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The importance of vegetation within the fluvial domain is well established, influencing both 

flow and morphology, and has long been recognised as a key component of the river corridor. 

Despite this, adequately capturing the spatial and structural variability of vegetation for us to 

understand the eco-geomorphic feedbacks occurring at a range of scales remains a challenge. 

Currently, the focus of this research takes place at either the individual plant scale, looking into 

vegetation-flow interactions, or at larger scales, attempting to spatially discretise vegetation for 

bulk roughness metrics. Subsequently, hydrodynamic models are typically based around these 

bulk roughness values which exclude vegetation structure. The aim of this research is to attempt 

to bridge this gap and link the different scales of analysis to improve our understanding of eco-

geomorphic interactions. This is achieved by: (1) Examining current remote sensing methods 

that may be used for fluvial research, (2) Developing a novel UAV based remote sensing system 

to collect plant scale data for reach scale analysis, (3) Extracting trait-based metrics for individual 

plants and upscaling these to reach scale extents, (4) Implementing these traits-based parameters 

in to a 2D hydrodynamic model. At present, the main trade offs in remote sensing centre around 

scale and resolution, whereby capturing larger areas reduces the detail of the phenomena being 

studied. Structure from Motion (SfM) photogrammetry has helped to bridge this gap yet fails to 

reconstruct topography in vegetated reaches and cannot resolve vegetation structure. These 

drawbacks have herein been overcome with the introduction of UAV based laser scanning 

techniques, capable of accurately capturing topography in vegetated reaches as well as resolving 

vegetation structure. This data can be used to extract traits-based vegetation metrics, identify 

individual guilds within a river corridor, and be scaled to spatially discretise vegetation structure 

at reach scales. Guilds are then evaluated against monitored morphological change to investigate 

eco-geomorphic feedbacks. These vegetation metrics and classifications are subsequently used 

to parameterise a 2D hydrodynamic model, showing the impact that vegetation discretisation 

methods have on model outputs. This research has developed methods for obtaining reach scale 

data on vegetation structure to better inform our understanding of eco-geomorphic feedbacks. 

The robustness and scalability of these methods presents future avenues of research, both within 

the fluvial domain and for other environmental research applications, where eco-geomorphic 

feedbacks have a major influence in shaping the Earth’s surface.
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1 

Chapter 1 Introduction 

Despite the known influence of vegetation on flow and morphology, attempts to fully capture 

the structural variability of plants beyond patch scale have yet to be realised. This is necessary 

to enhance our understanding of eco-geomorphic feedbacks across a range of scales. The 

importance of vegetation in modulating geomorphic processes has been recognised across space 

and time and in nearly all Earth surface process domains (Istanbulluoglu and Bras, 2005; 

Corenblit and Steiger, 2009; Davies and Gibling, 2010; Corenblit et al., 2011; Gurnell, 2014). 

The role of vegetation is broad, interacting with the climate and atmosphere, modifying soils 

and substrates, and directly influencing flows of matter and energy (Fig 1-1; Corenblit and 

Steiger (2009)).  

 

Figure 1-1 A comparison of a simplified Earth as an abiotic (A) and biotic (B) system as 

outlined in (Corenblit and Steiger, 2009). This highlights the importance of 

vegetation when considering geomorphological change and the various roles 

vegetation plays in shaping our landforms. 

The focus of this research is on the latter of these, the role of vegetation in modulating fluid 

flows, herein specifically in the context of fluvial eco-geomorphic interactions. In relation to 

landscape modification by sediment mobilising flows of water, vegetation distribution and 

structure has been shown to dominate the resultant control that is exerted on landform 

production (Manners et al., 2015; Diehl et al., 2018; Butterfield et al., 2020). Despite this, to date, 

little attention has been focused on trying to better characterise the complex structure of 
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vegetation through time and across the larger (100-101 km) spatial scales that are relevant to river 

catchment development. 

1.1 Relevant Scales of Eco-Geomorphology 

The four dimensional river system approach outlined by Ward (1989) discretised interactions 

along pathways in the upstream and downstream (longitudinal) dimension, channel to 

floodplain (lateral) dimension, channel to groundwater (vertical) dimension, and along the 

temporal (time) dimension. The first three dimensions can all change throughout the fourth 

dimension of time, based on interactions between each other. Many sub-disciplines are involved 

in the management and research of these dimensions through time, be it hydrologists, 

geomorphologists, ecologists, chemists, or engineers. Success in multidisciplinary approaches 

can be assessed based on how well these sub-disciplines combine to answer a specific lack of 

understanding (Pickett et al., 1995). A significant component of the lateral dimension is the 

interaction between channel, banks, and the wider floodplain; which in turn is influenced by 

factors such as hydraulic conditions, underlying geology, and vegetation. These interactions 

themselves are nested across both temporal and spatial scales, with channel units ranging from 

the fine sub-feature scales through to landform scale basin systems, and vegetation ranging from 

individual vegetation components to complete community ecosystems (Thoms and Parsons, 

2002). It is only through recognising that different components and sub-disciplines interact 

across a range of spatial and temporal scales that advances in understanding can be made. This 

is what makes eco-geomorphological research important, by accepting that hydrology influences 

ecology and morphology and vice versa, and through attempting to conduct research in a 

manner that seeks to include these feedbacks where possible in a holistic manner.  

Vegetation can be analysed at a range of scales, from the effects of separate plant parts, 

individual plants, assemblages of plants, through to plant communities and entire ecosystems. 

The scales at which they are monitored are typically related to the processes and landforms 

which they influence. For example, the impacts of individual stems effect the magnitude of 

trailing turbidity, whereas plant assemblages aggregate this in to changes in flow conditions, and 

scaling to community and ecosystem scales effects floodplain connectivity and morphological 

response. However, creating links between these scales of analysis and the subsequent hydraulic 

influences is challenging, especially given the range of vegetation and hydraulic conditions that 

are present globally before the influences of local topography and soil properties are accounted 

for.  
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However, as vegetation is a key component of the river corridor, adequately accounting for its 

influence is necessary. Current research clearly demonstrates the variability in impact that 

different vegetation forms have on river corridors, and how differences in plant types have 

considerable impact on properties such as drag and soil cohesion. Although the measurement 

of single stems is relatively straight forward, branching structures and those with foliage are far 

harder to measure (James et al., 2008), making it challenging to successfully discretise the effects 

of riparian vegetation. At the individual scale, plant height and vertical distribution play a key 

role in flow modulation, especially with the variable flow depths altering the fraction of plant 

biomass interacting with water (Nepf and Vivoni, 2000; Lightbody and Nepf, 2006). This is an 

important component not always accounted for, whereby the changing flow levels lead to 

changes in flow resistance, with different flow responses depending on the plants vertical 

structure. Depending on flow depths, plant frontal area and foliage may be altered, with foliated 

plants having larger surface areas that can exert a greater force for re-profiling during 

submergent flow (Järvelä, 2002b; Whittaker et al., 2013). This reconfiguration can be accounted 

for by measuring the re-profiled frontal area (e.g. Vasilopoulos, 2017) or by reducing the 

coefficient of drag (Armanini, Righetti and Grisenti, 2005).  

Below the surface, root strength and distribution can be used to infer binding strength and 

stability, and help to create more stabilised channels (Gran and Paola, 2001; Tal and Paola, 

2007). The distribution of roots may be more influential than the root strength itself, leading to 

an overall increase in soil cohesion (Abernethy and Rutherfurd, 2001; Yu et al., 2020). Matching 

above and below ground biomass is therefore necessary when examining individual plant 

impacts on flow and subsequent morphological change, as has been modelled by Caponi, Vetsch 

and Siviglia (2020). The importance of different plant structural features and foliage above and 

below ground is consistently noted by various authors, however their interactions at larger scales 

are just as important. The drag coefficients typically identified for a single plant are not 

comparable to those in patches of similar vegetation (James et al., 2008), for example increases 

in drag coefficients are identified when increasing plant density (Kim and Stoesser, 2011) but 

clumping the same biomass in to areas of low and high density compared to an even distribution 

also effects flow (Sand-Jensen, 2008). Therefore, the spatial distribution of vegetation is just as 

important as the characteristics and density of vegetation patches themselves. Despite individual 

stems and their arrangements causing local variations in scour and trailing deposits (Follett and 

Nepf, 2012), it is at larger scales where the effect of vegetation on morphology becomes more 

apparent. This may manifest in changes in topography depending on the vegetation cover, with 

deposition increasing with a greater proportion of vegetation cover due to in increases in 

floodplain roughness (Gran and Paola, 2001; Bertoldi, Gurnell and Drake, 2011b). Heavily 
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vegetated channels also have an increased presence of large woody debris, having an influence 

on both in and out of channel morphology leading to increases in depositional landforms 

relative to non-blockaded channels (Jeffries, Darby and Sear, 2003; Sear et al., 2010). The 

aggraded nature of root properties will also help to stabilise channels and switch reaches from 

braided to singular channels (Tal and Paola, 2007), therefore the depositional features caused 

by above ground roughness are matched with below ground stability to help create stabilised 

channels.  

The complexities introduced by deciding what scales to analyse vegetation at for the purpose of 

a study are compounded by the temporally varying nature of vegetation. Seasonality is of great 

importance, especially considering flooding happens both during winter and summer months, 

with future projections of heavy rainfall events increasing for much of Europe suggesting a 

strong likelihood in increased flooding events (Douville et al., 2021). Although seasonality of 

individual plants has somewhat been addressed by the comparison of foliated and defoliated 

stems (e.g. Wilson et al., 2003; Vasilopoulos, 2017), seasonality has rarely been an explicit aim. 

Yet as these studies have shown, the inclusion of foliage not only affects flow, but also plant re-

profiling, and as such the characteristics of the plant will change drastically between different 

seasons. Moreover, many of the plants studied are perennial herbaceous species that are not 

present year-round. Areas with seasonal vegetation are therefore likely to be experiencing 

different bulk roughness for different time periods, something that is not commonly accounted 

for. In channel monitoring showed peaks in determined Manning’s n roughness values within 

early summer seasons associated with the channel coverage of macrophytes (Champion and 

Tanner, 2000), supported by Cotton et al. (2006) who found peaks in coverage from June and 

July led to increases in hydraulic roughness. Accounting for temporal variations in roughness 

led to a distinct improvement in correlation between observed and modelled water surface 

elevations (Song et al., 2017), yet the use of temporal roughness elements are not standard. This 

may be due to difficulties in accurately discretising the floodplain vegetation, or from obtaining 

good quality seasonal data to assess the impacts seasonality has on vegetation presence, although 

efforts to improve parametrisation that include seasonality have been presented (Västilä and 

Järvelä, 2018). Yet, finding methods to transition from small scale, highly localised dynamics, to 

large scale seasonal vegetation coverage is a key research question. This will ensure that the 

modelling performed is both hydraulically relevant, computationally efficient, and applicable to 

real world scenarios, so that decisions made as a result are effective and supported by the 

science. 
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1.2 Characterising Vegetation Complexity 

Discretising vegetation in models typically necessitates the use of a roughness parameter which 

can account for the effect of vegetation on the flow field. The use of Manning’s n is a common 

approach to account for the effects of vegetation, having been assessed in numerous studies 

(Chow, 1959; Petryk and Bosmajian, 1975; Noarayanan, Murali and Sundar, 2012). Yet, this 

lumped approach groups many forms of resistance together into a singular value, eliminating 

the nuance and variability in vegetative drag. Manning’s n is typically used in modelling to 

determine the variation in resistance across the domain (Cobby et al., 2003b) with some models 

including a depth element to vary Manning’s n based on flow depths (Anderson, Rutherfurd 

and Western, 2006) or a seasonal component (Kourgialas and Karatzas, 2013). However, these 

methods make assumptions on the characteristics of vegetation based on user interpretation of 

images or field inspection in conjunction with previously used values. This in essence ignores 

the actual function of vegetation, its complexity, and properties under various flow conditions, 

whereas characterisation of vegetation should be physically based (Jalonen et al., 2014). Flume 

and field experiments have shown the variation in roughness at different flow depths and 

speeds, as well as from the resolution and methods of foliage frontal area discretisation (Järvelä, 

2002b;2004; Västilä and Järvelä, 2014; Vasilopoulos, 2017). Therefore, it can be assumed that 

to fully account for the vegetation within a study site, a deeper perspective beyond broad 

classification of types and associated roughness values is likely required.  

How researchers spatially discretise and map vegetation is therefore of considerable importance, 

and depending on the level of detail required, the purpose of the mapping, and the scale of the 

study, may ultimately influence research findings. Muller (1997) recognised an increased 

likelihood in the use of remote sensing for riparian vegetation and highlighted the need for 

increasing spatial resolution and spatially orientated classification algorithms. It was rightly 

pointed out that a single layer cannot represent all aspects of vegetation, and this is a problem 

that has persisted as to what scale should vegetation be measured. However, it was also noted 

that if the classification is based on sound scientific methods, then this may pave the way for 

broader uses. This has certainly been the case, with both high-resolution terrestrial and satellite-

based methods allowing for ever increasing resolution of individual plants, as well as improved 

spatially complex and accurate reach scale mapping. Vegetation of multiple scales can now be 

classified from TLS (Terrestrial Laser Scanning) surveys in topographically complex 

environments (Brodu and Lague, 2012) and be subsequently analysed to reveal internal 

structures as well as vertical profiles which can be used for flow modelling and roughness 

estimates (e.g. Manners, Schmidt and Wheaton, 2013; Jalonen et al., 2015; Vasilopoulos, 2017). 

However, Lague (2020) noted that given the fundamental role vegetation plays in eco-
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geomorphic feedbacks that the use of such data had not been fully realised for the potential to 

resolve complex interactions between vegetation and flow. Likewise, the increasing spatial 

resolution of satellite imagery and extent of ALS (Airborne Laser Scanning) surveying has led 

to an increase in analysis of riparian vegetation for both classification problems (Yang, 2007; 

Antonarakis, Richards and Brasington, 2008b) as well more detailed analysis such as log jam 

monitoring (Bertoldi, Gurnell and Welber, 2013b; Abalharth et al., 2015). 

The above summarises how there have been great advances in our understanding of plant scale 

influences of flow and large-scale classifications of vegetation from remote sensing, yet there 

seems to be few attempts to cross these scales to apply local vegetation modelling to large scale 

datasets. Manners, Schmidt and Wheaton (2013) used their local scale TLS data to inform a 

larger scale model of vegetation frontal areas from ALS, and in forestry linking TLS to ALS has 

been used to verify large scale modelling methods (Lindberg et al., 2012; Brede et al., 2019), but 

fluvial applications are still less common. Advances in remote sensing technology and new 

approaches to classifying vegetation by looking beyond traditional hydrology methods may 

enable the improved understanding of our eco-geomorphic interactions. There is an area of 

research which is a missing link between our fine scale understanding, and the large-scale 

applications of this knowledge due to an inability to transfer this knowledge from one scenario 

to another. These eco-geomorphic feedbacks are variable and will depend on underlying factors 

such as climate, sediment, and morphology (Wiel and Darby, 2007), but better characterisation 

of vegetation via traits-based analysis may help to minimise this variability and improve 

applicability between similar reaches. This may also allow for improved calculation of roughness 

values or for the introduction of more explicit structural models in hydrodynamic modelling.   

1.3 Thesis Aims and Research Questions 

The aim of this research is to establish a new way of characterising vegetation to assess the role 

that it plays in modulating eco-geomorphic feedbacks across time and space. Specifically, the 

following Research Questions (RQ) will be tackled: 

RQ1: What is the current state-of-the-art in river corridor remote sensing and how can it 

potentially be used to measure eco-geomorphic feedbacks? 

RQ2: What properties of vegetation are important in relation to modulation of fluvial 

geomorphic change? Can these be readily measured and quantified using remote sensing, so that 

variations in vegetation and morphology can be readily assessed through space and time? 
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RQ3: Does how we represent vegetation in relation to complexity and temporal evolution in 

fluvial model domains matter? What can novel representations of vegetation tell us about the 

eco-geomorphic feedbacks of a river system? 

1.4 Thesis Outline 

The physical development and construction of a novel environmental sensing system was a key 

component of the NEXUSS DTP training programme. This DTP was specifically designed to 

utilise smart and autonomous observing systems to improve sustained and high-resolution 

observations to tackle environmental science challenges. This multi-disciplinary approach that 

crosses both environmental and engineering research is jointly funded by NERC and EPSRC 

and consequently this thesis exhibits elements from both of these approaches. 

The thesis structure is centred around four papers that together tackle the central aim and 

Research Questions outlined above. 

Chapter 2 (Paper 1, https://doi.org/10.1002/rra.3479) Tackles RQ1 in presenting an overview 

of the current river corridor surveying techniques and seeking to outline some of the challenges 

and opportunities that the research community face when using remote sensing to monitor the 

fluvial corridor.  

Chapter 3 (Paper 2, https://doi.org/10.3390/s21227719) Tackles parts of both RQ1 and RQ2 

in developing and testing the state-of-the-art Uncrewed Aerial Vehicle mounted sensing package 

that is used in papers 3 and 4.  The accuracy of the developed system and consistency between 

surveys is assessed using ground control points and sections of stable ground. The benefits of 

the system are outlined with examples from the field site and potential applications introduced. 

Chapter 4 (Paper 3, Submitted to Earth Surface Dynamics) Tackles RQ2 by establishing 

methods for extracting hydrologically relevant functional traits of vegetation using the 

developed UAV sensing package and linking these to geomorphic change to assess eco-

geomorphic interactions over larger scales without the need for intensive ground-based 

fieldwork. The paper establishes the historical context and current patterns of morphological 

change within a study site by monitoring vegetation traits at high resolution over a year and a 

half field campaign. The spatial distribution of guilds is established for the study site using 

upscaling approaches from individual vegetation models. The connection between vegetation 

and morphology is then discussed, with the potential for the wider application of these methods 

highlighted. 

https://doi.org/10.1002/rra.3479
https://doi.org/10.3390/s21227719
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Chapter 5 (Paper 4, Intention to submit to Geomorphology/ESPL) Tackles RQ3 by using the 

novel traits-based vegetation classification to underpin the modelling approach of the study site. 

The spatial distributions of guilds identified in Paper 3 are used to parameterise the vegetation 

component of a 2D hydrodynamic model through space and time, with results compared to 

traditional bulk metrics that relate vegetation to a roughness parameter. 

Chapter 6 concludes the work by revisiting the RQs and the challenges identified in Paper 1, 

outlining how future work might evolve, and considering the wider applications for eco-

geomorphic research. 
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Chapter 2 Remote sensing of  river corridors: A review of  

current trends and future directions 

2.1 Abstract 

River corridors play a crucial environmental, economic and societal role, yet also represent one 

of the world’s most dangerous natural hazards, making monitoring imperative to improve our 

understanding and to protect people. Remote sensing offers a rapidly growing suite of methods 

by which river corridor monitoring can be performed efficiently, at a range of scales, and in 

difficult environmental conditions. This paper aims to evaluate the current state and assess the 

potential future of river corridor monitoring, whilst highlighting areas which require further 

investigation. We initially review established methods which are used to undertake river corridor 

monitoring, framed by the context and scales upon which they are applied. Subsequently we 

review cutting edge technologies which are being developed, focussed around UAV and multi-

sensor system advances. We also ‘horizon scan’ for future methods which may become 

increasingly prominent in research and management, citing examples from within and outside 

of the fluvial domain. Through review of the literature it has become apparent that the main 

gap in fluvial remote sensing lies in the trade-off between resolution and scales. However, 

prioritising process measurements and simultaneous multi-sensor data collection is likely to 

offer a bigger advance in understanding than purely from better surveying methods. Challenges 

regarding the legal deployment of more complex systems, as well as effectively disseminating 

data into the science community are amongst those that we propose need addressing. However, 

the plethora of methods currently available means researchers and monitoring agencies will be 

able to identify suitable techniques for their needs. 

2.2 Introduction 

Rivers play a crucial environmental and societal role, providing food, water, nutrients, flood and 

drought mitigation, transport and potential energy, as well as providing habitats and supporting 

biodiversity that encourage recreational use (Postel and Richter, 2012). These ecosystem services 

are incredibly valuable, with freshwater resources contributing a significant component of the 

global natural capital (Costanza et al., 1997). This explains why 82% of the world’s population 

live on previously flooded land  (Dilley et al., 2005), whilst 87% have a river as their closest water 

body (Kummu et al., 2011). Conversely, rivers can present a considerable hazard to those in their 

vicinity, primarily through flooding (Hirabayashi et al., 2013). Flooding is identified as the most 
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dangerous natural hazard, accounting for 43% of all disasters between 1995-2015, with flood 

events likely to become more severe as a result of climate change (UNISDR and CRED, 2015). 

Alongside flooding, bank erosion represents a hazard to those communities who reside near 

river banks (Thakur, Laha and Aggarwal, 2012; Islam and Guchhait, 2017). However, world 

rivers are degrading in terms of water quality, sediment loads, and overall ecological diversity 

(Vörösmarty et al., 2010). Simultaneously, increasing rates of change in land cover across 

floodplains are affecting the hydrological regime; impacting on ecology, erosion, and flooding 

(Gregory, 2006; Wasson et al., 2010; Remondi, Burlando and Vollmer, 2016). It is therefore 

imperative to monitor river corridors to i) understand associated processes, ii) evaluate the 

nature of evolving hazards, iii) maintain ecological sustainability, and iv) to preserve their 

integrity as a resource for future generations. 

For the purposes of this review, ’river corridors’ can be defined broadly to include river 

channels, riparian zones, floodplains, and associated fluvial deposits, forming an overall 

classification framework which can be used to aid research and management (Harvey and 

Gooseff, 2015). The dynamic interactions across the river corridor are especially important in 

the context of applied river management, whereby a holistic approach is necessary. River 

corridor units feed into management strategies and applied research, covering areas including 

hydrological exchange (Malard et al., 2002; Smith et al., 2008; Harvey and Gooseff, 2015), 

ecosystem functionality (Stanford and Ward, 1993; Brunke and Gonser, 1997; Poole, 2002), 

monitoring of restored reaches (Bernhardt et al., 2007; Kail et al., 2007; Schneider et al., 2011), 

and geomorphic evolution (Richards, Brasington and Hughes, 2002; Ollero, 2010; Magdaleno 

and Fernandez-Yuste, 2011).  

Ultimately, we cannot view rivers as points or lines, but as spatially continuous mosaics of 

information (Fausch et al., 2002). Remote sensing techniques provide the ideal solution for river 

corridor monitoring due to their non-intrusive nature, wide ranging spatial coverage, and 

repeatability. In order to fully understand the river corridor we need data that is continuous over 

various scales, with remote sensing being the ideal solution to achieve this, allowing us to test 

the theory that has been presented, and provide a basis for our understanding of the fluvial 

form. Over time, river corridor research has been transformed through technological advances 

making surveys more accurate, efficient, and resolute both spatially and temporally (Marcus and 

Fonstad, 2010; Entwistle, Heritage and Milan, 2018). Each advance in remote sensing allows 

subsequent progression in understanding. This enables novel research into the processes that 

are shaping river corridors, across scales ranging from grain dynamics to landform hydrological 

analysis. Herein, we define remote sensing in the broadest sense; as any relevant non-invasive 

form of data collection. 
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2.2.1 Review Structure 

This review aims to outline both current and future methods which are employed to aid our 

understanding of the river corridor. Remote sensing offers multiple techniques for monitoring 

various components of the river corridor (Figure 2-1a). There are two key distinguishing factors 

that determine appropriate data collection techniques; i) the domain to which they are applied 

and ii) the spatial scale and resolution over which they are applicable. Herein we have structured 

the review around these key considerations, firstly revisiting the developments in river corridor 

remote sensing since the mid-20th century, before reviewing techniques across various domains, 

focussing within these on the scales over which methods are deployed. For the purposes of this 

review, we define the scales of monitoring based around the morphological units outlined in 

Figure 2-1b to provide a structure for the review and context for the following discussion. We 

also seek to highlight studies that combine multiple remote sensing techniques, such that they 

are developing new insight into river corridors before ‘horizon scanning’ to try and suggest a 

future agenda for the remote sensing of river corridors. Finally, we outline the key challenges 

that will need to be addressed in order for the techniques and methods identified to progress to 

a point where they can be broadly applied.  

2.3 River Corridor Remote Sensing 

2.3.1 A Brief History of Remote Sensing of River Corridors 

In order to provide context for where we are, and where we may be heading, it is useful to know 

where we started in terms of remote sensing in the fluvial domain. During the 20th Century, 

researchers began using early forms of remote sensing by studying aerial photos to investigate 

fluvial morphology and the driving processes involved (Leopold and Langbein, 1966; Fairbairn, 

1967; Kinoshita, 1967; Coleman, 1969). The launch of the Landsat program in 1972 led to a 

rapid uptake in remote sensing for fluvial research (Mertes, 2002), for example to identify former 

river channels (Ghose, Kar and Husain, 1979), investigate water quality and suspended sediment 

(Aranuvachapun and Walling, 1988), map flood hazards (Rango and Anderson, 1974), and 

understand the interactions between rivers and vegetation (Salo et al., 1986). By the turn of the 

century, it was considered that data with a resolution of 1 m was classed as high resolution 

(Mertes, 2002), however this is no longer the case. Developments in ALS (Airborne Laser 

Scanning) facilitated high resolution collection of topographic data over large areas, allowing  an 

improvement in the accuracy of data collected for applications such as flood modelling (Cobby, 

Mason and Davenport, 2001; Bowen and Waltermire, 2002; Ruiz et al., 2002). The decision to 

stop degrading GPS data in 2000 facilitated more widespread use of remote sensing. Sub-surface 
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techniques more traditionally reserved for oceanic studies began to be used on fluvial systems 

for research in the early 2000’s, with the deployment of Acoustic Doppler Current Profiling 

(ADCP) and Multi Beam Echo Sounding (MBES) methods (Shields et al., 2003; Muste, Yu and 

Spasojevic, 2004; Parsons et al., 2005). Further improvements in resolution, but with limiting 

spatial extent, came through the use of Terrestrial Laser Scanning (TLS) in the late 2000’s 

(Heritage and Hetherington, 2007; Milan, Heritage and Hetherington, 2007), breaking through 

the previous limits of spatial resolution offered by ALS and that were alluded to by Mertes 

(2002). Finally, a proliferation in the use of Uncrewed Aerial Vehicles (UAVs) in recent years 

has allowed the collection of high resolution imagery from which dense models of the earth’s 

surface are created over areas greater than achieved by TLS (Lejot et al., 2007; Westoby et al., 

2012; Fonstad et al., 2013).  

 

Figure 2-1 Key features and scales of the floodplain. a) The key natural features of a river 

corridor, including an active channel, floodplains, sediment deposits, relic channels, 

and vegetation components. b) A conceptual framework of river corridor scales 

across which we review research and applications herein, ranging from the (i) fine 

scale, (ii) feature scale, (iii) reach scale to the (iv) landform scale. 
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Figure 2-2 A comparison of the spatial resolution and extent of various common survey 

methods along with temporal resolution, end user cost, and ease of data analysis in 

the subsequent bar graphs. It should be noted that end user cost is based on typical 

examples, for example purchasing TLS equipment is expensive, whereas despite 

satellite data being expensive to produce, they are freely available in most 

circumstances. Despite ALS data being free in many circumstances to end users, it 

is limited in terms of temporal resolution and coverage, with further data collection 

being very expensive. The top panel was inspired by a similar concept developed 

in Figure 12 of Bangen, Wheaton, Bouwes, Bouwes, and Jordan (2014). 
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Whether or not there has been the genuine emergence of a sub discipline in river sciences 

devoted to remote sensing, as proposed by Marcus and Fonstad (2010), is perhaps open for 

debate. We would argue that the remote sensing tools reviewed herein and the associated 

technical developments that we highlight are used across many disciplines of river science, 

driven by a desire to better understand the physical processes at work and effectively manage 

these systems. 

2.3.2 Current Monitoring Methods 

One of the strengths of remote sensing lies in the broad range of temporal and spatial extents 

over which methods can be applied (Figure 2-2). However, there is no ‘perfect technique’, with 

factors such as cost, scale, and repeatability all playing an important role in determining the most 

appropriate method for a user (Figure 2-2). Many of the methods used have been thoroughly 

reviewed and can be used to inform researchers for deployment and processing, e.g. UAV 

imagery (Westoby et al., 2012), TLS (Telling et al., 2017), ALS (Hofle and Rutzinger, 2011), 

ADCP (Muste, Yu and Spasojevic, 2004), MBES (Jha, Mariethoz and Kelly, 2013), as well as 

comparing between methods for bathymetric modelling (Kasvi et al., 2019). However, the aim 

of this review is not to provide a methodological overview, but rather to evaluate the range of 

applications and how each approach can enhance our understanding of the river corridor. 

2.3.2.1 Roughness and Grain size  

Bed and bank studies have predominantly utilised statistical analysis of dense point clouds to 

extract roughness metrics. TLS has primarily been used to examine fine scale roughness due to 

the high point density, for example in exploring  gravel bars (Heritage and Milan, 2009), 

variations in roughness pre- and post-flood (Picco et al., 2013), roughness across differing 

climatic drivers (Storz‐Peretz et al., 2016), and bank skin drag coefficients (Leyland et al., 2015). 

Importantly, research into how scan locations and grid cell size impacts roughness calculations 

has been undertaken to improve deployment (Baewert et al., 2014) and examining the potential 

for bed roughness extraction with through water laser scanning has expanded the versatility of 

TLS (Smith, Vericat and Gibbins, 2011).  

Over larger spatial domains, roughness tends to be derived from overhead imagery. Structure 

from Motion (SfM) techniques have been used for roughness calculations in flume experiments 

(Morgan, Brogan and Nelson, 2017; Pearson et al., 2017) as well as field studies (Smith and 

Vericat, 2015; Woodget and Austrums, 2017; Piton et al., 2018) and river restoration analysis 

(see Figure 2-3, (Marteau et al., 2017)). UAV SfM therefore provides the ability to upscale the 

spatially limited static terrestrial based methods to feature and reach scales. Currently, calculating  
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Figure 2-3 An example of roughness calculations performed across a restored channel. SfM 

methods were used to obtain a DEM before using detrended standard deviation 

values to obtain surface roughness. Repeat surveys allow the change is roughness 

to be monitored through time as the channel adjusts. Such results can be used to 

highlight processes such as channel margin sorting, as well as be fed back into 

hydrodynamic modelling. This presents an example of how high-resolution 

roughness can be scaled up to analyse reach scale process and form interaction. 

Reprinted from ‘Application of Structure-from-Motion photogrammetry to river 

restoration’, by Marteau et al. (2017). 

roughness over large areas is time consuming and further compounded by SfM data suffering 

from smoothing effects (Smith and Vericat, 2015; Cook, 2017). Yet, ever increasing computer 

power may help extensive, high resolution, roughness models become more feasible. 

Below water, MBES techniques are predominantly used for bathymetric topography, although 

research by both Guerrero and Lamberti (2011) and Konsoer et al. (2017) utilised MBES data 

to investigate bed roughness across a range of study sites. Despite the methods not being fully 

explored, MBES data may provide insight into bed and bank roughness across reach scales and 

greater.  
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Grain size is somewhat harder to extract. Traditional image-based methods relate image texture 

to grain size (Carbonneau, Bergeron and Lane, 2005; Graham, Rice and Reid, 2005). More 

recent methods exploit SfM topography with high resolution imagery (0.0015 m pixel size) from 

low flight heights (Langhammer et al., 2017) and through relationships between roughness and 

in field grain size measurements (Woodget and Austrums, 2017; Carbonneau, Bizzi and 

Marchetti, 2018). Work by Woodget, Fyffe and Carbonneau (2018) demonstrated how image 

texture on a series of individual images outperformed orthomosaics and SfM roughness 

measures. However, derived relationships may struggle in poorly sorted reaches (Pearson et al., 

2017) and where sediment placement is irregular, causing the axis of measurement to be 

inconsistent. 

TLS produces data volumes similar to those from SfM and thus is hampered by similar 

processing constraints. The technique has been successfully used to investigate grain size 

packing distribution (Hodge, Brasington and Richards, 2009), variations between systems 

(Storz‐Peretz et al., 2016), submerged grain size (Smith, Vericat and Gibbins, 2011), and grain 

size on large, complex gravel systems using Mobile Laser Scanning (MLS) (Wang et al., 2011a). 

Through-water TLS is ineffective for deeper channels, where instead, MBES data has been used 

to infer grain size using statistical inference techniques (Snellen et al., 2013; Eleftherakis et al., 

2014). However, the extensive calibration involved and limited spatial applicability restricts the 

scale of application over which the methods can be used. 

2.3.2.2 Flow Characteristics 

Both Acoustic Doppler Velocimeters (ADVs) and ADCPs are used to investigate flow 

dynamics. The former is used to primarily investigate flow characteristics such as velocity and 

turbulence in both flume (Lawless and Robert, 2001; Schindler and Robert, 2005; Buffin-

Belanger et al., 2006; Abad and Garcia, 2009) and field setups (Lane et al., 1998; Buffin-Belanger 

and Roy, 2005; Strom and Papanicolaou, 2007; Wilcox and Wohl, 2007). Likewise, ADVs have 

also been used to investigate applied management problems such as weir construction (Bhuiyan, 

Hey and Wormleaton, 2007) and the effects of ship wakes on near bank flow (Fleit et al., 2016). 

However, the requirement for a static deployment somewhat limits their application beyond 

fine scales.   

Across feature and reach scales, ADCP sensors can be used to better understand flow dynamics; 

such as investigating the influence of surface ice on vertical separation and helical flow structures 

(Lotsari et al., 2015), the complex flow properties in the Mekong (Hackney et al., 2015), better 

calibration of a Delft3D flow model (Parsapour-Moghaddam and Rennie, 2018), as well as river 

confluence mixing processes (Gualtieri et al., 2018). At the reach scale, ADCPs have been used 
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to investigate flow variation through dynamic morphological systems (Guerrero and Lamberti, 

2011), flow interaction with dune bed morphology (Parsons et al., 2005), and flow patterns 

through a variety of meandering, straight, and abandoned channels (Shields et al., 2003). With 

increasing portability and potential platform autonomy (Flener et al., 2015), the deployment 

versatility of such sensors is likely to improve further beyond their already extensive range of 

deployment opportunities. 

Field based Particle Image Velocimetry (PIV) operates over smaller spatial extents, tracking 

tracer particles in a fluid over interrogation windows using pattern recognition (Adrian, 1991; 

Detert and Weitbrecht, 2015). Most systems are static for continual monitoring (Creutin et al., 

2003; Jodeau et al., 2008; Gunawan et al., 2012), yet advances in positional and attitudinal data 

has allowed helicopters (Fujita and Hino, 2003; Fujita and Kunita, 2011) and more recently 

UAVs (Detert and Weitbrecht, 2015; Tauro et al., 2015; Bolognesi et al., 2017; Thumser et al., 

2017) to improve spatial coverage. The method shows promise, producing velocity 

measurements within 5-8% of those measured from total station tracking (Bolognesi et al., 2017). 

Future work is looking to eliminate the need for artificial tracers and create a more versatile 

methodology (Charogiannis, Zadrazil and Markides, 2016; Legleiter, Kinzel and Nelson, 2017; 

Thumser et al., 2017), which would likely result in more widespread use of PIV as a field based 

method. 

Over larger spatial scales, calibrating against river width has allowed satellite sensors to provide 

discharge to within 10% of observed values  (Bjerklie et al., 2005). To overcome issues with box 

channels, whereby river width does not increase with discharge, it is possible to use river island 

size for calibration (Feng  et al., 2012). However, the sensitivity of the method is limited by the 

pixel resolution of the satellite image.  

2.3.2.3 Water Quality 

Static ADV and ADCP deployments are able to be used to estimate Suspended Sediment 

Concentrations (SSC) in the water column through use of acoustic backscatter under laboratory 

(Schindler and Robert, 2004; Ha et al., 2009) and field conditions (Elci, Aydin and Work, 2009; 

Chanson et al., 2011; Leyland et al., 2017). Likewise, the acoustic backscatter from MBES sensors 

can be used to infer SSC, having been tested in controlled and field conditions (Simmons et al., 

2010; Simmons et al., 2017), providing the opportunity to collect SSC data across feature and 

reach scales, yet their use is not currently widespread.  

At the reach scale and beyond, estimates of SSC require the use of satellite imagery. Medium 

resolution imagery (20-30 m) has been used to investigate SSC at the confluence of the 
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Mississippi and Missouri Rivers, both of which have differing sediment regimes (Umar, Rhoads 

and Greenberg, 2018), as well as along the Yangtze (Wang et al., 2009). However, the majority 

of studies tend to use coarser (250 m) MODIS data focussing on large, well gauged, rivers such 

as the Yangtze (Wang and Lu, 2010), the Amazon (Mangiarotti et al., 2013; Santos et al., 2018), 

the Changjiang (Lu et al., 2006) and the Solimoes (Espinoza-Villar et al., 2018), utilising statistical 

relationships between observed SSC values with red and infra-red spectral bands. However this 

method is limited to those rivers with continual monitoring of discharge and suspended 

sediment and large enough to be observed from satellites, therefore alternative methods are 

required across smaller extents.  

Despite water quality estimates derived from remote sensing being well established in estuarine 

and coastal zones (Brando and Dekker, 2003; Hellweger et al., 2004; Chen, Hu and Muller-

Karger, 2007), it is less well developed in the fluvial domain. However, efforts have been made 

to obtain fluvial water quality data from UAV imagery, such as pollution detection (Lega and 

Napoli, 2010; Lega et al., 2012). Attempts to replicate satellite data procedures relating spectral 

data to chlorophyll-a, Secchi disc depth, and turbidity with UAV imagery have been limited in 

success (Su, 2017; Larson et al., 2018). Regardless, the increasing use of UAVs in river corridor 

monitoring will likely improve methods for water quality monitoring.  

2.3.2.4 Morphology 

By far the largest volume of research in river corridor monitoring relates to the measurement 

and monitoring of morphology through the production of Digital Elevation Models (DEMs). 

Applications of modern data collection techniques such as TLS and SfM now outweigh 

traditional point based survey techniques in the literature. These new techniques are particularly 

well suited for surveying of small features which typically demand high accuracy, high resolution 

data, to detect small changes between surveys.  

TLS enables users to overcome the spatial limitations of cross-sectional surveys, especially in 

the downstream direction, through increased point density (Resop and Hession, 2010; O'Neal 

and Pizzuto, 2011). Analysis such as creating DEMs of difference (DoDs), comparing voxel 

models, and point cloud analysis have all utilised TLS data for investigating morphological 

evolution (Milan, Heritage and Hetherington, 2007; Heritage and Milan, 2009; Resop and 

Hession, 2010; O'Neal and Pizzuto, 2011; Starek et al., 2013; Leyland et al., 2015). The advent 

of MLS has enabled these studies to expand beyond the typical spatial constraints of TLS, 

producing high resolution datasets across reach scales (Alho et al., 2009; Lotsari et al., 2015; 

Leyland et al., 2017).  
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Figure 2-4 The relationships between survey imagery resolution from UAV aircraft and the 

geospatial precision (based off of RMSE and standard deviation values) for both 

topographic and bathymetric surveys. Note the higher r2 value for bathymetric data 

is due to the exclusion of outlier point number 26 and the relatively fewer number 

of studies in this area. The X and Y axis are broken in order to focus on where the 

data points are clustered. The numbers alongside data points refer to the 

publications from which data was extracted for the plot, with some papers citing 

both topographic and bathymetric precisions as well as multiple test sites and are 

therefore included twice: 1. Brunier et al. (2016) 2. Vericat, Brasington, Wheaton, 

and Cowie (2009) 3. Coveney and Roberts (2017) 4. Casado et al. (2016) 5. Lejot et 

al. (2007) 6. Dietrich (2016) 7. Javernick et al. (2014) 8. Cook (2017) 9. Smith and 

Vericat (2015) 10. Watanabe and Kawahara (2016) 11. Van Iersel et al. (2016) 12. 

Tournadre, Pierrot-Deseilligny, and Faure (2014) 13. Young et al. (2017) 14. Bagheri 

et al. (2015) 15. (Mirijovsky, Michalkova, Petyniak, Macka, & Trizna, 2015) 16. A. 

D. Tamminga et al. (2015) 17. Woodget et al. (2017) 18. Woodget et al. (2015) 19. 

Miřijovský and Langhammer (2015) 20. A. Tamminga et al. (2015) 21. Jaud et al. 

(2016) 22. Dietrich (2017) 23. Clapuyt, Vanacker, and Van Oost (2016) 24. Bagheri 

et al. (2015) 25. A. Tamminga et al. (2015) 26. Woodget et al. (2017) 27. Woodget 

et al. (2015) 28. A. D. Tamminga et al. (2015) 29. Shintani and Fonstad (2017) 30. 

Javernick et al. (2014) 31. Dietrich (2017). 
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UAV imagery produces data at similar resolutions to TLS, usually with lower accuracy (see 

Figure 2-4) but covering larger areas. The ease of setup and data collection makes it an ideal tool 

for repeat surveying, which allows work to be carried out over specific time intervals such as on 

seasonal or annual cycles (Mirijovsky and Vavra, 2012; Flener et al., 2013; Miřijovský and 

Langhammer, 2015; Smith and Vericat, 2015; Brunier et al., 2016; Cook, 2017; Marteau et al., 

2017) as well as targeting specific high discharge events (Tamminga, Eaton and Hugenholtz, 

2015; Watanabe and Kawahara, 2016). It is also possible to use UAV derived topographic 

models to classify geomorphic features such as new versus old gravel accumulations 

(Langhammer and Vackova, 2018), showing some potential beyond morphological change 

detection which future work might pursue.  

To capture larger reach and landform scale morphology currently requires the use of ALS or 

satellite imagery. At the reach scale, ALS has been combined with historical topographic data 

(De Rose and Basher, 2011; James et al., 2012), used to monitor planform shift (Lallias-Tacon, 

Liebault and Piegay, 2014), and assessed the potential for gully erosion (Perroy et al., 2010). 

Likewise, this data can also be used to classify channel characteristics such as riffle, pool, and 

step sequences (Marchamalo et al., 2007; Cavalli et al., 2008), identify features such as alluvial 

fans and river terraces (Jones et al., 2007), as well as automate channel network and geometry 

extraction (Passalacqua et al., 2010). Landform scale studies do exist, with studies on the 

Mississippi River (Kessler et al., 2012), the Lockyer Creek (Croke et al., 2013), and the Blue Earth 

River (Thoma et al., 2005), all utilising readily available LiDAR data to analyse morphological 

evolution, but they are often limited to regions with the financial capabilities to collect ALS data.  

Satellite data analysis and application has typically been limited to large rivers such as the Ganges 

and Brahmaputra (Baki and Gan, 2012; Hossain, Gan and Baki, 2013), the Mekong (Kummu et 

al., 2008), the Jamuna (Baki and Gan, 2012), the Yellow River (Chu et al., 2006), and the Selawik 

and Yukon (Rowland et al., 2016) due to limited pixel resolution. Uses of satellite imagery include 

automatic calculation of river widths based on classified centrelines (Pavelsky and Smith, 2008; 

Yamazaki et al., 2014) as well as analysing the relationship between river width and multiple 

variables across a range of rivers wider than 90 m with discharge values between 100 to 50,000 

m3s-1 using Landsat imagery (Frasson et al., 2019). Satellite data can also be used to identify 

channel networks much like ALS (Isikdogan, Bovik and Passalacqua, 2015) and also monitor 

channel reactivation through the use of Synthetic Aperture Radar (SAR) (Jung et al., 2010; Oyen 

et al., 2012). However, recent and future improvements in satellite image resolution will expand 

the potential of this method to smaller systems (Khorram et al., 2016). 
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The methods above focus on subaerial analysis, as despite the subsurface being equally 

important, it is considerably more challenging to measure. At fine scales, through-water laser 

scanning shows potential in acquiring bed morphological data, requiring careful calibration for 

optimal results (Deruyter et al., 2015). However there is evidence to suggest that increasing 

depths reduce accuracy due to laser attenuation (Smith, Vericat and Gibbins, 2011). Similarly, 

surface instability and sediment concentration have been shown to have an even greater impact 

on accuracy (Smith and Vericat, 2014).  

Similarly, both spectral depth techniques (Lejot et al., 2007; Legleiter, 2012; Javernick, 

Brasington and Caruso, 2014; Tamminga et al., 2015; Tamminga, Eaton and Hugenholtz, 2015; 

Shintani and Fonstad, 2017) and through water SfM (Javernick, Brasington and Caruso, 2014; 

Bagheri, Ghodsian and Saadatseresht, 2015; Woodget et al., 2015; Dietrich, 2017; Shintani and 

Fonstad, 2017) from UAV imagery can be used to collate high-resolution bathymetric datasets. 

The latter relies on clear water for optimal results whilst the former relies on higher SSC to 

produce variations in spectral reflectance. Whilst no method clearly outperforms the other, it is 

apparent that choosing an appropriate technique is site and condition dependent.  

Currently, reach and larger scale bathymetric surveying relies heavily on boat based MBES 

systems which can operate in a wide range of water conditions, being used extensively for 

research into the morphology of river beds and their interactions with flow dynamics (Carling 

et al., 2000; Parsons et al., 2005; Best et al., 2010; Guerrero and Lamberti, 2011; Hackney et al., 

2015; de Almeida et al., 2016; Leyland et al., 2017).  

Alternatively, green wavelength ALS can collect bathymetry over lengths from one to tens of 

kilometres (Kinzel et al., 2007; Hilldale and Raff, 2008; Kinzel, Legleiter and Nelson, 2013), yet 

footprint size which reduce accuracy and point density are limiting factors (Tonina et al., 2019). 

Despite these methods being available, the extra challenge in obtaining them makes bathymetric 

analysis less prominent in the literature. There has also been promise in using light aircraft to 

fly imaging sensors such as the Compact Airborne Spectrographic Imager (CASI) which are 

capable of collecting bathymetric data up to depths of 10 m in clear waters with errors in the 

region of 0.2 m (Legleiter et al., 2016; Legleiter and Fosness, 2019) 

2.3.2.5 Vegetation 

Vegetation is present across all river corridor domains, whether interacting with flow, 

influencing bank stability, or contributing to floodplain roughness. At fine scales, resolving the 

spatial extent of vegetation and discretising vegetation structure are crucial for establishing 

hydraulic roughness. The reasonable canopy penetration and high spatial resolution makes TLS 
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methods favourable. TLS based voxel models in combination with flume tests are used to 

analyse plant drag and motion, highlighting differential flows in the canopy and sub-canopy 

layers (Boothroyd et al., 2017; Vasilopoulos, 2017). TLS has also been used to identify leafless 

Manning’s n values for different species across various flow scenarios (Antonarakis et al., 2009), 

investigate spatially variable flow dynamics at differing depths due to submerged riparian 

vegetation (see Figure 2-5, (Manners, Schmidt and Wheaton, 2013)), and provide a link between 

vegetation roughness and subsequent trailing bar morphology (Bywater-Reyes, Wilcox and 

Diehl, 2017). Identifying and quantifying areas of vegetation at the fine scale is important for 

applying drag coefficients, with Brodu and Lague (2012) successfully classifying TLS scans 

whilst Jalonen et al. (2015) identified and calculated woody area from voxel models. For larger 

areas, boat based MLS may provide opportunities for improved bank vegetation models (Alho 

et al., 2009; Saarinen et al., 2013). 

UAV imagery has been used to monitor changes in vegetation pre- and post-flood (Watanabe 

and Kawahara, 2016), for investigating floodplain grassland phenology (Van Iersel et al., 2016) 

and to improve habitat classification (Casado et al., 2016; Rapple et al., 2017; Woodget et al., 

2017). However, it is less useful for characterising individual vegetation structure, requiring 

multiple surveys in leaf on and off conditions (Dandois et al., 2017).  

ALS shows the greatest utility in river corridor vegetation monitoring. At reach scales, ALS has 

been used for riparian zone classification (Gilvear, Tyler and Davids, 2004; Antonarakis, 

Richards and Brasington, 2008a; Michez et al., 2013), assessment of wood and debris retention 

(Bertoldi, Gurnell and Welber, 2013a; Abalharth et al., 2015), upscaling from TLS models 

(Manners, Schmidt and Wheaton, 2013), creating rainfall interception models (Berezowski et al., 

2015), as well as for linking vegetation to morphological and anthropogenic contexts and needs 

(Bertoldi, Gurnell and Drake, 2011a; Cartisano et al., 2013; Picco et al., 2017). At landform scales, 

ALS has been used to identify sources and volumes of woody debris (Kasprak et al., 2012), the 

health of riparian ecosystems (Michez et al., 2013), the influence of vegetation on groundwater 

connectivity (Emanuel et al., 2014), bank stability (McMahon et al., 2017), and water temperature 

through shading (Greenberg et al., 2012; Wawrzyniak et al., 2017; Loicq et al., 2018). ALS 

therefore contributes heavily to our understanding of riparian vegetation, and despite potential 

drawbacks such as cost and mobilisation, is a key method to consider for monitoring activities.  
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Figure 2-5 The effects of including spatially variable roughness across two discharge 

magnitudes on bed shear stress. Roughness variation was derived from using plant 

scale TLS scans that were upscaled to LiDAR datasets to provide better informed 

roughness parameterisation when compared to spatially uniform measures. The 

differences in bed shear stress as a result of using spatially variable roughness 

highlights the importance of accounting for individual vegetation form and the 

subsequent impacts this can have on river morphology. Reprinted from ‘Multiscalar 

model for the determination of spatially explicit riparian vegetation roughness’, by 

Manners et al. (2013). 

Most studies utilising satellite data create classifications (e.g. Yang (2007)) before investigating 

the temporal dynamics of vegetation, studying agricultural pressures (Apan, Raine and Paterson, 

2002; Jupiter and Marion, 2008), differing seasons (Makkeasorn, Chang and Li, 2009; Wang et 

al., 2011b) and deforestation (Macedo et al., 2013) for example. Moreover, vegetation indices 

can be used to construct relationships between plant traits and spectral imagery. The Enhanced 

Vegetation Index (EVI) has been used to quantify evapotranspiration for mixed structure 

riparian forests (Nagler et al., 2005), the Normalised Difference Vegetation Index (NDVI) can 

be related to surface and groundwater (Fu and Burgher, 2015) or floodplain vegetation health 
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and heterogeneity (Wen, Yang and Saintilan, 2012), and the Vegetation Disturbance Index 

(VDI) can identify areas prone to gully rejuvenation after wildfires (Hyde et al., 2016).  

By combining datasets, ALS and airborne imagery aided understanding of the ecological health 

of riparian vegetation over 12,000 km2, identifying key areas that required ecosystem health 

management (Michez et al., 2017). Likewise, high resolution (2.4 m) Quickbird imagery and ALS 

data has contributed towards the production of hydrodynamic roughness models which are 

comparable with those obtained through traditional methods (Forzieri et al., 2010; Forzieri et al., 

2011), as well as to improving riparian vegetation classification across landform scales (Arroyo 

et al., 2010a). The structural and intensity data provided by ALS provides a good trade-off 

between requisite detail and spatial coverage (Johansen, Phinn and Witte, 2010), despite the low 

temporal resolution which limits such studies to specific time intervals (Figure 2-2).  

2.3.2.6 Flooding  

Flooding is an important physical process that facilitates channel-floodplain connectivity as well 

as posing an environmental hazard. Remote sensing provides data through which we can better 

understand, predict, and monitor flood events, across a range of scales.  

Perhaps the most common flood relevant dataset that is produced is the DEM. Despite DEMs 

commonly being created for reach scale (and larger) flood models, high resolution DEMs have 

helped to improve local flood modelling in Glasgow compared to historical datasets (Coveney 

and Roberts, 2017) and local flood models produced for a rural village in the Apuseni 

Mountains, Transylvania, using a low cost setup to assess risk to a local school (Şerban et al., 

2016). Despite no model validation in the latter case, it demonstrates the potential to improve 

understanding in typically low priority locations.  

Despite small scale studies existing (e.g. Caviedes-Voullième et al. (2013)), it is more common 

for flood models to use ALS data over large areas to provide topographic information (Fang et 

al., 2010; Castellarin, Di Baldassarre and Brath, 2011; Karim et al., 2012; Heritage et al., 2019), 

providing the optimum trade-off between detail and coverage. Improvements in satellite derived 

elevation models such as those from TanDEM-X (12 m resolution) also opens the possibility 

for larger scale DEMs for flood modelling (Krieger et al., 2007). ALS can be utilised to 

parameterise floodplain roughness in conjunction with satellite imagery (Straatsma and Baptist, 

2008) and importantly allow for better mesh discretisation to account for local variations in 

roughness (Cobby et al., 2003a). Satellite imagery is also typically used as a calibration and 

validation method (Di Baldassarre, Schumann and Bates, 2009) as well as for flood boundary 

delineation which often utilises SAR interferometry to overcome cloud cover (Horritt, Mason 
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and Luckman, 2001; Townsend, 2001; Frappart et al., 2005; Martinez and Le Toan, 2007; 

Kuenzer et al., 2013; Martinis, Kersten and Twele, 2015), although there are examples using 

spectral imagery (Proud et al., 2011; Amarnath, 2014; Kuenzer et al., 2015). Due to the scales 

commonly used in modelling applications and associated calibration and validation, this is likely 

to remain the most common technique for reach and landform scale studies. 

2.3.3 Real-World Cross-Scale Applications 

It is clear from the review above that remote sensing techniques are widely used across a range 

of domains in the river corridor, but that most of the examples cited relate to research 

applications. However, there are numerous examples of these techniques being transferred to 

applied contexts. For example, many nations now routinely collect ALS data to create national 

datasets of topography that can be easily accessed by the public (e.g. United Kingdom 

(Environment Agency, 2017), Australia (Geoscience Australia, 2018), United States (USGS, 

2018)). The use of ARC-Boats, a remotely piloted Uncrewed Surface Vehicle (USV) developed 

by HR Wallingford and the UK Environment Agency, has enabled new practices to be 

developed for collecting flow, depth, and SSC data. This is designed with end users in mind and 

being operated in various countries around the world such as Canada and New Zealand (HR 

Wallingford, 2014). TLS has been employed by the National Trust on the River Ouse to produce 

3D models (National Trust, 2018) used for research and science communication. Recently, there 

has been a demonstrable uptake in the use of UAV equipment in industry, most likely due to 

their versatility and relatively low cost. They have been used for monitoring programmes on the 

River Dee in Wales (Cranfield Univeristy, 2018) and the Forth River Trust conservation, 

protection, and enhancement schemes (Forth Rivers Trust, 2018). As well as monitoring, they 

are also used to detect leaks from water networks (Thames Water, 2018) and have the potential 

to be used to monitor poor farming practices (WWF, 2018) which increases runoff and sediment 

delivery in to the fluvial domain. Likewise, the use of Sentinel 2 satellite imagery has helped to 

inform DEFRA (Department for Environment Food and Rural Affairs) about areas that may 

be hotspots for sediment pollution from excessive runoff (Richman and Hambidge, 2017). It is 

clear that remote sensing methods are primed to expand beyond research applications, with a 

likelihood that their use will become increasingly common practice in the future.  

2.4 The State of the Art 

A plethora of studies that are undertaking remote sensing of river corridors across a range of 

domains and scales have been highlighted. Here, we present the state of the art in river corridor 

remote sensing, primarily relating to the use of UAVs and multi-instrument sensing.  
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Despite widespread use of UAV imagery in the literature, there is an inherent reliance on 

Ground Control Points (GCPs) for georeferencing. Eliminating this requirement reduces field 

time and allows surveys to take place in inaccessible locations. By recording high accuracy 

positional and attitudinal information of a sensor, the need for GCPs is largely eliminated 

(Gabrlik, 2015), enabling greater levels of autonomy. Global Navigation Satellite Systems 

(GNSS) and Inertial Motion Unit (IMU) sensors, in conjunction with post-processing 

techniques, known as Post Processing Kinematic positioning, allow the user to locate a sensor 

and the resulting location of each pixel on the Earth’s surface (Mostafa and Hutton, 2001; Mian 

et al., 2015). However, precise knowledge of camera parameters such as focal length and 

distortion are still required for accurate model location (James and Robson, 2014). This also 

enables the use of small form factor laser scanners (such as the Velodyne LiDAR Puck, 

https://velodynelidar.com/vlp-16.html) to acquire UAV based Laser Scanning (UAV-LS). 

Originally, the majority of these systems relied on large UAVs (Nagai et al., 2009; Lin, Hyyppa 

and Jaakkola, 2011; Gallay et al., 2016; Deng et al., 2017), however lightweight systems have been 

developed which can be mounted onto smaller platforms (Mader et al., 2015; Roca et al., 2016; 

Tommaselli and Torres, 2016; Jaakkola et al., 2017; Nakano et al., 2018). Currently the high 

accuracy GNSS and IMU systems required for UAV-LS and direct georeferencing are expensive 

(upwards of £20K for UAV-LS and ~£5K for direct georeferencing at the time of writing). A 

continued reduction in equipment costs will likely lead to an increased uptake in these methods, 

opening up avenues of research in previously inaccessible or dangerous locations or under 

hazardous conditions. 

Combining multiple platforms and sensors is an exciting area of research that is yielding insights 

regarding river corridor function. The use of multi-platform configurations is not new, with 

multiple studies having combined ALS and satellite imagery datasets (Gilvear, Tyler and Davids, 

2004; Arroyo et al., 2010a; Forzieri et al., 2010). However, there is evidence that interest in 

combining multiple high resolution datasets obtained from both terrestrial, airborne, and 

surface systems is growing. Examples include combining aerial imagery from UAV platforms 

with ALS (Legleiter, 2012) and MLS (Flener et al., 2013), bathymetric ALS and UAV-LS  

(Mandlburger et al., 2015), airborne imagery and ALS (Rapple et al., 2017), as well as multiple 

UAV flights with imagery and laser configurations (Mader et al., 2015). This has enabled 

researchers to improve their modelling of combined sub-aerial and sub-surface morphology, 

better understand riparian vegetation encroachment, and enhance current data integration 

approaches, all of which would be more challenging through single dataset analysis.   

Alongside solely airborne techniques, the combination of USVs and UAVs has become more 

prominent. Although there are examples of UAVs being used to ‘tether’ USVs (Alvarez et al., 
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2018; Bandini et al., 2018), the majority of studies operate the platforms separately. By 

combining the two techniques it is possible to collate information on either the topographic and 

bathymetric or the above and below canopy nature of a river corridor. Young et al. (2017) utilised 

a low cost system to survey storage tanks in Bangalore with sub metre accuracy. A more 

advanced setup by Alvarez et al. (2018) obtained correlation results to ground truth data of 

R>0.98 by combining echo sounder and SfM techniques. Alternatively, UAV and USV 

platforms can both collect imagery in addition to acoustics to improve estuarine mapping when 

compared to UAV imagery alone (Mancini et al., 2015), although both methods are limited by 

vegetation shadowing. Powers, Hanlon and Schmale (2018) performed USV tracking of a tracer 

dye ‘pollutant’ from UAV imagery, demonstrating the power of real time combined datasets 

which may improve sampling and data acquisition, especially in unknown or difficult to observe 

environments.  

Numerous vessels allow for simultaneous fluvial data collection. Both ADCP and MBES data 

were collected by Guerrero and Lamberti (2011), Hackney et al. (2015), and Leyland et al. (2017) 

for concurrent process and form measurements that are spatially and temporally homogenous, 

an imperative for inferring flow-bed interactions. Manufacturers are increasingly providing 

solutions for simultaneous bathymetric and topographic data collection from small vessels for 

coastal research which could easily be deployed in the fluvial domain (Kongsberg, 2013; Unique 

Group, 2018).  

UAV surveys that utilise multiple sensor payloads have focussed on combining laser scanners 

and imagery for disaster recovery and river monitoring (Nagai et al., 2009), high temporal, spatial, 

and spectral resolution landscape dynamics research (Gallay et al., 2016), and forestry mapping 

(Jaakkola et al., 2010). However, most studies currently focus on the use of one sensor on UAV 

deployments due to weight implications relating to flight time endurance.  

Currently, state of the art remote sensing tools are in their infancy. The majority of future 

development will revolve around two key themes, i) producing highly accurate data in a timely 

and cost effective manner, and ii) processing this data to gain maximum insight. The former will 

rely on technological enhancement of sufficient progress to reduce the costs of high grade IMU 

units that are small enough to be mounted on autonomous platforms. The latter requires 

advances in Big Data handling and point cloud/spatial data analysis techniques to handle the 

significant quantities of data produced and leverage the understanding from these sensors. Much 

like the proliferation of TLS and SfM techniques which have progressed through proof of 

concept phases and are now routinely used, multi sensor integration and high accuracy 

attitudinal information will likely follow a similar path. 
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2.5 Future Directions 

The following section seeks to ‘horizon scan’ for the technological advances which may 

contribute to enhanced river corridor monitoring in the near future.  

2.5.1  UAVs – Uncrewed Aerial Vehicles  

UAV swarm technology may enable fluvial research and monitoring to be performed more 

efficiently. Swarm technology presents an architecture which is scalable, efficient, robust, and 

helps to mitigate certain aspects of risk associated with UAV deployment (Howden, 2009; Zhao 

et al., 2017). UAV swarms can either be controlled using group decision making or individual 

agent response (Howden, 2009); with coverage either being ‘distributed’ into defined zones of 

operation or ‘free’ for optimum coverage through parallel decision making (San Juan, Santos 

and Andujar, 2018). Applications for swarm mapping have included surveillance missions, 

search and rescue operations, weed mapping, and oil spill mapping (Howden, 2009; Nigam et 

al., 2012; Pitre, Li and Delbalzo, 2012; Albani, Nardi and Trianni, 2017; Odonkor et al., 2017; 

San Juan, Santos and Andujar, 2018). However, studies remain focussed on using simulations 

to either test algorithms (Almeida, Hildmann and Solmaz, 2017; Chen, Ye and Li, 2017; Yang et 

al., 2017; Zhao et al., 2017) or data processing techniques (Casbeer et al., 2006; Ruiz, Caballero 

and Merino, 2018). Despite the lack of real world testing due to physical and legal constraints, 

swarm technology may enable rapid acquisition of data for river corridor applications on 

unprecedented scales.   

UAV object tracking provides the opportunity for smarter surveying deployments. Current 

work has utilised machine learning to recognise a defined object and subsequently track it 

(Trilaksono et al., 2011; Rodriguez-Canosa et al., 2012; Bian et al., 2016). There has been a 

recognised need for such methods to be implemented in environmental research practices 

(Pereira et al., 2009), with detection and tracking already being applied to features such as rivers, 

canals, and roads (Rathinam et al., 2007; Rathinam, Kim and Sengupta, 2008; Lee and Hsiao, 

2012; Lin and Saripalli, 2012; Zhou et al., 2015). Despite the potential, there seems to be little 

uptake in applied river corridor research, whereby pre-determined or non-autonomous flights 

are the norm. The heavy lift requirements, difficulty in isolating features in spectrally 

homogenous environments, and the potential for false feature identification currently hinders 

use (Rathinam et al., 2007; Lee and Hsiao, 2012). If these issues can be overcome, the potential 

for platforms to routinely monitor with little human input is attractive when considering highly 

dynamic fluvial environments. 



Chapter 2 

29 

2.5.2 AUVs – Autonomous Underwater Vehicles 

Traditionally utilised in the marine environment,  AUVs use active sensing to guide them 

through missions such as maintaining survey depth for consistent resolution sea bed mapping 

(Maier et al., 2013; Covault et al., 2014; Brothers et al., 2015; Tubau et al., 2015), coral reef 

mapping (Armstrong and Singh, 2012), submarine lava identification (McClinton and White, 

2015), and sea bed classification (Lucieer et al., 2013). Terrestrial water applications are less 

common and require careful consideration due to the complex motion of water alongside the 

need for improved object detection and avoidance (Zhao, Lu and Anvar, 2010; Li et al., 2012). 

However fluvial research has employed AUVs to collect variables such as temperature, salinity, 

conductivity, and nitrate flows in both autonomous and semi-autonomous systems (Tester et al., 

2006; Singh et al., 2007). Likewise, flow patterns and sediment loading have been studied in 

estuarine conditions (Kruger et al., 2007; Rogowski, Terrill and Chen, 2014) as well as reservoir 

surveying (Socuvka and Veliskova, 2015), showing the range of conditions AUVs can operate 

within. AUVs are also capable of tracking features such as pipelines and elevation contours in 

real world and simulated environments (Bennett and Leonard, 2000; Ortiz, Simo and Oliver, 

2002; Fiorelli et al., 2006; Fallon et al., 2013; Xiang et al., 2016; Sfahani, Vali and Behnamgol, 

2017). This may allow smarter sub-surface fluvial surveying techniques whereby AUVs can 

navigate river channels effectively, collating datasets over large areas with minimal human input 

or risk. 

2.5.3 USVs – Uncrewed Surface Vehicles 

Like UAV surveys, USVs use GNSS equipment and IMUs to provide accurate sensor locations 

for data collection. USV deployment in fluvial environments range from topographic to 

biophysical data collection (Casper et al., 2009; Mancini et al., 2015; Wei and Zhang, 2016; Suhari 

and Gunawan, 2017; Young et al., 2017). The majority of these systems focus on bathymetric 

data collection from echo sounders, yet there are examples of both camera and water quality 

sensors being used (Casper et al., 2009; Mancini et al., 2015), as well as sensors for tracking and 

analysing simulated pollutants in freshwater environments (Powers, Hanlon and Schmale, 2018). 

Not only do USVs provide the potential for collating bathymetry and water properties, but also 

the surrounding terrestrial environment such as bank morphology and vegetation. USV 

surveying is likely to follow a similar pattern to UAVs in their increasing use for environmental 

research, whereby the technology becomes advanced enough for users to deploy a vessel with 

minimum human input, even in more challenging flow conditions.  
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2.5.4 Real Time Monitoring Using Internet of Things (IoT) 

The IoT in environmental monitoring is becoming increasingly prominent, with the technology 

available for a suite of uses. IoT is the extension of the internet in to physical devices that 

perform a role (Miorandi et al., 2012). Sensors communicate between devices through networks, 

frameworks, and control centres, to share information and analyse data (Gubbi et al., 2013; Mitra 

et al., 2016). IoT has been used for environmental applications in remote and inaccessible 

locations for hazard response networks and monitoring research (Miorandi et al., 2012; Martinez 

et al., 2017).  

IoT in the hydrological domain has focussed on engineering and infrastructure monitoring. For 

example, the South to North River Project in China uses over 100,000 sensors with 130 differing 

purposes to monitor water quality, infrastructure, and security (Staedter, 2018), all of which is 

fed in to a cloud infrastructure updated as frequently as every 5 minutes. Similar installations on 

smaller scales include active river and wetland management for water treatment (Wang et al., 

2013), real time sewage monitoring in the UK to mitigate flooding scenarios (Edmondson et al., 

2018), as well as conceptual designs of flood embankment monitoring systems (Michta et al., 

2017). Uses for research include groundwater and river monitoring to better inform hydrological 

traits related to climatic variables, infiltration, and surface run off (Shi, Zhang and Wei, 2014; 

Malek et al., 2017). Being able to effectively utilise the data captured over an IoT infrastructure 

may see the greatest development. Effectively using various machine learning techniques on big 

datasets can aid in the prediction of flood events in real time as demonstrated by Bande and 

Shete (2017) and Furquim et al. (2018). IoT monitoring networks not only benefit research 

applications, but will have a large impact on applied monitoring techniques, providing near real 

time information for better decision making, improving overall monitoring efficiency and 

performance.  

2.5.5 Satellite Remote Sensing 

Given the role of satellites in revolutionising our view of fluvial systems, it would be remiss not 

to point out future developments in this technology, which are centred around the launch of a 

greater number of platforms with payloads delivering data for increasingly focused applications. 

The NASA based Surface Water and Ocean Topography (SWOT) mission (NASA, 2019a) will 

be used to study the volumes of freshwater available in medium to large lakes and rivers, helping 

to understand water availability and any such related hazards. Similarly, the NASA-ISRO SAR 

mission (NASA, 2019b) will be used to map flood extents for hazard monitoring, but also 

improve monitoring of groundwater, benefiting those seeking to address questions linking 
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groundwater to surface water supply. Alongside specific sensors, the increasing availability of 

higher resolution imagery below 1 m such as provided by WorldView3 (Longbotham et al., 2014) 

will provide a large repository of data that may be of use to river corridor monitoring. As river 

corridors are affected by wider hydrological and environmental conditions, missions such as the 

Water Cycle Observation Mission (WCOM) which is observing the water cycle under global 

change (Shi et al., 2016), alongside ESA Biomass and Fluorescence Explorer (FLEX) missions 

which will help in understanding root zone soil moisture and transpiration rates respectively 

(McCabe et al., 2017), will all help to improve our holistic understanding of river corridors. 

Alongside advances in sensors, the way in which data is processed and automated will also 

impact river corridor monitoring. With satellites producing such vast quantities of data, there is 

a need for big data infrastructure, as previously alluded to, in regard to satellite systems. These 

systems would likely capture, process, analyse, and create outputs to inform decision in an 

automated process (Rathore et al., 2015; Raspini et al., 2018). Methods that would benefit from 

such a structure are beginning to be employed within the river corridor which would provide 

the potential for continual monitoring (Durand et al., 2016; Gleason, Garambois and Durand, 

2017; Frasson et al., 2019). Yet there will still be the need for improved algorithms to cope with 

the inherent environmental variability that is present across the globe. 

2.6 Key Challenges 

The proliferation of monitoring techniques and their application to river corridors means that 

we are in a ‘golden age’ of remote sensing in this domain. Research applications are broad and 

proof of concept work has delivered many innovations in platforms, sensors and data 

processing techniques. Nonetheless, before innovative autonomous remote sensing solutions 

are routinely adopted for applied river corridor management, we believe that there are five key 

challenges that the community, and others, must address:  

1. Platform innovation: Whilst sensors are now well developed, platforms currently rely on 

human interaction for direct or assisted control in defining survey routines. Adequate 

object detection and avoidance alongside improved autonomy will allow for true smart 

systems operating beyond line of sight and in challenging conditions, performing 

adaptive sampling for optimal data collection over larger areas. 

2. Processing innovation: Current systems have accepted methods of best practice for the 

production of repeatable and comparable datasets. Increasing platform autonomy needs 

to be accompanied by the development of computationally efficient and robust methods 

for data processing. Given the volumes of data being produced by mobile laser scanning 

and SfM techniques for example, big data and machine learning processing techniques 
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need to be embraced and such methods should be embedded as routine tools within 

appropriate community repositories (see 5. below). 

3. Efforts to improve process monitoring: Current techniques focus heavily on remotely sensing 

morphology. Process data (i.e. river flow characteristics) are challenging to acquire at 

the desired temporal and spatial scales and we urge the community to push the 

boundaries in this domain. Utilisation of multi-platform and/or multi-sensor integration 

to collect simultaneous process and form measurements may lead to the biggest gains 

in environmental understanding across the river corridor.  

4. Legislation for autonomous systems: A significant barrier that is to be overcome before the 

routine use of autonomous and multi-platform systems is the legislation around 

operational safety, with restrictions on the operational range (e.g. within line of sight) a 

current limitation. Those regularly involved in river monitoring and research using these 

platforms need to be involved in the development of appropriate regulations by 

advocating safe use and practice within the domain. This should involve discussion with 

those implementing and developing the relevant laws, and the creation of best operating 

practice guidelines for other researchers and practitioners to follow.  

5. A river corridor data repository: The routine availability of remotely sensed river corridor 

data is patchy at best. Open data repositories such as the DEFRA Data Services 

Platform (https://environment.data.gov.uk/) and the Channel Coastal Observatory 

(Southwest Regional Coastal Monitoring Programme, 2009) are demonstrating the 

benefits of well organised, open source data. A shift towards the community making 

their collected data available to a wider audience through an equivalent repository will 

enable others to benefit from information the original owners may have viewed as 

redundant, benefiting the community as a whole. 

2.7 Concluding Remarks 

This review reveals the sheer volume of remote sensing methods that are currently used to 

monitor various domains of the river corridor across a range of scales. This may include finer 

scale studies which utilise TLS, through to larger scale studies that use ALS and satellite data to 

support research and applied monitoring, with UAV imagery allowing for reach scale 

topographic analysis alongside sub-surface data from MBES and ADCP sensors. The majority 

of the work in the river corridor focusses on morphological evolution, with the processes that 

drive such topographic change being more difficult to observe. We advocate a shift towards 

improved process measurement techniques to better understand the interactions between flow, 

morphology, and associated ecological response. This will be facilitated by improved capabilities 
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to collect simultaneous process and form measurements on multi sensor platforms, as well as 

by the ever improving processing power required to deal with the resultant large datasets.  

The remote sensing tools now at our disposal, make it possible to obtain extensive and accurate 

datasets that were previously unattainable, for use in a variety of applications in river corridor 

research and management. Remote sensing techniques are enabling new insights into complex 

interacting areas, for example riparian vegetation and flow interactions and the resultant 

evolution of channel morphology. The evolution of techniques and decreasing equipment costs 

have helped progress research, management, and industrial applications, allowing users to select 

the most suitable from a plethora of techniques. The monitoring needs of river corridor 

researchers and managers can likely be met through remote sensing techniques, meaning that 

careful identification of the desired spatial and temporal resolution, alongside the required 

outcomes are likely the most important factors in deciding which methods to use.  
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Chapter 3 Development and testing of  a UAV laser 

scanner and multi-spectral camera system for 

eco-geomorphic applications. 

3.1 Abstract 

While Uncrewed Aerial Vehicle (UAV) systems and camera sensors are routinely deployed in 

conjunction with Structure from Motion (SfM) techniques to derive 3D models of fluvial 

systems, in the presence of vegetation these techniques are subject to large errors. This is 

because of the high structural complexity of vegetation and inability of processing techniques 

to identify bare earth points in vegetated areas. Furthermore, for eco-geomorphic applications 

where characterization of the vegetation is an important aim when collecting fluvial survey data, 

the issues are compounded, and an alternative survey method is required. Laser Scanning 

techniques have been shown to be a suitable technique for discretizing both bare earth and 

vegetation, owing to the high spatial density of collected data and the ability of some systems to 

deliver dual (e.g., first and last) returns. Herein we detail the development and testing of a UAV 

mounted LiDAR and Multispectral camera system and processing workflow, with application 

to a specific river field location and reference to eco-hydraulic research generally. We show that 

the system and data processing workflow has the ability to detect bare earth, vegetation structure 

and NDVI type outputs which are superior to SfM outputs alone, and which are shown to be 

more accurate and repeatable, with a level of detection of under 0.1 m. These characteristics of 

the developed sensor package and workflows offer great potential for future eco-geomorphic 

research. 

3.2 Introduction 

The use of Uncrewed Aerial Vehicles (UAVs) with camera sensors and associated Structure 

from Motion (SfM) techniques has proliferated in recent years with the development of small, 

high-endurance aircraft, high-quality lightweight camera sensors, processing software, and 

increased computer processing power (Colomina and Molina, 2014). SfM techniques enable the 

rapid acquisition of topographic data from a variety of platforms. The versatility of platforms 

and applications has led to a proliferation of studies within the Earth sciences (see Westoby et 

al., 2012) and beyond (e.g. Haala et al., 2011; Stek, 2016), becoming one of the most widely used 

high-resolution topographic data collection techniques for characterizing small to medium (100–

101 km2) areas. In hydrology and fluvial geomorphology, the use of UAVs and SfM has been 
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extensively reviewed (e.g. Carrivick and Smith, 2019; Fawcett, Blanco-Sacristán and Benaud, 

2019); however, eco-geomorphic and eco-hydraulic applications have been limited to land cover 

and vegetation classification mapping exercises based on high-resolution ortho-imagery, rather 

than derivation of 3D scene characteristics relating to terrain and vegetation structure. The 

primary reason for this is that SfM alone is limited in its ability to resolve such complex scenes 

as outlined by Iglhaut et al. (2019). Below, we provide some background to SfM, identify the 

related issues with the technique, and list the aims of this research, which seeks to provide a 

sensor solution capable of overcoming these issues. 

SfM relies on the principle that a 3D scene can be constructed from a series of randomly 

orientated but overlapping photos. SfM uses simultaneous calculations of scene geometry and 

camera resection in a bundled adjustment technique (Snavely, 2009; Westoby et al., 2012), 

iteratively adding photos to refine the bundle adjustment calculations (James and Robson, 2012). 

These refinements typically apply a least squares minimization method, as there are multiple 

potential solutions for each set of images (Snavely, 2009). This bundle adjustment process 

requires the identification of features that can be distinctively tracked between photos, 

regardless of lighting conditions and camera orientation using variants of Scale Invariant Feature 

Transform (SIFT) algorithms (Lowe, 1999; Westoby et al., 2012). Despite the attractiveness of 

SfM as a survey technique, several limitations remain, relating to (i) image quality and overlap 

and (ii) transformation of a processed cloud into a real-world co-ordinate system. SIFT 

algorithms use colour gradients, as opposed to absolute pixel values, to determine features in 

multiple images (James and Robson, 2012; Fonstad et al., 2013). The number of detectable 

features identified is directly associated with the output model quality; consequently, poor-

quality images may have fewer detectable points and reduce final model quality. Likewise, high 

image overlap levels are necessary for improving the number of detectable features in multiple 

images (Micheletti, 2015). As a result, good-quality images do not necessarily produce good-

quality models, as outlined in Tomsett and Leyland (2019). 

Prominent features are used to create a sparse point cloud, defined in ‘image space’, which can 

then be transformed into a chosen coordinate system using Ground Control Points (GCPs) 

(Fonstad et al., 2013). Dense Multiview Stereo matching (MVS) is then undertaken to produce 

a highly detailed three-dimensional (3D) model by searching for optimum matches (Furukawa 

and Ponce, 2010). This process also allows for the removal of areas with higher errors due to 

the limited matching of features (Micheletti, 2015). Transformation of these points relies on 

good-quality GCPs spread across the study area, capturing changes in elevation in order for a 

globally optimum solution to be produced (Kraus, 2007). Incorrect GCP placement or reduced 

GCP accuracy may affect the solving of collinearity equations which can subsequently propagate 
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through the model (Fonstad et al., 2013; Wolf P, 2014). Assigned GCP locations are then used 

to perform a seven-parameter transformation, shifting, and rotating the image across three 

planes, as well as scaling the model (Fonstad et al., 2013; Eltner et al., 2016). The importance of 

GCPs is self-evident. However recent advances in the miniaturization of high-resolution 

positioning and orientation sensors, as well as reducing costs, has led to the rise of a new 

technique which uses ‘direct georeferencing’. The main purpose of direct georeferencing is to 

enable the collection of 3D data without the need for GCPs. This allows both streamlined in-

field data collection and post processing whereby the need for many GCPs is removed (Nagai 

et al., 2004; Turner, Lucieer and Wallace, 2014). However, the technique does not negate the 

need to include quality controls and checks to ensure data quality. 

In addition to the methodological issues outlined above, the suitability and accuracy of SfM can 

vary substantially, especially in relation to terrain complexity and vegetation cover. While, in 

principle, low flight heights and high-resolution cameras enable spatial resolutions of up to 0.005 

m (Clapuyt, Vanacker and Van Oost, 2016), in practice, model resolutions for bare river reaches 

are typically between 0.02 and 0.05 m; see (see Tomsett and Leyland, 2019). Steep and 

overhanging terrain reduces the number of detectable points in an image resulting in poor 

reconstruction in these locations (Cook, 2017). Vegetation not only reduces the ability to see 

(i.e., detect and resolve) the study area terrain, it is also not easily or accurately reconstructed by 

SfM. Both Cook (2017) and Dietrich (2016) noted that vegetation was sometimes fully captured, 

but was also often excluded altogether, depending on size and density. UAV SfM is simply not 

able to resolve the internal structure of vegetation. In relation to an exemplar SfM resolved tree 

crown, Fawcett, Blanco-Sacristán and Benaud (2019) noted that “…the internal structure of this 

tree could only ever be captured by active laser scanning methods…”. A compounding factor 

of taller vegetation is shaded areas, particularly in leaf-on conditions. Shaded regions appear 

homogenous and lack the required features to be detected and matched between image pairs, 

creating areas of low quality within the final models (Brunier et al., 2016). Vegetation therefore 

inhibits the SfM processing workflow, leading to a reduction in quality of the final outputs. 

Laser scanning offers a solution to the problems identified above; it is not subject to 

transformation errors or image quality and overlap related processing errors and it is capable of 

penetrating complex porous structures such as vegetation, thereby resolving some internal 

structure and some bare earth terrain points. Terrestrial Laser Scanners have been deployed with 

great success to elucidate eco-geomorphic processes (see the review by Lague, 2020), but they 

are limited in the scale of application by the need for multiple static setups to capture scenes. 

UAV-based Laser Scanning (UAV-LS), which combines miniaturized motion sensors and 

Global Navigation Satellite Systems (GNSS) with lightweight and low-powered laser scanners, 
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has the potential to allow the collection of high-resolution data across relatively large areas. To 

date, exploration of such systems has been primarily focused on forestry applications(e.g. 

Wallace et al., 2016; Jaakkola et al., 2017; Brede et al., 2019), with a few notable exceptions(e.g. 

Lin et al., 2019; Resop, Lehmann and Hession, 2019; Jacobs et al., 2021). However, the off-the-

shelf UAV-LS systems used are typically expensive (~GBP 60k—150k for YellowScan or Riegl 

RiCoptor) and often require ongoing subscriptions to bespoke post-processing software, 

making them prohibitive in terms of purchase and maintenance costs for many practitioners. 

Yet the potential for improved data capture, especially in vegetated reaches, set them apart from 

current survey methods especially in relation to eco-geomorphology. 

The potential for improved data capture in vegetated reaches also lends itself to improving 

spectral data collection. The use of multispectral cameras which obtain imagery at wavelengths 

beyond the visible spectrum allow a greater understanding of vegetation properties. These have 

subsequently been used to improve understanding in fields of ecology, coastal monitoring, 

wildfires, and for above and below water surface analysis (Doughty and Cavanaugh, 2019; 

Samiappan et al., 2019; Gomez Selvaraj et al., 2020; Taddia et al., 2020). Despite their deployment 

in several scenarios and increasing efforts to standardise methods between surveys (Assmann et 

al., 2019; Stow et al., 2019), there is still more to be done to obtain consistency between surveys. 

The aims of this research are to (i) develop a relatively lower cost sensor package using off-the-

shelf laser scanning and multi-spectral camera components which are capable of characterizing 

terrain and vegetation structure; (ii) establish a post-processing technique that is capable of 

resolving the collected data in real world co-ordinate systems; and (iii) assess the accuracy and 

repeatability of both UAV-LS and UAV-MS data products against each other and ground check 

points in the real world, with reference to eco-geomorphic applications. 

3.3 Development of a UAV Laser Scanner and Multispectral Camera 

Sensor System 

For the purposes of this paper, references to UAV-LS (UAV Laser Scanning) and UAV-MS 

(UAV Multispectral) refer to the results of data collection from each sensor, not the entire 

system. 

3.3.1 Components of the System 

The sensor setup is made up of four main constituent parts. The sensor package (a laser scanner 

and a multispectral camera), an Inertial Navigation System (INS), GNSS input, and a mini-PC 

for data collection and storage. The complete setup allows for fully georeferenced imagery and  
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Figure 3-1 The key components of the developed UAV laser scanner and multispectral camera 

system for mounting on a UAV platform such as a DJI M600. 

point clouds without the need for collecting GCPs. Figure 3-1 demonstrates how these 

components are broadly interlinked to provide the datasets required. 

The sections below provide detail of each of the sensors and the role they play in the data 

collection process, commenting on the accuracy of each component of the system. 

3.3.1.1 Applanix APX-15 Inertial Navigation System (INS) 

The Applanix APX-15 is a MEMS (micro-electromechanical systems)-based inertial navigation 

system with a GNSS receiver providing lightweight georeferencing for UAV platforms 

(Applanix, 2017), costing ~GBP 13k in 2017. The MEMS unit uses accelerometers and 

gyroscopes to resolve both linear movement as well as orientation, collected at a rate of 200 Hz. 

The unit is light at 60 g and has dimensions of 67 × 60 mm for easy UAV integration. It can 

interpret 336 GNSS channels over several constellations for high accuracy surveying. After 

processing, the outputted position and orientation is produced at a rate of 200 Hz for improved 

georeferencing accuracy. Manufacturer stated positioning is accurate from 0.02–0.05 m with roll 

and pitch accuracies of 0.025 degrees and heading accuracy of 0.080 degrees after post-

processing, values corroborated by Stöcker et al. (2017) when assessing the unit for direct 

georeferencing. 
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The unit is capable of outputting a PPS signal (Pulse Per Second) for precise time integration 

with external devices. This is essential for accurate georeferencing and is an input to the laser 

scanner to avoid clock drift. In our setup this is set to provide the time on the rising edge of the 

pulse, in line with the laser scanner specifications (see Section 3.3.1.2). It also receives event 

signals to store the exact timings when a multispectral image (see Section 3.3.1.3) was captured 

to allow accurate post-processing of images with positional data. 

3.3.1.2 Velodyne VLP-16 Laser Scanner 

The Velodyne VLP-16 (puck lite) is a compact form, low-power laser scanner that is optimal 

for use on UAVs due to its low weight of 590 g (Velodyne Lidar, 2018), costing ~GBP 5k in 

2018. The VLP-16 uses 16 laser emitter-detector pairs (903 nm wavelength) which have dual 

return capability to collect points 360 degrees around the sensor with a viewing angle of 30 

degrees. The sensor uses a time-of-flight method to determine distance to an object. It can 

collect up to 300,000 points per second up to a range of 100 m from the sensor. The scanner 

has a claimed accuracy of +/− 0.03 m (Velodyne Lidar, 2018), with consistent calibration 

between units which are stable across a range of temperatures and for long term deployments 

(Glennie, Kusari and Facchin, 2016). 

The VLP-16 requires a Pulse Per Second (PPS) input to prevent clock drift from start-up 

totalling around 5 s per day (Velodyne Lidar, 2016). This equates to roughly 0.07 s by the end 

of a 20-min flight, and subsequently while flying at 5 ms−1 would incur an error of up to 0.35 m. 

As a result, the APX-15 PPS output is used for accurate synchronisation of clocks between the 

two sensors. 

The VLP-16 outputs data packets for each rotation of the scanner over Ethernet UDP (User 

Datagram Protocol), which can then be processed in real time or saved (Velodyne Lidar, 2016). 

In the current setup, this data is monitored using the free network monitoring software 

Wireshark and saves a packet capture (.pcap) file to the on-board mini-PC for post fieldwork 

download and further analysis. 

3.3.1.3 MicaSense RedEdge-MX Multispectral Camera 

The MicaSense RedEdge-MX is a five-band multispectral camera, with wavelengths ranging 

from blue to infra-red (see Table 3-1), including a red edge band designed to enhance separation 

between different vegetation characteristics. The camera is compact and lightweight at 230 g 

and includes a global shutter to decrease distortion and eliminate the need for a gimbal 

(MicaSense, 2021). It cost ~GBP 5k in 2018. Imagery has a ground sampling distance of 8 cm 

at 120 m and less at the flight heights used in the surveys performed herein (<50 m). 
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Table 3-1 The band characteristics of the MicaSense RedEdge-MX multispectral sensor. 

Band Wavelength (nm) Band Width (nm) 

Blue 475 32 

Green 560 27 

Red 668 14 

Red-Edge 717 12 

Near Infra-Red 842 57 

The camera can be triggered in multiple ways. Our setup uses a timer method to capture photos 

every 1.5 s to maximise forward overlap. This overcomes the shortfall in sidelap due to the 

relatively narrow field of view of under 50 degrees meaning at flight heights of 50 m, flight path 

separation of ~23 m is required for attaining 50% sidelap in images. The camera also produces 

a top of frame output which outputs a signal at the start of image exposure accurate to a few 

tens of nanoseconds (MicaSense, 2018), this is then communicated to the APX-15 and recorded 

as an image event in the flight logs. This provides accurate timestamps from which to extract 

post-processed position and orientation data for multispectral image processing. 

Two methods for obtaining consistent lighting procedures between surveys are used in data 

capture. First, a manufacturer supplied calibration panel is deployed to adjust for the reflectance 

values to those that would be expected when imaging the panel. In addition, a Downwelling 

Light Sensor (DLS) collects data on ambient lighting conditions before writing these to the 

metadata of each image produced. The DLS is connected directly to the camera and sits on top 

of the UAV for optimum unimpeded data collection. It is placed away from the other antennae 

to reduce any interference which may affect the true ambient conditions being recorded. This 

information is then applied in post-processing to adjust the reflectance values of the images to 

maintain consistency within the survey and between successive surveys. 

3.3.1.4 Associated Hardware 

A Tallysman antenna with L1/L2 capabilities is used to collect GNSS signals across several 

bands from multiple constellations. The mini-PC is a compact and lightweight Fitlet-i10 (from 

Fit-PC) which has a low power consumption and runs a basic Windows 10 operating system. 

This is controlled via an external laptop using a proxy Wi-Fi host and the free TightVNC remote 

desktop application viewer on the host laptop (https://www.tightvnc.com/, version 2.8.63, last 

accessed: 17/11/2021). The status of the APX-15 can be checked during flight to monitor the 

alignment of the INS based on the initialization procedures (see Section 3.4). The MicaSense 

camera and recording of the raw VLP-16 data are started before take-off. This also acts as a 

method to check data in the field and extract data from the sensor setup post field deployment. 

https://www.tightvnc.com/
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3.3.2 Assembly of the System 

Each sensor has specific voltage requirements, but we found that 11.1 V satisfied the APX-15, 

VLP-16, and mini-PC, with an in-line transformer altering the voltage from 11.1 V to 5 V for 

the MicaSense camera. The setup is powered by a 2650 mAh LiPo battery, which is enough to 

power the unit for spin up, calibration, survey, cool down, and data download (up to 45 min 

per charged battery). 

Each component is mounted within or on a lightweight survey box (Figure 3-2). The VLP-16 

is mounted externally with a single screw aligned with two mounting lugs either side for 

consistent offset calculations, and at a 90-degree pitch angle (forward) scanning across track 

perpendicular to the flight lines for maximum coverage. The MicaSense camera is mounted with 

4 locating screws to keep consistent positioning, as is the APX-15 board so that the X, Y, Z and 

roll, pitch, and yaw offsets are consistent between flights. The total weight of this survey setup 

comes in just under 2.5 kg, allowing for flight times of around 20 min using a DJI M600 

multirotor aircraft with standard batteries. The unit is then attached on to a DJI mounting plate 

which sits below the UAV. The mounting plate has dampeners attached between the plate and 

the UAV to reduce vibrations being passed to the INS, laser scanner, and camera as these are 

known to have a negative impact on accuracy (Lin, Hyyppa and Jaakkola, 2011). 

 

Figure 3-2 The components of the sensor package assembled within a lightweight plastic box 

for testing, here mounted on a DJI M600 multirotor platform. 

Offsets between each of the sensors were measured in the lab before being input into the APX-

15 internal memory for processing of each flight. However, as the accuracy of the lab offsets 
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could not be quantified, a calibration procedure has been performed to tighten the offsets before 

roll, pitch, and yaw adjustments are checked for each survey, as detailed in Section 3.5.1.4. 

3.4 Field Deployment of the System 

We used a DJI M600 multirotor aircraft for deployment, although in principle the sensor 

package could be mounted on any airframe that can carry a ~2.5 kg payload and perform the 

required initialization procedure (see below). For the purposes of this study, data from five 

separate deployments on a ~1 km reach of the River Teme (Figure 3-3) made in February, July 

and September 2020 and April and June 2021 were used. The River Teme is a gravel bed river 

with alluvial banks that showcases active erosion and deposition processes and exhibits several 

vegetation types, from grasses to large deciduous trees. A survey-grade Leica GS10 GNSS base 

station was deployed for each survey, recording raw RINEX observation data for post-

processing routines. 

 

Figure 3-3 Study site of the River Teme, showing the flight lines used for all surveys from 

which laser scanning and imagery were captured. Imagery taken from April 2021. 

Inset shows the location of the study site within the UK and the location of the 

River Teme, a tributary of the River Severn. 

The laser scanner and MicaSense camera package collect data in tandem and so flight lines 

(shown on Figure 3-3) and speeds (4 m/s) were optimised to provide scan lines for the entire 

river corridor which delivered at least 50% sidelap and 75% forward overlap for the 

multispectral imagery. Once powered on, the data from the laser scanner is set to record on the 

mini-PC via a remote desktop connection and the MicaSense is set to run through its setup, 

including capture of calibration panel images, via a web browser. The APX-15 requires 5–10 

min of static data logging both before and after flights to aid forward and backward motion 

post processing, so is left to stand for this time. 
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Once ready to fly, the UAV is flown to an elevation of 10 m to perform an initialisation sequence 

for the INS, consisting of flying at speed forwards, backwards, left, and right to excite and 

initialise the accelerometers, resulting in a fully aligned heading (confirmed via the INS status). 

After initialisation, the aircraft is set to auto mode to follow the predetermined flight path 

(Figure 3-3). Prior to landing, the initialisation movements of flying forward, backwards, left, 

and right are performed again to aid in the backwards processing. 

3.5 Data Processing Workflow 

The following sections outline the workflows developed to process raw field data into spatially 

referenced products for further analysis. Both the laser scanner and MicaSense multispectral 

imagery use the same positional raw data, and therefore follow similar initial processing routines. 

3.5.1 UAV Laser Scanner and Multispectral Camera Processing 

Processing requires three main strands: positional data processing, Velodyne data configuration, 

and the georeferencing of each data product. The same initial processes to determine position 

are loosely followed for camera locations when processing multispectral data, with differences 

to the output data generated. 

3.5.1.1 Inertial Navigation System Processing 

Initially, all raw base station data in RINEX format is uploaded to a web service such as AusPos 

(https://gnss.ga.gov.au/auspos, last accessed: 17/11/2021), whereby the nearest IGS 

(International GNSS Service) stations are used to correct the position of the base to levels of 

accuracy as high as 0.02 m (assuming minimum 4 h of raw observations). The reports generated 

by these services are used to improve the position quality of the original RINEX file by updating 

the coordinates of the base station or through the download of a new RINEX file with the 

updated headings depending on the servers being used. This can then be used in the processing 

of rover data collected by the UAV GNSS receiver. 

The positional information from the Applanix APX-15 system is processed using Applanix 

processing software. This is best done once precise ephemeris data for the satellite is known, to 

ensure the highest level of precision. Ephemeris accuracy is one of the many factors that can 

affect the quality of GNSS data being collected. Broadcast ephemeris data initially approximates 

satellite position, but can be up to 2 h old, whereas precise ephemeris data is based on a 

monitoring network of ground stations and available at 15 min intervals (Ma, Wang and Li, 

https://gnss.ga.gov.au/auspos
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2019). Broadcast errors can subsequently be in the range of 1–6 m (Ma, Wang and Li, 2019), 

with precise ephemeris data recommended for cm-level ground-based positioning (Karaim, 

Elsheikh and Noureldin, 2018).The post-processed base station is used in conjunction with 

Applanix IN-Fusion technology (Scherzinger and Hutton, 2021) to deliver better positioning 

information when a reduced number of satellites are visible. This routine uses both forward and 

backward Kalman filtering, designed to estimate unknown variables over time, and uses this to 

improve positional accuracy (Kim and Bang, 2018). The resultant reported positional accuracy 

of the sensor package is typically in the range 0.01–0.02 m horizontally and 0.02–0.03 m 

vertically (Figure 3-4A). This is assumed to represent the horizontal accuracy of the system in 

the absence of any field data collected to assess horizontal accuracy. Roll and pitch reported 

accuracies are within the 0.05–0.10-degree range, with increased standard deviation values 

during turning; while heading accuracies predominantly vary between 0.2–0.3 degrees, with 

accuracy decreasing during straight line flight (Figure 3-4B). This is likely due to slower flying 

speeds reducing the certainty of the trajectory being calculated. However, the impact of post 

processing on both the positional and attitudinal data is significant. Improvements in positional 

location are an order of magnitude improved post processing (Figure 3-4A), with similar levels 

of 

 

Figure 3-4 Post-processing results of the Applanix APX-15 data showing how forwards and 

backwards Kalman filtering reduces errors in the (A) X, Y, and Z position of the 

sensor by an order of magnitude while having a similarly distinct impact on (B) roll 

and pitch values. Despite relatively larger errors in heading, the post processing 

helps to minimise the drift in values throughout transects. PPK = Post Processed 

Kinematic positioning, RT = Real Time positioning, SD = standard deviation.  
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improvement seen in the attitudinal data (Figure 3-4B). The processed positional data is then 

exported at a rate 200 Hz (position every 0.005 s) and in the projected coordinate system of 

choice for combination with the laser scanner and MicaSense camera. 

3.5.1.2 UAV Laser Scanner Raw Data Processing 

The freeware Veloview (https://www.paraview.org/veloview/, version 3.5, last accessed: 

17/11/2021) is used to read, display, and output the raw VLP-16 data. Extraneous data from 

when the platform is initialising on the ground is clipped using the first and last flight line times. 

Although positional error does not propagate with distance from the sensor, errors in roll, pitch, 

and heading will (see Figure 3-5A). Therefore, to limit the effects of this, but to maintain a high 

ground point density, a filter with maximum distance from the sensor of 50 m in the × and Y 

planes was applied. Overlapping flight lines in the field were 25 m at maximum, with most flight 

lines 20–22 m apart, resulting in a minimum of 50% overlap whereby the points from the scan 

line would be overlapped by at least one other scan (see Figure 3-5B), but in most cases this 

would be higher. This overlap maximises point density and accuracy and allows for large extents 

of the study area to be covered in a single flight. The clipped and filtered data is exported to a 

series of individual time-stamped ‘scans’ containing a location relative to the sensor centre and 

intensity. These scans are then ready to be combined with the positional and attitudinal data 

from the Applanix APX-15. 

 

Figure 3-5 Impact of the distance from scanner on accuracy and flight overlap clipping. (A) 

Visualisation of how increasing distance from the target surface leads to increasing 

error associated with any incorrect calculations of roll, pitch, and yaw. The errors 

calculated are based on a 1-degree miscalculation from a nadir facing laser beam in 

one direction (i.e., just roll error). (B) The region of overlap that is maintained 

during cropping to maintain at least two viewing angles of each ground point within 

the survey, especially important for vegetated reaches. 

https://www.paraview.org/veloview/
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3.5.1.3 Combining Laser Scanner and Positional Data 

The VLP-16 and Applanix APX-15 positional data are combined using custom python scripts 

(available at https://github.com/christomsett/Direct_Georeferencing.git, last accessed: 

17/11/2021) designed to join the two datasets together and produce a final georeferenced point 

cloud. The workflow accounts for two timing discrepancies that are presented: (i) the VLP-16 

references time from the start of the last hour in microseconds, whereas the positional data 

refers to decimal seconds of the current GPS week; and (ii) there is a discrepancy between UTC 

time and GPS time, currently 18 leap seconds. Once timestamp discrepancy has been accounted 

for, a simple join is made based on the nearest time between the two datasets’ time fields. 

Mismatches in the output rates of both sensors results in a non-perfect synchronization of 

position and scan data, with a maximum offset in time of 0.0025 s. Surveys are conducted at a 

maximum speed of 4 ms−1, resulting in a maximum error introduced by the time stamp 

discrepancy of 0.01 m. Based on our data, 80% of all errors due to the timestamp inconsistency 

are below 0.008 m and 40% are below 0.004 m. Consequently, the relative impact of the timing 

error is less than the positional accuracy of the system. Next, the scan points are adjusted for 

the roll pitch and heading of the sensor at the relevant timestamp. A rotation matrix for each 

point is defined and is then applied to create points relative to the sensor adjusted for roll, pitch, 

and heading. Finally, points can be transformed using the sensor location into real world 

coordinates, producing a fully georeferenced point cloud. 

3.5.1.4 Offset and Boresight Angles 

To accurately combine the INS and VLP-16 data, it is imperative that accurate offsets and 

boresight angles are calculated to reduce inconsistencies between surveys (Hauser, Glennie and 

Brooks, 2016). If these are not accurately measured and adjusted, errors will be introduced into 

the final model (Mostafa, 2002; Rau et al., 2011). As discussed in Section 3.5.1.2, the relative 

positional errors of the offsets do not propagate with distance from the sensor. These are 

initially calculated through the measurements of offsets in the X, Y, and Z planes from a fixed 

point for each of the INS, VLP-16, and GNSS antenna. These were defined in the lab through 

handheld measurement and information on sensor dimensions as specified by the manufacturer. 

This allows the relative positions between each component to be calculated and inputted in to 

the Applanix software so that the exported positional data accounts for these offsets. The 

software used also refines these offsets on the fly based on data from the INS, providing an 

optimal solution. The GNSS antenna is fixed to the UAV via a singular mounting screw, and so 

is fixed in position each flight. However, while the position of the mounting of the UAV laser 

https://github.com/christomsett/Direct_Georeferencing.git
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scanner sensor system box (Figure 3-2) is fixed relative to the UAV, the box is subject to small 

variations in mounting angles between flights. 

An iterative process to establish optimum roll and pitch offsets on an identifiable feature (e.g., 

an electricity pylon) is undertaken for each flight. The initial steps include angles from −1 to 1 

in steps of 0.5, before narrowing these down based on visual inspection (Figure 3-6). As can be 

seen from Figure 3-6, this approach allows the identification of trends of change, in this instance 

moving towards a roll offset of +1 and keeping the pitch offset at 0 degrees resulted in the 

closest alignment of the pylon and the electricity wires. This is then refined to check for a smaller 

range of values between the two best combinations of roll, pitch, and heading. In this instance, 

this evolved testing values of roll between 0.8 and 1.2, and pitch of −0.2 and 0.2. Once an 

optimum solution has been found, an adjustment is made to alter all roll, pitch, and yaw values 

before applying the rotation matrix noted in 4.1.3, above. Future work may refine this process 

to automatically detect the best fit through an ordinary least squares approach. 

 

Figure 3-6 Calculation of offset and boresight angles using an iterative process between 

multiple passes (from different directions) over an identifiable feature, in this case 

an electricity pylon. 
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3.5.1.5 MicaSense Multispectral Imagery SfM Workflow 

To create a position file related to each set of images, custom python scripts (available at 

https://github.com/christomsett/Direct_Georeferencing.git, last accessed: 17/11/2021) are 

used to combine the positional tags output from processing the Applanix APX-15 data with 

each photo taken, accounting for GPS and UTC timing discrepancies between the data. In 

addition, as each waveband of imagery is suffixed with a 1–5, multiple images have to be given 

the same positional information, which is written to a database in a format that is readable as 

reference data for Agisoft Metashape for SfM processing. 

Images are loaded in to Agisoft Metashape as a multi camera system, whereby the separate 

suffixed images are treated as one in the processing workflow, as opposed to attempting to align 

them separately. Reference data are loaded and assigned to each photo, with accuracy of these 

coordinates specified as 0.05 m in all three directions and 0.5 degrees in roll, pitch, and heading. 

This allows for error in position and orientation to be accounted for, as well as any offset or 

boresight errors introduced to be overcome by the processing workflow. This is in line with the 

findings noted by Stöcker et al. (2017), who noted a reduced weighting on the accuracy of 

external camera orientation led to higher accuracy results in post processing. The photos are 

then aligned to the highest possible quality to get updated location and orientation of the camera. 

At this point, the GCPs are used to refine this alignment further; however, the image resolution 

(~0.035 m) of the multispectral camera introduces some error by impeding precise placement 

of target centres. Next, a dense point cloud is built alongside mesh and texture surfaces, using 

high-quality processing settings. These are used to create a tiled model of the study site along 

with orthomosaics and DEMs at 0.04 m resolution. These models and the dense point cloud 

are subsequently exported as fully georeferenced datasets. 

3.5.2 Data Processing for Comparison and Error Analysis 

The processing workflows outlined above result in a UAV-LS-derived point cloud and a 

MicaSense SfM-generated orthomosaic and point cloud, for each of the five survey dates. 

Herein, we aim to compare the datasets in two ways: (i) assess the absolute error of the laser 

scan and SfM data compared to surveyed ground checkpoints; and (ii) assess relative between-

survey accuracy, by comparing areas that experience no morphological change. The latter allows 

the quantification of a level of detection of change by analysing the repeatability of the surveys 

between techniques and across survey dates. 

 

https://github.com/christomsett/Direct_Georeferencing.git
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Figure 3-7 Locations of different accuracy assessment methods. GPS points along the river 

corridor used for absolute accuracy assessment, including a selection of points 

which were occluded by vegetation. Highlighted patches are the 6 stable areas used 

for relative accuracy assessment (see 4.2.2). The cross sections relate to those used 

in the discussion (6.2) to compare UAV-MS SfM and UAV-LS point clouds. 

3.5.2.1 Absolute Accuracy Assessment 

A total of 82 points were collected on 14/04/2021 using a Leica GS10/GS15 base and real-

time kinematic rover, including 15 points in locations occluded from overhead view by 

vegetation (Figure 3-7). Survey accuracy was assessed by performing cloud to cloud distances 

(using the open-source CloudCompare software https://www.danielgm.net/cc/, version 

2.11.3, last accessed: 17/11/2021) between these point locations and recording the absolute 

deviation from the measured point in the X, Y, and Z components. Cloud-to-cloud distances 

were used over point to DEM methods to remove the influence of DEM creation on results 

and make sure a comparison was made to the most local, observable point. 

3.5.2.2 Relative Accuracy Assessment—Repeatability 

Six stable patches (defined as no bare earth change through the survey period) of ground were 

identified, these being located on areas of land away from the active channel margin. Each patch 

measured in the range of 690–1350 m2 and contained between 680,000 and 1,200,000 points in 

each of the surveys (approximately 890–950 points per square metre). For each point cloud, the 

patches were extracted and compared between one another in the following way: (i) between 

UAV laser scanner and multispectral SfM-derived clouds for the same date; and (ii) between 

each of the methods individually across all dates. The former helps to compare two methods to 

derive the same surface, the latter assesses the repeatability of each method. For the purposes 

of analysis, the patches are combined together and not analysed individually. 

https://www.danielgm.net/cc/
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3.6 Results 

3.6.1 Absolute Accuracy of UAV-LS and UAV-MS (SfM) 

For the 82 ground check points, the mean error from the UAV-LS was −0.182 m, with a 

standard deviation of 0.140 m (Table 3-2). This implied that the UAV-LS underestimated the 

distance from the scanner to the surface, with most of the points being above their true ground 

locations. The average point offset in the combined X and Y plane was 0.012 m, with only 14 

(16.5%) points over 0.05 m from the check points. For the same 82 locations, the mean UAV-

MS error was −0.469 m and the standard deviation was 0.381 m, suggesting the same direction 

of error as the UAV-LS. This implies some degree of this error may be due to vertical offset 

errors during the sensor set up relative to the GNSS receiver on top of the UAV. 

For vegetated points, the UAV-LS had a mean error of −0.110 m with a standard deviation of 

0.180 m. Although the mean error for vegetated points was lower, the variation in this error was 

slightly higher. There were higher deviations in the X and Y plane, with an average distance 

apart of 0.055 m, which is to be expected with a lower below canopy point density, but this 

appeared to have little effect on the mean error. The UAV-MS appears to perform equally well 

based on mean error, with a value of −0.181 m; however, the spread of error within vegetated 

sections is greater, with a standard deviation of 0.572 m and a range of errors over 2 m. This is 

likely the result of the dense cloud failing to identify the correct depths of points through the 

canopy, or the ground being obscured completely. This highlights the performance of the UAV-

LS method whereby the quality of the resultant point cloud is less diminished by vegetation 

especially in comparison to the performance of the UAV-MS SfM in heavily vegetated areas. 

Table 3-2 Absolute errors of each survey method when compared to measured GNSS check 

points, separated by levels of vegetation obstruction. 

Sensor Category 

Summary Statistics (m) 

Mean Error (Z) Standard Deviation (Z) Min Max Range 

UAV-LS 
Unvegetated −0.182 0.140 −0.366 0.424 0.790 

Vegetated −0.116 0.181 −0.285 0.299 0.584 

UAV-MS 
Unvegetated −0.469 0.381 −1.023 1.085 2.108 

Vegetated −0.181 0.572 −0.915 1.085 2.000 
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3.6.2 Relative Accuracy of Surveys: Repeatability 

3.6.2.1 Comparison of UAV-LS and UAV-MS Derived SfM for the Same Dates 

Three of the surveys (February and July 2020 and June 2021) show very good agreement in the 

data, with mean errors of between 0.03 and 0.06 m, with standard deviations of under 0.05 m 

(Figure 3-8). This implies that both the direct georeferencing of the UAV laser scanner and the 

SfM-derived point cloud are of high quality, with two separate methods obtaining similar results 

for the same pieces of Earth. 

Conversely, there seems to be greater discrepancy in elevations between the methods for surveys 

in October 2020 and April 2021, showing a greater level of skew in the histograms and multiple 

peaks. The mean errors are an approximate order of magnitude larger at 0.10 m but more 

importantly the variation in error increases just as much (Figure 3-8). Therefore, the confidence 

in these surveys is lower than others, but are still suitable when investigating morphological 

change at scales which are typically one and two magnitudes of change larger than this. 

 

Figure 3-8 Differences between UAV-LS- and UAV-MS-derived SfM point clouds for the 

each of the 5 survey dates across the stable patches. Vertical red lines show the 

position of the mean error in m. This highlights the similarity between both 

methods for obtaining clouds with some discrepancies on two of the survey dates. 

3.6.2.2 Repeatability of Survey Methods: Comparisons Across Dates 

When comparing between the same method on different dates, the first date chronologically is 

used as the reference cloud, with the latter date the cloud to be compared. As such, a positive 

difference shows that the latter date points have higher elevation values than the reference 

(earlier) cloud. Figure 3-9A shows the comparison of stable ground points between different 

UAV-LS clouds. The agreement between each pair of surveys is very high, with all mean errors 

being under 0.1 m and 7 of the 10 combinations having mean errors under 0.05 m. Only 

comparisons with surveys in February 2020 show any evidence in the histograms of multiple 

peaks in errors, with all other surveys having a consistent singular peak. These peaks are narrow, 

with all standard deviations being under 0.1 m, and with most having standard deviations under  
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Figure 3-9 Distributions of errors and mean +/− standard deviation of errors (in m) between 

surveys for the stable ground patches on different dates for: (A) UAV-LS method; 

and (B) UAV-MS-derived SfM methods. 

0.05 m, suggesting a minimum level of detection of 0.1 m for the UAV laser scanner method 

when comparing change between two surveys. 

In contrast, the error assessment from the UAV-MS derived SfM processing (Figure 3-9B) 

suggests that the quality of reconstruction does not present consistent results. The mean errors 

between pairs of surveys is good, with six of the 10 surveys having values of under 0.1 m; 

however, the standard deviation of errors is far greater, with seven survey pairs having standard 

deviations over 0.1 m. This comparison suggests that the errors described in Section 3.6.2.1 and 

Figure 3-8 are likely a result of SfM reconstruction. 

The histograms in Figure 3-9B show multiple error peaks, suggesting a spatial variation in error 

across the stable patches. Figure 3-10 shows a comparison of the Z errors between point clouds 

from April 2021 and June 2021 for the UAV-LS and UAV-MS datasets in each of the patches. 

While the UAV-LS data shows a spatially consistent magnitude of error, the UAV-MS appears 

to show a non-consistent pattern of change, exhibiting both under- and overestimation. It is 

likely that these patterns are caused not by incorrect location information (i.e., the direct-

georeferencing) of the cameras themselves based on the success of the UAV-LS, but rather in 

the reconstruction and transformation of the image data into the chosen coordinate system. 

Patches that are close to each other having similar error supports this. This would explain why 

there is no consistent pattern in the error across survey combinations as seen in Figure 3-9, as 

each set of images is processed and fitted optimally, the error produced will be different. This  
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Figure 3-10 Comparisons of UAV-LS- and UAV-MS-derived SfM methods between April and 

June 2021 for each of the six stable ground patches, highlighting the spatial 

variability in accuracy for SfM-derived models compared to UAV-LS methods. 

causes the different peaks in errors and for some models to over and under predict elevation in 

relation to each other. 

3.7 Discussion 

3.7.1 UAV Laser Scanner and Multispectral System 

We assembled a small, <2.5 kg sensor package at a total cost of around GBP 24k (2018 prices), 

representing a significant saving over commercially available systems, which can cost as much 

as GBP 150k. UAV-LS absolute accuracy ranged from 0.1 to 0.2 m, but minimum levels of 

detection based on repeatability comparisons revealed were less than 0.1 m, with most surveys 

being <0.05 m. These values compare to similar ones reported, for example, by Lin et al. (2019) 

in their coastal application of UAV laser scanning and Jacobs et al. (2021) for snow depth 

mapping. By comparison, SfM-derived terrain products showed large errors between surveys, 

most likely based on variable reconstruction and transformation. Nonetheless, the direct 

georeferencing and navigation techniques used herein show great promise for future 
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applications and remove the need for many GCPs, instead using just a few as check points with 

the errors between surveys still less than the magnitudes of change associated with mobile river 

reaches. 

3.7.2 Eco-Geomorphic Applications 

This paper has focused mainly on the development and application of a UAV-based laser 

scanning system, but the purpose for developing such a sensor package is for research into eco-

geomorphic processes along river corridors. The key innovation in using UAV-based laser 

scanning instead of (or along with) SfM-derived models is that laser scanning techniques are 

capable of capturing complex surface features and some measure of vegetation structure (Resop, 

Lehmann and Hession, 2019; Lague, 2020). It is not within the scope of this study to assess the 

ability of UAV-LS to collect vegetation structure, nor to derive metrics associated with this. 

However, Figure 3-11 provides a visual comparison between UAV-LS and UAV-MS SfM point 

clouds from three cross sections along the study reach, covering bare earth (A), sparse 

vegetation (B), and a dense wooded section (C). Despite a drop in point density, the laser 

scanner better captures the vertical face of the deeply incised river bank in the bare earth cross 

section, morphology that is smoothed by the SfM reconstruction. SfM is known to struggle at 

capturing steep banks and overhanging topography due to the reconstruction techniques upon 

which it relies (Smith, Asal and Priestnall, 2004; Cook, 2017), and this can be seen here for the 

relatively small vertical bank faces of around 1 m shown in Figure 3-11A. 

In addition, the water surface can be identified in both sets of data. Despite the wavelength of 

the laser scanner (903 nm) being prone to absorption in water, some returns clearly mark out 

the surface across the bare earth cross section. The SfM-derived results show much higher levels 

of noise, likely due to surface features and reflection from the moving water increasing the 

number of erroneous key tie points in the processing steps (Woodget et al., 2015; Dietrich, 2017; 

Shintani and Fonstad, 2017). Studies have used the surface reflections of laser scanning to 

assume a water surface elevation (Legleiter, 2012), which is more difficult to obtain from SfM 

techniques (Woodget et al., 2015). This water surface can then be used to obtain bathymetry by 

applying refractive corrections to SfM depths in shallow water where the riverbed is visible. A 

combination of these methods may allow for improved bathymetry from SfM methods by 

obtaining both subsurface and surface measurements. However, the noise present in this 

shallow river section highlights the practical difficulties of obtaining bathymetry from imagery. 

In the vegetated cross sections, two key observations are made: (i) the vegetation structure is 

well captured by the UAV-LS; and (ii) the bare earth morphologies of the river and floodplain  
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Figure 3-11 Extracted cross section (see Figure 3-7 for locations) comparisons of UAV-MS 

derived SfM point clouds (red) and UAV-LS point clouds (blue) for (A) bare earth; 

(B) sparse vegetation; and (C) dense wooded vegetation. Statistics show the number 

of points within each cloud, and the minimum and maximum elevation values. 

are equally captured. Despite the variable point density within the canopy from the UAV-LS 

data, the locations of features such as trunks and low hanging branches are clearly identifiable. 

This is relevant when considering the impact of vegetation on high flow events where 

interaction between these features modulates flow patterns. In comparison, the resultant point 

cloud from the UAV-MS fails to identify many structural elements in the sparse woodland cross 

section, and even fewer in the dense patches with only a few tree crown points. For studies that 

aim to observe and quantify vegetation and flow interactions, SfM-based reconstructions have 

been shown to be unsuitable. In addition, when considering geomorphic change, few bare earth 
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points beneath dense canopies are detected, severely limiting the ability to construct a DEM, 

with high error potential as outlined in Section 3.6.1. In the bare earth cross sections (Figure 3-

11A), the cut bank location and angle is fully resolved from the UAV laser scanning data where 

the SfM reconstruction smooths the feature. There are also several erroneous points in the SfM 

reconstruction of dense woodland far below the true ground layer (Figure 3-11C), which would 

propagate through into increased errors in derived digital terrain models produced from the 

data. This is likely due to the reduced relative number of points per scan for the SfM-derived 

clouds as identified on Figure 3-11. Moreover, any possibility of obtaining water surface or 

bathymetry data in these vegetated reaches from SfM is removed, yet there is evidence of water 

surface detection in panel B for the UAV-LS data despite being directly below the canopy. 

Overall, it would therefore appear that for reaches where there is a large presence of tall, 

complex vegetation, SfM methods alone are not best suited to eco-geomorphic research. 

The multispectral data offer some exciting opportunities, for example, making use of the 

additional near-Infrared wavelength to derive NDVI (Normalised Difference Vegetation 

Index)-type products linked with the vegetation cover(e.g. Marchetti et al., 2020). Such datasets 

have been shown to improve classifications of vegetation, for example over desert areas (Al-Ali 

et al., 2020), and have great potential to be combined with structural data to improve estimation 

of biomass and vegetation functional type. Measurements of NDVI throughout the year and 

identification of the magnitude, direction, and temporal rates of change may help in the 

classification of vegetation. For example, larger changes in NDVI values from winter to summer 

may indicate the presence of seasonally dependent vegetation. Long-term trends in NDVI can 

be linked to the underlying fluvial conditions (e.g. Nallaperuma and Asaeda, 2020), as well as 

used for monitoring changes in vegetation extent across periods of varying flow conditions (e.g. 

Bertoldi, Drake and Gurnell, 2011). Such research traditionally uses satellite imagery over larger 

areas, but the advent of compact multispectral systems allows for these interactions to be 

investigated at the finer spatial resolutions demonstrated herein. For example, Figure 3-12 

highlights the change in NDVI from winter to summer across a bar in our study site, a ~100 m 

feature over which traditional satellite imagery such as Landsat would capture 1–4 pixels of data. 

Resolving this level of detail will enable identification of vegetation-flow interactions providing 

eco-geomorphic insights in addition to those offered from traditional satellite or visible 

wavelength UAV imagery. While the use of UAV-based multispectral sensing in fluvial research 

has focussed predominantly on vegetation quality or hydraulic properties such as suspended 

sediment (Rossi, Mammi and Pelliccia, 2020; Ren et al., 2021), the opportunities to apply 

methods developed for satellite data at a finer resolution makes combining multispectral rather 

than traditional RGB imagery with UAV-LS data an exciting prospect for future research. 
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Figure 3-12 Difference in NDVI values across the study reach between September 2020 and 

February 2020 surveys. Brown values indicate a decrease in NDVI values and green 

an increase. Inset shows am enlarged version of a meander and point bar feature, 

with the large increases in NDVI likely indicating regions of perennial colonisation 

of sediment deposits by herbaceous pioneer species. 

3.8 Conclusions and Future Work 

Having provided a proof-of-concept for the sensor package, and quantified the minimum level 

of detection at 0.1 m, we have shown that UAV-LS and UAV-MS sensors are capable of 

delivering high-resolution 3D point clouds and imagery which are able to discretise vegetation 

structure and spectral response. These methods demonstrate that riparian vegetation can be 

quantified and analysed at a level of detail that is hitherto unprecedented, capturing additional 

detail that will allow new insight to be gained in relation to eco-geomorphic interactions. The 

benefits of obtaining enhanced structural data that cannot be captured by SfM methods alone 

are evident, and combining the two methods together opens up new avenues of research. For 

densely vegetated river corridors (and other domains), the benefits of using UAV-LS have been 

highlighted, with the addition of a multispectral rather than traditional RGB camera allowing 

additional useful vegetation metrics to be measured. 

Future work should seek to use the data to establish metrics which are able to better characterise 

vegetation function in relation to river corridor evolution. The sensor package developed here, 

along with comparable commercial units, shows great promise for being able to quantify co-

evolving vegetation and geomorphic change trough time, allowing researchers to begin to 

explore the roles of seasonality, plant maturity and die-back in relation to fluvial dynamics. 

Furthermore, the potential increase in descriptive functional metrics would be advantageous to 
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machine learning techniques which might seek to link vegetation, geomorphic change, and river 

flow dynamics through time. 

 

 





Chapter 4 

61 

Chapter 4 Exploring the 4D scales of  eco-geomorphic 

interactions along a river corridor using repeat 

UAV Laser Scanning (UAV-LS), multispectral 

imagery, and a functional traits framework. 

4.1 Abstract 

Vegetation plays a critical role in the modulation of fluvial process and morphological evolution. 

However, adequately capturing the spatial variability and complexity of vegetation 

characteristics remains a challenge. Currently, most of the research seeking to address these 

issues takes place at either the individual plant scale or via larger scale bulk classifications, with 

the former seeking to characterise vegetation-flow interactions and the latter identifying spatial 

variation in vegetation types. Herein, we devise a method which extracts functional vegetation 

traits using UAV laser scanning and multispectral imagery, and upscale these to reach scale guild 

classifications. Simultaneous monitoring of morphological change is undertaken to identify eco-

geomorphic links between different guilds and the geomorphic response of the system in the 

context of long-term decadal changes. Identification of four guilds from quantitative structural 

modelling based on analysis of terrestrial and UAV based laser scanning and two further guilds 

from image analysis was achieved. These were upscaled to reach-scale guild classifications with 

an overall accuracy of 80% and links to magnitudes of geomorphic activity explored. We show 

that different vegetation guilds have a role in influencing morphological change through the 

stabilisation of banks, but that limits on this influence are evident in the prior long-term analysis. 

This research reveals that remote sensing offers a solution to the difficulty of scaling traits-based 

approaches for eco-geomorphic research, and that these methods may be applied to larger areas 

using airborne laser scanning and satellite imagery datasets. 

4.2 Introduction 

Fluvial eco-geomorphic interactions are co-dependent, complex, and variable across space and 

time, representing a continued area of interest within river research (Thoms and Parsons, 2002). 

The diversity of eco-geomorphology in river corridors can be attributed to surrounding land 

use, existing morphology, and flood regimes (Naiman, Decamps and Pollock, 1993), whilst this 

same diversity simultaneously influences the flow of water and sediment, ultimately affecting 

morphology (Diehl et al., 2017) and floodplain conveyance (Nepf and Vivoni, 2000). The role 
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of vegetation within the river corridor is well established, benefiting the local ecology (Sweeney 

et al., 2004; Harvey and Gooseff, 2015) alongside playing a role in natural flood management 

schemes and reconnecting channels and floodplains (Lane, 2017; Wilkinson et al., 2019), 

especially for small catchments where land cover is more influential for flooding (Blöschl et al., 

2007). This is important when considered against a backdrop of a rapidly changing climate 

where flow extremes are more varied, flooding more likely (UNISDR and CRED, 2015), and 

riparian vegetation is likely to undergo shifts in composition (Palmer et al., 2009; Rivaes et al., 

2014). Consequently, adequately measuring and monitoring vegetation within the fluvial domain 

is critical to understanding how these systems will respond to varying climatic and hydrological 

conditions. 

The characterisation of riparian vegetation distribution over larger (>1 km) scales has typically 

relied upon the use of coarse classifications such as those identified in the Water Framework 

Directive (e.g. Gilvear, Tyler and Davids, 2004), using techniques such are aerial imagery and 

satellite remote sensing (see Tomsett and Leyland, 2019). Any characterisation must be scalable 

and geographically transferable to cover the vast range of different fluvial landscapes whilst still 

accounting for the complexity presented within river corridors. Over-simplified, coarse 

classifications may altogether miss the vegetation complexity that exists, whilst conversely, 

highly detailed models tend to be necessarily localised and less transferable to alternate systems 

and scenarios. Traits-based classifications, developed and used within ecology, offer a scalable 

and transferable approach which can be applicable to the fluvial domain (Diehl et al., 2017). 

They have been shown to be useful for modelling topographic response to changing vegetation, 

sediment, and flow conditions (Diehl et al., 2018; Butterfield et al., 2020). However, challenges 

remain in broad application of this approach, with the characterisation of vegetation in the 

highly detailed manner required to extract traits metrics being challenging over larger (e.g. >1 

km) scales. 

To address these gaps, herein we examine the scales over which different traits can be collected 

from remote sensing methods and assess how well these traits can be used to establish eco-

geomorphic relationships. We use a UK based temperate river as an exemplar site to 

demonstrate the effectiveness of novel remote sensing techniques for characterising vegetation. 

We investigate the limits of trait detection and the scales at which they are most appropriately 

used to enhance eco-geomorphic understanding, enabling us to establish the applicability of 

these methods to a variety of river corridor environments. Below we introduce the concepts of 

plant functional traits and hydraulically relevant traits before establishing the aims of this 

research. 
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4.2.1 The Importance of Vegetation 

It is well understood that vegetation plays a key role within the river corridor and that how 

vegetation is modelled can affect the outcomes of hydrodynamic simulations. Channels with in-

stream vegetation may experience roughness values an order of magnitude higher than non-

vegetated channels (De Doncker et al., 2009), capable of reducing velocities by up to 90% (Sand‐

Jensen and Pedersen, 1999). However, foliage type and how vegetation is modelled affect the 

influence that the vegetation has on flow (James et al., 2008). The challenges posed by 

quantifying in-stream vegetation means that it is often difficult to make estimations of in-stream 

roughness (O'hare et al., 2011). Conversely, above water vegetation is easier to measure and 

monitor depending on the scales of analysis. Banks are typically eroded via mechanisms of mass 

failures or entrainment (Hughes, 2016) and so any stabilising effects of vegetation must 

influence these processes. Vegetation can reduce stream power, increase soil cohesion, and 

influence soil moisture levels, all of which can help to reduce erosion (Simon et al., 2000; Fox et 

al., 2007; Kang, 2012). Bank collapse is influenced by three dominant factors, the extra mass of 

the vegetation, the shear strength provided by root reinforcement, and changes to bank pore 

water pressure (Wiel and Darby, 2007), with above ground biomass therefore directly 

influencing the mechanical and hydraulic properties of the substrate (Gurnell, 2014). The above 

ground biomass also has a direct influence on river flow and sediment transport when 

submerged (Gurnell, 2014), although this is stage dependent and depends on plant volume and 

structure. 

4.2.2 Plant Functional Traits  

Functional traits originate from ecological research, whereby criticism of using functional types 

led to a need for a more robust system of classification for ecological studies. Functional types 

represent vegetation based on its morphology and physiology, amongst other factors (Box, 

1981; Box, 1996), but these attributes can exhibit greater variation within functional types as 

opposed to between them (Wright et al., 2005; Reich, Wright and Lusk, 2007), as well as not 

varying between different types at all (Van Bodegom et al., 2012). Assessment of plants based 

on their functional traits has been seen as a method to overcome the shortcomings of the classic 

typological approach (Quétier et al., 2007).  

Much like the attributes of a plant type, plant functional traits are morphological, physiological, 

or phenological attributes that are measurable at the individual plant level (Savage, Webb and 

Norberg, 2007; Violle et al., 2007; Kattge et al., 2011). These measures can either be direct 

measures of a function such as photosynthesis or be a surrogate measure for a function such as 
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leaf area. To be classed as ‘functional’ for ecology, traits must affect either plant growth, 

reproduction, or survival (Violle et al., 2007). Traits can either be effect or response based, 

depending on whether they have an influence on or are influenced by their wider environment 

(Violle et al., 2007). The benefit of traits-based methods is the applicability between different 

sites without needing species specific data (McGill et al., 2006). Therefore, the findings of 

community response to factors such as land use or climatic gradients (e.g. De Bello, Lepš and 

Sebastià, 2006; Garnier et al., 2006) can be applied to a different location with similar trait 

composition. This is possible through the creation of guilds. Guilds can be used to group plants 

with similar traits together (Lytle et al., 2017), providing a scalable framework for eco-

geomorphic research.  

Traits-based approaches are well suited for eco-geomorphic research due to the strong 

environmental gradients within fluvial systems (Naiman et al., 2005). Vegetation responds to 

hydrological variables, such as water availability and disturbance events (Hupp and Osterkamp, 

1996) whilst also influencing flow, sediment transport, and morphological stability (Gurnell, 

2014), meaning that the bi-directional nature of this relationship maps well onto a traits-based 

framework. O'Hare et al. (2016) have assessed the traits of nearly 500 species that influence river 

processes, revealing evidence of a broad link between plant form, distribution, and stream power 

within the UK (O'hare et al., 2011). Moreover, traits-based approaches allow for a more 

comprehensive view on eco-geomorphic interactions than a purely taxonomic approach due to 

the environmental conditions having a larger influence on trait compositions than species 

compositions (Corenblit et al., 2015; Göthe et al., 2017).  

To date, the majority of traits-based research has focussed on ecological responses to 

hydrological conditions. For example, inundation likelihood has been shown to increase the 

presence of plants with longer and younger leaves (Stromberg and Merritt, 2016; McCoy-

Sulentic et al., 2017) whilst also being less woody (Kyle and Leishman, 2009; Stromberg and 

Merritt, 2016), with frequent inundation and higher stress environment necessitating greater 

flexibility. Conversely, plants in lower stress environments tend to be taller with longer life cycles 

(Kyle and Leishman, 2009; Stromberg and Merritt, 2016; McCoy-Sulentic et al., 2017). Factors 

such as nutrient loading (Baattrup-Pedersen et al., 2016; Lukacs et al., 2019), light conditions 

(Baattrup-Pedersen et al., 2015), carbon availability (Lukacs et al., 2019), and anthropogenic 

interference (Baattrup-Pedersen, Larsen and Riis, 2002; O’Briain, Shephard and Coghlan, 2017) 

are all key controllers of trait composition, with the environmental conditions better related to 

trait, rather than species, composition (Göthe et al., 2017). Furthermore, individual species have 

been shown to demonstrate differing traits depending on external stresses. Populus nigra trees 

were found to be smaller, have greater flexibility, and had a higher number of structural roots 
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at a bar head when compared to a bar tail (Hortobágyi et al., 2017). Further work demonstrated 

that the smaller species at the bar head were incapable of trapping sediment when compared to 

those at the bar tail (Hortobágyi et al., 2018), highlighting the importance of traits rather than 

taxonomic approaches.  

Hydrological variability can also influence trait assemblages. For example, mean flood frequency 

across 15 sites was found not to be related to trait diversity, whereas the magnitude of a 20-year 

flood and the variability in flood frequency (when they occurred during the year) were both 

related to trait diversity (Lawson et al., 2015). Species richness was decreased in field experiments 

of artificial flooding and drought,, although trait diversity was more tolerant to drought 

conditions overall (Baattrup-Pedersen et al., 2018). Rivers with more variable flows tend to 

encourage pioneer species, whilst those with prolonged periods of drought see an increased 

abundance of water tolerant species (Aguiar et al., 2018). As a result, these responses mean 

successful river restoration projects should focus on the type of restoration more than the extent 

(Göthe et al., 2016). Taxonomic approaches can still perform equally well for fluvial studies, but 

traits-based approaches tend to account for local and regional conditions better (Tabacchi et al., 

2019), which is necessary for scalability. 

Research into effect traits and their geomorphic influence has received less attention as traits 

concepts have only recently started to be explored in hydrological research. However, as noted 

by Corenblit et al. (2015), the interactions between plant traits and fluvial systems are linked, 

with hydrological conditions affecting plant establishment and survival and plant morphological 

traits affecting morphology and subsequent establishment. There is evidence that changing traits 

can alter the morphological evolution of channels, with invasive species that have higher 

branching densities and less flexibility increasing aggradation through reductions in near bed 

velocities (Manners et al., 2015). Guild location impacts the morphological response, with 

analysis of bars showing different responses downstream and also laterally based on the traits 

of the dominant species in these directions (Hortobágyi et al., 2018). This is supported by 

Butterfield et al. (2020) who when examining changes in multi-annual elevation found that guilds 

at different locations, experiencing different hydraulic conditions, had differing impacts, but 

also that guilds could not explain all the variation in morphological response. It was found that 

differing canopy architectures that interacted with flow were likely to be the prominent driver 

of topographic response, supporting the research of Manners et al. (2015). However, trait 

diversity can impact morphological response as much as the individual traits, with combinations 

of guilds interacting to alter responses (Hortobágyi et al., 2018), from which spatially averaging 

to areas of dominant guilds may oversimplify the complexity of interactions. 
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4.2.3 Hydrologically Relevant Functional Traits 

Not all vegetation functional traits are relevant when considering direct relationships between 

vegetation, hydrology, and morphology. Moreover, not all traits can be obtained from remote 

sensing techniques, a necessary requirement when upscaling to larger domains. Below we 

identify the vegetation traits that are directly relevant to river systems and which can potentially 

be captured via remote sensing techniques, thereby allowing the upscaling of any developed 

methods of characterisation. 

Existing studies that have considered vegetation-flow interactions have focused on plant height 

and frontal area as key metrics which explain momentum exchanges in river flows. The height 

of the plant affects the amount of interaction (Nepf and Vivoni, 2000), with varying flow depth 

determining the proportion of the plant frontal area which is submerged. Frontal area is an often 

used proxy for the scale of obstruction and is a component of the drag formulation which can 

have a larger impact on flow conditions than the selection of a drag coefficient (Järvelä, 2004; 

Wilson et al., 2006). However, the limitations of 2D metrics to describe the complex nature of 

plants has been highlighted, with the use of 3D data and plant volume offered as improved 

methods (Whittaker et al., 2013; Vasilopoulos, 2017). 

Under various flow conditions, the frontal area of a plant may change due to flexing and 

reshaping, with studies showing that not accounting for this can limit the results of drag models 

(Sand-Jensen, 2008; Whittaker et al., 2013). A higher leaf area increases the momentum 

absorbing area of plants with de-leafed vegetation not bending until a higher threshold velocity 

is reached (Järvelä, 2002a; Wilson et al., 2003). Drag has been calculated using leaf area, although 

not a 1:1 relationship it was shown to be suitable for estimating vegetative resistance (Jalonen, 

Järvelä and Aberle, 2012). The contribution of foliage to resistance decreases with flow speed, 

Whittaker et al. (2013) noting a drop in the drag contribution of foliage from 75% to 20-50% at 

speeds under and over 0.5 ms-1 respectively. This is due to the reshaping of plant structure 

during higher flows leading to reductions in drag (Armanini, Righetti and Grisenti, 2005), with 

the rate at which this reduction happens being plant dependent (Järvelä, 2002b; James et al., 

2008; Boothroyd et al., 2017). The vertical distribution of plants also has a significant impact on 

flow, with different vertical distributions such as step changes or continuous variations, 

impacting flow differently and being more important than multi-plant arrangement (Lightbody 

and Nepf, 2006; Jalonen, Järvelä and Aberle, 2012).  

The arrangement of plants is still important in determining bulk drag, with drag coefficient 

values for a single foliated stem not representative of stems occurring in bulk vegetation (James 

et al., 2008). Higher plant densities within a channel lead to an increase in drag coefficients, 
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however the arrangement of vegetation within the channel has a negligible impact (Järvelä, 

2002b; Kim and Stoesser, 2011). Sand-Jensen (2008) identified that there was a difference in 

downstream flow between evenly distributed plants and the same biomass distributed into high 

density clumps, with the former providing the larger increase in drag and impeding flow the 

most. Therefore, spatial variation in plant distribution may be more important than the density 

of the patches themselves. A higher stem density does result in more scour around stems and 

deposition to be further from the scour sites, however overall deposition does not increase with 

increased stem density (Follett and Nepf, 2012). 

Whilst both vegetation structure and distribution of individual plants directly impact flow, many 

other vegetation traits can impact sediment transport processes, for example through playing a 

role in altering the erodibility of periodically submerged banks or bar surfaces, or through 

increased resistance from root structures. Although vegetation height, frontal area, and leaf area 

are all key effect traits which can be measured directly, accounting for secondary impacts of 

vegetation related to below ground biomass for example, and how all traits vary spatially and 

temporally remains the challenge for advancing our understanding of eco-geomorphic 

interactions. 

4.2.4 Remote Sensing of River Corridor Vegetation 

Although many of these traits are inherently measurable in the field, many of them are not 

obtainable from current remote sensing methods. Direct trait extraction for riparian vegetation 

from airborne (i.e. large scale) remote sensing has not yet been utilised to enhance eco-

geomorphic studies. Currently, collection of trait data relies on direct ground based field surveys 

and lab analysis, or species are identified in the field and traits taken from databases (e.g. TRY 

database (Kattge et al., 2020)). Methods are often dependent on site access, species richness, and 

variation within the study area (Palmquist, Sterner and Ralston, 2019), utilising methods such as 

quadrat surveying or transect sampling. This technique is effective for establishing traits but is 

limited by the spatial extent of ground coverage. Some variables inevitably require databases to 

avoid substantial disturbance, such as root characteristics (e.g. Stromberg and Merritt, 2016; 

Aguiar et al., 2018; Baattrup-Pedersen et al., 2018), although databases should be used with 

caution; for example, maximum plant height is not related to the plant submergence height at 

the time of a particular flow event, and great variation can be seen in both effect and response 

traits for a singular species (Hortobágyi et al., 2017; Hortobágyi et al., 2018). Therefore, 

accounting for temporal and spatial variation in traits is important and highlights the need for 

temporally and spatially relevant data collection. 
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For fluvial research, multispectral imagery can be used to determine species using supervised 

and unsupervised classifications with good accuracy (Butterfield et al., 2020). Outside of fluvial 

research there is an increasing awareness of the potential of remote sensing methods to help 

drive the scalability of functional traits, especially in relation to physical traits such as plant 

height, leaf area index, phenology, and biomass (Abelleira Martínez et al., 2016; Aguirre-

Gutiérrez et al., 2021), yet considerable limitations remain due to the uncertainty in relating 

spectral and physical properties to functional traits (Houborg, Fisher and Skidmore, 2015). 

Upscaling localised high resolution data is possible however, for example from TLS (Terrestrial 

Laser Scanning) to large scale ALS (Airborne Laser Scanning) data (Manners, Schmidt and 

Wheaton (2013).  

Advances in UAV (Uncrewed Aerial Vehicle) remote sensing can create an important link 

between these two scales of data collection. UAV data collection allows high resolution imagery 

and active remote sensing methods such as laser scanning to be conducted on large reaches 

relatively easily (Tomsett and Leyland, 2019), increasing coverage and providing a middle 

ground for relating local to large scale data. Multispectral cameras have already helped to 

improve the classification of vegetation from UAVs (Al-Ali et al., 2020), and active UAV-LS 

(UAV Laser Scanning) has also been shown to be comparable in estimating tree structures to 

TLS methods (Brede et al., 2019). Such methods therefore present an opportunity to not only 

classify vegetation by types and assign them to guilds, but to define guilds based on 

characteristics acquired from remote sensing directly, before upscaling this to reach scale 

classifications. 

4.2.5 Aims  

The aim of this research is to develop a set of scalable traits-based 3D vegetation metrics which 

can be used to assess spatial and temporal (i.e. 4D) variation and importance of eco-geomorphic 

interactions on an exemplar UK river system. This is achieved using the following specific 

objectives:  

1. Undertake an assessment of the longer term (multi-decadal) eco-geomorphic evolution 

of the channel using satellite remote sensing, to compare planform evolution within 

vegetated and non-vegetated channel sections. 

2. Identify and select hydrologically relevant traits which can be extracted from high 

resolution remote sensing data.  

3. Establish the presence of vegetation guilds (those with similar traits) for the river reach, 

based on exploratory analysis and object orientated random forest classifications. 
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4. Compare the spatial extent of these guilds to morphological change over the study 

period to establish eco-geomorphic feedbacks.  

4.3 Study Site 

The exemplar site is located on the upper course of the River Teme on the English-Welsh 

border in the UK (Figure 4-1A). The study area consists of two broader regions; the upstream 

section consisting of open grassland with patches of heterogeneous vegetation, and the 

downstream section which flows through denser vegetation. The River Teme is a highly mobile, 

gravel bed river within an alluvial floodplain which exhibits numerous avulsions. There is active 

lateral erosion of the channel, depositional gravel bar features, and woody debris dams across 

the study site (Figure 4-1A). The reach has typically low flows (Figure 4-1B), with an average 

depth of 0.69 m (+/- 0.15 m) throughout the year with slightly higher average flow depths in 

the winter months (November – February, 0.79 m +/- 0.15 m). 95% of river depth has been 

below 0.99 m and 99.9% of the flow depth has been below 1.48 m. The largest recorded river  

 

Figure 4-1 Study Site of the River Teme and the long term water level at the Knighton gauge 

station 3km downstream.A) Study Site Location on the River Teme, UK. Inset 

images show active bank erosion and a large debris dam caused by falling trees. B) 

River Gauge Level at the Knighton monitoring station ~1 km downstream from 

study reach, data available from 2002 – present.   
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depth was 2.85 m on the 16th February 2020 during Strom Dennis. Figures are obtained from 

a gauge station 3 km downstream of the study site, starting from the earliest gauge record. 

4.4 Methods 

4.4.1 Long Term (Decadal) Analysis 

To assess the longer-term context of eco-geomorphic interactions within the study reach, 

historical satellite imagery was analysed to identify channel mobility in relation to riparian 

vegetation. Channel mobility was assessed by digitising bank edges across multiple years. This 

method is well established and has been used previously to study the evolution of a large river 

confluence (Dixon et al., 2018) and for multi-decadal analysis of a single river (Gupta, Atkinson 

and Carling, 2013; Yao et al., 2013), to identify the drivers of morphological change. These have 

typically been restricted to coarse (e.g. 30 m ground resolution) satellite datasets, with planform 

change only detectable if it is greater in magnitude than the image resolution. This can result in 

mixed pixels; where multiple land cover and vegetation types are misidentified into one category 

(Henshaw et al., 2013). Here we make use of high spatial resolution imagery from Google Earth 

(0.5 - 2 m, source dependent) and Pleiades (0.5 m) to identify historical changes in channel 

location and vegetation cover. Google Earth historical imagery for the years 2000, 2006, 2008, 

and 2009 and Pleiades data from 2013, 2015, 2016, 2018, and 2020 were used from which bank 

lines were digitised, resulting in 20 years of channel evolution. Banks under tree cover were 

identified where possible using a mix of spectral bands (Pleiades data only) to highlight channel 

position. To account for the images being taken at various time periods throughout the years 

and subsequently having different flow regimes, bank tops were digitised as opposed to water 

edges to reduce uncertainty resulting from variable flow stage. The exception to this was where 

no clear bank top was present, for example on the large bars, where evidence of usual high flows 

from colour changes and trash lines in the imagery were used to guide digitisation of bankfull 

channel width. 

All analysis of bank movement was performed in ArcGIS using the Digital Shoreline Analysis 

System (DSAS, (Himmelstoss et al., 2018)) with a 1.5 km long baseline created for both left and 

right banks based on the dominant river planform trend. Transects were cast every 5 m and 

manually edited where necessary in order to intersect the outermost bank, especially on tight 

meander bends. The Shoreline Change Envelope (SCE), the distance between the nearest and 

furthest bank from the baseline, is used to infer total channel mobility throughout the reach. 
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To assess the impact of vegetation, the channel was classified into two classes: those containing 

structurally large vegetation and those that did not. Areas classed as containing structurally large 

vegetation could either include a small number of trees clumped around the channel, a linear 

section of vegetation on one bank, or larger areas of vegetation such as woodland. These regions 

were user defined based on all of the image sets available and were used to group transects 

within regions containing large vegetation and those that did not, for comparison of the SCE 

statistics. As vegetation may have an influence on both the local scale and broader reach scale 

morphology, the analysis was repeated for changes excluding the reoccupation of new or former 

channels (classed as avulsions). To achieve this, DSAS transects that spanned across two 

separate channels from different years were removed. Each individual channel was then 

reanalysed using separate baselines, consequently the impact on the results from channel 

switching can be isolated and removed.   

Statistical comparison was undertaken of the SCE values for sections containing large vegetation 

and sections that did not. These could be used to identify any differences in the SCE values and 

therefore inferred mobility of these sections, and the influence vegetation may have on planform 

evolution. To investigate the morphological process of avulsions, the development of new 

channels between satellite images was also tracked. New and developing channels which were 

visible in satellite imagery were digitised for each set of images. These were compared to UAV 

flood extent imagery from February 2020 alongside historical LiDAR data from 2007 of the 

river corridor and qualitatively assessed in relation to how topography and flood events 

influence planform, and the processes by which channel switching occurs.  

4.4.2 Field Collection of High Resolution 4D data 

High resolution UAV-LS (UAV Laser Scanning) and UAV-MS (UAV Multispectral Imagery) 

were collected over the entire reach through February 2020 until June 2021, capturing all 

seasonality. To complement these flights, Terrestrial Laser Scanning (TLS) surveys of vegetated 

and bar sections were undertaken to gain a benchmark ultra-high-resolution dataset for 

comparison to the UAV-LS and for characterising small herbaceous vegetation. A UAV-RGB 

(Red Green Blue) survey was also undertaken during overbank flow on the falling limb of Storm 

Dennis in February 2020, to identify the flood extent. Table 4-1 summarises the survey dates, 

extents, and data collection methods. 
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Table 4-1 Summaries of the data collection methods used on each survey date. Overviews of 

survey extent are given for each date, as well as the sensors deployed and the survey 

statistics for each method. TLS point density is based on the resultant point cloud 

after registration. Ground Sampling Distance (GSD) is the resolution of the 

resultant orthomosaics. UAV-LS point density is taken once cleaning of the raw 

clouds has taken place. 

Date Survey Sensor Point Density/GSD 

06/02/2020 (Winter) Whole Reach 
UAV-LS 778 m-2 

UAV-MS 0.04 m GSD 

18/02/2020 (Winter) Whole Reach UAV-RGB 0.02 m GSD 

16/07/2020 (Summer) Subsection 

UAV-LS 810 m-2 

UAV-MS 0.04 m GSD 

TLS 16,000 m-2 

14/09/2020 (Autumn) Whole Reach 
UAV-LS 762 m-2 

UAV-MS 0.04 m GSD 

14/04/2021 (Spring) Whole Reach 
UAV-LS 791 m-2 

UAV-MS 0.04 m GSD 

03/06/2021 (Summer) Whole Reach 
UAV-LS 804 m-2 

UAV-MS 0.04 m GSD 

A detailed outline of the UAV based sensor set up, processing routine and accuracy assessment 

can be found in Tomsett and Leyland (2021), with a short overview of the system provided 

below. UAV-LS and UAV-MS were collected using a DJI Matrice 600 Pro multirotor aircraft, 

capable of flying for 20 minutes per flight. Two sets of batteries allow for the spatially complex 

1 km reach of the River Teme to be captured with some redundancy. Multispectral imagery was 

obtained from a MicaSense RedEdge MX camera, collecting imagery with a ground resolution 

of ~0.035 m across five spectral bands, consisting of blue (475 nm), green (560 nm), red (668 

nm), red-edge (717 nm), and near infra-red (842 nm) wavelengths (MicaSense, 2021). The laser 

scanner is a Velodyne VLP-16 Puck Lite, firing 16 laser-detector pairs at approximately 300,000 

points per second, with a 360 horizontal and 30 vertical field of view. The sensor has a range 

of up to 100 m and a typical ranging accuracy of +/- 0.03 m (Velodyne Lidar, 2016). Both 

sensors use direct georeferencing from an Applanix APX-15, which utilises multi-frequency 

GNSS and MEMS (Micro Electro-Mechanical System) inertial motion unit to provide post 

processed positional and orientation accuracies up to 0.02 m and 0.025 respectively (Applanix, 

2016). This removes the need for extensive GCP placement throughout the reach. 

Georeferenced point clouds from the laser scanner and Structure from Motion based point 
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clouds and orthomosaics from the multispectral imagery were produced, both with vertical 

accuracy under 0.1 m. UAV-RGB imagery was collected from a DJI Inspire 2 with a Zenmuse 

X4S camera, resulting in a ground resolution of 0.017 m from a flight height of 60 m. An on-

board EMLID REACH M2 provides positioning accuracy of up to 0.015 m when post-

processed (EMLID, 2021), with a connection to the on board camera to allow image captures 

to be timestamped to assist with the SfM processing. TLS data was captured in July 2020 using 

a Leica P20 Scanstation, collecting high resolution (0.0031 m point spacing at 10 m distance 

from scanner, resulting in a mean point density of 16,000 points per m2 within the area of 

interest) scans of two locations. The first, an area of channel containing large vegetation at the 

inlet of the study site (two convergent TLS scans), and the second, part of a large meander bend 

in the centre of the study area (four convergent TLS scans) where large vegetation was absent. 

Targets were used to register scans together, acquired using a Lecia TS06 total station, with a 

resultant scan registration accuracy of +/- 0.007 m. 

4.4.3 Vegetation Functional Trait Extraction 

The workflow developed to extract plant functional traits consisted of five steps: (1) Separation 

of individual plant point clouds that could be used for analysis, (2) Analysis of these individual 

clouds to extract metrics related to their traits, (3) Separation of plants into herbaceous and 

woody guilds by adapting the classification from Diehl et al. (2017) based on similar traits, (4) 

Identification of guild properties extractable from temporal UAV-LS and UAV-MS datasets for 

reach scale classification inputs, and (5) Use of an object-based random forest classifier to 

determine the spatial discretisation of guilds. 

4.4.3.1 Point Cloud Segmentation 

A number of automatic methods exist to classify very dense point cloud scenes into different 

groups (e.g. Brodu and Lague, 2012; Zhong et al., 2016). However, the majority of these are 

designed for very high-resolution TLS datasets and so here a semi-automated approach was 

employed. Smaller vegetation whose structural composition cannot be fully resolved from 

UAV-LS data were analysed from the summer TLS survey. Automatic classification of 

ground/non-ground points was performed using the progressive morphological filter in the 

LidR package (Roussel et al., 2020) before manually segmenting in CloudCompare 

(https://www.danielgm.net/cc/) to create individual plant models (Figure 4-2, Raw Point Cloud).  

For the herbaceous plants, leaves and flowering parts were removed from the clouds so as not 

to interfere with the quantitative structural modelling (QSM). Although foliage is important, for 

the methods used herein they could not be accounted for due to point densities. Any statistical 

https://www.danielgm.net/cc/
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outliers were detected, removing points 2.5 standard deviations and above the mean distance 

between points, resulting in a dataset consisting of 37 herbaceous plants. 

Tree segmentation also used a combination of manual and automatic classification based on 

surveys in leaf-off conditions exposing the full internal tree structure. 24 trees were selected 

from across the reach representing a range of structures and sizes from which complete models 

could be created. As above, initial separation of ground and vegetation points was performed 

using a progressive morphological filter. Whilst automatic classification methods such as 

CANUPO exist (Brodu and Lague, 2012), the UAV-LS point densities necessitated the manual 

extraction of individual trees, prior to interactive filtering using a number of statistical measures. 

Local volume density helped to separate points distinct from the main tree woody structure, 

whilst linearity metric filters (how aligned points are within a set radius) remove points that are 

highly complex or not part of the main tree structure. The statistical outlier removal tool and a 

final manual check can then be used to remove any remaining erroneous points. This resulted 

in a point cloud of predominantly large branches, with a clearer structural profile as can be seen 

in Figure 4-2 (Filtered Point Cloud). The thresholds for separating individual trees are size, 

structure, and point density dependent, hence the need for interactive selection. 

This adds an element of user bias as to what is deemed a ‘main’ branch, but the lower density 

of UAV-LS scans makes this a necessary method before reconstructing vegetation models 

(Brede et al., 2019). Shrubs and grasses whose structure could not be fully resolved from the 

UAV-LS or TLS data were not analysed for traits extraction. Aside from requiring many TLS 

scans to capture the extensive and complex branching networks of these plants, in eco-

geomorphic terms a traits-based rather than bulk roughness approach is likely to be limited. 

4.4.3.2 Trait Metric Extraction  

For the reconstruction of vegetation stems into cylindrical models, the open source TreeQSM 

method was applied to the partitioned UAV-LS and TLS derived vegetation data (Brede et al., 

2019). TreeQSM utilises ‘patches’ to determine connected points in the vegetation cloud, before 

growing the tree structure by joining patches together to form a complete model (Raumonen et 

al., 2013). These are created using user defined initial patch sizes to adjoin points, before refining 

the patch sizes using minimum and maximum sizes to create a complete model. This allows the 

coarse branch structure of the tree to be identified (Figure 4-2, Segmented Point Cloud). Sections 

are then generalised as cylinders for computational efficiency and as they provide a robust 
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Figure 4-2 Vegetation trait extraction, from an individual raw point cloud to a cylindrical model 

and frontal area. The process is demonstrated for two extracted vegetation point 

clouds, a large tree within the study reach collected from UAV-LS data, and a small 

perennial on the central bar collected from TLS, note the difference in scales. The 

segmented point cloud is coloured by branching order from blue to red, with the 

cylinders coloured in the same manner.  

representation of trees (Raumonen et al., 2013). These cylinders can then be used to describe 

the overall structure and properties of the individual plant (Figure 4-2, QSM Cylinder Model). A 

full method description can be found in Raumonen et al. (2013). QSM methods have been noted 

to overstate the volume of smaller branches and are sensitive to noise in the data alongside 

variable point density (Hackenberg et al., 2015; Fang and Strimbu, 2019). However, QSM 

reconstructs tree structures in a manner which resolve many of the hydraulically relevant 

vegetation traits. 
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Patch diameters (which are used to determine adjacent points within the same tree) were chosen 

following a parameter sensitivity exercise, with the range of values initially based around those 

of Raumonen et al. (2013) and Brede et al. (2019) for TLS and UAV-LS approaches respectively. 

A visual assessment was performed to identify parameters that created models similar to the 

point cloud structure due to the lack of reference data. After testing for the optimum patch sizes 

for reconstruction, the TLS scans of herbaceous vegetation initial patch diameter was set at a 

size of 0.005 m, with the second patch diameter minimum and maximum sizes of 0.002 and 

0.01 m. The minimum cylinder radius was set to 0.005 m, prescribing the smallest detectable 

branch structure of the extracted herbaceous plants. For the UAV-LS derived tree data, the 

initial patch diameter was 0.2 m, with the second patch dimeter minimum and maximum sizes 

of 0.1 and 0.5 m. The minimum cylinder radius was 0.1 m, based on manual measurements of 

tree branches within the point cloud that were detectable. For each plant model the cylinder 

reconstruction and variable extraction was repeated ten times. As the modelling begins at a 

random location each time the start point can affect the results, and so multiple averaged 

simulations provides a more accurate solution. The modelling produces a number of metrics, 

but for this study height, number of branches, diameter at breast height, volume, and maximum 

branching order, were collected. For each metric of interest, the average value and standard 

deviation of these values are taken from the ten runs.  

The frontal areas of all segregated vegetation clouds were extracted alongside the construction 

of the cylinder models, based on the 2D methods described by Vasilopoulos (2017). For each 

discretised plant point cloud, the data was flattened from 3D to 2D by collapsing the data along 

a single horizontal dimension on a regular grid (Figure 4-2, 2D Frontal Area). The grid resolution 

was set at half the width of the minimal detectable feature resolved by the QSM modelling; 

0.005 m for the TLS derived herbaceous plants and UAV-LS 0.05 m for UAV-LS derived trees. 

4.4.3.3 Guild Identification 

Based on the separated points clouds, each were assigned to a guild based loosely on 

hydrologically relevant traits outlined in O'Hare et al. (2016) and Diehl et al. (2017). As outlined 

above, a decision was made to discretise grasses and shrubs using bulk roughness metrics due 

to their relative homogeneity and the need for ultra-high-resolution data. Short branching herbs 

and taller single stemmed herbs were identified, with discrepancies in flexibility, branching, and 

height, likely to influence hydrology differently. Woody vegetation was further split in to two 

guilds, those with high diameter at breast heights (DBH) that had low density of trunks and 

those with lower DBH that had a higher trunk density. The analysis was preformed separately 

for woody and herbaceous vegetation. As the aim was to identify characteristics that would 
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separate out the guilds from remotely sensed data, there was little need to compare woody and 

herbaceous species directly as height would be a dominant component. 

In order to assess whether remotely sensed data could separate out plants into their guilds in a 

statistically robust way, a Principal Components Analysis (PCA) was undertaken to identify the 

variables which explained most variation within their derived metrics. The metrics used for the 

PCA analysis were those obtained from the QSM and frontal area calculations which were 

normalised to remove the influence of different scales (Alaibakhsh et al., 2017). The principal 

components identified were used to inform the classification of reach scale guilds, identifying 

those variables that most explained the variation between guilds. 

4.4.3.4 Linking Traits to Reach Scale Metrics 

To scale the analysis from individual plants to the entire reach level, a method of linking plant 

scale traits to broader scale data is required. Convex hulls representing the spatial extent for 

each vegetation point cloud extracted and analysed above were used to define the regions from 

which UAV-LS and UAV-MS data were extracted. For small herbaceous vegetation, this was 

buffered by 0.25 m to account for any misalignment between TLS and UAV-LS clouds. For 

tree vegetation polygons this buffer was increased to 1 m to incorporate peripheral branches 

and leaves removed during point cloud filtering. Polygons for small branching trees and large 

shrubs were created based on field observations and UAV-MS imagery. A total of 11 polygons 

were created for this combined guild category, with 11 made for grasses, 8 for water classes, and 

5 for gravel bars and bare earth. Within these polygons, multiple seasonal variables were 

extracted for scaling local guild identification to reach scale classification. The structural 

characteristics of the point cloud were extracted through TopCAT (Brasington, Vericat and 

Rychkov, 2012), obtaining the standard deviation, skewness, and kurtosis over a decimated grid 

at both 1 and 4 m resolutions, the latter to account for larger vegetation footprints. The 4 m 

resolution decimated grid only considered points classified as vegetation in the initial 

‘ground/other’ point clouds to remove ground points from further analysis. To extract a 

Canopy Height Model (CHM), a bare earth digital terrain model (1 m resolution) was subtracted 

from a 0.25 m digital surface model incorporating the vegetation points. The Normalised 

Difference Vegetation Index (NDVI) across the reach was calculated using the red band along 

with both the red-edge and near infrared bands of the MicaSense orthomosaic images to 

produce two separate NDVI layers. As the red-edge can be used to separate out vegetation 

signatures, using a combination of both was expected to help differentiate plants with similar 

structural but different spectral properties. Analysis of structural and spectral data was 

performed for each of the four seasons to gain an insight in to how these properties vary 
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temporally.  For each of the vegetation polygons, the attributes of each of these layers for each 

season were extracted using zonal statistics. The mean and standard deviation for each attribute 

for each season were then calculated across the different guilds for use in the classification 

model. 

4.4.3.5 Reach Scale Guild Classification 

To scale from guilds created from individual UAV-LS and TLS derived plants, to the entire 

reach, an object based random forest classification was undertaken. Object based approaches 

overcome some of the issues of variation and complexity in high resolution images (Myint et al., 

2011), improving continuity in the results (Duro, Franklin and Dube, 2012; Wang et al., 2018).  

The RGB bands from the multispectral camera and the CHM were combined to create a 4-layer 

image from which to classify distinct objects. The Felzenszwalb Algorithm was applied which 

uses graph based image analysis to segment an image into its component parts based on the 

pixel properties (Felzenszwalb and Huttenlocher, 2004). This results in regions within the image 

being grouped based on them having similar properties according to the input layers, avoiding 

the salt and pepper effect found in traditional pixel by pixel classification approaches (Wang et 

al., 2018). 

In total, 644 training objects were identified using the previously discretised vegetation convex 

hull regions, with multiple objects present within each training sample (Table 4-2). A random 

forest classifier was then trained based on the layers that were deemed to distinguish between 

the different guilds, having proved an effective machine learning technique (Chan and 

Paelinckx, 2008; Adam and Mutanga, 2009; Adelabu and Dube, 2015), with a water mask 

included to reduce errors associated with varying flow stage. An analysis of model accuracy vs 

Table 4-2 Description of guilds used for training the random forest classifier, showing the 

number of training objects from the image segmentation and the training size area. 

Guild No. of Training Objects Training Area Size 

Grasses 93 321 m2 

Branching Herbs 15 25 m2 

Single Stemmed Herbs 16 29 m2 

Branching Shrubs 135 388 m2 

Low DBH Trees 158 876 m2 

High DBH Trees 62 238 m2 

Bars 122 641 m2 

Water 41 157 m2 
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number of forests showed a convergence of accuracy above 100 forests and a reduction in band 

importance variability above 300 forests (Figure 4-3). Higher variation in band importance 

suggested that the number of trees was influencing the likelihood of an optimal solution. This 

random forest classification was then applied to the remaining objects within the reach.  

Due to the limited number of samples being used, there were not enough training samples to 

split into a training and test dataset. The multi-tree approach of random forests is constructed 

on a sample of the dataset and as such can be tested against itself to determine an out of bag 

accuracy score. It also successively adds and removes bands to determine the band importance 

in the classification (Adelabu and Dube, 2015). Alongside this self-assessment, for the final 

guilds classes a total of 80 random points were generated across the study site with an equal 

number in each outputted guild. These were manually classified using high resolution ortho-

imagery from a UAV-RGB (0.02 m resolution) survey and study site knowledge. The output 

classification was not visible when undertaking this assessment and the order of the points 

shuffled to remove user bias. The classified guilds map was then used to extract the predicted 

guilds of these points before a confusion matrix was utilised to assess the accuracy of the 

classification. 

 

Figure 4-3 Random forest classifier out of bag accuracy and variations in band importance for 

guild classification. (Left) Out of bag accuracy scores for different numbers of trees 

used within the random forest classification, showing a distinct levelling off in 

accuracy after ~100 trees are used. (Right) The standard deviation in individual 

band importance across 10 sample runs to identify at what number of trees band 

importance becomes consistent across all runs, in this instance around 300 trees.  
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4.4.4 Morphological Change 

The M3C2 algorithm (Lague, Brodu and Leroux, 2013) was employed to calculate 

morphological change, whereby the surface normals from a subsampled cloud of core points 

(here at 0.1 m resolution) are calculated, and change along the normal direction is identified with 

the calculation of a local confidence interval. This overcomes some of the limitations of 

traditional elevation model differencing which can’t account for the direction of change. The 

benefits of using both SfM and UAV-LS data allows their respective drawbacks to be overcome 

through combining both datasets. SfM has been shown to perform poorly in vegetated reaches, 

whereas UAV-LS maintains good ground point densities, whereas SfM provides good 

continuity and high point densities in unobstructed areas. Therefore, in order to obtain good 

surface normals for assessing change the two clouds were merged (see Tomsett and Leyland 

(2021) for error analysis) and their vegetation removed through the use of the same progressive 

morphological filter used previously to produce resultant clouds which were then differenced 

using M3C2.  

4.5 Results 

4.5.1 Decadal Scale Change 

Analysis of planform shift from the year 2000 through to 2020 has identified that the channel 

is highly mobile, experiencing rapid change in places as well as more gradual evolution in others. 

From the 586 bank transects cast, the average SCE (extent of bank movement) was 38 m whilst 

Table 4-3 Transect statistics showing the difference between large vegetation present and 

absent sections, for when avulsions are included and excluded. N refers to the 

number of transects within each category. 

 SCE statistics for each scenario 

 N Mean Median Std. Deviation Max 

Large Vegetation Present 
(Inc. Channel Reoccupation) 

220 48 24 41 121 

Large Vegetation Absent 
(Inc. Channel Reoccupation) 

348 35 27 27 101 

Large Vegetation Present 
(Exc. Channel Reoccupation) 

290 10 8 7 47 

Large Vegetation Absent 
(Exc. Channel Reoccupation) 

339 22 16 18 72 
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the median change was 25 m. The smallest change was 1 m whereas the largest was 120 m. 

Comparison of sections with large vegetation present and absent suggests there is a greater 

average mobility in vegetation present sections (Table 4-3). This goes against the assumption 

that vegetation helps to reduce channel mobility. However, Figure 4-4 suggests that the areas 

where the channel has remained predominantly stable through time have some vegetation 

influence. Of the four areas of significant change, only one appears to follow the traditional 

meander development model of lateral erosion leading to a cut off, with the three remaining 

sections showing likely avulsion or previous channel reoccupation. Analysis of channel mobility 

 

Figure 4-4 Results from the decadal DSAS analysis. Top Panel: DSAS results showing channel 

evolution from 2000 – 2020, with left- and right-hand banks digitised for each year. 

Spatial variability in maximum planform shift is shown in blue. Bottom Panel: A 

shows the range of SCE values from both the left- and right-hand banks combined, 

for sections classed as containing large vegetation and those that do not. B shows 

the SCE values when the effects of avulsion are removed from the data, for both 

large vegetation present and absent sections also. 
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excluding these avulsions indicates that reaches with large vegetation present have lower rates 

of lateral mobility, and that there is evidence of large vegetation reducing rates of planform shift. 

Figure 4-4 (A) and (B) compares frequency of SCE values for sections with and without large 

vegetation being present, including and excluding avulsions. For reaches with large vegetation, 

removing the avulsions has a notable impact on the distribution, with many more transects 

falling within smaller SCE values. Although this shift is seen in the transects without large 

vegetation also, the change in distributions is less prominent and is supported by a smaller 

change in mean values, dropping from 35 m to 27 m for large vegetation absent reaches and 

from 48 m to 10 m for reaches with large vegetation present.  

 

Figure 4-5 Historical analysis of avulsion development across the floodplain.The top panel 

shows two developing channels (A and B) across the floodplain and one channel 

neck cut off (C). The bottom left panel (Channel A) shows how this development 

is influencing successive planform shift, and the bottom right panels (Channel B) 

demonstrates how this is linked to overbank flow. 
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This channel switching appears to involve reoccupation of former channels that have lower 

floodplain elevations during overbank flow events. The three erosion channels in Figure 4-5 

show the stages of progression. Feature C demonstrates a completed channel neck cut off for a 

double meander bend. Both features A and B appear to be developing during flood events, with 

the orthomosaic insets showing the overbank flow captured during a flood event and the 

resulting channel position post flood for feature B. This implies a consistent pattern in new 

channel development that occurs during successive overbank flow events.  

4.5.2 Hydrologically Relevant Trait Analysis 

4.5.2.1 Extraction and Analysis of Traits 

The QSM analysis appears to output visually sensible results and produce models appropriate 

for the vegetation being modelled (see Figure 4-2). Table 4-4 shows the standard deviation of a 

selection of QSM metrics as a percentage of the mean value. The repeat modelling was more 

consistent for larger vegetation, with lower relative standard deviations. However, for some 

metrics such as number of branches, herbaceous plants with few branches may be adversely 

affecting the results. For example, plants with 5 stems having errors of +/- 1 branch is a 20% 

difference, whereas for 20 stems this is only 5%. Overall, model repeats appear to have good 

agreement with one another, and provide a basis for separating out vegetation with similar 

hydraulic functional traits. 

Figure 4-6 shows the PCA plots of herbaceous vegetation metrics from the TLS scans (A) and 

woody vegetation metrics from the UAV-LS scans (B). It is clear that some separation of points 

through dominant metrics is possible, with both plots exhibiting two principal components 

capable of separating the defined guilds. Panel A shows the PCA plot for herbaceous vegetation. 

Height is a clear component between each guild, as well as volume. Although the number of 

branches was not a key component for separating guilds, branches per unit height explained 

some of the variability in the data. Taller plants may have a similar number of branches, and so 

Table 4-4 Standard deviations in trait values as a percentage of the mean values for herbaceous 

and tree guilds. Guilds aggregated to include all herbaceous and tree data. Expressed 

as a percentage of mean due to the varying scales of data between the two guilds. 

 Height Number of Branches DBH Volume MBO 

Herbaceous Guilds 3.87 16.77 17.83 12.18 17.52 

Tree Guilds 1.16 8.79 15.58 12.89 15.00 
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Figure 4-6 PCA analysis of both herbaceous and tree guilds to investigate differences in trait 

characteristics. Lines indicate direction of each variable that explains variation in 

the data. 

accounting for plant height produces a density of branches independent of size to help explain 

plant structure. Of the four identified components, only the height is identifiable from the UAV-

LS data for upscaling, however, point density and spectral properties may improve guild 

separation. Panel B shows the PCA plot for woody vegetation. Height is less important in 

distinguishing the two guilds than for herbaceous vegetation, yet trees under or over certain 

heights are likely to be one guild or the other suggesting minimum and maximum threshold 

values. For separating guilds, the most important components appear to be DBH and vertical 

skew which was expected as this was the basis for initial guild classes. DBH cannot always be 

easily extracted from UAV-LS data if it is incomplete, therefore as the vertical distribution acts 

in the same component direction, this can be used as a potential method for differentiating 

guilds. There is however considerable overlap in both of these PCA plots for woody and 

herbaceous vegetation. There are dominant trends such as the DBH and plant height for 

separation, but there is considerable variation within the guilds for their QSM based metrics 

which may impact the final classification.  

4.5.2.2 Linking PCA Clusters to Reach Scale UAV-LS Data 

Figure 4-7 shows the results of the seasonal analysis of different variables derived from UAV-

LS and UAV-MS imagery for each of the guild classes. There are clear variables which can 

separate different guilds with ease, for example the height of the canopy is a key indicator 

between woody, herbaceous, shrub, and grass guilds. Separating out similar guilds does appear 
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Figure 4-7 Results of seasonal analysis (X-axis within subplots) of different reach scale metrics 

(Y-axis) from UAV-LS and UAV-MS data for each identified guild (X-axis).The 

point clouds at the top provide an example point cloud of each guild class, with 

canopy height ranges acquired from trait extraction for the four analysed guilds and 

from the reach scale analysis for the remaining grass and shrub guilds. Error bars 

indicate one standard deviation around the mean, CHM (Canopy Height Model) is 

given in metres.    

to be more nuanced. The High DBH and Low DBH woody guilds both have very similar values 

and seasonal patterns of changes in NDVI values as well as in their height. This is unsurprising 

as the PCA analysis showed, with height not a dominant factor in explaining variation with 

numerous samples showing crossover. Vertical skew did show guild separation, with the 
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samples used for QSM analysis collected in leaf off conditions. Figure 4-7 does suggest that 

changes in winter skew are visible between the two guilds, with a smaller amount of crossover 

as expected. Spring, summer, and autumn skewness is less informative, likely due to leaf on 

conditions effecting full tree reconstruction, with higher variability in results between the sample 

areas. 

Separating out herbaceous guilds is also a challenge. Elevation values for single stemmed herbs 

are more variable and cross over in to grasses and multi-branching herbs. However, the mean 

elevation values are higher in line with the PCA analysis and may enable herbaceous guild 

separation. Likewise, the average skew values help to differentiate between classes, but again the 

variability in the data suggests it is harder to separate by structural content alone. Conversely, 

spectral data shows great promise in differentiating between guilds. Both the absolute values 

between herbaceous guilds show different as well as their seasonal patterns especially when 

utilising the red edge band for NDVI calculations.  

4.5.2.3 Creation of Seasonal Reach Scale Guilds Maps 

The resultant classification from guild classification can be shown in Figure 4-8 with many areas 

being classified as expected. There appears to be an over classification of the branching shrubs 

class based on initial comparisons with ortho-imagery, whereby the edges of larger vegetation 

and some predominantly grass regions appear to have been misclassified. This may be due to 

the large variation in structural and spectral characteristics of this guild which were less well 

accounted for. Herbaceous guilds were predicted in areas that were expected, in mobile areas of 

the channel were larger vegetation would find it more challenging to establish. The out-of-bag 

accuracy score when training the random forest classifier with 300 trees was 87.2%. Figure 4-9 

A shows the importance of each band in the classifier, with structural elements proving key in 

separating guilds, especially using summer standard deviation of point elevations. The near infra-

red band and winter standard deviation are the next most important elements, with the 

remaining individual spectral bands providing a smaller contribution to the classification. The 

higher importance of the two NDVI layers implies that providing the classifier with analysed 

image data is more useful than individual bands alone. Likewise, the canopy models alone are 

less informative than the variation in elevations when detecting guilds, supporting the use of 

manipulated rather than simple metrics to help improve classification.  
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Figure 4-8 Resulting classification from reach scale analysis for the areas covered by both 

UAV-LS and UAV-MS data. Note the over classification of shrubs and bushes, 

especially at the edge of larger wooded guilds. 

The confusion matrix can be seen in Figure 4-9 B comparing the number of check points that 

are correctly and incorrectly predicted. The overall model accuracy is 80%, lower than the out-

of-bag prediction. However, this is not surprising as training areas were delineated based on 

complete structural profiles for the QSM analysis and the total number of samples used for 

training was small relative to the possible variation across the reach. There was a general over 

classification of points as grass guild, with only one grass control point incorrectly classed as 

branching herbs. Branching herbs which are more detectable from imagery and likely to return 

more laser scan points were classified reasonably well, only being misclassified as grass. Single 

branching herbs however were relatively poorly classified (50% accuracy), being misclassified as 

grass, branching herbs, and even water. However, their narrow structure and sparse spacing 

make them hard to identify from coarser imagery and they return fewer laser scan points. This 

class also exhibited the greatest variation in values when using reach scale metrics to evaluate 

guild samples. Shrubs were predominantly misclassified as branching herbs and grass, this may 

be due to the object segmentation not always isolating complete plants or including surrounding 

ground points which may have affected the classification. Low DBH trees with a top skew were 

classified well by the model, most likely due to their larger heights and winter skew, whereas 

higher DBH trees were misclassified as both low DBH trees and grass. The former likely due 

to the difficulty in separating out these two guilds which have subtle differences in certain 

classification layers such as winter skew, and the latter from surrounding data being included in 

an object likely from shadowing continuing an object outside its true bounds. However, of all 

20 tree check points, only one was incorrectly classified as a guild with clearly different traits, a 

High DBH Tree as Grass (see Figure 4-9). 
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Figure 4-9 Individual band importance in the final classification and confusion matrix from 

the accuracy assessment. The band importance represents the contribution of an 

individual layer to the final classification. The confusion matrix demonstrates for 

which guilds the classification struggled, showing an over-classification of grasses 

and the poor detection of single stem herbs. The overall classification accuracy was 

80%. 

4.5.3 Morphological Change 

As is expected, the majority of morphological change occurs over winter months when there 

are high flows (Figure 4-10). Conversely, over periods of lower flow during the summer both 

the extent and magnitude of change is reduced. Throughout the first winter period erosion 

occurs on the outer bank edges with fairly consistent planform evolution throughout the reach. 

Deposition is evident throughout the entire reach, however erosion is considerably more 

dominant than deposition, with almost 14,000 m3
 of net erosion. The second winter appears to 

have more localised effects on morphology, with clear channel reshaping through the upper half 

of the study area. This has led to considerable deposition on both sides of the channel in areas 

of previously active erosion as well as localised erosional hot spots (~23,000 m3 net erosion). 

Both histograms within the winter seasons show a dominance in erosion overall. This is in line 

with previous long-term analysis which shows this as an area of high mobility with previous 

channel reshaping occurring. Over both winters, morphological change in the tree dominated 

downstream reach has undergone similar levels of change with areas or erosion and deposition 

influenced by the presence of large vegetation. Both summer periods have a greater degree of 

stability, with erosion and deposition taking place but in lower magnitudes. This is consistent 

throughout the reach with no hotspot areas of either deposition or erosion, with deposition 

showing to be more dominant overall.  
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Figure 4-10 Morphological change throughout the monitoring period, showing the spatial 

variation in erosion and deposition as well as the net change in sediment. The 

dashed line for the time period of February – July 2020 indicates a separation in the 

analysis. Left of this line comparisons were made between February and July, 

whereas on the right they were made between February and September. In July, 

only half of the survey areas was captured. The stability of the reach over summer 

meant that it was inferred that any changes for this lower half of the reach between 

February and September were likely to have occurred during the February to July 

period where morphological activity was more prominent. The histograms adjacent 

to each time period show the distribution of magnitude of change, and whether this 

tends to be favouring net erosion or deposition.   

4.6 DISCUSSION 

4.6.1 Multi-Decadal Evolution 

The multi-decadal evolution for this reach is complex and analysis of the formation of new 

channels implies that flood events might be a key control on the switching from one channel to 

another and the reoccupation of former channels. It is not possible to isolate a single variable 

that may cause such switches to take place, such as particular flow thresholds, baseline 
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conditions, vegetation, or soil characteristics. However, it does appear that areas influenced by 

large vegetation experience less localised bank evolution, with the vegetation constraining the 

channel to some degree. This does not appear to stop large switches in channel position into or 

away from vegetated sections. This implies that vegetation is playing a role in the stabilisation 

of channels up to some, as yet unidentifiable, threshold. The reoccupation of former channels 

implies that vegetation plays a lesser role than topography in these conditions, suggesting that 

whilst vegetation can have controls on channel evolution, these eco-geomorphic feedbacks are 

locale and flow condition dependent. This supports the concept of vegetation acting as river 

system engineers and providing an influence on channel morphology (Gurnell, 2014) and that 

varying vegetation densities may be impacting the resistance to morphological evolution 

(Bertoldi, Drake and Gurnell, 2011). Therefore, at a decadal scale, although vegetation may not 

be the sole control on planform evolution, it is shown to be an important factor in this reach of 

the River Teme. 

4.6.2 Trait Extraction and Guild Formation 

Current measurements of plant functional traits are still predominantly ground based and 

therefore limited by on site access (Palmquist, Sterner and Ralston, 2019), requiring extensive 

sampling to extract enough data to create guilds relevant to a particular study (e.g. Stromberg 

and Merritt, 2016; Diehl et al., 2017; Hortobágyi et al., 2017). Remote sensing of these traits is 

therefore a potentially novel way to collect data across large areas, depending on the vegetation 

size and methods of data collection. Although no ground truth data relating to traits was 

collected in the field, the assessment of variability in model construction suggests that the final 

cylindrical models were of good fit for the point clouds collected. This suggests that the use of 

remote sensing to collect structural trait data has an important role to play in eco-geomorphic 

research moving forward, especially once trade-offs in terms of time and spatial extent are 

accounted for.  

The use of pre-determined rather than site specific guilds was a method employed by Butterfield 

et al. (2020) on the basis of guilds outlined in Diehl et al. (2017). The sites used in both of these 

studies were similar, and the application to a temperate UK based site is challenging. However, 

the comparatively smaller sample size used in this study, and the lack of a comprehensive guilds 

list for riparian vegetation, made using predetermined guilds described in Diehl et al. (2017) and 

O'Hare et al. (2016) justified. The lack of suitable ultra-high-resolution data reduced the number 

of herbaceous guilds to two, on which most distinction could be observed. The variation in 

woody vegetation created two guilds within this single previously outlined guild, as they were 

likely to have different hydraulic effect traits. This basis appears to have proved effective with 
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differences in structural characteristics which are likely to impact flow and subsequent 

morphology noted between the guilds during PCA analysis. Predominantly single stemmed 

herbs were taller, likely due to their improved structural standing, and although the number of 

branches was similar the number of branches per unit height was different. A taller, stronger, 

and less branching herb is going to have a distinctly different impact than a shorter more flexible 

one (Nepf and Vivoni, 2000; Järvelä, 2004; Sand-Jensen, 2008). Being able to differentiate 

successfully between these two highlights the success of the survey and trait extraction methods. 

Likewise, the difference in flow conditions between low DBH trees that are closely packed to 

less densely packed high DBH trees may show a resemblance to the influence found at smaller 

scales on plant density (Järvelä, 2002b; Kim and Stoesser, 2011). The relationship between DBH 

and vertical skew is not surprising; considering the higher plant spacing density the competition 

for space is likely higher, resulting in more mass higher up the tree profile. As plants cannot yet 

be easily differentiated by their DBH, using vertical skew gives promising results for upscaling 

to larger areas whereby ALS surveys may be able to differentiate between woody guilds for 

better informed hydrological analysis.  

However, UAV-LS has been shown to overestimate canopy reconstruction volume (Brede et 

al., 2019), which mirrors the over complexity demonstrated in Figure 4-2 (QSM Cylinder Model) 

with some awkwardly orientated cylinders. Extracting traits using remote sensing is novel and 

can outcompete ground-based methods for coverage but is not yet likely to match the accuracy 

and interpretive ability of in-field measurements. Moreover, use of TLS is highly localised with 

a limit to the survey extent that can be captured (Lague, 2020), meaning only a small number of 

samples can be analysed which may not reflect the full variation in vegetation morphology from 

differing hydrological and environmental conditions. The UAV-LS data, although covering 

more ground, does take significant levels of time to post-process and extract multiple individual 

vegetation models, although as the spatial extent of coverage increases, the time gains improve 

as the same vegetation models can be used to classify increasingly larger sites. Algorithms which 

can extract traits and classify large areas are likely to improve with the increasing availability of 

very high-grade commercial UAV-LS surveying equipment in much the same way that SfM 

methods developed, beginning to rival the resolution and accuracy of ground-based TLS.  

Currently, UAV remote sensing methods can only obtain above ground structural traits, and 

although these make up a significant component of hydrologically relevant traits, they do 

eliminate the collection of traits such as root structure, strength, and plant flexibility. Both UAV-

LS and TLS also struggle to capture the complex structures of shrubs, with TLS requiring too 

many scans to resolve the structure of enough samples and UAV-LS having too low point 

density and canopy penetration for such complex branching. However, methods pioneered by 
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Manners, Schmidt and Wheaton (2013) may help to overcome this by relating vertical profiles 

from TLS and ALS data to enable upscaling to larger extents. 

4.6.3 Reach Scale Guild mapping 

The benefits of remote sensing of plant traits does not come from individual plant analysis but 

from upscaling to larger extents. Using the same datasets provides continuity between both the 

individual analysis and reach wide guilds. Finding common features of defined guilds is more 

computationally effective than analysing individual plants throughout the reach at present. 

Using structural characteristics of the point cloud alongside spectral properties across time 

allows the absolute and temporal patterns of each layer to enhance guild classification. It is clear 

that distinctive separation between guild types can initially be made on canopy height, with this 

providing the clearest initial separation. The need for seasonal data is emphasised by the 

herbaceous guilds, whereby height is a useful separator but has large variability, whereas winter 

and spring NDVI values are more effective, supporting previous work emphasising the need 

for seasonal data to improve eco-geomorphic research (Bertoldi, Drake and Gurnell, 2011; 

Nallaperuma and Asaeda, 2020). Variations in NDVI were distinct between several guilds, both 

in absolute values and seasonal variation. Single stemmed herbs appear to be more seasonal, 

with lower winter values than multi stemmed herbs, whereas shrubs NDVI experience a dip in 

spring surveys as a consequence of flowering affecting spectral properties. When investigating 

differences in woody guilds, winter data collection is key, as in leaf off conditions the full tree 

structure is captured in more detail and so differences in skew which are related to DBH are 

better captured. Later in the year, these variables become more overlapped between guilds with 

greater variation. Therefore, the timing of data collection will likely impact classification results, 

with some guilds being better separated at different times of the year. For these methods to be 

applied elsewhere, it therefore follows that a seasonal monitoring approach is required.  

The use of random forest classification for this study site has been successful and builds on the 

growing body of research for their application to high resolution classifications (Chan and 

Paelinckx, 2008; Adam and Mutanga, 2009; Adelabu and Dube, 2015). The misclassifications 

from the random forest classifier are in line with misclassifications experienced by Butterfield et 

al. (2020) when using multispectral imagery alone, with most misclassifications happening in 

guilds adjacent and most similar to the true class. Woody guilds appear to be buffered by shrub 

guilds, potentially resulting from the image segmentation not delineating the vegetation edge 

successfully. These locations are likely to have lower relative heights and so be misclassified as 

shrubs, whereas a better image segmentation may avoid these issues.  
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The resulting classification accuracy (Figure 4-8 and Figure 4-9 B) shows promise for linking 

local scale trait modelling to larger guilds, with good separation between broad guilds and 

promising initial results for separation between similar guilds. The presence of herbaceous 

species in the active meandering section is as expected, as these are more adaptable to changing 

and flood conditions whilst larger woody species are seen in more stable sections of the river 

when compared to the historical change, as these species require more stable hydraulic 

conditions (Kyle and Leishman, 2009; Stromberg and Merritt, 2016; Aguiar et al., 2018). The 

classification herein advances work by (Butterfield et al., 2020) who used imagery to classify 

species and subsequently assign guilds, whereas this method uses the structural and spectral 

characteristics to designate the spatial distribution of guilds, removing the species identification 

component. This is important as the same species may display varying traits-based on their 

proximity to the channel (Hortobágyi et al., 2017) and as such, using the physical characteristics 

of plants can be seen as an advantage. The use of image segmentation to delineate similar areas 

also helps to reduce the salt and pepper effect of high-resolution data classifications and so 

provides an effective method when looking at high resolution structural and spectral features of 

a reach.  

4.6.4 Eco-Geomorphic Change 

Given the hydrology of the river, the majority of morphological change occurs over the winter 

months as expected. The temporal resolution of the surveys is not capable of picking out 

whether this is the result of a single flow event or continuously high flows, however it is clear 

that significant geomorphological re-profiling can occur within a single winter. There appears 

to be more localised evolution in the second winter of surveying whereas the first winter appears 

to show more continual response throughout the reach. The singular lower peak in water levels 

for the second winter as opposed to several higher peaks in the first (see Figure 4-1) suggests 

that priming may be more important for large avulsions, whereby a singular flow event of lower 

magnitude can incite a greater resultant planform shift. The response in summer is much smaller 

both in terms of deposition and erosion, with little morphological change occurring 

unsurprisingly. What change does occur may be from reductions in bank support from high 

flows leaving banks exposed to collapse (Zhao et al., 2020). The largest areas of change appear 

to be within the reaches absent of large vegetation, with the stable patches aligning well with 

those identified in the decadal analysis.  

It is difficult to extract any definitive link between the types of morphological change occurring 

and the underlying vegetation. It is clear from the historical analysis that although vegetation 

plays a role in morphological evolution, it is not the sole driver of change. There are also a 
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number of unique features in the reach which are hard to categorise or group, morphologically 

speaking, with different vegetation patterns, hydraulic conditions, and pre-existing morphology 

adding complexity. However, by grouping guilds based on their potential ability to influence 

vegetation, and categorising erosion and deposition into bands of morphological change in 

either direction, it is possible to visualise the links between vegetation and morphological 

change. 

 

Figure 4-11 Bivariate classification of eco-geomorphic process form interactions, with examples 

highlighting the stabilising effect of vegetation. The bivariate colour scheme shows 

both the impact of the likely increase in stability from vegetation (red to green) and 

the increasing magnitudes of geomorphic change (light to dark shades). This allows 

both the presence and potential influence of vegetation to be mapped together. 

Vegetation stability was classed by grouping grasses and herbs, shrubs and bushes, 

and different woody tree guilds. Morphological change was split in to 0-1 m, 1-2 m, 

and greater than 2 m of change, regardless of whether this was erosion or 

deposition. Insets show patterns of erosion and deposition against the presence and 

absence of larger vegetation across various sections of the reach.    

Figure 4-11 shows a bivariate classification of vegetation stability and morphological evolution. 

Grasses and herbaceous guilds are grouped along with bars as having the least morphological 

stability, followed by shrubs, and then woody guilds. Morphological evolution was split into 0 

to 1 m of change, 1 to 2 m of change, and greater than 2m of change, which were chosen to 

represent the majority of change values. It is clear that most of the reach is shown in the lighter 

colour tones indicating low magnitudes of morphological change. However, areas with higher 

morphological change begin to become more apparent for areas of little vegetative stability, for 

example on the outer meander banks in several places. Darker oranges and purples are dominant 

in comparison to the areas of dark green. Although compared to the overall areas of each 

vegetation stability class you would expect fewer dark green regions, there is clear evidence of 
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light green patches where dark green patches may be expected had the vegetations stabilising 

effect not been present. 

Some of these sections are highlighted in the panels of Figure 4-11 identifying regions where 

erosion may be expected but is not present. The left-hand panel shows a double meander bend, 

the first which has a heavily vegetated bank and the second which has little established 

vegetation. The total change in these two sections is dominated by erosion in the second 

meander bend which has a similar curvature to the first. The second bend does contain a 

knickpoint caused by overland flow which is not present in the first bend, yet the bend exit also 

shows far less erosion. Therefore, it is suggested that this dense patch of vegetation is having 

some stabilising effect, with soil cohesion increased, and flow velocities reduced. The central 

panel is just downstream and is constricted in planform by established vegetation, which despite 

substantial reworking across the survey period has remained relatively stable and exhibits 

deposition close to the vegetation on the left-hand bank. Subsequently, not only is the vegetation 

acting to stabilise banks, but likely slow the flow to encourage deposition in this area. Finally, 

the right-hand panel at the entrance to the region dominated by woody guilds is characterised 

by a large cut bank several metres in height that is progressively eroding, with the bulk of this 

erosion occurring just before entry into this woody guild dominated section. The vegetation on 

the outer bank is likely to play a stabilising role on the bank, until undercutting and removal of 

these trees occurs. There is evidence of such undercutting in action (Figure 4-12), suggesting 

that vegetation provides additional stability only as far as a given threshold, as was suggested in 

relation to the long-term decadal analysis.  

4.7 Remote Sensing of Plant Functional Traits: What Next? 

One of the key benefits of using remote sensing is the ability to quickly capture datasets over 

scales not possible with ground-based surveying. It is clear from the analysis herein that although 

the collection of data is fairly straightforward, the subsequent post processing time has to be 

taken into account. Yet once data has been processed, and the seasonality of the data acquired 

through spectral and structural characteristics, the success of the classification suggests that 

guilds can be classified for other sites that contain similar guilds, such as most temperate UK 

rivers which display these prominent guild types (O'Hare et al., 2016), in much the same way as 

other research has used previous guild classes for similar environmental conditions (e.g. 

Butterfield et al., 2020). It also allows guild analysis for regions that are more remote and less 

accessible to more traditional surveys. This improves the applicability and usability of traits 

methods when compared to more traditional taxonomic vegetation discretisation approaches. 
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Figure 4-12 The impact of undercutting within a heavily wooded reach, highlighting how the 

influence of vegetation on and interaction with flow changes through a plant’s life 

cycle. The resulting creation of debris dams may lead to greater flow diversions, 

localised flooding, or scour points, changing the role of vegetation from offering 

stability to inducing erosion.  

Combining vegetation structural and spectral data provides the opportunity to upscale to 

datasets collected via other platforms, with high resolution satellite imagery and ALS datasets 

offering the potential to improve the impact of such classification methods. This also allows the 

direct measurement of trait variability rather than investigating species variability and 

subsequently linking these to traits. The use of purely species data may remove some of the 

nuance in their traits, based on location, and so limit the applicability to fluvial research. 

Currently, the main difficulty with traits-based analysis is getting adequate data over large 

enough areas, this methodology provides a potential starting point from which a set of tools to 

classify different hydrologically relevant guilds across larger areas can be based. This may 

overcome some of the scale issues in linking guilds to geomorphic change which are currently 

known. Currently most large-scale studies link evolution to vegetation presence, and small 

studies are too localised to be applicable across wider areas. This research, although not large 

enough to be able to link guilds statistically to morphological evolution, demonstrates that by 

upscaling to combine enough hydraulic and morphological conditions may allow this to be 

possible.  

It is important to understand how the role of guilds may change. Figure 4-12 shows a pre and 

post image of the channel in this section, suggesting large scale mobilisation of large wood. 

Being able to identify these changes is key, because the functional role large vegetation plays in 

the river corridor changes depending on its life stage. Our data suggests that large trees helps to 

stabilise the channel, likely through increases in soil cohesion and slowing flows during the flood 

stage. However, once a tree is undermined by erosion and collapses to form large woody debris, 
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it provides an increase in in channel roughness and turbulence, diverts flow, and leads to knock 

on morphological impacts (Jeffries, Darby and Sear, 2003; Sear et al., 2010). It is therefore 

important to consider that guilds and their influence are not stationary, but that they are dynamic 

through time both in terms of seasonality and life cycles. This must be considered when looking 

at the implications of guild dispersal and modelling, as the impact of changing from one state 

to another needs to be accounted for. Although the temporal evolution of guilds was not 

investigated, this presents itself as an area of future work, and the possibility to investigate traits-

based methods to classify woody debris based on the surrounding vegetation structures. 

The classification inputs predominantly focussed on structural and spectral characteristics of 

the vegetation; however it is widely shown that traits vary dependent on their underlying 

hydraulic and environmental conditions. It is therefore not inconceivable that such metrics may 

be used in future, such as to show inundation frequency or extent, to determine the likely 

composition of traits in these regions. This may take a more holistic approach and in cases 

where less structural data is present, allow for a more robust classification of guilds. 

There are however several limitations to the methods. Variations in traits undetectable from 

TLS or UAV-LS methods will limit the ability to detect features for certain types of guild, such 

as those too small to resolve including different grasses or those with too complex structures, 

such as branching shrubs. Both of these are prominent features of UK river corridors and so 

their ommision from the analysis is a limitation. However, they can still be mapped but would 

require in field trait collection or species identification for the use of trait databases (e.g. TRY 

(Kattge et al., 2020)). The remote sensing equipment used for this research is not cheap (see 

Tomsett and Leyland, 2021, noting that our custom system is considerably more economical 

than commercial off-the-shelf packages) and requires a degree of expertise in processing and 

manipulating the data. However, commercial improvements are seeing more easy to deploy, 

cheaper, sensor systems being brought to the market, likely to have a positive impact on eco-

geomorphic research in terms of allowing broad uptake of the methods developed herein for 

applied monitoring and river corridor management. 

4.8 Conclusion 

We have presented a novel method for collecting and extracting vegetation functional trait data 

that is relevant to eco-geomprohic research. Herein we used  UAV-LS and UAV-MS datasets 

to advance our ability to collect high resolution 4D datasets, improving the spatial and temporal 

resolution of riparian vegetation monitoring and geomorphic change detection, allowing us to 

gain an insight into how ripairan vegetation evolves and to better discretise the spatial variation 
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of vegetation in a manner that is applicable and scaleable over large river reaches. As such, we 

have been able to provide insight in to how traits-based frameworks for vegetation analysis can 

be linked to trends and patterns in morpholoigical evolution at scales that were previously not 

attainable.  We have also outlined the limits for current trait extraction from remote sensing 

techniques. UAV-LS can characterise larger vegetation structures and be used to upscale local 

TLS models, but even TLS is limited in its ability to characterise the spatial complexity of some 

vegetation traits at the resolution required to link with geomorphic change. This builds on 

current research which has analysed ecogeomorphic interactions on small river sections, or used 

species based imagery classification to determine large variations. The use of remote sensing 

allows data to be captured, analysed, related to broader dataset statistics, and upscaled to include 

larger reaches. Simultanously, the same data allows for the collection of topographic responses 

to flow events which can be linked to the variation in vegetation. This analysis uses seasonality 

to improve the classification of guilds via chages in structural and spectral properties, advancing 

current methods available to the ecogeomrophology community. Despite some noted 

limitations, this research represents an important step towards better discretisation of traits 

across greater scales and the furthers the possibility of implementing widespread traits-based 

research. 

Future research is needed to investigate the limits of various remote sensing methods in relation 

to their ability to be used for traits extarction and thereby improve understanding of a systems 

ecogeomorphic evolution. Of particular note is the currently untapped resource that exists in 

relation to coarse scale global coverage of land cover from which vegeation traits could be 

extracted using methods such as those presented herein to link the scales of analysis. These 

methods offer a bridge across sclaes, within which to consider the ways in which riparian 

vegetation within the river corridor is mapped, evaluated, and modelled through time, with 

implications for establishing new insights into the functioning of eco-geomorphic systems 

across scales ranging from river sections to intercontinental basins. 
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Chapter 5 Accurate representation of  seasonal 

vegetation structure in a hydrodynamic 

model. 

5.1 Abstract 

The influence of vegetation on hydrological and morphological processes is well recognised, 

but research to adequately represent vegetation in hydrodynamic models is more limited in 

comparison. The use of bulk roughness parameters such as Manning’s n have widely been used 

to account for spatial variations in vegetation, but the ways in which these bulk roughness values 

are assigned and estimated are subject to inaccuracies. Moreover, they will often take little 

account into the different structural roles of vegetation or their complexity through time, such 

as seasonality and colonisation. Within this paper we investigate the impact that different 

representations of vegetation and their seasonality have on model outcomes. We identify that 

switching between different methods of vegetation discretisation has a large impact on 

subsequent morphology and hydrodynamics. The timing of seasonal changes can lead to 

different evolution sequences and that the use of traits-based methods to represent vegetation 

can better represent channel stability in some locations but over stabilise the channel in others. 

The use of seasonal parameters led to planform evolution more akin to that identified through 

field observation, but that flood extent may have been better matched using traits-based 

approaches. The sensitivity of the model to changes in roughness values is discussed as well as 

the large impact a structurally based approach has. Moving forward, further investigation into 

the sensitivity of models to different vegetation parameters is required to fully understand how 

changes in vegetation composition may influence morphology. Any decisions made using 

hydrological monitoring which have a vegetative influence should acknowledge the importance 

of correct parametrisation, with such decisions being increasingly likely and important under an 

ever-changing global hydrological background. 

Keywords: Vegetation, Hydrology, Modelling, Traits, Roughness, Geomorphology, Seasonality 

5.2 Introduction 

Vegetation plays a crucial role in river corridors, affecting flow velocities (Sand‐Jensen and 

Pedersen, 1999; Whittaker et al., 2013) and increasing cohesion in the substrate (Wiel and Darby, 

2007; Gurnell, 2014). Vegetation can alter channel shape (Andrews, 1984), create variations in 
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water elevations and slope (Wang and Wang, 2007), impact deposition and erosional patterns 

(Gran and Paola, 2001; Bertoldi, Gurnell and Drake, 2011b), and provide root reinforcement 

(Zhu et al., 2018). These influences happen at the local scale of individual plants through to 

patch and reach scale interactions between blocks of vegetation, with different plant structures, 

densities, and spacing all important factors in controlling the flow of water and channel 

morphology (Nepf and Vivoni, 2000; Sand-Jensen, 2008; Kim and Stoesser, 2011). As a result, 

vegetation is also seen as a potential solution to reducing flooding impact through the 

implementation of natural flood management techniques (Lane, 2017), with specific 

interventions for local catchments having potentially significant impacts (e.g. Jackson et al., 

2008).  

Due to the difficulties associated with measurement and observation of natural river systems, 

fluvial geomorphologists often resort to the use of morphodynamic models to study the 

interactions between flow, sediment and morphology. More recently, in recognition of the first 

order control that vegetation can exert on a fluvial system, many studies have sought to try and 

incorporate vegetation controls into modelling frameworks (see the thorough reviews by 

Camporeale et al. (2013) and Solari et al. (2016)). For reach scale 2D modelling, variation in 

vegetation type and structure are typically accounted for by providing a roughness value assigned 

to each vegetation type, which can be varied spatially to account for vegetation composition. A 

typical approach would be to use the lookup table for flow in different channels from Chow 

(1959), with many modelling studies using such an approach. This can be used to determine 

variabilities in roughness values (Cobby et al., 2003b; Casas et al., 2010), with more complex 

implementations considering depth variations in roughness (Anderson, Rutherfurd and 

Western, 2006). However, errors introduced through the introduction of unsuitable 

classifications can lead to errors in water levels of decimetres (Straatsma and Huthoff, 2011), 

and matching field observations or classifications to reliable roughness parameters is subject to 

seasonal variations, survey resolution, and researcher experience (Song et al., 2017).  

The current state of the art in terms of vegetation structural representation in 2D models is to 

define X, Y and Z so that individual elements can be explicitly modelled (Crosato and Saleh, 

2011; Vargas-Luna et al., 2016). However, such discretisation across vegetated reaches has 

hitherto not been possible, relying on manual measurements of individual plants. Similarly, with 

one or two notable exceptions, more sophisticated representation of broad channel and 

floodplain vegetation in models has not been undertaken, despite advances in the high 

resolution characterisation of vegetation (Butterfield et al., 2020; Tomsett and Leyland, In 

Review). Diehl et al. (2018) used a traits-based framework when constructing flow response 

curves to assess the effects of guilds (areas of vegetation with similar functional traits) on 
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morphological response and vice versa. Likewise, Caponi, Vetsch and Siviglia (2020) used 

different traits-based methods for allocating above and below ground biomass on dynamic bar 

systems during different flow events to assess mobility changes between different growth 

strategies. However, beyond this most functional trait-based research has focussed on in field 

observations in an attempt to link guilds to flow and geomorphic interactions (e.g. Hortobágyi 

et al., 2018; Butterfield et al., 2020).  

In relation to temporal variation of vegetation (e.g. due to seasonality and growth), despite being 

well studied from an ecological point of view, it is still rarely accounted for in hydrodynamic 

modelling. Seasonal Manning’s n values have been used to improve the calibration of modelling 

studies for water surface elevation and discharges to match observed field values (Song et al., 

2017). The amount of plant biomass, its cross-sectional area, and percentage cover have all been 

demonstrated to explain variation in Manning’s n coefficients (De Doncker et al., 2009; O’Hare 

et al., 2010; De Doncker et al., 2011), and as such it is clear that variations in biomass from 

seasonal cycles will influence channel roughness. This seasonal variation in biomass has been 

closely linked to seasonal variations in roughness through field analysis whereby variations in 

roughness follow the seasonal peaks when biomass is at its greatest (Gurnell and Midgley, 1994; 

Champion and Tanner, 2000; Cotton et al., 2006; De Doncker et al., 2009; De Doncker et al., 

2011). These principles have been accounted for in hydrodynamic modelling (e.g. Song, Schmalz 

and Fohrer, 2014; Song et al., 2017), with Song et al. (2017) noting an increase in model fit from 

using seasonal values of Manning’s n. Despite the majority of existing research being focused 

on the river channel alone, the same principles also apply to floodplain vegetation and its 

interactions with flow, flooding, and morphology.  

5.3 Aims 

The aim of this research is to establish a method for incorporating more accurate spatial and 

temporal vegetation characterisation into a 2D hydrodynamic model to assess how it impacts 

modelled outputs in terms of flow and morphology. This will be achieved through 

representation of a traits-based approach to characterising vegetation within a model domain 

simulating a small temperate UK river system, the River Teme. The different model outputs 

across the fluvial corridor will be compared to establish the differences that alternative methods 

of vegetation representation in a model can make, with results discussed within the context of 

other studies seeking to analyse eco-geomorphic feedbacks and future research requirements in 

this domain. 



Chapter 5 

102 

5.4 Methods 

5.4.1 Delft3D 

Herein, Delft3D (version 4.04.02), an open source depth averaged hydrodynamic model 

developed by Deltares, widely used for simulating flow, sediment transport, and morphological 

evolution (Lesser et al., 2004; Deltares, 2021) is used. Delft3D has been widely used and proven 

to be an effective and validated model in a number of hydrodynamic studies (e.g. Gerritsen et 

al., 2008; Williams et al., 2013; Williams et al., 2016; Parsapour, Rennie and Slaney, 2018). 

Delft3D simulates depth-averaged flows using Navier-Stokes equations with shallow water 

assumptions and the Boussinesq approximation for density. For the simulations undertaken 

here, the use of a 2D rather than 3D approach is deemed acceptable, as a trade off in allowing 

a larger domain to be modelled and because the downstream dominance of the flow will 

outweigh the importance of vertical momentum exchanges in the context of the scenarios 

explored.  

5.4.1.1 Modelling Scenarios 

A series of three scenarios were run to assess the impact of vegetation representation on 

hydraulic and geomorphic responses (Table 5-1). These three models used a combination of 

either Manning’s n or traits-based cylindrical models for influencing flow, and these were either 

static throughout the year or seasonally varying. All other parameters were kept consistent 

throughout the modelling procedure to isolate the effects from vegetation alone.  

Table 5-1 Model run scenarios used in this study, explaining the vegetation representation and 

whether these vary through time. 

Run ID Veg Rep Time Varying Details 

1 Manning’s n No Traditional Manning’s n approach 

2 Manning’s n Yes Seasonally varying Manning’s n approach 

3 Traits Yes Seasonally varying traits-based approach 

5.4.1.2 Model Grid 

For this model, an equilateral grid compromising of 463 and 143 grid cells in the X and Y 

directions with a grid cell size of 2 m was created, covering a reach of the Teme ~0.9 x 0.3 km 

in size (Figure 5-1). This was surrounded by a closed boundary except at the entrance and exit 

of the study area where open boundary conditions were prescribed.  
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Figure 5-1 Model domain grid, monitoring locations, and water level inputs. Top Panel: Study 

site with the 2 x 2 m grid used within the modelling domain shown. Locations A, 

B, and C refer to locations used for analysing avulsion formation (A and B) and the 

impacts of different vegetation representation (A and C) as described in Section 

5.5.2. Bottom Panel: (A) Long term hydrograph from water level stage downstream 

of study site from 1st January 2010 until 31st June 2021. Model time period 

highlighted in red. (B) shows the hydrograph used for the study obtained from a 

combination of in field data loggers, and inferred depth from the relationships 

between the in-field loggers and downstream gauge station. 

The DTM (Digital Terrain Model) was created using a hybrid approach of both UAV-LS (UAV 

Laser Scanning) and UAV-MS (UAV Multispectral) data from surveys performed in February 

2020. This survey was chosen as it had good ground coverage in vegetated areas and a high 

quality of Structure from Motion (SfM) output (see Tomsett and Leyland, In Review), creating 

accurate terrain models within the vegetated sections of the reach. Both datasets were cleaned 

of erroneous points and were classified into ground and non-ground points using a progressive 

morphological filter from the lidR package (Roussel et al., 2020). The ground points of each 

point cloud were then combined in CloudCompare to gain the benefits of through canopy 
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surveying from UAV-LS and the through water survey capability of the UAV-MS SfM, giving 

a continuous terrain model for the study area exported as a 0.1 m raster. 

The resultant DTM was then split to extract those pixels within the channel using a water mask 

derived from the SfM imagery, subsequently classified using a Random Forest Classifier and 

manually adjusted to overcome any misclassified or obscured points, such as under tree 

canopies. The water excluded raster was then interpolated between the dry points on the banks 

to create an estimate of water surface elevation (Moretto et al., 2014). The difference between 

the water surface elevation and bed elevation was calculated to create a raster of water depth, 

from which a refraction index of 1.33 was applied to account for the effects of refraction in SfM 

reconstruction (Woodget et al., 2015). The difference between the original and refracted depths 

was then computed before subtracting this from the original bed elevation to create a refraction 

adjusted bed elevation. Once adjusted, the new channel DTM and original separated non-

channel DTM are combined to create a modified DTM. This DTM was then resampled to 2 m 

resolution for computational efficiency during the modelling process, using the average 

elevation for all cells within the resampled area. This was then smoothed using a two-step 3x3 

low pass filter in order to minimise the effects of any bumps or sinks within the DTM which 

could hinder the modelling process.  

5.4.1.3 Model Timescales 

For each of the scenarios, the model run times totalled 10 months running from the 15th August 

2020 to the 14th June 2021, capturing the dominant winter flows of the Teme. Tomsett and 

Leyland (In Review) previously showed that morphological change is driven by winter peak 

flows, with very low and stable flows occurring during the summer months (Figure 5-1). 

Moreover, the high resolution of the model and relatively large area being simulated required 

small time steps which subsequently impacts model run times. The model was set up to have a 

time step of 0.02 minutes (equivalent to just over 1 second) to avoid instabilities caused by using 

a relatively fine resolution 2 m grid, keeping the courant number value below the maximum 

suggested value (Deltares, 2021). This grid cell size is lower than those typically used within 

Delft (e.g. Rinaldi et al. (2008); Oorschot et al. (2016); Williams et al. (2016)) and as such this time 

step is also considerably smaller. Each model had a warmup time of 60 minutes in order to 

reach settled hydrological conditions, in which no morphological updates could take place to 

remove any artefacts from unstable water levels. The initial conditions for the runs were based 

off water elevations extracted from the water mask described above. When investigating 

seasonal changes, where the model was stopped and restarted, the restart files outputted by the 
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model were used to reinitialise the model so the conditions at the beginning of a run would 

exactly match those at the end of the preceding run.   

5.4.1.4 Boundary Conditions 

To obtain accurate model parametrisation, seven data level loggers were placed into the river 

throughout the study reach, collecting data from October 2020 until June 2021. These were 

designed to capture water levels at the model inflows and outflows, as well as to provide 

calibration data for assessing model performance. VanWalt LevelScout loggers were used in 

conjunction with an eighth logger collecting barometric air pressure. This is used to adjust the 

pressure values recorded by the in-channel loggers to obtain an estimate of water depth. 

Unfortunately, due to significant morphological change during deployment, only two loggers 

can be used to calibrate the model. 

Data from these two loggers was used to prescribe boundary water level conditions. For fluvial 

modelling, Delft suggests the use of discharge boundaries at an inlet and water level at the outlet 

(Deltares, 2021). As a result, cross sections and flow velocity measurements were acquired from 

the field, but access during high flows, changing cross sectional areas, and limited survey repeats 

ultimately made relationships between water depth and discharge inadequate for prescribing 

boundary conditions. Consequently, it was decided that water levels were to be used to prescribe 

flow depths at the inlet boundary. The inlet conditions were related to those of the long-term 

downstream gauge to extend the diver data to also cover two months of preceding data to 

complete the run times. For the outlet boundary, a water level boundary prescribed by a 

discharge-depth relationship was determined using the model itself across a range of flow 

conditions, to minimise instabilities at the exit. 

5.4.1.5 Sediments 

Sediment boundary conditions were split into bedload and suspended inputs and assessed using 

sensitivity analysis whereby a small amount of sediment was input and conditions were set to 

transport rather than supply limited (as observed in the field). Two classes of sediment were 

specified in the model, first a non-cohesive sediment type used to represent bedload material, 

and second a cohesive sediment type which represented the alluvial sediments in the floodplain. 

When specifying sediments, Delft will typically mix the different sediment types into a 

homogenous layer with the relative volume of material based on the specified initial thickness. 

However, to model with stratified sediment, a separate input is required to get the correct 

layering in the bed material.  
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Figure 5-2 How both erosion and deposition are accounted for in the various sublayers of the 

model domain. Erosion moves sediment out of the active layer, sourced from the 

underlayer below, with deposition adding to the active layer which is then 

redistributed to the underlayers below. 

Delft separates the layers in to three categories, a base layer, underlayers, and a transport layer. 

The top transport layer is of a specified thickness which remains constant throughout the 

simulation, determining the amount of sediment that is available for transport at any one-time 

step. Sediment is moved in and out of this layer depending on the flow conditions and 

subsequent transport calculations. The underlayers act as gatekeepers, transferring sediment of 

different sizes up or down the layers depending on what is required. The depth of these layers 

is set to a maximum and these are added to until the user defined max thickness of a layer. If all 

layers are at maximum thickness, then these are passed on to the base layer. During erosion, 

these underlayers are reduced until they are removed from the layering system, whereby erosion 

is then performed on the next layer down. Figure 5-2 demonstrates how this process works with 

a maximum of 3 underlayers of equal depth during erosion and sedimentation (adapted from 

Moerman (2010)). 

In essence, erosion in the active layer, leads to a removal of sediment which is then replaced by 

the first holding layer beneath it, reducing the depth of this holding layer. During deposition, 

sediment is added to the layer that sits below the active layer. If the layer below is of different 

sediment type, e.g. cohesive being deposited on non-cohesive, then the composition of that 

layer is adjusted accordingly.  
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Figure 5-3 The sublayers used within the model setup to represent the likely composition 

across the floodplain, channel, and bars. Note that the relative depths of each layer 

are not to scale. 

For this model, a base layer of a 50-50 mix of cohesive and non-cohesive sediment was used. 

This was overlaid by a 5 m thick layer of cohesive sediment across the entire reach that has a 

15% volume mix of coarse fractions incorporated in. Throughout the channel and bars there 

was a 1 m layer of non-cohesive bedload sediment added to this cohesive layer. Finally, a 0.2 m 

active layer was specified, with spatially varying volumes of sediment where 100% of the active 

layer was non-cohesive across the channel and bars, and 100% of the active layer was cohesive 

across areas outside the channel and bar regions (Figure 5-3). The depth of these layers was 

estimated as no in field observations of stratigraphy were collected. Observation of exposed 

river bank suggest a fine cohesive dominated sediment with some larger fractions present. This 

was the primary basis for assigning the relative fractions of sediment in each layer. The 15% 

volume of non-cohesive sediment in the first underlayer is based off image classification of 

exposed banks. Figure 5-4 shows images taken from the field showing exposed banks containing 

a mixture of cohesive fines and coarse fractions. These were automatically classified using k-

mean unsupervised classification to extract these coarse fractions, for which the number of 

these pixels were compared to the overall. For 4 images that had a reasonable quality of 

classification based on visual assessment, it was established that a 15% volumetric approach of 

coarse sediments should be used, as the classification in general missed out some smaller coarse 

fractions not clear in the original image. Figures 5-4 shows the classified image and the 

segregated image from which coarse volume fraction was assumed. Although an assumption is 

made that this mixing is present throughout the reach, in the absence of any intensive sampling  
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Figure 5-4 Image classification of riverbanks to obtain coarse sediment fraction percentage.  

Basic steps taken were: (1) Raw imagery taken in the field, (2) Classification of image 

through unsupervised k-means clustering, (3) Segmentation to identify individual 

coarse sediment fractions. 

of sediment this provides an estimate of the amount of coarse material that will be released into 

the system during lateral erosion. This is important to consider during morphological evolution 

and avoids only cohesive sediment entering the system during lateral erosion. 

The overall stratigraphy was based off a number of images, such as in Figure 5-3 which 

suggested the layering approach taken in the model is correct. Figure 5-3 shows that on the bank 

edges there is often an active layer that consists predominantly of cohesive materials, which then 

becomes a greater mix of coarse material further down. This is the reasoning for a purely 

cohesive active layer of 0.2 m across the floodplain before coarse fractions become present. 

Although there is distinctive layering in the substructure, not enough information is present to 

create a fully representative depth model of this. Figure 5-3 also shows an image of the surface 

of a bar, highlighting the dominance of coarse fractions which justify the use of a coarse 

fractions only active layer in the channel and on the bars.  

The grainsize of the non-cohesive bedload sediment was established from the collection of field 

samples. Samples were collected from three locations: at the centre of the channel, the channel’s 

edge, and on an adjacent bar, incorporating a mixture of surface and subsurface material. In 

total, 11.05 kg (dry weight) of sediment was collected. The samples were kept separate from one 

another and dried in an oven at 50 degrees Celsius for 96 hours to remove any moisture present. 

Once dried, each sample was weighed before being placed into a mechanical sieve shaker to 

separate sediment at diameters 64, 32, 16, 8, 4, 2, and 1 micron. Sediments under 1 micron were 

then sieved by hand to separate out grainsizes of 0.75, 0.50, 0.25, 0.125, 0.063 microns. The 

material captured by each sieve was then removed and weighed separately to identify the mass 

at each diameter interval. This data was then analysed using GRADISTAT (Blott and Pye, 2001) 

for each location to extract the grainsize distribution for input in to the model. The grainsize 

distributions for each of the three sites can be seen in Figure 5-5 alongside a combined 

distribution across all sites. 
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Figure 5-5 Grainsize distribution plots for each of the three sample location sites and the 

combined final distributions. The red line shows the D50 of the final combined 

distribution. 

The resulting values for each sample and combined are shown in Table 5-2, with only samples 

from the channel centre consisting of a large proportion (10%) of material under 4 mm in 

diameter. Samples from the edge of the channel and bar were classed as medium gravels (8-16 

mm) whereas sediment in the channel was classed as fine gravels (4-8 mm) based on 

classifications by Udden (1914) and Wentworth (1922). Sediment in the channel centre was 

deemed to be poorly sorted whereas sediment at the channel edges were deemed to be very well 

sorted as expected. The D10, D50, and D90 of the combined samples were subsequently used to 

assign the grainsize distribution properties into the model.  
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Table 5-2 Grainsize distributions established via mechanical and manual sieve shaking for all 

three sampled locations as well for the combined values. 

 

5.4.1.6 Channel Morphological Adjustment  

For the modelling of rivers, Delft uses a secondary flow calculation to account for perpendicular 

flow experienced through a river bend as described by (Van Rijn, 1993), overcoming the lack of 

vertical grid within 2D models. By accounting for secondary flow, adjustments in the direction 

of bed shear stress away from the direction of depth averaged flow are accounted for, which in 

turn affects bed load transport (Deltares, 2021). This directly impacts morphological simulations 

and subsequently allows for meander development and lateral shift within the domain. In order 

for lateral erosion to be modelled, Delft requires some parameters to be tuned in order to 

determine the rate of change. This includes the erosion of adjacent dry cells by reallocating shear 

stress (ThetSD) and a coefficient value to account for the effects of secondary flow on bedload 

transport (Espir). ThetSD allocates a percentage of erosion on a wet cell to an adjacent dry cell 

to implement bank erosion in a simplistic manner (Lesser et al., 2004). ThetSD allows river 

sinuosity to develop and avoids over deepening at outer banks, but does not always represent 

realistic change compared to observed data (Williams et al., 2016; Banda and Meon, 2018). Espir 

influences the magnitude of effect spiral flow has on bedload transport, with higher values 

proportioning a greater component of subsequent direction to that prescribed by spiral flow.   

In order to test the sensitivity to these values, a cross computation was undertaken for a high 

flow period, with bed load transport and subsequent erosion assessed. The extent of deviation 

from a baseline (middle value) scenario was assessed, and erosion used as a proxy in order to 

determine suitable values qualitatively, as no reference values could be obtained. Despite 

quantitative analysis against monitored erosion showing little variation in erosion and deposition 

volumes across various ThetSD values, the model experienced variations in bedload transport 

across values ranging from 0.5 – 1, with 1 having much higher levels of erosion and bedload 

transport directions different to expected. This led to the selection value of ThetSD as 0.75, in 

 Sample Sites 

Sediment 
Characteristics Channel Centre Channel Edge Bar Combined 

D10 (µm) 688 12015 8546 1256 

D50 (µm) 6851 40924 30785 23353 

D90 (µm) 39389 254769 125509 175391 
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line with other studies using Delft to monitor planform change (Javernick, 2013; Williams et al., 

2016; Banda and Meon, 2018). Values for Espir were varied from the base line advised by Delft 

of 1 for inclusion to 0.5, with the value of 1 creating higher rates of lateral erosion without 

introducing spurious bed load transport rates and directions. This affect is similar to that noted 

by Frölke (2017) and uses values in line with Meer et al. (2011).  

Bedload transport was calculated using the Meyer-Peter-Muller formula with a calibration factor 

of 0.047 as outlined by Delft (Deltares, 2021). Changes in morphology were updated within the 

simulation and fed back into the hydrodynamics so that channel evolution would affect future 

hydrodynamic processes. The morphological scale factor was set to 1, whereby no multiplication 

of geomorphic change was applied to the erosion and or deposition processes. Critical shear 

stress (τcrit) was determined using a sediment composition approach with secondary data 

available from the Teme and also from studies that have collected information on shear stress 

globally. Data collected by Pears et al. (2020) at Broadwas on the Teme identified sand % content 

of between 15-35% from core samples, giving an indication of the type of soil within the 

floodplain. As such, studies using jet tests, cohesive strength meters, and velocity profiles were 

used to suggest a range of values that should be tested. The average value for τcrit was 1.3 Pa for 

banks described as silty or sandy or having cohesive properties (Julian and Torres, 2006; Darby, 

Rinaldi and Dapporto, 2007; Rinaldi et al., 2008; Darby et al., 2010), whereas for clay banks this 

was seen to be higher with average calculations from turbulent flows suggesting a τcrit of around 

8.5 Pa (Gaskin et al., 2003). Although the composition of cohesive sediment was not established 

for the study site, the sand contents identified by Pears et al. (2020) downstream and visual 

assessment would suggest a sandy silty mix is more likely. 

Given the role of vegetation root structures in decreasing the erodibility of beds and banks and 

increasing the critical shear stress required for erosion to take place (Millar and Quick, 1998; 

Wiel and Darby, 2007), a spatially varying shear stress for erosion was implemented whereby 

values obtained from the wider literature were used to assess the impacts of above ground 

vegetation on below ground erodibility. Research by Julian and Torres (2006) identified that 

grass increased the erodibility of cohesive sediments by a factor of 1.97, and as such this is used 

as a first guide to suggest a base level of τcrit for cohesive sediments. Furthermore, research in 

to critical stress variation by Millar and Quick (1998) and Huang and Nanson (1998), comparing 

the impact of trees compared to grass for similar sediment types, indicated a further increase in 

τcrit by a factor of 1.74. Here we make use of the detailed traits-based vegetation characterisation 

of Tomsett and Leyland (In Review) to allow variation in τcrit between different vegetation guilds. 

As the effects of root cohesion should be added to erosion models, and that increases in soil 

cohesion are related with increasing root area (Waldron, 1977; Yu et al., 2020), it is clear that 
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different guilds will likely have different root properties and thus effect erodibility. Root 

distribution may be more influential than the root strength itself (Abernethy and Rutherfurd, 

2001), and as poplar roots (Low DBH) tend to take up less soil than willow roots (High DBH), 

and although they have longer roots overall, they are not necessarily as deep, poplar trees were 

considered to have a smaller increase in τcrit (Ceulemans, McDonald and Pereira, 1996; Phillips, 

Marden and Suzanne, 2014). Shrub roots τcrit values were kept the same as previous vegetation 

values. These Low DBH and High DBH guilds increased values of τcrit were based on one and 

two standard deviations above the mean values based on data by Millar and Quick (1998) and 

Huang and Nanson (1998) respectively, so that the increases were still within measured ranges 

of increased soil cohesion values. Final values for all vegetation types within the runs are 

provided in Table 5-3.  

Table 5-3 Values of critical shear stress (τcrit) for erosion to take place which are spatially varied 

according to the below vegetation classifications. For traits-based approaches, grass 

is split in to grasses and herbaceous vegetation, and established vegetation split into 

shrubs and the two guilds of woody trees. 

Class and Guilds τcrit (Pa/Nm-2) 

Grass 2.56 

Established Vegetation 4.46 

Single Stem and Multi-Stem Herbs 3.75 

Shrubs 4.46 

Low DBH Trees 6.52 

High DBH Trees 8.60 

5.4.1.7 Roughness and Vegetation 

For a simple Manning’s roughness-based approach, four land cover classes were defined; large 

vegetation, grasses, bars, and water. A combination of both multispectral imagery and laser scan 

data were used to define these. The use of the Infrared band of the multispectral imagery was 

used in combination with the red and green bands to create NDVI (Normalised Difference 

Vegetation Index) and NDWI (Normalised Difference Water Index) layers to enable maximal 

spectral differentiation between classes. This is especially useful in areas of varying brightness, 

where the relative amount of light reflected across bands is similar, but the absolute values differ 

compared to unshaded areas. Two structural datasets were used to improve classification results. 

Surface variation in a 0.5 m search radius was calculated within the CloudCompare software 

(https://www.danielgm.net/cc/), and a Canopy Height Model (CHM) produced to identify the 

height of vegetation. The CHM was produced by identifying ground points and non-ground 

https://www.danielgm.net/cc/
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points using a progressive morphological filter within the LidR package (Roussel et al., 2020), 

before creating both elevation models for the vegetation and bare-Earth points and computing 

the difference between the two. The use of structural data can help separate out different 

vegetation elements with similar spectral properties and those that have been hampered by 

shading also.   

Training samples were manually digitised within ArcGIS based on the high resolution 

orthoimagery. For training, the number of samples for grass and small herbaceous vegetation 

was 16883 (4221 m2), for large shrubs and tall vegetation 3952 (988 m2), for bars 2040 (510 m2), 

and for water 4626 (1,1567 m2). A random forest classification was used to classify in to the 

four initial classes. The original 0.04 m orthomosaics were resampled to 0.5 m with the surface 

variation and CHM rasters snapped to the same size and extent before being stacked into a 

multi-layer raster dataset. This created a nine-layer dataset (5 image bands, 2 indices, and 2 

structural) from which to train the random forest model.  

 

Figure 5-6 Random forest classifier out of bag accuracy and variations in band importance for 

Manning’s roughness land cover classes.(Left) Out of bag accuracy scores for 

different numbers of trees used within the random forest classification, showing a 

distinct levelling off in accuracy after 7 trees are used. (Right) The standard 

deviation in individual band importance across 10 sample runs to identify at what 

number of trees bans importance became consistent across all runs, in this instance 

around 300 trees.  

The number of trees used was based on an analysis of Out-Of-Bag (OOB) accuracy and the 

Standard Deviations (SD) of band importance based on data from the September survey. 

Models were fitted with n trees of 1 – 500 in varying incremental steps with each model fitted 
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10 times; resultant means of OOB accuracy and SD of individual layer importance were assessed 

until both measures stabilised. Both of these elements are deemed important due to consistency 

in tree architecture and removing bias (Chan and Paelinckx, 2008; Adelabu and Dube, 2015). 

The OOB accuracy quickly increased at low number of trees before stabilising after the inclusion 

of 7 trees (Figure 5-6 A). The layer importance S.D. quickly decreased with additional trees from 

upwards of +/- 25% to below +/- 5% once 40 trees were used, and below +/- 2% when 300 

trees were used (Figure 5-6 B). Consequently, 300 trees were chosen for initial classifications of 

all surveys.  

This methodology was applied to both summer and winter datasets so that the spatial variation 

in both summer and winter Manning’s roughness could be utilised. The OOB accuracies for 

these classifications were predicted at 99.7% for both winter and summer vegetation 

discretisations. These models were then applied to the remaining dataset to create a reach scale 

classification. In order for the classification not to appear patchy, the outputted values were 

grouped into contiguous zones of the same class, and any zones whose surface area was less 

than 4 m2 were removed on the basis that any area this size would be less than one whole grid 

cell in the model and so the other, majority class should be the dominant type. This filling was 

determined by spatial proximity to the nearest class adjoining each vacated cell.  

Each of these zones was then re-classed to represent their roughness values based on 

comparisons with descriptions and roughness values provided by Chow (1959). For large 

vegetation, there is also assumed to be some level of understory based on field observations, 

increasing roughness compared to some other forested descriptors. For the seasonally variable 

roughness values, the upper and lower limits provided by Chow (1959) were used to define 

roughness, and the spatial variation in vegetation at each stage used (i.e. the removal of some 

herbaceous vegetation zones on the bars that are not present in the winter). The values used for 

the continual roughness values are based on the central value of the seasonal upper and lower 

limits, these can be seen in Table 5-4.  
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Table 5-4 Manning’s N roughness values used for the seasonal and non-seasonal modelling 

approaches. Non-seasonal values are the average of the summer and winter, each 

of which was selected based on the reference table provided by Chow (1959). 

 Manning’s N Value 

Land Cover Class Non-Seasonal Summer Winter 

Channel 0.043 0.045 0.040 

Bar 0.040 0.040 0.040 

Grass 0.033 0.035 0.030 

Established Vegetation 0.110 0.120 0.100 

 

In order to successfully assess the use of traits-based vegetation characterisation for 

hydrodynamic modelling, a method of representing guilds beyond the typical conversion to bulk 

roughness is required. Delft is capable of implementing a rigid 3D vegetation model which is 

based on vegetation structure and is depth dependent and can be applied to 2D hydrodynamic 

modelling (Deltares, 2021). This is represented as a friction force created by multiple cylindrical 

elements in flow where the friction force is calculated as:  

𝐹(𝑧) =  
1

2
 𝜌0𝐶𝐷∅(𝑧)𝑛(𝑧)𝑢(𝑧)2    [𝑁/𝑚3] [1]  

Whereby ρ0 equates to the reference density of water (kg/m3), CD is the coefficient of drag for 

a cylinder,  ∅(𝑧) is the number of stems per unit area (m-2), 𝑛(𝑧) is the stem width (m), and 

𝑢(𝑧) the horizontal flow velocity (m/s), with the latter three elements all a function of plant 

height. Therefore, the reference data required for vegetation input are the diameter and number 

of stems, their drag coefficients, all relative to the plant height. This allows for the interactions 

with flow and vegetation to change depending on the flow depth and plant height, a current 

limitation in a number of vegetation models.  

This is implemented into the model using a plant description file. Each file provides the plant 

stem diameter, the number of stems, its coefficient of drag, and the plant density for the 

different vegetation classes. Four guilds were identified from remote sensing data collected by 

Tomsett and Leyland (In Review) and a further two classified from subsequent orthoimagery. 

For these four guilds, the number of stems at various heights was determined and the stems 

widths at these heights. As the model assumes cylindrical structures, the coefficients of drag 

were determined based on literature into the effects of foliage when added to cylindrical and 

natural structures and the impact of vegetation re-profiling. The plant density was calculated 
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from the raw TLS and UAV-LS data captured during the field campaigns. To identify individual 

trunks, an area of each guild was selected, and the vegetation point cloud (no ground points) 

inverted. From this, local maxima were identified to locate the base of individual plants, the 

number of maxima summed and divided by the area from which the search took place, resulting 

in the number of plants per m2. For the two classes discretised without structural information, 

grasses continued to be represented using Manning’s roughness due to the lack of plant height 

and the fact that most of the interactions are happening near the bed, as is assumed when using 

Table 5-5 The characteristics used to model drag forces based on plant structure within the 

vegetation module. These characteristics vary with height, and so values are 

adjusted up to a maximum vertical level from which no further influence is exerted. 

Values of drag coefficients are specified to incorporate leaf-on and leaf-off 

conditions based on the wider literature. 

 

  Characteristics 

  

Height 
Diameter of 

Stem (m) 
No of 
Stems 

Drag Coefficient 
Density 

(plants/m2) 
 

 Winter Summer 

V
eg

et
at

io
n

 C
la

ss
 

Single 
Stemmed 

herb 

0 0.012 1 1 1.5 

1.63 0.5 0.012 3 0.8 1.3 

1.5 0.012 3 0.8 1.3 

Branching 
Herb 

0 0.011 1 1 1.3 

1.16 0.1 0.011 4 0.8 1.1 

1 0.011 4 0.8 1.1 

Shrubs 

0 0.08 2 1.2 1.2 

2 0.1 0.08 5 1.2 1.5 

5 0.08 5 1.2 1.5 

Low DBH 
Trees 

0 0.47 1 1 1 

0.11 
1.5 0.38 1 1 1 

7 0.19 3 1 1.5 

20 0.095 3 1 1.5 

High DBH 
Trees 

0 0.81 1 1 1 

0.01 
1.5 0.78 2 1 1 

4 0.39 4 1 1.5 

15 0.195 8 1 1.5 



Chapter 5 

117 

Manning’s n. For shrubs, values were obtained from the literature to obtain above ground plant 

features. Field based identification observed a dominant species of hawthorn at various life 

stages, and values for stem thickness and density were obtained. Stem diameters of 0.08 m were 

used in line with diameters identified from previous field based research (Hodgkin, 1984; 

Williams and Buxton, 1986; Good, Bryant and Carlill, 1990; Herbst et al., 2007) and the number 

of stems set to 5 for all heights above 0.1 m (Herbst et al., 2007; Tanentzap et al., 2012). The 

vertical distribution of number of branches was varied between each species to explain their 

vertical structure, and was assigned either based on the modelling from Tomsett and Leyland 

(In Review) or from the wider literature. The values used and vertical structure can be found in 

Table 5-5. These values were used in the model scenario which used guild classification outputs 

from Tomsett and Leyland (In Review). Each guild area was converted to Delft polygon format 

and named in accordance with the guild plants files, creating a spatially discretised guild map for 

the domain.  

5.4.2 Data Analysis 

Data analysis was performed in two strands. The first looks at spatially varying indicators of 

hydrodynamic output, such as elevation change, across the entire domain. These are compared 

between different vegetation discretisation methods employed within the study site, assessed 

either by investigating over the entire model run or by selecting the specific time of peak flow. 

Alongside the spatial variation, 3 cell locations (A, B, and C, see Figure 5-1) are used to 

investigate the different morphological responses throughout the model. Locations A and B are 

used to compare how avulsions are formed in the model between the two Manning’s based 

representations of roughness. These sites both contain either herbaceous or grass vegetation. 

Likewise, locations A and C are used to compare the impact of all three representations on bed 

shear stress and morphological response. Location A still maintains a herbaceous vegetation 

type, whereas location C is found within the wooded section towards the end of the study area. 

5.5 Results 

5.5.1  Morphological Change 

The results from the modelling outputs show large variations in morphological response to 

different vegetation discretisation methods (Figure 5-7). Most notable are the extremes in 

erosional and depositional response from the seasonal traits-based and Manning’s approaches, 

whereby the former presents a much more stable channel overall and the latter a more mobile 

and actively eroding channel. When using a consistent Manning’s n approach, there is limited  
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Figure 5-7 Elevation changes across the study area for the entire modelling period for the 

different representation of vegetation with the model. Clear channel widening can 

be seen in the seasonal Manning’s based approach, over inducing erosion patterns, 

whereas the seasonal traits-based approach appears induce deposition along the 

channel margins. 

mobility across the reach in areas expected to undergo lateral shift such as the outer bend of 

some meanders. For example, lateral erosion of around 2 m is identified within the central 

meander. However, the channel remains broadly stable in areas where it would be expected to 

be stable and follows an avulsion pattern through the central bar system. Conversely, the 

meander bends in the seasonal Manning’s n simulation show a much higher degree of mobility, 

following the meander bend development that would be expected in a typical system. Erosion 

of around 6 – 8 m is produced within the central bar, demonstrating the increased mobility 

compared to a constant roughness value. This is in line with the lateral erosion identified within  
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the field observations (4 – 10 m). There is also a large avulsion present entering the large central 

bar region, which is typical of this reach (Tomsett and Leyland, In Review) with deposition 

occurring in the former channel. However, there is also significant channel widening on 

relatively straight sections of the reach suggesting an overly active level of erosion for these 

regions. This sort of erosion has not been observed in the field and suggests that a lowering in 

seasonal roughness may be contributing to the reach becoming overactive. For example, within 

the first straight there is lateral shift of 8 m occurring whereas field monitoring notes this to be 

a stable section with no lateral migration. This particular section has also been stable for the 

prior 20 years (Tomsett and Leyland, In Review), and as such is unlikely to see this magnitude 

of change. The seasonal traits simulation appears to experience high levels of deposition at the 

channel edges, whereby it is likely that decreased velocities caused by vegetation roughness has 

led to increased deposition. In the central meander for example, 2 – 4 m of lateral deposition is 

occurring, opposite to what is noted in the field. There are signs of bar development in some 

locations, but there are no avulsions or large shifts in planform that are typical of the reach and 

present in the Manning’s simulations. However, many of the vegetated sections are far more 

stable, along with the straight sections of channel as has been observed through field surveys.    

When we look at the change that occurred in the peak flow event over 20-22nd January (Figure 

5-8), we can see that in both of the Manning’s based approaches, the majority of geomorphic 

work occurred during the peak flow event, especially over then initial part of the central bend 

sequence. However, we can see that the flood event in the seasonal traits-based approach led to 

little change occurring during this time with the majority of change experienced during the 

remaining simulation time steps. For the constant Manning’s approach, the channel reworking 

in the central belt occurred at this time, with the flood peak high enough to induce geomorphic 

change. However, in the seasonal approach the channel switching in this location did not occur 

here, but in a section of structurally large vegetation where an avulsion would not necessarily be 

expected.  

The process by which the avulsion is formed is also different between the two scenarios, as 

shown in Figure 5-9. This highlights two originally dry cells (Locations A and B, see Figure 5-

8)) which become eroded and subsequently form part of the main channel. For the constant 

Manning’s approach, the reworking was rapid as the result of a flood peak. However, for the 

seasonal Manning’s, the avulsion occurs gradually over time when a change in roughness is 

prescribed at the onset of winter. This shows that when the roughness values are changed from 
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Figure 5-8 Erosion and deposition that occurred during throughout the modelling run (in 

lighter shades) and those that occurred during the high flow event (in darker 

shades). Only change over 0.05 m in magnitude are included. The influence of the 

flood peak clearly varies between model runs, with both Manning’s based models 

seeing more change during the high flow event. 

summer to winter, there is a following increase in the rates of erosion which would suggest a 

sensitivity in the model to roughness values for certain types of erosion. The sharp change in 

elevation during the flood peak on the secondary bar location implies that higher roughness 

values help to model quick changes in morphology when peak flows are expected to undertake 

channel reworking, and that incorrectly parametrised roughness values in certain locations can 

lead to morphological evolution that is less likely to occur. It is also clear that the majority of 

outer bend erosion did not occur at this time either and that high flows did not represent the 

main cause of meander development. For the traits-based approach, geomorphic change is 

universally low magnitude and corresponds with areas where flow was likely constricted, 

increasing flow velocities and subsequent bed shear stresses. However, the geomorphic change 

is not dominated by peak flows, suggesting that this representation of vegetation is acting to 

reduce bed shear stress effectively, and reduce the signals of excessive erosion in vegetated 

sections found in both the Manning’s representations.  
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Figure 5-9 Comparison of two new channel developments at separate locations (A and B) 

between the different Manning's based vegetation roughness approaches. Location 

A shows a rapid shift from a low water depth to a predominant channel forming, 

with greater water depths resulting from a singular high flow event. Location B 

demonstrates a more gradual erosion process, initiated by a change in seasonal 

roughness values when values for winter are prescribed. 

5.5.2 Peak Flows 

Depth averaged velocities during the peak flow event on the 21st January 2021 can be seen in 

Figure 5-10. The velocities for both Manning’s based approaches are similar for this event, with 

both models showing peak flows of just under 3 ms-1 and the majority of flows under 2.5 ms-1. 

Peak velocities measured in the field were 1.5 ms-1 during lower flow conditions, suggesting the 

model is simulating sensible flow velocities. The seasonal Manning’s approach does appear to 

have higher flow velocities on the floodplain where overland flow is being routed, likely resulting 

from the decreased relative roughness values used for winter months. This is clear through the 

central bar section whereby the previous morphological change is routing flow in multiple 

directions.  
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Figure 5-10 Comparisons of depth averaged flow velocities (ms-1) across the study site, 

including channel and floodplain, for the peak flow event on the 21st January. The 

three histograms show the distributions of velocities across the model domain, 

highlighting the slower nature of flow in the traits-based approach especially in and 

around the channel edges. 

Comparatively, the flow velocities experienced for the traits-based approaches are much lower, 

with fewer locations showing very high flow velocities apart from in the more constricted 

channel areas. Peak velocities here were just under 2 ms-1, with the majority of velocities under 

1.5 ms-1 implying that the velocities in the channels were lower than should be for such a high 

flow event. This extends on to the floodplain whereby the flow velocities are much slower, and 

although there are some higher values within the former channels on the floodplain DTM, these 

are less apparent than in the Manning’s based model runs. In some cases, this is likely to better 

represent flow velocities on the floodplain, such as through dense vegetation, but in other places 

it appears to be overly slowing the flow down through the reach, limiting the rates of erosion 

expected for such a flow event. The difference in these flow peaks can be seen in Figure 5-10 

which compares the histograms of flood velocities for all occupied grid squares experiencing 

flow over 0.01 ms-1. The flow velocities for the traits-based approach are much more closely 

distributed around the slower speeds with less variation, yet there is a double peak experienced 
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for Manning’s based approaches implying an in and out of channel peak in velocities 

experienced.  

The result of this slowing of flow results in a much larger proportion of the flood plain being 

inundated. The two Manning’s based approaches have similar levels of overbank flow extent, 

predominantly favouring former channels as expected with some reasonably sized patches of 

dry ground across the floodplain. Both however cover a much smaller extent of the floodplain 

when compared to the traits-based approaches. This is to be expected as a greater level of 

impedance to the celerity of the flood wave leads to a greater backup of flow, resulting in 

increased floodplain inundation. 

5.5.3 Bar vs Vegetation Bank Changes 

By comparing the locations of cells A and C outlined in Figure 5-1, one with a seasonal 

herbaceous vegetation covering and the other a wooded section, it is possible to see some of 

the changes different vegetation representations have on morphological and hydrodynamic 

responses. Figure 5-11 shows the relationships between bed shear stresses and erosion between 

time steps, with depth averaged flow velocities and cumulative erosion providing some context 

for this change. 

For the bar section, the location of the grid cell is towards the end of an avulsed channel that is 

formed during the constant Manning’s simulation, where avulsions would be expected or some 

geomorphic reworking. The constant Manning’s roughness sees very little change or consistent 

flow velocities over this bar section until the peak flows experienced in the January flood 

provides velocities high enough to start to rework sediment. This leads to a step change in 

morphology that is then maintained despite some consistently higher velocities, as this becomes 

the new predominant channel. Conversely the seasonal approach sees a mixture of deposition 

and erosion when higher shear stresses are experienced. Some of this deposition appears to lead 

to a blockage in flow until the flood peak where this is reworked to remove sediment and 

maintain flow until the summer period whereby water depths become more inconsistent again. 

The traits-based methods however see an absence of flow for much of the year apart from a 

select few peak events, and only the peak flow event sees a small amount of reworking. This 

can be seen by the relatively fewer points in the scatter plot, and the clustering around low bed 

shear stress values and lack of variation in erosion and deposition values. The vegetated section 

sees much the same pattern, whereby both the Manning’s based discretisation experience 

changes during the peak flow event in January, with both seeing rapid changes in elevation. 

However, they both also experience reworking earlier on at a more consistent rate, likely due to  
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Figure 5-11 Comparison of erosion and deposition rates at two locations (A and C) based on 

the shear stress being exerted on a cell. The top panels refer to a cell representing 

bar morphology and the bottom to a cell from a wooded reach. The scatter plots 

show the change in elevation compared to the previous outputted time step and the 

bed shear stress experienced at this time, coloured by the depth averaged velocity. 

The context graphs below the scatter plots show cumulative change in elevation in 

red and the depth averaged velocities through time in black. 

the higher flow velocities causing bank erosion through the application of shear stress to 

adjacent dry cells. The traits-based approach remains far more stable and experiences very little 

erosion at all as expected within this section. 

From this we can see that flow peaks are important in driving geomorphic reworking, and that 

outside of these high flows, reworking, especially in vegetated reaches, is less prevalent as 
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expected. The rates of change are different between the sites, and the variability in deposition 

and erosion clearer on the bar location which fits in with the active nature of the channel 

sections with smaller vegetative influence. By including a seasonal component to vegetation 

there is a clear impact on flow velocities and subsequent geomorphic work as a result, possibly 

causing a mix of erosion and deposition signals depending on the time of year. On both sites, 

the inclusion of traits-based methods provides a drop in depth averaged velocities which leads 

to lower shear stress values being experienced, thus limiting the eroding capability of the system. 

The model does appear to require higher shear stresses to induce geomorphic change within 

vegetated sites, as would be expected with higher soil cohesion due to underlying root structure.    

5.6 Discussion 

Figure 5-12 shows the morphological change identified on this reach relevant to the time period 

being modelled. The main identified patterns from the field are general vegetation stability for 

preventing erosion and that channel mobility was far greater in locations absent of tree and 

shrub guilds. Some of this change is evident in different vegetation discretisation methods used 

within this study, but no single method really captures the expected morphological evolution 

completely.  

Using a traits-based approach led to highly stabilised channels, whereby there was little 

morphological evolution across the simulation run. Most of this change occurred in and around 

the channel with deposition at the channel edge, suggesting that during the modelling, 

interactions between discretised vegetation and flow led to slower velocities, increased 

deposition, and channel narrowing which focussed the flows into a central channel for erosion. 

This slowing at the channel edges would explain the reduction in lateral erosion, as this is 

triggered based on bed shear stresses within the adjacent wet cells. Therefore, a reduction in 

flow velocities alongside increased τcrit would reduce the lateral erosion potential. This large 

reduction in flow velocity could be down to the parameterisation of the drag coefficients, 

uncertainty in the cylinder based discretisation of the vegetation, or the vegetation density, all 

of which contribute to the modelled drag within Delft and have been observed to be important 

in determining measured drag forces (Nepf and Vivoni, 2000; Sand-Jensen, 2008; Kim and 

Stoesser, 2011). However, this does result in increased channel stabilisation in areas where the 

Manning’s based discretisation’s increase erosion beyond what is expected or observed in the 

field. This is especially so for areas in Figure 5-12 where erosion was not observed but predicted 

by the Manning’s models, particularly for the initial vegetation interactions and the large wooded 

section at the end of the study reach. This implies that the traits-based methodology has the 

potential to stabilise channels and better represent some aspects of morphological evolution.  
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Figure 5-12 Observed morphological change at the field site between September 2020 and June 

2021, a time period comparable to the model run time. Similarities to the vegetation 

representation techniques are the stabilisation around vegetation in the traits-based 

approach, and the formation of a new channel and the extensive outer bend erosion 

within the constant and seasonal Manning’s based approaches respectively.  

This flow velocity reduction effect is not present when using Manning’s based roughness 

parameters, with flow velocities in the channel akin to those measured during field campaigns. 

Velocities of between 0.5 – 1.5 ms-1 were measured across low to medium flow levels in the 

field, but outside of peak flows. As the traits-based model only hits these values during peak 

flows, this suggests a general underestimation of flow velocity as a result of this discretisation 

method. This is in contrast to the Manning’s based models which had flow velocities above 

those measured in the field during this peak flow which is more likely to have occurred. These 

higher velocities led to a higher proportion of morphological change happening during the peak 

flows, and the overall patterns of erosion more closely matching those observed within the field 

site for some sections. Such change included the formation of new channels and the erosion of 

banks on the outer edge of meanders, which was not seen in the traits-based approaches. 

However, the timings of these changes were not always as expected, with the seasonal Manning’s 

seeing an avulsion forming through a vegetated section in a progressive manner, as opposed to 

the more rapid switching seen at this site. The consistent Manning’s based approach resulted in 

avulsions occurring at times and locations expected and seen in real life yet saw a distinct drop 

in lateral erosion. Yet this approach also led to areas of excessive erosion in locations identified 

as stable in Figure 5-12, especially those with heavily vegetated banks, raising doubts over the 

applicability of a purely Manning’s based approach to vegetation discretisation. This may imply 

that a mixed approach, whereby larger vegetation should be structurally discretised, may be the 

optimal solution. 



Chapter 5 

127 

However, the flow velocities experienced overbank suggests that these Manning’s based models 

account for overbank flow extent less well when compared to real world conditions. Figure 5-

13 is a photo of the study site around 6 hours prior to the flood peak recorded in 2020, which 

was slightly higher than the water depths prescribed for these model runs. The image shows a 

large inundation extent even before maximum flows which more closely resembled the 

floodplain extent of the traits-based modelling. This implies that although the traits-based 

approach was affecting flow velocities in and near to the channel too much, in terms of effective 

floodplain parameterisation it may have been performing better.  

This work clearly demonstrates that the way in which vegetation is represented within 

hydrodynamic models is important, not only in terms of whether a basic roughness or more 

complex structural approach is used, but also how temporal changes such as those induced by 

seasonality are incorporated. We know that metrics can be used to relate complex vegetation 

parameters to a simple Manning’s n representation of roughness (De Doncker et al., 2009; De 

Doncker et al., 2011) and that these properties vary seasonally. The seasonal element of 

roughness was compared to consistent values, and the timing of the onset of changing 

roughness appeared to alter the morphological response of the reach, inducing change in a 

previously higher roughness ‘vegetated area’ where change would be less likely. Values of τcrit 

were constant across these periods, and as such this change is due to alterations in roughness as 

opposed to alteration in erodibility of the soil layers of adjacent cells. Although the location of 

the avulsion through winter roughness was unlikely based on the reaches true vegetation 

location, the increased subsequent bank erosion is a better representation of reality than the 

consistent Manning’s approach. Consequently, not only are the correct roughness parameters 

required, but they also need to be adequately altered for seasonal changes. Although this has 

been successfully employed by Song, Schmalz and Fohrer (2014) and Song et al. (2017) to reduce 

uncertainties in water surface elevations, these were not assessed against the likely 

morphological results of these changes in roughness. This research demonstrates that the 

roughness not only affects the in-channel processes, but also the morphological response of a 

system throughout the year and interactions across the floodplain during peak flows. This is 

where the traits-based methods start to show a potential strength in relation to inducing slower 

flood velocities and a greater flood extent providing some promise for the method as an 

approach for better representing floodplains and vegetated banks.  
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Figure 5-13 Image of the study site (model domain boundary approximated in red) during a 

flood event in February 2020. It was captured approximately 6 hours prior to the 

observed peak in flood inundation. Image provided by the landowners. 

Some issues that appear to exist in the outputs reported here may be caused by the model set 

up. One issue is with the fact that meander development is initiated by the bed shear stress of 

adjacent wet cells being applied to adjacent dry cells (Lesser et al., 2004). This allows the lateral 

migration of channels adjacent to the channel. This method requires accurate representation of 

shear stresses at the banks, with the traits-based approach clearly affecting shear stresses at these 

margins through inducing an increased drag. Yet, by comparison the lateral erosion experienced 

during both Manning’s simulations suggests an overactive implementation of lateral erosion, 

with channel widening in sections that are far less active (see Figure 5-12) occurring. The 

methodology itself has also been subject to questions over whether it accurately represents real 

world change (Williams et al., 2016; Banda and Meon, 2018), with alternate erosion schemes 

based on gradients introduced by Williams et al. (2016) proving to be a more realistic method.  

The vegetation model uses a structural approach to infer drag, using the same methods applied 

in numerous investigations. Whilst it is common for drag to be directly measured to identify 

suitable coefficients of drag, here they are specified from the literature based on likely foliage 
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conditions, as these play a key role in determining drag coefficients for woody and herbaceous 

plants (Jalonen, Järvelä and Aberle, 2012; Västilä, Järvelä and Aberle, 2013). However, the effect 

of increased foliage area also leads to plant reconfiguration during higher flows (Järvelä, 2002b; 

Whittaker et al., 2013), and although the coefficients of drag are lowered at higher water depths, 

this is not fully representative of typical foliage conditions. Being able to introduce the flexibility 

of plants would enable better representations of vegetation under different flow conditions, 

especially under flood levels. This may explain the lower flow speeds over the bars in the traits 

model due to non-flexible vegetation slowing the flow too much. However, this variation across 

different flow depths is not always captured in Manning’s based representations of roughness 

either, and although depth varying values can be used (e.g. Anderson, Rutherfurd and Western, 

2006), they are not always implemented despite the requirement for them. This issue is less 

important for larger woody vegetation, as although branching structure in certain species may 

interact with flow, across the banks and floodplains the predominant interaction is with the 

trunks near the ground. This may also help to explain the better flooding extent in forested 

sections of the traits model, as water can flow through these reaches but with lower velocities, 

moving between trunks, as opposed to a continually rough and non-passable surface.  

The biggest limitation in this study is likely the feedback changes between morphology and any 

parametrisation and discretisation of vegetation. Eco-geomorphic feedbacks are vitally 

important in the stabilisation of bars, cohesion of riverbanks, and alteration of flood waves. 

When the morphology changes, the spatial variation in each vegetation class also alters, but this 

is not always fed back into hydrodynamic roughness which have spatially stationary levels of 

roughness. The incorporation of these feedbacks was undertaken by Oorschot et al. (2016) who 

used a vegetation feedback to adjust vegetation discretisation from simple spatial variations to 

more complex removal and regrowth patterns based on a coupled vegetation model with 

Delft3D. This study also used a structural based method to representing vegetation for two 

vegetation types at different life stages, founding that static representations of vegetation over 

constricted the channel and stopped planform evolution. This is similar to the issues presented 

with the traits-based approaches in this research, whereby the presence of vegetation constricted 

channel movement across the entire reach, not just those experiencing the ‘pinning’ effect of 

vegetation. Such thresholds for vegetation removal where also applied in hydrodynamic 

modelling by Caponi, Vetsch and Siviglia (2020) with some success, revealing how bar mobility 

influenced vegetation colonisation success. Just as seasonality is vitally important for 

representing vegetation, effectively incorporating vegetation models adjacent to their 

hydrodynamic counterparts may offer the best solution to fully modelling the interactions 

between vegetation and hydrology.   
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5.7 Conclusion and Future Work 

A traits-based discretisation of vegetation across a nearly 1 km river reach was incorporated into 

a 2D morphodynamic model for the first time. Even with relatively simple approaches that use 

cylinders to represent vegetation structure, this novel method to represent vegetation can be 

used in the modelling domain. More work is needed to refine the parameterisation of the traits-

based approach, but the results herein show that it induces more stability in the reach as one 

would expect. Furthermore, this modelling study demonstrates that simply changing the manner 

in which we discretise and represent vegetation within a model, and the incorporation of 

seasonally varying vegetation data, has a distinct impact on the results. Adjustments in seasonal 

roughness values through typical Manning’s n approaches led to alterations in morphological 

response, and that using a traits-based structural approach led to increased stabilisation of the 

river corridor on the whole. The timing of these seasonal shifts, along with the adjacent peaks 

in flow levels, may have a significant influence on the response of a model and consequently 

any form of planning that is based off of it.  

Vegetation itself is increasingly becoming a central theme in the restoration of rivers and in their 

flood management schemes (Harvey and Gooseff, 2015; Lane, 2017; Wilkinson et al., 2019), 

with many studies modelling the effects that these interventions can have (Gao, Holden and 

Kirkby, 2017; Ferguson and Fenner, 2020). The changes presented here, purely based on the 

broad vegetation discretisation methods and seasonality inclusion, are similar to the scales of 

change expected with the introduction of different vegetation schemes such as natural flood 

management. As a result of this, it may be argued that the models are as sensitive to the changes 

in vegetation as they are to successful parameterisation, with this being exemplified by 

differences in suggested Manning’s n values for forests of 50% between Chow (1959) and 

Medeiros, Hagen and Weishampel (2012). This implies that a more vegetation dependent 

structural technique may prove more effective within modelling, at least for determining suitable 

roughness parameters if vegetation structure cannot be incorporated into the model itself. 

Likewise, these variations in roughness are clearly time dependent, and the incorporation of 

seasonally varying models may produce more accurate representations of real world conditions 

(e.g. Song et al., 2017). Consequently, not only is it important to represent vegetation in the most 

accurate way possible, but also to appropriately vary this through time as vegetation condition 

and subsequent properties change.  

This leaves a space for research seeking to establish the best way in which to represent 

vegetation in models, both in relation to the local influence on drag, and seasonality, in order to 

improve the accuracy of modelling to fully represent a dynamic vegetated reach. Herein, the 
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first improvements in the discretisation of vegetation in a morphodynamic model have been 

undertaken, including adjustments to current hydrological and flow conditions, accounting for 

seasonality, and using a more holistic approach for vegetation characterisation. However, these 

initial outputs reveal that the model is highly sensitive to the methods of roughness 

discretisation, causing significant divergence in output metrics. Further research is needed to 

undertake a full sensitivity analysis around the choice of parameters used to represent traits-

based vegetation in the model. This is important as the traits-based approach to mapping and 

analysing vegetation is scalable and applicable to different fluvial domains, making it highly 

attractive for future work. Consequently, accurately and reliably incorporating a traits-based 

method into the modelling framework would allow for a simpler and more reproducible method 

to vegetation discretisation and should be pursued within future research.  
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Chapter 6 Synthesis and conclusion 

The purpose of this chapter is to bring together the key themes that emerge from the body of 

work presented in this thesis, broadly covering the current state of the art in river corridor 

remote sensing (Chapter 2), the development of novel eco-geomorphic survey methods 

(Chapter 3), the survey and extraction of vegetation functional traits using remote sensing 

(Chapter 4) and a preliminary modelling study (Chapter 5).  A broad synthesis of the 

contributions made by this collective research in relation to the research questions outlined in 

the introduction is undertaken. Finally, limitations and opportunities for further research are 

discussed. 

6.1 Research Synthesis 

The role that vegetation plays as a first order control in fluvial geomorphology is well 

established, yet the methods by which we capture, analyse, and model vegetation to establish 

impacts across scales is still very much emerging. Key drivers of this methodological 

development are the improving remote sensing techniques, such as Uncrewed Aerial Vehicles 

(UAVs) and their sensor payloads, which are increasing the spatial and temporal resolution and 

scales at which we can capture vegetation data.  

Research Question 1 set out to understand “What is the current state-of-the-art in river corridor remote 

sensing and how can it potentially be used to measure eco-geomorphic feedbacks?” 

Chapter 2 (Paper 1; Tomsett and Leyland, 2019) shows that the number and variety of remote 

sensing methods for monitoring and analysing river corridors is vast, and that this is only set to 

grow with the advent of new sensors and more advanced collection techniques and platforms. 

These methods range from high resolution sensing methods such as Terrestrial Laser Scanning 

(TLS) through to satellite remote sensing and Internet of Things based monitoring. However, 

current research tends to focus on the monitoring of morphological evolution, or the 

development of methods designed to improve our monitoring capabilities from remote sensing. 

Conversely, there are relatively few studies investigating process-form interactions in the field, 

which forces research to infer processes from observed change. Current trends in platform 

innovation, the introduction of new sensors, and a wider variety of commercially available 

options at reducing costs, are all likely to help shift this balance to increasing collection of 

process-form data to help improve our understanding of fluvial processes. 
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Recent years have seen several advances in the use of Particle Image Velocimetry (PIV) 

techniques, tracking ‘seed’ particles, mainly on the surfaces of rivers, to estimate water velocities 

and subsequent discharge measurements. Field PIV techniques such as these have been used 

during flooding and under regular flow scenarios (Piton et al., 2018; Kinzel and Legleiter, 2019), 

alongside developing methods of best practice to ensure output data and results are accurate 

(Pearce et al., 2020; Pizarro, Dal Sasso and Manfreda, 2020). The development of this technique 

has led to a number of toolkits being published which can be used with various imagery sources 

to rapidly produce 2-dimensional velocity layers across the surface of a river (e.g. Patalano, 

García and Rodríguez, 2017). Such methods are a good example of the type of process-form 

interaction monitoring advances that are advocated at the end of Chapter 2, helping to provide 

river flow process context to the ‘snapshot’ survey methods of pre- and post-event morphology.  

Alongside the highlighted need for platform and sensor development to allow continued insight 

into geomorphic systems, methodological advances in data processing are needed to i) keep 

pace with technology and the production of ‘big data’ sets and ii) continue innovation, for 

example in the image processing domain. Recent advances have focussed on the increasing ease 

with which Structure from Motion (SfM) analysis can now be performed, with accessible 

software and high-powered PCs allowing high quality output from UAV captured imagery. The 

more recent advent of active sensing methods such as UAV Laser Scanning (UAV-LS) requires 

a continued drive to develop tools capable of processing this type of data. New and novel 

methods of classification, segregation and processing of point cloud data are beginning to be 

developed and outputs from such methods are becoming more advanced in their complexity 

(Burt, Disney and Calders, 2019; Krisanski et al., 2021). Advances in data processing methods 

and tools represents one of the key challenges highlighted in Chapter 2 which will enable 

significant advances in science conducted within the river corridor. 

Chapter 3 (Paper 2; Tomsett and Leyland, 2021) embraced the challenges outlined in Chapter 

2, through the development of a novel UAV based remote sensing package and accompanying 

data processing tools. A UAV based Laser Scanning (UAV-LS) and MultiSpectral (UAV-MS) 

system was developed, demonstrating some of the advances in technology that can lead to clear 

and tangible benefits over existing (e.g. SfM) methods. The methodology delivers an advance in 

our ability to collect data for vegetated river reaches, improving capture of the below canopy 

topography, as well as being able to identify vegetation elements in far more detail than is 

possible through SfM methods alone (Figure 6-1). Integration of a multispectral camera within 

the sensor package enables the extraction of information on plant phenology through band 

indices and improves classification results for a given reach. Chapter 3 demonstrates an advance 

on previous work, by using a multi sensor system to improve the potential to monitor vegetated  
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Figure 6-1 Comparison of vegetated cross sections for UAV-MS SfM derived point clouds 

(red) and from UAV-LS point clouds (blue). The difference between visible 

vegetation structure and ground point returns is clearly shown between the two 

datasets, highlighting the benefit of UAV-LS for eco-geomorphic research. 

river reaches at scales and resolutions which where hitherto not possible. As a result, the current 

limitations that were outlined in Chapter 2 with regards to difficulties of measuring and 

monitoring vegetated reaches are beginning to be overcome. The new survey method developed 

offers a pathway to measure eco-geomorphic feedbacks at scales not yet achieved, through the 

collection of high resolution ecological and geomorphic data, beyond existing individual plant 

scales (e.g. Manners, Schmidt and Wheaton, 2013) and catchment scales (e.g. Henshaw et al., 

2013) already undertaken. 

With any survey methodology, there are limits of applicable scale and resolution. Just as ground 

based features below the pixel resolution of a satellite image may not be detectable, the small-

scale complexity that is captured in high resolution methods such as TLS, UAV-SfM, and UAV-

LS, cannot be directly collected and applied to larger systems that are beyond the range of these 

spatially limited techniques. The methods presented within Chapter 3 are also limited by the 

point densities of the sensors themselves; for example with many current data analysis methods 

being developed for very high resolution TLS surveys (possible sub cm point densities), the use 

of these methods on UAV-LS data (with lower point densities) is potentially limited. As such, 

the need for co-dependent developments in both sensor packages and the computing power 

and algorithms to handle the vast and varied point cloud data this is collected are essential, with 

improvements in this area beginning to appear (Krisanski et al., 2021).  
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The final element of RQ1 seeks to explore how advances in remote sensing could be used for 

investigating eco-geomorphic feedbacks. In a practical sense, the success of a given remote 

sensing technique or method comes down to its ability to collect suitable information on both 

the ecological and geomorphological processes. As has been shown by Diehl et al. (2018) and 

Butterfield et al. (2020), to fully understand eco-geomorphic interactions and feedbacks a more 

holistic approach in relation to the system of interest is required. For example, the aggregation 

of many data sets across morpho-climatically varying river catchments could lead to a greater 

understanding of eco-geomorphic processes. However, in relation to this point, our 

mechanisms and platforms for sharing ad-hoc big data within the science community are 

currently lagging far behind our ability to create it. Chapter 2 outlined the need for a shared data 

protocol, whereby the data made freely available to all could be used to further scientific 

endeavours, but also on which new analysis methods could be tested, creating an overall benefit 

to the community. Such a platform and mechanism of standardised sharing of river corridor 

monitoring data is currently a considerable way from being implemented. 

Research Question 2 asked “What properties of vegetation are important in relation to modulation of fluvial 

geomorphic change? Can these be readily measured and quantified using remote sensing, so that variations in 

vegetation and morphology can be readily assessed through space and time?” 

Whilst there are numerous vegetation properties which are capable of directly influencing flow 

and geomorphic change, herein those identified as important in the wider literature, which had 

the potential to be extracted from remote sensing methods, and which were relevant as inputs 

into a hydrodynamic model were selected as candidates for exploration. The ability to extract 

specific vegetation properties as outlined in Chapter 4 (Paper 3; Tomsett and Leyland, In 

Review), and shown in Figure 6-2, demonstrates the benefits of UAV-LS data. The results from 

Chapter 4 (Paper 3; Tomsett and Leyland, In Review) emphasised this further by using both 

UAV-LS and TLS data to create cylindrical models and frontal area calculations of riparian 

vegetation. The advantage of this method is that it allows the discretisation of vegetation into 

distinct guilds which can be used to classify the reach in order to investigate links to eco-

geomorphic processes and feedbacks. This represents the first application of remote sensing 

datasets to create guilds defined within a functional traits framework, advancing existing 

methods beyond the field measurements used by Diehl et al. (2017) and the species classification 

approach of Butterfield et al. (2020). The new approach allows the collection of many relevant 

traits such as tree diameter (DBH), number of stems, plant vertical distribution, height, and 

frontal area; all of which have been shown to influence drag and affect flow velocities and 

sediment transport (Nepf and Vivoni, 2000; Lightbody and Nepf, 2006; Follett and Nepf, 2012; 

Vasilopoulos, 2017). 
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Figure 6-2 Vegetation metric extraction technique introduced in Chapter 4, showing the 

processing routine taking a raw vegetation point cloud and producing cylindrical 

models and 2D frontal areas. 

The challenge herein was to transfer this fine scale analysis of individual plants up to reach scale 

analysis. Such methods have been touched upon in previous research, for example, the upscaling 

from TLS to ALS (Airborne Laser Scanning) datasets by Manners, Schmidt and Wheaton (2013) 

and Bywater-Reyes, Wilcox and Diehl (2017). Analysing individual plants to gain a classification 

on a plant-by-plant basis would require total coverage of each individual plant, thereby 

eliminating those which were not fully resolved in the survey data from being classified. To 

overcome this, the use of global scale metrics, such as canopy height and vertical distribution, 

combined with multispectral data, are used to group areas of similar structural properties relating 

to their individual guilds. This is line with other studies that have found a combination of 

spectral and structural characteristics can all help to improve classification results (Arroyo et al., 

2010b; Forzieri et al., 2010). The inclusion of seasonally varying data which captures vegetation 

at different phenological states further helps to advance this classification, with seasons that 

provide a better distinction between guilds being preferentially used. For example, the use of 

winter vertical skewness helps to differentiate between wooded species, whilst spectral indices 

can help to separate out different species of herbaceous vegetation. The accuracy of 

classification was similar to that reported by Butterfield et al. (2020), with the majority of errors 

coming from misclassifications to similar guilds. This suggests that hydraulically relevant 

vegetation trait data can be extracted from remote sensing data to good effect, and that 

expanding this methodology to test other locations would be essential to underpinning the 

possibility of making this a more widely adopted technique. It also builds upon work by 
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Manners, Schmidt and Wheaton (2013) who started to bridge the gap between patch scale and 

larger mapping of vegetation extents.  

One of the benefits of the system developed in Chapter 3, was that it was capable of collecting 

high quality and high-resolution morphological data underneath dense canopy cover. This was 

used effectively in the methods developed in Chapter 4, where the combination of UAV-MS 

SfM and UAV-LS point clouds give unparalleled point density and coverage of a vegetated river 

corridor from a UAV platform. The resultant data enables the assessment of geomorphic 

change through time, with repeat surveys across all seasons allowing the morphological regime 

of the system to be elucidated. It is clear from the historical analysis and high-resolution 

monitoring undertaken in Chapter 4 that the study site on the river Teme is a highly active reach. 

However, the benefits of the through-canopy coverage allows the monitoring of erosion in 

locations where satellite imagery and SfM could not, and this ability provides the science 

community with an opportunity to better monitor, model and understand eco-geomorphic 

interactions. In Chapter 4, preliminary links were established between the magnitude of 

geomorphic change and the vegetation present, with a larger proportion of change over 2 m 

taking place within guilds that have a smaller stabilising effect according to the literature. The 

conclusions drawn within Chapter 4, that these feedbacks are complex but there is evidence that 

guild assemblages interact with flow differently, support and provide further context to the 

traits-based feedbacks researched by (Diehl et al., 2018; Hortobágyi et al., 2018).  

Chapter 4 raised some important questions in relation to the use of remote sensing for eco-

geomorphic research. Part of RQ2 referred to the ease at which these methods could be 

deployed and data quantified for assessment. Throughout Chapters 3 and 4, the considerable 

volume of bespoke processing required to deliver useful data limits the widespread application 

of these traits-based methods until routines are included in open-source distributions, for 

example bundled within CloudCompare (https://www.danielgm.net/cc/). This was also the 

case for SfM techniques in their infancy, which have since become a pervasive technique in high 

resolution surveying. Together, this positions the UAV-LS methods developed in Chapter 4 at 

a compromise between good spatial coverage and the ability to access remote locations, offset 

against high initial costs and challenging and time-consuming processing. It would appear that 

these latter points are beginning to be addressed with cheaper commercial setups and more 

advanced processing techniques now becoming available.  

The spatial coverage of the UAV-LS and UAV-MS methods does come at some cost of 

resolution, with ground-based TLS methods being required to characterise smaller herbaceous 

species, and some trees that are smaller or in dense canopies unlikely to have good 

https://www.danielgm.net/cc/
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reconstructions using cylinder models. Although increasing point densities and accuracy is likely 

to come with newer sensors, such advances come with the drawback of increasing data volumes 

and processing times, alongside the requirement for ever more complex filtering techniques. 

Therefore, despite the spatial resolution of the UAV-LS outlined in Chapter 4 being a potentially 

limiting factor, it may also serve to help differentiate the method at being effective across large 

spatial extents for vegetation modelling. Chapter 4, has shown these methods to be effective for 

reach scale classifications, whether improvements in point density correlate to better 

classification results is not yet clear. The importance of using time varying datasets is clear, 

however. This is especially the case when attempting to improve the accuracy of classifications 

and monitor a range of species within a domain. A consequence of this is the requirement to 

obtain seasonal data, and as such only sites that are accessible and safe to fly year-round can be 

monitored. 

Chapter 4 demonstrates that it is possible to characterise vegetation across large areas with 

remote sensing data, and that this could improve our understanding of eco-geomorphic 

feedbacks. However, these feedbacks and interactions can take place over long timescales, and 

to fully understand the long-term trajectories of change in river systems, a modelling approach 

is typically used. Chapter 5 (Paper 4; Tomsett and Leyland, In Prep) therefore seeks to build 

upon this research by applying the vegetation classifications within a simple modelling scenario, 

addressing questions of how vegetation is represented within model domains in relation to their 

spatial and structural variability and the importance of seasonality.  

This was addressed in Research Question 3, “Does how we represent vegetation in relation to complexity 

and temporal evolution in fluvial model domains matter? What can novel representations of vegetation tell us 

about the eco-geomorphic feedbacks of a river system?” 

Chapter 5 attempts to establish how the use of three different methods of representing 

vegetation in a 2D model comparatively impacts output flow metrics and morphology. 

Comparisons between traditional bulk roughness, a seasonal bulk roughness, and a traits-based 

3D vegetation model, show considerable differences in their outputs and raise a number of 

questions about how we choose to best represent vegetation. The distinct spatial variability in 

erosion and deposition across the model domain suggested that small changes in 

parameterisation led to large changes in the model outputs. The model was sensitive to seasonal 

bulk roughness, with changes from the upper and lower extremes of values suggested by Chow 

(1959) leading to different morphological responses. As relatively small changes from 

continuous to seasonal values led to such clear changes, models that do not incorporate 

elements of seasonality on heavily vegetated reaches may be limiting their real-world 
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applicability. This would support current research which demonstrates the need for seasonality 

to be incorporated into hydrodynamic models (Song et al., 2017). This is relevant considering 

many studies aim to alter roughness, for example to test Natural Flood Management (NFM) 

strategies, which might ultimately be used to inform policy making. If the roughness used to 

parameterise different vegetation categories is inadequate, or not seasonally adjusted, then the 

results that are subsequently produced may be less informative than initially expected.  

The inclusion of a structurally based 3D vegetation model, applied to a 2D domain, revealed 

the strong influence vegetation has on adjacent flow along the modelled reach, with velocities 

in the channel lower than would be expected for peak flows. However, the outputs from this 

scenario did suggest that the representation was having the expected effect, by reinforcing banks 

and slowing the flow within heavily vegetated areas, more so than outputs from the bulk 

roughness scenarios revealed. The traits-based scenario did lead to areas of the reach that are in 

reality highly mobile becoming stabilised, but also prevented the channel-widening seen in the 

bulk roughness scenarios in areas where the channel has been consistently stable, as the long-

term decadal analysis within Chapter 4 demonstrated. Correct parametrisation of this 3D model 

may help to better represent vegetation across the floodplain, as well as within the channel, and 

could be used as a template for other models to consider how structurally varying vegetation 

can influence flow and subsequent morphology. 

6.2 Future Work 

One of the principle questions that this research aimed to address was to the extent to which 

remote sensing could be used to enhance our understanding of eco-geomorphic feedbacks. 

Herein we have determined that remote sensing can be used to establish vegetation traits and 

have started to explore the relationships between guild presence and geomorphic activity. There 

are many avenues of research that can be further developed from this initial work, both in terms 

of monitoring and modelling, with the aim of improving our understanding of the links that 

exist between vegetation and morphology. 

The challenge of isolating individual elements that affect channel form is likely to remain for 

the foreseeable future, especially in field scenarios outside of flume conditions. Many studies 

have determined the individual plant elements that directly impact drag and sediment (Follett 

and Nepf, 2012; Jalonen, Järvelä and Aberle, 2012), but the aggregated responses which are 

typical of field conditions remain limited. The high-resolution UAV-LS methods presented here 

provide the basis for scalability to multiple sites. From this, the directions and magnitudes of 

change in response to varying flow events through different vegetation guilds can be inferred. 
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Currently, such work has been focussed on a small number of rivers with similar guilds, and this 

is the first work to apply these methods to a new reach, despite the benefits of traits-based 

approaches being their transferability and applicability to a variety of scenarios (Violle et al., 

2007; Lytle et al., 2017). The extent to which this is true within the fluvial domain is currently 

undetermined. Although vegetation trait response to hydrological conditions is well 

documented and can be applied across several scenarios (e.g. Baattrup-Pedersen et al., 2018), 

traits-based interactions with morphology and flow are less well documented. In order to prove 

that traits-based methods should be widely adopted amongst the research community, evidence 

of applicability between domains is required, and this should be an avenue of research that is 

pursued in tandem with isolating the effects of different guilds, as both complement each other. 

Ultimately, the potential for traits-based research to better characterise vegetation could well 

minimise variability between similar reaches that are spatially explicit. 

For traits-based methods to be broadly applied elsewhere, several conditions must be met. 

Firstly, the scalability to other datasets must be tested. For a method to be truly applicable to a 

number of sites, being able to use a combination of different sensors and datasets is required. 

This will include the construction of 3D point clouds and orthoimagery for successful structural 

and spectral analysis from different sources of data. Linking these methodological principles to 

wider ALS and satellite data could open up the possibility of creating guilds-based classifications 

for larger river corridors that are beyond the scope of UAV data collection. Work by Manners, 

Schmidt and Wheaton (2013) scaling from TLS to ALS has already been undertaken with good 

levels of success. Using the same variations in structural and spectral data for ALS and satellite 

imagery instead of UAV-LS and UAV-MS as used within this study may present a suitable 

solution to scaling such analysis to larger extents.  

A potential limitation of this research avenue would be gaining enough coverage of data across 

the variety of guilds found within the river corridor. This represents the second condition for 

successful rollout of this method. A database of spatial datasets for different vegetation traits 

would need to be collated, not only to provide useful training data for creating guild maps of 

new study sites, but also to analyse the links between guild locations and their morphological 

response. Such data sharing would be unique, but has already begun for traits-based research 

with the use of the ‘TRY’ database (Kattge et al., 2020). This currently consists of tabular records, 

but the potential to link this to spatial datasets could open up a raft of new research that can 

make use of such a rich resource. 

Within the modelling domain, vegetation is mostly still poorly represented, with small changes 

in vegetation parameters leading to large changes in model outputs. Identification of how best 
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to parametrise traits within a model is required, identifying the sensitivity of model outputs to 

different parameters such as drag coefficients and plant structure. Moreover, currently very few 

models will accept more complex, functional representations of vegetation. The seasonality and 

depth varying influence that vegetation has is often overlooked, despite being of significant 

importance (O’Hare et al., 2010; Song, Schmalz and Fohrer, 2014). Future research aiming to 

incorporate even simple vegetation models will help to improve modelling and make the results 

more widely applicable. Wrapped into this is the requirement for a better representation of the 

impact vegetation has below the surface, where linking above ground traits to below ground 

traits would help to better inform variations in the substrate between different guilds. Chapter 

5 showed that including variations in substrate as well as above ground vegetation structure 

helped to maintain channel stability in regions where it was expected and where bulk roughness 

parameters alone failed to do so. Incorporating such variations more widely into modelling 

practice would help to better replicate reality and improve model outputs.  

There are still some limitations with the broad methodological and processing approaches 

outlined in this thesis. The first major obstacle is the processing requirements for such extensive 

datasets. Despite the increasing computing power and storage capabilities, the ability for a wide 

variety of users with a range of processing power is limited by what technology is available to 

them. As such, those outside organisations without access to such facilities may struggle to 

benefit from this approach and may view the increased cost of the surveying equipment and 

processing time as unjustified. It is hoped that the falling cost of computing power and 

equipment, as well as availability of off-the-shelf surveying kit, can improve accessibility.  

6.3 Conclusion 

This research has sought to improve the current tools, methods, and scientific understanding in 

relation to eco-geomorphic interactions, transcending the spatial scales of current research by 

using novel UAV based remote sensing techniques and modelling studies. As a result, new 

methods of analysing and reconstructing riparian vegetation have been developed at a range of 

scales, from individual plant reconstruction, through guild identification, up to reach scale 

classifications. These classifications have subsequently been implemented within a 

hydrodynamic model, demonstrating the impact that different vegetation discretisation methods 

have on model outcomes and suggesting some exciting possibilities for future work. 

Until now, despite the known influence that vegetation has on both flow and morphology, 

attempts to fully capture the structural variability beyond the patch scale have not been 

undertaken within the river corridor. This research has developed novel remote sensing 
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methods, coupled with other methods identified in the fields of ecology and forestry, to capture 

vegetation structure within the river corridor and apply this to a full reach scale classification of 

structural and spectral properties. Accounting for vegetation in this way has improved our 

understanding of feedbacks, with different morphological responses being linked to different 

guild presence. Moreover, the methods herein reveal that there is potential to transition between 

different scales of analysis, building on a growing body of research aiming to establish links 

between different scales of surveying, with the overall aim of making patch scale research 

applicable to large scale studies. Currently, this method has been applied to a reach roughly 1 

km in length, but the same equipment could be used to cover extended areas. The benefits of 

this scaling approach have been demonstrated through the implementation of reach scale 

modelling. The importance of incorporating seasonality and adequately accounting for 

vegetation properties is clear, helping to replicate morphological responses identified in the field. 

Vegetation is important in modulating geomorphic processes across nearly all Earth surface 

process domains and varies across both space and time. This research has primarily focussed 

on river corridors, from the broad techniques used to monitor them, through to links between 

vegetation and form. Yet, the implications of these methods, whereby vegetation are classified 

by their effects on, and responses to, their physical environment, can be applied to numerous 

other fields where vegetation is a component control on morphological evolution. Moreover, 

the importance of accounting for seasonality can be transferred beyond the river corridor, and 

should become an integral component of any study looking at process form interactions which 

are modulated by vegetation (dead or alive). The results of this research, although framed in a 

fluvial context, extend beyond this domain to the wider geomorphic body of research. Methods 

of analysing vegetation, scaling results from patch to reach scales, accounting for vegetation 

phenology, and incorporating them in to modelling studies, are all linked to the wider problems 

that geomorphological researchers face. As a result, it is hoped that the research presented here 

will benefit the wider geomorphic community beyond those investigating riparian vegetation, 

and that the methods can be used to pursue new avenues of research which better help us to 

understand eco-geomorphology across a range of spatial and temporal scales. 
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