The University of Southampton
University of Southampton Institutional Repository

Inverse filter design and equalization zones in multichannel sound reproduction

Inverse filter design and equalization zones in multichannel sound reproduction
Inverse filter design and equalization zones in multichannel sound reproduction

A discussion is given of two techniques for designing inverse filters for use in multichannel sound reproduction systems. The first is the multiple-input/output inverse filtering theorem, which uses direct inversion of a matrix containing the coefficients of filters used to specify the electroacoustic transmission paths. The second is an adaptive technique based on the Multiple Error LMS algorithm. The theory presented reconciles the two approaches and furthermore, derives explicit conditions which must be fulfilled if an exact inverse is to exist. A formula is derived which gives the number of coefficients required in the inverse filters in terms of the number of coefficients used to represent the transmission paths. Some numerical examples are also presented which illustrate the dependence of the mean square error on both the choice of modeling delay and the number of coefficients in the inverse filters. Finally, the results of some simulations are given which demonstrate the acoustical possibilities associated with these filtering techniques.

1063-6676
185-192
Nelson, Philip A.
5c6f5cc9-ea52-4fe2-9edf-05d696b0c1a9
Orduña-Bustamante, Felipe
442c3103-da2b-47cf-ba5e-eb9a6fd43181
Hamada, Hareo
63a6b688-1872-403b-96d4-0d632a098793
Nelson, Philip A.
5c6f5cc9-ea52-4fe2-9edf-05d696b0c1a9
Orduña-Bustamante, Felipe
442c3103-da2b-47cf-ba5e-eb9a6fd43181
Hamada, Hareo
63a6b688-1872-403b-96d4-0d632a098793

Nelson, Philip A., Orduña-Bustamante, Felipe and Hamada, Hareo (1995) Inverse filter design and equalization zones in multichannel sound reproduction. IEEE Transactions on Speech and Audio Processing, 3 (3), 185-192. (doi:10.1109/89.388144).

Record type: Article

Abstract

A discussion is given of two techniques for designing inverse filters for use in multichannel sound reproduction systems. The first is the multiple-input/output inverse filtering theorem, which uses direct inversion of a matrix containing the coefficients of filters used to specify the electroacoustic transmission paths. The second is an adaptive technique based on the Multiple Error LMS algorithm. The theory presented reconciles the two approaches and furthermore, derives explicit conditions which must be fulfilled if an exact inverse is to exist. A formula is derived which gives the number of coefficients required in the inverse filters in terms of the number of coefficients used to represent the transmission paths. Some numerical examples are also presented which illustrate the dependence of the mean square error on both the choice of modeling delay and the number of coefficients in the inverse filters. Finally, the results of some simulations are given which demonstrate the acoustical possibilities associated with these filtering techniques.

This record has no associated files available for download.

More information

Published date: 1 May 1995

Identifiers

Local EPrints ID: 468796
URI: http://eprints.soton.ac.uk/id/eprint/468796
ISSN: 1063-6676
PURE UUID: 15399d6d-2943-4fdf-9589-b378e3493866
ORCID for Philip A. Nelson: ORCID iD orcid.org/0000-0002-9563-3235

Catalogue record

Date deposited: 25 Aug 2022 17:22
Last modified: 17 Mar 2024 02:32

Export record

Altmetrics

Contributors

Author: Felipe Orduña-Bustamante
Author: Hareo Hamada

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×