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Abstract: When dealing with the complex deformation of free surface such as wave breaking, tra-
ditional mesh-based Computational Fluid Dynamics (CFD) methods often face problems arising
alongside grid distortion and re-meshing. Therefore, the meshless method became robust for treating
large displaced free surface and other boundaries caused by moving structures. The particle method,
which is an important branch of meshless method, is mainly divided into the Smoothed Particle
Hydrodynamics (SPH) and Moving Particle Semi-implicit (MPS) methods. Different from the SPH
method, which involves continuity and treat density as a variable when building kernel functions,
the kernel function in the MPS method is a weight function which treats density as a constant, and
the spatial derivatives are discretized by establishing the gradient operator and Laplace operator
separately. In other words, the first- or second-order continuity of the kernel functions in the MPS
method is not a necessity as in SPH, though it might be desirable. At present, the MPS method has
been successfully applied to various violent-free surface flow problems in ocean engineering and
diverse applications have been comprehensively demonstrated in a number of review papers. This
work will focus on algorithm developments of the MPS method and to provide all perspectives in
terms of numerical algorithms along with their pros and cons.

Keywords: meshless method; moving particle semi-implicit method; computational fluid dynamics

1. Introduction

The Moving Particle Semi-implicit method (MPS), a prevailing particle method origi-
nally proposed by Koshizuka [1], is a meshless method based on Lagrangian description. In
this method, arbitrary distributed particles are used to discretize the computation domain
and the governing equations are solved by a Projection-Correction (semi-implicit) method.
In addition, the information of flow dynamics such as mass, momentum and pressure
are carried by moving particles. Since the method is based on Lagrangian formulation of
the N-S equation, the convection term is omitted compared to conventional mesh-based
method. In addition, free surface is automatically tracked where the free surface condition
can be explicitly implemented.

For its great merits and potential, MPS methods are playing an increasingly important
role in engineering, such as ship engineering, civil engineering, microflow, biomechanics,
and visualization [2,3]. For free surface flow, this method has been successfully applied
to dam-break, wave breaking, sloshing in liquid tank, green water, water impact, and
fluid-structure interaction problems. From the current applications, this method is proved
to be effective in handling violent free-surface deformation flow [4–9].

With the development of naval architecture becomes larger and more offshore, the
fluid-structure interaction problem (FSI) is receiving increasing attention and many further
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studies have been carried out. This problem usually involves non-linear phenomena, such
as wave free surface overturning, breaking, splashing, fusion and complex kinematic re-
sponse of the structure [4,7,9]. Until now, most of the numerical simulations for FSI were
conducted using mesh-based methods. Despite the high efficiency of mesh-based meth-
ods, deformation adjustment and mesh reconstruction are usually required for fluid and
structure boundaries. In recent years, some newly developed meshless particle methods,
such as MPS and SPH, which show good adaptability to large deformation or violent flow
problems, have been used to study fluid-structure coupling problems. In applications of
tank sloshing, mesh-based methods require finer grids to treat free surface, while such
a higher resolution requirement is relaxed in particle methods such as MPS even for the
violent flow conditions [10–14]. The water entry problem is also very common in practical
problems. Prolonged exposure of structures to periodic slamming may result in damage
to the structure, which is of great important in the design and construction of marine
structures. Though the development of MPS method on water entry problem started
recently, the effectiveness of MPS in solving this problem remains in treating irregular
free surfaces and the accuracy is in line with the experimental approach and mesh-based
approach [8,15–18]. Although the use of particle method for fluid structure interaction
problems is still in its developing stage, the success of the MPS method for the simulation
of the abovementioned FSI problems provide a solid foundation for future simulations
of complex FSI problems arising in marine and ocean engineering [4–6]. For the future
development, further enhancements are needed in MPS structure models for FSI in terms
of stability, accuracy, and conservation properties, and more consistent coupling schemes
need to be developed with careful considerations of interface boundary conditions and nu-
merical stability. Multiscale simulations [3,19] are expected to gain more interest in practical
particle-based FSI simulations, mainly for achieving physically consistent and computa-
tionally efficient simulations. For large discontinuities in structural material, e.g., fracture
mechanics and composite structures’ dynamics, MPS Particle-based models are expected to
be further developed for reliable simulation of these complex FSI problems [20,21].

Multiphase flow simulation remains one of the most challenging studies in com-
putational fluid dynamics due to the complex internal physical phenomena. The main
difficulties are the abrupt changes in density and viscosity, large deformation, and topology
conversion at the interface [22,23]. When the particle method is used to simulate multiphase
flow, sharp and abrupt changes in density at the phase interface lead to a discontinuity in
the density field, and hence, cause discontinuous pressure gradient field. As a result, even
small errors in the pressure gradient calculation can cause serious numerical instability
problems. How to deal with the density discontinuity problem is the key to the application
of the particle method to multiphase flow simulation, especially for flow, which contains
large density differences between phases. Recently, researchers have made some progress
to overcome the discontinuity problems which arise from density and viscosity differences
between two different particles. These studies include density smoothing schemes, density
averaging, artificial repulsive pressure force, and artificial surface tension force. For exam-
ple, Shakibaeinia et al. [22] developed an MPS method for multiphase flows, by treating the
multiphase system as a multidensity and multiviscosity fluid, where the density used in the
pressure equation is smoothed and the viscosity schemes averaged. Liu et al. [24] proposed
a hybrid particle–mesh method for viscous and incompressible multiphase flows, where
the sharp interface is preserved for the density and viscosity jump by solving one phase
with stationary mesh and the other phase with moving particles. Ng et al. [25] proposed
the Moving Particle Level-Set (MPLS) method, which enhances the smoothness of the fluid
interface with large density ratio using. Wang et al. [26] developed an improved MPS
method adopting an integral form of the governing equation to reduce the influence of
discontinuities of fluid density and viscosity on the accuracy and stability. By using this
improved method, the particle penetration at the interface is efficiently avoided and a
smoother interface is obtained. This method has been successfully applied to two-phase
dam-break, bubble rising, and Rayleigh–Taylor instability. Kim et al. [27] extended the
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MPS method to a multiphase system with multiple interfaces by including surface tension,
self-buoyancy correction and interface boundary condition modules. This modified MPS
method is used successfully to simulate Kelvin–Helmholtz instability arising from the
classical Poiseuille problem of two fluids flowing with different velocities between two
parallel plates. For a review on the recent progress of more detailed MPS applications for
multiphase flows, see Sakai et al. [23] and Luo et al. [3] for particle methods in ocean and
coastal engineering. Despite significant advances for the multiphase simulations, several
aspects require continuous attention to further enhance the reliability and applicability of
the MPS methods, especially those for large density ratios, to multiphase flows in ocean
engineering. Future work needs to focus on further improvement of the method and its
computational efficiency, with specific attention to detailed physics of the problem and
conservations of properties in terms of volume, momentum and energy, as well as its appli-
cation to practical engineering problems. MPS methods are also promising for application
to the simulation of complex multiphase phenomena, including phase transitions, which at
the moment are beyond their capabilities.

This paper focuses on an overview of the algorithmic improvements of the MPS
method and briefly summarizes its application to marine and offshore engineering prob-
lems. In the algorithm improvement sections, firstly, the improvements of different oper-
ators for terms’ discretization are presented; secondly, different methods for solving the
pressure in the particle method and the modification of the source term of the Poisson
pressure equation are analyzed. Thirdly, the implementations of the boundary conditions
are introduced, including the identification of free surface particles, wall boundaries and in-
let/outlet boundary conditions. Finally, the relevant algorithms for optimizing the particle
distribution are reviewed.

2. Original MPS

In this section, the original MPS method is briefly described, including the time
marching procedure to enforce the incompressibility, governing equations, interpolation
and derivative schemes and boundary conditions.

2.1. Governing Equations

We mainly apply MPS method to deal with free surface flows in the fields of naval
architecture and marine engineering. Therefore, the fluid of flows can be regarded as
incompressible and Newtonian. Governing equations consist of the continuity equation
and the momentum equation in the Lagrangian formulation [1] as expressed:

1
ρ

Dρ

Dt
= ∇ · u = 0 (1)

Du
Dt

= −1
ρ
∇P + υ∇2u + g (2)

where u is velocity, P is pressure, g is gravity acceleration, and υ is kinematic viscosity.

2.2. Time Marching Procedure

The time marching of the MPS is divided into explicit and implicit steps by a two-step
projection method, which actually solves the N-S equation in two steps by introducing
an intermediate velocity, i.e., u = u∗ + u′. The first prediction step (explicit step) is to
calculate the intermediate velocity u∗ considering all the forces at RHS of the momentum
equation but pressure, and then to move the particles to the intermediate location according
to this velocity:

u∗ = un + ∆t
(
υ∇2u + g

)
r∗ = rn + ∆tu∗

(3)

where r represents the location vector of particles and ∆t is the time increment. The super-
script ∗ is the intermediate value between the two simulation time steps.
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The second correction step (implicit step) is to solve the pressure Poisson equation
(PPE) to gain the pressure field of the fluid, which is then used to correct the velocity and
location of particles. The intermediate velocity u∗ corresponds to an intermediate density
ρ∗. By substituting u = u∗ + u′ into the momentum equation, and ρ = ρ∗ + ρ′ into the
continuity equation, a pressure Poisson equation is then derived as follows to solve the
pressure field: 〈

∇2P
〉n+1

= − ρ

(∆t)2
ρ∗ − ρk+1

ρk+1 (4)

The velocity correction value is derived explicitly from the pressure gradient term as:

u′ = − ρ

∆t
∇Pn+1 (5)

After obtaining the pressure, the velocity and location are then updated for the next
time step as:

un+1 = u∗ + u′

rn+1 = rn + un+1∆t
(6)

2.3. Interpolation and Derivative Schemes

• Kernel function

In the MPS method, kernel function w(r) is the most basic element which is used in
function interpolative and derivative schemes for each particle and its neighboring particles.
Its value is determined by the distance between particles. The closer the distance between
particles, the greater the value of kernel function w(r) and vice versa. For a particle in
calculation (i), the influence from its neighboring particles (j) within the influence domain
is estimated through the kernel function as:

w(r) =

{ re

r
− 1 (0 ≤ r ≤ re)

0 (re ≤ r)
, (7)

where r =
∣∣ri − rj

∣∣ is the distance between particle i and j. The radius of the influence
domain is re.

• Interpolation scheme

The physical quantity φ at particle i is the weighted average of that for the surrounding
neighbor particle j, and the weighted value is the value of the kernel function:

〈φ〉i =
∑j 6=i φj · w

(∣∣rj − ri
∣∣)

∑j 6=i w
(∣∣rj − ri

∣∣) (8)

where the summation is over the neighboring particles j within the support domain of
the particle i. For Laplace and gradient operators, the radius of the support domain re is
usually different.

• Particle number density

This is also known as particle density in MPS, which is positively correlated with
physical density. It is the summation of the kernel functions of the surrounding particles as:

〈n〉i = ∑
j 6=i

w
(∣∣rj − ri

∣∣) (9)
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The particle number density n is divided by the integral of the kernel function in the
support domain and the number of particles per unit volume is then expressed as:

〈N〉i =
〈n〉i∫

Vw(r)dv
(10)

Assuming that the mass of each particle is constant m, the physical density could be
represented as:

〈ρ〉i = m〈N〉i =
m〈n〉i∫

Vw(r)dv
(11)

The above equation shows that the fluid density is proportional to the particle number
density, so ensuring particle number density constant n0 satisfies incompressibility of the
fluid. When the particle number density n∗ deviates from n0, it will be implicitly corrected
to n0 by n0 = n∗ + n′, where n′ is the correction value. Therefore, the most common form
of PPE in the MPS method can be obtained as follows:〈

∇2P
〉n+1

= − ρ

(∆t)2
n∗ − n0

n0
(12)

• Gradient model

Unlike SPH, the operators in the governing equations, such as gradient, divergence
and Laplacian, are obtained by the weighted averaging process.

The gradient in the MPS method is obtained by adding the elements of gradient of the
scalar variable between particle i and j [1]:

〈∇φ〉i =
d
n0

∑
j 6=i

[
φj − φi∣∣rj − ri

∣∣2 (rj − ri
)
w
(∣∣rj − ri

∣∣)] (13)

where d is the number of spatial dimensions, i.e., d = 2 for two-dimensional and d = 3 for
three-dimensional calculations, and n0 is the initial particle number density.

In the calculation of the pressure gradient by Equation (13), in order to avoid par-
ticle aggregation and increase the stability of the simulation, the value of particle i in
Equation (13) is replaced by the minimum pressure within the support domain of the
particle i, leading to the final gradient model as follows [1]:

〈∇φ〉i =
d
n0

∑
j 6=i

[
φj − φi

′∣∣rj − ri
∣∣2 (rj − ri

)
w
(∣∣rj − ri

∣∣)] (14)

where φ′i = min(φ). This numerical treatment is to ensure the force between each pair of
particles is repulsive.

• Laplacian model

In the MPS method, the Laplacian operator was originally derived for the linear
diffusion problem, i.e., the Laplacian of a variable is regarded to be equivalent to the
time-dependent diffusion of this variable. The diffusion of particles is limited to the control
range re of kernel function, which is used as the transfer function to replace the Gaussian
function, and then the increment of the physical quantity within ∆t can be gained.

Since diffusion is a linear problem, the transport of physical quantities between particle
i and surrounding neighbor particles in time t can be superimposed. Moreover, the diffusion
problem of physical quantity φ in time domain can be considered as the Laplace method.
Therefore, the Laplacian model is given as [1]:〈

∇2φ
〉

i
=

2d
n0λ ∑

j 6=i

(
φj − φi

)
w
(∣∣rj − ri

∣∣) (15)
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where λ can be treated as a compensation for the error caused by replacing the infinite
Gaussian function [28] with the finite range kernel function. Combining the physical
quantity smoothing model with the kernel function, λ can be expressed as follows:

λ =
∑j 6=i w

(
rj − ri

)∣∣rj − ri
∣∣2

∑j 6=i w
(∣∣rj − ri

∣∣) (16)

2.4. Boundary Conditions

• Free surface

In the particle method, the positions of particles are updated at each time step ac-
cording to their velocities. Therefore, the free surface particles must be identified for
implementing free surface zero pressure condition when solving the Poisson’s pressure
equation. Therefore, the correct identification of the free surface particles is of great impor-
tance for the accurate solution of the pressure field.

The free surface particles have lower particle number densities due to that the support
domain is truncated. Thus, it satisfies 〈n〉∗i < βn0, where β is a parameter below 1.0.

• Solid boundary

MPS method adopts the strategy of arranging multilayer particles [1,28] as the bound-
ary condition of the material surface, as shown in Figure 1. The solid boundary consists of
two layers of particles. One layer of particles arranged on the surface is called the first type
of boundary particles and they are used to avoid the fluid particles penetrating into the
solid boundary. The second layer of the boundary particles are only involved in the particle
density calculation but not in the Laplacian and gradient discretization. With pressure
resolved for the first layer of the boundary particles, the pressure of the second kind of
boundary particles is obtained by interpolation from the first kind of boundary particles
and the fluid particles.

Figure 1. Boundary conditions in MPS.

3. Improvement

In recent years, increasingly more researchers have proposed new modifications
to further improve the accuracy and stability of the MPS method. In this section, the
main improvements will be summarized, including operators regarding to interpolation,
gradient and Laplacian operators, pressure solving, boundary conditions and regularization
of particle distribution.

3.1. Discretization Operators

The interpolation, gradient and Laplacian of the field functions is fundamental and
important in any numerical methods, regardless of whether they are meshless or mesh-
based. In meshless methods, the kernel function plays an important role in all those
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discretization operators. For MPS method particularly, instead of using the kernel function
as the weight function for particle interactions with it differentiated for gradient and
Laplace operators as in the SPH method, the discretization of the gradient model and the
Laplace also has kernel function itself involved as in Equations (14)–(16). In the sections
below, we summarize the new developments for these discretization operators.

3.1.1. Different Kernel Functions

At present, the most widely used kernel function is still the original one proposed
by Koshizuka [1], as in Equation (7). The main characteristic of this kernel is that when
two particles are getting close to each other, the value of the function will increase to be
infinity, so that the repulsive forces between the particles are also of a larger value, which
helps avoid local aggregation of particles.

However, in violent flow simulations, the distance between particles can be small,
which causes excessive repulsive forces between neighboring particles. This can, therefore,
adversely perturb the motion of the fluid particles, which will in turn affects the accuracy
and stability of the simulations. To tackle this problem, Zhang et al. [11] introduced a kernel
function (Equation (17)) similar to the original one but without singularities, and this new
kernel is proved to be effective in avoiding singularity at r = 0.

w(r) =

{ re

0.85r + 0.15r
− 1 (0 ≤ r < re)

0 (re ≤ r)
(17)

There exist some other forms of kernel functions. Ataie-Ashtiani et al. [29] compared
six different kernel functions in terms of the numerical accuracy and stability of the MPS
method for simulating the dam-break problem. In his research, the exponential, cubic spline,
quartic spline [30], B spline [31] and two kernels used in MPS by Koshizuka et al. [1,28] are
examined. The results show that the kernel used by Shao et al. [31] (Equation (18)) is more
accurate and stable in the simulation of dam-break:

w(r) =



40
7πr2

e

(
1− 6

(
r
re

)2
+ 6
(

r
re

)3
)

0 ≤ r < 0.5re

10
7πr2

e

(
2− 2

r
re

)3
0.5re < r < re

0 r > re

(18)

3.1.2. Gradient Model

The non-conservation of momentum and spurious pressure fluctuations have been
reported to be two major drawbacks of particle methods [32]. Although the use of minimum
pressure in Equation (14) is essential to avoid the so-called tensile instability issue, it violates
the momentum conservation law. Various pressure gradient operators have been developed
to enhance the momentum conservation and stability.

• Linear momentum conservation

In the original MPS, the pressure gradient forces between a pair of particles do not
satisfy the Newton’s third law (i.e., the action must be equal to the reaction), which means
the momentum will not be exactly conserved during the simulation. Thus, there are some
modifications for the gradient operator to enforce the linear momentum conservation. The
representative work is the one proposed by Khayyer et al. [32,33] as follows:

〈∇P〉i =
Ds

n0
∑
j 6=i

(
Pi + Pj

)
−
(

P̂i + P̂j
)∣∣rj − ri

∣∣2 (
rj − ri

)
w
(∣∣rj − ri

∣∣) (19)

where P̂i = min
j∈J

(
Pi, Pj

)
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Since the original MPS method assumed that the variation of pressure between particle
i and neighboring particle j is linear in the short distance, Equation (19) corrects the
pressure gradient term by replacing Pj in Equation (14) with

(
Pj + Pi

)
/2 and replacing P̂i

with
(

P̂i + P̂j
)
/2, to form an antisymmetric equation. This equation results in complete

conservation for linear momentum and almost exact conservation for angular momentum.
The method will be referred to as corrected MPS (CMPS).

Although conservations of linear and angular momentum are almost satisfied, Mon-
dragon argued in [34] that this gradient operator and its corresponding pressure gradient
force vector term may lead to an overestimation of interparticle pressure, which introduces
unphysical fluid motion and perturbations. Moreover, the instability problem arising from
the difference of the particle number densities between the fluid and the wall particles is
not considered. The following modification was, therefore, made:

−
(

1
ρ
〈∇P〉

)
i
= − d

n0
∑
i 6=j

[
2

ρi + ρj

Pj − P̂i∣∣rj − ri
∣∣2 (→r j −

→
r i

)
w
(∣∣∣→r j −

→
r i

∣∣∣)]

− d
n0

[
2

ρi+ρjmin

Pi − P̂i∣∣rjmin − ri
∣∣2 (→r jmin −

→
r i

)
w
(∣∣∣→r jmin −

→
r i

∣∣∣)] (20)

The above equation tackles these issues by adding the interaction term between the
pressure minimum P̂i of particle jmin and the pressure minimum Pi of particle i to the
pressure gradient force term. This expression is able to generate a stable pressure gradient
force for the non-uniformly distributed particles. The contribution of the average density(
ρi + ρj

)
/2 is also added to the pressure gradient force vector term to correctly model the

fluid–wall interface. It not only satisfies the conservation of momentum between particles,
but also has sufficient stability.

• Pressure gradient accounting for stabilization

In the original and many modified versions of MPS, the stress instability still remains
a problem. It can be classified into tensile instability, which occurs when the interparticle
attractive force increases, and compressive instability, which occurs when the repulsive
force decreases as the particles get closer [35].

To accurately approximate the pressure gradient and minimize the numerical per-
turbations in particles’ motions, Khayyer and Gotoh [35] proposed a pressure gradient
corrective matrix by considering the Taylor series expansion of pressure between particle j
and particle i. The corrected gradient model yields:

〈∇P〉i =
1
n0

∑
j 6=i

Pj − Pi∣∣rj − ri
∣∣2 (rj − ri

)
Ciw

(∣∣rj − ri
∣∣) (21)

where the corrective matrix Ci in 2D is as follows:

Ci =


∑
j 6=i

Vi
wijx2

ij

r2
ij

∑
j 6=i

Vi
wijxijyij

r2
ij

∑
j 6=i

Vi
wijyijxij

r2
ij

∑
j 6=i

Vi
wijy2

ij

r2
ij


−1

(22)

and
xij = xj − xi, yij = yj − yi, r2

ij = x2
ij + y2

ij;
wij = w

(
rij
)
, Vi = 1/ ∑

j 6=i
wij

(23)

Although the above equation does not exactly satisfy the momentum conservation, the
numerical errors might be less than those arising from other approximation of pressure gra-
dient, especially where negative pressures present. However, the stability of Equation (21) is
generally not guaranteed, as pointed out by Gotoh and Khayyer [20]. Thus, Duan et al. [36]
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introduced particle stabilizing term (PST) into Equation (21) to overcome the instability
problem. The improved pressure gradient model using PST is:

〈∇P〉i =
1
n0

∑
j 6=i

{(
Pj − Pi + ξ(Pimax − Pimin)

)(
rj − ri

)∣∣∣∣rj − ri
∣∣∣∣2 Ciw

(∣∣∣∣rj − ri
∣∣∣∣)} (24)

where ξ is a coefficient to adjust the PST strength dynamically:

ξ = 0.2 + 2× ‖N‖, and N =
1
n ∑

j 6=i

{
ri − rj∥∥ri − rj

∥∥w
(∥∥ri − rj

∥∥)} (25)

Since Equation (24) allows dynamic adjustment of the pressure gradient, the stability
could be maintained without the need to set negative pressure as zero [36].

Tsuruta et al. [37] proposed a dynamically stabilized (DS) gradient operator comprising
the original Taylor-series consistent gradient model and a meticulously adequate stabilizing
force. It can be rewritten as:

〈∇P〉i =
Ds

n0
∑
j 6=i

(
Pj − Pi

)∣∣rj − ri
∣∣ (rj − ri

)
w
(∣∣rj − ri

∣∣)+ 1
n0

∑
j 6=i

FDS
ij w

(∣∣rj − ri
∣∣) (26)

where FDS
ij is the stabilizing force for the target particle i from neighboring particle j. The

above equation can accurately provide sufficient interparticle repulsive forces to maintain
a simulation stable based on the particle distribution.

For the solution of particle pressure gradient on free surface, another approach that
can be taken is with virtual particles while adopting the same formula as the conventional
gradient. When the virtual particle pressure is zero, the following formula (Equation (27))
can be obtained [38]:

〈∇P〉i =
d
n0

∑
j 6=i

Pj∣∣∣→r j −
→
r i

∣∣∣2
(→

r j −
→
r i

)
w
(∣∣∣→r j −

→
r i

∣∣∣) (27)

From Equations (19)–(27), it could be regarded as a type of particle redistribution
with the purpose to maintain a more regular particle distribution, which is essential to the
interpolation accuracy [36,37].

In the computational gradient model, under some circumstances, the distance between
particles may be zero, which leads to the failure of the computational result. To avoid
the problem due to the presence of zero directional distance, a new pressure gradient
calculation method [39] is given. It introduced a new directional weight function based on
the radial distance, which is the one-dimensional directional distance. By introducing the
new directional weight function (Equation (28)), the denominator of the gradient becomes a
function of the radial distance instead of the directional distance rk. Therefore, the problem
caused by the presence of zero in the denominator is prevented.

〈∇P〉ki =
1
nk

i
∑
j 6=i

[
Pj − Pi(
rj − ri

)2

(
rk

j − rk
i

)
w
(∣∣rj − ri

∣∣)] (28)

Equation (28) contains a new variable named “directional particle number density”,
which is shown in Equation (29). It should be noted that the newly introduced directional
particle number density is not related to the physical density.

nk
i = ∑

j 6=i

(
rk

j − rk
i

)2

(
rj − ri

)2 w
(∣∣rj − ri

∣∣) (29)
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The above method provides a modified pressure gradient equation only for the prob-
lem where the particle directional distance is zero. In more recently developed MPS
methods, particle collision models are also used to table similar issues.

Liu et al. [40] introduced dummy particles to stabilize the renormalized Laplacian
model on free surface and to enforce the free-surface condition (Equation (30)). The applica-
bility of the pressure gradient model (proposed by Khayyer and Gotoh [35]) is expanded
by the Taylor series expansion.

〈∇P〉i =
d
n0

(
∑
j 6=i

Pi + Pj∣∣rij
∣∣2 wijrijC̃i + k

d
n0

Pi + Pd

|rid|2
widridC̃i

)
(30)

It should be noted that the new gradient model with a dummy particle is only used
for pressure gradient calculation and momentum is not exactly conserved.

In addition, the least squares moving particle semi-implicit (LSMPS) method is an
arbitrary high-order meshfree Lagrangian approach proposed by Tamai and Koshizuka [41].
Since LSMPS can achieve high-order accuracy for arbitrary particle distribution, it is
effective to apply it for gaining a more accurate pressure gradient and it will be discussed
later in Section 3.1.4.

3.1.3. Laplacian Model

The original MPS method applies a simplified Laplacian operator based on the concept
of diffusion. To stabilize the pressure calculation in the MPS method, applying a more
accurate Laplacian model for solving the PPE is one of the challenges.

• Taking divergence of the SPH-type gradient operator

Khayyer et al. [42] pointed out that the Laplacian model can be defined as the diver-
gence of the gradient, which is mathematically consistent. The gradient at a target particle i
can be expressed in the form of the SPH method [43]. By considering the original kernel
(Equation (8)), the high-order Laplacian (HL) in 2D can be obtained as follows:〈

∇2φ
〉

i = ∇ · 〈∇φ〉i
=

1
n0

∑
i 6=j

(
∇φij · ∇wij + φij∇2wij

)
=

1
n0

∑
i 6=j

(
φij

∂2wij

∂r2
ij
−

φij

rij

∂wij

∂rij

)

=
1
n0

∑
i 6=j

(
3φijre

r3
ij

) (31)

When Equation (31) replaced the standard Laplacian model for solving PPE, it showed
enhanced performance in high strain problems and violent free surface flow simulations.

Khayyer et al. [44] extended the abovementioned 2D Laplacian model to 3D.〈
∇2φ

〉
i = ∇ · 〈∇φ〉i

=
1
n0

∑
i 6=j

(
∇φij · ∇wij + φij∇2wij

)
=

1
n0

∑
i 6=j

(
φij

∂2wij

∂r2
ij

)

=
1
n0

∑
i 6=j

(
2φijre

r3
ij

) (32)

However, the incompleteness or inconsistency of the SPH gradient model becomes a
source of problem in the HL scheme, which results in inaccuracies especially around the
boundaries. Therefore, Ikari et al. [45] derived a correct higher-order Laplace model (CHL)
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by correcting the gradient based on the Talyor-series expansion. The corrective matrix is
firstly applied for gradient of the target particle i (Equation (33)) and the CHL scheme is
then obtained by taking the divergence of the corrected gradient (Equation (34)):

〈∇φ〉i = −
1
n0

∑
j 6=i

φijCi∇ijwij (33)

〈
∇2φ

〉
i = ∇i · 〈∇φ〉i

=
1
n0

∑
j 6=i

{
∇ijφij · Ci∇ijwij + φij∇ij ·

(
Ci∇ijwij

)} (34)

where

∇i =

(
∂

∂xi

∂

∂yi

)
,∇ij =

(
∂

∂xij

∂

∂yij

)

Ci =


− 1

n0
∑
i 6=j

∂w
∂r

x2
ij∣∣rij
∣∣ − 1

n0
∑
i 6=j

∂w
∂r

xijyij∣∣rij
∣∣

− 1
n0

∑
i 6=j

∂w
∂r

xijyij∣∣rij
∣∣ − 1

n0
∑
i 6=j

∂w
∂r

y2
ij∣∣rij
∣∣


−1

. (35)

and detailed derivation can be found in Refs. [42,44,45].

• Taking divergence of the MPS-type gradient operator

Ref. [46] assessed the accuracy of the original MPS and proposed a series of modified
Laplacian models. Although in most cases, the original Laplacian model performs well,
inaccuracies may rise where the diffusion effect dominates. For example, the original
Laplacian model may lead to an overestimation of heat conduction when applied to
the energy equation. Therefore, Zhang et al. [47] proposed a Laplacian model suitable
for heat conduction by solving the divergence of gradient as shown in Equation (36).
It enables the Poisson equation to be solved without the parameter λ, which could cause
numerical difficulties. 〈

∇2φ
〉

i
=

2d
n0

∑
j 6=i

φj − φi∣∣rj − ri
∣∣2 w

(∣∣rj − ri
∣∣) (36)

Likewise, with the idea of solving the divergence of gradient, Xu and Jin [48,49]
introduced an improved Laplacian model (ILM) to enhance the performance in the MPS
as follows: 〈

∇2φ
〉

i
=

Ds

n0
∑
j 6=i

φj − φi

r2
ij

Gij (37)

where

Gij = (3Ds − 2)w
(
rij, re

)
+ rij

∂wij

rij
(38)

One can see the detailed derivation in [49]. The Laplacian model of ILM (Equation (37))
has shown better performance in the diffusion problems and Couette flows.

• Other Laplacian operators.

The Moving Least Square method is also applicable for the Laplacian operator. As Ng,
K C et al. [46] pointed out that the Least Square approach needs five and nine elements in
the base function for 2D and 3D cases, respectively. In Equation (39), fewer elements in the
base function are used (three and six for 2D and 3D cases, respectively), which reduces the
required number of neighbor particles:

〈D2 f (x)〉i = M−1
2,i

{
∑

j∈Λi

wijqij

(
2 fij − 2xT

ij〈∇ f 〉1,i

)}
(39)
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Duan et al. [50] introduced a new Laplacian model by applying a corrected matrix
to remove the errors associated with first-order partial derivatives. The corrective matrix
Ci in Khayyer and Gotoh [35] can help compute first-order derivatives accurately, but it
cannot be directly used in the Laplacian model. Considering the first-derivative errors tend
to be dominant compared to the second-derivative ones, a consistent corrective matrix with
gradient/divergence models is applied to remove the dominant errors. Therefore, the new
Laplacian model can be obtained as:

〈
∇2φ

〉
i
=

d
n0

∑
j 6=i

{(
φj − φi

)( 2
λ
−

LiCi
(
rj − ri

)∥∥rj − ri
∥∥2

)
w
(
rij
)}

(40)

which enhances the computational accuracy without increasing the cost much.
The zero-density-variation condition and the velocity-divergence-free condition at

each full time-step are applied. Hu et al. [51] and Xu et al. [52] introduced new Laplacian
operators by discretizing the second-order derivative (Laplacian) directly as follows:

∇ ·
(
∇P

ρ

)
i
= 2σi∑

j

Aij

rij

pij

ρi + ρj
(41)

where Aij =

(
1
σ2

i
+

1
σ2

j

)
∂w
∂rij

.

3.1.4. Discretization by Taylor Series Expansion and Least Square Approximation Scheme

In the traditional particle methods, such as SPH and MPS, the function approximation
method is a weighted average approach using a predefined kernel function, as well as the
approximation of different operators. Accuracy is not satisfactory when the particle distribu-
tion is irregular. In addition, local particle-based interpolations by incomplete/inconsistent
differential operator models could result in unphysical pressure oscillations [53,54]. There-
fore, some researchers have proposed other function approximation schemes that use the
weight function, which is essentially similar to the kernel function.

Koh et al. [55] used a new method called the consistent particle method (CPM), where
the approximation of derivatives (Laplacian in particular) is obtained by using Taylor series
expansion of a differentiable function f (x, y) at a reference particle P(x0, y0) and solving
local matrix equations (Equation (42)) for every particle:


f ,x0
f ,y0
f ,xx0
f ,xy0
f ,yy0

 =


a1 a2 a3 a4 a5
b1 b2 b3 b4 b5
c1 c2 c3 c4 c5
d1 d2 d3 d4 d5
e1 e2 e3 e4 e5





∑ f jw2
j hj − f0 ∑ w2

j hj

∑ f jw2
j k j − f0 ∑ w2

j k j

∑ f jw2
j

h2
j

2
− f0 ∑ w2

j

h2
j

2
∑ f jw2

j hjk j − f0 ∑ w2
j hjk j

∑ f jw2
j

k2
j

2
− f0 ∑ w2

j

k2
j

2


(42)

where hj = xj − x0, k j = yj − y0 (j = 1, 2, . . . , N), f0 = f (x0, y0), f ,x0 =
∂ f (x0, y0)

∂x
,

f ,y0 =
∂ f (x0, y0)

∂y
, f ,xx0 =

∂2 f (x0, y0)

∂x2 , f ,xy0 =
∂2 f (x0, y0)

∂x∂y
, f ,yy0 =

∂2 f (x0, y0)

∂y2 , N is the

total number of particles within the support domain of the particle P(x0, y0), and wj is the
weight function used in the least square solution to account for the influence of the distance.

Based on the above approach, the pressure Poisson equation and pressure gradient
can be obtained by solving Equation (42), which satisfy the incompressibility of the fluid
and enable stable calculation. Hence, this method is vital to moving boundaries simula-
tions. The consistency of the algorithm gives good approximation even for irregularly
distributed particles.
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To improve the simulation accuracy, the discretization of different operators (velocity
divergence term, velocity Laplace term and pressure gradient term) must be completed by a
particle smoothing program. Hwang et al. [56] developed a novel moving particle method
with embedded pressure mesh (MPPM) to provide an accurate and efficient pressure
difference equation to achieve a uniform and sufficiently dense particle distribution. In this
method, pressure is considered as a field variable rather than a material one moving with
fluid flow, which can be approximated with a simple central difference scheme. Therefore,
PPE can be written in differential form (i.e., pressure difference equation), which can be
solved on grid mesh. Compared with the original particle smoothing method, the results
show that the original particle smoothing procedure will yield inconsistent expressions
for differential operators, but still predict quite reasonable results in incompressible flow
problems, and this smoothed difference format can provide an exact solution that is as
precise as the high-resolution finite volume method.

Tamai’s work could be seen as an extension and generalization of Koh’s work [55].
The principle of this so-called least squares moving particle semi-implicit (LSMPS) method
is generally described as follows:

1. According to Stone–Weierstrass theorem of locally compact version, the approxima-
tion of the target function can be gained by a polynomial series locally.

2. Utilizing the Taylor expansion of a target point with a nearby point, the approximated
polynomial function and the residual of local polynomial approximation can be obtained.

3. The weighted least squares procedures are used for new spatial discretization where
non-singular weight functions are highly recommended.

4. The normal equations equivalent to the existing spatial discretization formulae are de-
rived based on the weighted least squares procedure and with variable transformation
according to the abovementioned Talyor series expansion with the residual considered.

5. If the residual is expressed by a defined function, after minimizing functional, the
normal LSMPS scheme is eventually derived.

When the improved method is applied to benchmark problems, it demonstrates
a significant enhancement of stability and accuracy. Tamai et al. [57] focused on the
consistency of the second-order derivative approximations for the strong-form particle
methods including the LSMPS method, and the convergence of some meshless particle
discretization schemes for the Laplace operator. Experiments show that utilizing the new
scheme results in more accurate numerical solutions.

3.2. Pressure Solving

The fluid pressure in the MPS method is mainly obtained by solving the pressure
Poisson equation, which enforces the incompressibility of the fluid. However, the weakly
compressible concept is also adopted in a number of MPS developments. Since the pressure
field accuracy has a large impact on the following fluid velocity and particle location update
calculations, various developments have been proposed for both weakly compressible and
incompressible approaches.

3.2.1. Weakly Compressible Approach

Different from solving pressure implicitly via the pressure Poisson equation in the MPS
method, the pressure in the SPH method is solved explicitly by using the equation of state
(EOS), which avoids dealing with large matrix when implicitly solving a set of equations
for all the particles. Equation (43) is as widely used as the EoS in the SPH method [58]:

P(ρ) =
ρ0c2

0
γ

[(
ρ

ρ0

)γ

− 1
]

(43)

where the value of γ is usually taken as 7 and 1.4 for water and air, ρ0 is reference density,
P is pressure, and c0 is the sound speed at reference density.
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As the EoS provides a direct relationship between density and pressure, pressure
can be solved faster than solving Poisson’s equation at each time step. Consequently, the
computational time per time step is greatly reduced by ensuring a certain accuracy of
the results.

The incompressibility model in the original MPS is replaced with a weakly incom-
pressible model in Shakibaeinia et al. [59], which uses an MPS original spatial discretization
(particle interaction) formula. Therefore, the EoS is applied to solve pressure at each time
step instead of the Poisson equation, which is written as:

Pn+1
i =

ρc2
0

γ

[(
〈n∗〉i

n0

)γ

− 1
]

, (44)

A new Moving Particle Explicit (MPE) method [39] has been developed by combining
the weakly compressible SPH (WCSPH) [58,60] and the original MPS. Similar to the MPS
method, the concept is based on a weighted averaging scheme, where a directional particle
number density is introduced and the spatial discretization is derived without imposing
any simplifications. The procedure is similar to the WCSPH method. Considering the slight
compressibility, the continuity equation and the equation of state (Equation (43)) are used
to solve velocity and pressure, which makes the method fully explicit.

3.2.2. Incompressible Approach by Solving PPE

• High-order scheme in the time domain

In the work of Hu et al. [51] and Xu et al. [52], PPE with different source terms under
both the zero-density-variation condition and the velocity-divergence-free condition at
each full time-step are given. In the framework of fractional time-step approach, which is
based on the projection algorithm, different forms of PPE are obtained. Under the condition
of zero-density-variation, the PPE are given as:

∆t2

2
∇ ·

(
∇P

ρ

)n

i
=

σ0
i − σ∗,n+1

i
σ0

i
(45)

where σi is the inverse of the particle volume. With Equation (41), the following equation
is obtained:

∑
j

Aij

rij

Pij

ρi + ρj
=

1
2

σ0
i − σ∗i
σ0

i σ∗i
(46)

Similarly, under the velocity-divergence-free condition, the PPE can be discretized as:

∆t
2
∇ ·

(
∇P

ρ

)n

i
= ∇i · v∗,n+1, (47)

∑
j

Aij

rij

Pij

ρi + ρj
=

1
2∑

j
Aij

(
ηivi + ηjvj

ηi + ηj

)
· eij (48)

where eij is the normalized vector pointing from particle i to j and η is the viscosity for
the particle.

In the work of Hu et al. [51], the first prediction step is to calculate the intermediate
particle velocity at the half-time step and also the full-time step, from which the intermediate
particle location at full time step is obtained. Afterwards, in the second correction step,
the particle location is modified to satisfy the zero-density-variation condition and particle
velocity at the full time step is modified by enforcing the velocity-divergence-free condition.
However, this scheme has to solve the pressure Poisson equation twice, which is more
time consuming.

• New types of PPE source terms
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The source term of PPE is an important factor that may lead to pressure oscillations and
corresponding error accumulation. Based on the divergence of the intermediate velocity
and the variation of particle number density, there are two forms of source terms in the
PPE, namely the DI type and DF type. To improve the stability, some researchers applied
different mixed source terms which combine DI and DF types. These new types of PPE
source terms both consist of a main part and error compensation terms. Typical expression
are as follows: 〈

1
ρ
∇2P

〉k+1

i
= a

1
∆t
∇ · u∗ + b

1
∆t2

{
n0 − nk

n0

}
+ c

1
∆t2 Pk+1

i (49)

where a, b, and c are the coefficient and have different values and expressions in vari-
ous studies.

In summary, the first term of the right-hand side of the above equation is the expression
of original PPE (i.e., DF type), the second term is the error compensation of particle number
density (i.e., DI type), and the third term is the artificial compressible compensation. These
types of source terms ensure smooth pressure distribution in both space and time with the
fluid incompressibility maintained.

ISPH (Incompressible Smoothed Particle Hydrodynamics) applies the divergence on
both sides in the correction step, and then obtains the original PPE based on the zero fluid
velocity divergence for incompressible fluids. By combining the advantages of the PPE of
MPS and ISPH, Tanaka et al. [61] proposed a mixed source term method, which was further
improved by Lee et al. [62], where a = 1, b = β, c = 0. Sun et al. [63] proposed a criterion
for determining coefficient b for the Poisson equation with mixed DI and DF source terms
as follows:

b =



∣∣∣∣∣n0 − nk

n0

∣∣∣∣∣+ ∆t
∣∣∣∆ · uk

∣∣∣ if
(

n0 − nk
)
∇ · uk ≥ 0∣∣∣∣∣n0 − nk

n0

∣∣∣∣∣ if
(

n0 − nk
)
∇ · uk ≤ 0

(50)

Then, Tanaka et al. [61] proposed a quasi-incompressible term in Poisson’s equation
to improve the stability of numerical simulation, which adds an artificial compressible
compensation to the right-hand term of the PPE. In this method, the coefficients are selected
as a = 1, b = 0, c = γ.

In [64], the pressure field is solved from an improved PPE. The divergence of u∗ is
discretized by the high-order source (HS) formulation [42]. The mixed source term consists
of both the divergence-free and constant-PND (particle number density) conditions and the
artificially compressible model, which is widely applied in MPS [33,61,64,65]. Therefore,
b = α is the relaxation coefficient from 0.01 to 0.05, a = 1− α and c = γ is the artificial
compressibility coefficient from 10−9 to 10−6.

To improve the accuracy of pressure calculation, Khayyer et al. [33] replaced the source
term in the PPE with the temporal varied particle number density involved. Furthermore, a
higher-order source term expression (Equation (51)) is obtained by calculating the material
derivative of the kernel function. Compared with the traditional source term methods, the
high-order source term method can effectively suppress the pressure oscillation, but near
the wall boundaries it still has the problem of local pressure oscillation.〈

∇2Pk+1

〉
i
= − ρ

n0∆t

(
Dn
Dt

)∗
= − ρ

n0∆t

(
∑
j 6=i

re

r3
ij

(
xijuij + yijvij

))∗
(51)

Thus, an improved source term expression is proposed considering error compensation
of the source term, as shown in Equation (52). In this formula, two error mitigation terms are
added on the basis of the high-order source term, one of which represents the instantaneous
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change of particle number density, and the other represents the deviation of particle number
density from the initial value:〈

∇2Pk+1

〉
i
= − ρ

n0∆t ∑j 6=i

(
Dn
Dt

)∗
i
+ ΛECS (52)

ΛECS =
ρ

∆t

{
α

n0

(
Dn
Dt

)k

i
+

β

∆t
nk

i − n0

n0

}
(53)

where α =

∣∣∣∣∣nk
i − n0

n0

∣∣∣∣∣ and β =

∣∣∣∣∣∆t
n0

(
Dn
Dt

)k

i

∣∣∣∣∣
Though more accurate and stable pressure calculation is achieved by Equation (51), there

still exist unphysical pressure oscillations in simulations of sloshing flows. Kondo et al. [66]
discretized the density term in the mixed source term into a main part and two error
compensation parts and smooth pressure distribution is obtained by adjusting the two
compensation coefficients.

1
ρ0

(
D2ρ

Dt2

)
=

1− β

∆t2
n∗i − 2nk

i + nk−1
i

n0
+

β− γ

∆t2
n∗i − nk

i
n0

+
γ

∆t2
n∗i − n0

n0
(54)

To maintain the momentum conservation for interparticle collisions, Cheng et al. [67]
proposed the time-scale correction of particle-level impulses (TCPI) as a new source term for
the PPE. With this approach, the non-physical pressure oscillations dramatically reduced.

〈
∇2P

〉t+∆t

i
= γ

ρ

∆t2

(
n0 − nt

i
n0

)
+

ρ

∆t
〈∇ · u〉∗∗i (55)

where γ is a relaxation coefficient and the superscript ∗∗ is for variables after the correction
for the intermediate physical quantities.

Non-physical pressure oscillations usually arise due to temporal inconsistencies in the
source terms of the PPE, as well as the overestimated magnitudes of the pressure gradient
force vector terms. The parameter λ in the Laplacian operator is mathematically to reduce
the error caused by replacing the infinite Gaussian function with the truncated kernel
function. When virtual particles [34] are introduced in MPS method, the parameter λ needs
to be redefined to account for the virtual particle number density difference (n0 − ni) of the
PPE. Equation (57) gives the new definition of virtual parameter λ∗i , where the first term
is the integrated value of the spatial variance distribution of the equation, and the second
term is the proposed modification of the variance that depends on the velocity. The source
term of the PPE is now modified as Equation (56):

∑
i 6=j

(
Pj − Pi

)
w
(∣∣∣→r j −

→
r i

∣∣∣) =
λ∗i ρi

2d∆t2 (n0 − ni) (56)

λ∗i =
r2

0
12
−

∑j 6=i w
(∣∣∣→r j −

→
r i

∣∣∣)(∣∣∣→u j −
→
u i

∣∣∣)2
(∆t)2

∑j 6=i w
(∣∣∣→r j −

→
r i

∣∣∣) (57)

By adding virtual particles beyond the free surface, Ref. [38] modified the PPE and
the pressure gradient term. The left-hand side is divided into two terms for the actual
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particles and virtual particles in Equation (58), where γ is a scalar parameter for stabilizing
the simulation and ρ0 is the initial fluid density.

2d
λ0n0

∑
j 6=i

(
Pk+1

j − Pk+1
i

)
w
(∣∣∣→r ∗j −→r ∗i ∣∣∣)+ 2d

λ0n0

(
Pvirtual − Pk+1

i

)
ni,virtual

= −γ
ρ0

(∆t)2

(
n∗i − ñk

i

)
n0

(58)

In order to improve the numerical stability and suppress the numerical diffusion in
long-term computations, Xu and Lin [68] proposed a new two-step projection method
(NTSPM), as expressed in Equation (59). α is a weighting factor that vary from 0 to 1. If
α = 1, it maintains the same as traditional two-step projection method with the pressure at
the next time step solved according to intermediate velocity only. α = 0.5 is used to equally
account for the pressure contribution at time steps t and t + 1, which is similar to the
second-order central time difference scheme for pressure. By comparing with traditional
methods, the main difference is the use of ∇Pt in calculating the intermediate velocity, and
another difference is that the solution of velocity and pressure at state F is changed from
the assignment to interpolation [47,69–71]. Here, the state F is when the particle position is
updated and u, r, and P at time (t + 1) are obtained by calculating the interpolation from
u∗, r∗, and P∗, respectively. In state F, the particle is only assigned to a new position, and
the velocity is not updated, so the divergence of the velocity is not zero.

∇ ·
(
∇P∗,t+1

)
=

1
α

(
ρ
∇ · u∗

∆t
− (1− α)∇ ·

(
∇Pt)) (59)

3.3. Boundary Conditions

The boundary conditions need to be considered to ensure the closure of the Navier–
Stokes equation. Several important developments have been made with respect to free
surfaces, solid boundaries and import and export boundaries. These models have been
demonstrated to be effective and practical for complex geometries, which help reduce
computational costs and increase stability.

3.3.1. Free Surface Identification and Conditions

In the original MPS method, the pressure of the free surface particles is assigned a value
of zero. As a result, there is no repulsive force between the free surface particles, which
can lead to aggregation and overlap of free surface particles, reducing the accuracy of the
free surface calculation. In addition, internal particles may also be misidentified as surface
particles, resulting in pressure oscillations and even failure in severe cases. There have
been more advances in the accuracy of free surface detection and pressure implementation.

• Surface particle identification

(a) Using the number of neighboring particles

In the original MPS method, there are many falsely identified particles inside the
main fluid body when particles are not evenly distributed due to sensitive particle number
density. One modification [61,62] is to use the number of neighboring particles within its
support domain instead of particle number density (n∗). In this method, the criteria for the
number of neighbor particles Ni is set as:

Ni < β′N0, (60)

where N0 is the initial number of neighbor particles. The number of neighbor particles Ni
is defined as:

Ni = ∑
j 6=i

ws
ij, (61)
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where ws is a weight function for surface detection and is formulated as:

ws
ij =

{
1
(
rij ≤ r

)
0
(
rij > r

) (62)

(b) “ARC” type

Another approach is proposed by checking whether the “arc” of the particle is fully
surrounded by its neighbor particles [55]. If the arc with radius R is completely covered by
the arcs of its adjacent particles, it will be identified as an internal particle. On the contrary,
if there is a gap on the arc, it is identified a free surface particle. Compared with the particle
number density method, this method can largely avoid misidentification caused by slight
clustering and can judge the free surface more accurately. However, this method needs
to verify the arc of each fluid particle, and the calculation is more complex. Sun et al. [8]
simplified this checking progress by splitting the circle into 360 segments evenly distributed
along the circle. If all these points are covered by the circles of its neighbor particles, the
center particle is then regarded as an inner particle. As shown in Figure 2, particle A is a
free surface particle and particle B is an inner particle.

Figure 2. “Arc” type for 2D case in Refs. [8,55].

(c) Relative position vector

There are also works employ a detection method [72] based on the asymmetry distri-
bution of neighboring particles, expressed as follows:

Fi =
d
n0

∑
j 6=i

1∣∣rj − ri
∣∣ (rj − ri

)
w
(∣∣rj − ri

∣∣) (63)

If the absolute value of the function Fi at particle i is greater than a threshold α as
|F| > α, then particle i is considered as a free surface particle. The method is based on the
ground that the equation is equivalent to the mass gradient when multiplied by the mass of
the particles which should be close to zero. In addition, this method allows a more accurate
description of the particle asymmetry, which omits the calculation of the number density of
intermediate particles on the free surface and speeds up the calculation.

(d) Check distribution of neighboring particles

Under the original free surface identification conditions, particles inside the fluid
may be identified as free surface particles. In [34], firstly, a group of possible free surface
particles are identified according to Equation (64), then the internal particles are ruled out
by if all neighbor particle j within the support domain of particle i satisfies Equation (65):

β1n0 ≤ ni ≤ βn0, (64)

β1n0 ≤ nj ∀ neighbours j (65)
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This method combines particle number density condition and effectively reduce the
phenomenon of false judgment. However, the calculation process is more cumbersome and
reduces the calculation efficiency.

• Free surface conditions implementation

In the original MPS method, zero pressure is applied on the identified free surface
particles. However, there are also papers that solve the surface pressure based on the PPE
with virtual particles added beyond the surface whose pressures are assigned as zero. In
these works, the virtual (or conceptual) particles only change the particle number density
of free surface particles without their positions used in the modified PPE as shown in
Equation (66) [36,73]. Virtual particles also contribute to complete the support domain
for surface particles when pressure gradient is calculated which significantly increase the
accuracy of velocity and position update. The modified PPE is in the following the form:

2d
λ0n0

∑
j 6=i

(
Pk+1

j − Pk+1
i

)
w
(∣∣∣→r ∗j −→r ∗i ∣∣∣)+ 2d

λ0n0

(
Pvirtual − Pk+1

i

)
ni,virtual

= −γ
ρ0

(∆t)2

(
n∗i − ñk

i

)
n0

(66)

The position of the virtual particle is determined based on the distribution of the
surrounding particles of those density is lower than n0. The virtual particle will only
participate in the Laplacian discretization of targeted particle, but not change the source
term nor affect other particles. The zero pressure is imposed on virtual particle rather than
targeted free surface particles [73–75].

3.3.2. Solid Boundary Conditions

Despite the widespread applications of the MPS method, it remains a challenge to
accurately model boundaries (fixed or moving) and fluid–boundary interactions.

The methods treating solid boundaries in particle methods can mainly be divided
into three categories. The most widely used approach is the ghost particles (or dummy
particles) which are originally introduced by Koshizuka and Oka [76]. This treatment can
effectively avoid particle penetration, but it increases computational cost and is difficult to
apply for complex shaped boundaries. In this method, the solid boundary consists of one
layer of wall particles and two layers of ghost (dummy) particles beyond the wall. The wall
particles are positioned along the solid boundary, and the dummy particles are placed just
outside of the wall particles to compensate for the deficiency in particle number density.
Shakibaeinia and Jin [59] employed the ghost particles method by imposing a tangential
velocity component on the fixed ghost particles while the normal velocity component is
maintained zero, which makes it capable for the free-slip condition (Figure 3).

Figure 3. Solid boundary with ghost particles in Ref. [59].

Xie et al. [77] implemented the no-slip condition by the linear interpolation of the
velocity of the nearest liquid particle and solid particle so that the velocity at the mid-point
between these two particles (where the solid surface is) is zero. Thus, the solid boundary is
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represented at the center between the solid particles and the first layer of fluid particles.
Therefore, the velocity of a solid particle uj is modified by a fluid particle velocity ui as:

uj = −
∆r

∆y− ∆r
ui (67)

where ∆r is the distance between the solid particle and the solid surface and ∆y is the
distance between the solid particle and fluid particle.

Later, Lee et al. [62,78] imposed moving mirror particles positioned normal to the
wall boundaries instead of being fixed. Moreover, the mirror particles are updated every
time step according to the fluid particles, so that the Neumann boundary condition can be
strictly satisfied. To further reduce the computational effort, Park and Jeun [79] developed
the temporary mirror particles, which use mirrored fluid particles to replace the initially
placed mirror particles.

The boundary force approach proposed by Monaghan [58] models the fluid–wall
interaction in a way similar to that of the Lennard–Jones model, which generates a force in
the direction of the centerline of the two particles when a fluid boundary particle becomes
a neighbor particle to inside fluid particles. However, due to the boundary force, fluid
particles may experience a non-uniform normal force and a non-zero tangential force
along a solid boundary. To tackle this problem, a tangential factor was used to correct the
interaction force, enforcing it as normal to the boundary by involving the perpendicular
distance from the boundary only [80,81]. In addition, some other methods have been
introduced such as a refined radial force model [82] and the normalizing function [83,84],
which imposes correction when particles go beyond the boundaries.

Although there are successes of handling solid boundaries, they increase the complexity
of modeling and compromise computational accuracy. Kulasegaram [83] and Ferrand et al. [85]
proposed a unified semi-analytical wall boundary condition, which depends on the local
shape of a wall. Leroy et al. [86] developed the ISPH by using the unified semi-analytic
boundary model under the consideration of a non-homogeneous Neumann wall boundary
condition [87] for the viscous term. Manenti et al. [88] introduced a semi-analytic ap-
proach for modeling solid boundaries in SPH by considering them as continuum material
with a proper distribution of velocity and pressure, which was successfully applied to
sediment flow.

Fadafan and Kermani [89] proposed a simple form for curved wall boundaries using
a single parameter (β = βwall(i)) together with an auxiliary function. If the number of
fluid particle in the vicinity of particle i is more than or equal to 1, the value of criterion
parameter for the wall is half the value of fluid; otherwise, it is equal to the value of fluid.
This simple method reduces particle numbers and saves CPU time.

Complex wall geometries are hard to be represented in most MPS applications.
Zhang et al. [90] used the triangle meshes to represent the complex wall geometries and the
wall boundary conditions on the triangle mesh are implemented by the polygon wall bound-
ary conditions (PW). In this method, the pressure at the wall boundary (Equation (68)) is
derived from the Neumann boundary condition and a first-order gradient model is applied,
which help improve the accuracy and stability. The result shows this method is capable of
maintaining numerical stability for complex geometries.

Pw =
ρn0|dr||riw|

d∆t2n∗iw
+ 2P̂i − Pi (68)

where |dr| is the module of the distance vector from a fluid particle to the balance position
and the distance from this position to the boundary is a constant value, |riw| is the module
of the distance vector from particle i to the solid boundary, n∗iw is the wall contribution
of fluid particle i to the particle number density, and P̂i is the minimum pressure within
support domain of particle i.
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Based on the least square MPS (LSMPS) scheme, Matsunaga et al. [91] proposed
a new approach to easily handle no-slip and free-slip wall boundary conditions where
wall geometries are represented by line segments in 2D and polygons in 3D. The wall
boundary conditions are inserted into the differential operators for fluid particles near the
wall. Therefore, the Neumann boundary conditions can be fully satisfied:

∂P
∂n

∣∣∣∣k+1

ri

= − ρ

∆t
nk+1

i ·
[
uwall

(
rk+1

i , tk+1

)
− u∗i

]
(69)

nk+1
i · u∗i = nk+1

i ·
[

uwall

(
rk

i , tk

)
+ ∆t

(
ν∇2u

∣∣∣k
ri
+ g
)]

(70)

where n and uwall is a unit normal vector to the wall and the moving velocity of the wall.
In the study of Matsunaga et al. [92], a novel wall boundary treatment adopting

analytical volume integration is presented. Without any boundary particles, the advantage
of this method is that it does not require high calculation cost nor compromise accuracy.
However, the applicability of the present method is limited to 2D problems.

3.3.3. Import and Export Boundary Conditions

In the numerical simulation of practical engineering problems, the boundary condi-
tions of the inlet and outlet are ones of the most common boundary types.

A commonly used technique for the import and export boundary is to divide the
import region, the flow region, and the export region in the flow field. In the import
region, the velocity of the particles is set based on the import boundary conditions, and
the pressure is set based on the pressure interpolation of the neighbor particles in the flow
region. After the particles enter the flow region from the inlet region, the particles are
driven by the interparticle interaction forces calculated from the flow field. As the particles
usually move from the import to the export, new particles need to be added to the import
region depending on the number of particles leave. It is relatively easier to implement the
export boundary condition as it is not necessary to add new particles during the flow [93].

Although the inlet and outlet boundary treatment techniques above are simple and
easy to implement, it is difficult to ensure the conservation of mass in the flow field due to
the variation of the number of particles entering and leaving the flow field and may cause
significant oscillations in the pressure field.

Shakibaeinia and Jin [59] introduced a particle recycling strategy for inflow and
outflow boundaries by an extra type of particle called storage particles, which carry no
physical values, such as position, velocity, or pressure. When particles enter the simulation
domain, they are fluid particles with physical properties added depending on inflow
boundary condition by Equation (71). When particles leave the simulation domain, they
are changed to storage particles, and all the physical properties of particles are removed.

k(y) =
∆l

u(y)∆t
(71)

where ∆l is average particle distance and u(y) is velocity component in y-direction.
Hosseini and Feng [87] proposed a pressure modification algorithm by replicating

the first line of fluid particles three times upstream at the entry. For those entry layers,
the Neumann condition is implemented. When a particle moves out of the entry layer, it
becomes an inner fluid particle. Similarly, the last layer of fluid particles is replicated and
placed downstream of the exit (i.e., the exit layer) with the Dirichlet condition is satisfied.

Leroy et al. [94] imposed an open boundary condition based on the unified semi-
analytical boundary conditions. Equation (72) allows particles to enter the domain through
a boundary with prescribed velocity (i.e., inlet boundary), and to leave the domain through
a boundary with prescribed pressure (i.e., outlet boundary):
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prescribed velocity :


un+1

v = upv
v

Tn+1
v = Tpv

v(
∂P
∂n

)n+1

s
= 0

; prescribed pressure :



(
∂u
∂n

)n+1

s
= 0(

∂T
∂n

)n+1

s
= 0

Pn+1
v = Ppp

v

(72)

where u, T, and n are the velocity, temperature, and a unit normal vector, respectively, and
the superscripts pv, pp denote the value of a field at an open boundary with prescribed
velocity/pressure.

Shibata et al. [95] developed a transparent boundary condition consisting of two columns
of square cells for simulating water waves, as shown in Figure 4. The outer cell column
named “A-type” is for the inflow, where particles are generated, and the inner cell column
named “B-type” helps determine the position of the particles generated in the A-type cells.
A new particle will be generated in A-type cell when it is vacant, but if the center position
of the A-type cell is over the approximated wave surface, the particle will be placed at a
distance from the neighboring particles located in the next B-type cell.

Figure 4. The transparent boundary in Ref. [95].

By using boundary particles and modifying their physical values, Hu et al. [96]
proposed three kinds of inlet/outlet boundary conditions: a pressure specified inlet/outlet
condition, a velocity profile specified inlet/outlet condition, and a fully developed flow
outlet condition. Compared with the finite volume method, this approach exhibits accuracy
and numerical stability.

3.4. Regularization of Particle Distribution

The motion of particles may lead to non-uniform particle distributions, which conse-
quently causes spatial discontinuities when discretizing the PPE and corresponding inac-
curacies in the pressure calculation. Therefore, it is necessary to use particle regularization
technique to improve the particle distribution and mitigate non-physical pressure oscillations.

3.4.1. Particle Shifting Scheme

In Lagrangian particle methods, particles moving along the streamlines may lead to
particle clustering or scattering even when the Lagrangian-form N–S equations are solved
accurately. Therefore, the redistribution of particles is necessary to maintain stability.

Particle shifting proposed by Xu et al. [52] shifts particle positions in the ISPH method.
In this method, the expression for position shift is based on the particle convection distance
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and the particle size, as shown by Equation (73). Moreover, physical quantities need to be
interpolated at the new position by the Taylor series according to Equation (74), where C is
a constant, set as 0.01–0.1, α is the shifting magnitude, and Ri is the shifting vector:

δri = CαRi (73)

φi′ = φi + δrii′ · (∇φ)i + o
(

δr2
ii′

)
(74)

Lind et al. [97] generalized the particle shifting approach of Xu et al. [52] and imposed
a shifting algorithm based on Fick’s law of diffusion as shown in Equation (75), where the
concentration C is expressed by the sum of the kernel function:

δrs = −D∇C (75)

Apart from shifting the particle positions, the artificial pressure-like function in Mon-
aghan [98] is applied in the calculation of the concentration gradient. Additionally, sugges-
tions are given on choosing an appropriate diffusion coefficient.

As mentioned above in Equation (26), Tsuruta et al. [37] introduced a dynamic force in
the particle motion. This dynamic force can avoid particle aggregation. Despite the overall
distribution being improved, there exists a drawback that the force component between
different particles can affect each other and cause a not fully uniform distribution.

Particle dispersion may occur where there is insufficient particle number density,
especially around free surface. In order to reproduce the physical motions of free surface
particles, Tsuruta et al. [74] defined the space potential particles (SPP) to fill the void
between surface particles, as shown in Figure 5. Its location is calculated by Equation (76),
where rg,i is the relative coordinate vector of the centroid of neighboring particles to particle
i and w

(∣∣rij
∣∣) is the kernel function in the MPS (Equation (7)). A more realistic physical

field, where repulsion and tension are balanced, is gained by applying this scheme into
pressure Poisson equation and pressure gradient.

rispp = ri −
re

n0 − ni + 1
rg,i∣∣rg,i
∣∣ (76)

rg,i =
1

n0
∑
j∈J

rijw
(∣∣rij

∣∣);
J = {j 6= i, j 6= ipp}

(77)

In Hu et al. [99], two particle redistribution models are developed. The first one is
called the “spring model”, which moves particles to some place near the position obtained
by Lagrangian convection. The second one is called the “static model”, which can simply
move particles back to the original position and fix them.

Figure 5. The space potential particles in Ref. [74].
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PST (particle stabilizing term) and PS (particle shifting) are similar in terms of modify-
ing particle distribution through modifying different fields with PST adjusting the velocity
field whereas PS adjusting the position field. Another difference between the two ap-
proaches is the criteria to determine whether the adjust to take place. For PST, it relies
on a local pressure difference ∆P. However, it is possible that the particle distribution is
seriously distorted but ∆P remains small, for which PST fails to be triggered and it causes
instability. Considering the similarity between PST and PS, Duan et al. [50] introduced the
following PS for MPS:

δri =
∆ri
n0

∑
j 6=i

l0∥∥rj − ri
∥∥
(

Ci
rj − ri∥∥rj − ri

∥∥
)

w
(∥∥rj − ri

∥∥) (78)

3.4.2. Background Pressure Mesh

Some researchers also suggest that the performance of particle method can be greatly
improved by combining the use of background mesh, where pressure is calculated and
the particles are advanced in Lagrangian frame as the original particle method [25,100].
Hwang et al. [100] proposed a moving particle method with embedded pressure mesh
(MPPM) to help obtain an accurate pressure field. Using the finite-volume method, the
continuity equation can be discretized on this regularly distributed and fixed mesh. Then,
considering the momentum interpolation for the collocated grid and the concept for the
ALE grid, the velocities in the continuity equation can be further approximated with a
simple center-difference operator. Finally, substituting these velocities into the continuity
equation which is discretized on meshes, the equation for the pressure can be successfully
obtained. With the aid of the inserted regular mesh, the pressure can be calculated accu-
rately without particle smoothing procedures for the PPE and operators. After that, the
velocity and position information of the particle at the next time step can be calculated by
the pressure field.

Ng, K.C., et al. [101] further developed the MPPM method to the Unstructured Moving
Particle Pressure Mesh (UMPPM) method, aiming to extend the MPPM solver to handle
arbitrarily shaped flow boundaries. In this work, the body-fitted unstructured mesh is
selected to replace the Cartesian pressure mesh employed in the original MPPM method.
In addition, a consistent Laplacian model, namely the Consistent Particle Method (CPM)
is incorporated in the UMPPM for the viscous stress term in an implicit form. The results
shows that this new method can address the limitation of the MPPM method in handling
arbitrarily shaped flow boundaries effectively.

Liu et al. [102] improved the accuracy of MPPM method and proposed the Mixed
Lagrangian-Eulerian (MLE) method. In this method, the momentum equation is discretized
on the moving particles, while the continuity equation is on the uniform Cartesian grid
points. On the one hand, the Laplacian term on the background mesh can be approximated
by using a higher-order scheme, which are then interpolated to the particles. On the other
hand, with the pressure and velocity are obtained on the Eulerian mesh, spatial derivative
terms such as pressure gradient, the velocity Laplacian and velocity divergence can be
calculated. With this MLE method, higher accuracy is attained and convective instability
can also be avoided.

Wang and Khayyer et al. [103] proposed a Background Mesh (BM) scheme to provide
an accurate, smooth and spatially continuous overall source term for the PPE. With the
interpolated velocities at fixed and perfectly regular neighboring nodes, the source terms
are firstly calculated at background mesh nodes, which are then interpolated to the nearest
neighboring particles. The background mesh is only applied for the PPE source terms to
provide spatial continuity, while other terms and equations are solved in the Lagrangian
framework. Hence, this scheme keeps the merits of Lagrangian mesh-free methods and
allows for more stable and accurate pressure calculations.
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3.4.3. Initial Particle Distribution

As the particles are discretized, fluid particles can easily move under pressure gradi-
ents, which may, therefore, lead to discontinuous changes in the particle number density
distribution, which becomes more pronounced in three-dimensional simulations.

Figure 6a shows the initial particle distribution called simple cubic (SC) arrangement,
where all the fluid particles are uniformly arranged. However, the filling rate of this
arrangement is relatively low. Natsui et al. [104] introduced the checker-board (CB) ar-
rangement, a uniform particle arrangement with a high filling rate. A similar approach was
also attempted in the SPH method.

Figure 6. Variation of particle arrangements in different initial conditions in Ref. [104]: (a) Simple
Cubic (SC); (b) Checker Board (CB).

Colagrossi et al. [105] proposed a particle parking algorithm for initial particle distri-
bution. Firstly, the free surface is treated as a solid boundary and the domain boundary
is modeled by fixed particles with zero velocity. Then, the density, pressure and volumes
are constant for the whole fluid domain so that the continuity equation can be neglected.
Therefore, with the initial particle pressure, the hydrostatic pressure, particle position, and
other physical quantities can be computed.

3.4.4. Local Particle Refinement

In the MPS method, local particle refinement techniques are mainly categorized into
the multiresolution particle technique and overlapping particle technique.

Tanka et al. [106] made the first attempt on multiresolution particle technique based
on the MPS method. In this method, particles with different resolutions are applied to
particle interaction models and for solving the PPE. Since in the original MPS method, the
whole flow field is represented by a single particle resolution, modifications for the particle
interaction models for various particle resolutions are needed. Thus, Tanka et al. [106]
employed particle diameters to modify the particle action model and to determine the
correction factor for the kernel function. Meanwhile, in order to avoid the inaccuracy of
particles number density caused by different resolutions particles, velocity divergence
is fully contributed to the source term of PPE. By adopting the algorithms of the muti-
resolution based on the original MPS method and also the LSMPS method, the method
has been tested for a number of benchmarks (channel flows and free surface flows) and
demonstrates its robustness in low computational costs.

The overlapping particle technique (OPT), proposed by Shibata et al. [107], can help
avoid the direct interaction between particles with different resolutions. Similar to mesh-
based methods, the whole computational domain, including the overlap domain, is filled
with coarser particles and the local domain, i.e., the overlap domain, is filled with finer
particles. Within one time step, firstly the coarser particles are used to solve the flow field.
Then, the pressure and velocity will be transferred to the boundary of overlap domain,
which will be adopted for solving the refined zone. This is a single way coupling procedure
with the flow properties in at low-resolution particles transferred to the boundary of
high-resolution particles, while no flow information transferred the other way round.
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4. Conclusions

Initially proposed in nuclear engineering, the MPS method has already been success-
fully applied to many other areas, especially in marine and ocean engineering, including
violent flows, wave interactions with fixed/floating and rigid/deformable structures, etc.
In terms of fluid –structure interaction problems, the MPS method can accurately cap-
ture changes in free surface and deformation of structures. Additionally, it has a unique
advantage in handling multiphase flow benefits from its strength in dealing with large
deformation boundaries when compared to mesh-based methods.

Despite the ability to naturally track the free surface, some drawbacks exist in the
MPS method, such as instability, non-physical pressure oscillation, low accuracy, etc. The
MPS method has seen substantial improvements over the last 20 years and significant
progress has been made in terms of stability, accuracy, boundary conditions, computational
efficiency, etc.

Non-physical pressure oscillation is a common challenge in all particle-based methods,
for which scholars have proposed numerous effective improvements and made significant
progress for the MPS method. In particular, the gradient model, the Laplace operator, and
other discretization operators have effectively improved the pressure oscillation problem
of the MPS method.

In terms of implementation of boundary conditions, the MPS method benefits from its
inherent advance in tracking free surface and dealing with complex boundary geometries.
The improvements have been made to remedy the problems of incomplete support domain
at boundaries and to improve the accuracy of surface identification. The inlet and outlet
boundaries techniques with particle adding and removing schemes are also developed. All
those achievements enable the MPS method to be applied to various flow dynamics and
flow structure interactions in ocean engineering.

Preventing particles from aggregation during the simulation also significantly affects
the accuracy and stability of the MPS method. Shifting particles when they are getting
closer is one of the methods to avoid particle aggregation. Alternatively, it is effective to
improve the accuracy of the pressure by using a pressure background grid, which can
subsequently improve the accuracy in terms of velocity and particle position updates.
Improvements have also been made for initial particle distribution to increase the filling
ratio and for local particle refinement to efficiently increase the accuracy where necessary.

In summary, with all those improvements, there still exists potential regarding the ac-
curacy, instability, and computationally expensive properties, especially for 3D simulations,
when the MPS method is applied to various engineering problems. Another challenge
of the particle method is the simulation of multiphase flows with large density ratios at
the phase interface. As described above, various methods exist, but some of them conflict
with the mass and momentum conservation, and the numerical format is not consistent
across the interface. At the same time, development of turbulence models in the MPS is
of significant importance for complex flow simulations, either importing as the existing
sub-scale particle scale (SPS) model developed for SPH method [108,109] or proposing new
formulations for the MPS method, and the CFD models in the mesh-based method can
serve as references to develop robust turbulence models for the particle method.
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Nomenclature
a A gradient vector
C Color function value or a coefficient
C Corrective matrix
Cp Specific heat capacity
d Number of spatial dimensions
F Force
g Gravity
G Gaussian function
k Conductivity
l0 Initial particle distance
L A matrix
m Mass
n Particle number density
n A normalized vector
n0 Standard value of particle number density
P Pressure
re Cutoff radius
r Particle position vector
r Distance
t Time
T Viscous stress tensor
u Horizontal velocity
u Velocity vector
ν Vertical velocity
w(x) Weight function
x Position
α Weighing factor
β, γ Coefficients
γ Surface tension force
δ Dirac function
∆ Increment
η Weight coefficient
κ Curvature
λ Coefficient of Laplacian mode
µ Dynamic viscosity
Π Adjusting parameter
ρ Fluid density
σ Surface tension coefficient
φ A scalar quantity
ϕ A vector
Subscripts
G Gaussian function
i, j Particle identification number
Supscripts
DS Dynamic stabilization
k Time step number
* Temporal value
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