the r-region after the Boyer-Lindquist radial coordinate r, and the other being the
r̄-region, in which the rescaled radial coordinate r̄ = αr is kept finite for α → 0. In addition,
one has an overlap region between these, as well as an asymptotic region which is contained in
the r̄-region.

For the r-region we find that one has a new |α|5 contribution to ψ. In addition we consider α6

and α6 log |α| contributions as well. This is the first time that non-analytical contributions to ψ
have been found in the r-region. The presence of logarithmic contributions in α is a new feature,
which shows that the non-analytic behavior of the perturbative expansion plays an increasingly
central role at higher orders.

Turning to the r̄-region we find new α4 and α4 log |α| contributions to ψ, showing the presence
of non-analytical terms also in the r̄-region. Finding these new contributions involves an intricate

1Interestingly, there exist also exact solutions of FFE in the Kerr background, valid for any value of the spin.
These are the Menon and Dermer class [39–41] and the Brennan, Gralla and Jacobson class [42]. However, these
two classes of solutions have an electromagnetic field with vanishing Lorentz invariant FµνF

µν = 0, contrary to
the physical requirement of having FµνF

µν > 0.
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matching between the two regions in the overlap region, where perturbative orders are mixed non-
trivially between the two regions. To solve for ψ in the r̄-region one has to proceed numerically,
imposing continuity across the OLS and a monopole-like profile in the asymptotic region.

One of our main results is that the non-analytic behavior also appears in the extraction of
energy and angular momentum of the magnetosphere-equipped Kerr black hole in the pertur-
bative expansion for α � 1. Opting for the angular velocity of the event horizon ΩH as the
perturbative parameter,2 the result we get in the low spin regime r0|ΩH | � 1 for the energy flux
at the horizon is

Ė
∣∣
r+

=
2π

3
Ω2
H

{
1 + 0.34588327 r2

0Ω2
H − 0.70309718 r4

0Ω4
H + 0.0483269(2) r5

0|ΩH |5

+ [0.1837383(5)− 0.0027081(2) log(r0|ΩH |)] r6
0Ω6

H + · · ·
}
,

(1.1)

where r0 = 2M is a dimensional parameter proportional to the black hole mass and r+ is the
location of the event horizon. Equation (1.1) shows the high-order contributions with respect
to the BZ power emission formula ĖBZ |r+ = (2π/3)Ω2

H . The new terms in Eq. (1.1) are those
proportional to |ΩH |7, Ω8

H and Ω8
H log(r0|ΩH |). Clearly, the contributions proportional to |ΩH |7

and Ω8
H log(r0|ΩH |) are non-analytic in a perturbative expansion of r0ΩH around ΩH = 0. Inter-

estingly, we find that in order to determine the coefficients of |ΩH |7 and Ω8
H one needs to extend

smoothly the magnetic flux function ψ across the OLS. To do so we have implemented a novel
numerical procedure. Such method, which is explained in detail in Appendix C, improves sig-
nificantly the convergence and accuracy with respect to previous attempts in the literature [20].
It involves expanding ψ in a basis of mode functions that capture its angular dependence. The
numerical procedure amounts to solve a system of second order ordinary differential equations
with a spectral collocation scheme. Contrary to [20], no minimization procedure is required. The
same technique is subsequently employed to solve numerically for ψ at order α4 and α4 log |α| in
the r̄-region. The analytic expressions of all the coefficients in Eq. (1.1) are given in Sec. 6; here
we provide their numerical values for the ease of the presentation. The coefficients are approxi-
mated to the 8th significant digit. The uncertainty due to the numeric procedure only affects the
coefficients of |ΩH |7 and Ω8

H . The first subleading correction (i.e. in Ω4
H) is in perfect agreement

with the results of [14] and we discuss the agreement of the second subleading correction (i.e. in
Ω6
H) with [16] in Sec. 6.

Note that we are imposing the requirement that there is no difference in the physics of the BZ
split-monopole solution if one reverses the direction of both the angular velocity of the black hole
as well as the rotational direction of the magnetosphere. Thus, sending α to −α, the magnetic
flux ψ should be the same, but spin-direction dependent quantities such as angular velocities
and angular momenta should change sign. Clearly, the energy flux should instead be invariant,
thus Ė(−ΩH) = Ė(ΩH) which is saying that the energy flux is an even function of the angular
velocity. In other words, the power emitted does not depend on the direction of the black hole
rotation, meaning that clockwise and anti-clockwise rotations are physically equivalent because
both configurations extract the same amount of energy per unit time.

For the flux of angular momentum we also find logarithmic contributions. Indeed, at the

2Usually in this paper we work with the perturbative parameter α but one can always recast any α-expanded
quantity in terms of ΩH via the simple relation

ΩH =
α(√

1− α2 + 1
)
r0
.
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horizon we compute

L̇
∣∣
r+

=
4π

3
ΩH

{
1 + 0.17294163 r2

0Ω2
H − 0.0694564(6) r3

0|ΩH |3

+ [−0.3736222(9) + 0.0038095(2) log (r0|ΩH |)] r4
0Ω4

H + · · ·
}
.

(1.2)

The novelty here is the presence of logarithmic contributions proportional to Ω5
H . This is yet

another manifestation of the non-analytic behavior of the observables in the low spin regime
r0|ΩH | � 1. As for the energy flux, we approximated the numerical values at the 8th significant
digit.

The paper is organized as follows. In Sec. 2 we briefly review the Kerr geometry and provide
the basics of stationary and axisymmetric force-free fields. Sec. 3 introduces a new partially-
covariant expression for the stream equation in the Kerr background, which turns out to highlight
the presence of its critical surfaces and the relative regularity conditions which will be used
throughout the entire paper. The reader familiar with FFE models of magnetospheres in the
Kerr geometry can skip the first two sections. In Sec. 4, we review the main feature of the BZ
perturbative approach and the method of the matched asymptotic expansions (MAE) applied
to the BZ split-monopole case. Secs. 5 and 6 are entirely devoted to presenting our new results
outlined in the Introduction. We conclude with a discussion of our results in Sec. 7. We refer the
reader to Appendix A for a brief, nonetheless self-consistent, computation of the MAE method
applied to lower orders in the spin parameter, as previously derived in the literature; Appendix
B contains a discussion about the Green’s function method in the context of the BZ expansion;
Appendix C contains a detailed description of the numerical strategies exploited to solve and
make the flux function continuous across the OLS in the r̄-region.

2 Force-free electrodynamics in Kerr background

We briefly review force-free magnetospheres around Kerr black holes. This section is intended
to recap definitions and equations. For a detailed treatment of the subject, we refer the reader
to the reviews [43–46].

2.1 Kerr geometry

The Kerr metric describes the spacetime geometry of a rotating black hole with mass M and
angular momentum J . In the Boyer-Lindquist (BL) coordinates and in geometric units (G =
1 = c), the Kerr metric reads

ds2 = −
(

1−r0r

Σ

)
dt2−2r0r

Σ
a sin2 θ dtdφ+

(r2 + a2)2 − a2∆ sin2 θ

Σ
sin2 θ dφ2+

Σ

∆
dr2+Σdθ2, (2.1)

with r0 = 2M , specific angular momentum a = J/M and

Σ = r2 + a2 cos2 θ, ∆ = (r − r+)(r − r−), r± =
r0

2

(
1±

√
1− 4a2

r2
0

)
. (2.2)

The position of the event horizon is r = r+. The Kerr black hole (2.1) is stationary and
axisymmetric, thus its isometry group is R× U(1).

In the BL coordinates the metric (2.1) can be rearranged in a block-diagonal form so as to
separate the toroidal coordinates (t, φ) from the poloidal coordinates (r, θ). The metric takes
the product form

ds2 = ds2
T + ds2

P , where ds2
T = gttdt

2 + 2gtφdtdφ+ gφφdφ
2, ds2

P = grrdr
2 + gθθdθ

2, (2.3)
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and one can define the determinants

gT = gtt gφφ − gtφ2 = −∆ sin2 θ, gP = grr gθθ =
Σ2

∆
, g = gT gP = −Σ2 sin2 θ. (2.4)

2.2 Stationary and axisymmetric force-free magnetospheres

FFE is the low-density limit of ideal magnetohydrodynamics (MHD), in which one assumes that
the energy contribution of the magnetic field overwhelms the inertia of the plasma. Under such
conditions the dynamics of the magnetosphere is governed by the Maxwell’s equations

DµF
µν = −jν , D[ρFµν] = 0, (2.5)

supplemented with the force-free constraints

Fµνj
ν = 0, jµ 6= 0. (2.6)

Here Fµν = ∂µAν − ∂νAµ and Aµ are the electromagnetic field strength and the gauge potential,
respectively, whereas jµ is the current density of the plasma. Equations (2.5) and (2.6) can be
used to eliminate the current density jµ to get

FµνDρF
νρ = 0. (2.7)

FFE, therefore, captures the non-linear dynamics of the plasma-filled magnetosphere around
compact objects, such as black holes, pulsars and stars [46].

We consider magnetospheres around a Kerr black hole that share the same symmetries of
the background, i.e. stationarity and axisymmetry, and our task is to solve (2.7) on a fixed
Kerr background. In this case, it is possible to choose a gauge such that the gauge potential is
independent of the time and azimuthal coordinates, namely ∂tAµ = ∂φAµ = 0. One defines

ψ(r, θ) ≡ Aφ(r, θ) (2.8)

as the magnetic flux (divided by 2π) through a circular loop of radius r sin θ surrounding the
rotational axis of the black hole. Combining the toroidal components of Eq. (2.7), one gets
∂θAt∂rψ = ∂θψ∂rAt, which implies that At can be regarded as a function of ψ.3 The angular
velocity of magnetic field lines Ω can thus be defined as Ω = −∂rAt

∂rψ
= −∂θAt

∂θψ
, i.e.

∂θAt = −Ω∂θψ, ∂rAt = −Ω∂rψ. (2.10)

Taking ∂r of the first condition in (2.10) and subtracting ∂θ of the second condition in (2.10),
after using the integrability condition for At(ψ) one finds that Ω satisfies itself the integrability
condition

∂θΩ ∂rψ = ∂θψ ∂rΩ, (2.11)

meaning that the angular velocity of field lines is a function of ψ alone, Ω = Ω(ψ). Finally, one
defines the poloidal current I as

I =
√
−gF θr. (2.12)

3Indeed recall that the chain rule for a generic function Q
(
ψ(r, θ)

)
states that{

∂rQ = dQ
dψ ∂rψ ,

∂θQ = dQ
dψ ∂θψ ,

⇒ ∂rQ

∂rψ
=
dQ

dψ
=
∂θQ

∂θψ
. (2.9)

Conversely, if the latter condition holds then Q must be a function of ψ. We use this integrability property for
the quantities At, Ω and I.
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The radial component of Eq. (2.7) reads

∂rψ
[
−Ω ∂ρ(

√
−gF tρ) + ∂ρ(

√
−gF φρ)

]
+ Frθ∂rI = 0, (2.13)

while for the polar component of Eq. (2.7) we obtain

∂θψ
[
−Ω ∂ρ(

√
−gF tρ) + ∂ρ(

√
−gF φρ)

]
+ Frθ∂θI = 0. (2.14)

For Eq. (2.13) to be consistent with Eq. (2.14) it is necessary that the poloidal current is a
function of ψ, I = I(ψ), which is equivalent to the integrability condition

∂rI ∂θψ = ∂θI ∂rψ. (2.15)

Finally, from Eqs. (2.13)-(2.14) we get

Ω∂ρ(
√
−gF ρt)− ∂ρ(

√
−gF ρφ) + Frθ

dI

dψ
= 0, (2.16)

which is the stream equation in a stationary and axisymmetric background. The above equations
all follow from the FFE conditions (2.7). As a consistency check, we can now verify that they
also imply that the associated Maxwell energy momentum tensor on the Kerr background is
conserved: ∇µT

µν = 0 with Tµν = F α
µ Fνα − 1

4
gµνF

2.

3 Stream equation and its critical surfaces

In this section we exhibit a new partially-covariant form for the stream equation (2.16), useful
for analyzing the critical surfaces. Subsequently, we review the four possible critical surfaces for
a magnetosphere in the background of the Kerr geometry.

3.1 Partially covariant form of the stream equation

In order to write the stream equation (2.16) in a more covariant fashion, it is useful to introduce
the one-form [44]

η = dφ− Ω(ψ)dt. (3.1)

By means of the block-diagonal decomposition (2.3), any stationary and axisymmetric force-free
field can be written as [44]

F = −I(ψ)

√
−gP
gT
dr ∧ dθ + dψ ∧ η. (3.2)

Therefore, any stationary and axisymmetric force-free magnetosphere is fully determined once
the explicit functional expressions for ψ, I and Ω are known. The stream equation (2.16) can
be conveniently recast as

ηµ∂ν

(
ηµ
√
−g gνρ∂ρψ

)
= Frθ

dI

dψ
. (3.3)

Specializing to the Kerr metric, the stream equation takes the form

ηµ∂r

(
ηµ∆ sin θ ∂rψ

)
+ ηµ∂θ

(
ηµ sin θ ∂θψ

)
+

Σ

∆ sin θ
I
dI

dψ
= 0. (3.4)

As shown below, such partially covariant expression for the stream equation makes the analysis
of the critical surfaces of the force-free magnetosphere around rotating black holes easier to
perform.
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Equation (3.4) constitutes the general relativistic version of the force-free Grad-Shafranov
equation in the Kerr geometry. It follows from the full MHD Grad-Shafranov equation for sta-
tionary and axisymmetric flows [43] after taking the limit of vanishing density for the plasma
filling the magnetosphere. From a pure mathematical perspective, Eq. (3.4) is a second-order
quasi-linear partial differential equation (PDE) for the magnetic flux ψ and the difficulties one
encounters in solving this equation are, in first place, due to the presence of the two integrals of
motion I(ψ) and Ω(ψ) in the form of free functions that have to be determined. The problem
of providing prescriptions for these two functions is not only related to the nature of the astro-
physical object immersed in the magnetosphere – whether it is a pulsar or a black hole, say –
but also to the topology of the magnetic field lines that one aims to study [44,47,48].4

By considering the canonical form for a second-order PDE, namely,

A ∂2
rψ + 2B ∂r∂θψ + C ∂2

θψ + · · · = 0, (3.5)

it is possible to study the character of Eq. (3.4). When the discriminant is non-negative

AC − B2 = sin2 θ(ηµηµ)2∆ ≥ 0, (3.6)

the stream equation is elliptic everywhere in the exterior region of the Kerr black hole (r > r+, θ),
with the exception of critical surfaces [43]. In the Kerr background, one identifies four critical
surfaces which are regular singular points (or surfaces) of the stream equation (3.4): the event
horizon, the ILS, the OLS, and the asymptotic region.

3.2 Light surfaces and regularity conditions

The position of the light surfaces can be determined by looking at those surfaces where the
velocity vector field χ = ∂t+Ω(ψ)∂φ of an observer co-rotating with the magnetosphere becomes
null:

χµχµ = gtt + 2Ωgtφ + Ω2gφφ = 0. (3.7)

Equation (3.7), which implicitly defines the position rLS(θ) of the light surfaces, admits two
solutions in the Kerr geometry,5 corresponding to the ILS and the OLS. While the OLS represents
the black hole analogue of the light cylinder in pulsar magnetospheres, the presence of the ILS is
a feature of General Relativity; in particular, the ILS originates at the pole of the event horizon
and it is always located inside the ergosphere [49]. Light surfaces are also present in MHD flows
as the critical surfaces of the full Grad-Shafranov equation for which the electric field equals in
magnitude the poloidal component of the magnetic field. In the force-free limit, where the inertia
of the plasma is negligible, both the ILS and OLS also coincide with Alfvén surfaces [43,49].

Notice that, whenever the toroidal sector of the metric is non-degenerate, the one-form η is
null at rLS(θ) as well; in this case indeed

ηµη
µ =

1

gT
χµχµ = − 1

∆ sin2 θ
χµχµ = 0. (3.8)

Accordingly, the discriminant (3.6) vanishes, AC−B2 = 0. At the light surfaces both the second
derivatives vanish, and Eq. (3.3) becomes

√
−g gνρ∂ρψ ηµ∂νηµ = Frθ

dI

dψ
. (3.9)

4See [48] for configurations of closed magnetic field lines connecting the black hole with a thin accretion disc,
or [4] for the case of a black hole immersed in a vertical magnetic field.

5There are two solutions under the assumption Ω 6= 0. A non-trivial interesting case in which there is only
one light surface is the uniform vertical configuration, where outside the cylindrical separatrix the field lines are
assumed not to rotate [4, 21,22,24,25].
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For the Kerr metric this reads

∆ ηµ∂rη
µ∂rψ + ηµ∂θη

µ∂θψ +
Σ

∆ sin2 θ
I
dI

dψ
= 0. (3.10)

Since the second-order terms in Eq. (3.4) vanish at rLS(θ), the stream equation can admit
solutions for which the second derivatives of ψ diverge as ∂2ψ ∝ (ηµηµ)−1. For such solutions,
the first derivative of ψ has a discontinuity across the light surface, which reflects a discontinuity
of poloidal magnetic fields according to Eq. (3.2). This jump can be supported only if an
infinitesimally-thin current sheet is present at the light surface, which in turn constitutes a layer
where the force-free assumption is violated.

Equation (3.9), or equivalently Eq. (3.10), serves to discard such discontinuous solutions
by constraining the first derivative of ψ, and acts as a regularity condition across the light
surface. Since regularity at rLS(θ) is not automatically implied by the stream equation, in order
to construct realistic models of force-free magnetospheres, such regularity conditions have to be
imposed as additional physical constraints on the FFE system of equations. This was first noticed
in [3] and applied in other magnetospheric configurations [4, 48], where Eq. (3.9) was employed
in an iterative numerical optimization procedure to derive expressions for the unknown functions
I(ψ) and Ω(ψ) under the assumption of a smooth matching for ψ across the light surface.

Finally, notice that the “classical” perspective about the BZ mechanism [1] regards open
field lines extending from the horizon to infinity as responsible for the extraction of energy and
angular momentum from the black hole.6 Magnetic field lines in this configuration necessarily
have to intersect both the ILS and the OLS [44], so that for open field lines threading the
horizon of a rotating black hole the regularity condition (3.10) has to be imposed at rOLS(θ) and
at rILS(θ).

As a final remark, from Eq. (3.2), one has

F 2 = − I
2

gT
+ |dψ|2|η|2. (3.11)

Hence at the light surface, when dψ is regular, F 2|LS = −I2/gT ≥ 0. This means that the
regularity condition at the light surface also imposes the field to be magnetically dominated or
null on that surface.

3.3 Event horizon and the Znajek condition

The event horizon of a Kerr black hole is a regular singular surface as well. This conclusion can
be drawn by observing that in Eq. (3.4) the quantity ηµ = gµνην appears and it explicitly reads

ηµ =
1

gT
[− (gtφ + gφφΩ) δµt + (gtt + gtφΩ) δµφ] ≡ 1

∆
hµ. (3.12)

As a consequence, all the terms containing radial derivatives in ψ disappear from the stream
equation (3.4), when this is evaluated at the horizon. The stream equation in this case reduces
to the following ODE [

ηµ∂θ (hµ sin θ∂θψ) +
Σ

sin θ
I
dI

dψ

]∣∣∣∣
r+

= 0. (3.13)

It is useful to notice that

hµ|r+ = −
[
r2

0r
2
+

Σ
(ΩH − Ω) (δµt + ΩHδ

µ
φ)

]∣∣∣∣
r+

, (3.14)

6Although for the extraction to take place what is really crucial is to consider magnetic field lines connecting
the ergosphere with infinity, irrespective of whether they penetrate the horizon or not [49].
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where ΩH = −(gtφ/gφφ)|r+ = a(r0r+)−1 is the ZAMO (i.e. zero-angular-momentum-observer)
angular velocity at r = r+. Since the event horizon is a surface of constant r, all the derivatives
in Eq. (3.13) are performed along the θ-direction. By means of Eq. (3.14), and with a few
algebraic steps, it is possible to integrate the reduced stream equation (3.13) as follows

∂θ

[(r0r+

Σ
sin θ

)2

(ΩH − Ω)2 (∂θψ)2 − I2

]∣∣∣∣
r+

= 0. (3.15)

The integration constant can be set to zero by requiring the current I to vanish along the rotation
axis of the black hole at θ = 0. The solution of I+ with the positive sign ensures regularity on the
future event horizon of the black hole and it is known as the Znajek condition [50] or frozen-in
condition at the horizon

I(r+, θ) =
[(r0r+

Σ
sin θ

)
(ΩH − Ω) ∂θψ

]∣∣∣
r+
. (3.16)

In general, the Znajek condition at the horizon should not be regarded as a boundary con-
dition: since it directly descends from the stream equation (3.4), it cannot be independently
imposed to select a particular solution to the magnetosphere problem [4]. As a matter of fact,
Eq. (3.16) is a true regularity condition which guarantees finiteness of the electromagnetic field
(3.2) when measured by a freely-falling observer crossing the horizon. This is also related to the
fact that the origin of the Znajek condition can be traced back into the more general context of
MHD as a regularity condition imposed at the fast magnetosonic critical surface which, in the
low-density limit of FFE, coincides with the horizon [43,47–49,51].

Numerical resolutions of the Grad-Shafranov equation [52], as well as time-dependent numer-
ical simulations [4,49], revealed that solutions with a smooth matching across the light surfaces
automatically satisfy the horizon regularity condition (3.16). In the present paper we give an
analytical confirmation of this fact at the level of the ILS, for each one of the perturbative orders
taken into account. The redundancy of the condition at the ILS is understood as a consequence
of the small spin expansion. As we shall discuss later, this feature can be seen by identifying the
critical points in the differential operators associated to the stream equation within the MAE
scheme; see comments below Eqs. (4.14) and (4.18).

3.4 Asymptotic infinity

As mentioned earlier, open magnetic field lines connecting the system to infinity are crucial for
the energy and angular momentum to be carried away from the black hole. However, r =∞ is
a regular singular point of the stream equation (3.4) and, as such, it should be equipped with
its own regularity condition. Labelling the asymptotic value of a function with a superscript∞,
we can notice that the vector hµ, defined in Eq. (3.12), asymptotes to

(hµ)∞ ≈ −r2Ω∞δµt. (3.17)

Analogously to what discussed previously about the horizon, in the limit r → ∞ one observes
that radial-derivative terms are negligible as compared to angular derivatives; the reduced stream
equation can be easily integrated to derive the following regularity condition in the asymptotic
region

I∞(θ) = sin θΩ∞(∂θψ)∞. (3.18)

We refer to this as the Znajek condition at infinity and, as for the Znajek condition at the
horizon (3.16), this should not be regarded as a boundary condition, but rather as an outgoing
radiation condition [4, 53].
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4 Matched asymptotic expansions I: past results

In this section we briefly review the BZ perturbative approach and the MAE method, while
recalling all the results in the literature that are relevant to our analysis.

In addition to reviewing past results we also provide novel analytical expressions for two
coefficients W0 and V0 (Eqs. (4.22b) and (4.22c)) that previously were only known numerically,
as well as present the complete analytic expression for ψ4(r, θ) in Appendix D.

4.1 Blandford–Znajek split-monopole in the slow-spin regime

The perturbative parameter of the BZ approach is related to the specific angular momentum of
a Kerr black hole as follows

α =
J

M2
=

2a

r0

, (4.1)

with the slow-spin regime defined by the condition α� 1. Under this assumption, it is possible
to expand perturbatively in the parameter α all the relevant quantities of the Kerr background.

Note that we assume α > 0 in the following, unless otherwise noted. As explained in
the Introduction, the physics of magnetospheres of clockwise α > 0 and anti-clockwise α < 0
rotations are equivalent. Thus, one should have a symmetry of the magnetosphere if one sends
α→ −α along with Ω→ −Ω and I → −I while keeping ψ the same.

At the leading order in α, the Kerr metric reduces to the Schwarzschild geometry

ds2 = −
(

1− r0

r

)
dt2 +

(
1− r0

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) +O(α). (4.2)

The seed solution for this construction is therefore a static force-free field, which can be derived
by solving the source-free stream equation in the Schwarzschild spacetime,7 namely

1

sin θ
∂r

[(
1− r0

r

)
∂rψ
]

+
1

r2
∂θ

(
1

sin θ
∂θψ

)
= 0. (4.3)

Among the static magnetospheres, there are configurations with monopole [1], paraboloidal
[1], hyperbolic [23] and vertical [4, 21] magnetic field line profiles. We refer the reader to [19]
for a classification of the asymptotic behaviour. Typically, in solving Eq. (4.3), one restricts to
consider only the northern hemisphere 0 ≤ θ < π/2, and then patches that solution with the one
in the southern hemisphere. These split-field configurations are, by construction, discontinuous
across the equatorial plane, θ = π/2, onto which an infinitesimal current-sheet develops. One
can regard this current-sheet as a very crude picture of a thin accretion disc, whose presence has
to be invoked in order to sustain the magnetic field surrounding the black hole, as a consequence
of the no-hair theorem.8

In this work the main focus will be devoted to the split-monopole configuration

ψ0 = 1− cos θ, I0 = 0, Ω0 = 0. (4.4)

This is the seed solution of the BZ perturbative approach which consists in constructing correc-
tions in α for ψ, I, and Ω and, by means of these, turning-on a slow rotation in the system both

7Notice that the stream equation in the Schwarzschild spacetime only has two critical surfaces coincident with
the horizon r = r0 and infinity r = +∞.

8Notice that the force-free assumptions are not valid in the current-sheet region. Furthermore, it is important
to stress that approximating the accretion disc with a current sheet misses some crucial aspects of the physics
of black hole accretion; for example the equatorial current-sheet extends from infinity all the way down to the
event horizon, which contrasts with the presence of an ISCO, or more generally an inner edge, in accretion disc
models.
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for the black hole and for the force-free field. These corrections are derived in such a manner as
to be consistent with the boundary conditions of the split-monopole field [19,20], namely

ψ
∣∣
θ=0

= 0, ψ
∣∣
θ=π/2

= 1, ∂θψ
∣∣
θ=0

= 0, lim
r→∞

ψ = ψ∞(θ). (4.5)

The positions of the relevant surfaces for the black hole magnetosphere are expanded in α as
well. The event horizon position admits an analytic expansion around α = 0

r+

r0

=
1

2
+

1

2

√
1− α2 = 1− 1

4
α2 − 1

16
α4 +O(α6). (4.6)

Similarly, concerning the position of the static limit

rergo(θ)

r0

=
1

2
+

1

2

√
1− α2 cos2 θ = 1− 1

4
α2 cos2 θ − 1

16
α4 cos4 θ +O(α6), (4.7)

one observes that the ergosphere detaches from the event-horizon as the rotation increases.
When one does not know the expression of Ω, the position of the light surfaces cannot be

determined a priori. Nevertheless it is natural to assume that, as for the other critical surfaces
involved in this problem, the position of the inner and outer light surfaces can be expanded in
α. From this, together with Eqs. (4.6) and (4.7), we can gather already

rILS(θ)

r0

= 1 +O(α2), (4.8)

whereas rOLS at this point is only known to approach infinity as α goes to zero and the
Schwarzschild spacetime is recovered. All the missing information has to be determined consis-
tently from Eq. (3.7) as part of the resolution of the relative perturbative order. For instance,
we anticipate that, for the monopole configuration, at order α in the field variables one gets the
first subleading O(α2) term in rILS and the leading order of rOLS, namely [20]

rOLS(θ)

r0

=
4

sin θ

1

α
+O(α0). (4.9)

4.2 Matched Asymptotic Expansions

As correctly pointed out in [20], since the OLS scales as r/r0 ∼ α−1, it is necessary to introduce
a new radial coordinate in order to resolve its position and to distinguish the OLS from the
asymptotic region. We therefore consider the coordinate

r̄ = αr, (4.10)

which is designed to keep the position of the OLS fixed when performing a small α-expansion.
This allows one to distinguish two different regions in which perturbation theory should be
applied: the r-region and the r̄-region.

The r-region is defined by
r

r0

� 1

α
⇔ r̄

r0

� 1. (4.11)

In the r-region one solves the stream equation in terms of the coordinates (r, θ) which are both
kept finite in the α expansion. The force-free field variables are expanded in this region as [20] 9

ψ(r, θ) = ψ0(θ) + α2 ψ2(r, θ) + α4 ψ4(r, θ) +O(α5),

r0I(ψ) = α i1(ψ0) + α3 [i′1(ψ0)ψ2(r, θ) + i3(ψ0)] + α4 i4(ψ0) +O(α5),

r0Ω(ψ) = αω1(ψ0) + α3 ω3(ψ0) + α4 ω4(ψ0) +O(α5).

(4.12)

9See Appendix A for a detailed explanation about the form of these expressions. Note in particular that the
terms proportional to α2 in the functions I(ψ) and Ω(ψ) are zero as well as those proportional to α and α3

in ψ(r, θ). As for the notation, we use in(ψ0) to highlight the dependence of the poloidal current on the flux
function. In this sense i′n(ψ0) = ∂θin(θ)/∂θψ0(θ). The same considerations apply for ωn(ψ0).
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At the n-th order in perturbation theory, in the r-region the stream equation can be formally
written as

Lψn(r, θ) = Sn(r, θ;ψk<n, ik<n, ωk<n), (4.13)

where the operator L, in the r-region, is defined as

L =
1

sin θ
∂r

[(
1− r0

r

)
∂r

]
+

1

r2
∂θ

(
1

sin θ
∂θ

)
. (4.14)

Notice that this operator is characterized by a critical surface at r = r0, corresponding to the
horizon and to the leading order term of the ILS location.

The r̄-region is defined by
r

r0

� 1 ⇔ r̄

r0

� α. (4.15)

In the r̄-region one solves the stream equation in terms of the coordinates (r̄, θ) which are both
kept finite in the α expansion. The force-free field variables are expanded in this region as [20]

ψ(r̄, θ) = ψ0(θ) + α3 ψ̄3(r̄, θ) +O(α4),

r0I(ψ) = α i1(ψ0) + α3 i3(ψ0) + α4
[
i′1(ψ0)ψ̄3(r̄, θ) + i4(ψ0)

]
+O(α5),

r0Ω(ψ) = αω1(ψ0) + α3 ω3(ψ0) + α4 ω4(ψ0) +O(α5).

(4.16)

This expansion is reviewed and discussed in detail in Appendix A. In particular, we have shown
why one cannot have corrections of order α and α2 to ψ(r̄, θ). At the order αn in perturbation
theory the stream equation can be formally written as

L̄ψ̄n(r̄, θ) = S̄n(r̄, θ; ψ̄k<n, ik≤n+1, ωk≤n+1), (4.17)

where the operator L̄, in the r̄-region, is defined as

L̄ =
sin θ

r2
0

∂θ

[
sin θ

(
r2

0

r̄2 sin2 θ
− 1

16

)
∂θ

]
+ sin2 θ∂r̄

[
r̄2

r2
0

(
r2

0

r̄2 sin2 θ
− 1

16

)
∂r̄

]
+

(
2− 3 sin2 θ

)
8r2

0

.

(4.18)
It is clear from this equation that the OLS at r̄OLS = 4r0/ sin θ constitutes a critical surface in
the bulk of the r̄-region. The r̄-region is therefore divided by the OLS in two subdomains, that
we dub inner and outer regions. The stream equation is elliptic in both of these subdomains.
The inner and outer domains are depicted in two different colors in Fig. 1.

One proceeds to construct an expansion in α of the force-free fields ψ, Ω and I for each of
the two regions. According to the Matched Asymptotic Expansions (MAE) scheme, the two
expansions have to match where the r-region and the r̄-region overlap. This overlap region is
defined by the limits

1� r

r0

� 1

α
⇔ α� r̄

r0

� 1. (4.19)

In Ref. [20] the expansions (4.12) and (4.16) have been proved to match and all of their coefficients
have been successfully computed up to O(α4). A brief review of their computations is given in
Appendix A, while a list of the results is given in the next subsection. The main purpose of this
work is to explore higher order terms both in the r-region and in the r̄-region.

Notice that what we call r-region also includes the ILS and the event horizon r = r+. This is
due to the fact that the regularity condition at the ILS does not play any role in our construction
since it is equivalent to the Znajek condition at the horizon for the split-monopole configuration.
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Figure 1: In the figure we sketched the magnetosphere structure around a Kerr black hole
with the division in r-region and r̄-region as introduced by the MAE scheme. We
highlighted with colors that the r̄-region is further splitted by the OLS.

4.3 Summary of past relevant results

What follows is a list of all the relevant results already found in the literature [1,14–20] and that
will be recalled in the next sections. For a more detailed discussion about the computations that
lead to these results we refer the reader to Appendix A.

When solving Eq. (4.13) by means of the expansion (4.12), one obtains the following results
at order α2 and α4, respectively,

ψ2(r, θ) = R
(2)
2 (r)Θ2(θ), ψ4(r, θ) = R

(4)
2 (r)Θ2(θ) +R

(4)
4 (r)Θ4(θ), (4.20)

where we adopted the notation for which ψn =
∑

k R
(n)
2k Θ2k(θ) and the functions Θk(θ) are

defined in Appendix B. The structure of the solutions (4.20) in terms of the even harmonics Θ2k

is dictated by the form of the corresponding sources S2 and S4 in Eq. (4.13), explicitly written
in Eqs. (A.27) and (A.59).

In order to compute the energy and angular momentum flux through the horizon (see Sec.
6), it is useful to recall the expansion for small r of the radial functions. For r/r0 � 1, one has

R
(2)
2 (r) = U0 +

r − r0

r0

U1 +

(
r − r0

r0

)2

U2 +O
(
(r − r0)3

)
, (4.21a)

R
(4)
2 (r) = W0 +

r − r0

r0

W1 +

(
r − r0

r0

)2

W2 +O
(
(r − r0)3

)
, (4.21b)

R
(4)
4 (r) = V0 +

r − r0

r0

V1 +

(
r − r0

r0

)2

V2 +O
(
(r − r0)3

)
(4.21c)

with

U0 =
6π2 − 49

72
, U1 =

6π2 − 61

12
, U2 =

3π2 − 29

4
, (4.22a)

W0 =
39ζ(3)

3920
+

17929399

2540160
− 3877π2

12096
− 19π4

480
, W1 =

6048W0 − 222π2 + 1831

1008
,
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W2 =
4032W0 − 168π2 + 1481

448
, (4.22b)

V0 =
79π4

640
− 963ζ(3)

3920
− 2012505017

67737600
+

9791π2

5376
, V1 =

8960V0 + 24π2 − 169

448
,

V2 =
179200V0 + 756π2 − 6295

1792
. (4.22c)

We obtained W0 and V0 using two independent but equivalent methods. In the first method,
we determined R

(4)
2 (r) and R

(4)
4 (r) for all r. This is a novel result, that we explicitly present in

Appendix D. In the second method, which we outline in Appendix B, we determine W0 and V0

using Green functions. Both methods agree on the analytic expressions for V0 and W0. Note
that previously these quantities were only known numerically.

As already explained, the matching with the r̄-region, instead, exploits the expansion for
r/r0 � 1, which reads

R
(2)
2 (r) =

1

8

r0

r
− 11

800

r2
0

r2
+

1

40

r2
0

r2
log

r

r0

+O
(
r3

0

r3
log

r

r0

)
, (4.23a)

R
(4)
2 (r) =

1

224

r

r0

+
227

100800
+

1

1680
log

r

r0

+O
(
r0

r
log

r

r0

)
, (4.23b)

R
(4)
4 (r) =

9

8960

r

r0

+
363

896000
+

3

22400
log

r

r0

+O
(
r0

r
log

r

r0

)
. (4.23c)

Concerning the poloidal current I(ψ) and the angular velocity of the field line Ω(ψ), these
can be determined after expanding the Znajek condition at the horizon and at infinity (or,
analogously, the ILS and the OLS condition) by means of Eq. (4.12), yielding

i1(θ) =
sin2 θ

4
,

i3(θ) = −ω3(θ) sin2 θ +
1

40

[
(7− 8U0) Θ1(θ) +

(1− 4U0)

2
Θ3(θ)

]
,

i4(θ) = −ω4(θ) sin2 θ

(4.24)

and

ω1 =
1

4
, ω3(θ) =

1

16

[
1 + (1− 4U0)

sin2 θ

2

]
. (4.25)

To determine ω4(θ) and i4(θ) one needs to solve for ψ̄3(r̄, θ) in the r̄-region expansion (4.16).
This requires solving the equation for ψ̄3(r̄, θ)

L̄ψ̄3(r̄, θ) = −r0 sin2 θ cos θ

2r̄3
+
∂θ
{

sin2 θ
[
sin2 θω4(θ)− i4(θ)

]}
4r2

0 sin θ
. (4.26)

Here one needs to take into account the Znajek condition at the horizon (4.24) to eliminate i4(θ)
and the Znajek condition at infinity

sin θ∂θψ̄
∞
3 (θ)− 2 cos θψ̄∞3 (θ) = −8ω4(θ) sin2 θ, (4.27)

where ψ̄∞3 (θ) is the asymptotic value of ψ̄3(r̄, θ) for r̄ →∞. That ψ̄∞3 (θ) is finite is in accordance
with the asymptotic behavior of a split-monopole configuration. Equation (4.26) for ψ̄3(r̄, θ) is
quite non-trivial as it includes the OLS. In [20] it was solved numerically, taking into account
that one needs to demand continuity of ψ̄3(r̄, θ) at the OLS.

One can always decompose ψ̄∞3 (θ) as

ψ̄∞3 (θ) = c̄
(3)
2 Θ2(θ) + c̄

(3)
4 Θ4(θ) + c̄

(3)
6 Θ6(θ) + c̄

(3)
8 Θ8(θ) + . . . , (4.28)
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where c̄
(3)
2k are coefficients to be determined and the basis functions Θ2k(θ) are defined in

Eq. (B.6). The presence of only even harmonics in (4.28) is required by the split-monopole

boundary conditions (4.5): only the Θ2k(θ) vanish at the equator. In [20] the coefficients c̄
(3)
2k

were found numerically as part of solving Eq. (4.26) and demanding continuity at the OLS. In
Appendix C we have implemented a new numerical procedure to solve Eq. (4.26) that provides
greater accuracy and faster convergence. See Fig. 2 for the plot of the numerical solution. Using
this we found the coefficients c̄

(3)
2k with increased precision. The explicit values of the first four

are

c̄
(3)
2 = 0.02170516(3), c̄

(3)
4 = 0.002706130(5),

c̄
(3)
6 = −0.000283909(5), c̄

(3)
8 = 0.000072528(9),

(4.29)

where the round bracket is placed on the first uncertain digit.
Plugging Eq. (4.28) into Eq. (4.27) one sees that ω4(θ) has the following structure in terms

of odd harmonics, Θ2k+1,

ω4(θ) = b
(4)
1 Θ1(θ) + b

(4)
3 Θ3(θ) + b

(4)
5 Θ5(θ) + b

(4)
7 Θ5(θ) + . . . , (4.30)

we can use Eqs. (4.28)-(4.29) to find10

b
(4)
1 = 0.00256778(0), b

(4)
3 = 0.0005087(7),

b
(4)
5 = −0.0000691(5), b

(4)
7 = 0.0000212(9).

(4.31)

We notice that the fact that one is able to impose the continuity of ψ at the OLS by fixing an
ansatz for ψ∞ is another hint of the equivalence between the OLS and the Znajek condition at
infinity.

5 Matched asymptotic expansions II: new results

In this section we extend the perturbative construction of the BZ split-monopole to higher orders
in α both in the r-region and in the r̄-region. We first present the expansions and show the
matching. Building on these results, we show in Sec. 6 how this perturbative construction allows
us to derive the expressions for the energy and angular momentum fluxes to higher orders than
previously known in the literature.

5.1 Expansion in the r-region

In the r-region the expansion of the field variables we consider is of the form

ψ(r, θ) = ψ0(θ) + α2 ψ2(r, θ) + α4 ψ4(r, θ) + α5 ψ5(r, θ) +O(α6 logα),

r0I(ψ) = α i1(ψ0) + α3 [i′1(ψ0)ψ2(r, θ) + i3(ψ0)] + α4 i4(ψ0) (5.1)

+ α5 [I5(r, θ) + logα I5L(r, θ)] +O(α6 logα),

r0Ω(ψ) = αω1(ψ0) + α3 ω3(ψ0) + α4 ω4(ψ0) + α5 [Ω5(r, θ) + logαΩ5L(r, θ)] +O(α6 logα).

Notice that we introduced terms proportional to logα in I(ψ) and Ω(ψ). As we discuss more
extensively in Sec. 5.3, the inclusion of these terms is in fact unavoidable once the matching
with the r̄-region is established: the reason lies in the appearance of log r/r0 in the expansion

10Notice that, using the Znajek condition at infinity (4.27), the expression for each b
(4)
n contains infinite numbers

of c̄
(3)
l . To get enough accuracy for the results (4.31) we computed the coefficients c̄

(3)
l up to l = 22.
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of ψ2 and ψ4 for r/r0 � 1; see Eqs. (4.23a)-(4.23b)-(4.23c). Solving the integrability conditions
(2.11) and (2.15) yields

I5(r, θ) = i5(ψ0) + i′1(ψ0)ψ4(r, θ) + i′3(ψ0)ψ2(r, θ) +
i′′1(ψ0)

2
ψ2

2(r, θ), I5L(r, θ) = i5L(θ),

Ω5(r, θ) = ω5(ψ0) + ω′3(ψ0)ψ2(r, θ), Ω5L(r, θ) = ω5L(θ).
(5.2)

From the Znajek condition at the horizon, Eq. (3.16), expanded at order α5, one can establish
relations among i5 and ω5 as well as i5L and ω5L . More specifically one has

i5(θ) = −ω5(θ) sin2(θ) + [k1Θ1(θ) + k3Θ3(θ) + k5Θ5(θ)] , i5L(θ) = −ω5L(θ) sin2(θ), (5.3)

where the constants k1, k3 and k5 are expressed in terms of the horizon values of ψ2 and ψ4 as

k1 =
6 + (33 + 8U0)U0 − 28W0

140
,

k3 =
−1 + (17− 28U0)U0 − 4(3W0 + 10V0)

240
,

k5 =
1 + 16(1− 11U0)U0 − 224V0

2688
.

(5.4)

Note that the same results follow by imposing that the solution of the reduced stream equation
(3.10) at the ILS is regular on the axis.

Turning the attention to the flux function ψ5, its stream equation reads

Lψ5(r, θ) =
r2 + r0r + r2

0

2r2
0r

2 sin2 θ
∂θ
[
ω4(θ) sin4 θ

]
. (5.5)

It is possible to derive some important semi-analytical results for ψ5. First, notice that in the
source term in Eq. (5.5) there is the function ω4 which is given by the expression in Eq. (4.30).
Therefore, in contrast to what happened for ψ2 and ψ4, the decomposition in harmonics for
ψ5(r, θ) has an infinite number of terms. In other words, the general solution is expressed as

ψ5(r, θ) = R
(5)
2 (r)Θ2(θ) +R

(5)
4 (r)Θ4(θ) +R

(5)
6 (r)Θ6(θ) + . . . (5.6)

in terms only of even harmonics, Θ2k(θ). This is again dictated by the split-monopole boundary
conditions (4.5), see comment below Eq. (4.28). Since the source term in Eq. (5.5) does not
receive any contribution from ψ2 and ψ4, all the radial solutions in Eq. (5.6) which converge at
the horizon are polynomial in r. In particular, for the first two functions one gets

R
(5)
2 (r) = C1

r2(4r − 3r0)

4r3
0

− (99b
(4)
1 + 44b

(4)
3 + 8b

(4)
5 ) (344r3 − 249r2r0 + 6rr2

0 + 7r3
0)

2079r3
0

, (5.7a)

R
(5)
4 (r) = C2

r2 (56r3 − 105r2r0 + 60rr2
0 − 10r3

0)

56r5
0

+

+ (715b
(4)
1 + 2340b

(4)
3 + 1800b

(4)
5 + 448b

(4)
7 )×

×
(

27

286000
+

11981r5

35750r5
0

− 35943r4

57200r4
0

+
35943r3

100100r3
0

− 11961r2

200200r2
0

+
9r

100100r0

)
, (5.7b)

with C1 and C2 integration constants. Similar but quite longer results follow for R
(5)
6 (r) and

higher. In general one has R
(5)
n (r) ∼ (r/r0)n+1 for r/r0 � 1, a behaviour that would ruin the

perturbation scheme in the matching with the r̄-region.11 However, in a very non trivial manner,

11For example, in the overlap region R
(5)
6 (r) generates non-perturbative terms like α5(r/r0)7 ∼ α−2(r̄/r0)7.

Other powers, for example in R
(5)
2 (r), cannot match with the r̄-expansion (4.16) since they contribute as

α5(r/r0)3 ∼ α2(r̄/r0)3.
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for each radial function one can choose the integration constant in such a way to get rid of all
the troublesome powers in r. For the first three radial functions this procedure yields

R
(5)
2 (r) = −

(
99b

(4)
1 + 44b

(4)
3 + 8b

(4)
5

)( 1

231

r2

r2
0

+
2

693

r

r0

+
1

297

)
, (5.8a)

R
(5)
4 (r) = −

(
715b

(4)
1 + 2340b

(4)
3 + 1800b

(4)
5 + 448b

(4)
7

)( 1

10010

r2

r2
0

+
9

100100

r

r0

+
27

286000

)
,

(5.8b)

R
(5)
6 (r) = −

(
8075b

(4)
3 + 266(85b

(4)
5 + 72b

(4)
7 ) + 5280b

(4)
9

)( 1

106590

r2

r2
0

+
2

223839

r

r0

+
43

4700619

)
.

(5.8c)

This allows one to express the value of ψ5 at the horizon solely in terms of the coefficients b
(4)
n

of ω4, as follows

ψ5(r0, θ) =−
2
(

99b
(4)
1 + 44b

(4)
3 + 8b

(4)
5

)
189

Θ2(θ)+

−
569

(
715b

(4)
1 + 2340b

(4)
3 + 1800b

(4)
5 + 448b

(4)
7

)
2002000

Θ4(θ)+

−
1291

[
8075b

(4)
3 + 266

(
85b

(4)
5 + 72b

(4)
7

)
+ 5280b

(4)
9

]
47006190

Θ6(θ) + . . . .

(5.9)

We recall that the values of the first coefficients b
(4)
n are listed in Eq. (4.31). Conversely, in

the regime r/r0 � 1, one observes that ψ5(r, θ) = r2/r2
0F(θ) + O(r/r0), with the function F

constructed by means of all the leading contributions of R
(5)
2n (r)Θ2n(θ), and obeying the following

ODE

F ′′(θ)− cot θF ′(θ) + 2F(θ) =
∂θ
(
sin4 θω4(θ)

)
sin θ

. (5.10)

5.2 Expansion in the r̄-region

In the r̄-region, which encompasses the OLS, the expansions we consider are of the kind

ψ(r̄, θ) = ψ0(θ) + α3 ψ̄3(r̄, θ) + α4
[
ψ̄4(r̄, θ) + logα ψ̄4L(r̄, θ)

]
+O(α5 logα),

r0I(ψ) = α i1(ψ0) + α3 i3(ψ0) + α4
[
i′1(ψ0)ψ̄3(r̄, θ) + i4(ψ0)

]
(5.11)

+ α5
[
Ī5(r̄, θ) + logα Ī5L(r̄, θ)

]
+O(α6 logα),

r0Ω(ψ) = αω1(ψ0) + α3 ω3(ψ0) + α4 ω4(ψ0) + α5
[
Ω̄5(r̄, θ) + logα Ω̄5L(r̄, θ)

]
+O(α6 logα).

Again, there are coefficients proportional to logα, this time not only on I(ψ) and Ω(ψ) but also
at the level of the flux function ψ(r̄, θ). This form of the expansion follows from our analysis
in Section 5.3 of the matching between the r-region and r̄-region. The integrability conditions
(2.11) and (2.15) fix the dependence on r̄, θ in terms of ψ(r̄, θ) as follows

Ī5(r̄, θ) = i′1(ψ0)ψ̄4(r̄, θ) + i5(ψ0), Ī5L(r̄, θ) = i′1(ψ0)ψ̄4L(r̄, θ) + i5L(ψ0),

Ω̄5(r̄, θ) = ω5(ψ0), Ω̄5L(r̄, θ) = ω5L(ψ0).
(5.12)

The stream equation for the flux function ψ̄4L reads

L̄ψ̄4L(r̄, θ) =
∂θ
{

sin2 θ
[
sin2 θω5L(θ)− i5L(θ)

]}
4r2

0 sin θ
. (5.13)
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Here we can trade i5L for ω5L via the Znajek condition at the horizon (5.3), while in turn ω5L is
related to the asymptotic value of ψ̄4L by means of the Znajek condition at infinity (3.18), that
yields

sin θ∂θψ̄
∞
4L

(θ)− 2 cos θψ̄∞4L(θ) = −8 sin2 θω5L(θ). (5.14)

This results in the following equation

L̄ψ̄4L(r̄, θ) = −
∂θ
{

sin2 θ
[
sin θ∂θψ̄

∞
4L

(θ)− 2 cos θψ̄∞4L(θ)
]}

16r2
0 sin θ

. (5.15)

Adopting an ansatz for ψ̄4L(r̄, θ) for which the angular dependence is a linear combination of
only Θ2(θ) and Θ4(θ) one finds the simple particular solution

ψ̄4L(r̄, θ) = 42K
r2

0

r̄2
Θ2(θ) +K

[
Θ2(θ) +

9

40
Θ4(θ)

]
, (5.16)

where K is an arbitrary constant. We recognise immediately that Eq. (5.16) is well behaved at
infinity and smooth across the OLS. We shall see in Sec. 5.3 that K = −1/1680 by comparing
the large r behavior of the r-region with the small r̄ behavior of the r̄-region. Thus, the solution
for ψ̄4L(r̄, θ) is

ψ̄4L(r̄, θ) = − 1

40

r2
0

r̄2
Θ2(θ)−

[
1

1680
Θ2(θ) +

3

22400
Θ4(θ)

]
. (5.17)

In general, we require that solutions of Eq. (5.13) should obey the boundary conditions inferred
from Eq. (5.28) at small r̄ as well as ψ̄4L → ψ̄∞4L(θ) for large r̄. From the fact that (5.13) is
elliptic in the inner and outer subdomains on either side of the OLS, and that ψ̄4L obeys a Robin
type boundary condition at the OLS, one can show that the solution (5.17) is locally unique.

Coming to ω5L(θ), from Eq. (5.17) we can easily read ψ̄∞4L(θ) and replace it in Eq. (5.14), so
as to compute

ω5L(θ) = b
(5L)
1 Θ1(θ) + b

(5L)
3 Θ3(θ), (5.18)

where

b
(5L)
1 = − 13

192000
, b

(5L)
3 = − 3

128000
. (5.19)

The stream equation for the flux function ψ̄4 is instead given by

L̄ψ̄4(r̄, θ) =
cos θ sin4 θ

32r̄2
+
∂θ
{

sin2 θ
[
sin2 θω5(θ)− i5(θ)

]}
4r2

0 sin θ
+ Σ̄4(r̄, θ; ψ̄3). (5.20)

Notice the presence of the source term Σ̄4(r̄, θ; ψ̄3), containing the function ψ̄3(r̄, θ) discussed in
Sec. 4.3. The explicit expression for Σ̄4(r̄, θ; ψ̄3) is given by

Σ̄4(r̄, θ; ψ̄3) = 2∂r̄

[
r̄

r0

(
r2

0

r̄2
− sin2 θ

32

)
∂r̄ψ3(r̄, θ)

]
+

(
r0

r̄2
− sin2 θ

16r0

)
∂r̄ψ3(r̄, θ)

+
r0 sin θ

r̄3
∂θ

(
∂θψ3(r̄, θ)

sin θ

)
. (5.21)

Again we can resort to the Znajek condition at the horizon (5.3) to express i5 in terms of ω5

and relate the latter to the asymptotic value of the numerical solutions for ψ̄3, ψ̄4 by means of
the Znajek condition at infinity, that is

sin θ∂θψ̄
∞
4 (θ)− 2 cos θψ̄∞4 (θ) = −8

[
sin2 θω5(θ)− k1Θ1(θ) + k3Θ3(θ) + k5Θ5(θ)

2

]
. (5.22)
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To find ψ̄4(r̄, θ) one can follow the same procedure as for ψ̄3(r̄, θ), solving Eq. (5.20) nu-
merically and in the process fixing the asymptotic function ψ̄∞4 (θ) by demanding continuity of
ψ̄4(r̄, θ) across the OLS. As part of this, one as usual decomposes ψ̄∞4 (θ) in even harmonics

ψ̄∞4 (θ) = c̄
(4)
2 Θ2(θ) + c̄

(4)
4 Θ4(θ) + c̄

(4)
6 Θ6(θ) + c̄

(4)
8 Θ8(θ) + . . . . (5.23)

The coefficients c̄
(4)
n are then determined numerically by adopting the procedure described in

Appendix C, which enforces the continuity of ψ across the OLS. The numerical result for ψ̄4 is
presented in Fig. 2 and below we list the values we found for the four coefficients in Eq. (5.23)

c̄
(4)
2 = 0.000945488(3) , c̄

(4)
4 = 0.00010879(4) ,

c̄
(4)
6 = −0.00001918(4), c̄

(4)
8 = 0.0000039633(2) .

(5.24)

Figure 2: The numerical solution for ˜̄ψ(3)
N and ˜̄ψ(4)

N shown as a function of θ and y =
r̄/(r0 + r̄). Note the smoothness at the OLS (represented as a dashed blue line).

Both ˜̄ψ(3)
N and ˜̄ψ(4)

N are defined in Appendix C and in these plots they were
generated with N = 10 and Ny = 250.

Considering Eqs. (5.22) and (5.23) one can also argue that ω5 is expressed as an infinite
superposition of Θ2n+1(θ), via

ω5(θ) =
1

2
(k1 − 4k3 + 8k5) + b

(5)
1 Θ1(θ) + b

(5)
3 Θ3(θ) + b

(5)
5 Θ5(θ) + b

(5)
7 Θ7(θ) + . . . , (5.25)

with the coefficients b
(5)
n related to c̄

(4)
n by means of Eq. (5.22). It turns out that

1

2
(k1 − 4k3 + 8k5) =

1

32
. (5.26)

The coefficients b
(5)
n play a fundamental role in the expressions for the energy and angular

momentum fluxes, which are discussed in Sec. 6. For this purpose we collect their numerical
values up to n = 7

b
(5)
1 = 0.002790808(3) , b

(5)
3 = 0.000985432(8) ,

b
(5)
5 = −0.00000447(0) , b

(5)
7 = 0.00000111(6) .

(5.27)
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5.3 Matching the r-region and the r̄-region

In this section we show the consistency between the expansions (5.1) in the r-region and the
expansions (5.11) in the r̄-region. As explained in Sec. 4.2, the two expansions have to match in
the overlap region defined in Eq. (4.19).12 In what follows only the matching regarding the flux
function ψ will be shown; the matching concerning I(ψ) and Ω(ψ), indeed, follows directly from
the integrability conditions, which have been already used. To facilitate the reader in visualizing
the matching, terms which translate from one expansion to the other will be highlighted with
the same colour.

In the r-region we use Eqs. (4.23a)-(4.23b)-(4.23c) to write the large r expansion of the
coefficients

ψ2(r, θ) =

[
1

8

r0

r
− 11

800

r2
0

r2
+

1

40

r2
0

r2
log

r

r0

]
Θ2(θ) +O

(
r3

0

r3
log

r

r0

)
,

ψ4(r, θ) =

[
1

224

r

r0

+
227

100800
+

1

1680
log

r

r0

]
Θ2(θ)+

+

[
9

8960

r

r0

+
363

896000
+

3

22400
log

r

r0

]
Θ4(θ) +O

(
r3

0

r3
log

r

r0

)
,

ψ5(r, θ) =
r2

r2
0

F(θ) +O
(
r

r0

)
,

(5.28)

where we recall that the function F(θ) is a solution of Eq. (5.10), which contains only Θ2n(θ)
functions.

In the r̄-region, using the Frobenius method and the matching with (5.28), we get for r̄/r0 � 1

ψ̄3(r̄, θ) =
1

8

r0

r̄
Θ2(θ) +

r̄

r0

[
1

224
Θ2(θ) +

9

8960
Θ4(θ)

]
+
r̄2

r2
0

F(θ) +O
(
r̄3

r3
0

)
,

ψ̄4(r̄, θ) = − 11

800

r2
0

r̄2
Θ2(θ) +

1

40

r2
0

r̄2
log

r̄

r0

Θ2(θ) +
227

100800
Θ2(θ) +

363

896000
Θ4(θ)+

+

[
1

1680
Θ2(θ) +

3

22400
Θ4(θ)

]
log

r̄

r0

+O
(
r̄

r0

)
.

(5.29)

For ψ̄4L , using Eq. (5.16) and the matching with (5.28), we get the constant K = −1/1680 and
hence ψ̄4L is given by

ψ̄4L(r̄, θ) = − 1

40

r2
0

r̄2
Θ2(θ)−

[
1

1680
Θ2(θ) +

3

22400
Θ4(θ)

]
, (5.30)

which is Eq. (5.17) where we highlighted the matching coefficients with colors.
This reveals that the structure of the matching is quite intricate: whenever a term such

as αm+nψm+n ∼ αm+n(r/r0)n log(r/r0) enters the expansion of ψ in the r-region, this can only
match with a term akin to αn(ψ̄n + logα ψ̄nL) in the r̄-region. Furthermore, the leading term of
the expansion for ψ̄n and ψ̄nL when r̄/r0 � 1 is always related to the coefficients in the expansion
of ψ2. The subleading terms in the r̄-region, instead, in general mix coefficients from both ψ2

and ψ4. This allows one to infer the structure of the expansion in the r̄-region and motivates a
posteriori our ansatz for the two expansions (5.1) and (5.11).

It is finally important to notice that by means of the expansion (5.11) there is no need to
introduce terms proportional to logα up to the fifth order in the r-region; as a consequence, our
higher order corrections are consistent with the lower-order corrections derived in [20].

12We remind that the two radial coordinates are related by r̄ = αr.
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5.4 Consistency check with ψ6 and ψ6L

In the rest of the paper, we push the expansion of the magnetic flux function ψ to the sixth
order. The first equation in Eq. (5.1) reads now as

ψ(r, θ) = ψ0(θ)+α2 ψ2(r, θ)+α4 ψ4(r, θ)+α5 ψ5(r, θ)+α6 [ψ6(r, θ) + logα ψ6L(r, θ)]+O(α7 logα).
(5.31)

There are two main reasons why we extend the perturbation of the magnetic flux function to
this order. The first is to make a very non-trivial consistency check of the matching between the
r-region and the r̄-region; see Eqs. (5.28)-(5.29). The second reason is to compute the eighth-
order term as well as the first non-vanishing logarithmic contribution in the energy flux at the
horizon. These results are reported in the next section 6. Notice that for both purposes the
knowledge of the sixth order for ψ is sufficient. Pushing the expansions of I and Ω at higher
orders is not necessary.

The function ψ6L(r, θ) obeys the stream equation

Lψ6L(r, θ) = −sin θ (r2 + rr0 + r2
0)

2r2r2
0

[sin θ ω′5L(θ) + 4ω5L(θ) cos θ] . (5.32)

Upon using ω5L as given in Eq. (5.18), the general solution can be written by separation of
variables as follows

ψ6L(r, θ) = R
(6L)
2 (r)Θ2(θ) +R

(6L)
4 (r)Θ4(θ) +R

(6L)
6 (r)Θ6(θ). (5.33)

The stream equation (5.32) can at this point be solved analytically for the three radial functions.
The solutions read

R
(6L)
2 (r) = − 1

21

(
b

(5L)
1 +

4

9
b

(5L)
3

)(
344

r3

r3
0

− 249
r2

r2
0

+ 6
r

r0

+ 7

)
− 19

13440

r3

r3
0

+
19

17920

r2

r2
0

, (5.34a)

R
(6L)
4 (r) = − 1

2800

(
b

(5L)
1 +

36

11
b

(5L)
3

)(
200

r2

r2
0

+ 180
r

r0

+ 189

)
, (5.34b)

R
(6L)
6 (r) = − 5

29106
b

(5L)
3

(
441

r2

r2
0

+ 420
r

r0

+ 430

)
. (5.34c)

We recall that b
(5L)
1 and b

(5L)
3 have been found analytically in Eq. (5.19), and in the solutions

above the integration constants are already fixed. More specifically, for each radial function it
is possible to choose one of the integration constants demanding regularity at the horizon. The
remaining integration constant is fixed so as to not introduce lower order terms in the expansion
(5.11) for the r̄-region. These non-trivial cancellations can be compared to what occurs in the
case of ψ5, that leads to Eq. (5.8b). The corresponding limits for r/r0 � 1 are

R
(6L)
2 (r) = −108

21

(
b

(5L)
1 +

4

9
b

(5L)
3

)
− 19

53760
+O(r − r0), (5.35a)

R
(6L)
4 (r) = − 569

2800

(
b

(5L)
1 +

36

11
b

(5L)
3

)
+O(r − r0), (5.35b)

R
(6L)
6 (r) = − 6455

29106
b

(5L)
3 +O(r − r0), (5.35c)

while for r/r0 � 1 we have

R
(6L)
2 (r) = − 3

22400

r3

r3
0

+
3

22400

r2

r2
0

+O
(
r

r0

)
, (5.36a)

R
(6L)
4 (r) =

61

5913600

r2

r2
0

+O
(
r

r0

)
, (5.36b)

R
(6L)
6 (r) =

1

563200

r2

r2
0

+O
(
r

r0

)
. (5.36c)
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Turning our attention to the function ψ6(r, θ), the stream equation schematically reads as

Lψ6(r, θ) = S6(r, θ), (5.37)

where the explicit expression of the source S6 is written in Appendix E. Since, among other
functions, the stream equation is sourced by ω5, the general solution for ψ6(r, θ) is expressed as
the following infinite superposition of angular harmonics and radial functions

ψ6(r, θ) = R
(6)
2 (r)Θ2(θ) +R

(6)
4 (r)Θ4(θ) +R

(6)
6 (r)Θ6(θ) + . . . . (5.38)

As we will see in the next section, the only radial function whose r/r0 � 1 limit is useful in the
computation of the energy extraction is the first one, and this reads

R
(6)
2 (r) = −3555

28
ζ(3)2 +

254238098500π

10169178137
+

1027π6

9408
− 22

21
b

(5)
1 −

88

189
b

(5)
3 −

16

189
b

(5)
5 +O(r − r0).

(5.39a)

For r/r0 � 1 the behaviour of the first three radial functions is given by

R
(6)
2 (r) =

r3

r3
0

[
C0 +

3

22400
log

r0

r

]
− r2

r2
0

[
3

7
b

(5)
1 +

4

21
b

(5)
3 +

8

231
b

(5)
5 +

3

4
C0 +

V0

84

+
3W0

56
− π4

24192
− 169π2

36288
+

39533771

870912000
+

3

22400
log

r0

r

]
+O

(
r

r0

log
r

r0

)
, (5.40a)

R
(6)
4 (r) =

39

501760

r3

r3
0

− r2

r2
0

[
1

14
b

(5)
1 +

18

77
b

(5)
3 +

32

715
b

(5)
7 +

180

1001
b

(5)
5 +

61

5913600
log

r0

r

+
23V0

616
+
W0

112
− 367π2

88704
+

π4

5376
+

29794297

1354752000

]
+O

(
r

r0

log
r

r0

)
, (5.40b)

R
(6)
6 (r) =

1

73728

r3

r3
0

− r2

r2
0

[
5

66
b

(5)
3 +

7

33
b

(5)
5 +

168

935
b

(5)
7 +

16

323
b

(5)
9 +

1

563200
log

r0

r
+

7V0

528
(5.40c)

− 575π2

456192
+

π4

13824
+

10733797

1990656000

]
+O

(
r

r0

log
r

r0

)
,

where C0 is an unspecified constant that could be fixed by the matching with the small r̄
expansions of ψ̄3 and ψ̄4, specifically at orders in r̄ beyond those included in Eq. (5.29).

Our interest here is to investigate how the large-r behaviour of ψ6 and ψ6L matches the
small-r̄ behaviour of the magnetic flux function. To this aim we consider the regime r/r0 � 1
of the sum α6 [ψ6 + logα ψ6L ] and we use the relation r = α−1r̄. It is readily seen that

α6
[
ψ6 + logα ψ6L

] r→α−1r̄−−−−−−→ α3ψ̄
(r̄3)
3 + α4ψ̄

(r̄2)
4 +O

(
α5 logα

)
, (5.41)

where ψ̄
(r̄3)
3 and ψ̄

(r̄2)
4 are respectively the contributions at order O (r̄3/r3

0) of ψ̄3 and O (r̄2/r2
0) of

ψ̄4 in the expansion for r̄/r0 � 1. This is a very non-trivial consistency check for our expansions
(5.1) and (5.11), as it proves that the addition of higher order terms in the r-region does not
affect the r̄-region expansion structure laid out in Eq. (5.11). In particular the solution for ψ̄4L

that we found in Eq. (5.17) does not receive any new contribution coming from subleading orders
of the MAE scheme due to systematic cancellations between ψ6 and ψ̄6L : as highlighted with
colors (blue, violet, green) all the r2 log r terms in ψ6 cancel with the r2 terms in ψ6L, so that
no additional contributions appear in ψ̄4L. Similarly (see the red coefficients) the r3 log r terms
in ψ6 cancel out the r3 terms in ψ6L, upholding the absence of a contribution akin to α3 logα
in the r̄-region expansion of ψ. In conclusion, the presence of ψ6 and ψ6L in the MAE scheme
totally confirms all of our results at the previous orders.

Moreover, as we show in the next section the solution derived here for ψ6L is sufficient for
computing the first logarithmic contribution in the energy extraction rate of the BZ mechanism.
Similarly, the near-horizon solution for ψ6(r, θ) will be exploited to compute the eighth-order
contribution to the energy flux.
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6 Energy and angular momentum fluxes

In Sec. 5 we obtained new higher order contributions in the α-expansion of the magnetic flux ψ,
the angular velocity Ω and the electric current I. These included novel non-analytic terms in α.
In this section we consider the consequences for the energy and angular momentum fluxes, which
are physically measurable quantities. In particular, the energy flux corresponds to the power
emitted by the BZ mechanism. As we shall see below, we find for the first time non-analytic
contributions to these fluxes.

The Kerr solution with the magnetosphere is a stationary axisymmetric system so we can
define conserved flux vectors for energy and angular momentum about the axis of symmetry. As
we have checked previously, the Maxwell energy momentum tensor of the FFE magnetosphere
on the Kerr background is conserved: ∇µT

µν = 0 with Tµν = F α
µ Fνα− 1

4
gµνF

2. It follows that if
ξ is a Killing vector field then ∇ν (ξµT

µν) = 0, i.e. ξµT
µν is a conserved quantity, where ξ = ∂t

or ξ = ∂φ. Integrating these quantities across a sphere S of constant radius with normal nν we
find the associated flux of energy and angular momentum,

∫
S

√
−gξµT µνnνdθdφ. The general

expression for the flux of energy, Ė = dE/dt, and the flux of angular momentum, L̇ = dL/dt,
through a sphere of constant radius rc is thus given by

Ė
∣∣
rc

= 2π

∫ π

0

Ω(rc, θ)I(rc, θ)∂θψ(rc, θ)dθ, (6.1)

L̇
∣∣
rc

= 2π

∫ π

0

I(rc, θ)∂θψ(rc, θ)dθ. (6.2)

Since the field variables are expanded in α according to Eqs. (5.1) and (5.11), then the fluxes
can be expanded in the parameter α, also with logarithmic terms as αn logα. We denote by

Ė
∣∣(n)

rc
the coefficient of αn and by Ė

∣∣(nL)

rc
the coefficient of αn logα. Similar notation is used for

the flux of the angular momentum L̇.
We consider here first the energy flux. Typically, one computes it either at the event horizon

rc = r+ or in the asymptotic region rc = ∞. As we show below, both choices of rc yield the
same result, as expected from energy conservation. For the energy flux at the event horizon, one
finds in general

Ė
∣∣
r+

= 2π

∫ π

0

Ω(r+, θ) [ΩH − Ω(r+, θ)] (∂θψ(r+, θ))
2

√
gφφ(r+, θ)

gθθ(r+, θ)
dθ. (6.3)

This is obtained by supplementing Eq. (6.1) with the Znajek condition at the horizon (3.16).
Substituting the expressions (5.1) of the field variables in the r-region, we get the expansion

Ė
∣∣
r+

= α2Ė
∣∣(2)

r+
+ α4Ė

∣∣(4)

r+
+ α6Ė

∣∣(6)

r+
+ α7Ė

∣∣(7)

r+
+O(α8 logα). (6.4)

For the second and fourth order, Eq. (6.3) gives

α2Ė
∣∣(2)

r+
=
π

6

α2

r2
0

≈ 0.52359878
α2

r2
0

, (6.5)

α4Ė
∣∣(4)

r+
=

(56− 3π2)π

270

α4

r2
0

≈ 0.30707540
α4

r2
0

, (6.6)

as originally found in [1] and [14], respectively. These results rely on Eqs. (4.4) and (4.25) for
ψ0, ω1 and ω3. Furthermore, one needs ψ2(r0, θ) which is obtained from Eqs. (4.20), (4.21a)
and (4.22a). As shown in [20], the fourth order contribution computed in [14] is correct, despite
the magnetic flux computed in [14] having an apparent asymptotic divergence. We note that
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we computed the fifth order contribution to the energy flux to be zero, as previously concluded
in [20].

From Eq. (6.3) one gets the sixth order contribution

α6Ė
∣∣(6)

r+
=
π(54684π4 + 421995π2 − 8912812− 12636ζ(3))

9525600

α6

r2
0

≈ 0.18589183
α6

r2
0

, (6.7)

again using Eqs. (4.4) and (4.25) for ψ0, ω1 and ω3. This expression involves U0 and U1 from ψ2

and W0 from ψ4 written in Eqs. (4.22a) and (4.22b) and it does not depend on ω4 or Ω5. This is
the first time an exact expression at the sixth order has been derived. However, it is in numerical
agreement with the previous result of [16] (with the convention r0 = 2), despite the convergence
assumptions of that paper were proved to be not valid [18–20]. The numerical agreement can be
explained by the lack of dependence of Eq. (6.7) on ω4 and Ω5, neither of which were obtained
correctly in [16].13

Turning to the seventh order correction to the energy flux, we compute from Eq. (6.3) the
novel term

α7Ė
∣∣(7)

r+
=
α7

r2
0

π

8

∫ π

0

sin2 θ
[
(4U0 − 1) sin3 θ ω4(θ) + 2∂θψ5(r0, θ)

]
dθ, (6.8)

employing again Eqs. (4.4) and (4.25). Using the decompositions given in Eqs. (4.30) and (5.9)
we obtain

α7Ė
∣∣(7)

r+
=
α7

r2
0

2π(2π2 − 15)

10395

(
99b

(4)
1 + 44b

(4)
3 + 8b

(4)
5

)
≈ 0.0007907

α7

r2
0

. (6.9)

Here the first equality is an analytic result, whereas the second equality makes use of the coef-
ficients in Eq. (4.31) determined numerically.14 The uncertainty is on the 5th significant digit,
and it is due to the numerical uncertainty of the coefficients b(4).

The seventh order energy flux (6.9) is one of the main results of this paper. This is the first
contribution to the energy flux which is an odd power in the spin. This arises as a consequence
of the perturbative analysis, including the matched asymptotic expansions of the r-region and
r̄-regions. Indeed, we find that the coefficients b

(4)
n , that were obtained by demanding continuity

of ψ̄3(r̄, θ) across the OLS together with the correct asymptotics of the split-monopole solution,
directly show up in this contribution to the energy flux. Notice that since the energy flux Ė has

to be even under α → −α, the seventh order term is in general |α|7Ė
∣∣(7)

r+
. Hence it is also the

first example of a term that is non-analytic in the α-expansion. Below we report on non-analytic
terms in the expansion of the angular momentum flux as well.

As a side remark, the computation of the flux of energy up to O(α6) can be repeated at
infinity. Since this computation is performed in the r̄-region, one can use the Znajek condition
at infinity (3.18) to simplify the integral as follows

Ė
∣∣
∞ = 2π

∫ π

0

sin θ [Ω∞(θ)∂θψ
∞(θ)]2 dθ. (6.10)

Substituting the expressions of the field variables for the r̄-region, as given in Eq. (5.11), one
exactly reproduces the flux of energy through the event horizon (6.4). This is obviously an
important check to make, since it states that the energy emitted is conserved from the horizon
to infinity. Notice that the use of Eq. (5.11) allows one to confirm the computation of the

13Note also that while the computation of W0 was originally carried out in Ref. [16] only an approximate result
was found. Our computation is instead fully analytic; see Eq. (4.22b) for the result.

14We notice that only the coefficient of Θ2 in ψ5(r0, θ) as well as the coefficients of Θ1, Θ3 and Θ5 of ω4(θ)

contribute to Ė
∣∣(7)
r+

.
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sixth order, made in [16] at the horizon, and extends its consistency with the complementary
computation at infinity. Unfortunately the order O(α7) cannot be determined at infinity, since
we lack the required ψ̄5 and Ω̄6. It is worth mentioning how the cancellations of the fifth order
and of the logarithmic term occur in this computation. From Eq. (6.1), one could in principle
have contributions in α5 and α6 logα. Both these contributions are identically zero since they can
be written as the integral of the total derivative d

(
sin2 θψ∞

)
, upon using the Znajek condition at

the horizon i4 = − sin2 θ ω4 and i5L = − sin2 θ ω5L The vanishing of the fifth order contribution

Ė
∣∣(5)

∞ and of the logarithmic contribution Ė
∣∣(6L)

∞ is again consistent with the conservation of

energy as Ė
∣∣(5)

∞ = Ė
∣∣(5)

r+
= 0 together with Ė(6L)

∣∣
∞ = Ė(6L)

∣∣
r+

= 0. Finally, it is immediate to

check that Ė(7L)
∣∣
r+

is identically vanishing.

In order to find logarithmic contributions in the expression for the energy extraction rate
one needs to push the perturbation theory at even higher orders. We notice that by taking into
account the sixth order expressions ψ6 and ψ6L in the field variables expansions (see Eq. (5.31)),
it is sufficient to compute the contributions α8 and α8 logα in the energy flux at the horizon
(6.3). More specifically

α8 logα Ė
∣∣(8L)

r+
=
α8 logα

r2
0

π

8

∫ π

0

sin2 θ
[
(4U0 − 1) sin3 θ ω5L(θ) + 2∂θψ6L(r0, θ)

]
dθ, (6.11)

α8 Ė
∣∣(8)

r+
=
α8

r2
0

π

8

{∫ π

0

sin2 θ
[
−16 sin θ ω4(θ)2 + (4U0 − 1) sin3 θ ω5(θ) + 2∂θψ6(r0, θ)

]
dθ

+
40897268365− 54π2[91384477− 280π2 (135 + 587π2)] + 58320(6605− 678π2)ζ(3)

2571912000

}
. (6.12)

The second line in Ė
∣∣(8)

r+
is computed by means of Eqs. (4.22a), (4.22b) and (4.22c) and comes

from contributions proportional to ψ4 and ψ2. Notice also that there is no possible dependence
on I6 and Ω6 by virtue of the Znajek condition at the horizon, already implemented at the
level of Eq. (6.3). The equations for ψ6 and ψ6L and their solutions in a neighbourhood of the
horizon are given in Sec. 5.4. Therein we also comment about their role in the matching with
the r̄-region of Sec. 5.3. Upon computing ψ6 and ψ6L at r0 one gets explicit numbers for these
contributions

α8 logα Ė
∣∣(8L)

r+
=
α8 logα

r2
0

2π(2π2 − 15)

105

(
b

(5L)
1 +

4

9
b

(5L)
3

)
≈ −0.00002216

α8 logα

r2
0

, (6.13)

α8 Ė
∣∣(8)

r+
≈ 0.12115911

α8

r2
0

, (6.14)

where, in the integrals of Eqs. (6.11) and (6.12), the only contribution coming from ψ6L and ψ6

are proportional respectively to R
(6L)
2 (r0) and R

(6)
2 (r0), whose analytic expressions are given in

Eqs. (5.35a) and (5.40a). Notice that because of the presence of the term ω2
4 in Eq. (6.12) all

the harmonics Θ2n+1(θ) appear. The result above is obtained by truncating the series at Θ7(θ)
included. We emphasize that, while the coefficients b(5L) are exact and so is the logarithmic
contribution at the eight-order, the coefficient of α8 has the same inaccuracy of the coefficients
b(5). We approximate the numerical value to the 8th significant digit.

We now turn to the angular momentum flux. Using the Znajek condition at the horizon
(3.16) one gets

L̇
∣∣
r+

= 2π

∫ π

0

[ΩH − Ω(r+, θ)] (∂θψ(r+, θ))
2

√
gφφ(r+, θ)

gθθ(r+, θ)
dθ. (6.15)
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Substituting the expressions of the field variables for the r-region (5.1), employing Eqs. (4.30),
(5.25) and (5.18) to rewrite respectively ω4, ω5 and ω5L , we find15

L̇
∣∣
r+

=
2π

3

α

r0

+
(56− 3π2)π

135

α3

r0

− 64π

105

(
b

(4)
3 +

7

2
b

(4)
1

)
α4

r0

−

[
π
(
25272ζ(3)− 105588π4 − 981330π2 + 19483259

)
4762800

+
64π

105

(
b

(5)
3 +

7

2
b

(5)
1

)]
α5

r0

− 64π

105

(
b

(5L)
3 +

7

2
b

(5L)
1

)
α5 logα

r0

+O(α6)

≈ 2.09439510
α

r0

+ 0.61415080
α3

r0

− 0.0181836(6)
α4

r0

+ 0.28080637
α5

r0

+ 0.00049866
α5 logα

r0

+O(α6).

(6.16)

This is another relevant result of our paper: odd powers in α and logs appear in the angular
momentum flux, and they do so at lower orders than in the energy flux. The explanation of this
follows immediately once we notice that the integrands of Eqs. (6.1) and (6.2) only differ by a
factor Ω. Its absence in the angular momentum flux integrand prevents the cancellation between
I and Ω that instead takes place in the energy flux integral because of the Znajek condition at
the horizon.

7 Conclusions

In this work we found new higher-order terms in the perturbative expansion of the BZ split-
monopole magnetosphere around a slowly spinning Kerr black hole. We employed the method
of matched asymptotics expansions, as reviewed in Sec. 4 (see also Appendix A), building on
the recent work [20]. In this approach one employs the critical surfaces to determine the field
variables together with the stream equation, as envisioned by [54]. In Sec. 5 we obtained an
expansion in the low spin regime both in the r-region, that contains the event horizon and the
ILS, and in the r̄-region, that contains the OLS and the asymptotic region. We imposed that
the magnetic flux is continuous across these critical surfaces, this is non-trivial at the OLS where
we employed numerical methods to solve the stream equation (see Appendix C). Moreover, in
Sec. 5.3 we matched the two expansions in the overlap region.

Exploring the higher order corrections reveals the ineluctability of terms containing logα,
i.e. terms in the perturbative expansion for α � 1 that are proportional to αn(logα)m with
m > 0. This feature was briefly anticipated in [20]. This is one of the main results of this paper,
as it reveals the low spin expansion to be non-analytic in the expansion parameter. This is a
novel aspect of the low spin expansion of the BZ split-monopole that was not present in earlier
works [14–19].

In Sec. 6 we computed the energy and angular momentum fluxes that result from our new
higher order corrections. For the energy flux, we computed three new terms in the low spin
expansion, namely the seventh order correction written in Eq. (6.9) and the eighth order correc-
tions in Eq. (6.13), including a logarithmic contribution. The seventh order and the logarithmic
contribution at the eighth order are non-analytic in α. It is important to emphasize that, because

15Here we notice that, if ωn(θ) = b
(n)
1 Θ1(θ) + b

(n)
3 Θ3(θ) + b

(n)
5 Θ5(θ) + . . . , this implies∫ π

0

sin3 θ ωn(θ)dθ =
32

105

(
b
(n)
3 +

7

2
b
(n)
1

)
.
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of the evenness of the energy flux under α→ −α, these new contributions are, respectively, pro-
portional to |α|7 and α8 log(|α|). This is another of our main results. Furthermore, we compute
for the first time the exact sixth order correction to the energy flux Eq. (6.7) that previously was
found only numerically [16].16 For the angular momentum flux we found three new higher order
corrections, that also include terms proportional to log |α|, as recorded in Eq. (6.16). Again,
this demonstrates the non-analytic dependence on the expansion parameter.

In addition to the above-mentioned main results, we have several other important results
worth advertising here:

• In Appendix C we present a novel numerical method, with higher accuracy and faster
convergence, that does not rely on a minimization procedure, to solve the stream equation
in the r̄-region and impose continuity across the OLS. Note that the numerical coefficients
for the expansions of ω4 in Eq. (4.31) and ω5 in Eq. (5.27) are obtained from this numerical
computation. These coefficients enter the fluxes of energy and angular momentum and
hence it is important to obtain them with increased precision.

• We check in Sec. 6 that the energy flux computed at the horizon matches the energy
flux computed at infinity. This is another consistency check for our matched asymptotic
expansions, since that computation involves both the perturbative expansions in the r and
r̄ regions. This also serves as a confirmation of the fact that the asymptotic behaviour of
ψ4 for large r in [16] is in fact not valid, since it would violate energy conservation.

• Regarding the perturbative expansion of ψ(r̄, θ) in α for the r̄-region, we show in Appendix
A why one cannot have corrections of order α and α2. This is an important result as it
ensures that there cannot be higher order corrections in α in the r-region that potentially
can alter the perturbative expansion in the r̄-region.

• In Appendix D we present for the first time the full exact solution for ψ4(r, θ), i.e. the
fourth order magnetic flux in the r-region.

• In Section 3 we find a new form for the stream equation in Eq. (3.4) that can ease the
study of light surfaces. Using this, we show that, at each perturbative order in α, the ILS
condition obtained from Eq. (3.10) is equivalent to the Znajek condition at the horizon
(3.16).

As already concluded, the BZ split-monopole magnetosphere expanded for low spin has non-
analytic terms in the expansion parameter both in the magnetic flux as well as in the energy
and angular momentum fluxes. It would be highly interesting to understand the origin of this
non-analytic behavior. For finite α, the Kerr metric is obviously an analytic function of α.
Thus, this suggests that also the magnetosphere should be an analytic function of α. Our take
on this, is that this might very well be the case, and that the non-analyticity is an artifact of
taking the α → 0 limit. Therefore, if one could obtain the exact solution of the split-monopole
magnetosphere for finite α, it should reveal a function that is analytic in α, but notably a
function that exhibits non-analytic terms in the α→ 0 limit. This points to an interesting non-
perturbative structure of the BZ split-monopole that might indicate how to approach a finite
α solution. To illustrate this point, consider the following example of a function expanded for
small α

1

α2 + 1
+ α2

√
(α2)α

4 − 1

α2 + 1
= 1− α2 + |α|3 + α4 − 1

2
|α|5 + |α|5 log |α|+O(α6). (7.1)

16As noted in Sec. 6, this is only the case when Ė is expressed as a function of α. For the sixth order correction
to Ė(ΩH) the result of [16] is inaccurate, as one can see by comparing to Eq. (1.1).
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On the LHS we have clearly an even function of α which would give an expansion that is analytic
around non-zero values of α. However, when expanded around α = 0 the function exhibits non-
analytic terms in α, both in the form of odd powers of |α| as well as terms involving log |α|.

It is interesting to compare our new analytical results for the energy flux Ė to the numerical
data obtained for finite α. We shall consider the energy flux Ė(ΩH) as a function of the angular
velocity ΩH of the Kerr black hole. The approximate numerical values for the perturbative
coefficients are written in Eq. (1.1). For the numerical comparison, we employ the simulation
data of [30]. In Fig. 3 we have drawn the curves obtained by adding more and more perturbative
corrections to Ė(ΩH) and compared these curves to the simulation of [30]. In the range from
0.5 to 1, only the fourth order curve, where one truncates the powers of ΩH after the fourth
order term, is deviating considerably from the simulation data. Among the others, the curve
that includes all perturbative terms up to the eighth order in ΩH is the one that globally best
approximates the simulation data of [30].

Χ Χ Χ
Χ

Χ

Χ

Χ

Χ

Χ
Χ Χ ΧΧ

E
 (2)

(BZ)

E
 (2)

+E
 (4)

E
 (2)

+E
 (4)

+ E
 (6)

E
 (2)

+E
 (4)

+E
 (6)

+E
 (7)

E
 (2)

+E
 (4)

+E
 (6)

+E
 (7)

+E
 (8L)

+E
 (8)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MΩH

2

M
2
E

Figure 3: We depict here the energy flux M2Ė as function of MΩH/2. We plot the curves
for second (original BZ result), fourth, sixth, seventh and eighth orders (log in-
cluded). The data points of [30] are marked with crosses.

We explore this comparison further in Fig. 4. In this figure we have used that the simula-
tion data of [30] is well approximated by the following formula by Tchekhovsky, Narayan and
McKinney (TNM) 17

Ė(TNM) =
2π

3
Ω2
H

[
1 + 0.346 r2

0Ω2
H − 0.575 r4

0Ω4
H

]
, (7.2)

which has the same second and fourth order corrections as our perturbative energy flux, but
where the sixth order term is obtained by fitting the curve to α = 0.9999. Henceforth we will
refer to Eq. (7.2) as the TNM curve.

One can make the comparison of curves more quantitative by considering the fractional
deviations |∆%|. This is done in the bottom diagram of Fig. 4. For instance, the original
quadratic BZ model depicted with a grey dashed line is unable to reproduce numerical data

17See Eq. (9) of [30] with α(TNM) ≈ 0.346r20 and β(TNM) ≈ −0.575r40; for r0 = 2 one has α(TNM) ≈ 1.38 and
β(TNM) ≈ −9.2.
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Figure 4: We depict in the top diagram the energy flux Ė in terms of log10(M2Ė) as
function of log10(MΩH/2). We plot the curves for second (original BZ result),
fourth, sixth, seventh and eighth orders (log included). The TNM curve is that of
Eq. (7.2). The data points of [30] are marked with crosses. In the bottom diagram
we compare the absolute fractional deviation |∆%| between the perturbative curves
and the curve of Eq. (7.2).

in the high spin regime as it deviates from the TNM curve with |∆%| ≈ 28.7% when α ' 1.
Similarly, the sixth order approximation depicted with a green dashed line can be seen to have
deviations with |∆%| ≈ 20.0%. Our seventh order approximation instead behaves significantly
better, with a maximal |∆%| around 12%. The inclusion of the eighth order correction increases
the accuracy in the nearly-extreme regime, and still attains a deviation of only |∆%| ≈ 13.9%
when α ' 1. In the sub-extreme regime, for instance at the Thorne limit α ' 0.998 [55], our
result at the eighth order deviates from the TNM curve of only |∆%| ≈ 7.5%, the seventh order
deviates of |∆%| ≈ 8.4%, and sixth order of |∆%| ≈ 13.3%.

There are many directions one could pursue from the results of this work:

• It would be interesting to push our perturbative results to higher orders in α. Computing
such higher terms could reveal hints about a possible non-perturbative structure.

• The numerical data at finite α are currently not precise enough to give a satisfying com-
parison with the perturbative results. It would be important to obtain the full curve Ė(α)
with higher precision, and with a range all the way from 0 to 1. Currently, the numeri-
cal data is lacking for values of α close to 0 in which a comparison to the perturbatively
obtained Ė(α) curve would be appropriate.

• One could use our improved higher-order understanding of the BZ split-monopole to study
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the BZ mechanism. Indeed, in the recent paper [56] the authors study the back-reaction
of the BZ process on black holes and its relation to the black hole mechanics. It would
be interesting to understand the interplay between the BZ mechanism and the black hole
mechanics for exact solutions describing black holes immersed into a back-reacting elec-
tromagnetic fields [57–59]. Another interesting direction for future work is to study the
propagation of the Alfvén waves and investigate resonant or superradiance effects that
might occur in the magnetosphere [60].

• It would be highly interesting to approach the BZ split-monopole with analytical methods
from the extreme case α = 1 and compute its deviation in the near-extreme spin regime.
However, a magnetically-dominated analytic solution to FFE around extreme Kerr back-
ground is still missing so far. A first attempt in this direction has been already taken by
identifying the attractor solutions to FFE in the near-horizon region of extreme Kerr [61],
and near-extreme Kerr spacetime [38], and constructing perturbatively a solution away
from the near-horizon region [37].

• Finally, it would be interesting to consider other profiles. For example, force-free mag-
netospheres with field lines with vertical topology received some attention in the litera-
ture [4, 21, 22, 24, 25]. A careful investigation should be performed to understand whether
the MAE scheme can be applied in the vertical case to have a consistent perturbation
scheme.

We hope to tackle some of these open problems in the future.
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A Perturbation of the Blandford-Znajek split-monopole:

review of past results

In this appendix we offer a streamlined review of the BZ perturbative approach applied to the
split-monopole solution. Even though the main results that follow are not new and just confirm
those of Refs. [1, 14–20] our aim here is to make our analysis as thorough and self-contained as
possible. For the sake of a clear notation we recall the general expansions of the field variables
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at the α orders taken into account in the following: in the r-region they are

ψ(r, θ) = ψ0(r, θ) + α ψ1(r, θ) + α2 ψ2(r, θ) + α3 ψ3(r, θ) + α4 ψ4(r, θ) +O(α5),

r0I(r, θ) = I0(r, θ) + α I1(r, θ) + α2 I2(r, θ) + α3 I3(r, θ) + α4 I4(r, θ) +O(α5),

r0Ω(r, θ) = Ω0(r, θ) + α Ω1(r, θ) + α2 Ω2(r, θ) + α3 Ω3(r, θ) + α4 Ω4(r, θ) +O(α5),

(A.1)

while in the r̄-region

ψ(r̄, θ) = ψ̄0(r, θ) + α ψ̄1(r̄, θ) + α2 ψ̄2(r̄, θ) + α3 ψ̄3(r̄, θ) +O(α4),

r0I(r̄, θ) = Ī0(r̄, θ) + α Ī1(r̄, θ) + α2 Ī2(r̄, θ) + α3 Ī3(r̄, θ) + α4 Ī4(r̄, θ) +O(α5),

r0Ω(r̄, θ) = Ω̄0(r̄, θ) + α Ω̄1(r̄, θ) + α2 Ω̄2(r̄, θ) + α3 Ω̄3(r̄, θ) + α4 Ω̄4(r̄, θ) +O(α5).

(A.2)

Leading order

r-region

Given that in this work we consider the split-monopole configuration, our perturbative scheme
is built around

ψ0(r, θ) = 1− cos θ, I0(r, θ) = Ω0(r, θ) = 0. (A.3)

where indeed, in term of the Schwarzschild operator (4.14), we have

Lψ0(r, θ) = 0. (A.4)

In such a configuration all the magnetic field lines escape from the horizon of the black hole and
reach infinity.

It is possible to determine the location of the ILS and the OLS by equating to zero respectively
the two invariants (3.7) and (3.8). Accordingly, we see that in the limit α→ 0 the ILS approaches
the Schwarzschild event horizon rILS → r0, whereas the OLS approaches infinity rOLS →∞. This
means that the OLS position in terms of the r coordinate has a negative power of α as the leading
perturbative contribution and thus suggests the necessity of a radial coordinate like r̄ = αr for
a proper perturbative description, as first noted in Ref. [20].

r̄-region

In compliance with what we did in the other region, we assume that at leading order we have

ψ̄0(r̄, θ) = 1− cos θ, Ī0(r̄, θ) = Ω̄0(r̄, θ) = 0. (A.5)

This is consistent with the class of solutions found in [62] to the stream equation in flat space-
time18 and in [20] it has been argued that other possible solutions satisfying all the boundary
conditions at hand probably do not exist. Indeed in terms of the operator (4.18) we have

L̄ψ̄0(r̄, θ) = 0. (A.6)

First subleading order

r-region

The first subleading contribution of the α-expanded stream equation in the r-region is simply

Lψ1(r, θ) = 0. (A.7)

18At leading order in the r̄-dependent expansion of the field variables this is what the stream equation (3.3)
reduces to
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The most general solution to this equation satisfying the split-monopole boundary conditions
(4.5) is [23]

ψ1(r, θ) =
∞∑
l=1

[B<
2lR

<
2l(r) +B>

2lR
>
2l(r)] Θ2l(θ), (A.8)

where B<
2l, B

>
2l are free constants and the radial functions are given by

R<
l (r) =

2r2

r2
0

Γ(l + 2)2

Γ(2l + 1)
2F1

[
l + 2, 1− l, 3, r

r0

]
, (A.9)

R>
l (r) = − 2√

π

(
r

2r0

)−l{
2F1

[
l + 2, l; 1; 1− r0

r

]
log
(

1− r0

r

)
+ Pl

(
r

r0

)}
. (A.10)

Here 2F1 is the Gaussian hypergeometric function and the polynomials Pl have the recursive
definition

P1(x) = x2 +
x

2
,

P2(x) = 4x4 − x3 − x2

6
, (A.11)

Pl(x) =
(2l − 1) [l(l − 1)(2x− 1)− 1]xPl−1(x)− l2(l − 2)x2Pl−2(x)

(l + 1)(l − 1)2
.

In general one has that R>
l (r) diverges logarithmically for r → r0 and

R<
l (r) ∼

(
r

r0

)l+1

, (A.12)

R>
l (r) ∼

(
r

r0

)−l
, (A.13)

for r → ∞. While a divergence for r → ∞ can be in general acceptable when it leads to a
matching with the r̄-region as discussed in Sec. 5.3, one has to choose B>

2l = 0 ∀l so as to avoid
a diverging solution for r → r0

19. However we can also argue that B<
2l = 0 ∀l: let us focus on

the case l = 1 and suppose that B<
2 6= 0, then considering Eq. (A.13) the quantity αψ1(r, θ)

for r → ∞ would go at least like αr3/r3
0, which should match an impossible O(α−2) term in

the r̄-region. For higher l the situation is the same, with just higher powers in r in the large
r-behaviour of αψ1(r, θ). Therefore overall we must have

ψ1(r, θ) = 0 (A.14)

In addition, from the integrability conditions (2.11) and (2.15) we get

∂rΩ1(r, θ) = 0, ∂rI1(r, θ) = 0. (A.15)

Thus we can write
Ω1(r, θ) = ω1(θ), I1(r, θ) = i1(θ), (A.16)

in terms of two yet unspecified function of θ, i1 and ω1.
From the Znajek condition at the horizon (3.16) expanded to the lowest order in α follows

i1(θ) =
1

2

(
1− 2ω1(θ)

)
sin2 θ. (A.17)

19In Ref. [20] the authors proved that even by resolving an additional region around the ILS one can’t find any
new matching condition that could make divergences for r → r0 acceptable.
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We can check that the latter result can also be inferred by imposing the regularity condition at
the ILS. Assuming 0 ≤ Ω ≤ ΩH , the ILS lies between the horizon radius r+ and the static limit
rergo(θ) [49]. Solving Eq. (3.7) to lowest order in α yields

rILS(θ) = r0 −
r0

4

[
cos2 θ + 4ω1(θ)

(
1− ω1(θ)

)
sin2 θ

]
α2 +O(α3). (A.18)

By inserting this in the regularity condition (3.10) and considering only the lowest order in α
one gets

∂θi
2
1(θ) = ∂θ

[
1

2

(
1− 2ω1(θ)

)
sin2 θ

]2

. (A.19)

We observe that the Znajek condition (A.17) is the solution of this equation after the regularity
on the axis has been imposed. In other words, we confirm that regularity at the ILS, supported
by the regularity at the axis, is equivalent to regularity at the horizon: both of them can be
used to derive the expression (A.17) for i1(θ).

r̄-region

At this order the integrability conditions (2.11) and (2.15) entail

∂r̄Ω̄1(r̄, θ) = 0, ∂r̄Ī1(r̄, θ) = 0. (A.20)

Taking into account the necessary matching with the r-region this means that

Ω̄1(r̄, θ) = ω1(θ), Ī1(r̄, θ) = i1(θ), (A.21)

where ω1(θ) and i1(θ) are the same functions introduced in Eq. (A.16). Then, from the first
non-zero contribution of the α-expanded stream equation we find

∂θi
2
1(θ) = ∂θ

[
ω2

1(θ) sin4 θ
]
. (A.22)

By combining this with Eq. (A.17) we get

∂θ

[
sin4 θ

(
ω1(θ)− 1

4

)]
= 0, (A.23)

with the only solution which is also regular on the axis being

ω1(θ) =
1

4
. (A.24)

The same conclusion could be reached by looking at the first α order of the Znajek condition at
infinity (3.18), which gives the relation

i1(θ) = ω1(θ) sin2 θ, (A.25)

that in fact inserted in Eq. (A.17) gives again ω1(θ) = 1/4.
We can now compute the position of the OLS at leading order. From Eq. (3.8) expanded to

zeroth order in α we get

r̄OLS(θ) =
r0

ω1(θ) sin θ
+O(α) =

4r0

sin θ
+O(α). (A.26)
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Second subleading order

r-region

At this order the α-expansion of the stream equation (3.4) leads to

Lψ2(r, θ) = −r0(r + r0)

2r4

Θ2(θ)

sin θ
. (A.27)

The corresponding particular solution for ψ2 is given by [1]

ψ2(r, θ) = R
(2)
2 (r)Θ2(θ), (A.28)

where

R
(2)
2 (r) =

r2
0 + 6r0r − 24r2

12r2
0

log

(
r

r0

)
+

11

72
+
r0

6r
+
r

r0

− 2r2

r2
0

+

[
Li2

(r0

r

)
− log

(
r

r0

)
log
(

1− r0

r

)] r2(4r − 3r0)

2r3
0

.

(A.29)

The general solution is found by adding to Eq. (A.27) an homogeneous term akin to the RHS
of Eq. (A.8). However the same considerations that imply ψ1 = 0 can be repeated here to argue
that such an homogeneous term must be fixed to zero for a consistent perturbative scheme.
Coming to the integrability conditions, at this order we have

Ω2(r, θ) = ω2(θ), I2(r, θ) = i2(θ). (A.30)

From the Znajek condition at the horizon (3.16) we thus get

i2(θ) = −ω2(θ) sin2 θ. (A.31)

The ILS is now located at

rILS(θ) = r0 −
α2r0

4

(
1− 1

4
sin2 θ

)
− α3r0

2
ω2(θ) sin2 θ +O(α4). (A.32)

By inserting this in the reduced stream equation (3.10) we get

i2(θ) +
1

2
tan θ∂θi2(θ) = −2ω2(θ) sin2 θ − 1

2
sin2 θ tan θ∂θω2(θ). (A.33)

Again, the solution to this equation, upon demanding regularity on the axis, corresponds to i2
as expressed in (A.31).

r̄-region

At this order the integrability conditions give

∂r̄Ω2(r̄, θ) = 0, ∂r̄I2(r̄, θ) =
1

2
cos θ∂r̄ψ̄1(r̄, θ), (A.34)

that is, considering the matching to the r-region,

Ω2(r̄, θ) = ω2(θ), I2(r̄, θ) = i2(θ) +
1

2
cos θψ̄1(r̄, θ). (A.35)

Using this in the α expansion of the stream equation yields

L̄ψ̄1(r̄, θ) =
∂θ
[
sin2 θ

(
sin2 θ ω2(θ)− i2(θ)

)]
4r2

0 sin θ
=
∂θ
[
sin4 θ ω2(θ)

]
2r2

0 sin θ
, (A.36)
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where the last equality holds thanks to Eq. (A.31). A simple solution to this equation that
satisfies the boundary conditions (4.5) is

ψ̄1(r̄, θ) = 0, ω2(θ) = 0, (A.37)

which also implies i2(θ) = 0 via Eq. (A.31). This is compatible with the Znajek condition at
infinity, that at this order reads

sin θ∂θψ̄
∞
1 (θ)− 2 cos θψ̄∞1 (θ) = −4

(
sin2 θ ω2(θ)− i2(θ)

)
. (A.38)

However, it is conceivable that ψ̄1 can have a non-zero boundary condition in the overlap region
r̄ � r0. To examine this possibility we consider the leading behavior of ψ̄1 for small r̄ as

ψ̄1(r, θ) =
r̄n

rn0
A(θ) + · · · , (A.39)

where the dots are subleading terms. For n ≥ 3 this gives the equation for A(θ)[
4 cos2 θ − (2 + n(n+ 1)) sin2 θ

]
A− cos θ sin θA′ − sin2 θA′′ = 0, (A.40)

which is solved as
A(θ) = C sin2 θP√25+4n+4n2−1

2

(cos θ), (A.41)

where C is an arbitrary constant and Pn(x) is a Legendre Polynomials of the first kind, since the
second kind is divergent for θ = 0. However, for n ≥ 3 this is non-zero at the equator θ = π/2
which violates the split-monopole boundary conditions (4.5). Therefore, we can conclude that
non-zero terms with n ≥ 3 in ψ̄1 are forbidden for small r̄. Comparing with the r-region, this
excludes that ψ̄1 could be turned on by perturbative corrections in the r-region with αn+1 with
n ≥ 3. As we shall see below, this fixes in particular ψ4 in the r-region. Moreover, there are no
non-zero boundary conditions from the r-region with lower powers of α. Thus, we can conclude
that (A.37) is the correct solution.

Note also that it is a simple exercise to see that if one starts with a leading term

ψ̄1(r, θ) =

(
log

r̄

r0

)m
r̄n

rn0
A(θ) + · · · , (A.42)

with m an integer, then A(θ) obeys the same equation (A.40) and hence has the same solution
(A.41) for n ≥ 3. Thus, also contributions of this type seems excluded.

As for the position of the OLS, from Eqs. (3.8) and (A.37) we find

r̄OLS(θ) =
4r0

sin θ
− α

2
+O(α2). (A.43)

Third subleading order

r-region

From the stream equation it follows that

Lψ3(r, θ) = 0. (A.44)

Similarly to what happens for ψ1, the only acceptable solution to this equation is

ψ3(r, θ) = 0. (A.45)
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The integrability conditions tell us

Ω3(r, θ) = ω3(θ), I3(r, θ) = i3(θ) +
1

2
cos θψ2(r, θ), (A.46)

with ψ2 given in Eq. (A.28).

From the Znajek condition (3.16) and the near horizon behaviour of R
(2)
2 (r) given in Eq. (4.21a),

we get

i3(θ) = sin2 θ

[
1

8
− ω3(θ)

]
+

sin4 θ

4

(
1

4
− U0

)
. (A.47)

Then, with Eq. (3.7) we can update the ILS position to

rILS(θ) = r0 −
α2r0

4

(
1− 1

4
sin2 θ

)
+ α4r0 r

(4)
ILS(θ) +O(α5), (A.48)

with

r
(4)
ILS(θ) = −cos2 θ

16
− sin2 θ

2

[
ω3(θ) +

sin2 θ

128

]
. (A.49)

If we insert the latter into the reduced stream equation (3.10) we get

i3(θ) +
1

2
tan θ ∂θi3(θ) = − sin2 θ

[
2ω3(θ) +

tan θ

2
∂θω3(θ)− 1

4
− (1− 2U1)

16
sin2 θ

]
. (A.50)

Then, by substituting i3(θ) from the Znajek condition at the horizon (A.47) we find

1− 6U0 + U1 = 0. (A.51)

Recalling Eqs. (4.22a), we see that the above condition is automatically satisfied. Therefore
again we can assert the equivalence between the regularity at the ILS and the Znajek condition
at the horizon.

r̄-region

The integrability conditions (2.11) and (2.15) supplemented by the matching condition to the
r-region now give

Ω̄3(r̄, θ) = ω3(θ), Ī3(r̄, θ) = i3(θ) +
1

2
cos θψ̄2(r̄, θ). (A.52)

Considering this, the expansion in α of the stream equation yields

L̄ψ̄2(r̄, θ) =
∂θ
[
sin2 θ

(
sin2 θ ω3(θ)− i3(θ)

)]
4r2

0 sin θ
. (A.53)

One can perform a similar analysis as for ψ̄1. Writing the leading term in a small r̄ expansion
as

ψ̄2(r, θ) =

(
log

r̄

r0

)m
r̄n

rn0
A(θ) + · · · , (A.54)

with integers n ≥ 1 and m ≥ 0, one finds that A(θ) obeys Eq. (A.40) which is solved by (A.41).
Since ψ̄2 should be zero at the equator θ = π/2 this excludes that A(θ) can be non-zero. A
non-zero boundary condition for ψ̄2 can thus only arise from perturbative corrections to the
α-expansion in the r-region that dominates over α2. Since no such terms are found in the above,
we can conclude that

ψ̄2(r̄, θ) = 0. (A.55)
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Equipped with the Znajek condition (A.47), we solve for the ω3(θ) that ensures the RHS of
Eq. (A.53) to vanish. In practice we obtain a simple first order differential equation whose
unique solution regular at the axis turns out

ω3(θ) =
1

16
+ (1− 4U0)

sin2 θ

32
. (A.56)

Notice that this result is in accordance with the Znajek condition at infinity (3.18), namely

sin θ∂θψ̄
∞
2 (θ)− 2 cos θψ̄∞2 (θ) = −4

[
sin2 θ ω3(θ)− i3(θ)

]
, (A.57)

once Eqs. (A.55) and (A.47) are used.
Finally, from Eqs. (3.8) and (A.56) we get an additional contribution to the position of the

OLS:

r̄OLS(θ) =
4r0

sin θ
− α

2
− α2r0

[
r0

sin θ
+

(
19

32
− 2U0

)
r0 sin θ

]
+O(α3). (A.58)

Fourth subleading order

r-region

At this order the stream equation reads

Lψ4 = S
(4)
2 (r)

Θ2(θ)

sin θ
+ S

(4)
4 (r)

Θ4(θ)

sin θ
, (A.59)

where the explicit expressions for the sources are

S
(4)
2 (r) =

1

56r6r2
0(r − r0)

{
2r2

[
(r − r0)

(
r
(
r5 − 4r2r3

0 − 3r5
0

)
∂2
rR

(2)
2 (r)

+
(
2r5 + 4r2r3

0 + 9r5
0

)
∂rR

(2)
2 (r)

)
− 2R

(2)
2 (r)

(
3r5 − 10r2r3

0 + 21rr4
0 − 11r5

0

) ]
+ r2

0

(
r5 + 4r4r0(3U0 − 2) + 6r2r3

0 + 7rr4
0 − 6r5

0

)}
, (A.60)

S
(4)
4 (r) =

1

224r6r2
0(r − r0)

{
6r2

[
(r − r0)

(
r
(
r5 − 4r2r3

0 + 4r5
0

)
∂2
rR

(2)
2 (r)

− 2
(
r5 + 2r2r3

0 − 6r5
0

)
∂rR

(2)
2 (r)

)
− 6R

(2)
2 (r)

(
r5 − 8r2r3

0 + 8r5
0

) ]
+ 3r2

0

(
r5 + r4r0(12U0 − 1)− 8r2r3

0 + 8r5
0

)}
, (A.61)

in terms of the R
(2)
2 (r) given in Eq. (A.29) and the U0 in Eq. (4.22a). By just looking at the

form of the equation we can write its particular solution as a decomposition of the kind

ψ4(r, θ) = R
(2)
4 (r)Θ2(θ) +R

(4)
4 (r)Θ4(θ). (A.62)

From here the idea is to insert Eq. (A.62) into Eq. (A.59) and project the latter on Θ2(θ) and

Θ4(θ) so as to solve separately for the radial components R
(2)
4 (r) and R

(4)
4 (r). The analytical

solutions for these functions are rather long and we give them explicitly in Appendix D . Never-
theless, from them we can easily infer the behaviour of ψ4(r, θ) for r → r0 and r →∞ by means
of either the Green function method described in Appendix B or the Frobenius method. The
results of this operation can be found in Eqs. (4.21b), (4.21c) and in Eqs. (4.23b), (4.23c).
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In addition to the particular solution for ψ4(r, θ) described above, one can furthermore add
the homogeneous terms

c1

(
r3

r3
0

− 3r2

4r2
0

)
Θ2(θ) + c2

(
r5

6r5
0

− 5r4

16r4
0

+
5r3

28r3
0

− 5r2

168r2
0

)
Θ4(θ). (A.63)

One can immediately see that c2 = 0, since in the overlap region r � r0 a leading term that goes
like α4r5 would need to match with α−1r̄5 in the r̄-region which is not allowed in our perturbative
expansion. Regarding c1, having this non-zero would require the matching with a term of the
form αc1r̄

3r−3
0 Θ2(θ) which is not allowed since, as seen above, ψ̄1 = 0. Thus, also c1 = 0.

As for the other field variables, the integrability conditions (2.11) and (2.15) impose

Ω4(r, θ) = ω4(θ) I4(r, θ) = i4(θ). (A.64)

From the Znajek condition at the horizon (3.16) we thus get

i4(θ) = −ω4(θ) sin2 θ. (A.65)

This result also follows by using the condition of regularity at the ILS, whose position given by
Eq. (3.7) now reads

rILS(θ)

r0

= 1 + α2r
(2)
ILS + α4r

(4)
ILS + α5r

(5)
ILS +O(α6), (A.66)

with the new term being

r
(5)
ILS = −ω4

2
sin2 θ. (A.67)

In fact, by evaluating the reduced stream equation (3.10) at this point and considering only the
terms at order α5 one gets

i4 +
1

2
tan θ ∂θi4 = − sin2 θ

(
2ω4 −

1

2
∂θω4 tan θ

)
. (A.68)

As usual, the solution of this ODE preserving regularity at the rotational axis is given by
Eq. (A.65). This establishes once again the equivalence between the horizon and the ILS at the
level of regularity conditions.

r̄-region

We start again from the integrability conditions (2.11) and (2.15) plus the matching condition
to the r-region, which ultimately give

Ω̄4(r̄, θ) = ω4(θ), Ī4(r̄, θ) = i4(θ) +
1

2
cos θψ̄3(r̄, θ). (A.69)

The corresponding α order in the stream equation expansion gives Equation (4.26). Notice that
this time we cannot just set ψ̄3(r̄, θ) = 0 since the source term is r̄-dependent. This equation can
only be tackled numerically and this is precisely what has been done in [20]. Taking into account
the new-found importance of the numerical parameters that result from this computation (see
the discussion below Eq. (6.9)), we repeated it in an effort to fix such parameters with greater
accuracy. More details about the numerics can be found in Appendix C, while a plot for the
numerical solution for ψ̄3 is shown on the left panel of Fig. 2.
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B Green’s function method for ψn in the r-region

Homogeneous solutions in the r-region

The source-free stream equation in the Schwarzschild spacetime reads (see Eq. (4.3))

Lψ =
1

sin θ
∂r

[(
1− r0

r

)
∂rψ
]

+
1

r2
∂θ

(
1

sin θ
∂θψ

)
= 0. (B.1)

The equation is separable thus we can look for a solution of the form

ψ(r, θ) = R(r)Θ(θ). (B.2)

Since we would like to get a symmetric solution about θ = π/2, we can limit ourselves to the
region 0 ≤ θ ≤ π/2. We also look for solution that are zero at θ = 0. Eq.(B.2) separates into

Lθ` [Θ] =
d

dθ

(
1

sin θ

dΘ

dθ

)
+
`(`+ 1)Θ

sin θ
= 0, (B.3)

Lr` [R] =
d

dr

[(
1− r0

r

) dR
dr

]
− `(`+ 1)R

r2
= 0. (B.4)

Suitably normalized solutions of Lθ` [Θ`(θ)] = 0, vanishing at both poles, are given by the hyper-
geometric functions,

Θ2k−1(θ) = 2F1

[
−k, k − 1

2
;
1

2
; cos2 θ

]
, (B.5)

Θ2k(θ) = 2F1

[
−k, k +

1

2
;
3

2
; cos2 θ

]
cos θ, (B.6)

where k (and hence `) is a positive integer. Note that Θ2k(π/2) = 0. The Θ` are proportional

to the Gegenbauer polynomials C
(3/2)
`−1 (x) [23]

Θ`(θ) =


2F1

[
`

2
,−`+ 1

2
;
1

2
; cos2 θ

]
= −

Γ
(
− `

2

)
Γ
(
`+1

2

)
2
√
π

sin2 θ C
(3/2)
`−1 (cos θ) ` odd,

(B.7)

2F1

[
− `

2
,
`+ 1

2
;
3

2
; cos2 θ

]
cos θ = −(−1)`/2

√
π Γ
(
`
2

)
4 Γ
(
`+3

2

) sin2 θ C
(3/2)
`−1 (cos θ) ` even.

The Cα
` (x) are orthogonal polynomials in the interval [−1, 1] with respect to the weight function

(1− x2)α−1/2, with α > 1/2. In particular, we will make use of the equation∫ π

0

dθ C
(3/2)
` (cos θ)C

(3/2)
`′ (cos θ) sin3 θ =

(`+ 2)(`+ 1)

`+ 3/2
δ``′ . (B.8)

As we are only interested in what happens outside the Schwarzschild horizon, we solve
Eq. (B.4) in the region r ≥ 2M = r0. The equation has two independent solutions, the first one,

when `→ `+ 1 in Eq. (B.4), is given in terms of Jacobi Polynomials, P
(α,β)
` (x),

U`(r) = r`0r
2P

(2,0)
`

(
1− 2r

r0

)
, (B.9)

while the second solution is obtained in terms of the first as

V`(r) = U`(r)

∫ ∞
r

xdx

(r0 − x)U2
` (x)

. (B.10)
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We note that all the U`(r) solutions are regular at r = r0 but diverge as r`+2 for r →∞, while
the V`(r) solutions are divergent in r = r0 but go as r−`−1 for r →∞.20

Before writing the total solution we need to consider separately the case ` = 0 that corre-
sponds to the monopole solution. For the angular part we have the solution Θ0(θ) = C(1−cos θ).
The corresponding radial solution is R0(r) = a + b[r + r0 ln(r − r0)]. This solution is divergent
both at r = r0 and for r →∞. The general solution can now be written as a linear combination
of the solutions described above

ψ0(r, θ) = (1− cos θ) [α + β(r + r0 log(r − r0))] +
∞∑
`=0

[A`U`(r) +B`V`(r)] Θ`+1(θ). (B.11)

Green’s function

The Green’s function G(r, θ; r′, θ′) for the operator L defined in Eq. (B.1) is the solution to the
equation

LG(r, θ; r′, θ′) = δ(r − r′)δ(θ − θ′) = sin θδ(r − r′)δ(cos θ − cos θ′). (B.12)

The Green function G(r, θ; r′, θ′) was derived by Blandford and Znajek in [1] as

G(r, θ; r′, θ′) =
∞∑
`=0

`+ 3/2

(`+ 1)(`+ 2)
sin2 θ sin2 θ′C

(3/2)
` (cos θ)C

(3/2)
` (cos θ′)R`(r, r

′), (B.13)

where R`(r, r
′) is given by

R`(r, r
′) =

{
U`(r)V`(r

′) if r < r′,

V`(r)U`(r
′) if r > r′.

(B.14)

The function G(r, θ; r′, θ′) satisfies the boundary conditions to be finite at r = r0 and to approach
zero at r →∞.

In the r-region, at O(αn), in general we have to solve equations of the form

Lψn = Sn(ωn−1, in−1; r, θ), (B.15)

where the Sn are the sources of the equations. Given Eq. (B.15), we can then construct a
particular solution as

ψn(r, θ) =

∫ π

0

dθ′
∫ ∞
r0

dr′G(r, θ; r′, θ′)Sn(r′, θ′)

=
∞∑
`=0

`+ 3/2

(`+ 1)(`+ 2)
sin2 θC

(3/2)
` (cos θ)

∫ π

0

dθ′ sin2 θ′C
(3/2)
` (cos θ′)×

×
[
V`(r)

∫ r

r0

dr′U`(r
′) + U`(r)

∫ ∞
r

dr′V`(r
′)

]
Sn(r′, θ′). (B.16)

In particular, the value of this solution at r = r0 is given by:

ψn(r0, θ) =
∞∑
`=0

`+ 3/2

(`+ 1)(`+ 2)
sin2 θC

(3/2)
` (cos θ)×

× U`(r0)

∫ π

0

dθ′
∫ ∞
r0

dr′ sin2 θ′C
(3/2)
` (cos θ′)V`(r

′)Sn(r′, θ′). (B.17)

20The functions U`(r) and V`(r) defined here corresponds respectively to R<l+1(r) and R>l+1(r) in the notation
of Appendix A. The notation used here follows the one of the original paper by Blandford and Znajek [1].
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Second order

At the second order in the α expansion the stream equation in the r-region reads (A.27)

Lψ2(r, θ) = S2(r, θ) = −r0(r + r0)

2r4

Θ2(θ)

sin θ
= −r0(r + r0)

6r4
C

(3/2)
1 (cos θ) sin θ. (B.18)

Inserting this into Eq. (B.16), thanks to the orthogonality condition (B.8), the only term in the
series in ` that survives the integration on θ′ is ` = 1

ψ2(r, θ) = − sin2 θC
(3/2)
1 (cos θ)

[
V1(r)

∫ r

r0

dr′U1(r′) + U1(r)

∫ ∞
r

dr′V1(r′)

]
r0(r′ + r0)

6r′4
, (B.19)

where

U1(r) = r2(3r0 − 4r),

V1(r) =
1

6r5
0

[
r0

(
−24r2 + 6rr0 + r2

0

)
+ 6r2(4r − 3r0) log

(
r

r − r0

)]
. (B.20)

At r = r0, we have:

ψ2(r0, θ) = − sin2 θC
(3/2)
1 (cos θ)U1(r0)

∫ ∞
r0

dr′V1(r′)
r0(r′ + r0)

6r′4

=
6π2 − 49

72
sin2 θ cos θ ≡ U0 sin2 θ cos θ. (B.21)

Fourth order

At the fourth-order, the stream equation becomes

Lψ4(r, θ) = S4(r, θ) = S
(4)
2 (r)

Θ2(θ)

sin θ
+ S

(4)
4 (r)

Θ4(θ)

sin θ

=
1

3
S

(4)
2 (r)C

(3/2)
1 (cos θ) sin θ − 2

15
S

(4)
4 (r)C

(3/2)
3 (cos θ) sin θ, (B.22)

where the explicit expressions for S
(4)
2 (r) and S

(4)
4 (r) are given in Eqs. (A.60) and (A.61).

Inserting the source expression into Eq. (B.16), thanks to the orthogonality condition (B.8),
the only terms in the series in ` that survive the integration on θ′ are ` = 1 and ` = 3. A
particular solution of Eq. (B.22) is

ψ4(r, θ) =
1

3
sin2 θC

(3/2)
1 (cos θ)

[
V1(r)

∫ r

r0

dr′U1(r′) + U1(r)

∫ ∞
r

dr′V1(r′)

]
S

(4)
2 (r′)

− 2

15
sin2 θC

(3/2)
3 (cos θ)

[
V3(r)

∫ r

r0

dr′U3(r′) + U3(r)

∫ ∞
r

dr′V3(r′)

]
S

(4)
4 (r′), (B.23)

where U1(r) and V1(r) are given in Eq. (B.20) and

U3(r) = r2
(
−56r3 + 105r2r0 − 60rr2

0 + 10r3
0

)
,

V3(r) = −56r4

r8
0

+
77r3

r7
0

− 157r2

6r6
0

+
r

r5
0

+
1

20r4
0

+
r2

r9
0

(
−56r3 + 105r2r0 − 60rr2

0 + 10r3
0

)
log
(

1− r0

r

)
.

(B.24)

At r0 one has

ψ4(r0, θ) =
1

3
sin2 θC

(3/2)
1 (cos θ)U1(r0)

∫ ∞
r0

drV1(r)S
(4)
2 (r)

− 2

15
sin2 θC

(3/2)
3 (cos θ)U3(r0)

∫ ∞
r0

drV3(r)S
(4)
4 (r). (B.25)
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The function ψ4(r, θ) is dimensionless; it is then possible to scale out r0 everywhere in Eq. (B.25)
and to perform the integrals analytically defining x = r/r0. We get

W0 ≡
U1(r0)

r3
0

∫ ∞
1

dxV1(x)S
(4)
2 (x)

=
39ζ(3)

3920
+

17929399

2540160
− 3877π2

12096
− 19π4

480
' 0.051159 , (B.26)

V0 ≡
U3(r0)

r5
0

∫ ∞
1

dxV3(x)S
(4)
4 (x)

=
79π4

640
− 963ζ(3)

3920
− 2012505017

67737600
+

9791π2

5376
' −0.006732 , (B.27)

in agreement with the numerical values computed in [16].

Fifth order

At the fifth-order, the stream equation becomes (see Eq. (5.5))

Lψ5(r, θ) = S5(r, θ) =
r2 + r0r + r2

0

2r2
0r

2 sin2 θ
∂θ
[
ω4(θ) sin4 θ

]
. (B.28)

Substituting the numerical ansatz for ω4(θ) as in Eq. (4.30) and performing the integral in
Eq. (B.17), one gets the numerical value of the coefficients of Θ2(θ) obtained in Eq. (5.9),
namely

− 2

189

(
99b

(4)
1 + 44b

(4)
3 + 8b

(4)
5

)
= −0.0029210(6). (B.29)

C Numerical methods

In this section we detail the numerical method we used to tackle this problem. The aim is to
solve both Eq. (4.17) for n = 3 and n = 4, subject to the relevant boundary conditions.

We first note that the mode functions Pk(θ) ≡ Θ2k(θ) appearing in Eq. (B.5) form a basis
for the angular dependence of ψ̄n(r̄, θ). A priori these functions might not look too useful
for solving the problem at hand, because they are not associated to separable solutions of the
operator (4.18). In fact, we strongly suspect that the operator (4.18) does not admit separable
solutions. Nevertheless, the functions Pk(θ) do form a basis. As such, we can expand ψ̄n as

ψ̄n(r̄, θ) =
sin2 θ cos θ

8

r0

r̄
δn ,3 +

+∞∑
k=1

Pk(θ)Q̄
(n)
k (r̄) . (C.1a)

Note that (4.17) also implicitly depends on ψ̄∞n (θ) (see for instance Eq. (5.20)). As such, we
introduce

ψ̄∞n (θ) =
+∞∑
k=1

Pk(θ)c̄
(n)
k . (C.1b)

with the understanding that
lim

r̄→+∞
Q̄

(n)
k (r̄) = c̄

(n)
k . (C.1c)

Since for each value of n, Eq. (4.17) comprises a linear equation for ψ̄n(θ, r̄) with a source
term determined from the previous (n − 1) orders, we can hope to find an (infinite) system of
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coupled ordinary differential equations for the Q
(k)
n (r̄). In order to derive these, we will need to

tabulate a couple of integrals: ∫ π

0

Pn1(θ)Pn2(θ)

sin θ
dθ = A(n1) δn1,n2 (C.2a)

and∫ π

0

sin θ Pn1(θ)Pn2(θ)dθ = A(n1)

[
(2n1 − 1)(2n1 + 1)

(4n1 − 3)(4n1 − 1)
δn1,n2+1 +

4n1 (n1 + 1)

(4n1 + 3) (4n1 + 5)
δn1+1,n2

+
4n1 (2n1 + 1)

(4n1 − 1)(4n1 + 3)
δn1,n2

]
, (C.2b)

with

A(n1) ≡ πΓ(n1)Γ(n1 + 1)

2(4n1 + 1)Γ
(
n1 + 1

2

)
Γ
(
n1 + 3

2

) . (C.2c)

The Règle du jeux are now simple: we take the expansion (C.1a) into (4.17). Let us call the
resulting equation B(ψ̄n) = 0. We then project the equation as

Bk(Q̄(n)
k (r̄)) ≡

∫ π

0

Pk(θ)

sin θ
B(ψ̄n) dθ (C.3)

and find the resulting equations for Q̄
(n)
k (r̄) by using the integrals (C.2) and integration by parts.

For ψ̄3 we find

∂2
z Q̄

(3)
k (z)− 1

16

[
(2k − 1)(2k + 1)

(4k − 3)(4k − 1)
∂z(z

2∂zQ̄
(3)
k−1(z)) +

4k (k + 1)

(4k + 3) (4k + 5)
∂z(z

2∂zQ̄
(3)
k+1(z))

+
4k (2k + 1)

(4k − 1)(4k + 3)
∂z(z

2∂zQ̄
(3)
k (z))

]
− 2k(2k + 1)

z2
Q̄

(3)
k (z) +

1

4
Q̄

(3)
k (z)

+
(k + 1)(2k − 3)(2k − 1)(2k + 1)

8(4k − 3)(4k − 1)
Q̄

(3)
k−1(z) +

k(k + 1)(k + 2)(2k − 1)

2(4k + 3)(4k + 5)
Q̄

(3)
k+1(z)

+
k(2k + 1) (4k2 + 2k − 7)

4(4k − 1)(4k + 3)
Q̄

(3)
k (z) +

3

112z
δk, 1 +

9

448z
δk, 2

−

[
(k + 1)(2k − 3)(2k − 1)(2k + 1)

8(4k − 3)(4k − 1)
c̄

(3)
k−1 +

k(k + 1)(k + 2)(2k − 1)

2(4k + 3)(4k + 5)
c̄

(3)
k+1

+
(k + 1)(2k − 1) (4k2 + 2k + 3)

4(4k − 1)(4k + 3)
c̄

(3)
k

]
= 0 , for k = 1, 2, 3, . . . (C.4)

with z ≡ r̄/r0, Q̄
(n)
0 (z) = 0, c̄

(n)
0 = 0. For ψ̄4 we find

∂2
z Q̄

(4)
k (z)− 1

16

[
(2k − 1)(2k + 1)

(4k − 3)(4k − 1)
∂z(z

2∂zQ̄
(4)
k−1(z)) +

4k (k + 1)

(4k + 3) (4k + 5)
∂z(z

2∂zQ̄
(4)
k+1(z))

+
4k (2k + 1)

(4k − 1)(4k + 3)
∂z(z

2∂zQ̄
(4)
k (z))

]
− 2k(2k + 1)

z2
Q̄

(4)
k (z) +

1

4
Q̄

(4)
k (z)

+
(k + 1)(2k − 3)(2k − 1)(2k + 1)

8(4k − 3)(4k − 1)
Q̄

(4)
k−1(z) +

k(k + 1)(k + 2)(2k − 1)

2(4k + 3)(4k + 5)
Q̄

(4)
k+1(z)
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+
k(2k + 1) (4k2 + 2k − 7)

4(4k − 1)(4k + 3)
Q̄

(4)
k (z) +

3

112z
δk, 1 +

9

448z
δk, 2

−

[
(k + 1)(2k − 3)(2k − 1)(2k + 1)

8(4k − 3)(4k − 1)
c̄

(4)
k−1 +

k(k + 1)(k + 2)(2k − 1)

2(4k + 3)(4k + 5)
c̄

(4)
k+1

+
(k + 1)(2k − 1) (4k2 + 2k + 3)

4(4k − 1)(4k + 3)
c̄

(4)
k

]
−

[
2∂z

(
1

z
∂zQ̄

(3)
k (z)

)
+
∂zQ̄

(3)
k (z)

z2

]

+
1

16

{
(2k − 1)(2k + 1)

(4k − 3)(4k − 1)

[
∂z(z∂zQ̄

(3)
k−1(z)) + ∂zQ̄

(3)
k−1(z)

]
+

4k (k + 1)

(4k + 3) (4k + 5)

[
∂z(z∂zQ̄

(3)
k+1(z)) + ∂zQ̄

(3)
k+1(z)

]
+

4k (2k + 1)

(4k − 1)(4k + 3)

[
∂z(z∂zQ̄

(3)
k (z)) + ∂zQ̄

(3)
k (z)

]}
+

2k(2k + 1)

z2
Q̄

(3)
k (z) = 0 (C.5)

for k = 1, 2, 3, . . . . Numerically, we will not be able to solve the equations for Q̄
(3)
k (z) and

Q̄
(4)
k (z) for infinite values of k. Therefore, we introduce a regulator N which accounts for the

maximum of harmonics that we intend to use in our approximation scheme. The equations
remain as above, except that we take Q̄

(n)
k (z) = c̄

(n)
k = 0 for k ≥ N + 1 and n = 3, 4. In the end

we should estimate the numerical error in reading physical quantities by changing N . For this
reason, all our quantities have an additional index N , which indicates how many harmonics we
have used: Q̄

(n)
k N(z) and c̄

(n)
k N .

We are then left with a system of 2N second order differential equations to solve for Q̄
(3)
k N(z)

and Q̄
(4)
k N(z). Note that, as expected, we can solve first for Q̄

(3)
k N(z) and only afterwards determine

Q̄
(4)
k N(z). In this sense, we have N second order differential equation to solve for each order

n = 3, 4. However, it is not hard to see that the ordinary differential equations above have
themselves outer light surfaces that are dependent on k. These comes from the first and fourth
terms in both Eq. (C.4) and Eq. (C.5) and are given by

zOLS k N =
2
√

(4k − 1)(4k + 3)√
k(2k + 1)

. (C.6)

What remains is then how one can use a numerical method to solve these second order ODEs,
while determining all the c̄nk in the process by requiring continuity at z = zOLS k N . We do this
in a series of steps. First, we promote all c̄nk to functions of z and supplement the 2N second

order differential equations for Q̄
(n)
k N(z) with additional 2N second order differential equations

of the form
∂2
z c̄
n
k N(z) = 0 . (C.7)

The generic solution to these equations is simply

c̄nk N(z) = c̄n, 0k N + z c̄n, 1k N , (C.8)

where c̄n, 0k N and c̄n, 1k N are constants. We thus demand that Eqs. (C.7) are solved restricted to the
boundary condition ∂z c̄

n
k N(z)|z=0. It seems we have not gained much by doing this procedure

yet. However, we now perform a couple of tricks.
We first introduce a compact coordinate y defined as

y =
z

1 + z
, (C.9)
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so that z = 0 and z → +∞ are mapped to y = 0 and y = 1, respectively. The k dependent OLS
are mapped using the same rule, i.e.

yOLS k N =
zOLS k N

1 + zOLS k N

. (C.10)

Next, we note that the generic Frobenius behaviour around each of the yOLS k N predicts a
logarithmic behaviour in y− yOLS k N (which we want to discard) and a smooth component that
we want to keep. Motivated by this, we write all ordinary differential equations above in first
order form for the Q̄

(n)
k N(y) and use a spectral collocation scheme (such as the ones reviewed

in [63]) on a Chebyshev-Gauss-Lobatto grid to solve the resulting 4N + 2N ordinary differential
equations. This scheme assumes that all functions can be decomposed as a sum of (shifted)
Chebyshev polynomials of the first kind in y ∈ (0, 1), which in particular are continuous and

smooth across y = yOLS k N . we thus expect a unique smooth solution for Q̄
(n)
k N(y) and c̄nk N .

Indeed, we find this to be the case. The advantage of this method over the one detailed in [20]
is that we do not need to minimise any functional to determine c̄nk N : they are determined via a
simple ordinary differential solver.

There is one additional technical remark we will make. The functions Q̄
(3)
k N(y) have regular

boundary conditions at y = 0 and y = 1 (indeed, this is the reason why we introduced the first
factor in Eq. (C.1a):

Q̄
(3)
k N(0) = 0 and

∂Q̄
(3)
k N(y)

∂y

∣∣∣∣∣
y=1

=
1

8
δk, 1. (C.11)

However, this is not the case for Q̄
(4)
1 N(y) and Q̄

(4)
1 N(y) whose small y behaviour has to be matched

with Eq. (5.29). In order to achieve this, we do not solve for Q̄
(4)
1 N(y) and Q̄

(4)
2 N(y), but instead

make an additional functional redefinition of the form

Q̄
(4)
1 N(z) =− 11

800z2
+

1

40z2
log

(
z

1 + z

)
+

1

40z
− 1

80

+
1

1680 (1 + z4)
log

(
z

1 + z

)
+

227

100800
+ ˜̄Q

(4)
1 N(z) , (C.12a)

Q̄
(4)
2 N(z) =

3

22400 (1 + z4)
log

(
z

1 + z

)
+

363

896000
+ ˜̄Q

(4)
2 N(z) . (C.12b)

It is relatively easy to check that the required boundary conditions are simply ˜̄Q
(4)
1 N(z) =

˜̄Q
(4)
2 N(z) = Q̄

(4)
k N(z) = 0, for k ≥ 3 and

∂Q̄
(4)
k N(y)

∂y

∣∣∣∣∣
y=1

=
1

8
δk, 1 +

1

40
δk, 2 . (C.13)

The functions we plot in Fig. 2 are simply given by ψ̄(n) with its singular behaviour removed
at r̄ = 0. To wit

˜̄ψ(3)(r̄, θ) = ψ̄(3)(r̄, θ)− sin2 θ cos θ

8

r0

r̄
=

N∑
k=1

Pk(θ)Q̄
(n)
k N(r̄) (C.14a)

and ˜̄ψ(4)(r̄, θ) = ˜̄Q
(4)
1 N(r̄)P1(θ) + ˜̄Q

(4)
2 N(r̄)P2(θ) +

N∑
k=3

Pk(θ)Q̄
(4)
k (r̄) . (C.14b)

We now make a parenthetical remark: we have also solved this problem using a Chebyshev
collocation scheme. In such an approach, the partial differential equations are discretized on a
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tensor product grid of two Chebyshev-Gauss-Lobatto grids having Nz and Nθ collocation points
along the z and θ directions, respectively. Again, the system is found to be dependent on
two regulators: the number of grid points along each integration directions. In this sense, the
numerical method we outline above is no different. One might wonder why we did not use such
collocation methods to tackle the problem at hand. Indeed, we found that using Chebyshev-
Gauss-Lobatto collocation methods also demanded that we introduce additional regularisation
parameters besides Nz and Nθ, which were difficult to control numerically. Such additional
regularisation parameters were also needed in [20], but are not required in the numerical scheme
that intrinsically uses the Pk(θ) harmonics detailed above.

Perhaps interestingly, one can solve the equations exactly for N = 1. This turns out to be a
good test of our numerical procedures. For Q

(3)
1 N=1(z) we find

Q̄
(3)
1 N=1(z) = − 3

200704z2

[
4704z + 3z3

(√
7π2z − 56

)]
− 3 (2352 + 56z2 + 3z4)

28672
√

7z2

[
4 arctanh

(
z

2
√

7

)
log

(
z√
28

)
− 4 Li2

(
z

2
√

7

)
+ Li2

(
z2

28

)]
+

126z (28 + z2)

50176z2
log

(
z√
28

)
(C.15a)

with

c̄
(3)
1 N=1 =

3π2

512
√

7
. (C.15b)

The closed form expression for Q̄
(4)
1 N=1(z) occupies a few pages and is not particularly enlight-

ening, but c̄
(4)
1 turns out to be given by

c̄
(4)
1 N=1 =

379 + 120 log 2 + 60 log 7

201600
− 9π4

458752
. (C.16)

Convergence of the numerical method to the continuum limit

A complete convergence study involves changing both N (the number of harmonics used) and
Ny ( the number of grid points in the Chebyshev-Gauss-Lobatto grid). Because the functions
we solve for exhibit explicit logarithmic dependence (see for instance the analytic solution for
N = 1 (C.15a)) we do not expect exponential convergence in Ny or N , but instead power law.

To monitor the convergence, let us denote c̄
(n)
k N Ny

with k = 1, . . . , 5 and n = 3, 4, as computing

c̄
(n)
k N with Ny collocation points in the y direction. For each of these we define

δc̄
(n)
k N Ny

≡ 100

∣∣∣∣∣1− c̄
(n)
k N Ny

c̄
(n)
k N Ny+50

∣∣∣∣∣ . (C.17)

Similarly, we can define

∆c̄
(n)
k N Ny

≡ 100

∣∣∣∣∣1− c̄
(n)
k N Ny

c̄
(n)
k N+1 Ny

∣∣∣∣∣ . (C.18)

The quantity δc̄
(n)
k N Ny

measures the convergence in Ny, whereas ∆c̄
(n)
k N Ny

measures the conver-

gence in N . As expected, we find polynomial convergence in N and Ny. For ∆c̄
(n)
k N Ny

we find a

convergence in the continuum limit compatible with N−13/2 while for δc̄
(n)
k N Ny

we find a conver-

gence compatible with N−3
y . Examples of the studies we performed are detailed in Fig. 5 where

we plot ∆c̄
(3)
5 N 250 (on the left panel) and δc̄

(4)
3 10 Ny

(on the right panel). Different choices of n and

k yield similar results. Note that both δc̄
(n)
k N Ny

and ∆c̄
(n)
k N Ny

are measured already in percentage
level. All plots in the manuscript were generated with Ny = 250 and N = 11 and all quantities
reported have an error estimated to be well under the 10−1% level.
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Figure 5: On the left panel we plot ∆c̄
(3)
5 N 250 as a function of N finding a consistent scaling

with N−13/2 (given by the best linear fit represented as a dashed red line), while

on the right panel we plot δc̄
(4)
3 10 Ny

as a function of Ny and find a consistent

scaling with N−3
y (given by the best linear fit represented as a dashed red line).

D Explicit expressions for R
(4)
2 (r) and R

(4)
4 (r)

In this section we take y ≡ r0/r, so that y ∈ [0, 1]. The function R
(4)
2 (y) is given by

R
(4)
2 (y) = log y

[(
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+
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+
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+
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+
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]
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+
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+

(
17

7y3
− 51

28y2

)
log y log3(1− y)− 361y

3024
− 585751

47040y
− 122875
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, (D.1)

while for R
(4)
4 (y) we find

R
(4)
4 (y) =

(
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+
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E Explicit expression for S6(r, θ)

The expression of the source S6(r, θ) in Eq. (5.37) is
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, (E.1)

where we remind that the constants U0, U1, W0, and V0 are given in Eqs. (4.22a), (4.22b) and

(4.22c) while the radial functions R
(2)
2 (r), R

(4)
2 (r) and R

(4)
4 (r) appear respectively in Eqs. (A.29),

(D.1) and (D.2).
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