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Abstract5

This paper investigates the effect of precision livestock agriculture and, in partic-6

ular, milk recording, on the productive efficiency of Irish dairy farms. We use a7

micropanel of farms that covers the period 2008-2017 and a dynamic stochastic fron-8

tier model to account for the dependence of efficiency on past values. This allows us9

to distinguish between short- and long-run effects of precision livestock agriculture10

practices on technical efficiency. We provide evidence that the Irish dairy sector11

experienced fast productivity growth in the period covered by the data, which was12

achieved mostly through technical change and efficiency improvements, but not due13

to scale effects at the farm level. Furthermore, our results show that precision live-14

stock agriculture in the form of milk recording contributed to a more efficient use15

of resources. Specifically, use of milk recording is found to affect positively technical16

efficiency in both the short and long run. Finally, we provide policy implications17

and directions for future research.18
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1 Introduction25

Precision agriculture1 describes a set of improved decision-making processes within a farm26

(or in the broader food system) based on a variety of data, which are collected through the27

use of sensors, machines, drones etc. (Klerkx et al. 2019; Eastwood et al. 2019; Janssen28

et al. 2017; Wolfert et al. 2017). The expected benefits from precision technologies are29

related to the technical optimization of agricultural production systems, transforming the30

productive processes in the wider agricultural supply chains (Klerkx et al. 2019). There31

is an emerging literature that measures the impact of precision agriculture adoption on32

profitability (see DeLay et al. 2021, and references therein). However, there are only a few33

studies to examine the impact of precision agriculture on productive efficiency, although34

the latter is considered a relevant indicator of competitiveness and sustainability (e.g.35

Färe et al. 2005; Newman and Matthews 2006; Melfou et al. 2007; Murty et al. 2012;36

Fuglie et al. 2016; Coomes et al. 2018; Sidhoum et al. 2019; Chambers and Serra 2018).37

Precision agriculture technologies can be distinguished into embodied knowledge tech-38

nologies and information intensive technologies (Griffin et al. 2017). Embodied knowl-39

edge technologies directly affect the productivity of specific inputs. Information intensive40

technologies deliver data that assist farmers to utilize their inputs more efficiently. For41

instance, detailed soil nutrient maps may increase the precise nutrient application rates,42

and as a result lowering the fertiliser costs while producing the same or more output (De-43

Lay et al. 2021). Previous studies that used data from US corn farming showed that both44

embodied knowledge and information intensive technologies affect positively productive45

efficiency (DeLay et al. 2021; McFadden and Rosburg 2021).46

This paper builds on the ideas of DeLay et al. (2021) and McFadden and Rosburg47

(2021) and examines the impact of livestock precision agriculture on farm level produc-48

1Alternative terms to “Precision Agriculture” that have been used in the context of the agricultural
sector include: “Smart Farming”, “Precision Farming”, “Decision Agriculture”, “Digital Agriculture”,
“Agriculture 4.0” (Klerkx et al. 2019).
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tivity in a dynamic context. Specifically, we use a Dynamic Stochastic Frontier (DSF)49

model to explain the impact of milk recording (as a relevant precision livestock farm-50

ing technology) on farm level productive efficiency and Total Factor Productivity (TFP)51

growth. To the best of our knowledge this is the first empirical paper that focuses on the52

linkage of precision agriculture and productive efficiency in the a livestock sector.53

The focus is on the EU dairy sector and in particular on the Irish dairy sector between54

2008-2017. The reason is that innovation is referred to explicitly as a priority in order to55

promote more sustainable and competitive agricultural production in the EU Common56

Agricultural Policy (CAP) programme for 2014-2020 for the first time (European Com-57

mision 2016). The specific objective in the CAP 2014-2020 is: “to foster green growth58

through innovation which requires adopting new technologies, developing new products,59

changing production processes, and supporting new patterns of demand” (European Com-60

mission 2010, p. 7). In the next 2021-2027 CAP, one of the policy objectives is to promote61

digitalisation at the farm level, and in the livestock sector, the aim being to facilitate the62

adoption of precision livestock farming technologies (among others) that give accurate63

information about individual cow performance (Poppe et al. 2013; EU SCAR 2019; EIP-64

AGRI 2018; European Commission 2020; Lajoie-O’Malley et al. 2020). In Ireland, the65

strategic plan FoodWise 2025 explicitly encourages dairy farmers to use technologies that66

will allow them to better utilize the grass based feed system and, ultimately, become more67

competitive under the vision of Sustainable Intensification (SI) (DAFM 2010).268

Furthermore, as part of the EU dairy sector, the Irish dairy sector experienced impor-69

tant market reform recently (Boysen et al. 2016). In particular, the CAP Health Check70

in 2008 confirmed the abolition of milk quotas in 2015 (which were imposed as early as71

1984). Before this end date (2015), the EU dairy sector went through a “Soft Landing”72

phase out period to avoid any consequences from a “Hard Landing”, such as an abrupt73

2SI is sustainable production model in agriculture, which implies that farmers produce more output
volume with the same or less inputs, minimizing the environmental pressures resulting from production
(Garnett et al. 2013; Godfray and Garnett 2014; Klerkx et al. 2019).
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drop in milk prices arising from a sudden spike in production volume. The “Soft Landing”74

was the phase out period between 2009 and 2014, where quota limits were increasing an-75

nually by 1% (Creighton et al. 2011). The quota removal aimed to allow the most efficient76

EU dairy farms to expand production and participate in the global dairy market (Läpple77

et al. 2021). After the quota removal in April 2015, milk production of the Irish dairy78

sector increased, which was driven mainly from an expansion of the national dairy herd79

and higher milk yields per cow (Kelly et al. 2020). Thus, the TFP growth measurement80

of the Irish dairy sector could inform policy making whether productivity was in line with81

the SI vision (Kelly et al. 2020).82

The remainder of the paper is organized as follows: Section 2 reviews previous lit-83

erature regarding the impact of information on farm level productivity and efficiency84

and provides a conceptual framework for quantifying this impact in a dynamic context.85

Section 3 outlines the methodology and Section 4 presents the data and the empirical86

specification. Section 5 reports the results and Section 6 further discusses some of the87

key findings. Finally, section 7 concludes with policy implications for the Irish and a88

generalization to the EU dairy sector.89

2 Background and Conceptual Framework90

2.1 The role of information on productive efficiency91

Farmers operate in a rapidly changing environment (Batte et al. 1989; Emvalomatis 2012b;92

Fuglie et al. 2017; Pardey and Alston 2020): global financial and agricultural markets con-93

tinuously change; input prices usually rise faster than output prices; government policies94

continuously adjust; and new relevant and better production technologies are becoming95

available at the market. Within this uncertain environment, information plays a key role96

in decision making (Taylor and Chavas 1980; Chavas and Pope 1984): information flows97
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enhance a farmer’s inherent capability to conceptualize and solve problems in production98

process. In particular, information assist farmers in decision making by changing or con-99

firming their expectations on possible outcomes (Batte et al. 1989; Wolfert et al. 2017;100

Klerkx et al. 2019). Hence, information allows decision making to be more consistent101

with respect to farmer’s objective function, which results into lower technical inefficien-102

cies (Batte and Schnitkey 1989; Finger et al. 2019; McFadden and Rosburg 2021; DeLay103

et al. 2021).3104

The demand for information is conditional on the specific needs of farmers and thus,105

there is a variety of mediators of information available to farmers. In empirical analysis,106

scholars have frequently examined the impact of various mediators of information and107

knowledge, on productive efficiency (e.g. Kumbhakar et al. 1991; Bravo-Ureta and Evenson108

1994; O’ Neill et al. 1999; Dinar et al. 2007; Bravo-Ureta et al. 2012; Rao et al. 2012;109

Chavas 2012; Henningsen et al. 2015). These studies mostly utilized cross-sectional data to110

study the impact of mediators such as advisors, natural management projects and contract111

farming. Methodologically, the authors either (assumed) proxied the innovation (actor)112

variable to affect the frontier and productive efficiency; or split the sample into groups113

(i.e. adopters and non adopters) and estimated different frontiers, comparing differences114

in marginal productivities and efficiencies among groups. In another approach, Skevas115

(2020) used spatial data in a dynamic efficiency specification to capture the impact of116

knowledge spillovers of farmers’ peers on efficiency.117

The developments in computer and telecommunication technologies have increased118

significantly the quality of information that farmers can obtain. Specifically, information119

technologies facilitate the processing of data4 into information, which improves measure-120

3Of course, many more factors than information may exist such as the initial farmers’ capability to solve
problems, the human capital (e.g. experience, education), investment levels, subsidies etc. and in turn
technical efficiency (e.g. Batte and Schnitkey 1989; Hadley 2006; Davidova and Latruffe 2007; Zhu and
Oude Lansink 2010; Alvarez and del Corral 2010; Sauer and Latacz-Lohmann 2015; Skevas et al. 2018b;
Martinez-Cillero et al. 2018).

4There is a difference between data and information (Poe et al. 1991; Schimmelpfennig and Ebel 2016;
Thompson et al. 2021). Data can be seen as any set of of non-random symbols (e.g. quantities, actions,
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ment, processing, and timely dissemination of information (Batte et al. 1989; Weersink et121

al. 2018; Klerkx et al. 2019). In this way, information technologies allow for more control122

of existing production technologies, and increasing potentially technical efficiency. A few123

empirical papers have assessed the impact of information technologies, such as precision124

agriculture, on productivity and technical efficiency. McFadden and Rosburg (2021) uses125

USDA’s Agricultural Resource Management Survey (ARMS) data (for 2010 and 2016)126

and reports that the use of yield and soil mapping reduces technical inefficiency. De-127

Lay et al. (2021) suggested other complementary technologies to yield and soil mapping128

should be taken into account in their analysis, as these technologies in total can be part129

of a broader precision agriculture strategy (bundle of technologies). Otherwise, neglect-130

ing these technologies may influence the results (DeLay et al. 2021): previous literature131

on production economics (e.g. Lambert et al. 2015; Schimmelpfennig and Ebel 2016) or132

agricultural adoption technology literature (e.g. Khanna 2001; Barham et al. 2004; Miller133

et al. 2019) usually examine precision agriculture on bundles (i.e. multiple complementary134

precision technologies simultaneously).135

Consequently, DeLay et al. (2021) extend the work of McFadden and Rosburg (2021)136

by taking into account in their analysis all available precision agriculture technologies in137

the ARMS dataset (again for 2010 and 2016) and compared technical efficiencies across138

technology bundles using a metafrontier, reporting qualitatively similar results to Mc-139

Fadden and Rosburg (2021). However, as DeLay et al. (2021) note, their methodological140

approach does not capture long-run efficiency gains, which may be more significant than141

their reported results. The reasons is that although the value of additional costless infor-142

mation may never make the decision maker worse off, and eventually can make him better143

qualities, goals, etc), that result from experimentation or sampling (Davis 1963; Harsh 1978; Eisgruber
1973; Chavas and Pope 1984). Information is data that has been processed or organized into a form
that is useful to the decision maker (Poe et al. 1991; Schimmelpfennig and Ebel 2016; Thompson et
al. 2021). Information technologies broadly include all those developments designed to measure, store,
retrieve, process and communicate data or information (Batte et al. 1989; Schimmelpfennig and Ebel
2016; Thompson et al. 2021).
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off (Chavas and Pope 1984); adjustment costs with respect to the information could “dis-144

guise” the true benefits afforded by these technologies in the short run (Stefanou 2009;145

DeLay et al. 2021). Thus, a solution would be to assess the impact of precision agricul-146

ture technologies on productive efficiency in a dynamic context rather than a discrete,147

“one-shot decision” DeLay et al. (2021).148

2.2 Assessing the impact of livestock precision agriculture in a149

dynamic context150

We address the limitation described in the previous section by assessing the impact of151

precision agriculture on productive efficiency in a dynamic context. We consider milk152

recording as an indicative livestock precision technology in the Irish dairy sector. Milk153

recording provides data that can be used by farmers to improve breeding and culling154

decisions (Läpple et al. 2017; Balaine et al. 2020) and produce better quality and higher155

quantity of milk (Geary et al. 2013; Balaine et al. 2020); and enables farmers to monitor156

and prevent diseases, such as mastitis, through Somatic Cell Count (SCC) readings (Dillon157

et al. 2018). The use of cow specific information from milk recording may affect efficiency158

at the time period this is obtained but also in subsequent periods. For instance, there is159

a time lag between breeding decisions and improvement in the genetic composition of the160

herd: the age at first calving is between 24 and 36 months (Berry and Cromie 2009).161

Furthermore, obtaining detailed data that can inform production decisions does not162

guarantee that the farmer will be able to reorganize fully the production process imme-163

diately in relation to the obtained information: adjustment in the short run may be too164

costly or even infeasible. For example, farmers may face difficulties processing the large165

amount of information obtained from milk recording (despite the support and training166

that milk recording provides) and decide to partially adjust their production processes167

(Hostiou et al. 2017; Schewe and Stuart 2015; Dillon et al. 2018; Balaine et al. 2020).168
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Given that total management time is fixed, a loss in physical output could occur if the169

farmer spends time learning to use the information (Stefanou 2009). As another example,170

information from milk recording may induce farmers to increase feed intake per cow (Bal-171

aine et al. 2020), which would require either production of more feed within the farm or172

purchasing feed on the market. The former approach has associated internal adjustment173

costs (i.e. learning how to produce a new intermediate input or with increased scale), as174

well as large external adjustment costs due to low land availability in Ireland (O’Donoghue175

and Hennessy 2015). The latter approach may not be feasible in the short run if farmers176

lack the required financial resources to purchase feed.177

In this dynamic view of the production process, current decisions may affect, not only178

current, but also future production possibilities and profitability (Stefanou 2009; Emval-179

omatis 2012a; Skevas et al. 2017). The adjustment cost theory suggests that the source180

of the time interdependence of firm’s production decisions is the physical or economic181

infeasibility of changing the levels of quasi-fixed factors in the short run (Penrose 1959;182

Lucas 1967; Treadway 1969; Treadway 1970; Rothschild 1971; Mortensen 1973; Stefanou183

2009). Adjustment costs may cause inefficiency in the short-run, which may persist over184

time (Stefanou 2009; Emvalomatis 2012a; Skevas et al. 2018a). To account for the dy-185

namic nature of a production process and its gradual adjustment to external factors, we186

use a DSF model (Ahn and Sickles 2000; Desli et al. 2003; Tsionas 2006; Emvalomatis187

2012a; Lai and Kumbhakar 2020) to quantify the impact of milk recording on short - and188

long-run technical efficiency. In this model, the efficiency specification allows farmers to189

not only be inefficient due to suboptimal decision making, but also due to persistent inef-190

ficiency that is caused by adjustment costs in their effort to reach their long run efficiency191

equilibrium.192

Thus, the use of DSF can addresses the limitation of DeLay et al. (2021) and McFadden193

and Rosburg (2021) regarding adjustment costs and can show that precision agriculture194

has an impact on short and long run efficiency. However, milk recording can be seen as195
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complementary to a larger bundle of technologies, similar to other low cost technologies196

for dairy systems (e.g. Barham et al. 2004). Specifically, milk recording is part of the197

“core technologies” related to grassland management, breeding techniques and cost man-198

agement, which are promoted by the Irish AIS for the SI of the Irish dairy sector (see199

O’Dwyer 2015; Läpple et al. 2019). This implies that, for example, farmers may use a200

bundle of breeding techniques. These may be applied not simultaneously but in as gradual201

process over the observed period, in which, the use of milk recording specifically may be202

applied at specific years and not sequentially in all adjacent years (Khanna 2001; Miller et203

al. 2019). Then, complementary technologies should be taken into account in the analysis204

in order to distinguish their dynamics from milk recording’s impact on efficiency, follow-205

ing McFadden and Rosburg (2021) and DeLay et al. (2021). However, including more206

complementary technologies may result in high collinearity, while the farmers maybe use207

much more related technologies which are not observed in the dataset in a panel setting.208

For this reason, after estimating the DSF, we take into account the impact of various209

technologies implicitly by constructing a TFP growth index and its components. The210

components of the TFP growth index can indicate whether productivity growth is driven211

by effects (such as the contribution of “core technologies”) that are consistent with the212

vision of SI in FoodWise 2025: TFP growth should be driven by technological and effi-213

ciency gains, but not scale effects. Efficiency changes in the model are explained explicitly214

by adjustment costs and milk recording. Given that a number of shocks occurred in the215

time period under investigation (European Parliament 2018), the DSF specification could216

reveal abrupt changes in efficiency; and estimate more accurately adjustments in produc-217

tion process, and thus, the evolution of TFP growth between adjacent time periods, as it218

can capture (persistent) time-specific efficiency shocks (Skevas et al. 2018b).219

Examples of shocks include rapid changes in input or output prices, an extreme weather220

event, or a disease outbreak, that may force a farm to be less efficient at a particular221

point in time (European Parliament 2018; Pieralli et al. 2017; Skevas et al. 2018b). For222
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instance, an extreme weather event may lower the cows’ reproductive performance or223

exacerbate disease outbreaks, causing a drop in output at the time of the event. However,224

such an event would introduce persistent effects on output as farmers slowly adjust back225

to normality and this slow adjustment process manifests itself in the data as persistent226

inefficiency (e.g. Emvalomatis et al. 2011). Hence, accounting for persistent inefficiency227

can provide better insights to policy makers regarding competitiveness (e.g. Heshmati228

et al. 2018; Filippini et al. 2018). The following section describes the construction of a229

Malmquist productivity index which is obtained using a DSF model.230

3 Modelling Approach231

To measure and decompose TFP growth and the effect of innovative production techniques

on productivity, we first need to define a mathematical representation of the production

technology. To account for the multi-output nature of the production processes employed

by Irish dairy farms (e.g. Newman and Matthews 2006), we use an output distance func-

tion:5

Do(x,y, t) = min
{
θ : y

θ
∈ production possibilities set in period t

}
(1)

where the input and output vectors, x ∈ RN and y ∈ RM , are implicitly defined as

functions of time, t. The output distance function takes an output-expanding approach

in measuring the distance of a producer to the boundary of the production possibilities

set by determining the minimum amount, θ ≤ 1, by which the output vector should be

deflated to reach this boundary. The combinations of x, y and t for which the value of the

distance function is equal to one define the boundary of the production possibilities set.

5The output-expanding view of efficiency taken here is in line with the vision of SI, in which farmers are
encouraged to maximize the amount of output, given the available resources. Despite the quota scheme
operating until 2014, we assume that the farmers’ objectives are still consistent with output expansion,
since quota was tradeable in Ireland (under some conditions) and between 2009-2014 dairy farmers were
allowed to increase the amount of milk output (up to 1% annually).
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Thus, the distance function itself can be used to define technical efficiency as a function

of its arguments:

Do (y,x, t) = TE (2)

Taking logs of both sides of the previous expression, totally differentiating with respect

to time and rearranging gives:

M∑
m=1

∂ logDo

∂ log ym
ŷm +

N∑
n=1

∂ logDo

∂ log xn
x̂n +

∂ logDo

∂t
=

d log TE

dt
(3)

where a “hat” over a variable denotes growth rate, for example ŷm = ∂ym
∂t
/ym.232

In general, TFP growth is defined as the growth rate in the amounts of outputs that

cannot be attributed to growth in input use. In a production process where multiple

inputs are used to produce multiple outputs, growth rates in outputs and inputs must

be aggregated. A Törqnvist index uses revenue shares (for outputs) and cost shares (for

inputs) to perform this aggregation. With a profit-maximization assumption, these shares

can be replaced by functions of the elasticities of the distance function with respect to

the outputs and inputs, and TFP growth can be expressed as:

d log TFP

dt
=

M∑
m=1

∂ logDo

∂ log ym
ŷm −

N∑
n=1

εn
ε
x̂n (4)

where εn = ∂ logDo
∂ log xn

, ε =
∑N

n=1 εn. Finally by inserting (4) in (3) and rearranging we get:233

d log TFP

dt
=

d log TE

dt
− ∂ logDo

∂t
− (1 + ε)

N∑
n=1

εn
ε
x̂n (5)

The last expression presents the usual decomposition of TFP growth into technical effi-234

ciency change, technical change and scale effects, as in Orea (2002).235

Equation (5) makes clear that, before we construct and decompose TFP growth, we

need to retrieve the parameters from an empirical counterpart of the distance function,
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as presented in (1). The distance function itself is defined as an implicit function of

observable quantities. However, by definition, it is homogeneous of degree one in outputs:

multiplying all outputs by a positive constant λ results to the value of the distance function

also being multiplied by the same constant. Linear homogeneity in outputs can be imposed

by dividing all outputs and the value of the distance function by the amount of the

normalizing output, ym. After taking the natural logarithm of both sides of the resulting

expression, rearranging and appending an error term we obtain (see for example Coelli

and Perelman 1999):

− log ymit = logDo

(
xit,

yit
ymit

, t

)
+ vit + u+it (6)

where ymit is the amount of normalizing output for farm i in period t, vit is a linear error

term that accounts for statistical noise6, assumed to be normally distributed with mean

zero and variance σ2
v , and u+it ≡ − log(TEit) is the one sided technical inefficiency term

for the same observation. Denoting the dependent variable in (6) by yit and using a

specification for the logarithm of the distance function that is linear in the parameters,

the following empirical counterpart to the output distance function is obtained:

yit = αi + x′itβ + vit + u+it (7)

where yit is minus the logarithm of the normalizing output and xit is a vector of covariates236

(functions of the arguments of logDo). β is a vector of parameters to be estimated237

and, given this setup, the parameters associated with outputs should be positive (ceteris238

paribus, increasing the amount of an output brings the farm closer to the frontier), while239

6Statistical noise is assumed to capture random shocks, such as weather events. However, the notion
of statistical noise does not reflect the degree of preparedness of farmers for future shocks. Being
prepared for shocks is a management decision that leads to resilience. In the event of a shock, a more
resilient farmer will also be more efficient relative to peer farmers. For this reason, SFA distinguishes
between inefficiency and statistical noise and neglecting the latter may lead to biased efficiency estimates
(Karagiannis 2014; Kumbhakar et al. 2018).

11



the parameters associated with inputs negative (ceteris paribus, increasing the amount of240

an input moves the farm farther from the frontier). αi is a a random effect that captures241

time invariant (farm specific) unobserved heterogeneity and it is assumed to be normally242

distributed with mean zero and variance σ2
α.243

We specify the distance function as translog in inputs and outputs, and we include

also a time trend and its square, as well as interactions between the time trend and

the remaining variables to capture the effect of technical progress. Model specification

is complete once a distributional assumption is imposed on the inefficiency term in (7).

To account for the persistence of inefficiency over time, we use a DSF model in which

an autoregressive process is imposed on farm-specific technical efficiency (Tsionas 2006).

TEit is treated as a random variable bounded on the unit interval and a one-to-one

transformation of TEit is used to project it from the unit interval to the real line. This

is done to avoid complications related to a specification of an autoregressive process on a

variable that can assume values only in a restricted interval. The inverse of the logistic

function is used for the transformation, sit = log
(

TEit
1−TEit

)
, as in Emvalomatis 2012a, and

the following autoregressive process is assumed for sit:

sit = z′iδ + ρsi,t−1 + ξit, ξit ∼ N (0, σ2
ξ ) (8)

si1 =
z′iδ

1− ρ
+ ξi1, ξi1 ∼ N (0, σ2

ξ1
) (9)

where z is a vector of a constant term and milk recording, δ is a vector of parameters to244

be estimated and ρ is the inefficiency persistence parameter. ξit is a two-sided error term245

that accounts for statistical noise and σ2
ξ1

=
σ2
ξ

1−ρ2 , along with the the specification of si in246

the initial period, impose stationarity on the s series. Stationarity is necessary from an247

econometric and theoretical standpoint. Econometrically, s requires an initial distribution248

because it is an unobserved quantity (Wooldridge 2005). Theoretically, stationarity of s249
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will rule out cases where the expected value, conditional on the sign of the term z′iδ,250

will approach either positive or negative infinity, in which case technical efficiency will251

approach either unity or zero. Observing fully efficient farms is something rare, while252

fully inefficient farms should exit the market before they reach such a point. Technical253

efficiency is obtained as esit
1+esit

, by inverting the transformation from TEit to sit. Given254

the specification of the model, a positive coefficient associated with a variable in z implies255

a positive effect of the variable on technical efficiency.7256

The persistence parameter, ρ, is an elasticity that measures the percentage change in257

the efficiency to inefficiency ratio that is carried from one period to the next (Emvalo-258

matis 2012a). Stationarity of the s series ensures that ρ is bounded between -1 and 1.259

Moreover, in the estimation approach ρ is restricted on the unit interval, since a negative260

autocorrelation in inefficiency is not realistic. A value of ρ close to 1 implies high adjust-261

ment costs or a limited effect of learning by doing. Given the one-to-one transformation262

from s to TE, the steady-state value of s can be transformed into a measure of Long-263

Run Technical Efficiency (LRTE). An estimate of this can be obtained by inserting the264

unconditional expected value of s into the transformation from TE to s, which leads to265

[1+exp{−z′iδ/(1−ρ)}]−1 (Emvalomatis 2012a; Skevas et al. 2018b). LRTE is interpreted266

as the expected value of efficiency that will prevail in the sector in the long run. In this267

paper LRTE is farm specific due to the farm specific variables in z and despite the fact268

the ρ is treated as a parameter common to all farms.8 Firm specific covariates in (8) and269

(9) could, instead, be modelled as time varying (e.g. Tsionas 2006; Lambarraa et al. 2016;270

Galán et al. 2015; Lai and Kumbhakar 2020). This approach, however, would not allow271

estimation of LRTE, as the expectation of sit unconditional on si,t−1 would depend on the272

values of the variables in zit.273

7The derivative of technical efficiency with respect to the `th explanatory variable in z is given by:
∂TEit

∂z`
= δ`×ez

′
iδ

(1+ez
′
i
δ)2

, whose sign is the same as the sign of δ`.
8This assumption can be relaxed, assuming that farmers face different adjustment costs that result in
different inefficiency persistence across farms (Skevas et al. 2018a).
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All the parameters in the specified DSF model above (eq. 6-9) are estimated simul-274

taneously. Estimation of the model can be performed using non-linear Kalman filtering275

(Emvalomatis et al. 2011). This approach, however, is computationally intensive and,276

as a result, Bayesian inference techniques have become the norm in the estimation of277

DSF models (Tsionas 2006; Emvalomatis 2012a; Galán et al. 2015; Skevas et al. 2018a;278

Skevas et al. 2018b). For a Bayesian procedure to be applied the specification of prior279

distributions for the model’s parameters is required. These can be found in Appendix A.280

4 Data and Empirical Specification281

The data used in this study are taken from Teagasc’s National Farm Survey (NFS) and282

cover a sample of Irish dairy farms for the period between 2008 and 2017. The original283

dataset contains a total of 3740 observations on 486 specialist dairy farms, with cases of284

farms reported between 1 and 10 years. In order to model dynamic effects, only data285

from farms that are observed for at least five consecutive years are used, which results286

into an unbalanced panel of 2323 observations from 277 farms. In this reduced dataset287

farms remain in the sample for an average of 8.7 years.288

Two categories of outputs are defined, the main output, which is milk and it is mea-289

sured as the total revenue from milk production (y1) and other output, that consists290

of aggregate revenues from beef, pigmeat, other meat products, crops and other minor291

commodities (y2). Four input categories are defined: capital (K) comprises of the value292

of machinery and buildings, total livestock (LU) is measured in units and comprises the293

number of cattle, pigs, sheep or other animals owned by the farms (multiplied by ther294

respective coefficients, e.g. dairy cows by 1, suckling cows by 0.9, working horses by 1.5295

etc.), labor (L) is measured in total labour units working on the farm, both unpaid and296

paid, land (A) is the utilized agricultural area, measured in hectares (A). Materials (M)297

include expenditures in the following subcategories: seeds and plants, fertilizers, crop298
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protection, energy, contract work and purchased feed (includes purchased concentrates299

and bulky feed), upkeep of buildings, machinery hire and upkeep of land. For outputs,300

as well as for capital and materials, which are measured in monetary terms, a Törnqvist301

index was constructed for each aggregate, using price indexes from EUROSTAT with302

2010 as the base year. Then, each aggregate variable was deflated accordingly. Summary303

statistics for the input and output variables are presented in Table 1.304

Table (1)

Summary Statistics, Irish dairy farms 2008-2017

Variable Mean Std. Dev Min Max
Milk (1000 e) 115.41 79.39 1.13 623.69
Other Output (1000 e) 50.33 37.70 1.18 424.06
Capital (1000 e) 161.93 126.341 0 774.63
Livestock (Units) 118.8 65.93 10.69 485.56
Labor (AWU) 1.59 0.65 0.5 6.93
Area (Ha) 54.01 28.97 3.7 222.61
Materials (1000 e) 69.10 47.89 4.67 383.43

The data on milk recording provide information on whether or not a farmer used milk305

recording in a particular year, but do not describe the extent or way in which information306

obtained by milk recording was utilized in farm management decisions (Balaine et al.307

2020). Hence the farmer may use the obtained information at any time period, t+j, after308

the initial application of the practice in period, t. The possibility that the farmer did not309

use the obtained information from milk recording cannot be dismissed, particularly since310

the technology is not associated with high installation or running costs: the individual311

farmer remains the one who is responsible for deciding whether they adjust their pro-312

duction with respect to the obtained information (Berckmans 2014; Hostiou et al. 2017).313

However, there is evidence that the vast majority of farmers, who obtain information314

through the use of precision agriculture, use eventually this information (e.g. Thompson315

et al. 2021), as part of their wider bundle of technologies; while, the vast majority of316
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Irish dairy farmers indicated that will manage SCCs through the use of milk recording317

as part of their breeding management technologies (Läpple et al. 2017). Therefore, it is318

expected the bulk of Irish dairy farmers, who used milk recording, to actually use the319

obtained information. Even if farmers do not use the information, we expect that farmers320

will be eventually better off, because they can form more accurate expectations regarding321

the possible outcomes of the overall technology bundles (e.g total breeding management322

techniques or feeding) (as argued in subsection 2.1). It is also possible that farmers may323

not reorganize production with respect to information of milk recording from a purely324

production purpose. For instance, farmers may be more concerned about animal welfare325

(see Hansson et al. 2018); in this case again, adjustment costs will occur slowing down326

efficiency.327

Table 2 provides the average use of milk recording across the sample, which is 0.51,328

with the average use on individual years across farms ranging between 0.48 and 0.53. Out329

of the 277 farmers in the sample, 101 farmers never used milk recording. Another 176330

farmers used milk recording for at least some time during the period under consideration,331

but not necessarily in consecutive time periods: out of these 176 farmers, 5 of them used332

milk recording all years, while the rest 171 farmers may have used milk recording in year333

t, not in period t + 1, and then again in year t + 2 or t + 3 etc, in a similar manner as334

explained in the conceptual framework of this paper.335

Table (2)

Milk recording use over time across Irish dairy farms, 2008-2017

Use of milk recording over time No of farmers
Not at all 101
At least once, but less than half, of their observed years 50
More than the half of their observed years 126
Average milk recording use of all farmers 0.51

To turn the time-varying indicator of milk recording application into a time invariant336
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variable, as the econometric model requires, we use the average number of years in which337

the practice was used relative to the number of years for which a farm is observed. Thus,338

if a farmer has used milk recording for all the years for which data are observed, then the339

time invariant milk recording variable has a value of one.340

5 Results and Discussion341

5.1 Frontier estimates342

Table 3 reports the posterior means and the 90% credible intervals of the parameters343

associated with the first order terms in the specification of the DSF. The full set of results344

of the model can be found in Table 6 of Appendix B. The results in these tables are ob-345

tained from 10 Markov Chain Monte Carlo (MCMC) chains and using data augmentation346

techniques. Each chain had a burn-in phase of 50,000 iterations to reduce the influence of347

the initial values, and another 100,000 draws, out of which 1 out of every 10 was retained,348

to remove any potential autocorrelation. The total number of retained draws from the349

posterior distribution is, therefore, 100,000.9350

Prior to estimation, the data for inputs and outputs were normalized by their geometric351

mean, allowing us to interpret the parameters associated with the first-order terms directly352

as distance elasticities, evaluated at the geometric mean of the data. The estimated353

distance elasticity of y2 in the DSF shows that, if the farmer produces 1% more of other354

output (holding inputs and milk output fixed), then the value of the distance function is355

increased by 0.213%, moving the farmer closer to the frontier. Regarding input elasticities,356

9In a similar fashion, we also estimated three alternative models with different aggregation in the inputs:
Model 2 (M2) in which livestock value (instead of livestock units) is aggregated to capital (similar to
Newman and Matthews (2006)); Model 3 (M3) where feeds is a separate variable from materials and
livestock value is aggregated to capital, and; Model 4 (M4) where livestock units is accounted and feeds
are a separate variable from materials. We used Bayes factors to compare the performance of these three
models with the main Model 1 (M1) presented in this section. The Bayes factors favoured M1 compared
to the rest of the models. A short description of the concept of Bayes factor and the results of M2, M3
and M4 can be found in Tables 7, 8, 9 respectively, Appendix C.
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an increase in utilized area by 1%, while holding other inputs and outputs fixed, leads357

to a reduction in the value of the distance function by 0.062%, thus moving the farmer358

farther away from the frontier. The estimated output elasticities differ from the study359

of Newman and Matthews (2006) (due to the differences in input aggregation), but it is360

evident that livestock units and materials have the highest effect on production, similar361

to studies on the Dutch, UK and German dairy sectors (Emvalomatis et al. 2011; Skevas362

2020; Areal and Tiffin 2012; Skevas et al. 2018a; Skevas et al. 2017). The model shows363

slightly decreasing returns to scale at the geometric mean of the data: −
∑

n εn = 0.976.364

The average short run technical efficiency (TE) score, across both farms and years, is365

0.85. This is higher than the 70% efficiency score reported by Newman and Matthews366

(2006) (approximately 70%) for the period 1985-2000. Compared to studies in other EU367

dairy sectors, the reported TE is slightly higher than in the Dutch and UK dairy sectors368

(Emvalomatis et al. 2011; Areal and Tiffin 2012; Skevas 2020), and much higher than the369

average efficiency of German dairy farms (Skevas et al. 2017). These difference may be370

attributed to the efficiency specification used in the respective empirical analyses (Skevas371

et al. 2017), but also to the abolition of the quota system in the period covered by our372

data, which allowed for much more flexibility in decision making at the farm level.373

Average long run technical efficiency (LRTE) across farms is estimated at 0.87. The374

marginal difference between the short and long run efficiency scores indicates that Irish375

dairy farmers have almost reached, in the period covered by the data, their respective376

equilibrium efficiency levels. This finding is similar to Skevas (2020), who found that the377

average TE and LRTE of the Dutch dairy sector between 2009-2016 was 0.843 and 0.845.378

Our study and Skevas (2020) are probably the only to report such a small difference379

between TE and LRTE: given the period of investigation of both studies, it seems that380

the abolition of milk quotas possibly facilitated a more efficient EU dairy production.381

Furthermore, the estimate of the inefficiency persistence parameter (ρ) is approximately382

equal to 80% (Table 3), indicating the existence of high adjustment costs. This implies383
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that a high percentage of inefficiency in period t is carried to period t+ 1.384

Finally, this is the first study that examines the evolution of TFP in the Irish dairy385

sector using a DSF model. It should be noted that the persistence of inefficiency is386

estimated in this paper to be noticeably lower than what was reported for the Dutch and387

German dairy sectors by Emvalomatis et al. (2011), Skevas et al. (2018a), and Skevas388

et al. (2018b)10 for the years before the “Soft Landing”. A possible explanation is that389

the abolition of the quota system may have provided additional incentives to invest at the390

farm level (Levi and Chavas 2018), which resulted in lower external adjustment costs, thus391

reducing their persistent inefficiency. Another possible explanation is the effect of the AIS392

on reducing internal adjustment costs. As Ireland has the strongest and most integrated393

AIS in EU (EIP-AGRI 2018) that creates considerable knowledge flows (Renwick et al.394

2014; Läpple et al. 2016; Läpple et al. 2019), it could reduce learning costs that result395

from the application of new technologies and the reorganization of the production process.396

Instead, the German AIS cannot be characterized as well-functioning from a national397

perspective (Paul et al. 2014). In the Netherlands, the privatization of extension services398

has created competition, where advisors are sometimes hesitant to share knowledge (EU399

SCAR 2012). We leave this for further investigation.400

Table (3)

Posterior summaries of key parameters of the DSF

Variable Mean 95% Credible Interval

constant -0.129 [ -0.173, -0.088]

logK -0.083 [-0.101, -0.066]

logLU -0.585 [-0.628, -0.542 ]

logL -0.021 [-0.049, 0.006]
10Emvalomatis et al. (2011) estimated the persistence parameter at 95% and 98% for dairy farmers in

Germany and the Netherlands, respectively, between 1995 and 2006. Skevas et al. (2018a) and Skevas
et al. (2017) estimated the parameter at 95% for the German dairy sector between 2001 and 2007.
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logA -0.062 [-0.096, -0.028]

logM -0.225 [-0.250, -0.201]

log y2 0.213 [ 0.202, 0.224]

t -0.015 [ -0.017, -0.012]

σv 0.072 [0.067, 0.077]

σa 0.133 [0.119, 0.147]

ρ 0.80 [0.719, 0.873]

RTS 0.976

Average TE 0.85

Average LRTE 0.87

401

Table 4 presents the estimates of the parameters that appear in the specification of the402

dynamic equation that describes the evolution of efficiency. A positive coefficient in zi,403

i.e. milk recording implies a negative impact of the firm specific time-invariant covariates404

on technical inefficiency.11 Thus, the positive coefficient associated with milk recording405

(0.191) indicates that application of the practice has a negative effect on inefficiency, i.e.406

a positive effect on long and short run efficiency. Hence, farmers using milk recording are407

able to produce more output with given inputs, which of course is aligned with the SI408

concept.409

We estimate additional models in order to provide robustness checks regarding the410

positive effect of milk recording, as many more factors could affect inefficiency. We first411

estimate a model (Model 5 -M5) with stocking density as an additional factor in the spec-412

ification of the hidden-state equation, which is associated with more intensive production413

methods (Alvarez and del Corral 2010). Similarly to Alvarez and del Corral (2010) and414

11The marginal effects of the lth explanatory variable in z on technical efficiency is given by: ∂TEit

∂zl
=

δl×exp{z
′
iδ}

(1+exp{z′
iδ})2

.
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Table (4)

Determinants of transformed efficiency, s

Variable Mean 95% Credible Interval
Constant 0.401 [0.252, 0.586]
Milk Recording 0.191 [0.122, 0.276]

Skevas et al. (2017), we find that farms with higher stocking density are also more efficient.415

Additionally, we use the farm operator’s age as an additional factor in the specification416

(Model 6 -M6) and we find that older operators are less efficient (e.g. Hadley 2006), al-417

though the magnitude of the coefficient is relatively small. Finally, including both age418

and stocking density as additional factors produces very similar results (Model 7 -M7).419

The results of M5, M6 and M7 can be found in Table 10, 11, 12 respectively, Appendix420

D. We maintain M1 and further discuss because this model is favoured by the data when421

compared to M5, M6, M7 using Bayes factors.422

5.2 TFP growth results423

Table 5 presents the Technical Change (TC), Technical Efficiency (TE) change, Scale424

Effect (SE) and the aggregate TFP growth for the 2008-2017 period. On average, the425

estimated TFP growth rate is 1.31%. This is driven primarily by the technical change426

effect, which is 1.49%, on average, per annum.427

Between 2008-2009, farmers experienced negative technical progress, which is referred428

to in the literature as technical regress (Tsionas and Kumbhakar 2004; Kumbhakar et al.429

2008). Between 2013 and 2017 technical progress started to grow at an accelerated rate.430

The results pertaining to technical regress in the earlier time period can be aligned with431

the final phase of the milk quota regime, which begins with the EU Common Agricultural432

Policy (CAP) Health Check of 2006: since 2007, dairy farmers proceeded with significant433

on-farm investments in infrastructure and livestock, preparing for the post quota era,434
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Table (5)

TFP growth rate and decomposition (%)

Year TC TE SE TFP growth
2008-2009 -0.139 -0.517 0.029 -0.627
2009-2010 0.216 0.846 -0.030 1.033
2010-2011 0.626 0.318 0.021 0.965
2011-2012 1.012 -0.670 0.058 0.401
2012-2013 1.319 -0.042 -0.305 0.971
2013-2014 1.732 0.633 -0.310 2.055
2014-2015 2.237 0.436 -0.203 2.470
2015-2016 2.700 -0.585 -0.291 1.823
2016-2017 3.102 0.025 -0.904 2.223
Average 1.499 0.040 -0.226 1.313

guided by dairy advisors (O’Dwyer 2015); approximately e2 billion was invested between435

2007 and 2013 in infrastructure, while there was a remarkable increase of 0-1 year old436

replacement heifers, from 250,000 in the mid-2000s, to over 350,000 in 2014 (O’Dwyer437

2015). Thus, across the period 2008-2010 farmers increased their investments, while438

output was allowed to increase annually only by 1%. As a result, technical regress in our439

results reflects that the growth rate of inputs was possibly higher than of outputs in this440

period12. After the abolition of the quota system, the technical change component exhibits441

a fast growth, reaching a rate of approximately 3.1% in the last year of observation.442

The average efficiency change in the period is 0.04%, and the pattern that efficiency443

displays within this period is particularly interesting. In particular, the results indicate444

a decline in efficiency between 2011 and 2013. Between 2011 and 2012, the price of milk445

declined by 9%, and at the same time unfavourable weather conditions and high feed prices446

led to an increase in total production costs by 13% (Teagasc 2012). This may have resulted447

in a reduction in efficiency, as farmers had to adjust input use to levels beyond their usual448

experience. In the following year, inclement weather conditions resulted in a 8% rise in449

12Technical regress was also found for Swedish farmers between 1960 to 1988 and 1976 to 2005 (Kumb-
hakar and Heshmati 1995; Kumbhakar et al. 2008) and Irish beef farmers in 1984 to 2000 and then
2000 to 2013 (Newman and Matthews 2007; Martinez-Cillero et al. 2018).
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production costs, which was over compensated by a 23% spike of the average Irish farm450

gate milk price (Teagasc 2013). However, due to adjustment costs farmers possibly could451

not adjust fully their production process that resulted in small, but negative, efficiency452

change in that period.453

Given the shocks that occurred in the period under investigation, which are also pos-454

sibly reflected in the efficiency change component of TFP growth, the positive impact of455

milk recording on TE may also indicate that milk recording enhances (albeit partially)456

farmers’ resilience.13 Resilience reflects the capacity of a system to absorb and recover457

quickly from negative shocks (Walker et al. 2003; Folke 2006; Fuglie et al. 2016; Coomes458

et al. 2018). As specified in DSF model, the use of milk recording in period t can have a459

positive effect on TE of period t, but also in period t+ 1. This implies that between two460

farmers who experienced the same shock in period t, the one who used milk recording461

in period t, may have lower losses in period t. Even if these two farmers have the same462

adjustment costs, the farmer who used milk recording in period t can use this informa-463

tion to restore the production process in period t + 1 closer to its initial state (before464

the shock) and, hence, to adjust and become more efficient in period t + 1 compared to465

the peer farmer. However, further analysis is required to examine the precise impact of466

shocks on efficiency, and the contribution of milk recording to the shock recovery. Last,467

from a methodological perspective, the positive impact of milk recording use on both468

short and long run efficiency in this paper indicates that neglecting to take into account469

the lagging effect of information on farm level productivity and efficiency may result in a470

misspecified empirical model; the extent to which such a misspecification affects results471

requires further research.472

The average scale effect (-0.226%) is also negative implying farmers are operating on473

a smaller scale in relation to the optimal scale of the technology they employ.While farm474

13Resilience is recognized as an essential condition for competitiveness and sustainability by the recent
Farm to Fork strategy (European Commission 2020).
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specific investments allowed farmers to enjoy TFP growth improvements due to positive475

scale effects between 2007-2011, from 2012 negative scale effects are observed. This result476

could possibly indicate that Irish dairy farmers increased the size of their cow herd but477

low land mobility (and given that the grass based feed system is the main source of478

competitiveness of Irish dairy farmers) prevent farmers from increasing sufficiently the479

amount of feeds of the herd (O’Donoghue and Hennessy 2015). Nevertheless, this result480

is consistent with the SI of the Irish dairy sector, i.e. scale adjustments should not drive481

TFP growth.482

6 Conclusions483

This paper extends the work of DeLay et al. (2021) and McFadden and Rosburg (2021)484

in order to examine the impact of livestock precision agriculture on productive efficiency.485

Specifically, we examine the impact of milk recording, as an indicative technology of live-486

stock precision agriculture, on the Irish dairy farm level productive efficiency, using a487

Dynamic Stochastic Frontier (DSF). This model accounts for the time-interdependence488

of efficiency between adjacent production periods, attributed to adjustment costs. Specif-489

ically, the obtained short and long run efficiency scores in this paper are expressed as490

function of the application of milk recording use and persistent inefficiency that reflects491

adjustment costs. Differences in intensity of milk recording use across farms explain farm492

specific discrepancies in efficiency. While we do not assess the impact of milk recording as493

a bundle similar to DeLay et al. (2021) and McFadden and Rosburg (2021), we estimate494

a Total Factor Productivity growth (TFP) index. The index can capture implicitly the495

impact of technology “bundles” on the productivity growth, as an overall indication of496

competitiveness under the concept of Sustainable Intensification (SI).497

Overall, the average growth rate of TFP is approximately 1.3% approximately between498

2008-2017 and is in line with the SI vision of FoodWise 2025 strategic plan: technical499
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change is the main driver (1.4%); overall efficiency change is almost 0.04%, which implies500

that given the estimated high technical progress rate, Irish dairy farmers had important501

catch up effects through better use of the new technologies that were acquired, and;502

negative scale effects slowed down TFP growth, possibly due to low land availability503

(O’Donoghue and Hennessy 2015). The average short run efficiency was found to be504

0.85%. Average short and long run efficiency scores are very close in magnitude, reflecting505

that dairy farmers have almost reached their equilibrium efficiency in the period 2008-506

2017. The results also reveal the presence of inefficiency persistence, due to adjustment507

costs, that forces Ireland’s dairy farmers to remain inefficient over time. Despite the high508

persistent inefficiency, milk recording is found to affect positively short and long run TE:509

this finding extends the literature on precision agriculture and productive efficiency (see510

DeLay et al. 2021).511

Persistent inefficiency has important implications for policies that aim to increase512

productive efficiency of farmers. Specifically, the results indicate that inefficiency is not513

necessarily resulting purely from poor management but also from high adjustment costs.514

Hence, the role of Agricultural Innovation System (AIS) actors is important for providing515

knowledge and inputs, assisting farmers to reorganise their production process faster, i.e.516

eliminating their inefficiency by reducing adjustment costs. The role of AIS for reducing517

inefficiency might be more important than promoting the uptake of relevant technologies518

such as milk recording. The reason is that farmers may adjust production factors for519

wider purposes (e.g animal welfare) than purely maximizing productivity. As a result520

part of inefficiency might be “rational” but it is erroneously considered as poor man-521

agement (“rational inefficiency hypothesis”, see Bogetoft and Hougaard 2003; Hansson522

et al. 2018).14 In this light, similar to the arguments of Hansson et al. (2018), policy and523

14This may explains the relatively low uptake of policy and advisory measures, such as milk recording,
that target to increase productive efficiency at the farm level for a more sustainable production. From
an Irish perspective, policy makers aim foster the uptake of milk recording (Balaine et al. 2020), which
is lower compared to other key EU dairy sectors such as Germany and France (ICAR 2018).
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advisory measures should be better adjusted to increase efficiency conditional on whether524

inefficiencies arise from poor management arguments, adjustment costs but also the aims525

of farmers, e.g. whether farmers aim to increase productivity only.526

Finally, there are three crucial general findings from a EU policy perspective. First,527

technical progress appeared to grow faster towards and after the abolition of the quota528

system. This suggests that policy changes (e.g. soft landing, abolition of quotas) indeed529

helped farmers become more competitive by improving their technology at a faster rate.530

Second, negative efficiency changes were observed at periods when shocks occurred. It531

appears that, apart from policy changes, shocks may also have a large impact on the532

evolution of productivity (as argued also in Frick and Sauer 2017), affecting efficiency,533

not only in the period of the shock, but also in subsequent periods (i.e. through persistent534

inefficiency). Third, precision livestock agriculture assists farmers to use their production535

factors more efficiently and, thus, to become more competitive. Thus, precision livestock536

agriculture can facilitate a more sustainable EU dairy farming in line with the vision of537

CAP 2021-2028 and the recent EU Farm to Fork strategy.538
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Skevas, I., Emvalomatis, G., and Brümmer, B. (2018a). Heterogeneity of long-run tech-846

nical efficiency of German dairy farms: A Bayesian approach. Journal of Agricultural847

Economics 69, 58–75.848
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Appendices888

Appendix A889

Following previous papers (van den Broeck et al. 1994; Emvalomatis 2012a; Skevas et al.890

2017), the priors used in this paper are the following:891

• Multivariate normal densities are used for β and δ. In both cases prior means are892

set equal to conformable vectors of zeros, while the prior covariance matrices are893

diagonal with a value of 1000 on the diagonal entries.894

• Inverse gamma densities are used for σ2
ξ , σ

2
v and σ2

α. The shape and scale hyper-895

parameters for σ2
ξ are set equal to 0.1 and 0.01; for σ2

v are set equal to 0.001 and896

0.001; and for σ2
α are set equal to 0.01 and 0.001.897

• A beta prior is used for ρ with shape parameters, α and β, equal 4 and 2, respectively.898

All priors except for ρ are conjugate. Additionally, the priors imposed on the parameters899

that appear in the observed equation, (7), are vague and have minimal impact on the900

results. More informative priors are used for ρ and σ2
ξ , as these two parameters affect the901

hidden-state equation, (8).902

Appendix B903

Table (6)

Complete set of parameters estimates

Variable Mean Std. dev. 95% CI
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constant -0.129 0.025 [-0.173, -0.088]

logK -0.083 0.010 [-0.101, -0.066]

logLU -0.585 0.026 [-0.628, -0.542]

logL -0.021 0.017 [-0.049, 0.006]

logA -0.062 0.020 [-0.096, -0.028]

logM -0.225 0.015 [-0.250, -0.201]

log y2 0.213 0.006 [0.202, 0.224]

t -0.015 0.001 [-0.017, -0.012]

logK · logK -0.019 0.010 [-0.036, -0.002]

logK · logLU 0.001 0.041 [-0.066, 0.070]

logK · logL -0.013 0.025 [-0.055, 0.029]

logK · logA 0.021 0.032 [-0.032, 0.070]

logK · logM 0.008 0.027 [-0.035, 0.074]

logK · t 0.001 0.002 [-0.001, 0.005]

logL · logL -0.005 0.034 [-0.061, 0.051]

logL · logLU -0.094 0.074 [-0.216, 0.027]

logL · logM 0.053 0.044 [-0.135, 0.040]

logL · logA -0.047 0.053 [-0.135, 0.040]

logL · t 0.006 0.003 [-0.000, 0.012]

logLU · logLU -0.047 0.065 [-0.156, 0.060]

logLU · logA 0.011 0.083 [-0.124, 0.148]

logLU · logM 0.155 0.075 [0.030, 0.279]

logLU · t -0.026 0.006 [-0.036, -0.016]

logA · logA -0.021 0.037 [-0.084, 0.040]

logA · logM 0.024 0.051 [-0.060, 0.109]

logA · t 0.010 0.004 [0.002, 0.018]
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logM · logM -0.094 0.032 [-0.151, -0.037]

logM · t 0.012 0.004 [0.004, 0.019]

log y2 · logK 0.027 0.012 [0.006, 0.047]

log y2 · logLU -0.094 0.074 [-0.216, 0.027]

log y2 · logL -0.011 0.020 [-0.045, 0.022]

log y2 · logA -0.27 0.021 [-0.062, 0.008]

log y2 · logM -0.080 0.022 [-0.117, -0.043]

log y2 · log y2 0.082 0.006 [0.071, 0.094]

log y2 · t -0.001 0.002 [-0.005, 0.001]

t ∗ t -0.002 0.000 [-0.003, -0.001]

σv 0.072 0.002 [0.067, 0.077]

σa 0.133 0.008 [0.119, 0.146]

σξ 0.411 0.048 [0.336, 0.496]

ρ 0.80 0.047 [0.821, 0.924]

Log.Marg.Likelihood 1398.22

Inefficiency effects

constant 0.401 0.102 [0.252, 0.586]

Milk recording 0.191 0.047 [0.122, 0.276]

904

Appendix C905

The Bayes Factor (BF) summarizes “the evidence provided by the data in favor of one906

scientific theory, represented by a statistical model, as opposed to another” (Kass and907

Raftery 1995, p. 777). The model comparison between two competing models is conducted908

by simply calculating the logarithm of the marginal likelihood density. The logarithm909
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of marginal likelihood density is approximated using the Laplace-Metropolis estimator910

(Lewis and Raftery 1997).911

Table (7)

Model 2 (M2): Livestock value is added to Capital

Variable Mean Std. dev. 95% Credible Interval

constant -0.045 0.008 [-0.063, -0.028]

logK -0.285 0.016 [-0.317, -0.253]

logL -0.043 0.018 [-0.079, -0.007]

logA -0.240 0.019 [-0.278, -0.201]

logM -0.317 0.016 [-0.349, -0.285]

log y2 0.195 0.007 [0.180, 0.209]

t -0.021 0.001 [-0.023, -0.019]

logK ∗ logK -0.050 0.026 [-0.102, 0.001]

logK ∗ logL -0.093 0.042 [-0.177, -0.010]

logK ∗ logA 0.058 0.046 [-0.033, 0.150]

logK ∗ logM 0.081 0.046 [-0.009, 0.171]

logL ∗ logL -0.065 0.033 [-0.132, 0.000]

logL ∗ logM 0.077 0.043 [-0.007, 0.162]

logL ∗ logA -0.060 0.045 [-0.150, 0.028]

logA ∗ logA -0.075 0.032 [-0.138, -0.012]

logA ∗ logM 0.085 0.049 [-0.010, 0.182]

logM ∗ logM -0.090 0.032 [-0.154, -0.026]

log y2 ∗ logK 0.042 0.018 [0.005, 0.079]

log y2 ∗ logL -0.008 0.021 [-0.051, 0.033]

log y2 ∗ logA -0.011 0.020 [-0.051, 0.028]

log y2 ∗ logM -0.062 0.023 [-0.108, -0.015]
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log y2 ∗ log y2 0.083 0.007 [0.069, 0.097]

logK ∗ t -0.005 0.003 [-0.011, 0.000]

logL ∗ t 0.003 0.003 [-0.002, 0.009]

logA ∗ t 0.000 0.003 [-0.005, 0.007]

logM ∗ t 0.007 0.003 [0.000, 0.015]

log y2 ∗ t -0.003 0.000 [-0.004, -0.003]

t ∗ t -0.002 0.001 [-0.006, 0.000]

σv 0.007 0.007 [0.006, 0.008]

σa 0.150 0.012 [0.130, 0.170]

σξ 0.298 0.002 [0.204, 0.423]

ρ 0.886 0.005 [0.821, 0.924]

Log.Marg.Likelihood 1228.32
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Table (8)

Model 3 (M3): feeds is a separate variable from materials

Variable Mean Std. dev. 95% CI

constant -0.209 0.044 [-0.284,-0.139]

logK -0.305 0.017 [-0.334,-0.276]

logL -0.063 0.019 [ -0.095, -0.032]

logA -0.246 0.020 [-0.279, -0.212]

logF -0.121 0.008 [-0.136, -0.107]

logM -0.169 0.015 [-0.196, -0.143]

log y2 0.191 0.007 [0.179, 0.203]

t -0.018 0.001 [ -0.020,-0.016]

logK · logK -0.029 0.028 [-0.075, 0.017]
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logK · logL -0.07 0.044 [-0.143, 0.002]

logK · logA 0.024 0.050 -0.058, 0.106]

logK · logF 0.015 0.025 [-0.026, 0.056]

logK · logM 0.053 0.041 [-0.014. 0.122]

logK · t -0.007 0.002 [-0.013, -0.001]

logL · logL -0.005 0.036 [-0.066, 0.054]

logL · logF 0.022 0.025 [-0.019, 0.054]

logL · logM 0.036 0.045 [-0.041, 0.030]

logL · logA -0.071 0.050 [-0.153, 0.011]

logL · t 0.004 0.004 [-0.002, 0.011]

logA · logA -0.039 0.033 [-0.094, 0.015]

logA · logM 0.029 0.046 [-0.047, 0.105]

logA · t 0.003 0.004 [-0.004, 0.010]

logF · logF -0.024 0.010 [-0.041, -0.007]

logF · logA 0.049 0.027 [0.004, 0.094]

logF · logM -0.026 0.026 [-0.070, 0.016]

logM · logM -0.021 0.031 [-0.072, 0.0306]

logM · t 0.000 0.004 [-0.007, 0.007 ]

log y2 · logK 0.045 0.018 [0.015, 0.075]

log y2 · logL -0.0005 0.021 [-0.041, 0.030]

log y2 · logA 0.005 0.020 [-0.028, 0.040]

log y2 · logM -0.061 0.023 [-0.099, -0.023]

log y2 · logF -0.018 0.012 [-0.040, 0.002]

log y2 · log y2 0.089 0.006 [0.078, 0.101]

log y2 · t -0.001 0.002 [-0.005, 0.002]

t ∗ t -0.003 0.000 [-0.004, -0.003]
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σv 0.076 0.003 [0.070, 0.081]

σa 0.154 0.011 [0.135, 0.1726]

σξ 0.301 0.044 [0.237, 0.382]

ρ 0.84 0.044 [0.765, 0.906]

Log.Marg.Likelihood 1385.92

Inefficiency effects

constant 0.228 0.075 [0.124, 0.368]

Milk recording 0.117 0.033 [0.068, 0.178]
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Table (9)

Model 4 (M4): feeds is a separate variable from materials and livestock units is separate

from capital

Variable Mean Std. dev. 95% CI

constant 3.758 31.605 [-48.318, 55.609]

logK -1.615 31.62 [-53.649, 50.330]

logLU -1.761 31.66 [-53.857, 50.278]

logL -0.021 31.64 [-47.963, 56.084]

logA 106.88 30.66 [56.726, 156.826]

logF 0.572 0.020 [0.375, 0.768]

logM 1.896 0.015 [1.674,2.118]

log y2 0.126 0.082 [-0.009, 0.263]

t 0.659 31.629 [-51.209, 52.438]

logK · logK 4.89 31.62 [-47.18, 56.86]

logK · logLU 3.82 33.44 [-48.93, 54.32]
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logK · logL -0.461 31.6642 [-52.632, 51.632]

logK · logA -25.890 27.742 [-71.502, 19.758]

logK · logM 0.107 0.027 [-0.000, 0.215]

logK · t -4.222 31.182 [-55.444 , 47.201 ]

logL · logL 5.037 31.509 [-46.872, 56.816]

logL · logF -0.038 0.041 [ -0.105, 0.0299]

logL · logM -0.089 0.050 [-0.173,-0.006]

logL · logA 102.631 25.60 [ 60.462 144.723]

logL · t -4.780 31.31 [-56.244, 46.841]

logF · logF 0.000 0.000 [ 0.000, 0.000]

logF · logA 0.003 0.001 [0.001, 0.006]

logF · logM 0.000 0.000 [0.000, 0.000]

logF · log t -0.002 0.009 [-0.004, -0.001]

logA · logA -0.223 0.729 [-0.975, 1.426]

logA · logM -0.003 0.001 [-0.006, -0.000]

logA · t 7.397 7.865 [-5.537, 20.331]

logM · logM 0.000 0.000 [0.000, 0.000]

logM · t 0.006 0.011 [-0.011, 0.024]

logLU · logLU 1.327 31.627 [-50.616, 53.265]

logLU · logA -50.869 30.578 [-101.187, -0.652]

logLU · logM 1.033 0.151 [ 0.783,1.282]

logLU · t 7.852 31.476 [-43.910, 59.725]

log y2 · logK 0.101 0.042 [0.032, 0.170]

log y2 · logLU 0.256 0.099 [0.092, 0.419]

log y2 · logL 0.085 0.031 [0.033,0.136]

log y2 · logA -0.002 0.000 [-0.004, -0.001]
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log y2 · logF 0.000 0.000 [0.000, 0.000]

log y2 · logM 0.000 0.000 0.000, 0.000]

log y2 · log y2 0.000 0.000 [0.000, 0.000]

log y2 · t 0.009 0.006 [ -0.001, 0.020]

t ∗ t -0.002 0.000 [-0.003, -0.001]

σv 15940.9 268.126 [ 15507, 16389.2]

σa 31827.6 1555.68 [ 29369.1 34480.9]

σξ 1.668 2.580 [0.105, 8.499]

ρ 0.487 0.155 [0.239, 0.741]

Log.Marg.Likelihood -26270.5

Inefficiency effects

constant 0.512 6.040 [-5.724, 12.598]

Milk recording 2.600 6.746 [-6.959,13.301]
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Table (10)

Model 5 (M5): density (LU per ha) as an additional factor in s specification

Variable Mean Std. dev. 95% CI

constant -0.177 0.030 [-0.228, -0.131]

logK -0.081 0.011 [-0.099, -0.063]

logLU -0.553 0.028 [-0.599, -0.507]

logL -0.021 0.017 [-0.050, 0.007]

logA -0.090 0.020 [-0.130, -0.051]
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logM -0.224 0.015 [-0.250, -0.198]

log y2 0.211 0.006 [0.199, 0.222]

t -0.015 0.001 [-0.017, -0.013]

logK · logK -0.017 0.010 [-0.035, -0.000]

logK · logLU -0.010 0.045 [-0.083, 0.064]

logK · logL -0.014 0.025 [-0.056, 0.028]

logK · logA 0.019 0.031 [-0.032, 0.072]

logK · logM 0.014 0.028 [-0.030, 0.062]

logK · t 0.002 0.002 [-0.001, 0.006]

logL · logL -0.000 0.033 [-0.056, 0.054]

logL · logLU -0.104 0.076 [-0.232, 0.020]

logL · logM 0.059 0.042 [-0.008, 0.127]

logL · logA -0.044 0.055 [-0.134, 0.047]

logL · t 0.006 0.003 [-0.000, 0.012]

logLU · logLU -0.055 0.065 [-0.162, 0.054]

logLU · logA 0.042 0.086 [-0.101, 0.186]

logLU · logM 0.158 0.076 [0.031, 0.283]

logLU · t -0.028 0.006 [-0.038, -0.017]

logA · logA -0.035 0.037 [-0.097, 0.025]

logA · logM 0.025 0.054 [-0.063, 0.113]

logA · t 0.011 0.004 [0.003, 0.019]

logM · logM -0.100 0.034 [-0.156, -0.042]

logM · t 0.012 0.004 [0.004, 0.020]

log y2 · logK 0.028 0.012 [0.009, 0.049]

log y2 · logLU 0.055 0.029 [0.008, 0.106]

log y2 · logL -0.007 0.020 [-0.041, 0.027]
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log y2 · logA -0.028 0.021 [-0.062, 0.007]

log y2 · logM -0.077 0.022 [-0.115, -0.039]

log y2 · log y2 0.084 0.006 [0.073, 0.095]

log y2 · t -0.001 0.002 [-0.005, 0.001]

t ∗ t -0.002 0.000 [-0.003, -0.001]

σv 0.071 0.03 [0.066, 0.076]

σa 0.129 0.009 [0.113, 0.144]

σξ 0.332 0.038 [0.269, 0.393]

ρ 0.81 0.037 [0.742, 0.868]

Log.Marg.Likelihood

Inefficiency effects

constant 0.195 0.067 [0.098, 0.320]

Milk recording 0.151 0.038 [0.096, 0.221]

Density 0.061 0.024 [0.025, 0.104]
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Table (11)

Model 6 (M6): with age as an additional factor in s specification

Variable Mean Std. dev. 95% CI

constant -0.165 0.033 [-0.228,-0.120]

logK -0.080 0.010 [-0.098, -0.062]

logLU -0.578 0.027 [-0.623, -0.534]

logL -0.025 0.017 [-0.053, 0.003]

logA -0.066 0.021 [-0.103, -0.031]

logM -0.225 0.016 [-0.252, -0.198]

log y2 0.212 0.006 [0.200, 0.223]
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t -0.015 0.001 [-0.017, -0.013]

logK · logK -0.018 0.010 [-0.036, -0.001]

logK · logLU -0.002 0.045 [-0.075, 0.072]

logK · logL 0.009 0.025 [-0.052, 0.033]

logK · logA 0.017 0.032 [-0.034, 0.070]

logK · logM 0.010 0.028 [-0.034, 0.058]

logK · t 0.002 0.002 [-0.001, 0.005]

logL · logL -0.006 0.034 [-0.064, 0.049]

logL · logLU -0.114 0.074 [-0.237, 0.007]

logL · logM 0.063 0.042 [-0.004, 0.132]

logL · logA -0.038 0.054 [-0.128, 0.051]

logL · t 0.005 0.003 [-0.000, 0.012]

logLU · logLU -0.046 0.066 [-0.155, 0.060]

logLU · logA 0.016 0.083 [-0.116, 0.153]

logLU · logM 0.150 0.076 [0.025, 0.274]

logLU · t -0.027 0.036 [-0.036, -0.017]

logA · logA -0.024 0.036 [-0.086, 0.034]

logA · logM 0.030 0.052 [-0.057, 0.116]

logA · t 0.010 0.004 [0.002, 0.018]

logM · logM -0.097 0.034 [-0.154, -0.040]

logM · t 0.012 0.004 [0.005, 0.019]

log y2 · logK 0.026 0.012 [0.005, 0.046]

log y2 · logLU 0.055 0.030 [0.007, 0.105]

log y2 · logL -0.008 0.020 [-0.042, 0.024]

log y2 · logA -0.026 0.021 [-0.061, 0.007]

log y2 · logM -0.078 0.022 [-0.111, -0.040]
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log y2 · log y2 0.083 0.006 [0.072, 0.094]

log y2 · t -0.002 0.000 [-0.003, -0.001]

t ∗ t -0.002 0.000 [-0.003, -0.001]

σv 0.072 0.003 [0.067, 0.077]

σa 0.129 0.008 [0.115, 0.143]

σξ 0.344 0.037 [0.282, 0.402]

ρ 0.82 0.030 [0.767, 0.870]

Log.Marg.Likelihood 1387.31

Inefficiency effects

constant 0.389 0.083 [0.259, 0.532]

Milk recording 0.158 0.033 [0.105, 0.216]

Age -0.002 0.001 [-0.003, -0.001]
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Table (12)

Model 7 (M7): with both age and density as additional factors in s specification

Variable Mean Std. dev. 95% CI

constant -0.174 0.045 [-0.269,-0.111]

logK -0.080 0.010 [-0.098, -0.063]

logLU -0.549 0.028 [-0.596, -0.502]

logL -0.020 0.017 [-0.049, 0.007]

logA -0.090 0.022 [-0.126, -0.054]

logM -0.224 0.015 [-0.249, -0.200]

log y2 0.211 0.007 [0.200, 0.223]

t -0.015 0.001 [-0.017, -0.013]

logK · logK -0.017 0.010 [-0.033, -0.000]
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logK · logLU -0.012 0.041 [-0.080, 0.057]

logK · logL -0.014 0.026 [-0.056, 0.028]

logK · logA 0.023 0.033 [-0.032, 0.079]

logK · logM 0.011 0.027 [-0.033, 0.055]

logK · t 0.002 0.002 [-0.001, 0.005]

logL · logL -0.001 0.034 [-0.056, 0.054]

logL · logLU -0.100 0.073 [-0.225, 0.022]

logL · logM 0.058 0.044 [-0.014, 0.129]

logL · logA -0.049 0.053 [-0.137, 0.039]

logL · t 0.006 0.003 [-0.000, 0.012]

logLU · logLU -0.056 0.064 [-0.164, 0.045]

logLU · logA 0.055 0.082 [-0.080, 0.192]

logLU · logM 0.145 0.078 [0.014, 0.273]

logLU · t -0.028 0.006 [-0.038, -0.017]

logA · logA -0.040 0.038 [-0.103, 0.022]

logA · logM 0.022 0.053 [-0.064, 0.109]

logA · t 0.011 0.004 [0.003, 0.019]

logM · logM -0.091 0.034 [-0.148, -0.033]

logM · t 0.012 0.004 [0.004, 0.020]

log y2 · logK 0.029 0.012 [0.010, 0.049]

log y2 · logLU 0.053 0.029 [0.005, 0.103]

log y2 · logL -0.006 0.020 [-0.040, 0.027]

log y2 · logA -0.031 0.021 [-0.067, 0.003]

log y2 · logM -0.075 0.022 [-0.111, -0.039]

log y2 · log y2 0.085 0.006 [0.074, 0.095]

log y2 · t -0.001 0.002 [-0.005, 0.001]
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t ∗ t -0.002 0.000 [-0.003, -0.001]

σv 0.072 0.002 [0.068, 0.077]

σa 0.129 0.011 [0.109, 0.146]

σξ 0.331 0.057 [0.237, 0.425]

ρ 0.80 0.049 [0.709, 0.873]

Log.Marg.Likelihood 1385.57

Inefficiency effects

constant 0.261 0.112 [0.101, 0.467]

Milk recording 0.147 0.046 [0.077, 0.230]

Density 0.63 0.028 [0.024, 0.116]

Age -0.001 0.000 [-0.002, 0.000]
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