
Received: 18 June 2021 - Revised: 23 February 2022 - Accepted: 21 March 2022 - IET Computers & Digital Techniques
DOI: 10.1049/cdt2.12041

OR I G INAL RE SEARCH

Synchronization in graph analysis algorithms on the Partially
Ordered Event‐Triggered Systems many‐core architecture

Ashur Rafiev1 | Alex Yakovlev1 | Ghaith Tarawneh1 | Matthew F. Naylor2 |
Simon W. Moore2 | David B. Thomas3 | Graeme M. Bragg4 |
Mark L. Vousden4 | Andrew D. Brown4

1School of Engineering, Newcastle University,
Newcastle upon Tyne, UK

2Computer Architecture Group, Cambridge
University, Cambridge, UK

3Department of Electrical and Electronic
Engineering, Imperial College London, London, UK

4Electronics and Computer Science, University of
Southampton, Southampton, UK

Correspondence

Ashur Rafiev, School of Engineering, Newcastle
University, Newcastle upon Tyne NE1 7RU, UK.
Email: ashur.rafiev@ncl.ac.uk

Funding information

Engineering and Physical Sciences Research Council,
Grant/Award Number: EP/N031768/1

Abstract
One of the key problems in designing and implementing graph analysis algorithms for
distributed platforms is to find an optimal way of managing communication flows in the
massively parallel processing network. Message‐passing and global synchronization are
powerful abstractions in this regard, especially when used in combination. This paper
studies the use of a hardware‐implemented refutable global barrier as a design optimi-
zation technique aimed at unifying these abstractions at the API level. The paper explores
the trade‐offs between the related overheads and performance factors on a message‐
passing prototype machine with 49,152 RISC‐V threads distributed over 48 FPGAs
(called the Partially Ordered Event‐Triggered Systems platform). Our experiments show
that some graph applications favour synchronized communication, but the effect is hard
to predict in general because of the interplay between multiple hardware and software
factors. A classifier model is therefore proposed and implemented to perform such a
prediction based on the application graph topology parameters: graph diameter, degree of
connectivity, and reconvergence metric. The presented experimental results demonstrate
that the correct choice of communication mode, granted by the new model‐driven
approach, helps to achieve 3.22 times faster computation time on average compared to
the baseline platform operation.

1 | INTRODUCTION

Many practical applications use graphs to study complex re-
lationships between entities as diverse as proteins, bank ac-
counts, and social profiles. The introduction of the small‐world
network model almost 2 decades ago [1] sparked immense
research interest in graphs when it showed that graphs of many
real‐world systems are underpinned by a common set of
organising principles [2]. This discovery led to the emergence
of network science, a multidisciplinary field dedicated to the
study of complex large‐scale networks [3]. Network science
draws heavily on our ability to compute graph properties using
techniques that build on elementary operations such as graph
(network) traversal. This is becoming more challenging as
growth in the underlying application area datasets is making it

possible to construct graphs of unprecedented scales, several
orders of magnitude beyond what can be accommodated and
analysed efficiently on a single commodity computer.

Great interest is therefore invested in scalable graph
processing methods and platforms, including distributed ar-
chitectures and massively parallel supercomputers such as
CPU and GPU‐based clusters [4] and FPGAs [5]. Application
development at that scale requires solving an important
problem of execution policies and semantics as well as
scheduling resources in time and in space. The event‐based
programming model addresses this problem by abstracting
computation units as independent actors that work within
their local memory segments (states) and communicate via
small messages (events). Extending this model with global
events introduces new trade‐offs and has the potential to

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2022 The Authors. IET Computers & Digital Techniques published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Comput. Digit. Tech. 2022;16:71–88. wileyonlinelibrary.com/journal/cdt2 - 71

https://doi.org/10.1049/cdt2.12041
https://orcid.org/0000-0002-7387-5970
https://orcid.org/0000-0003-0826-9330
https://orcid.org/0000-0001-9827-8497
https://orcid.org/0000-0002-2806-495X
https://orcid.org/0000-0002-9671-0917
https://orcid.org/0000-0002-5201-7977
https://orcid.org/0000-0002-6552-5831
mailto:ashur.rafiev@ncl.ac.uk
https://orcid.org/0000-0002-7387-5970
https://orcid.org/0000-0003-0826-9330
https://orcid.org/0000-0001-9827-8497
https://orcid.org/0000-0002-2806-495X
https://orcid.org/0000-0002-9671-0917
https://orcid.org/0000-0002-5201-7977
https://orcid.org/0000-0002-6552-5831
https://ietresearch.onlinelibrary.wiley.com/journal/1751861X


solve the problem of synchronization of execution flows and
the supervision of communications, which calls for an
investigation.

We explore these trade‐offs using the Partially Ordered
Event‐Triggered Systems (POETS) platform [6, 7]: a prototype
hardware‐software stack specifically suited for computing
problems that can be decomposed into a large number of
inter‐communicating processes, and whose performance relies
critically on communication efficiency. It provides a massively‐
parallel multi‐NoC hardware architecture comprised of a large
number of small RISC‐V cores [8] communicating via small
(up to 64 bytes) packets. The FPGA‐based platform imple-
mentation offers an additional benefit of configurability by
providing an opportunity to implement application‐specific
experimental features in hardware and exposing these fea-
tures to the programming model through a flexible API. The
POETS programming model has been expanded in [9] by
introducing a custom hardware‐implemented termination
detection feature that can also be used as a refutable global
synchronization barrier.

Graph analysis algorithms pose an additional challenge
to this type of exploration as they display high variability in
their behaviour depending on application input graphs.
Different levels of synergy between an application graph
topology and a hardware topology may result in an affinity
for a specific mode of communication, as illustrated in
Figure 1. While in some graphs a well‐behaved communi-
cation pattern emerges naturally, others require supervision
of the message traffic to prevent congestion and related
performance penalties such as the reconvergence effect to be
discussed in Section 4. This shows that the preference for
one type of communication over the other is application‐
dependent, hence the decision on the protocol has to be
made per application in order to gain the maximum
improvement of overall computation time.

The work presented in this paper addresses this challenge
by building a classifier model capable of categorising applica-
tions by their synchronization preference based solely on the
application graph topology. Figure 1 outlines the proposed
model‐based workflow for application development with
configurable communication capabilities. The core of the
workflow is the model fitting that uses experimental data to
refine the performance model, which is then used for deter-
mining optimal communication protocol based on the prop-
erties of the application graph.

In summary, the paper makes the following contributions:

� It evaluates the efficiency of global synchronization based
on hardware‐implemented termination detection and en-
hances the POETS hardware‐software stack with the choice
between synchronized and asynchronous communication
protocols.

� It builds experimental evidence and analyzes a variety of
graph topology classes for the effect of communication
types on performance and scalability.

� It develops a classifier model using the experimentally ob-
tained performance characteristics. The model‐based

workflow expands the application design space and un-
locks greater performance potential by efficiently exploiting
new configuration options.

The paper is organised as follows. Section 2 motivates in-
terest in distributed graph processing by presenting an overview
of several application areas where large‐scale network process-
ing is used. Section 3 presents the POETS hardware architecture
and discusses its features. Section 4 presents the description of
network traversal algorithms, while Section 5 presents bench-
marking results and analysis. Section 6 concludes the work.

2 | APPLICATIONS AND MOTIVATION

Network traversal is a subclass of graph analytic algorithms
used for analysing graph properties such as, for example,
shortest paths. In this work, we focus on network traversal
applications that can be described with a combination of the
following requirements:

� type of analysis, for example, single‐source shortest paths to
all nodes (single source shortest path (SSSP)) or all‐pair
shortest paths (APSP);

� graph topology: irregular graphs or regular grids;
� edge weights: weighted versus unweighted/unit edges.

This section motivates the work with practical examples
from the fields of biology and geology, which represent dras-
tically different graph types and form a foundation for our
benchmarks in Section 5.

2.1 | Drug discovery

Biological systems can be modelled as networks of protein
interaction representing normal cellular functions. Disease

Network-on-ChipApplication
graph

Communication
protocol

Performance Model

Performance
data

F I GURE 1 An overview of model‐driven application development for
graph analytic applications on network‐on‐chips

72 - RAFIEV ET AL.



mechanisms can be considered as emerging from collections of
pathological interactions over such interaction networks.
Identification and perturbation of those systems aimed at
combating the disease is an underlying principle of drug dis-
covery. The robustness and resilience to failure or functional
perturbation of a small subset of constituents in complex
biological systems imply that the substantial levels of change
require multiple elements to be perturbed simultaneously [10].
e‐Therapeutics [11] has developed a practical, in silico,
systems‐based approach to drug discovery based on the above
principles [12]. Numerous measures have been used in studies
of network percolation and robustness with two commonly
used measures being network diameter and the average of
APSP. Practical percolation experiments used in drug discovery
at e‐Therapeutics involve calculating the impact of removing
various protein sets on networks spanning up to 20,000 pro-
teins and over half a million interactions. There can be hun-
dreds of thousands of potential drug candidates (protein sets)
whose removal impact must be evaluated, resulting in a very
large number of shortest path calculations. As such, perfor-
mance improvements in network analysis can shorten drug
discovery time dramatically. For benchmarking purposes, this
use case represents APSP calculation on irregular unweighted
graphs.

2.2 | Seismic raytracing

Marine geologists use seismic tomography to construct 3D
models of the seismic velocity at points in the crust and un-
derlying mantle in order to study the geophysical properties
and understand magmatic, hydrothermal, and tectonic pro-
cesses involved [13, 14]. Seismic tomography works by
measuring the arrival times of seismic waves from a source of
seismic radiation and comparing the observed arrival times to
the arrival times predicted by a model. The model is then
perturbed to minimise the misfit between the predicted and
measured arrivals times using a variation of the least‐squares
approach [15]. At each iteration in the tomographic process,
ray paths and their travel times from sources to receivers must
be determined for the updated model. A volume of Earth's
crust is represented as a spatially regular 3D grid overlayed
with an acoustic velocity model represented by edge weights.
The problem reduces to an SSSP calculation over a regular
weighted grid. Due to the volumetric nature of the data, the
grid sizes can vary from millions to tens of billions of points
depending on the target accuracy of the model.

2.3 | Parallel platforms

Some of the earliest work on parallel graph processing was
based on the Parallel Random Access Machine (PRAM) model
where multiple processors access shared memory and perform
the visiting step of graph traversal in parallel [16]. This ide-
alised view of parallel graph traversal ignores communication,
synchronization, and load‐balancing costs/performance, each

a key performance determinant in practice. Work on multi‐
threaded systems has therefore attempted to approach the
ideal traversal algorithm complexities based on PRAM by
addressing these factors through a combination of architectural
and algorithmic solutions targeting specific platforms [17].

The range of available hardware platforms creates a multi‐
dimensional spectrum with respect to the degree of distribu-
tion of computation and memory, as well as the aspects of
reconfigurability. GPUs are commodity units with performant
off‐the‐shelf communication and synchronization primitives
and are therefore a popular platform for researching parallel
graph traversal. Studies on GPUs have investigated the per-
formance impact of thread placement [18], memory repre-
sentations and their tradeoffs [4], as well as the implementation
of particular algorithms (e.g. directional search [19]) and load‐
balancing techniques (e.g. partitioning [20]). Massively parallel
machines continue to assume the top positions in GRAPH500
through a combination of hardware scale and architectural/
algorithmic innovation. For clusters of commodity processors,
techniques to improve scalability have focussed on data rep-
resentation, compression, and communication [4], partitioning
and task mapping [21] as well as algorithmic techniques such as
delegate vertices [22]. One of the main limitations hindering
the use of commodity hardware (CPUs and GPUs) is to tra-
verse very large graphs is RAM size. Studies have therefore
examined ways to off‐load graph data to larger external
memories while mitigating the associated performance penalty
using in‐memory computing [23, 24].

FPGAs offer greater flexibility in architectural design and
are therefore another common medium for investigating par-
allel graph traversal. Studies on FPGAs presented various
techniques to optimise graph data structures [25, 26] and
memory access patterns [27, 28]. FPGA platforms also offer a
novel approach to solving graph problems by compiling and
mapping graph topologies directly onto the hardware
communication fabric. The previous study [5] successfully
demonstrated such use of FPGAs; however, the method was
constrained by the size of the FPGA fabric and in particular by
the number of available connections. To overcome this prob-
lem, we use an FPGA‐based architecture consisting of an
extremely large number of very simple CPU cores, embedded
in an efficient message‐exchange fabric, such as the POETS
platform presented in the following section.

2.4 | Related modelling methodologies

The classical methods of representing computational
complexity for single‐processor applications, like the big‐O
notation, are not suitable for many‐core platforms where the
multiple agents interact asynchronously creating a so‐called
globally asynchronous locally synchronous system [29].

Formal modelling techniques can be applied at the level of
communication protocols and circuit designs where all com-
ponents are well‐understood. Timed Colour Petri Nets have
been used to model dataflows and communication protocols at
the hardware level in order to predict the performance of

RAFIEV ET AL. - 73



asynchronous systems [30]. Stochastic methods like Stochastic
Timed Petri‐Nets have also been applied to the circuit‐level
design to estimate upper and lower bounds for asynchronous
performance [31]. The benefit of using a Petri Net model is
that it can represent the system structure and interactions as a
graph and can be simulated at large scale [32].

Empirical models use a different approach by focussing on
the observation rather than the description of a system. These
models are well‐suited for detecting unknown or hidden in-
teractions within a system and are typically built by applying
statistical analysis and machine learning techniques to the
experimental data. These include model‐fitting techniques like
multivariate linear regression (MVLR) [33], which is often used
in conjunction with the principal component analysis (PCA)
[34]. The method of gradient descent can be applied to non‐
linear model hypotheses as long as they have derivatives [35].
Compared to neural‐network machine learning, model fitting
techniques like MVLR have the important benefit of providing
insights into the physical interplays and implications. This is
because the analytical model parameters can usually be traced
to physical properties within a system.

A classifier is a type of empirical model that separates
experimental data into different categories (classes) based on
given criteria [36]. The novelty of the POETS platform is that
it allows choosing between synchronized and asynchronous
execution modes, therefore calling for a model that would
classify the workload depending on which mode benefits best
to the computation time. Building such a model is the main
focus of the experimental part of this paper.

3 | PARTIALLY ORDERED EVENT‐
TRIGGERED SYSTEMS HARDWARE
PLATFORM

Today's general‐purpose processors rely on elaborate hardware
features such as superscalar execution and cache coherency to
automatically infer parallelism and communication from gen-
eral workloads. But for inherently parallel workloads with
explicit communication patterns, which are common in the
high‐performance computing domain, these costly hardware
features become much less valuable. Instead, processors con-
sisting of larger numbers of far simpler cores, communicating
by message‐passing, can potentially achieve more performance
from a single chip and scale more easily to large numbers of
chips.

This is the hypothesis of the POETS project (POETS
[6, 7]), which forms the wider context for the work described
in this paper. On the project, researchers have constructed a
prototype platform consisting of a 48‐FPGA cluster and a
many‐core RISC‐V overlay called Tinsel [37] programmed on
top. The Tinsel overlay has a regular structure, consisting of a
scalable grid of tiles connected by a reliable communication
fabric that extends both within each FPGA and throughout the
FPGA cluster. By default, a tile consists of four RV32IMF
multithreaded cores [8], clocked at 240 MHz, sharing an
floating‐point unit, 128 KB thread‐partitioned data cache, and

a mailbox. Each core supports 16 barrel‐scheduled hardware
threads. A separate network is used to connect caches in tiles
to off‐chip memories. A single‐FPGA view of the overlay is
depicted in Figure 2b, and a single tile is shown in Figure 2c.

Each POETS mailbox serves four cores and contains a
memory‐mapped scratchpad storing up to 64 KB of incoming
and outgoing messages, which can also be used as a small
general‐purpose local memory. Messages are variable‐length,
containing up to four flits, with each flit holding 128 bits of
payload. The mailbox allows threads to trigger the transmission
of outgoing messages, to allocate space for incoming messages,
and to consume those messages when they arrive, all via
custom RISC‐V CSRs (control/status registers).

The FPGA cluster comprises a grid of 48 DE5‐Net boards
(8 server boxes, 6 boards per box) connected together using
10G reliable links, as shown in Figure 2a. Each box also
contains an �86 host with an additional bridge FPGA board
that connects to the Tinsel mesh. The overlay distributes
naturally over this cluster to yield a 3072 core system (49,152
hardware threads), where any thread can send messages to any
other thread.

3.1 | Hardware‐level termination detection

A crucial feature added to the POETS platform in [9] is a
refutable barrier primitive with a number of attractive prop-
erties: (1) it has a simple semantics based on termination
detection; (2) it does not introduce race conditions or non‐
determinism; (3) it does not depend on the use of costly
synchronous send operations; and (4) it allows an arbitrary
asynchronous computation to occur within each synchronous
step of a parallel application (self‐timed synchronization).

At the level of the Tinsel overlay, the feature is represented
with a blocking function that is released when either (1) a
message is available for that thread to receive, or (2) all threads
in the entire system are blocked on a call to this function and
there are no undelivered messages in the system. The function
returns zero in the former case and non‐zero in the latter. A
return value greater than one denotes that all callers voted true.
The voting mechanism is a simple form of aggregation that is
useful for globally detecting termination, e.g. all threads
agreeing they are stable since the previous time step.

In the remainder of this section, we present the imple-
mentation details underpinning the above feature. We start by
looking at a classic termination‐detection algorithm and then
describe how we refine this algorithm to an efficient hardware
implementation.

3.1.1 | Safra's algorithm

Safra's algorithm, as presented by Dijkstra [38], is a classic
solution to the problem of detecting termination in distributed
systems. It considers a set of machines, each of which is either
passive, if it has indicated that it has no further messages to
send, or active, otherwise. A machine in the passive state

74 - RAFIEV ET AL.



automatically transitions to the active state upon receipt of a
message. The algorithm detects the case in which all machines
are passive and there are no undelivered messages.

The operation of the algorithm is described as a set of
rules:

Rule 1: Each machine maintains a local count of the
number of messages it has sent minus the number it has
received.
Rule 2: A termination token containing an accumulator,
initially zero, is passed from machine to machine in a ring
pattern.
Rule 3: Each machine holds on to the token until it be-
comes passive, at which point it adds its local count to the
accumulator in the token and forwards the token to the
next machine in the ring.
Rule 4: When the token completes a full iteration of the
ring, and the final accumulator is zero (i.e. all the local
counts sum to zero) then the conditions for termination
may be met.

The case in which the final accumulator is zero, but
termination has not occurred, is as follows. Suppose a machine
M, which has already forwarded the token, receives a message
and transitions to the active state. On its own, this is acceptable
because the final accumulator will exceed zero: M's count has
already been sampled before receiving this latest message, and
the sender's count is still to be sampled. However, the now‐
active machine M can send a new message to a machine that

has not yet forwarded the token, meaning that the final accu-
mulator may well be zero for the opposite reason: M's count
has already been sampled before sending this latest message,
and the receiver's count is yet to be sampled. This situation is
remedied as follows:

Rule 5: Each machine, and the token, are initially coloured
white. On receipt of a message, a machine turns black.
When a black machine forwards a token, the token is
blackened.
Rule 6: Termination is detected when the token completes
a full iteration, and its final accumulator is zero, and its
final colour is white.

This remedy catches the situation in which a machine re-
ceives a message before its count is sampled. When termina-
tion is not detected, a new iteration of the ring is started. Of
course, a new iteration can only succeed if black machines are
somehow whitened again, leading to one final case:

Rule 7: When a machine forwards a token, it whitens itself.

3.1.2 | Scalable topology

Safra's algorithm is a natural fit for our platform, with ma-
chines corresponding to RISC‐V threads, and the passive state
corresponding to a thread blocked by a barrier. However, there
are two main efficiency concerns when using the algorithm at

(a)

(b)

(c)

F I GURE 2 Current version of the Partially
Ordered Event‐Triggered Systems (POETS) cluster
architecture (a) with a zoom on a single FPGA
board (b) and a tile (c)

RAFIEV ET AL. - 75



such a fine granularity: (1) we have tens of thousands of
threads in our cluster, which is thousands of times more than
the number of FPGAs; and (2) if implemented in software, the
token would incur the latency of passing through the software
stack running on each thread.

In order to achieve greater scalability, we implement the
hierarchical termination‐detection in hardware with Safra's al-
gorithm working at the granularity of FPGAs rather than
threads and synchronous pipelined trees at the intra‐FPGA
level, as illustrated in Figure 3. To determine a machine's
message count and passive/active status at the FPGA level
(cumulatively with respect to the individual threads) we use the
following hardware structures:

� Each core outputs a pair of wires: one that is pulsed when a
thread on that core sends a message, and one that is pulsed
when a thread on that core receives a message. A pipelined
adder tree reduces these wires to a single signed number
that is added to the FPGA's message count on every clock
cycle.

� Each core also emits a wire indicating whether all threads on
that core are in a call to the barrier function. A pipelined
conjunction tree reduces these wires to a single active/
passive wire for the whole FPGA.

These reduction networks are non‐blocking and have the
same depth, which means that the states of all the threads are
always sampled at a consistent point in time. If this were not
the case, and the count was sampled at a different time to the
active/passive status, then a token could be forwarded with an
invalid count.

The best‐case run‐time performance of a single iteration of
Safra's algorithm is proportional to the number of machines N
multiplied by the inter‐machine latency L, that isO L ⋅ Nð Þ. For
efficiency, we exploit parallelism and use a star topology
instead of a ring: a singlemaster sends a token to each machine
in parallel, and each machine forwards its token directly back to
the master, which sums the individual counts and combines the
individual colours accordingly. With all other aspects remaining
the same, the algorithm continues to function correctly: the

order in which the machines are sampled is not important, and
a black token will be produced by any machine that receives a
message before it is sampled.

In our cluster, we use one of the FPGA bridge boards
(see the FPGAs connected to the �86 servers in Figure 2) at
the origin of the FPGA mesh, as the master. In the worst
case, a token from the master will travel along each dimen-
sion of the mesh, to reach the FPGA at the far corner, and
return back again. For an almost‐square mesh like ours, this
will result in a best‐case run‐time of O 4 ⋅ L ⋅

ffiffiffiffi
N
p� �

for a
single iteration of the algorithm. This could be halved by
placing the master in the centre of the mesh, but for now, we
have chosen to avoid putting the master logic on the ho-
mogeneous worker FPGAs.

3.1.3 | Barrier release

Safra's algorithm is only concerned with a singlemachine in the
system detecting global termination. To implement the barrier,
all threads need to be notified. Therefore we introduce an
additional phase to the algorithm that is triggered when
termination is detected at the master:

� Once termination is detected, the master sends a “termi-
nation detected” notification to each FPGA. Each FPGA
releases all its threads from the barrier call (with each call
returning non‐zero) and responds to the master with an
acknowledgement.

Unfortunately, this new phase introduces a race: a released
thread can potentially send a message to another thread that
has not yet been released, which would result in the receiving
thread returning zero from the barrier function. To remedy
this, we disable the sending of messages when releasing the
calls to the function, and introduce a third and final phase:

� Once the master has received all acknowledgements to the
release phase, it sends a “re‐enable sending” notification to
each FPGA. Each FPGA responds to the master with an
acknowledgement.

The end result is a three‐phase procedure, where each
phase involves a round‐trip from the master to the FPGAs
(in parallel) and back again. The final two phases only come
into play when the first phase successfully detects
termination.

It is important to note that the refutable nature of the
termination detection barrier means that all other events have
higher priority. Holding a token by a machine does not prevent
it or any other machine from becoming active. The commu-
nication fabric is not blocked and can continue passing mes-
sages if there are any; reception of a message on any machine
wakes it up from the barrier state and interrupts (cancels) the
termination detection algorithm until the device becomes
passive again. Therefore, Safra's algorithm does not cause
system starvation.

F
P

G
A

co
re

co
re

co
re

co
re

co
re

p
ip

el
in

ed
ad

d
er

 t
re

e

p
ip

el
in

ed
co

n
ju

n
. 

tr
ee

F
P

G
A

F
P

G
A

message
count

active/
passive

Master bridge board

F I GURE 3 Hierarchical structure of the dedicated termination
detection hardware

76 - RAFIEV ET AL.



3.2 | High‐level API

The POETS hardware‐software stack provides a high‐level
API that accommodates event‐based models by creating a
relation between logical devices (graph nodes) and hardware
threads, and by routing arbitrary application‐level edges on top
of the regular Tinsel communication mesh. This section out-
lines the API basics required for a better understanding of the
algorithm description in Section 4.

Behaviours of vertices in the graph are defined by event
handlers that update the node state when a particular event
occurs, for example when a message arrives on an incoming
edge, or the network is ready to send a new message, or
termination is detected. Multiple graph nodes in a single thread
are managed by the soft‐switch. Partially Ordered Event‐
Triggered Systems infrastructure provides a selection of
node‐to‐core mapping algorithms including mapping based on
METIS partitioning [39] (prioritising adjacency) and a fast
bucket‐fill (direct) mapping that simply maps nodes in the
order they are declared in the graph specification.

Each vertex has access to an application‐specific local state
S, defined using C++ struct, and a readyToSend flag
indicating that the vertex requests sending a message to the
communication fabric. For the purposes of this paper, we as-
sume it takes a Boolean value, and the message is dispatched to
all outgoing edges. The message contentM can also be cus-
tomised but is limited to 56 bytes in the current version of the
API. Edges can have associated data of any type; in this paper,
we use 16‐bit integers as edge weights w.

Initialisation handler The init handler is invoked
once for every vertex when the application starts, before
any other events. FPGA boards and POETS boxes are
configured to start asynchronously by default, hence the
initialisation may happen at slightly different wall‐clock
times. Vertices should initialise readyToSend in the
init handler.
Send handler Any vertex indicating that it wishes to send
will eventually have its send handler called. When called,
the send handler is provided with a message buffer, to
which the outgoing message should be written. It is an
application's responsibility to clear the readyToSend flag,
otherwise the system assumes the vertex wants to send
more messages (the latter case is useful for implementing
large multi‐message protocols).
Receive handler A message arriving at a vertex causes
the recv handler of the vertex to be called with a
pointer to the message and a pointer to the weight
associated with the incoming edge along which the
message has arrived. The API prioritises receiving mes-
sages before sending to drain the network as fast as
possible. Therefore a vertex may get multiple recv
events before it is allowed to send.

In order to provide support for the new termination‐
detection feature, this paper extends the API with the
following events:

Step handler The step handler is called when termi-
nation is detected, that is no vertex in the entire graph
wishes to send, and there are no messages in‐flight. The
return value indicates whether or not the vertex wishes to
continue executing. Typically, an asynchronous application
will simply return “false”, while a synchronous one will do
some compute, perhaps requesting to send again, and
return “true” to start a new time step.
Finish handler If the conditions for calling the step
handler are met, but the previous call of the step handler
returned “false” at every vertex, then the finish handler is
called. At this stage, each vertex may optionally send a
message to the host by writing to the provided buffer and
returning “true”.

At this abstraction level, there is no direct control over the
underlying hardware features. However, the API is flexible
enough to provide the following control over the communi-
cation and layout: controlling the message traffic by using
readyToSend flag and API events; choosing to use or not to
use the step handler for termination detection or global
synchronization; choosing the device mapping, including the
number of graph nodes per core; controlling the memory
allocation by changing the vertex state size. The next section
focuses on the shortest path calculation algorithms imple-
mented at the API level.

4 | ALGORITHMS

We use SSSP as an example of a communication‐heavy graph
analysis application to evaluate the effectiveness of synchro-
nization in a practical setting. In the distributed SSSP, the
messages propagate along graph edges accumulating edge
weights along the way. The algorithm terminates when all
nodes are reached. The result can be an array of path lengths,
an aggregate sum, or an average. This section describes the
high‐level POETS API implementation of the SSSP algorithm.
The event‐based view provides a hardware‐independent
model, where logical devices directly correspond to graph
nodes, and the graph topology forms a communication fabric.

Let's first consider an unweighted network where all edges
have unit lengths and the shortest path between two nodes is
defined as a number of hops between them.

Synchronized: The synchronization‐based approach has
been proposed in [5] for a different kind of hardware (clocked
circuit). This approach separates execution into distinct steps.
We adapt it to an event‐based model, using synchronization
barrier in place of the clock: the barrier ensures all messages
sent during the step have been received, that is there are no
in‐flight messages before the start of the next step. An
important distinction is that, in the case of POETS, the step-
ping is self‐timed, thanks to termination detection, so the
computation between the steps can be arbitrarily long. Figure 4
shows a step‐by‐step example. In Step 0 the source node
sends token messages to its neighbours. On each subsequent
step, if any given node receives a message for the first time, it

RAFIEV ET AL. - 77



updates its state to the step counter value and propagates
token messages to its neighbours.

With the synchronized message‐passing approach to SSSP,
the propagation of messages forms a “front” moving one hop
per step of the algorithm, hence the step counter directly
corresponds to the shortest path length. The algorithm is
finished when all nodes have been reached and therefore no
messages to be sent. Messages carrying new information are
called the head traffic, and the messages that are reflected back
and discarded without causing state updates are called the tail
traffic. The tail traffic has minimal overhead as it is discarded
immediately; for the POETS platform, it is a more efficient
approach than “pre‐filtering” messages on the sender side as the
latter requires larger vertex state and would cause a memory
bottleneck. We are primarily interested in the head traffic as it
forms a wave of updates radiating from the source node and, in
the case of the synchronized SSSP, travelling at a constant speed.
The behaviour of the head traffic is different in asynchronous
SSSPor weighted graphs, as will be discussed later in this section.

Asynchronous (packet storm): In the packet storm algo-
rithm, nodes send updates as soon as they receive incoming
messages without the need for global synchronization. There is
no notion of a global step counter, therefore each node has
to remember its distance to the source in the local memory,
and the updated distance is propagated via messages. Event‐
triggered nature of the asynchronous approach introduces
automatic load balancing as congested parts of the network
become slower while other parts keep up the speed.

Algorithm 1 shows SSSP implementation details based on
the high level API described in Section 3.2. The implementa-
tion supports edge weights w (and unweighted graphs as a
special case with w = 1) and both types of synchronization, as
controlled by the compile‐time switch async. Node state is
defined as a tuple S : ¼〈dist; changed〉, where dist stores the
distance to the source (or 0 for the source node) and changed
indicates that the node has an update to send. The message
type M carries a single value: the latest distance update dist.
Most of the algorithm is the same for both synchronization
types with the notable differences in recv and step event
handlers. In recv, when the state is updated, the asynchro-
nous version immediately flags the readiness to send an update
message, whereas the synchronized version only flags the up-
date but does not send (lines 17–21). The step function is

invoked by the termination detection hardware, which for
asynchronous SSSP signals is the end of the computation (line
31). In the synchronized SSSP, it means the end of a compu-
tation step, so the algorithm needs to decide whether to
progress or terminate depending on if there are any updates to
be sent (lines 33–38). The result returned from the step
function is passed to the voting hardware, hence the whole
system keeps running as long as there is at least one non‐
terminated vertex.

Intuitively, it may appear that, for distributed computation,
asynchronous algorithms must be better than globally syn-
chronized. However, there are two caveats: (1) uncontrolled
bursts of messages may cause congestion and slow down
communication fabric, and (2) a distributed asynchronous
communication may not guarantee the ordering of arriving
messages, so the first received message cannot be used as an
indicator of the shortest path. In fact, due to out‐of‐order
arrival, some messages may carry data that does not
contribute to the final result and therefore reduce the overall
utility of the communication fabric. Head traffic from the
source travels along all possible paths with different speeds,
and when it reconverges, the following interaction takes place:
if the “true” shortest path message arrives first, all later up-
dates will be discarded, and only the valid head traffic will
continue further; however, if an alternative path arrives earlier,
it will still cause a state update (temporary, until the “true”
shortest path arrives) and will keep propagating as “false” head
traffic. In the worst case, reconvergence may cause an expo-
nential explosion of message traffic.

In practice, the probability of the worst‐case scenario is low
as the degree of connectivity is not the only determining factor.
Figure 5 shows an example of regular grids demonstrating the
case. In a 2D square, if only orthogonal edges are allowed,
there are only two paths between A and D: ABD and ACD.
Both paths are of length two and are valid solutions for the
shortest path, so there is no negative effect from path recon-
vergence. If we allow diagonal edges, three other paths also
become possible: ABCD, ACBD, and AD. The latter is the only
shortest path solution in this case, but there are four other
valid paths that have a probability of arriving early. Similarly, in
a 3D cube with only orthogonal edges, there are six possible A
to H paths (ABDH …AEGH), all can be valid solutions with
the length three. Diagonal edges transform the 3D cube into a

Step 0:
source

0

Step 1:

0

1

1

Step 2:

0

2

1

1

2

F I GURE 4 Synchronized single source shortest path (SSSP) step‐by‐
step example

F I GURE 5 Example of reconvergence in regular topologies: 2D
square and 3D cube, discussed in Section 4

78 - RAFIEV ET AL.



Algorithm 1 Node‐level event‐based implementation of SSSP

RAFIEV ET AL. - 79



fully connected graph with 1956 paths of lengths two to seven
between A and H, and only one true shortest path of length
one (AH).

Performance overheads due to path reconvergence can be
estimated by analysing the difference in length across all
possible paths weighted by their probabilities. This approach
resembles the path integration technique from quantum me-
chanics, but unfortunately, it is not practical as the probability
distribution is difficult to obtain accurately from the experi-
ments. Instead, we aim at finding alternative heuristic methods.
There is no predictive metric that would clearly stand out
because these effects manifest from interactions between
multiple hardware and application effects. The choice of
communication (synchronization) mode requires a classifier
model capable of predicting a general trend from a set of
topology‐specific parameters (i.e., parameters that can be ob-
tained directly from the application graph alone). Section 5
presents the experiments and describes a methodology for
building such a classifier model from the experimental data.

In weighted graphs, the path length is calculated as the sum
of weights of constituent edges, so it is independent of the
number of hops. Therefore, even with synchronized traversal,
there is no guarantee that the first arrived message would
correspond to the shortest path, and the effect of reconver-
gence emerges again. Thus, we differentiate two sources of
path reconvergence: (1) communication‐driven reconvergence
caused by asynchronous communication and (2) application‐
driven reconvergence caused by the data (edge weights).
Asynchronous traversal in weighed graphs is impacted by both
types at the same time.

The relation between these effects and the graph topology
will be experimentally explored in the next section. In addition
to the parameters like graph size and fanout (degree) distri-
bution, we consider the step count, which is defined as the
largest number of edges in a shortest path. For unweighted
graphs, the step count equals to the graph diameter D. If
edge weights are taken into account, the shortest path may be
larger than the graph diameter. The ratio between the weighted
step count Dw and the graph diameter (unweighted step
count) D may serve as an indicator of application‐driven
reconvergence overheads because it depends not only on the
topology but also on the distribution of edge weight values.
Although in this metric it does not capture the effects of
asynchronous execution directly, it still has the potential to
serve as a heuristic for hardware‐driven reconvergence as well.
The next section provides the evidence for this correlation.

5 | EXPERIMENTAL RESULTS AND
ANALYSIS

Tinsel overlay provides a set of performance counters inside
POETS threads, which allow cycle‐accurate time measure-
ments; however, these measurements are not synchronized
between the threads, hence cannot represent the wall‐clock
time. During termination detection, the finish event is issued
from the supervisor FPGA board and arrives at all threads

within the inter‐machine latency L. For the purposes of pro-
cessing the performance results after the computation is
finished, we can align all collected performance counter
readings to the finish event to obtain a valid approximation for
the wall‐clock time with � L uncertainty, which is measured as
150 cycles at 240 MHz (including the time to pass through our
reliability layer), that is 625 ns. Using this technique, we can
calculate that the average delay for termination detection is
roughly 5000 cycles (21 μs at 240 MHz). This delay represents
the actual application‐level overhead of global synchronization.

This section uses collected performance measurements to
explore the system behaviour in different communication
modes in relation to the application graph parameters. The
data is then used to build performance models and evaluate the
platform's capabilities.

5.1 | Initial experiments

We perform a set of exploration experiments on the following
graph topologies, with and without edge weights; graph size
Vj j ranging from 210 = 1024 to 220 (over a million) nodes:

� k‐connected 2D and 3D grids represent spatially uniform
structures with a given degree of connectivity k. 2D grids
can have orthogonal (k = 4) and diagonal (k = 8) connec-
tions between neighbours; similar connections in 3D grids
give k = 6 and k = 26 respectively. 3D grids relate to the
seismic raytracing use case (Section 2.1).

� Irregular graphs with normal degree distribution. The
number of edges Ej j is specified approximately in a fixed
proportion to the number of nodes Vj j.

� Irregular graphs with exponential degree distribution
ðλ¼ Vj j= Ej jÞ, are also known as scale‐free graphs. Scale‐
free graph benchmarks represent drug discovery use case
examples (Section 2.2).

� For the corner case scenarios, we use binary tree and ring
topologies representing the best case and the worst case
respectively.

Graphs of size 220 are still considered relatively small for
the SSSP problem. We limit our benchmarks to this scale
because our goal is to explore the design space by running
hundreds of different configurations. The results from real‐life
application graphs are presented in Section 5.4.

Scale‐free graphs naturally contain a small number of
nodes with very large fanout, over 9000 edges in our larger
examples. Since the POETS system is built on small inter-
connected devices, such hub nodes break the programming
model, so the solution is to split those hub nodes into multiple
smaller nodes connected with zero‐weight edges. For this
reason, truly unweighted graphs are not possible for scale‐free
topologies and are labelled as graphs with binary weights (zero
or one) in the following discussions.

Table 1 shows the relation between D and the graph size
Vj j, as well as the ratio Dw=D for uniformly distributed edge
weights in the range 10; 1000½ �. The table also shows other

80 - RAFIEV ET AL.



graph characteristics, for example fanout (also called node
degree) and edge count; the numbers represent asymptotic
values for Vj j→ ∞.

In the initial experiments, we observed the interplay be-
tween various topological parameters and communication

protocols and their effect on performance. In our experiments,
we tested two different node‐to‐thread mappings (direct and
METIS) described in Section 3. The METIS mapping provides
20%–60% improved computation time for irregular graphs but
gives no apparent benefit when applied to regular grids. For
consistency, all results presented in this section are from the
direct mapping.

Figure 6 shows on a log‐to‐log scale the performance results
for SSSP. We implement and compare the algorithms described
in Section 4, namely synchronized (sync) and packet storm
(async). Even though the asynchronous execution is non‐
deterministic, any noise in the data is found insignificant
because all local non‐deterministic effects are averaged over a
large number of graph nodes. Table 2 summarises the results
from Figure 6 and highlights the link between different topology
classes and the preference towards a certain type of communi-
cation using the speedup metric: speedup for the asynchronous
mode is defined as Sa = ts/ta, where ts is the computation time
of the synchronized version and ta is the computation time of
the asynchronous version on identical input graphs; synchro-
nized mode speedup is defined as its reciprocal: Ss = 1/Sa = ta/
ts. The results show that the choice of the synchronization mode
is crucial for the performance: for a 4‐connected unweighted
2D grid, asynchronous execution can be 18.25 times faster than
synchronized; however, the effect is reversed in some topol-
ogies, where the synchronizedmode is faster (up to 3.17 times in
a 26‐connected weighted 3D grid). Across all graph types, six

TABLE 1 Characteristics of graph topologies

Topology Ej j
Vj j Fanout c Diameter D Dw

D

4‐con. 2D grid 2 4 Vj j
1
2 1.06

8‐con. 2D grid 4 8 Vj j
1
2 1.73

6‐con. 3D grid 3 6 Vj j
1
3 1.22

26‐con. 3D grid 13 26 Vj j
1
3 2.51

Normal 8 16 (mean) ≈ Vj j0:136 4.33

σ = 4.00

Normal 16 32 (mean) ≈ Vj j0:164 3.58

σ = 5.66

Scale‐free 8 16 (mean) ≈0:533 ⋅ ln Vj j 2.05

Scale‐free 16 32 (mean) ≈0:481 ⋅ ln Vj j 2.14

Binary tree 1 3 log2 Vj j 1

Ring 1 2 1
2 Vj j 1

F I GURE 6 SSSP performance results for different graph topologies and sizes

RAFIEV ET AL. - 81



topologies prefer the asynchronous mode with the average
speedup of 5.2 and 10 prefer the synchronous mode with the
average speedup of 2.4.

For weighted graphs, there is an observable link between
the preference for synchronous mode over asynchronous and
the proposed reconvergence heuristic: the correlation coeffi-
cient between Dw/D and the asynchronous speedup Sa is
moderately positive at 0.61. This link can be explained by the
effect of communication‐driven reconvergence amplified by
the application‐driven reconvergence, causing a combined
negative impact on the performance. For unweighted graphs,
the effect of reconvergence is not as pronounced, and the
diameter of the graph becomes a more significant factor.

The results show that the irregular graphs favour syn-
chronization, whereas regular grids favour asynchronous
execution. It is important to understand at which point the
change in behaviour occurs, so we designed an additional
experiment to explore the impact of graph regularity on the
performance in different synchronization modes. We start the
experiment with a regular 1024 � 1024 2D grid and randomly
mutate some r ⋅ Ej j edges to connect arbitrary nodes instead of
adjacent, where 0 ≤ r ≤ 1 is the ratio of randomized edges. For
r = 1, the graph transforms into a fully irregular graph with
normal degree distribution. Figure 7 presents the results for a
range of r values in 0.1 steps; the results show that even the
small number of random edges in a regular grid create a strong
shift towards synchronized execution. We believe that the main
reason for this is the graph diameter: any random edge creates
a “shortcut” in a grid greatly reducing its diameter. For
example, for r = 0, the diameter equals 1024, whereas r = 0.1
reduces the diameter to 11. Adding more random edges further
reduces the diameter, but at a much lower rate.

The extreme case of the graph diameter hindering the
performance is clearly visible in Figure 8 showing statistics for
binary tree and ring topologies (here, weighted and unweighted
graphs display exactly the same behaviour, hence are not
differentiated in the plots). These topologies make less prac-
tical sense for SSSP but demonstrate the system behaviour if
there is no or very limited reconvergence of traversal paths.
Self‐timed nature of the POETS synchronization mechanism

means that the step time can vary depending on the network
and core loads. The results for the step time show that it
remains approximately constant for different graph sizes and
only changes due to the differences in topology and commu-
nication modes. Therefore, the computation time grows pro-
portionally to the graph diameter for this set of results.

5.2 | Additional experiments

Message traffic density is a crucial factor for asynchronous
SSSP. Partially Ordered Event‐Triggered Systems system gua-
rantees the arrival of messages, but it does not guarantee the
order of arrival. In the extreme cases of congestion, a “star-
vation” effect may occur when messages from the beginning of
the computation get delayed almost until the very end. Figure 9
shows a snapshot from the asynchronous SSSP for an 8‐
connected 2D grid running on one POETS box (7 FPGA
boards, 6144 hardware threads). The size of the grid de-
termines the number of graph nodes per hardware thread, and
therefore impacts the traffic density: for 256 � 256 grid, each
thread processes 11 graph nodes, whereas for 1024 � 1024
grid, the number of nodes per thread increases to 171. The
image captures the arrival of the very first wave of updates
coming from the source. In the smaller grid, the update front is
almost smooth with only local fluctuations due to asynchro-
nous communication. In the larger example, some of the
messages get stalled causing the front to split into multiple
wavelets creating a “foam” effect. This does not affect the
correctness of computation since the algorithm is delay
insensitive by design. All gaps eventually get filled during the
execution. However, the effect increases the reconvergence of
the update wavefronts and therefore has a negative impact on
the performance.

To confirm the hypothesis of the effect of reconver-
gence on performance, we performed a set of additional
SSSP experiments while also counting the number of times
the state of the node (i.e., the most recently known value of

TABLE 2 Measured async (Sa) versus sync (Ss) speedup

Unweighted Weighted

Topology Sa Ss Sa Ss

Normal, Ej j ¼ 8 ⋅ Vj j 0.44 2.27 0.46 2.15

Normal, Ej j ¼ 16 ⋅ Vj j 0.56 1.80 0.42 2.35

Scale‐free, Ej j ¼ 8 ⋅ Vj j 0.81 1.24 0.52 1.93

Scale‐free, Ej j ¼ 16 ⋅ Vj j 0.74 1.35 0.40 2.52

4‐con. 2D grid 18.25 0.05 1.81 0.55

8‐con. 2D grid 5.65 0.18 1.32 0.76

6‐con. 3D grid 2.01 0.50 0.63 1.60

26‐con. 3D grid 2.16 0.46 0.32 3.17

Note: Superior communication mode is highlighted in bold.
F I GURE 7 Randomized grid performance results; r is the ratio of
random edges within a grid

82 - RAFIEV ET AL.



the shortest path) is updated. Figure 10 shows the spatial
distribution of the update count (also called visits) in a
regular 8‐connected grid. Asynchronous SSSP on an un-
weighted grid has up to 69 visits per node caused by
communication‐driven reconvergence. Synchronous SSSP on
a weighted grid has only up to 7 visits per node, and it can
be seen that the pattern of higher visits resembles the dif-
ferences in weights on the weight map, which demonstrates
the effect of application‐driven reconvergence. Notably, this
type of reconvergence has a considerably smaller impact as
the synchronization of packets has a high chance to force
message waves to interact. In asynchronous SSSP on a
weighted graph, both effects interfere and amplify each
other to the maximum number of visits of 190. In com-
parison, 4‐connected grid (not shown) has the maximum
visits of 6, 18, and 128 respectively. Horizontal bands visible
on asynchronous plots in Figure 10 are caused by the fact

that FPGA boards start asynchronously (within 2 ms): if a
board has a delayed start relative to its neighbour, some
messages have to queue before the inter‐FPGA connection;
the effect manifests as an unwanted synchronization barrier
at that location.

5.3 | Model fitting

Collected experimental data display complex interplays be-
tween multiple effects where some topologies show a prefer-
ence towards asynchronous communication and others clearly
benefit from synchronization. We apply the curve fitting
technique to these data to build a performance model that can
be used as a classification heuristic. The goal is to predict
communication mode preference from the properties of the
application graph at design time.

nodes
210 211 212 213 214 215 216 217

co
m

pu
te

 ti
m

e,
 s

10-3

10-2

10-1

100

101

Performance

nodes
210 211 212 213 214 215 216 217

st
ep

tim
e,

s

10-6

10-5

10-4

10-3

10-2

Time/step

ring sync binary tree sync ring async binary tree async

F I GURE 8 SSSP performance and step time for binary tree and ring topologies; for async, the step time equivalent is calculated as the total computation
time divided by D

64x64 portion of 256x256 grid 64x64 portion of 1024x1024 grid

not visited visited nodes

F I GURE 9 A snapshot of the asynchronous single source shortest path (SSSP) progress showing the change in update propagation between different graph
sizes due to traffic density. Arrows show the general direction of travel

RAFIEV ET AL. - 83



Control variables X ¼ x1;…; x4ð Þ are selected as shown
in Table 3. The graph diameter parameter represents the
asymptotic theoretical value, shown in Table 1, because
finding the actual graph diameter would require running
APSP, which defeats the purpose of the method. Additional

data points can be used to improve the model during run‐
time operation; however, for the purposes of the demon-
stration only the initial characteristics are used for the
fitting.

Since the speedup is defined as a ratio, it may not be
well‐suited for linear model fitting. Instead, we separately fit
performance models for ts and ta, and then use those for
calculating the speedup. We select quasi‐linear model hy-
pothesis capturing the interplay between pairwise combi-
nations of parameters as it keeps partial derivatives
constant for model fitting purposes. The hypothesis rep-
resents linear‐interpolated performance trend for
218 ≤ Vj j ≤ 220, which is sufficient for the purpose of the
final classifier model. The major drawback of a linear hy-
pothesis is that it may give negative answers that are
nonsensical for a performance model. Hypothesis general
form is set to:

t Xð Þ ¼ α0 þα1x1
þα2x2 þ α3x1x2
þα4x3 þ α5x1x3 þ α6x2x3
þα7x4 þ α8x1x4 þ α9x2x4 þ α10x3x4;

ð1Þ

where some terms are eliminated using PCA separately for
each model. In fact, we considered more parameters than listed
x1, …, x4, including max fanout, fanout variance, edge weight
variance, and others, but those got eliminated during the PCA
phase. We know from the initial observations, presented earlier
in this section, that there is a significant difference in the type
of interplays in unweighted graphs compared to weighted
graphs, hence we build separate models for each of these cases.
Experiments on scale‐free graphs use binary weights because
of node splitting, and the performance data are not similar
enough to fit into the same model as unweighted, hence cannot
be used for model fitting in our case (shown as “no model” in
the results).

Table 4 presents the models produced by the least‐squares
model fitting; R2 values are in the acceptable range, although
weighted data are considerably noisier and more difficult to fit.
From the methodological point, we try to avoid performing a
larger number of initial experiments with the idea that the
future performance data can still be used to refine the model
during the exploitation phase. Typically, real‐world applications
work with specific and fairly narrow topology classes that can
be studied in advance, therefore it is possible to perform an

F I GURE 1 0 Comparison between the effects of reconvergence on
the number of state updates (visits) in an 8‐connected regular grid. Fewer
visits (lighter areas) represent a more efficient computation. The source is in
the top‐left corner

TABLE 3 Performance model parameters

X Description

x1 ¼ Vj j=220 Graph size (normalized to 220)

x2 ¼ c Average fanout

x3 = D Graph diameter

x4 = Dw/D Reconvergence metric

TABLE 4 Performance model fitting results

Edge weights Type Performance model R2

Unweighted Sync ts Xð Þ ¼ −1:0641 ⋅ 10−1 þ 2:8554 ⋅ 10−1 ⋅ x1 − 3:8612 ⋅ 10−3 ⋅ x3 þ 1:2842 ⋅ 10−3 ⋅ x1x3
þ3:3268 ⋅ 10−3 ⋅ x3x4

0.9254

Unweighted Async ta Xð Þ ¼ 3:8145 ⋅ 10−2 − 3:1503 ⋅ 10−2 ⋅ x1 − 1:0566 ⋅ 10−2 ⋅ x1x2 − 5:8989 ⋅ 10−2 ⋅ x4
þ2:0707 ⋅ 10−1 ⋅ x1x4 þ 1:9132 ⋅ 10−3 ⋅ x2x4

0.9258

Weighted Sync ts Xð Þ ¼ −5:6585 ⋅ 10−1 þ 8:6366 ⋅ 10−1 ⋅ x1 þ 2:4097 ⋅ 10−2 ⋅ x1x2
þ1:0416 ⋅ 10−3 ⋅ x1x3 þ 1:1998 ⋅ 10−3 ⋅ x2x3 − 3:9211 ⋅ 10−3 ⋅ x3x4

0.8760

Weighted Async ta Xð Þ ¼ −4:1262 ⋅ 10−1 þ 9:4450 ⋅ 10−1 ⋅ x1 − 2:7867 ⋅ 10−2 ⋅ x2 þ 4:1067 ⋅ 10−1 ⋅ x1x2
þ4:2625 ⋅ 10−4 ⋅ x2x3 − 1:8203 ⋅ x1x4

0.8131

84 - RAFIEV ET AL.



exploratory experimental study on a small number of graphs
and extrapolate configuration strategy to a larger number of
use cases from the same category.

Figure 11 compares the speedup values calculated from the
models to the measured speedup from Table 2. Sa and Ss are
reciprocal to each other, hence their value axes are symmetrical
around the value of one on a log scale. Communication pref-
erence is therefore represented with the async value bars

aligned to the right and sync aligned to the left. Since the
models are intended to be used as a heuristic classifier, we are
not interested in the quantitative accuracy of the predicted
performance, but only in a correct prediction of the “direc-
tion” of the bars (i.e., the model correctly predicts the cases of
ta > ts and vice versa). Table 5 displays the classification results.
Apart from a single instance of model error (linear model
returned a negative value), all predictions are correct: the
preferences for the synchronization modes are the same as in
the experimental observations. By following these model pre-
dictions, we are able to achieve the average speedup of 3.22
across the investigated graph topologies.

5.4 | Real‐life use case comparison

The developed classifier models have been used to create a
decision flow for selecting the POETS prototype platform's
mode of communication. This section demonstrates the
achieved improvement in computation time in comparison
with the same platform's operation without this feature in
place. All results are obtained from the experiments on the
actual hardware running real‐life applications introduced in
Section 2.

Figure 12 shows the results for the seismic raytracing
application. The model classified this application for syn-
chronized communication preference. The results show better
performance scaling to larger graph sizes in comparison to the
asynchronous mode.

The drug discovery use case results, shown in Figure 13,
demonstrate the APSP variant of the network traversal
application. Fundamentally, APSP calculation is a scaled‐up
version of SSSP where each node is a source node. For a
given network consisting of Vj j nodes, scaling up SSSP can
be done in the following ways:(1) time scaling repeats SSSP
calculation Vj j times for each source node; this approach is
typical for single‐core execution; (2) in data scaling, each
node acts as a source node and also keeps track of
ð Vj j − 1Þ shortest path lengths to all other sources; mes-
sages include additional information on which source
calculation they belong to, and the number of messages is

Irregular graph (normal), |E| = 8·|V|2.27

Irregular graph (normal), |E| = 16·|V|1.80

Irregular graph (scale-free), |E| = 8·|V|1.24

Irregular graph (scale-free), |E| = 16·|V|1.35

4-connected 2D grid

8-connected 2D grid 5.65

6-connected 3D grid 2.01

26-connected 3D grid 2.16

2.02

2.72

(no model)

(no model)

2.98

2.18

Speedup
2 3 4 56 7 8Ss 1 2 3 4 5 6 7 8 Sa

Speedup: Unweighted graphs

measured modelled

Irregular graph (normal), |E| = 8·|V|2.15

Irregular graph (normal), |E| = 16·|V|2.35

Irregular graph (scale-free), |E| = 8·|V|1.93

Irregular graph (scale-free), |E| = 16·|V|2.52

4-connected 2D grid 1.81

8-connected 2D grid 1.32

6-connected 3D grid1.60

26-connected 3D grid3.17

(model error)

3.51

2.23

2.22

1.15

1.12

1.12

3.16

Speedup
2 3 4 56 7 8 1 2 3 4 5 6 7 8

Speedup: Weighted graphs

measured modelled

Ss Sa

18.2518.25

8.76

8.87

F I GURE 1 1 Experimental evidence for synchronization preferences
in different topologies shown as async (on the right) and sync (on the left)
speedup values and compared to model predictions. We are interested in
predicting trends, not actual values. Note that Ss = 1/Sa

TABLE 5 Classifier model prediction results

Topology Unweighted Weighted

Normal, Ej j ¼ 8 ⋅ Vj j Sync model error

Normal, Ej j ¼ 16 ⋅ Vj j Sync Sync

Scale‐free, Ej j ¼ 8 ⋅ Vj j no model Sync

Scale‐free, Ej j ¼ 16 ⋅ Vj j no model Sync

4‐con. 2D grid Async Async

8‐con. 2D grid Async Async

6‐con. 3D grid Async Sync

26‐con. 3D grid Async Sync

RAFIEV ET AL. - 85



increased by Vj j; (3) spatial scaling or cloning creates Vj j
copies of the original network as island graphs in a large
meta‐network, and each island calculates SSSP for a given
source node; the total number of nodes is increased to Vj j2,
but the amount of memory per node and the traffic density
stay the same. It is possible to do a combination of different
scaling types: for example, one can use data scaling of a
factor k < Vj j to utilise all available core memory and/or
network throughput and then clone the network ⌈ Vj j=k⌉
times to cover all source nodes.

Asynchronous implementation of APSP turned out to be
considerably less efficient than synchronized, although the rate
of scaling is similar. The main reason is that asynchronous
APSP requires 16 times more device memory and 16 times
more message data as discussed earlier. Adding the fact that the
message traffic comes in unrestricted bursts, asynchronous
APSP appears on average 80–100 times slower than
synchronized.

6 | CONCLUSIONS

This paper described an event‐based programming model for
graph analytic applications and proposed a methodological
case for model‐based decisions on communication protocols.
From an extensive experimental exploration of the design
space, we determined that the major contributing factors
from the graph topology are the graph size, average fanout,
graph diameter, and reconvergence. These factors can be
estimated at design‐time from the static graph analysis. We
applied the least‐squares fitting technique to create a classifier
model based on these factors and achieved the improvement
in computation time up to 18.25 times, or 3.22 times on
average in comparison to the results without the model
support.

The study was performed in the context of POETS: a
massively parallel prototype compute platform based on
FPGAs. A high‐level event‐based API formed an additional

graph nodes
105 106 107 108

co
m

pu
te

 ti
m

e,
 s

10-2

10-1

100

101

102

POETS, no model POETS, model

POETS, model
POETS, no model

F I GURE 1 2 Impact of model‐driven approach for the seismic raytracing use case: single source shortest path (SSSP) on a regular 3D grid with weighted
edges

graph nodes
103 104 105

co
m

pu
te

 ti
m

e,
 s

10-2

10-1

100

101

102

POETS, no model POETS, model

POETS, model

POETS, no model

F I GURE 1 3 Impact of model‐driven approach for the drug discovery use case: all‐pair shortest paths (APSP) on an irregular unweighted graph

86 - RAFIEV ET AL.



abstraction level and provided control over the crucial features
like node‐to‐core mapping, memory distribution, and
communication model. Hardware‐implemented termination
detection experimentally proved to be fast and efficient, so it
can also serve as a synchronization barrier. Therefore, globally
synchronized communication protocols were confirmed as a
viable alternative to asynchronous communications and were
shown to improve computation time in a number of graph
topologies, including real‐life use cases from the fields of
biology and geology.

We are currently undertaking the process of upgrading the
POETS platform to the next‐generation FPGAs (Intel Stratix
10) and faster inter‐board connections. The future work will
also include the investigation of whether the performance
models still produce valid predictions for the upgraded system,
and if not, generalise the modelling methodology to support
multiple platforms.

ACKNOWLEDGEMENT
This work is supported by EPSRC/UK as a part of the
POETS project EP/N031768/1.

DATA AVAILABILITY STATEMENT
Data available on request from the authors.

ORCID
Ashur Rafiev https://orcid.org/0000-0002-7387-5970
Alex Yakovlev https://orcid.org/0000-0003-0826-9330
Matthew F. Naylor https://orcid.org/0000-0001-9827-8497
Simon W. Moore https://orcid.org/0000-0002-2806-495X
David B. Thomas https://orcid.org/0000-0002-9671-0917
Graeme M. Bragg https://orcid.org/0000-0002-5201-7977
Mark L. Vousden https://orcid.org/0000-0002-6552-5831

REFERENCES
1. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small‐world’ networks.

Nature. 393(6684), 440 (1998)
2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks.

Science. 286(5439), 509–512 (1999)
3. Barabási, A.L., et al.: Network Science. Cambridge university press (2016)
4. Satish, N., et al.: Large‐scale energy‐efficient graph traversal: a path to

efficient data‐intensive supercomputing. In: Proc. To SC’12, pp. 1–11.
IEEE (2012)

5. Mokhov, A., et al.: Language and hardware acceleration backend for
graph processing. In: Languages, Design Methods, and Tools for Elec-
tronic System Design, pp. 71–88. Springer (2019)

6. Brown, A., et al.: Distributed Event‐Based Computing. IOS Press (2018).
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/N03
1768/1

7. POETS Project Website, (2021). https://poets‐project.org
8. RISC‐V: The Free and Open RISC Instruction Set Architecture (2021).

https://riscv.org
9. Naylor, M., et al.: Termination detection for fine‐grained message‐

passing architectures. In: Proc. To ASAP. IEEE (2020)
10. Kitano, H.: A robustness‐based approach to systems‐oriented drug

design. Nat. Rev. Drug Discov. 6(3), 202–210 (2007)
11. E‐Therapeutics Website, (2021). https://www.etherapeutics.co.uk
12. Young, M.P., Zimmer, S., Whitmore, A.V.: Chapter 3. Drug molecules

and biology: network and systems aspects. In: RSC Drug Discovery,
pp. 32–49. Royal Society of Chemistry (2012)

13. Malony, A.D., et al.: Towards scaling parallel seismic raytracing. In: CSE/
EUC/DCABES 2016, pp. 225–233. IEEE (2016)

14. Monil, M.A.H., et al.: A scalable parallel seismic raytracing system. In:
Proc. To PDP, pp. 204–213. IEEE (2018)

15. Nollet, G.: A Breviary of Seismic Tomography: Imaging the Interior of
the Earth and Sun. Cambridge University Press, (2008). Cambridge
University Press

16. Quinn, M.J., Deo, N.: Parallel graph algorithms. ACM Comput. Surv.
16(3), 319–348 (1984)

17. Bader, D.A., Madduri, K.: Designing multithreaded algorithms for
breadth‐first search and st‐connectivity on the cray mta‐2. In: 2006 In-
ternational Conference on Parallel Processing (ICPP’06), pp. 523–530.
IEEE (2006)

18. Mastrostefano, E., Bernaschi, M.: Efficient breadth first search on multi‐
gpu systems. J. Parallel Distr. Comput. 73(9), 1292–1305 (2013)

19. Beamer, S., Asanović, K., Patterson, D.: Direction‐optimizing breadth‐
first search. Sci. Program. 21(3‐4), 137–148 (2013)

20. Bernaschi, M., et al.: Enhanced gpu‐based distributed breadth first
search. In: Proceedings of the 12th ACM International Conference on
Computing Frontiers, pp. 1–8 (2015)

21. Yoo, A., et al.: A scalable distributed parallel breadth‐first search algo-
rithm on bluegene/l. In: SC’05: Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing, p. 25, IEEE, (2005)

22. Pearce, R., Gokhale, M., Amato, N.M.: Faster parallel traversal of scale
free graphs at extreme scale with vertex delegates. In: SC’14: Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 549–559. IEEE (2014)

23. Pearce, R., Gokhale, M., Amato, N.M.: Multithreaded asynchronous
graph traversal for in‐memory and semi‐external memory. In: SC’10:
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–11.
IEEE (2010)

24. Pearce, R., Gokhale, M., Amato, N.M.: Scaling techniques for massive
scale‐free graphs in distributed (external) memory. In: 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing,
pp. 825–836. IEEE (2013)

25. Wang, Y., et al.: Gunrock: gpu graph analytics. ACM Trans. Parallel
Comput. (TOPC). 4(1), 1–49 (2017)

26. Xu, C., et al.: Graph processing services on energy‐efficient hardware
accelerator. In: 2018 IEEE International Conference on Web Services
(ICWS), pp. 274–281. IEEE (2018)

27. Lei, G., et al.: Torusbfs: a novel message‐passing parallel breadth‐first
search architecture on fpgas. EngineerSci. Technol. Int. J. 5(5), 10 (2015)

28. Finnerty, E., et al.: Dr. bfs: data centric breadth‐first search on fpgas. In:
2019 56th ACM/IEEE Design Automation Conference (DAC), pp. 1–6.
IEEE (2019)

29. Plana, L.A., et al.: A GALS infrastructure for a massively parallel
multiprocessor. IEEE Des.Test. Comput. 24(5), 454–463 (2007)

30. Witlox, B.R.T.M., et al.: Performance analysis of dataflow architectures
using timed coloured petri nets. In: Hardware Design and Petri Nets.
Springer (2000)

31. Xie, A., Beerel, P.A.: Performance analysis of asynchronous circuits and
systems using stochastic timed petri nets. In: Hardware Design and Petri
Nets. Springer (2000)

32. Rafiev, A., et al.: Practical Distributed Implementation of Very Large
Scale Petri Net Simulations. Petri Nets and Other Models of Concur-
rency (ToPNoC) (2022). (in print)

33. Rencher, A.C., Christensen, W.F.: Methods of Multivariate Analysis.
Wiley, Hoboken, NJ (2012)

34. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent
developments. Philos Trans A Math Phys Eng Sci. 374(2065) (2016)

35. Darken, C., Chang, J., Moody, J.: Learning rate schedules for faster sto-
chastic gradient search. In: Neural Networks for Signal Processing II
Proceedings of the 1992, pp. 3–12. IEEE Workshop (1992)

36. Aalsaud, A., et al.: Power–aware Performance Adaptation of Concurrent
Applications in Heterogeneous Many‐Core Systems. ISLPED 16,
pp. 368–373. Association for Computing Machinery, New York (2016).
https://doi.org/10.1145/2934583.2934612

RAFIEV ET AL. - 87

https://orcid.org/0000-0002-7387-5970
https://orcid.org/0000-0002-7387-5970
https://orcid.org/0000-0003-0826-9330
https://orcid.org/0000-0003-0826-9330
https://orcid.org/0000-0001-9827-8497
https://orcid.org/0000-0001-9827-8497
https://orcid.org/0000-0002-2806-495X
https://orcid.org/0000-0002-2806-495X
https://orcid.org/0000-0002-9671-0917
https://orcid.org/0000-0002-9671-0917
https://orcid.org/0000-0002-5201-7977
https://orcid.org/0000-0002-5201-7977
https://orcid.org/0000-0002-6552-5831
https://orcid.org/0000-0002-6552-5831
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef%3DEP/N031768/1
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef%3DEP/N031768/1
https://poets-project.org
https://riscv.org
https://www.etherapeutics.co.uk
https://doi.org/10.1145/2934583.2934612
https://orcid.org/0000-0002-7387-5970
https://orcid.org/0000-0003-0826-9330
https://orcid.org/0000-0001-9827-8497
https://orcid.org/0000-0002-2806-495X
https://orcid.org/0000-0002-9671-0917
https://orcid.org/0000-0002-5201-7977
https://orcid.org/0000-0002-6552-5831


37. Naylor, M., Moore, S.W., Thomas, D.: Tinsel: a manythread overlay for
FPGA clusters. In: Proc. To FPL (2019)

38. Dijkstra, E.W.: Shmuel Safra’s version of termination detection.
EWD998 (1987). https://www.cs.utexas.edu/users/EWD/ewd09xx/
EWD998.PDF

39. Karypis, G., Kumar, V.: METIS: A Software Package for Partitioning
Unstructured Graphs, Partitioning Meshes, and Computing Fill‐
Reducing Orderings of Sparse Matrices. University of Minnesota (1998)

How to cite this article: Rafiev, A., et al.:
Synchronization in graph analysis algorithms on the
Partially Ordered Event‐Triggered Systems many‐core
architecture. IET Comput. Digit. Tech. 16(2-3), 71–88
(2022). https://doi.org/10.1049/cdt2.12041

88 - RAFIEV ET AL.

https://www.cs.utexas.edu/users/EWD/ewd09xx/EWD998.PDF
https://www.cs.utexas.edu/users/EWD/ewd09xx/EWD998.PDF
https://doi.org/10.1049/cdt2.12041

	Synchronization in graph analysis algorithms on the Partially Ordered Event‐Triggered Systems many‐core architecture
	1 | INTRODUCTION
	2 | APPLICATIONS AND MOTIVATION
	2.1 | Drug discovery
	2.2 | Seismic raytracing
	2.3 | Parallel platforms
	2.4 | Related modelling methodologies

	3 | PARTIALLY ORDERED EVENT‐TRIGGERED SYSTEMS HARDWARE PLATFORM
	3.1 | Hardware‐level termination detection
	3.1.1 | Safra's algorithm
	3.1.2 | Scalable topology
	3.1.3 | Barrier release

	3.2 | High‐level API

	4 | ALGORITHMS
	5 | EXPERIMENTAL RESULTS AND ANALYSIS
	5.1 | Initial experiments
	5.2 | Additional experiments
	5.3 | Model fitting
	5.4 | Real‐life use case comparison

	6 | CONCLUSIONS
	ACKNOWLEDGEMENT
	DATA AVAILABILITY STATEMENT


