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Abstract—Non-orthogonal communications are expected to
play a key role in future wireless systems. In downlink trans-
missions, the data symbols are broadcast from a base station
to different users, which are superimposed with different power
to facilitate high-integrity detection using successive interference
cancellation (SIC). However, SIC requires accurate knowledge
of both the channel model and channel state information (CSI),
which may be difficult to acquire. We propose a deep learning-
aided SIC detector termed SICNet, which replaces the inter-
ference cancellation blocks of SIC by deep neural networks
(DNNs). Explicitly, SICNet jointly trains its internal DNN-
aided blocks for inferring the soft information representing the
interfering symbols in a data-driven fashion, rather than using
hard-decision decoders as in classical SIC. As a result, SICNet
reliably detects the superimposed symbols in the downlink of
non-orthogonal systems without requiring any prior knowledge
of the channel model, while being less sensitive to CSI uncertainty
than its model-based counterpart. SICNet is also robust to
changes in the number of users and to their power allocation.
Furthermore, SICNet learns to produce accurate soft outputs,
which facilitates improved soft-input error correction decoding
compared to model-based SIC. Finally, we propose an online
training method for SICNet under block fading, which exploits
the channel decoding for accurately recovering online data labels
for retraining, hence, allowing it to smoothly track the fading
envelope without requiring dedicated pilots. Our numerical
results show that SICNet approaches the performance of classical
SIC under perfect CSI, while outperforming it under realistic CSI
uncertainty.

I. INTRODUCTION

Wireless communications are facing escalating throughput,
connectivity and scalability specifications. To meet these de-
manding requirements, wireless systems may be expected
to evolve from conventional orthogonal to non-orthogonal
solutions [1], [2]. Non-orthogonal multiple access (NOMA)
techniques allow users to simultaneously share the wireless
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channel resources for supporting heterogeneous end-devices,
which inevitably imposes interference.

Sophisticated methods have been proposed for symbol de-
tection in the presence of interference [3]. In the context
of downlink (DL) non-orthogonal systems, where a base
station (BS) transmits a set of superimposed messages to
different users over a shared channel, the successive inter-
ference cancellation (SIC) algorithm has been shown to be
particularly suitable. This is due to its ability to approach the
achievable rate region of such channels, when combined with
superposition coding at the BS [1], [2], whilst its complexity
only grows linearly with the number of users.

The conventional SIC algorithm is model-based, i.e. it
relies on knowledge of the underlying statistical model. In
particular, implementing SIC detection requires each user to
have accurate knowledge of the channels between the BS and
each of the users; its performance, however, is degraded in the
presence of realistic imperfect channel state information (CSI)
[4]. Accurate estimation of CSI may be challenging, especially
in rapidly fluctuating high-Doppler frequency division duplex-
ing scenarios, where the DL channels cannot be estimated
at the BS based on channel-reciprocity. Furthermore, the
conventional SIC algorithm assumes that the interference can
be cancelled by subtraction. However, this may not be the case
in the presence of non-linearities due to hardware impairments
of low-resolution analog-to-digital convertors [5] and non-
linear amplifiers [6]. Finally, when the symbol detector has
to produce log-likelihood ratios (LLRs) for channel decoding,
the SIC algorithm typically suffers from model mismatch,
since for simplicity it assumes Gaussian distributed residual
interference, which has limited accuracy [7].

An alternative approach to symbol detection, which does
not rely on any knowledge of the underlying channel model,
is based on learning the detection rule in a data-driven manner.
There has been growing interest in the application of machine
learning in digital communication tasks, including symbol
detection [8]–[10]. Deep neural networks (DNNs) are known
to reliably infer knowledge in complex environments [11],
while relying solely on data to learn their mapping. DNN-
aided receivers can thus operate accurately without requiring
any knowledge of the underlying channel model and its pa-
rameters. Nonetheless, previous contributions on DNN-based
transceivers designed for the non-orthogonal DL, including
[12]–[15], jointly learned the overall transmission path as
an end-to-end autoencoder (AE). For example, a multicar-
rier autoencoder (MC-AE) was proposed in [12], which was
shown to provide enhanced frequency diversity gain for both
coherent single-user and multi-user uplink (UL)/DL com-
munications, outperforming its subcarrier index modulation
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based counterparts [16], [17]. A similar MC-AE concept was
introduced for energy detection-based non-coherent systems
in [15]. These previous contributions assume an equal power
allocation scheme applied to all users, therefore, limiting
their suitability for exploiting the established benefits of SIC
detection combined with superposition coding. In [14], a
precoder and an SIC-based decoder were jointly optimized
as an AE in the multi-input multi-output NOMA (MIMO-
NOMA) DL, assuming the availability of perfect CSI at
the transmitter side. Finally, the constellation of a two-user
NOMA DL was designed by training an AE in [13]. However,
all these AE-based schemes require knowledge of the channel
model for jointly training both the transmitter and receiver,
and - similarly to the classic model-based techniques - require
accurate CSI.

Conventional DNNs require massive amounts of data for
training, and lack the clear physical interpretation of model-
based approaches. It was recently proposed to integrate DNNs
into model-based symbol detection algorithms [18]–[20], re-
sulting in hybrid model-based/data-driven receivers, which
learn to carry out established detection algorithms from rel-
atively small data sets without requiring any knowledge of
the channel model. In particular, the authors of [18], [19]
introduced data-driven implementations of both the Viterbi
algorithm and of the BCJR scheme, which are applicable
for finite-memory channels. Furthermore, the authors of [20]
presented a receiver that learns to carry out soft interfer-
ence cancellation. This receiver operation is designed for the
UL of non-orthogonal systems, where the task is to detect
all transmitted symbols. By contrast, in the non-orthogonal
downlink of this treatise, the receiver only has to recover its
corresponding symbol that is corrupted by interference. These
previously proposed DNN-aided symbol detectors motivate the
design of a hybrid model-based/data-driven implementation
of the SIC algorithm for the DL of non-orthogonal systems,
which is our focus here.

In this contribution, we present SICNet, which is a DNN-
aided receiver architecture that learns to implement the SIC
algorithm from labeled data. SICNet is derived by representing
the SIC algorithm as an interconnection of basic building
blocks, each trained to cancel the interference imposed by a
given user. Despite the similar acronym, SICNet is fundamen-
tally different from DeepSIC [20]. Although both receivers
belong to the class of hybrid model-aided networks [21],
they differ both in their objective and in their operation.
Specifically, SICNet is designed for the non-orthogonal DL,
where the task is to recover a single desired symbol in the
presence of both interference as well as noise, and does so by
learning to implement the SIC algorithm, which is known to be
eminently suitable for such scenarios. By contrast, DeepSIC
focuses on the joint recovery of multiple interfering symbols,
representing an UL setup, while relying on the classic parallel
soft interference cancellation method [22]. Thus, the scheme
in [20] relies on a larger number of detection and interference
cancellation steps compared to SIC, since the goal of SIC is to
detect a single symbol [3]. As a result, the overall architecture
of SICNet is different from that of DeepSIC, and it harnesses
a much lower number of neural building blocks, making it

more suitable for mobile DL receivers.
Once trained, SICNet implements SIC detection, without

requiring any knowledge of the underlying channel model,
e.g., without restricting the operation to linear channels. We
demonstrate that SICNet trained on data from a channel with a
given signal-to-noise ratio (SNR) approaches the performance
of the model-based SIC algorithm used for symbol detection,
which relies on accurate SNR-dependent CSI. Furthermore,
SICNet substantially outperforms its model-based counterpart
in the presence of CSI uncertainty, under both linear and non-
linear channels, indicating its potential to facilitate accurate
symbol detection in non-orthogonal DL systems. Additionally,
SICNet can readily adapt to time-variant DL scenarios, such
as adding a new user and changing the order of the power
assignment among the users, at the cost of low-complexity
retraining and without requiring to rebuild its DNN structure.

We also show that, when SICNet is used for producing
soft symbols provided for a forward error correction (FEC)
decoder, it yields improved decoding accuracy compared to
using the model-based SIC with full CSI for the same purpose.
This is a benefit of the fact that SICNet, which operates in
a model-agnostic manner, learns to compute more accurate
bit-wise LLRs compared to SIC, which assumes a Gaussian
distributed interference recovery error. Finally, we design an
FEC coding-aided online training method for SICNet in order
to make its DNNs adapt to the variations of block fading
channels without requiring new training data. In particular,
we exploit the presence of FEC codes as indication for the
correctness in detecting a block of symbols, as done in [18],
[23], [24], in order to accurately form a relatively small
number of labels, which are sufficient for retraining SICNet
with a few epochs. Table I summarizes the main contributions
of this work and explicitly compares them to the literature of
learning-aided DL detection in non-orthogonal systems.

The rest of this paper is organized as follows. Section II de-
tails the system model and briefly reviews the SIC algorithm.
Section III presents the proposed SICNet. Section IV discusses
how SICNet can be combined with FEC decoding and FEC-
aided online training. Our numerical evaluations are provided
in Section V. Finally, Section VI concludes the paper.

Throughout the paper, R denotes the set of real numbers,
and Rn stands for the n Cartesian product of R. We use
E [·], p(·), and Pr(·) for the stochastic expectation, probability
density function (PDF), and probability mass function, respec-
tively, while N

(
0, σ2

)
is the Gaussian distribution with zero

mean and variance σ2.

II. SYSTEM MODEL

We begin by describing the system model for which we
derive SICNet. With that aim, we first present the channel
model in Subsection II-A and then formulate the symbol
detection problem in Subsection II-B. We then review the
model-based SIC algorithm in Subsection II-C.

A. Non-orthogonal DL Channel Model
Consider a non-orthogonal DL, where a BS transmits

data simultaneously to K users within the same time- and
frequency- resources, as illustrated in Fig. 1. For simplicity,
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TABLE I
COMPARING OUR CONTRIBUTIONS TO THE LITERATURE OF LEARNING FOR THE DL OF NON-ORTHOGONAL SYSTEMS

Contribution [12] [13] [14] [15] This work
Hybrid model-based and data-driven designs X X
End-to-end autoencoder-based designs X X X X
No dedicated pilot transmissions X X
Independent of channel modelling X
Small dataset (few thousands of samples) X
Robustness to superposition coding perturbations X
FEC-aided soft decoding X
Online self-supervised learning X
Imperfect CSI X X
Non-linear channels X

User 1

User 2

User K

. . . . 

𝑝 𝑦2|𝑥

𝑝 𝑦𝐾|𝑥

𝑝 𝑦1|𝑥

Fig. 1. Downlink non-orthogonal system with K users.

we focus on scenarios where both the BS and the users
are equipped with a single antenna. The BS transmits a set
of symbols {xk}Kk=1, each intended for a different user, via
superposition coding, as in the power-domain non-orthogonal
DL [2]. In particular, the symbol xk intended to user k is
amplified with transmitted power Pk for k = 1, ...,K. These
signals are superimposed at the BS, resulting in the channel
input x which is given by:

x =

K∑
k=1

√
Pkxk. (1)

We assume that the symbols are mutually independent,
and that each symbol xk ∈ R is drawn from an M -point
constellation S, having unit mean power, i.e., |S| = M , and
E
[
|xk|2

]
= 1. While the digital constellation is assumed to

have unit power regardless of its order M , the superposition
coding utilized in the downlink scales the power of each
transmitted symbol via the coefficients {Pk}, to facilitate
decoding, as detailed in [1], [2]. For the sake of simplicity,
we assume that the symbols have the same modulation order
M , although it is straightforward to extend our work to a
generalized scenario, where different modulation orders are
used for different users. Our work can also be easily adapted
to complex-valued signals, by representing them using real
vectors of extended dimension.

While we do not impose a specific model on the DL
channel, we assume that it is memoryless and that the channel
outputs at the K users, denoted {yk}Kk=1, are mutually inde-
pendent conditioned on x, i.e. the joint conditional PDF of the
channel outputs satisfies

p(y1, . . . , yK |x) =
K∏
k=1

p(yk|x). (2)

A commonly used DL model which obeys (2) is the linear
Gaussian broadcast channel. Here, the channel output observed
by user k is given by

yk = hkx+ wk = hk

(
K∑
i=1

√
Pixi

)
+ wk, (3)

where hk ∈ R is the channel coefficient between the BS and
user k, and wk ∈ R is additive white Gaussian noise (AWGN).

B. Problem Formulation
Our goal is to design a symbol detection mechanism for

each user of index k = 1, ...,K, namely, a mapping x̂k :
R 7→ S, so that x̂k is an estimate of xk from the observed
channel output yk. As detailed in the previous subsection, we
do not assume any prior knowledge of the channel model at
the receiver, except that its input–output relationship takes the
generic form in (2). Furthermore, we do not require the users
to know their power allocation coefficients {Pk}Kk=1, but we
assume that they know their order, which is written henceforth
as P1 ≥ P2... ≥ PK without loss of generality. Note that the
conventional SIC requires that each user knows both the power
of all users and their power order, in addition to accurate chan-
nel knowledge. Each user of index k has access to a labeled
data set of T samples, denoted by {y(t)k , x

(t)
1 , . . . , x

(t)
K }Tt=1. In

practice, such data typically corresponds to preamble and pilot
transmissions. We assume that the number of pilots is limited
to be on the order of a few several thousands of samples,
which is the length of a typical LTE preamble [25, Ch. 17].

The lack of channel model knowledge combined with the
presence of labeled data motivates a data-driven design based
on DNNs. However, the fact that the dataset is limited,
indicates that it is preferable to incorporate some domain
knowledge in our design, rather than directly applying a black-
box DNN. In particular, the relevant domain knowledge here
is that in the downlink, the symbols are mutually independent,
take values in S and are superimposed with power allocations
satisfying P1 ≥ P2... ≥ PK . For such scenarios, it is prefer-
able for the k-th user to successively detect the interfering
symbols x1, . . . , xk−1 before recovering its desired xk, rather
than detecting it directly. This recovery mechanism is the SIC
algorithm, detailed in the following.

C. Successive Interference Cancellation
The SIC algorithm is commonly adopted in the NOMA

literature, due to its simplicity and its ability to approach
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the achievable rate region of linear Gaussian non-orthogonal
broadcast channels (3), when combined with superposition
coding [1]. A superposition code determines the power as-
signed to the symbol intended for each user. A common
approach to select these codes is to allocate more power
to users having poorer channel gains [1], [2], [26]. Such
a formulation, which is intended to facilitate detection at
each user and boost fairness, requires some assessment of
the quality-based ordering of the individual channels at each
receiver. Alternatively, one can determine the superposition
code based on the application layer requirements and priorities.
Regardless of how the superposition code is determined, it
controls the power levels {Pk}Kk=1, and we henceforth assume
that P1 ≥ P2... ≥ PK .

To formulate the model-based SIC algorithm, consider a
linear Gaussian channel (3). Based on this, the SIC detector
of user k operates in the following iterative fashion. First,
user k detects the signal of the user having the highest power,
i.e., user 1, while treating the interference as noise, using the
maximum likelihood (ML) criterion, which here is given by
x̂1 = argminx1∈S

∣∣yk −√P1hkx1
∣∣ . Then, the contribution

of user 1 to yk is eliminated for decoding the signal of user
2. Explicitly, the symbol of user 2 is recovered using the ML
estimate in which the interfering signal of user 1 is estimated
by x̂1, yielding,

x̂2 = arg min
x2∈S

∣∣∣(yk −√P1hkx̂1

)
−
√
P2hkx2

∣∣∣ . (4)

This SIC process continues in this manner recursively, until
the symbol of user k is detected. This can be achieved by hard
decision, i.e., providing an estimate of the transmit xk via

x̂k = arg min
xk∈S

∣∣∣∣∣
(
yk −

k−1∑
i=1

√
Pihkx̂i

)
−
√
Pkhkxk

∣∣∣∣∣ . (5)

The usage of different power assigned to different users
allows user k to detect the symbols of its preceding users,
namely x1, ..., xk−1, with high accuracy. This makes the SIC
procedure particularly suitable for its symbol detection in
the non-orthogonal downlink at a low complexity and high
reliability. For comparison, if user k directly detects its own
symbol while treating the signals of other users as interference,
it is likely to achieve degraded detection performance due to
the presence of severe interference from other users, which
SIC cancels by its iterative procedure.

Alternatively, SIC can be used to provide soft outputs
represented by the LLR for each bit embedded in the symbol
xk. These outputs are particularly useful when combined with
soft-input FEC decoders. In particular, letting βn be the n-
th bit of symbol xk, we partition S into two subsets S(0)n

and S(1)n which satisfy βn = 0 and βn = 1, respectively,
i.e., S(0)n ∪ S(1)n = S. Here, we assume that user k does not
know the coding schemes of other users, i.e. its FEC decoder
does not decode the transmitted bits of other users for SIC
operation, but directly decodes its own bits only. As such, upon
denoting z = yk −

∑k−1
i=1

√
Pihkx̂i, when the constellation

symbols are equiprobable, the LLR of βn can be expressed
from (5) as

Ln = log
Pr (βn = 0|z)
Pr (βn = 1|z)

= log

∑
xk∈S(0)

n
p (z|xk)∑

xk∈S(1)
n
p (z|xk)

, (6)

where p (z|xk) is the PDF of z conditioned on xk. Note that
it is difficult to exactly determine p (z|xk). Therefore, in order
to estimate the LLR Ln, the interference-detection-error-plus-
noise term z −

√
Pkhkxk is often approximated by Gaussian

noise wk in (3) with zero mean and variance σ2, resulting in
[26]

p (z|xk) ≈
1√
2πσ

exp

(
−
∣∣∣z −√Pkhkxk∣∣∣2 /2σ2

)
. (7)

The combination of superimposed coding and SIC detection
allows the BS to simultaneously serve multiple users with
the same resources, while achieving significantly improved
bandwidth efficiency over orthogonal architectures. However,
in order to implement SIC in the non-orthogonal DL, the
receiver must have exact CSI for each user, i.e. evaluating (5)
requires accurate knowledge of hk. In particular, the detection
performance of SIC strongly depends on the accuracy of recov-
ering the interfering symbols in the preceding iterations. There
is a significant performance loss, when the CSI of the users
is imperfect, as shown in [4]. In some important wireless sce-
narios, including rapidly fluctuating high-Doppler frequency
division duplexing scenarios and the family of systems aided
by reconfigurable intelligent surfaces [27], obtaining accurate
CSI may be challenging. Another limitation is that the channel
has to obeys the linear form in (3), for which the detector
can cancel the interference by demodulation, remodulation and
subtraction, making it suitable only for linear channels. Such
models may not hold when using low-resolution receivers [5]
and non-linear amplifiers [6]. Each user is also required to
know the power allocation coefficients assigned to each of the
users in the network for reliable symbol detection. Moreover,
when soft outputs are required, the SIC may be unable to
provide an accurate estimate of the LLRs to be used by a soft
FEC decoder due to the approximation of the conditional PDF
in (7) as being Gaussian.

Such fundamental limitations of the SIC, combined with
the feasibility of integrating DNNs into model-based receiver
algorithms for learning-aided computation of specific model-
based steps [18], [19] including interference cancellation [20]
motivates the use of DNNs to replace the interference cancel-
lation blocks of SIC. This allows continued operation, when
the knowledge of accurate CSI, the channel model, the power
coefficients and even M -ary modulation type are no longer
required at the user side, as presented in the next sections.

III. SICNET

To address the aforementioned issues of the conventional
SIC receiver, we propose a DNN-based SIC detector called
SICNet. Explicitly, SICNet uses deep learning to recover a
soft estimate of the interference of each user rather than ap-
plying the hard-decision ML detector used in the conventional
scheme. In the following, we present the architecture of our
SICNet in Subsection III-A, followed by its training procedure
and a discussion in Subsections III-B-III-C.
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Fig. 2. Proposed SICNet detector of user 3 in a non-orthogonal downlink
channel shared by K = 3 users.

A. SICNet Architecture
The architecture of SICNet is illustrated in Fig. 2. For

the sake of simplicity, we consider a non-orthogonal DL
supporting K = 3 users, and focus our description of the
architecture on user k = 3. A SICNet architecture designed for
K users can be devised based on Fig. 2 described as follows.

Our design of SICNet builds upon the insight that the SIC
method is comprised of multiple basic building blocks, each
corresponding to the recovery of the symbol of a different
user. Inspired by [20], we implement SIC in a data-driven
fashion by preserving its overall flow as an interconnection
of building blocks, while replacing each block by a dedicated
DNN. In particular, each building block implements symbol
recovery, and can thus be treated as a classification task, which
is capable of learning from data in a model-agnostic manner
using deep classifiers. As a result, SICNet of user k consists
of k different DNN blocks, where DNN block i is used to
detect the soft information pi of user i for i = 1, ..., k.
More particularly, pi ∈ RM represents an estimate of the
conditional distribution of the corresponding symbol, given
the past estimates, formulated as:

pi =

 p̂
(
xi = α1|yk,p1, . . . ,pi−1

)
...

p̂
(
xi = αM |yk,p1, . . . ,pi−1

)
 , (8)

where αj is the j-th constellation symbol of S and
p̂
(
xi = αj |yk,p1, . . . ,pi−1

)
is a parametric estimate of the

probability of xi decoded as αj conditioned on yk and the
previous soft estimates p1, . . . ,pi−1, for j = 1, ...,M .

In SICNet, each conditional distribution estimate pi is
the output vector of the DNN block i, which satisfies∑M
j=1 p̂

(
xi = αj |yk,p1, . . . ,pi−1

)
= 1. This can be nat-

urally implemented by using a softmax activation [15] at
the output layer of each DNN block. The input data of
DNN block i includes both yk and the outputs from i − 1
former blocks, namely p1, ...,pi−1. More specifically, those
elements are concatenated to form an input vector of the size
[1 + (i− 1)M ] for DNN block i, which can be reduced to
length [1 + (i− 1) (M − 1)], since the sum of the entries of
each pi always equals one. Thus its last entry is determined by
its first M −1 entries. An illustration of an implementation of
the i-th building block DNN using a fully-connected network
having two hidden layers, as used in our numerical study in
Section V, is depicted in Fig. 3. As seen in Fig. 2, the input to
SICNet, which is the input of the first DNN block (i = 1), is
yk. As such, the input of SICNet for user k is only its received
signal yk, i.e., no CSI information and no prior knowledge of
the power allocation {Pk} is required at each user.

Finally, following (5), a hard estimate of the symbol of
interest xk is obtained by taking to the largest element of

Fig. 3. An illustration of the i-th DNN of SICNet.

pk, which is the output vector of DNN block k, i.e.,

x̂k = argmax
α∈S

p̂
(
xk = α|yk,p1, . . . ,pk−1

)
. (9)

Furthermore, SICNet can also be used to provide bit-wise LLR
estimates, as we will discuss in Section IV.

While the design of SICNet is inspired by DeepSIC, pro-
posed in [20] for multi-user detection in the non-orthogonal
uplink, the resultant model-aided networks are notably dif-
ferent. In particular, the number of neural building blocks
in SICNet is determined by the order of the specific user
in the superposition code, as illustrated in Fig. 2. For in-
stance, the architecture of the receiver of user 2 is comprised
of 2 DNNs blocks, while user 3 utilizes 3 such blocks.
Nonetheless, SICNet can also cope with perturbations of the
order of the users in the superposition code without having
to change its architecture, as we numerically demonstrate in
Subsection V-B. DeepSIC requires a much larger number of
building blocks, which is set to the number of users in the
UL, multiplied by a fixed number of iterations, typically 5.
Furthermore, the successive operation of SICNet implies that
each constituent DNN has a different number of inputs, as
illustrated in Fig. 3, while in DeepSIC the architecture of all
constituent DNNs is identical, since each building block takes
the soft-detection representation of all interfering symbols as
its inputs. Consequently, SICNet uses a small number of neural
building blocks compared to DeepSIC, and each DNN block
differs from that used by DeepSIC.

In contrast to the conventional SIC, SICNet uses a soft
estimate of the interfering symbols, which is not hard-canceled
by subtraction, hence it is not restricted to channels of the form
(3). Furthermore, the model-agnostic nature of DNN classifiers
and their ability to operate reliably in complex and analytically
intractable settings imply that SICNet does not require the
knowledge of the channel model in its detection process.
Hence, our scheme can work for arbitrary channel models in
a data-driven manner, which is not the case for its classical
counterpart. Finally, SICNet does not require its users to know
the power coefficients of other users and their modulation
schemes, while classical SIC relies on this information in its
detection process, as shown in (4)-(5). In fact, SICNet only
has to know the rank-order of user powers and the modulation
alphabet size M , which decide the number of DNN blocks and
the output dimension of each DNN block, respectively.

B. Training SICNet
Next, we describe the training procedure of SICNet, focus-

ing on an arbitrary user of index k. First, we represent the
training data as

{
y
(t)
k ,q

(t)
1 , ...,q

(t)
k

}
, where yk is the received
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signal of user k, and qi ∈ RM is the one-hot encoding of
xi, for i = 1, ..., k, representing the true label of pi, i.e., the
output of DNN block i. As qi is a one-hot vector, its elements
are all zeros, except for a unique element being one. The index
of this unit element is the index of the constellation symbol
of user i, which is m for xi = αm ∈ S. Using the softmax
activation as the output layer of each DNN block in SICNet
produces a soft probabilistic estimate of the corresponding
symbol. Consequently, the loss measure is based on the cross
entropy function, which is a well-established loss function for
training deep classifiers amongst others, because it facilitates
gradient based training [28]. The resulting loss is computed
over each batch of T data samples as follows:

L (θ) = − 1

T

T∑
t=1

k∑
i=1

ϕi

M∑
j=1

q
(t)
i,j log p

(t)
i,j , (10)

where θ denotes the trainable parameters of SICNet including
the weights and biases of all DNN blocks, q(t)i,j and p(t)i,j are the
j-th elements of q(t)

i and p
(t)
i , respectively, where p

(t)
i is the

output of DNN block i corresponding to the label q(t)
i . The

coefficients {ϕi} are non-negative weighting hyperparameters,
which enable balancing the loss in recovering the interference
terms and that in recovering the soft estimate of the symbol
of interest xk. In particular, for ϕk = 1 and ϕi = 0 for
i 6= k, the loss accounts only for the recovery of the symbol
of interest, thus, it is henceforth termed as the local loss,
where only the data corresponding to the user of interest, i.e.,{
y
(t)
k ,q

(t)
k

}
, is used for training. Alternatively, for ϕi = 1

for every i ∈ {1, . . . , k}, the resultant loss referred to as
the combined loss, equally accounts for the interference terms
and the symbol of interest. Using the combined loss obviously
requires training data corresponding to both the user of interest
and to the preceding users, i.e.,

{
y
(t)
k ,q

(t)
1 , ...,q

(t)
k

}
. As such,

the combined loss explicitly encourages each DNN block to
detect its corresponding symbol, while the local loss accounts
only for the ability of the final DNN block to detect the user’s
symbol.

To update the parameters of SICNet, the stochastic gradient
descent (SGD) optimizer is used based on the loss function
(10). The SGD update rule at the n-th iteration is given by

θn+1 := θn − η∇L (θn) , (11)

where η denotes the learning rate and ∇L (·) is the gradient of
the loss function evaluated at a randomly sampled mini-batch
of the training data. The loss function in (10) is taken over all
the DNNs in the SICNet architecture, allowing us to jointly
update the parameters of all k DNN blocks.

In our numerical study we train SICNet relying on a specific
SNR and then test it at different SNRs. This means that
the training overhead can be reduced, since we do not have
to retrain the DNN model for different SNRs. Moreover,
SICNet requires only a small dataset for training to achieve
the desired performance. Details of the training SNR, data size
and other hyperparameters are provided for our simulations in
Section V.1

1The implementation of our SICNet on Python/Tensorflow can be found at
https://github.com/ThienVanLuong/SICNet.

C. Discussion
We next discuss some of the advantages and challenges

which arise from the design of SICNet. Firstly, we note
that SICNet is specifically tailored for detecting superimposed
signals in non-orthogonal DL communications, given its SIC
structure. Consequently, when trained using data correspond-
ing to the same channel for which it is tested, SICNet is
expected to approach the performance of the model-based SIC
detector, as numerically demonstrated in Section V. Moreover,
our scheme is less sensitive to CSI uncertainty, since it does
not rely on the explicit formulation of the channel’s input-
output relationship, but rather learns it implicitly from data.
This allows SICNet to achieve superior performance over the
classical detector, when relying on realistic imperfect CSI. In
particular, SICNet can be trained without knowing the channel
model or requiring the noise to be additive, which makes it
particularly suitable for non-orthogonal systems, where the
channel model is complex, as it is commonly the case in the
presence of hardware impairments. Furthermore, in contrast
to the model-based SIC detector, SICNet only requires the
users to know the order of the superposition code, rather
than the actual power allocation coefficients of each user in
the network. While this partial knowledge is exploited by
SICNet, we numerically show in Section V that it is robust to
perturbations in the superposition code.

An additional benefit of SICNet, discussed in the following
section, follows from its ability to produce soft estimates in a
model-agnostic fashion. In particular, when the model-based
SIC is used for producing soft outputs, it typically relies
on approximations of the distribution of the error term, as
in (7), due to the difficulty in explicitly characterizing its
PDF. SICNet, which relies on deep learning to produce its
conditional distribution estimates, does not have to know the
model of the interference and its estimation error, rather it
learns solely from data. Consequently, once properly trained,
SICNet is capable of implicitly learning to accurately produce
bit-wise LLRs for improving the overall decoding performance
when combined with soft-input FEC decoders, as detailed in
Section IV.

Several challenges are associated with SICNet in its current
form. Being a data-driven implementation of the SIC algo-
rithm, it recovers the symbols based on the rank-order dictated
by the superposition code. This implies that changing the
coding scheme would require adapting SICNet. Nonetheless,
the change in the order of the users or the introduction of a new
user in the DL does not necessarily imply that the architecture
of SICNet has to be modified, since SICNet is still able to
maintain high-integrity detection with mismatched architecture
by retraining it with the local loss objective, as we numerically
demonstrate in Subsection V-B. An additional scenario in
which SICNet has to be retrained is when the underlying
statistical model of the channel changes. In particular, SICNet
is designed for stationary channels, where the same mapping
can be reliably applied over multiple time instances, and the
channel conditions remain static during both the training and
testing periods. SICNet can be applied reliably even when
trained using channel conditions and SNRs which are different
from those used for testing, as we will numerically demon-
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strate in Section V. However, when the channel conditions
change considerably over time, one would eventually have to
retrain SICNet to maintain reliable operation. A compelling
technique of online training due to changes in either the
channel conditions or the superposition code is to train from
coded transmissions in a self-supervised manner, as proposed
in [18], which we carefully adapt for SICNet in Section IV.

Finally, when the number of users increases, the complexity
of the conventional SIC escalates due to the need to carry
out more interference cancellation steps. Accordingly, the
complexity of SICNet - which is reminiscent of the model-
based SIC - also scales with the number of users. In such
scenarios, one may have to carefully fine-tune the DNN
hyperparameters for achieving the desired performance, and
utilize DNNs having a large number of inputs, when cancelling
the interference of users having lower power. This task is
likely to be feasible even for large non-orthogonal networks,
since DNNs are inherently compliant with high-dimensional
data. In fact, the amalgamation of the SIC algorithm with
DNNs in SICNet may allow it to carry out detection more
promptly than model-based techniques due to the fact that
DNNs conveniently lend themselves to parallelization. There-
fore, this drawback - which SICNet inherits from the model-
based algorithm - is expected to be less severe for a data-driven
implementation than for the classical SIC algorithm.

IV. SICNET RELYING ON FEC DECODING

In this section, we integrate SICNet with FEC decoding for
coded downlink non-orthogonal systems. In particular, we first
discuss how SICNet can produce LLRs to be used for FEC
decoding in Subsection IV-A. Then, in Subsection IV-B we
design an FEC-aided online training strategy for SICNet in
the presence of block fading, where the proposed FEC-coded
receiver can adapt to the variations of block fading channels
without requiring dedicated pilot transmissions.

A. SICNet with Soft-Decoding

For coded non-orthogonal DL, the message intended for
user k, denoted by the bit vector bk, k = 1, ...,K, is encoded
by a FEC encoder at the transmitter before being mapped into
M -ary symbols xk. These symbols are then superimposed onto
those of other users via (1). It is straightforward to employ hard
FEC decoding to both SIC and SICNet, where information
bits, which are estimated from decoded M -ary symbols, are
fed directly to a hard FEC decoder for decoding bk. Note
that these two detectors decode M -ary symbols based on hard
decisions, as shown in (5) for SIC and in (9) for SICNet.
Therefore, we now focus on soft decoding relying on bit-
wise LLRs. Moreover, akin to the soft decoder of the classical
SIC presented in Subsection II-C, we assume that user k only
knows his/her coding scheme, but does not know the codes
used by other users. Thus we allow each user to decode only
his/her corresponding message.

As noted in Subsection II-C, using the model-based SIC to
produce soft outputs often results in an inaccurate estimate of
the LLRs, since the errors in recovering the preceding symbols
are not accounted for in the postulated PDF (7). As a result, the
coded performance of SIC relying on soft decoding degrades

Fig. 4. FEC-aided online training model of SICNet.

significantly, as analyzed in Subsection V-C. To address this
fundamental issue, we propose a soft decoder for SICNet,
which directly computes the LLR of each message bit {βn}
based on the soft output vector pk produced by SICNet. In
particular, the fact that SICNet produces pk given in (8),
whose entries are conditional distribution estimates, allows the
LLRs in (6) to be computed via:

Ln = log
Pr (βn = 0|yk)
Pr (βn = 1|yk)

≈ log

∑
αj∈S(0)

n
pk,j∑

αj∈S(1)
n
pk,j

, (12)

where pk,j = p̂
(
xk = αj |yk,p1, . . . ,pk−1

)
is the j-th entry

of pk and j = 1, ...,M . The LLRs are then fed to a soft FEC
decoder for decoding bk.

Using SICNet for computing the LLRs builds upon the
ability of DNNs to learn conditional distributions in a model-
agnostic manner from data. Interestingly, this simple exten-
sion allows SICNet to provide higher-accuracy LLRs than
the soft decoder of SIC, which is based on the inaccurate
Gaussian approximation, leading to better coded performance,
as demonstrated in Subsection V-C.

B. FEC-Aided Online Training

The combination of SICNet with coded communications
can be exploited to learn to adapt to block fading channel
conditions without requiring dedicated pilot transmissions.
Here, we follow the guidelines proposed in [18] to enable
online training of SICNet from decoded codewords in a self-
supervised manner. This strategy exploits the capability of
FEC codes to correct detection errors and to provide feedback
on the accuracy of the outputs of SICNet.

In block fading channels, the channel input-output distri-
bution (2) remains unchanged within a transmission block,
while varying from one block to another. We assume that those
variations are gradual, i.e. that while the channel can change
dramatically over multiple blocks, the variations between
consecutive blocks are limited in the sense that a symbol
detector applicable for one channel block is also expected to
operate adequately under the statistical model of the following
block. Our goal is to allow SICNet adapt to the changes of
block fading over time, where FEC codes are exploited for
recovering data labels used for retraining of SICNet online.

In coded non-orthogonal DL operating over block fading
channels, each fading block corresponds to the transmission
of a superimposed message. In particular, for every fading
block, the data bit vectors bk, k = 1, ...,K are encoded
by an FEC encoder prior to being modulated into M -ary
symbols xk, which are then superimposed for transmissions.
To characterize the ability of SICNet to adapt to the block-wise
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variations in the underlying statistical model, consider the k-th
user employing SICNet for symbol detection, as illustrated in
Fig. 4. For simplicity, we focus on the usage of hard estimates.
Here, the symbols of the k users x̂1, ..., x̂k estimated from
the soft outputs p1, ...,pk of SICNet are demodulated into
uncoded bits, which are then decoded by a FEC decoder to
obtain k estimates of the users’ information bits, denoted by
b̂1, ..., b̂k. The FEC decoding procedure implies that success-
ful decoding is achievable, i.e. that {b̂i} are equal to the
transmitted messages, even when {x̂i} are different from the
transmitted {xi}. This property can be exploited for generating
the postulated transmitted symbols as proposed in [18], which
can be used to train SICNet. Specifically, the estimated bits
are re-encoded and re-modulated to obtain M -ary symbols
x̂′1, ..., x̂

′
k, which represent the postulated transmitted symbols.

As a result, by mapping x̂′1, ..., x̂
′
k into one-hot vectors, we can

generate online labels q1, ...,qk corresponding to the current
channel output yk for retraining SICNet without requiring
dedicated pilot transmissions, making it adaptable to the
variations of block fading channels.

In general, the proposed online training mechanism requires
user k to know the channel coding schemes of its preceding
users indexed by 1, ..., k − 1, as it must decode their corre-
sponding messages in order to provide the labels required for
evaluating the loss function (10). When this knowledge is not
available, e.g., as in the scenario discussed in Subsection IV-A,
the k-th user can still retrain SICNet using only his/her own
decoded message by setting the loss measure not to account
for the recovery of the interference. This can be done by
setting ϕi = 0 for i 6= k in (10), i.e., the local loss is used.
Furthermore, while the proposed online training mechanism is
detailed for SICNet using hard FEC decoders, it can also be
applied when SICNet is combined with soft FEC decoders. In
that case, one should simply replace the demodulation block of
Fig. 4 with the LLR calculation block. Here, the soft outputs
of SICNet, namely, p1, ...,pk, are used for computing the
LLRs of k users as presented in the previous subsection. The
proposed online training SICNet based on both hard and soft
FEC decoding can track the variations of block fading without
any CSI estimation, whilst this cannot be achieved by the
conventional SIC, as numerically demonstrated in Subsection
V-C.

Finally, we note that the proposed online training scheme
builds upon successful FEC decoding following [18]. Nonethe-
less, SICNet can also be combined with alternative techniques
to allow a DNN-aided receiver to track time-varying channel
conditions at a modest overhead. These include the application
of meta-learning for optimizing the hyperparameters of the
training algorithm [29]; the pre-training of multiple receivers
as a deep ensemble [30]; and the usage of soft symbol-level
outputs, rather than FEC decoding, as a measure of confidence
for producing labels from data, as proposed in [31], [32].
We leave the study of the combination of SICNet with these
methods to facilitate online training for future investigations.

V. NUMERICAL EVALUATIONS

In this section, we numerically evaluate the performance
of SICNet, comparing it to the model-based SIC algorithm.

TABLE II
A SUMMARY OF SIMULATION PARAMETERS

Parameter Value
SICNet for non-orthogonal DL user k = K 3
Modulation order M 2
Power coefficients of three users P1-P2-P3 16-4-1
Hidden nodes of DNN block 1 24-12
Hidden nodes of DNN block 2 32-16
Hidden nodes of DNN block 3 48-32
Activation function for hidden layers ReLU [33]
Activation function for output layers Softmax [12]
Training SNR 1/σ2 6 dB
Learning rate η 0.001
Batch size 100
Number of training epochs 200
Training data size 5000
Testing data size 106

Optimizer Adam [34]

Both perfect and imperfect CSI are considered. In addition
to a linear Gaussian channel, we also consider a non-linear
quantized Gaussian channel. In the following, we introduce
the parameters used for evaluating SICNet, followed by its
symbol error rate (SER) when used for symbol detection, as
well as the coded bit error rate (BER), when combined with
FEC decoding.

A. Implementation Setting

1) Simulation Parameters: The parameters used in our
simulations of SICNet are summarized in Table II. We con-
sider a non-orthogonal DL system supporting K = 3 users,
focusing on user k = 3, which involves the highest number of
interference cancellation steps. The BS sends BPSK symbols
to all users, i.e., M = 2. The power coefficients for user 1,
2, and 3 are P1 = 16, P2 = 4, and P3 = 1, respectively. The
power coefficients remain unchanged during the training and
testing phases unless otherwise stated. Each DNN block of
SICNet is comprised of two fully-connected hidden layers as
illustrated in Fig. 3, whose dimensions are provided in Table II.
SICNet is trained in an end-to-end fashion using the Adam
optimizer [34] with a learning rate of η = 0.001. The training
set is comprised of as few as 5000 symbols generated from a
channel at an SNR of 6 dB, which was empirically shown to
offer a good performance, when testing over channels having
various SNR levels2. Both loss types presented in Subsection
III-B, namely, local loss and combined loss, are considered.
Finally, the remaining hyperparameters, such as, the testing
data size, epochs, and batch size, are detailed in Table II. The
hyperparameters in Table II have been selected using the grid-
search method in order to provide the best performance, while
minimizing complexity and training time. For example, we
have tentatively trained our SICNet at different training SNRs,
namely 3, 4, . . . , 10 dB, and found that 6 dB provides the best
BER performance in a range of testing SNRs of interest.

2) Channel Models: We consider two channel models: a
linear Gaussian channel as in (3), and a non-linear quantized
Gaussian channel. For both channels, we assume that the
channel coefficient of user 3 is static by simply setting h3 = 1

2Here, we set the channel to satisfy E
[
|hk|2

]
= 1. As a result, the SNR

is defined for the user of interest (i.e., user k = 3) as 1/σ2, where σ2 is the
variance of the Gaussian noise.
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Fig. 5. SER comparison between the proposed SICNet and conventional SIC
under linear Gaussian channels with both perfect and imperfect CSI. Here,
the proposed SICNet is trained with both local and combined losses.

over both the training and testing phases. As such, for the
linear Gaussian channel, the received signal of user 3 is written
as y3 = x + w3, where x =

∑3
i=1

√
Pixi, while for the

quantized Gaussian channel, it is given by y3 = Q (x+ w3)
[35], where Q(·) represents a 3-bit quantization, given by

Q (u) =


sign (u) |u| < 2,

3×sign (u) 2 < |u| < 4,

5×sign (u) 4 < |u| < 6,

7×sign (u) |u| > 6.

(13)

To model different levels of CSI, the channel known to
the model-based receiver, and used to generate training for
SICNet, is given by a noisy estimate ĥ3 = h3 + e, where
h3 = 1 is the actual channel used during testing, and
e ∼ N

(
0, ε2

)
is the channel estimation error. In particular, the

conventional SIC uses ĥ3 for decoding instead of h3, while
SICNet is trained using samples generated from the erroneous
channel, with ŷ3 = ĥ3x+w3 or ŷ3 = Q

(
ĥ3x+w3

)
for linear

and quantized Gaussian channels, respectively. We set ε2 = 0
for perfect CSI, and ε2 = 0.01 for imperfect CSI.

In order to obtain the data used for training SICNet, we
first randomly generate the data symbols sent to the K users,
{xk}Kk=1, which are then used to obtain the superimposed code
x based on (1). Through the channel of user k, we obtain the
corresponding received signal yk, which is combined with the
symbols sent from the BS to users to create the training data
set, here for user k.

B. SER Performance
We first numerically evaluate the SER of SICNet compared

to the model-based SIC, when used for symbol detection,
i.e. to produce hard decisions of the transmitted symbols.
Fig. 5 depicts our SER comparison between the proposed
SICNet trained with both loss measures, and the conventional
SIC under the linear Gaussian channel, for both perfect and
imperfect CSI conditions. We observe in Fig. 5 that when
trained and tested for the same channel, SICNet achieves a
SER performance approaching that of the conventional SIC
operating with perfect knowledge of the channel model and
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Fig. 6. SER comparison between the proposed SICNet and conventional SIC
under quantized Gaussian channels with both perfect and imperfect CSI. Here,
the proposed SICNet is trained with both local and combined losses.

its parameters. This indicates that our DNN-aided detector
learns to implement the model-based SIC algorithm from data,
while being trained for a single SNR level. Furthermore, under
CSI uncertainty, the SER of the conventional SIC is notably
degraded, while our SICNet still achieves accurate detection,
where its SER is within a minor gap of its performance with
perfect CSI. For example, at a SER of 10−3, the channel
imperfection causes an SNR loss of less than 0.5 dB for
SICNet compared to the perfect CSI condition. Finally, despite
only using the local data for training, the local loss achieves
SER values within a minor gap to that of the combined loss
under both CSI scenarios.

Fig. 6 compares the SER of the proposed SICNet using
the two losses with the model-based SIC under the quan-
tized Gaussian channel, for both perfect and imperfect CSI
conditions. Again, it is observed in Fig. 6 that our SICNet
achieves similar SER values as the model-based scheme, when
the CSI is perfect. Although the channel is non-linear, the
quantization resolution is sufficient to allow the interference to
be approximately canceled by subtraction, and thus the model-
based SIC algorithm still achieves accurate recovery here.
However, when the CSI is imperfect, our scheme significantly
outperforms its conventional counterpart, which suffers from a
relatively high error floor, i.e., > 10−2. In particular, SICNet
is hardly affected here by the imperfect CSI. This is likely
to be due to the fact that the presence of quantization results
in the training data under imperfect CSI being quite similar
to that generated from the true channel. This validates the
efficiency of SICNet under quantized Gaussian channels, even
with imperfect CSI, where the model-based SIC achieves
poor SER performance. These observed gains follow from
the usage of DNNs for decoding soft-information for each
symbol, which allows SICNet to learn to implement SIC
without relying on channel modelling. Again, it is observed via
Fig. 6 that using the local loss, the proposed SICNet achieves
SER values, which are similar to the combined loss under
quantized Gaussian channels.

In the numerical results presented in Figs. 5-6, SICNet
is trained using merely 5000 labeled samples, representing,
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Fig. 7. SER performance of the proposed SICNet for user 2 and user 3, trained
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Here, SICNet is trained with the aid of the local loss using data from the true
underlying channel.

e.g. pilots and preamble sequences routinely used in wireless
schemes. In order to numerically quantify the number of
samples required for training SICNet corresponding to dif-
ferent users having different order in the superposition code,
we next compare the training of user 3 to that of user 2.
We depict in Fig. 7 the accuracy of SICNet when trained
using different numbers of training samples at the SNRs of
9 dB and 12 dB. It is observed from Fig. 7 that for both
users, SICNet can in fact be accurately trained with much
less than 5000 samples, and often as few as 1000 samples
are sufficient. For example, at the SNRs of 9dB and 12
dB, SICNet requires only 200 samples and 1000 samples,
respectively, for achieving a SER performance which is very
close to that trained using 5000 samples. This is due to the fact
that SICNet is a hybrid model-based and data-driven scheme,
which incorporates the SIC structure into its design, allowing
us to significantly reduce the amount of training, which can be
translated into using less pilots and hence improved spectral
efficiency. Furthermore, the results reported in Fig. 7 indicate
that although different users may require different numbers
of DNN blocks, using a relatively small amount of pilots for
training SICNet is sufficient for different users achieving their
desired performance.

We proceed by numerically evaluating the robustness of
SICNet to perturbations in the superposition coding scheme,
focusing on linear Gaussian channels, trained with the local
loss objective. Since the architecture of SICNet is dictated by
the order of the power assignment among the users, our aim
here is to study the ability of SICNet to handle modifications
in this order by retraining. In Fig. 8 we depict the SER
performance of the SICNet of user 3, i.e. of the user of
interest, when adding the new user 4 to the existing system of
three users. In particular, this user has a power coefficient of
P4 = 1/9, which is lower than that of all the existing users,
hence resulting in the new order of P1 > P2 > P3 > P4. In
this context, the architecture of SICNet detailed in Table II still
matches the superposition coding, since the power coefficient
of user 3 is still the third lowest in the new system, i.e.,
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Fig. 8. SER performance of the proposed SICNet of user 3 when adding the
new user 4 to the existing non-orthogonal DL system of three users. Herein,
linear Gaussian channels with both perfect and imperfect CSI are considered,
conventional SIC is included for comparison, and SICNet is trained only with
the local loss.
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Fig. 9. SER performance of the proposed SICNet of user 3 when changing the
rank-order of users in the existing non-orthogonal DL system of three users,
under linear Gaussian channels with both perfect and imperfect CSI. Here,
conventional SIC is also included for comparison, while SICNet is trained
only with the local loss.

the majority of interference emanates from users 1 and 2. In
Fig. 8, we investigate the associated SER performance both
with and without retraining using the local loss in the new 4-
user system. For retraining, a new dataset of 5000 samples is
used that also takes the impact of the added user into account.
Observe in Fig. 8 that the new source of interference results in
some SER degradation compared to the scenario without this
user seen in Fig. 5. However, SICNet succeeds in maintaining
an accurate detection both with and without retraining, while
exhibiting improved robustness to imperfect CSI compared to
the model-based SIC.

In the scenario considered in Fig. 8, the introduction of the
new user 4 does not affect the power assignment order of
users 1-3, mainly resulting in lightly increased interference
treated as additional effective noise. Fig. 9 illustrates the
SER performance of SICNet for user 3, when the order of
users changes, i.e., the superposition code used by the BS is
modified. In particular, we keep the transmit power of user 2



11

0 3 6 9 12 15

SNR (dB)

10
-4

10
-3

10
-2

10
-1

10
0

S
E

R

Conventional SIC, perfect CSI

Proposed SICNet, perfect CSI, no retrain

Proposed SICNet, perfect CSI, retrain, local loss

Conventional SIC, imperfect CSI

Proposed SICNet, imperfect CSI, no retrain

Proposed SICNet, imperfect CSI, retrain, local loss

Fig. 10. SER performance of the proposed SICNet of user 3 when adding
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order changed. Here, conventional SIC is also included for comparison, while
SICNet is trained only with the local loss. Linear Gaussian channels with
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and 3 unchanged, i.e., P2 = 4 and P3 = 1, while user 1 now
has the lowest power of P1 = 1/9. As such, the power order of
the users has changed from P1 > P2 > P3 into P2 > P3 > P1.
In this simulation, we investigate the SER of user 3, both
with and without retraining, when its SICNet architecture
remains that detailed in Table II, i.e. it does not match the
new downlink systems. In order to make conventional SIC
adapt to such a change of the users’ power allocation in this
scenario, user 3 has to know its new power order, which is
now P2 > P3 > P1. Then, it would detect and cancel the
symbol of user 2 first before detecting its own symbol using
the ML detection of (5). As such, compared to the original
power order, user 3 does not have to detect the signal of
user 1, who previously had the highest power. Similar to the
scenario of adding a new user in Fig. 8, we do not have to
change the architecture of SICNet. However, here we observe
that retraining with the aid of both perfect and imperfect data
using the local loss allows SICNet to continue approaching the
performance of the model-based SIC operating with the aid of
perfect CSI. In particular, the usage of the local loss, which
accounts solely for the desired local symbol results in SICNet
learning from data to overcome its mismatched interconnection
of building blocks, without enforcing its first DNN block to
recover the interfering symbol of user 1.

Next, we consider the scenario in which the non-orthogonal
downlink system changes in both the number of users and
their power assignment order. In Fig. 10 we evaluate the case
of adding user 4 with P4 = 64, while P1, P2, and P3 remain
unchanged, as in Table II. Hence, the introduction of user 4
yields a new power assignment order of P4 > P1 > P2 > P3.
In contrast to the previous order, P3 is now assigned the fourth
lowest power, i.e., it has interference from three users. The
straight-forward application of SICNet here is to rebuild its
structure by adding one more DNN block. However, as we
are focused here on the robustness of SICNet to modifications
in the downlink setup, we keep the existing structure of
SICNet with three blocks, detailed in Table II. By observing
Fig. 10, we note that SICNet trained for the original downlink

0 3 6 9 12 15

SNR (dB)

10
-4

10
-3

10
-2

10
-1

10
0

S
E

R

Conventional SIC, perfect CSI

Proposed SICNet, perfect CSI, combined loss

Proposed SICNet, perfect CSI, local loss

Conventional SIC, imperfect CSI

Proposed SICNet, imperfect CSI, combined loss

Proposed SICNet, imperfect CSI, local loss

QPSK modulation

Fig. 11. SER comparison between the proposed SICNet and conventional SIC
using QPSK modulation, under linear Gaussian channels with both perfect and
imperfect CSI. Here, the proposed SICNet is trained using both the local and
combined losses.

setup with three users no longer reliably detects the desired
symbols. However, the same SICNet architecture can still
approach the accuracy of the model-based SIC with perfect
CSI by retraining it with data corresponding to the new
DL configuration. These results demonstrate that while the
architecture of SICNet is determined by the superposition
code, it is robust to modifications in the code and the network
setup, and can be utilized for different power assignments by
retraining.

Finally, we demonstrate that while the preceeding numerical
evaluations focus on real-valued BPSK symbols, SICNet can
be applied to arbitrary complex modulation schemes. To that
aim, in Fig. 11, we investigate the SER performance of SIC-
Net when detecting complex-valued M -ary symbols (QPSK
modulation), in comparison to the conventional SIC detector
under linear Gaussian channels. Here, a static complex channel
h3 = 0.4472 + 0.8944j is employed instead of the unitary
channel used in the aforementioned BPSK simulations. More-
over, in contrast to the BPSK case, the DNN blocks are now
fed with the real and imaginary components of the complex
received signal y3. The training parameters of Table II are
reused, except for the training SNR and the number of training
epochs, which are now 8 dB and 250 epochs in this simulation.
Both perfect and imperfect CSI scenarios are considered. Our
SICNet is trained using both the combined and local loss. We
observe in Fig. 11 that our scheme applied to complex-valued
symbols still performs well under both perfect and imperfect
CSI conditions. In particular, similar to the BPSK results of
Fig. 5, SICNet approaches the model-based SIC under perfect
CSI, while outperforming this baseline under imperfect CSI.
Additionally, the performance of our scheme trained using the
local loss is close to that trained employing the combined loss.
These observations confirm that the proposed SICNet is also
efficient for complex-valued modulated symbols.

C. Coded BER Performance
We numerically evaluate SICNet in a coded communications

scenario, where its outputs are used by a FEC decoder to
recover the transmitted bits. Here, we consider only a linear
Gaussian channel, for which the model-based SIC algorithm
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Fig. 12. Coded BER comparison between proposed SICNet and conventional
SIC using the 1/2-rate convolutional code under linear Gaussian channels.
Here, the proposed SICNet detector is trained with the local loss.

is designed. We employ a 1/2-rate convolutional code using
the octally represented generator polynomials [7; 5], while
utilizing both hard and soft FEC decoders. We also assume
that both SICNet and classical SIC are unaware of the coding
schemes of the preceding users, i.e., the FEC decoder is used
to decode the data bits of the user of interest only. Accordingly,
we train SICNet with the local loss measure, which was shown
in the previous subsection to achieve similar performance to
that of training with the combined loss, without requiring any
knowledge of the coding schemes of the other users sharing
the channel resources.

Fig. 12 compares the coded BER performance of our
proposed SICNet and that of the classical SIC. As user 3
only knows his/her coding scheme, he/she does not decode
the interference, i.e., the FEC decoder is used for decoding
his/her own data bits only in both SICNet and its model-
based counterpart. It is observed via Fig. 12 that the power of
FEC coding allows SICNet to achieve improved accuracy at
sufficiently high SNRs over the uncoded scheme, where the
soft decoder achieves a better BER than the hard decoder.
Moreover, using a soft decoder, the proposed FEC-coded
SICNet outperforms the conventional counterpart both for hard
and soft decoders, while both schemes exhibit a similar BER,
when a hard-decoder is used. These numerical observations
demonstrate the ability of SICNet, which operates in a model-
agnostic manner, while learning its mapping from data, to
produce bit-wise LLRs of higher accuracy compared to those
computed by the model-based SIC method, that relies on
an approximation of the distribution of the decontaminated
channel output.

Next, we demonstrate how the power of coded commu-
nications can be exploited to facilitate online retraining of
SICNet in block fading channels. Fig 13 illustrates the coded
BER comparison between our SICNet with FEC-aided online
training and its baselines under block fading channels and
Gaussian noise. Here, the channel of user 3 varies between
blocks according to h3 (t) = 0.8 + cos

(
2πt
17

)
, where t =

0, 1, ..., 99 is the fading block index. As such, there is a total
of 100 fading blocks, each of which contains 1000 data bits,
which produce 2000 uncoded bits when the 1/2 convolutional
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Fig. 13. Coded BER performance of SICNet with FEC-aided online training
and baselines under block fading channels and Gaussian noise. Here, the
proposed SICNet detector is trained with the local loss.

code [7, 5] is used. The classical SIC employs a hard decoder
to achieve better BER as shown in Fig. 12, while SICNet
uses two decoder types. Here, SICNet is initially trained with
200 epochs over 5000 data samples of the first block with
t = 0, and then the FEC-aided online training detailed in
Subsection IV-B is performed using only 10 epochs over
2000 online-recovered samples each following block. We also
include the BER of SICNet trained only with initial CSI,
i.e., without online training, for comparison. It is shown in
Fig. 13 that when the SNR is sufficiently high, i.e., > 12
dB, SICNet with online training approaches the performance
of classical SIC, which relies on perfect instantaneous CSI,
whose performance is degraded under imperfect CSI. Our
SICNet using soft decoder even outperforms its baseline with
perfect CSI at SNRs in excess of 13 dB. This benefit is
substantial, since unlike the classical scheme, our scheme does
not suffer from any channel estimation overhead, instead, it
only involves a lightweight re-training process relying on a few
epochs. Moreover, SICNet trained with the initial CSI achieves
poor coded BER performance, indicating the importance of
the proposed FEC-aided online training in order to accurately
track block fading channels. However, observe from Fig. 13
that SICNet only performs well at relatively high SNRs. At
low SNRs one can utilize alternative self-supervised learn-
ing strategies, such as the symbol-level confidence approach
proposed in [31], or the online training based on syndrome
codes [23]. We set aside the joint study of SICNet with such
strategies for our future research. Additionally, the benefits
of SICNet can be exploited in a range of emerging scenarios
such as short-packet communications [36] and physical layer
security [37]. We leave the study of such setups for our future
work.

VI. CONCLUSIONS

In this paper, we proposed SICNet, which is a deep learning-
aided receiver for the downlink of non-orthogonal systems.
In particular, SICNet uses DNNs to replace the interference
cancellation blocks of the model-based SIC, where the soft
information of each symbol is decoded by DNNs, rather
than by hard-decision ML detection. As a result, SICNet
learns to implement the model-based SIC in a data-driven
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manner, without requiring any knowledge of channel mod-
els. Simulation results showed that SICNet approaches the
performance of the model-based SIC scheme endowed with
perfect CSI, and substantially outperforms its model-based
counterpart under CSI uncertainty, for both linear and non-
linear channels. Additionally, SICNet is shown to be robust
to variations in the superposition code, and can reliably detect
without reconstructing its architecture, and often even without
retraining. It was also demonstrated that SICNet learns to pro-
duce accurate LLRs, leading to an improved performance over
the model-based SIC, when combined with soft FEC decoding.
Finally, we designed an FEC-aided online training scheme for
SICNet, which is capable of adapting to the changes of block
fading channels, achieving a BER performance close to or
even better than the model-based SIC employing perfect CSI
at high SNRs, particularly when soft decoder is used.
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