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ABSTRACT
An efficient, fully coupled beam model is developed to analyse laminated composite
thin-walled structures with arbitrary cross-sections. The Euler–Lagrangian equations are
derived from the kinematic relationships for a One-Dimensional (1D) beam representing
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Three-Dimensional (3D) deformations that take into account the cross-sectional stiffness
of the composite structure. The formulation of the cross-sectional stiffness includes all
the deformation effects and related elastic couplings. To circumvent the problem of shear
locking, exact solutions to the approximating Partial Differential Equations (PDEs) are
obtained symbolically instead of by numerical integration. The developed locking-free
composite beam element results in an exact stiffness matrix and has super-convergent
characteristics. The beam model is tested for different types of layup, and the results are
validated by comparison with experimental results from literature.

Keywords: Thin-walled composite structures; laminated composite beam element; analyti-
cal shape function derivation

NOMENCLATURE

Ac sectorial area

()′ differentiation with respect to spanwise coordinate

θx rotation about x axis

θy rotation about y axis

φ twist about z axis

Fω primary warping function

ψ torsional function

εxz, εyz transverse shear strains

Fω primary warping function

s contour coordinate

n coordinate in wall thickness direction

u0, v0, w0 rigid-body translation along x,y,z axis

Q̄ij modified transformed stiffness

Qij transformed stiffness

Ei Young’s modulus

G shear modulus

ν Poisson’s ratio

L length of the beam

D material stiffness matrix

N shape function

K stiffness matrix of the beam element

CUS circumferentially uniform stiffness

CAS circumferentially asymmetric stiffness

1.0 INTRODUCTION
Recently, composite materials have gained popularity for use in various industrial applications
due to advances in composite manufacturing as well as their attractive weight-to-strength ratio
and enhanced damage and fatigue behaviour. Composite structures will play a significant role
in achieving the ambitious carbon emission targets set by the International Air Transport
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Authority (IATA)(1). More than 50% of the structural weight of modern-day aircraft such as
the Boeing 787 and Airbus A350 XWB consists of composite structures. Many primary com-
posite structures such as helicopter blades and aircraft wings can be analysed by modelling
them as thin-walled composite beams. Further application of advanced composites is expected
to reduce structural weight and improve aerodynamics, both aspects leading to reduced fuel
consumption. To optimally design such composite structures, one has to utilise the full extent
of the tailorability offered by composites. In particular, the elastic coupling between the differ-
ent displacement fields inherent to thin-walled beams and the resulting non-classical effects
must be analysed and incorporated into the overall aircraft design process.

To accurately predict the beam’s behaviour, a correct representation of the 3D motion into
the 1D mathematical beam theory is of critical importance. Analytical models and varia-
tional asymptomatic beam sectional analysis are two approaches that can be used to capture
the non-classical effects of composite beams. During the past few decades, there has been a
steady increase in investigations on laminated composite beams with closed and open cross-
section(2–8). Some of the earliest studies modelling the composite structure as a 1D beam were
performed by Sobey et al.(9,10), who developed the theory of thin-walled cylindrical tubes and
aeroelasticity tailored composite helicopter blades, albeit with a simplified cross-sectional
analysis. More refined cross-sectional analysis based on the two-dimensional finite element
method, commonly known as Variational Asymptotic Beam Section (VABS) analysis, was
developed by Hodges et al.(3). Several researchers have developed analytical cross-sectional
models for evaluating the constitutive equation for the beam(5,11,12). Jung et al. formulated a
first-order shear-deformable analytical cross-sectional modelling technique(13). An exhaustive
survey of different thin-walled beam theories was carried out by Jung et al.(14,15).

Composite materials usually have very low traverse shear modulus as compared with their
extensional shear modulus, thus transverse shear effects are significant for laminated compos-
ite structures. Therefore, shear-deformable theories are more suitable for accurately predicting
their behaviour. In shear-deformable theories such as First-Order Shear-Deformable Theories
(FSDTs), the transverse displacement and slope must be interpolated using C0. However,
it is well known that these C0 elements are accompanied by shear constraints. Therefore,
under certain limiting conditions, e.g. thin beams, the shear constraints do not yield zero
shear strains, resulting in the problem of shear locking. These finite element formulations are
thus termed inconsistent, and selective or reduced integration can be applied to address the
locking problem(16,17). Alternatively, a consistent finite element method can be formulated by
constructing shape functions from the general solutions to the homogeneous Euler–Lagrange
equations(18). Such an approach has been implemented to obtain the shape function for an
isotropic 3D Timoshenko beam element(19). Eisenberger(20) formulated a strategy for obtain-
ing the exact stiffness matrix for the higher-order isotropic beam. The unique feature of these
elements is the dependence of the constants of the interpolating polynomials on the mate-
rial and the cross-sectional properties. Moreover, the user does not have to judge whether the
shear deformation in the element is significant. However, all these beam models are isotropic.
With the advances of computing hardware, the complex and highly coupled homogeneous
Euler–Lagrangian equations governing the composite thin-walled beam can be solved by
using modern mathematical software such as Maple and Mathematica in a similar manner
to their isotropic counterparts(19). Such an analytical approach to solving the governing equa-
tions would not have been possible a few years ago. The aim of the current work is to develop
the governing equations and obtain corresponding consistent shape functions analytically.

Automatic Differentiation (AD) is popular for the automation of derivative calcula-
tions in numerical optimisation, being preferred over other traditional methods for the
differentiation of complex functions and algorithms. However, the implementation of AD
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requires significant effort and development time to ensure efficiency. Naively implemented
AD can yield inefficient code, and significant computational cost(21). One of the goals of
the present work is to address the disadvantages of AD in optimisation involving composite
thin-walled structures, e.g. aero-structural optimisation of composite surfaces. The method-
ology implemented herein ensures the availability of analytical shape functions for laminated
composite thin-walled beams. Moreover, the derivatives of the shape functions can also be
obtained easily by symbolic differentiation. In this way, the need for AD implementation and
the associated pitfalls are eliminated, and optimisation can be performed robustly.

The modelling approach applied herein is based on field-consistent formulations; i.e. the
interdependence of the beam displacements on each other is taken into account. The local
displacements are obtained from the generalised beam displacements. The reduced consti-
tutive equation for an arbitrary cross-section beam is derived based on the assumption of
plane stress. The strain energies are evaluated in terms of beam displacements. The govern-
ing equations are derived by integration by parts of the expression for the strain energies.
The homogeneous equations are then solved using Maple mathematical software to obtain
the interpolating shape functions for the beam displacements.

The remainder of this manuscript is organised as follows: First, the kinematic description of
the 1D beam representing the 3D motion is explained. After that, the constitutive relationship
for a composite beam with arbitrary cross-section and laminate layup is derived. In the next
section, expressions for the strain energy and governing equations, then the formulation of
the stiffness matrix of the beam element is derived. Finally, the super-convergent property
of the beam element is illustrated. The numerical results obtained using the developed beam
element are then compared with experimental and numerical results from literature.

2.0 KINEMATICS OF THIN-WALLED BEAMS
In the present work, the case of thin-walled beams with arbitrary closed cross-section is
considered. The kinematics of the thin-walled beams are derived by adopting a number of
assumptions:

(i) The projection of the cross-section onto a plane normal to the z-axis does not distort
during deformations. This implies that the original cross-sections do not deform in their
planes.

(ii) Transverse shear effects are considered, and the shear strains εxz and εyz are uniform
through the wall thickness(22).

(iii) The warping displacements along the mid-line contour (referred to as primary
warping) and off the mid-line contour (referred to as secondary warping) are
incorporated(4,6,22,23).

The effect of the primary warping is usually quantified by a function called the primary
warping function and denoted by Fω, defined as(6,24,25)

Fω =
∫ s

0
(rn(s) −ψ), · · · (1)

where the torsional function ψ is given by Ref.(25)

ψ =
∮

rn(s)ds∮
ds

= 2Ac

β
, · · · (2)
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Figure 1. Coordinate system.

where Ac denotes the cross-sectional area bounded by the mid-line contour, and s is the cir-
cumferential coordinate as shown in Fig. 1. The circumferential coordinate s corresponds to
the mid-line of the beam cross-section walls. The geometrical quantity rn is given by

rn = x(s)
dy

ds
− y(s)

dx

ds · · · (3)

Based on assumptions (i), (ii) and (iii) and representing the 3D motion of the beam by an
equivalent 1D beam, the displacement of any point on the mid-line contour can be expressed
as(25)

u(x, y, z) = u0(z) − y φ(z)

v(x, y, z) = v0(z) + x φ(z)

w(x, y, z) = w0(z) + θx

(
y(s) − n

dx

ds

)
+ θy

(
x(s) + n

dy

ds

)
− φ(z)′ (Fω + n a(s)).

· · · (4)

The term n a(s) φ(z)′ accounts for the secondary warping effects, where the prime represents
the derivative with respect to z. u0, v0 and w0 denote rigid-body translations. The subscript
‘0’ is dropped hereinafter for the sake of brevity. The rotations θx and θy and the geometrical
quantity a are expressed as

θx(z) = εyz(z) − v′

θy(z) = εxz(z) − u′

a(s) = −y(s)
dy

ds
− x(s)

dx

ds

· · · (5)

From Equations (4) and (5), it is clear that the strain components εxx, εyy, εxy are zero. This
implies that the strain components in the local coordinate system, s − n (εnn, εss, εsn), are also
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zero. Thus, the condition of cross-section non-deformability in assumption (i) is satisfied.
Consequently, the three non-trivial strains for the 3D beam are εzz, εzs and εzn. εzz denotes the
axial strain component, while εzs and εzn denote the membrane and transverse shear strain,
respectively. The strains are assumed to be small, so a linear strain–displacement relationship
can be adopted. The strain measure in the beam can be calculated using the definition of the
linear strain–displacement relations and Equation (4) and (5)(6):

εzz = ∂w

∂z
= w′ +

(
x + n

dy

ds

)
θy

′ +
(

y(s) − n
dx

ds

)
θx

′ − (Fω(s) + a(s))φ′′

εzs = γxz
dx

ds
+ γyz

dy

ds
+

∮
rn ds∮
ds

φ′

= (u′ + θy)
dx

ds
+ (v′ + θx)

dy

ds
+ 2

Ac

β
φ′

εxz = γxz
dy

ds
− γyz

dx

ds

= (u′ + θy)
dy

ds
− (v′ + θx)

dx

ds

· · · (6)

3.0 CONSTITUTIVE RELATIONSHIPS
The Two-Dimensional (2D) behaviour of composite plies must be treated adequately within
the one-dimensional beam model. In particular, the in-plane elastic behaviour of laminates
must be considered in the beam model. Three different methods accounting for in-plane
elastic behaviour were investigated by Smith et al.(11). In one-dimensional beam theory, it is
reasonable to assume that the transverse in-plane stress σss is negligibly small compared with
the other stress components. Consequently, the reduced constitutive equation for a particular
ply is obtained as

⎡
⎢⎢⎢⎣
σzz

σzs

σzn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Q̄11 Q̄16 0

Q̄16 Q̄66 0

0 0 Q̄55

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
εzz

εzs

εzn

⎤
⎥⎥⎥⎦ · · · (7)

In Equation (7), the terms Q̄ij, commonly referred to as the modified transformed stiffness
coefficients, are derived from the conventional transformed coefficients Qij

(5) as follows:

Q̄11 = Q11 − Q2
12

Q22
,

Q̄16 = Q16 − Q12 Q26

Q22

Q̄66 = Q66 − Q2
26

Q22

Q̄55 = Q55 − Q2
45

Q44

· · · (8)
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For a given ply laminate angle α and material properties, the Qij are obtained as

Q11 = q11 cos4 α + 2 (q12 + 2q66) sin2 α cos2 α + q22 sin4 α

Q12 = (q11 + q22 − 4q66) sin2 α cos2 α+ q12 (sin4 α + cos2 α)

Q22 = q11 sin4 α + 2 (q12 + 2q66) sin2 α cos2 α+ q22 cos4 α

Q16 = (q11 − q12 − 2q66) sin α cos3 α + (q12 − q22 + 2q66) sin3 α cos α

Q26 = (q11 − q12 − 2q66) sin3 α cos α + (q12 − q22 + 2q66) sin α cos3 α

Q66 = (q11 + q22 − 2q16 − 2q66) sin2 α cos2 α + q66 (sin4 α + cos2 α)

Q44 = q44 cos2 α + q55 sin2 α

Q45 = (q55 − q44) cos α sin α

Q55 = q55 cos2 α + q44 sin2 α

· · · (9)

qij are related to engineering constants as follows:

q11 = E1

1 − ν12ν21
, q12 = ν12E2

1 − ν12ν21
, q22 = E2

1 − ν12ν21

q66 = G12 , q44 = G23 , q55 = G13

· · · (10)

4.0 GOVERNING EQUATION OF MOTION AND FINITE
ELEMENT FORMULATION

In the preceding sections, the kinematics and local constitutive relationships of a thin-walled
laminated beam were presented. To obtain the governing equation of motion, the variation of
the strain energy expression V is derived as

δV =
∫
τ

σijδεij dτ =
∫
τ

(
σzz δεzz + σzs δεzs + σzn δεzn

)
dA dz

=
∫ L

0

∫
A

(
σzz δεzz + σzs δεzs + σzn δεzn

)
dA dz,

· · · (11)

where dτ (≡ dn ds dz ≡ dA dz) denotes the differential volume element and δ is the variation
sign. Also, the Einstein summation convention applies for the indices i,j. Using the strain
expressions from Equation (6) and local constitutive relationships from Equation (7), the
variation of the virtual energy takes the form

δV =
∫ L

0

[ ( ∫
A
σzz dA

)
︸ ︷︷ ︸

N

δw′ +
( ∫

A
σzz

(
x + n

dy

ds

)
dA

)
︸ ︷︷ ︸

My

δθy
′

+
( ∫

A
σzz

(
y − n

dx

ds

)
dA

)
︸ ︷︷ ︸

Mx

δθx
′
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+
( ∫

A
σzn

dy

ds
+ σzs

dx

dy

)
dA

︸ ︷︷ ︸
Qx

δ(u′ + θy) +
( ∫

A
σzs

dy

ds
− σzn

dx

dy

)
dA

︸ ︷︷ ︸
Qy

δ(v′ + θy)

+
∫

A
σzs

2Ac

β
dA

︸ ︷︷ ︸
Mz

δφ′ −
∫

A
σzz (Fω + a) dA︸ ︷︷ ︸

Bω

δφ′′
]

dz · · · (12)

In Equation (12), the integration is first performed over the cross-section area A, then in
subsequent steps, the integration is performed along the span of the beam L. Based on the
formulation in Equation (12), stress resultants can be calculated. N , Qy and Qz represent the
axial and shear forces in the x and y direction, respectively. Mx, My, Qz and Bω represent the
moments about the x, y and z-axis and global bi-moment, respectively. Considering Equations
(6) and (7) in conjunction with the stress resultant definitions in Equation (12), the material
stiffness D can be obtained.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N

My

Mx

Qx

Qy

Bω

Mz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13 D14 D15 D16 D17

D12 D22 D23 D24 D25 D26 D27

D13 D23 D33 D34 D35 D36 D37

D14 D24 D34 D44 D45 D46 D47

D15 D25 D35 D45 D55 D56 D57

D16 D26 D34 D44 D56 D66 D67

D71 D72 D73 D74 D75 D76 D77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w′

θy
′

θx
′

u′ + θy

v′ + θx

φ′′

φ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · · (13)

Expressions for the material stiffness matrix D are listed in the Appendix. It is clear from the
derived stress resultants that, with arbitrary anisotropy, the composite laminated beam struc-
ture will exhibit complete elastic coupling between bending, warping, twist and transverse
loading. These non-classical couplings should be fully understood to explore them effectively
for optimum structural design.

Note that the material stiffness matrix D (also commonly known as the cross-sectional
stiffness matrix) is derived for a general arbitrary cross-section. This is evident from the
kinematics discussion in Section 1.

From Equations (12) and (13), the variation in the strain energy is

δ V =
∫ L

0

[
Nδw′ + My δθy

′ + Mx δθx + Qx δ(u′ + θy)y + Qy δ(v′ + θx)z

+ Bω δφ′′ + Mz δφ
′
]

dz · · · (14)

Combining Equations (14) and (13), we obtain

δ V =
∫ L

0

(
{D11 u′ − D12 θy

′ + D13 θx
′ + D14 (u′ + θy) + D15 (v′ + θx) + D16 φ

′′ + D17 φ
′} δw′

+ {D12 u′ − D22 θy
′ + D23 θx

′ + D24 (u′ + θy) + D25 (v′ + θx) + D26 φ
′′ + D27 φ

′} δθy
′
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+ {D13 u′ − D23 θy
′ + D33 θx

′ + D34 (u′ + θy) + D35 (v′ + θx) + D36 φ
′′ + D37 φ

′} δθx
′

+ {D14 u′ − D24 θy
′ + D34 θx

′ + D44 (u′ + θy) + D45 (v′ + θx) + D46 φ
′′ + D47 φ

′}
× δ (u′ + θy)

+ {D15 u′ − D25 θy
′ + D35 θx

′ + D45 (u′ + θy) + D55 (v′ + θx) + D56 φ
′′ + D57 φ

′}
× δ (v′ + θx)

+ {D16 u′ − D26 θy
′ + D36 θx

′ + D46 (u′ + θy) + D56 (w′ + θx) + D66 φ
′′ + D67 φ

′ } δφ′′

+ {D17 u′ − D27 θy
′ + D37 θx

′ + D47 (u′ + θy) + D57 (w′ + θx) + D67 φ
′′

+ D77 φ
′ } δφ′

)
dz. · · · (15)

To obtain the governing equations, integration by parts is performed to relieve the virtual
displacements (δw, δu, δv, δθx, δθy, δφ) of any differentiation. Based on the principle of vir-
tual work, the stored strain energy is equal to the virtual work performed by external forces.
Using this principle and collecting terms corresponding to each virtual displacement, the
homogeneous Euler–Lagrangian equations are obtained as

δw : D11 w′ ′ + D12 θy
′′ + D13 θx

′′ + D14 (θy
′ + u′′) + D15 (θx

′ + v′ ′) + D16 φ
′′′ + D17 φ

′′ = 0

δu : D41 w′ ′ + D42 θy
′′ + D43 θx

′′ + D44 (u′′ + θy
′) + D45 (v′ ′ + θx

′) + D46 φ
′′′ + D47 φ

′′ = 0

δv : D15 w′ ′ + D25 θy
′′ + D35 θx

′′ + D45 (u′′ + θy
′) + D55 (v′ ′ + θx

′) + D56 φ
′′′ + D57 φ

′′ = 0

δθy : D12 u′′ + D22 θy
′′ + D23 θx

′′ + D24 (u′′ + θy
′) + D25 (v′ ′ + θx

′) + D26 φ
′′′ + D27 φ

′′

− D14 w′ − D24 θy
′ − D34 θx

′ − D44 (u′ + θy) − D45 (v′ + θx) − D46 φ
′′ − D47 φ

′ = 0

δθx : D13 w′ ′ + D23 θy
′′ + D33 θx

′′ + D43 (u′′ + θy
′) + D35 (v′ ′ + θx

′) + D36 φ
′′′ + D37 φ

′′

− D15 w′ − D25 θy
′ − D35 θx

′ − D45 (u′ + θy) − D55 (v′ + θx) − D56 φ
′′ − D57 φ

′ = 0

δφ : − D16 w′ ′′ − D26 θy
′′′ − D36 θx

′′′ − D46 (u′′′ + θy
′′) − D56 (v′′′ + θx

′′) − D66 φ
′′′′ − D67 φ

′′′

+ D17 w′ ′ + D27 θy
′′ + D37 θx

′′ + D47 (u′′ + θy
′) + D57 (v′ ′ + θx

′) + D67 φ
′′′ + D77 φ

′′ = 0

· · · (16)

The following boundary conditions are enforced to solve the coupled homogeneous system
of equations at x = 0 and x = L:

u(0) = u1 v(x) = v1 w(0) = w1 θx(0) = θx1 θy1(0) = θy φ(0) = φ1

u(L) = u2 v(L) = v2 w(L) = w2 θx(L) = θx2 θy(L) = θy φ(L) = φ2 · · · (17)

The six governing equations, along with the boundary conditions, are solved analytically to
obtain the exact solution of the displacement fields in Maple(26). In the current model, each
displacement field in a two-node beam element depends on all 12 Degrees of Freedom (DOF)
[w1, v1, u1, φ1, θx1, θy1, w2, v2, u2, φ2, θx2, θy2]. This means that the interdependence of
the displacement fields is taken into account. The coefficients in the polynomial are func-
tions of the material and cross-section properties. The obtained displacement field will serve
as the shape functions in the finite element formulation.
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The information about the shape functions and kinematics relationship is quantified in
the matrix B in the finite element formulations. The matrix B is calculated from the shape
functions obtained from Equation (16) and generalised strains as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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∂z
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∂z

∂θx

∂z

∂u

∂z
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∂z
+ θx

∂2φ

∂z2

∂φ

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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e2
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e5
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e7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [B]
[
w1 v1 u1 φ1 θx1 θy1 w2 v2 u2 φ2 θx2 θy2

]T · · · (18)

where the matrix B is defined as

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · · (19)

where Ne1
u1

denotes the coefficient of u1 in the expression of e1.
Using Equations (13) and (19), the element stiffness matrix is calculated as

K =
∫ L

0
BT D B dz · · · (20)

The element stiffness matrix K is obtained using analytical integration in Maple. Note that
such an analytical approach enables the analytical calculation of the sensitivities of the stiff-
ness matrix K with respect to the material stiffness matrix D. These sensitivities are of critical
importance for efficient gradient-based optimisation of thin-walled composite structures.
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Table 1
Box beam layup configurations

Configuration Top flange Bottom flange Left web Right web

CAS15 [15]6 [15]6 [15/− 15]3 [15/− 15]3

CAS30 [30]6 [30]6 [30/− 30]3 [30/− 30]3

CAS45 [45]6 [45]6 [45/− 45]3 [45/− 45]3

CUS15 [15]6 [−15]6 [15]6 [−15]6

CUS45 [0/45]3 [0/− 45]3 [0/− 45]3 [0/− 45]3

Cross ply [0/90]3 [0/90]3 [0/90]3 [0/90]3

Figure 2. Ply orientations in box beam: (a) CUS configuration. (b) CAS configuration.(5)

4.1 BEAM MODEL AS A DESIGN TOOL
The laminated composite beam model developed in this study is intended to be used as a
design optimisation tool for a laminated composite thin-walled composite beam. The design
variable can be the fibre directions in the plies and cross-sectional shape parametric variables.
This is facilitated by the fact that the material stiffness matrix (commonly known as the cross-
section stiffness matrix) D is merely a symbolic variable in the analytical integration of the
stiffness matrix K given by Equation (20). For a particular cross-sectional geometry and ply
layups, the matrix D can be calculated numerically using Equation (21) (see Appendix). Thus,
the analytical stiffness matrix calculation is a one-time cost, and the cross-sectional stiffness
matrix can be easily evaluated repetitively for different geometry and ply layups.

5.0 RESULTS
Non-classical couplings of composite laminated box beams are analysed for three different
types of orthotropic layup. These include the circumferentially asymmetric stiffness (CAS)
configuration, the circumferentially uniform configuration (CUS) and the cross-ply layup
configuration(4). The ply angle orientations for the CUS and CAS configurations are shown
in Fig. 2. Table 1 lists the ply orientation in each wall of the box beam for different con-
figurations. The material properties and ply layup are listed in Table 2. The beam span and
cross-sectional dimensions of the box beam are listed in Table 3. The results and convergence
studies are carried out with one end of the beam fixed and the other end subjected to shear
force or torque (i.e. fixed-free BC with loading at the free end). These boundary conditions are
chosen to verify the developed beam model against experimental results available in literature.
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Table 2
Material properties of AS4/3501-6 graphite–epoxy

E11 20.56 × 106psi
E22 1.42 × 106psi
G12 0.89 × 106psi
G13 0.89 × 106psi
G23 0.696 × 106psi
v12 0.42

Table 3
Beam geometry for different configurations

CAS CUS Cross-ply

width (b, in.) 0.953 0.53 2.06
height (h, in.) 0.953 0.53 1.025
beam span (L, in.) 30 30 30
wall thickness (inches) 0.03 0.03 0.03
No. of layers in each wall 6 6 6
Layer thickness (t, in.) 0.005 0.005 0.005

5.1 SUPER-CONVERGENCE OF THE BEAM MODEL
The shape functions of the beam element are exact solutions of the homogeneous
Euler–Lagrangian equations listed in Equation (16). Therefore, the beam element converges
to the solution in just one element, which shows the super-convergent property of the devel-
oped beam element. Figure 3 shows the convergence of the bending slope under a tip shear
load of 1lb for different numbers of beam elements. The tip bending slope obtained using the
present model is normalised by the tip bending slope obtained by the experiment carried by
Smith et al.(5).

5.2 CAS CONFIGURATION
The CAS configuration exhibits bending–torsion and extension–shear coupling. Therefore,
the application of a bending load results in coupled twisting. The beam twist obtained by the
present model is compared with the experiments and analysis studied by Smith et al.(5) in the
refined 3D model developed by Stemple and Lee(7).

Figure 4(a), (b) and (c) shows a comparison of the spanwise twist angle of the beam
subjected to a 1lb tip shear load. The results are generally in good agreement with the
experimental data.

Figure 5 shows the bending slope of the beam under 1lb shear load. The obtained results
are in good agreement with the literature results. The beam twist under 1in. lb tip torque is
shown in Fig. 6. The results show excellent agreement with the experimental data.

Table 4 compares the tip twist obtained using the current approach with that of the
3D refined beam model by Stemple and Lee(7) and the experimental values obtained by
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Figure 3. Convergence of the beam model – CAS30 configuration.
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Figure 4. Twist angle for the CAS configuration under 1lb tip shear load. (a) CAS15 configuration. (b) CAS30

configuration. (c) CAS45 configuration.
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Figure 5. Bending slope for the CAS30 configuration under 1lb tip shear load.
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Figure 6. Twist angle for the CAS configuration under 1in.-lb tip torque. (a) CAS45 configuration. (b) CAS30

configuration. (c) CAS15 configuration.
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Table 4
CAS – configuration: quantitative comparison of tip twist (rad) under 1lb shear and 1in.-lb torque

Loading type Smith et al. experiments(5) Stemple and Lee beam Present beam Error – Error –
Configuration at free end (10−2rad) model(7) model present study Stemple and Lee(7)

CAS15 shear 9 × 10−3 1.13 × 10−2 9 × 10−3 0 % 20.28%
CAS30 shear 1.6 × 10−2 1.6 × 10−2 1.3 × 10−2 18.75% 0%
CAS45 shear 1.59 × 10−2 1.51 × 10−2 1.25 × 10−2 21.38% 5.30%
CAS15 torque 2.3 × 10−3 2.4 × 10−3 2.42 × 10−3 5.22% 4.17%
CAS30 torque 1.8 × 10−3 1.9 × 10−3 1.8 × 10−3 0% 5.26%
CAS45 torque 1.8 × 10−3 1.8 × 10−3 1.9 × 10−3 5.56% 0%

https://doi.org/10.1017/aer.2021.44 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/aer.2021.44


TALELE ET AL A SUPER-CONVERGENT THIN-WALLED 3D BEAM ELEMENT... 1807

Beam span (in.)

0

0.002

0.004

0.006

0.008

0.01

0.012
B

en
di

ng
 s

lo
pe

 (
ra

d)

Current Model
Experiment (Smith et al)
Analysis (Smith et al)

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Beam span (in.)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

B
en

di
ng

 s
lo

pe
 (

ra
d)

Current Model
Experiment (Smith et al)

(a) (b)

Figure 7. CUS configuration results under 1lb tip shear load. (a) CUS15 configuration. (b) CUS45

configuration.

Table 5
CUS – Configuration: Quantitative comparison of tip bending slope (rad)

under the 1lb tip load

Error –
Smith et al. Smith et al. Present present Error –

Configuration experiments(5) analytical(7) beam model study Stemple and Lee(7)

CUS15 1.13 × 10−2 9.99 × 10−3 9.73 × 10−3 13.5 % 12.6%
CUS45 9.2 × 10−3 NA 1.3 × 10−2 0.3% NA

Smith et al.(5). The present model shows a maximum error comparable to that of the beam
model by Stemple and Lee (7).

5.3 CUS CONFIGURATION
The CUS configuration in the box beam results in extensional–twist coupling. The coupled
beam extension and twisting are generated by the applied torque. The CUS configuration has
been studied for two configurations: CUS15 and CUS45 under torque and shear loading.

Figure 7(a) and (b) shows the bending slope under 1lb shear load. The bending slope pre-
dicted by the current model is in good agreement with experiment and the analytical results
by Smith et al.(5). Note that, in both experiments, non-zero bending slope exists at the root.
The reason for this behaviour can be attributed to the large bending–traverse shear coupling
effects inherent in CUS configurations (5).

The 1in.-lb tip torsion induced twist is shown in Fig. 8(a) and (b). Similar to the other con-
figurations, the twist varies linearly along the beam span. The obtained results are validated
by comparison with the experimental results by Chandra et al.(11).

Tables 5 and 6 list the tip bending slope and twist for shear and torque loading, respectively.
The error obtained using the current approach is comparable to that obtained by Kim and
White (27).

https://doi.org/10.1017/aer.2021.44 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.44


1808 THE AERONAUTICAL JOURNAL OCTOBER 2021

Table 6
CUS – configuration quantitative comparison of tip bending slope (rad)

under 1in.-lb torque load

Kim and Present Error – Error –
Chandra et al. White beam present Kim and White

Configuration experiments(11) model(27) model study model(27)

CUS15 3 × 10−3 2.8 × 10−3 3.4 × 10−3 13.33% 6.67%
CUS45 2.24 × 10−3 2.1 × 10−3 2.4 × 10−2 7.16% 6.23%
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Figure 8. CUS configuration results under 1in.-lb tip torque load. (a) CUS15 configuration. (b) CUS45

configuration.

5.4 CROSS-PLY CONFIGURATION
Figure 9(a) shows the spanwise twist angle for the beam under 1in.-lb torque. Since the cross-
ply configuration exhibits no elastic coupling, there is no coupled displacement of the beam
associated with the tip torque. Figure 9(b) shows the spanwise bending slope for 1lb tip shear
load. Similar to the toque loading, there is no coupled displacement associated with the shear
loading. The numerical results obtained are in good agreement with the experiments.

Table 7 presents a comparison of the error obtained by the present study and Kim and
White(27). In comparison with the Kim and White(27) beam model, the present model predicts
the deflection to a fair degree of accuracy, as is evident from the percentage error.

5.5 NUMERICAL RESULTS FOR BEAM WITH MID-SPAN
POINT LOADING

In the previous sections, a fixed–free (fixed at one end and free at the other end) beam with
a shear/torque load at the free end was considered. In this section, a fixed–fixed (both ends
of the beam fixed) beam with a point load/torque at the mid-span is considered. The beam
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Table 7
Cross-ply configuration: quantitative comparison tip bending slope and twist

Measured Loading Smith et al. Kim and White Present Error – Error – Kim and
value type experiments(5) model(27) beam model present study White model(27)

Tip bending slope (rad) Shear 1.29 × 10−3 1.16 × 10−3 1.12 × 10−3 13.4% 10.4%
Tip twist (rad) Torque 3.76 × 10−4 3.40 × 10−4 4 × 10−4 6.2% 9.6%
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Figure 9. Cross-ply configuration results. (a) Twist angle for under 1in.-lb tip torque load. (b) Bending slope
under 1lb tip shear load.
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Figure 10. CAS15 configuration results with fixed–fixed boundary condition and mid-span point
load/torque. (a) Bending slope and twist for mid-span 1lb shear load. (b) Vertical displacement and twist

for mid-span 1in.-lb torque load.
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Figure 11. CUS45 configuration results with fixed–fixed boundary condition and mid-span point load/torque.
(a) Bending slope for mid-span 1lb shear load. (b) Twist for mid-span 1in.-lb torque load.
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Figure 12. Cross-ply configuration results with fixed–fixed boundary condition and mid-span point
load/torque. (a) Bending slope for mid-span 1lb shear load. (b) Twist for mid-span 1in.-lb torque load.

dimensions and material properties are listed in Tables 3 and 2, respectively. For the sake of
brevity, only CAS15, CUS45 and cross-ply configuration results are studied.

Figure 10(a) shows the span-wise distribution of the bending slope and twist. As expected,
the beam exhibits the bending–torsion coupling inherent to the CAS configuration. Figure
10(b) shows the span-wise vertical deflection and twist under the mid-span 1in.-lb torque
loading.

Figures 11 and 12 shows the mid-span loading results for the CUS45 and cross-ply
configurations. The twist along the beam-span varies linearly with change in slope at the mid-
span. As expected, the cross-ply configuration does not exhibit elastic coupling under shear
or torque.
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6.0 CONCLUSION
A super-convergent beam element with arbitrary cross-section is developed for the analysis
of laminated composite thin-walled structures. The shape functions of the element are con-
structed from the analytical solutions to the homogeneous Euler–Lagrangian equations. As a
result, the exact stiffness matrix is obtained for the laminated composite thin-walled beams.
The developed beam model includes elastic couplings which can be exploited to enhance the
response behaviour of the structure. Numerical results show that the developed element is
accurate and correctly predicts the elastic coupled deformations.

In the present work, the shape functions and stiffness matrix are derived analytically using
Maple. Moreover, the derivatives can also be obtained by symbolic analysis. Consequently,
implementation of AD is not required for gradient-based numerical optimisation involv-
ing thin-walled composite laminated structures. The next step of this research could be
the optimisation of such structures. Owing to the methodology implemented in the present
work, the computational cost and development time for an optimisation framework will be
greatly reduced. These effects would be even more pronounced in coupled aero-structural
optimisation of composite lifting surfaces.
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A APPENDIX

D11 =
∮

A11 ds D12 =
∮ [

A11 x + B11
dy

ds

]
ds

D13 =
∮ [

A11 y − B11
dx

ds

]
ds D14 =

∮
A16

dx

ds
ds

D15 =
∮

A16
dy

ds
ds D16 = −

∮
A11 (Fω + a) ds

D17 = −
∮

A16
2Ac

β
ds

D22 =
∮ [

A11 x2 + D′
11

(
dy

ds

)2

+ 2 B11 x
dy

ds

]
ds

D23 =
∮ [

A11 x y − B11 x
dx

ds
+ B11 y

dy

ds
− D′

11
dx

ds

dy

ds

]
ds

D24 =
∮ [

A16
dx

ds
x + B16

dx

ds

dy

ds

]
ds

D25 =
∮ [

A16
dy

ds
x + B16

dy

ds

2]
ds

D26 =
∮ [

− A11 (f + a) x − B11 (f + a)
dy

ds

]
ds

D27 =
∮ [

A16
2Ac

β
x + B16

2Ac

β

dy

ds

]
ds

D33 =
∮ [

A11 y2 + D′
11

(
dx

ds

)2

− 2 B11 y
dx

ds

]
ds
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D34 =
∮ [

A16
dx

ds
y − B16

(
dx

ds

)2 ]
ds

D35 =
∮ [

A16
dy

ds
y − B16

dy

ds

dx

ds

]
ds

D36 =
∮ [

− A11 (Fω + a) y + B11 (Fω + a)
dx

ds

]
ds

D37 =
∮ [

A16
2Ac

β
y − B16

2Ac

β

dx

ds

]
ds D44 =

∮ [
A55

(
dy

ds

)2

+ A66

(
dx

ds

)2 ]
ds

D45 =
∮ [

(A66 − A55)
dx

ds

dy

ds

]
ds D46 =

∮
− A16 (Fω + a)

dx

ds
ds

D47 =
∮ [

A66
2Ac

β

dx

ds

]
ds

D55 =
∮ [

A66

(
dy

ds

)2

+ A55

(
dx

ds

)2 ]
ds

D56 =
∮ [

− A16 (Fω + a)
dy

ds

]
ds

D57 =
∮ [

A66
2Ac

β

dy

ds

]
ds D66 =

∮
A11 (Fω + a)2 ds

D67 =
∮

− A16
2Ac

β
(Fω + a) ds D77 =

∮
A66

(
2Ac

β

)2

ds

(Aij, Bij, D′
ij) =

∫ −h/2

h/2
Q̄ij(1, n, n2) dn

D is a symmetric matrix such that Dij = Dji · · · (21)
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