
https://doi.org/10.1007/s00158-020-02799-7

EDUCATIONAL PAPER

Discrete adjoint aerodynamic shape optimization using symbolic
analysis with OpenFEMflow

Ali Elham1 ·Michel J. L. van Tooren2

Received: 10 June 2020 / Revised: 25 September 2020 / Accepted: 25 November 2020
© The Author(s) 2021

Abstract
The combination of gradient-based optimization with the adjoint method for sensitivity analysis is a very powerful and
popular approach for aerodynamic shape optimization. However, differentiating CFD codes is a time consuming and
sometimes a challenging task. Although there are a few open-source adjoint CFD codes available, due to the complexity of
the code, they might not be very suitable to be used for educational purposes. An adjoint CFD code is developed to support
students for learning adjoint aerodynamic shape optimization as well as developing differentiated CFD codes. To achieve
this goal, we used symbolic analysis to develop a discrete adjoint CFD code. The least-squares finite element method is used
to solve the compressible Euler equations around airfoils in the transonic regime. The symbolic analysis method is used for
exact integration to generate the element stiffness and force matrices. The symbolic analysis is also used to compute the
exact derivatives of the residuals with respect to both design variables (e.g., the airfoil geometry) and the state variables (e.g.,
the flow velocity). Besides, the symbolic analysis allows us to compute the exact Jacobian of the governing equations in a
computationally efficient way, which is used for Newton iteration. The code includes a build-in gradient-based optimization
algorithm and is released as open-source to be available freely for educational purposes.

Keywords OpenFEMflow · Discrete adjoint · Symbolic analysis · Aerodynamic shape optimization

1 Introduction

Design is an iterative trial and error method, which includes
synthesis, analysis, and decision-making steps. These itera-
tive steps try to drive an initial design to the best design by
analyzing the initial behavior of the design. Then repeatedly
change the design (by changing the values of the parameters
of its parametrized description), re-analyze the design, and
change the direction of the design based on some criterion

Responsible Editor: Joaquim R. R. A. Martins

This paper has been modified from A. Elham and M.J.L.
van Tooren “Aerodynamic Shape Optimization Using Symbolic
Sensitivity Analysis,” AIAA SciTech conference, January 2017,
Grapevine, TX, USA.

� Ali Elham
a.elham@tu-braunschweig.de

1 Institute of Aircraft Design and Lightweight Structures,
Technische Universität Braunschweig, Braunschweig,
Germany

2 McNair Center for Aerospace Research and Innovation,
University of South Carolina, Columbia, SC, USA

that includes the change in analysis results with respect to
the previous analysis step. In the modern design approach,
such iteration is done using numerical optimization meth-
ods. A very popular example of such a design approach is
found in aerodynamic shape optimization.

Aerodynamic shape optimization is performed by the
combined use of computational fluid dynamics (CFD)
and numerical optimization techniques. Such an optimiza-
tion may include hundreds of design variables. Although
applications of heuristic optimization algorithms for aero-
dynamic shape optimization can be found in literature
(Antunes and Azevedo 2014; Elham and van Tooren 2014),
gradient-based algorithms are still the most efficient meth-
ods for shape optimizations based on high fidelity CFD
analysis including a large number of design variables. How-
ever, a sensitivity analysis is required for using gradient-
based algorithms.

Adjoint methods for sensitivity analysis have been widely
used in recent years for aerodynamic shape optimization
(Kenway et al. 2019). Both continuous (Palacios et al. 2015;
Baysal and Ghayour 2001; Brezillon and Gauger 2004)
and discrete adjoint (Mader et al. 2008; Carpentieri et al.
2007) methods have been used to develop CFD codes for

Structural and Multidisciplinary Optimization (2021) 3: –255125316

Published online: 27 2021January/

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-020-02799-7&domain=pdf
http://orcid.org/0000-0001-6942-7529
mailto: a.elham@tu-braunschweig.de

A. Elham and M. J. L. van Tooren

aerodynamic shape optimization. In the continuous adjoint
method, the partial differential equations are differentiated
first and then discretized to be solved numerically.
However, in the discrete adjoint method, the governing
equations are first discretized and then differentiated. The
computational efficiency of the continuous adjoint method
is typically higher than the discrete adjoint; however, it
faces some difficulties. In the continuous adjoint first,
the flow equations are differentiated and then discretized;
therefore, there can be a mismatch between the gradient
computed using the continuous adjoint and the gradient
of the solution based on the discretized equations. The
discrete adjoint method computes the derivatives of the
discretized equations, i.e., the equations that are used to
numerically solve the governing equations. So there is no
mismatch between the gradients and the solution. However,
differentiating the discrete equations and implementing it in
code needs some considerations. One major issue is the need
to compute all the partial derivatives required for discrete
adjoint sensitivity analysis.

Kenway et al. (2019) reviewed available methods to com-
pute the partial derivatives. It includes analytical methods,
finite differencing, complex-step method, automatic differ-
entiation, and symbolic analysis. Analytical differentiation
is computationally the most efficient approach; however, it
is not always possible due to the complexity of the equations.
Automatic Differentiation (AD) is suggested to ease dif-
ferentiating computer codes (Grienwank and Walther 2008;
Hovland et al. 1998). AD can be used in direct and reverse
modes (Grienwank and Walther 2008; Martins and Hwang
2013). The computational cost of the direct mode is the
same as finite differencing, as the function has to be eval-
uated as many times as the number of design variables.
However, in the reverse mode, the function is just needed to
be evaluated one time independent of howmany design vari-
ables are defined. In the reverse AD method, all the depen-
dent variables in the code are differentiated with respect to
the design variables, and the results are stored in the mem-
ory. In the end, the chain rule of differentiation is used to
compute the derivative of the objective function with respect
to the design variables. Although the application of reverse
AD results in the need for higher memory requirement,
by a smart application, i.e., limiting the use of AD to small
pieces of the code, efficient CFD codes based on AD can be
developed (Mader et al. 2008; Carpentieri et al. 2007).

With the growing interest in the application of aerody-
namic shape optimization for aircraft as well as automotive
design, educating students to learn adjoint-based optimiza-
tion as well as developing and maintaining such codes is
essential. Top-level universities around the world offering
education on this topic in courses such as CFD, engineering

optimization, or multidisciplinary design optimization.
Despite the advantages of the adjoint method for sensi-
tivity analysis, this method is far from intuitive, and in
cases like this, learning by doing is often a best practice
in engineering education. However, the math and program-
ming complexity is such that implementation is difficult
and error-prone; therefore, leading to frustration and dis-
traction of the actual learning objectives, especially when
the computational analysis by itself is complex and requires
modification to implement the adjoint method to make the
design sensitivity analysis efficient.

The authors have experience in developing educational
tools for teaching different courses, such as aircraft design
and MDO. The student version of the tools Q3D (Mariens
et al. 2014) (a code for drag prediction of 3D wings using
quasi-three-dimensional analysis), EMWET (Elham et al.
2013) (a code for structural weight estimation of lifting
surfaces using the quasi-analytical method), and FEMWET
(Elham and van Tooren 2016) (a coupled-adjoint code
based on quasi-three-dimensional aerodynamic analysis and
equivalent finite beam structure model for aerostructural
analysis and optimization of lifting surfaces) have been used
in different course taught by the authors in the past 10 years.
The authors have a very successful experience in using
Q3D and EMWET for teaching MDO as well as advanced
aircraft design courses. However, teaching aerostructural
optimization using coupled-adjoint sensitivity analysis is
more complex. The code FEMWET is based on discrete
adjoint augmented by automatic differentiation. But the
authors’ experience shows there is a need for a simpler and
computationally more efficient tool to support the teaching
of the adjoint sensitivity analysis method.

The recent development in software like Mathematica,
Matlab, Maple, and Mathcad allows symbolic analysis.
Using this capability, analysis such as integration or
differentiation can be done symbolically. Symbolic analysis
has been used for automatic finite element code generation,
which has been claimed to result in reducing the complexity
and time requirements for finite element code development,
as well as reducing the possibilities for error and bug in the
program (Korelc and Wriggers 2016; Farrell et al. 2012).
The symbolic analysis can also be an alternative method for
the analytical differentiation of computer codes. It can result
in the same efficiency as analytical differentiation, without
the need for tedious, error-prone, task of analytically
differentiating complex equations.

The idea of combining symbolic analysis with the
discrete adjoint method to develop an efficient, while easy
to develop, understand, and maintain CFD code, motivated
the authors to develop a new educational tool to support
teaching adjoint-based optimization. This paper will show

2532

Discrete adjoint aerodynamic shape optimization using symbolic analysis with OpenFEMflow

the reader how code development can be structured and
simplified using a symbolic definition of variables and
basic matrix equations and symbolic manipulation of these
equations, including partial differentiation and integration
to derive complex computational computer codes. Also,
this paper and the associated open source Matlab code,
named OpenFEMflow, are intended to guide the reader to
all the steps required to parametrize a design, discretize
2D space and 2D flow variable fields, build a CFD solver
suitable for the adjoint method, implementation of the
adjoint method, and automate mesh adjustments (simple
refinement as well as adaptation to flow variable values) to
prevent manual convergence studies. For this purpose, the
finite element approach will be used to discretize the 2D
space as well as the flow field. The approach will be used to
optimize single element airfoils for minimizing drag at high
velocities (transonic, supersonic speeds). Several example
design studies are discussed to illustrate the completeness
and correctness of the approach.

2 Aerodynamic shape optimization

An optimization problem is mathematically defined as
follows:

min f (X)

Xi i = 1..n

s.t. hj (X) = 0 j = 1..m

gk(X) ≤ 0 k = 1..l

XL ≤ X ≤ XU

(1)

where f is the objective function, i.e., the design figure of
merit which should be minimized, X is the vector of design
variables, h is the vector of equality, and g is the vector of
inequality constraints. The design variables can be bounded
between a set of lower values of XL and upper values XU .

In an aerodynamic shape optimization, the objective
function is usually drag, or a combination of minimiz-
ing drag and maximizing lift, e.g., minimizing drag over
lift. The constraints are usually defined on some geomet-
rical parameters, such as minimum thickness, and some
aerodynamic characteristics such as pitching moment.

An important issue in aerodynamic shape optimization
is the method used for parameterizing the shape. Vari-
ous methods are suggested to mathematically model the
outer geometry of 2D and 3D aerodynamic objects. The
Free Form Deformation (FFD) (Sederberg and Parry 1986),
and the Class Shape Transformation (CST) (Kulfan 2008)
are examples of such parameterization methods. The CST

method is used in OpenFEMflow for shape parameteriza-
tion. The CST method is symbolically described as follows:

ζ(ψ) = CN1
N2(ψ) · S(ψ) (2)

where ψ and ζ are normalized x and y positions
respectively.CN1

N2 is the class function and S(ψ) presents the
shape function. The class function expresses the basis class
of shapes:

CN1
N2(ψ) = (ψ)N1 (1 − ψ)N2 (3)

N1 and N2 are equal to 0.5 and 1 respectively for an airfoil
with a round leading edge and sharp trailing edge. The shape
function is a Bernstein polynomial representation which
describes the permutation around this basic shape:

S(ψ) =
p∑

i=0

P̄iBi,p(ψ) (4)

where p is the order of the Bernstein polynomial, P̄i is
the vector of control points and Bi,p(ψ) are the Bernstein
polynomials of degree p. The values of P̄i are defined as
design variables and referred to as the CST modes.

A typical airfoil shape optimization can be formulated as
follows:

min Cd(X)

X = [CSTi , α] i = 1..n

s.t. Cl − Clt = 0

Cmt − Cm ≤ 0

tmaxinit − tmax ≤ 0

(5)

In this case, it is assumed that the airfoil shape is
parameterized using the CST method with n control points
(for both upper and lower side of the airfoil). In addition
to the CST modes, the angle of attack is also defined as
a design variable. This is required to give freedom to the
optimizer to change the angle of attack until the constraint
on lift is satisfied. The lift coefficient is constrained to be
equal to a target (desired) value. The pitching moment is
also constrained to be larger (less negative) than a target
(minimum) value. And eventually, the airfoil maximum
thickness is constrained to be larger than a minimum
value. In some cases instead of the maximum thickness,
the thickness at some chordwise positions, for example,
the locations of the spars, is constrained (both cases are
implemented in OpenFEMflow). Such an optimization can
be solved based on the Design Structure Matrix (DSM),
shown in Fig. 1.

From the DSM, one can observe that a numerical
optimization algorithm, a geometry generator, a mesh
generator, and a CFD solver (both the primal and adjoint
solvers) are the main components of such an optimization
framework. The optimizer is sending the values of the

2533

A. Elham and M. J. L. van Tooren

Fig. 1 Design structure matrix for aerodynamic shape optimization

design variables to the geometry generator to create the
airfoil geometry and compute the geometrical properties
required for the optimizer, e.g., the airfoil maximum
thickness. This geometry is sent to a mesh generator to
generate the mesh, which is used by the CFD solver to
compute the aerodynamic characteristics of the airfoil. This
general aerodynamic shape optimization can be used for
optimizing any object (2D or 3D), with any optimization
algorithm and CFD solver. However, for a specific choice
of algorithm and CFD solver, the DSM can be modified
for more efficient optimization. For example, instead of
generating a new mesh for every new set of shape
parameters, an original mesh can be generated once at the
beginning and then is deformed every time based on new
shape variables.

If a gradient-based algorithm is used for optimization,
the derivatives of the objective function, and the constraints
with respect to the design variables are required. The paper
of Martins and Hwang (2013) reviews different methods
available for computing derivatives. As explained earlier,
the discrete adjoint method is used in OpenFEMflow for
sensitivity analysis. In the following sections of this paper,
first, the CFD method used in OpenFEMflow is described,
and then the sensitivity analysis method is explained.

3 Flowmodelling and numerical analysis
method

Since OpenFEMflow is mainly developed for educational
purposes, the Euler method is considered to model the flow,
which is computationally more efficient than RANS. Two
dimensional unsteady compressible Euler equations can be
presented in the following matrix form:

dU

dt
+ A1

dU

dx
+ A2

dU

dy
= 0 (6)

where U = [ρ, u, v, p]T is the vector of the primitive
variables and the A1 and A2 matrices are as follows:

A1 =

⎡

⎢⎢⎣

u ρ 0 0
0 u 0 ρ−1

0 0 u 0
0 γp 0 u

⎤

⎥⎥⎦ (7)

A2 =

⎡

⎢⎢⎣

v 0 ρ 0
0 v 0 0
0 0 v ρ−1

0 0 γp v

⎤

⎥⎥⎦ (8)

where u and v are the velocity components, ρ is the
density, p is the pressure, and γ is the specific heat ratio.

2534

Discrete adjoint aerodynamic shape optimization using symbolic analysis with OpenFEMflow

Equation (6) can be linearized by setting An = A(Un), i.e.,
to compute U for the next iteration matrices A1 and A2 are
constructed using the vector U from the previous iteration.
An implicit time differentiation results in the following
equation:

R = Un+1 − Un + �tAn
1
∂Un+1

∂x
+ �tAn

2
∂Un+1

∂y
= 0 (9)

Different methods can be used to numerically solve this
equation. In OpenFEMflow, the least-squares finite element
method (LSFEM) is used (Jiang and Carey 1990; Bochev
and Gunzburger 2009) to numerically solve Euler equations.
Finite element methods and in particular LSFEM in this
case, have several advantages for such a problem. The main
advantages of LSFEM for computational fluid dynamics
are summarized in the book of Jiang (1998). In short, the
following advantages are mentioned by Jiang for application
of LSFEM in CFD:

1. Universality: LSFEM has a unified formulation for
numerical solution of all types of differential equations,
i.e., elliptic, parabolic, hyperbolic, or mixed.

2. Efficiency: LSFEM always leads to symmetric,
positive-definite matrices for linear partial differential
equations, which can be efficiently solved by matrix
free methods.

3. Robustness: Due to the mathematical foundation
of LSFEM, especial numerical treatments such as
unwinding, artificial dissipation, staggered grid or
non-equal order elements, artificial compressibility,
operator splitting, and operator preconditioning etc. are
unnecessary.

Although it has to be noted that, the LSFEM is not a
magic solution to all the CFD problems, as it has it is
own disadvantages. However, since the main purpose of
developing OpenFEMflow is educating students on adjoint-
based optimization, the choice of numerical method was not
the main concern of the authors.

Using the LSFEM, the L2-norm of the residual R is
minimized, i.e.:

min Φ =
∫

Ω

RT R dxdy (10)

In a finite element approach, the primitive variables
inside each element are approximated using the so-called
shape functions as follows:

Ũ =
nn∑

i=1

NiUi (11)

where nn is the number of nodes for each element, Ni is
the ith shape function and Ui is the value of the primitive
variables at node i. Using the least-squares finite element
method the following element stiffness and force matrices
are obtained:

Ke
ij =

∫

Ωe

(LNi)
T (LNj)dxdy (12)

Fe
ij =

∫

Ωe

(LNi)
T Undxdy (13)

where:

LNi = NiI + �t
∂Ni

∂x
An
1 + �t

∂Ni

∂y
An
2 (14)

I is the identity matrix. In finite element analysis, the
element matrices are usually computed using numerical
integration techniques such as Gauss Quadrature (Krish-
namoorthy 1994). This approach requires multiple time
calculation of the integral function and also introduces
numerical error. In this research, the symbolic analysis tech-
nique is used to derive the exact solution of the integrals
shown in (12) and (13).

In this research, three nodes linear triangular elements
are used, where the shape functions are defined based on the
local coordinates L1, L2, and L3 as shown in (15).

L1 = A1

A

L2 = A2

A

L3 = A3

A
(15)

where A is the area of the triangle, and A1, A2, and A3 are
the areas of the three sub-triangles as shown in Fig. 2. From
this figure, one can observe that A1 + A2 + A3 = A and
L1 + L2 + L3 = 1. The shape functions for this type of
element are defined as:

N1 = L1

N2 = L2

N3 = 1 − L2 − L2 (16)

To derive the equations of Ke and Fe using symbolic
analysis, the x and y positions of the element nodes (for
2D elements) as well as the flow variables ρ, u, v, and p

are defined as symbols. Matlab symbolic analysis toolbox
is used to derive the solution of (12) and (13) symbolically.
Lines 1 to 62 of the Matlab code shown in the Appendix are
used to derive Ke and Fe.

The resulting symbolic equations for K and F were
subsequently hard-coded in a function for computing the
element matrices. This function receives the x and y

2535

A. Elham and M. J. L. van Tooren

Fig. 2 Triangular element local coordinates

positions of the nodes (x1, y1 to x3, y3 in Appendix) and the
values of the flow variables at each node (ρ1, u1, v1, p1 to
ρ3, u3, v3, p3 in Appendix) as well as the time step (dt in
Appendix) and returns the stiffness and the force matrices
for each element. Using the proper assembly, the global
stiffness and force matrices are generated.

Two types of boundary conditions are used for airfoil
analysis; the far-field boundary condition, where the
pressure, velocity, and density are given, and the wall
boundary condition, where for inviscid flow the normal
velocity to the wall is set to zero. Applying the first
type of boundary condition is easy. The values of the
variables of the nodes placed on this boundary are defined
as fixed degrees of freedom. However, the second type of
boundary condition requires some attention. To apply the
wall condition, the local angle of the wall at each node, θ ,
is first determined from the airfoil geometry, see Section 5.
A transformation matrix, T is defined based on θ of the
nodes on the walls. To compute K and F for the elements
with at least one node on the wall, the coordinate of the
velocity variables of the node(s) on the wall is rotated in
such a way to have the tangential and normal velocity to the
wall instead of u and v in x and y directions respectively.
This transformation is done using the T matrix. The normal
velocity of the nodes on the wall is set to zero and is defined
as a fixed degree of freedom.

4 Solving the nonlinear system of equations

Both Picard and Newton methods are used to solve the
nonlinear system R(U) = K(U)U − F(U) = 0. The
Newton method has a larger rate of convergence compared
to the Picard method, but it has a smaller radius of
convergence (Reddy and Gartling 2001). Therefore, the

iteration is started using the Picard method and after a few
iterations, the Newton method is used.

Using the Picard iteration method, in this case, is
identical to using the Newton method to solve the linearized
system Rn+1 = K(Un)Un+1 − F(Un) = 0, where ∂R/∂U

is equal to K(Un). In such an approach, first, the stiffness
and force matrices are evaluated using theU vector from the
previous iteration (or the initial guess at the first iteration).
Then ΔU (the change in U) is computed as:

ΔU = − ∂R

∂U

−1

R(U) (17)

where as mentioned earlier ∂R/∂U is approximated to be
equal to K , and R is evaluated as R(U) = K(Un)Un −
F(Un).

The next step is to solve the nonlinear system Rn+1 =
K(Un+1)Un+1 − F(Un+1) = 0 using the Newton method.
In this approach, the exact derivative of R with respect to
U is required, which includes the partial derivatives of K

and F with respect to U . The symbolic analysis is used to
derive ∂Re/∂Ue as a function of the node position as well
as the value of the primitive variables at each node, see
lines 66 to 94 of the Appendix. The equations for Re and
∂Re/∂Ue are hard-coded and called to evaluate the residual
and its derivatives with respect to the primitive variables for
each element. Using this approach Re is directly evaluated;
therefore, the need for calculating and storing the stiffness
and force matrices is eliminated. It improves the speed as
well as the memory requirement of the code. Using a proper
assembly, the values of R and ∂R/∂U of the whole system
are computed.

5Mesh deformation

The spring analogy is used to deform the mesh. Defining
the position of the nodes on the wall using the CST method,
the position of the other nodes is determined iteratively.
Initially, the displacement of each node is set to zero, except
those on the airfoil surface, which are displaced according
to the new airfoil shape, and those on the external boundary
which should stay fixed. The location of the internal nodes,
then is determined iteratively by adding �x to their current
location at each iteration:

Δxm+1
i =

∑Ni

j=1 kijΔxm
j

∑Ni

j=1 kij
(18)

where Ni is the number of the nodes connected to node i,
kij is the inverse of the length of the edge ij , and m is the
number of iteration. The iteration stops when the value of
Δx becomes lower than a certain tolerance. Using (18), the
sensitivity of the position of each node with respect to the
CST modes is determined analytically.

2536

Discrete adjoint aerodynamic shape optimization using symbolic analysis with OpenFEMflow

6 Adjoint method for sensitivity analysis

Besides computing the exact Jacobian of the residuals,
symbolic analysis is also used for sensitivity analysis
required for optimization. The derivative of a function of
interest I , for example, the drag coefficient, with respect to
a design variable X (not to be confused with x position of
the nodes) is as follows:

dI

dX
= ∂I

∂X
+ ∂I

∂U

dU

dX
(19)

In the discrete adjoint approach, the derivatives of the
residuals with respect to the design variables are used to
eliminate dU/dX from (19):

dR

dX
= ∂R

∂X
+ ∂R

∂U

dU

dX
= 0 (20)

dU

dX
= − ∂R

∂U

−1 ∂R

∂X
(21)

Substituting (21) in (19), dI/dX is calculated as follows:

dI

dX
= ∂I

∂X
− λT ∂R

∂X
(22)

where the adjoint vector, λ, is calculated from the following
equation:

∂R

∂U

T

λ = ∂I

∂U
(23)

In an airfoil optimization, I can be the lift coefficient Cl ,
the drag coefficientCd , and the pitching moment coefficient
Cm. The design variables X can be the airfoil geometry
as well as the angle of attack α and the free stream Mach
number M .

Beside ∂R/∂U , the partial derivatives of R and I with
respect to the design variables X and the partial derivative
of I with respect to U are required to compute the total
derivatives dI/dX. The symbolic analysis is used to derive
the partial derivatives of the element residuals with respect
to the x and y positions of the element nodes, i.e. ∂Re/∂xe

and ∂Re/∂ye, see lines 96 to 181 of the code shown in
Appendix. These equations were hard-coded in a function
that receives the nodes positions as well as the value of the
primitive variables at each node and returns ∂Re/∂xe and
∂Re/∂ye. Using a proper assembly the partial derivatives of
the global residuals with respect to the position of the nodes
are computed.

The partial derivative ∂R/∂X is then computed:

∂R

∂X
= ∂R

∂x

∂x

∂X
+ ∂R

∂y

∂y

∂X
+ ∂R

∂θ

∂θ

∂X
(24)

where x and y are the positions of the nodes, θ is the slope
of the wall at the position of the node, and X is the vector
of CST modes. The terms ∂R/∂θ and ∂θ/∂X are computed
using the transformation matrix T and the airfoil geometry
(the CST formulation) respectively.

The angle of attack and the free stream Mach number
only affect the values of u and v for the nodes defined
as inlet boundary condition directly. Therefore, ∂U/∂α

and ∂U/∂M are nonzero only for the nodes on the inlet
boundary. For these nodes, ∂U/∂α and ∂U/∂M are as
follows:
∂Ue

∂α
= [0 − Msin(α) Mcos(α) 0]T (25)

∂Ue

∂M
= [0 cos(α) sin(α) 0]T (26)

The partial derivatives of Re with respect to α and M are
derived as follows:
∂Re

∂α
= ∂Re

∂Ue

∂Ue

∂α
(27)

∂Re

∂M
= ∂Re

∂Ue

∂Ue

∂M
(28)

By a proper assembly, ∂R/∂α and ∂R/∂M are computed.
The airfoil aerodynamic coefficients Cl , Cd , and Cm

are computed by a proper integration of the pressure
over the airfoil surface. The pressure coefficient on the
airfoil surface is a function of U of the nodes on
the airfoil surface (defined as wall boundary condition)
and the free-stream Mach number. The equations of the
partial derivatives ∂Cl/∂U , ∂Cd/∂U , and ∂Cm/∂U for
the nodes on the airfoil surface are derived symbolically
(manually not by Matlab symbolic analysis toolbox) and
hard-coded. These derivatives for the nodes other than
those on the airfoil surface are zero. Similar equations for
derivatives of the airfoil coefficients with respect to the
free stream Mach number are derived. In the same way,
the symbolic equations for the partial derivatives of the
airfoil aerodynamic coefficients with respect to the x and
y positions of the nodes on the surface of the airfoil are
derived. Eventually the partial derivatives of I with respect
to X are computed based on ∂I/∂x, ∂I/∂y, ∂x/∂X, and
∂y/∂X.

The adjoint equation, (23), is solved using MATLAB
mldivide function. This function uses various algorithms,
based on the type of the matrix ∂R/∂U . Details about this
function are available on Mathworks website.1

7 Validation

To validate the code, the results of OpenFEMflow for four
different test cases were compared to experimental data
from AGARD report (Viviand 1985) and shown in Table 1.
Figure 3 shows the pressure contours for the four test cases
shown in Table 1. All of these analyses were performed

1https://de.mathworks.com/help/matlab/ref/mldivide.html#d122e8366
49

2537

https://de.mathworks.com/help/matlab/ref/mldivide.html#d122e836649
https://de.mathworks.com/help/matlab/ref/mldivide.html#d122e836649

A. Elham and M. J. L. van Tooren

Table 1 Validation results of
OpenFEMflow OpenFEMflow AGARD

Airfoil M α Cl Cd Cl Cd

RAE2822 0.75 3 1.0103 0.0462 1.1058 ± 0.0322 0.0467 ± 0.0056

NACA0012 0.95 0 0.1070 0.1082 ± 0.0008

NACA0012 1.2 0 0.0938 0.0953 ± 0.0014

NACA0012 1.2 7 0.5091 0.1548 0.5211 ± 0.0142 0.1538 ± 0.0012

-1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5
a

-1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5
b

-1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

c

-1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5
d

Fig. 3 a–d Pressure contours for the OpenFEMflow validation test cases

2538

Discrete adjoint aerodynamic shape optimization using symbolic analysis with OpenFEMflow

0 0.2 0.4 0.6 0.8 1
X/C

-1.5

-1

-0.5

0

0.5

1

1.5

-C
p

RAE2822 M=0.729 = 2.31deg

Experinemt
OpenFEMflow

Fig. 4 Comparision of pressure distribution on RE2822 airfoil with
experiment

using an unstructured mesh with 10216 elements and 5233
nodes, see Fig. 10a.

To verify the pressure distribution on airfoil computed
by OpenFEMflow, the Cp distribution on RAE2822 airfoil
on Mach 0.729 and α = 2.31 is computed by the code
and compared with experimental results (Viviand 1985)
in Fig. 4. As one can observe from this figure, there is
a good match between the OpenFEMflow result and the
experiment, except the location of the chock wave, which is
not completely inline with the experiment. However, it is a
typical tendency of the Euler equations to overestimate the
strength of shockwaves.

To verify the sensitivity analysis method the NACA0012
airfoil is parametrized using 20 CST modes (10 for the
upper and 10 for the lower surfaces). Figure 5 shows the
comparison between the derivatives of Cl , Cd , and Cm with
respect to the CST modes computed by the adjoint method
and the finite differencing.

Besides, computing the exact value of dR/dU allows us
to use the full benefit of the quadratic convergence rate of
the Newton method. Figure 6 shows the convergence history
of analysis of the NACA0012 airfoil in Mach number of 0.7
and the angle of attack of 2 degrees. First, the Jacobian of

CST Mode Number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

dC
l/d

X

Adjoint
Finite difference

a

CST Mode Number

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

dC
d/

dX

Adjoint
Finite difference

b

CST Mode Number

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

dC
m

/d
X

Adjoint
Finite difference

c

Fig. 5 a–c Verification of the sensitivity analysis. Results are for NACA0012 airfoil at M = 0.7 and α = 2◦

2539

A. Elham and M. J. L. van Tooren

0 50 100 150 200

Iteration number

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0
lo

g(
R

)

Approx. Jacobian
Exact Jacobian

Fig. 6 The effect of exact Jacobina on the convergence history of
NACA0012 airfoil in M = 0.7 and α = 2◦

the residuals is approximated by assuming a linear equation
R = KU−F , where dR/dU = K . Then the exact Jacobian
of the nonlinear system derived using symbolic analysis is
used. From Fig. 6, one can observe that using the exact
Jacobian, the Newton method reduced the norm of residuals
by 9 order of magnitude in 10 iterations.

The Newton method is more prone to diverge than the
Picard method. Therefore, in OpenFEMflow, the solution
is started with the Picard method and then switched to
the Newton method. The switch point is determined either
based on the value of the residuals (e.g., if the residuals are
reduced to half) or based on the simulation time. Figure 7a
shows an example of convergence history and the switch
point from the Picard iteration to the Newton method. From
this figure, one can observe the rate of convergence is
dramatically changed after switching to the Newton method.
However, as mentioned earlier, the Newton method is more
prone to diverge. To avoid this problem, OpenFEMflow can

x

-1

-0.5

0

0.5

1

1.5

-C
p

9k
10k
11k

Fig. 8 Pressure distribution on NACA0012 for three different mesh
sizes

switch between the Picard and Newton multiple times. If
after switching to the Newton method, the solution diverges,
the solver switches back to the Picard method and continues
the solution from the last Picard iteration. This switch back
and forth can happen multiple times until a converged
solution is achieved. An example of such a convergence
history is shown in Fig. 7b, where multiple time switch
between the Picard and the Newton method is shown. It
needs to be mentioned that, such multiple times switching
back and forth between the Picard and Newton method
can happen only for high values of Mach numbers and
high angle of attack. For moderate cases, usually, the first
time switch to the Newton method results in a converged
solution, as shown in Fig. 7a. For high values of Mach
number and angle of attack, it is recommended to start the
simulation from the converged solution of the same case
with lower values of Mach and angle of attack.

Iteration

-10

-8

-6

-4

-2

0

2

Lo
g(

R
),

 L
og

(
 U

)

Norm of U
Norm of Residual

Switch from Picard to
Newton Method

Iteration

-10

-8

-6

-4

-2

0

2

4

6

8

10

Lo
g(

R
),

 L
og

(
 U

)

Norm of U
Norm of Residual

ba

Fig. 7 a, b Examples of convergence history of OpenFEMflow

2540

Discrete adjoint aerodynamic shape optimization using symbolic analysis with OpenFEMflow

Fig. 9 a, b Dividing elements
into smaller ones for mesh
refinement

Last but bit least, a grid convergence study has been
performed to investigate the influence of mesh on results of
OpenFEMflow for an airfoil analysis. Three different airfoil
meshes with the same topology but different number of
nodes, 9K, 10K, and 11K nodes, are created for this study.
The pressure distribution on NACA0012 airfoil analysis in
Mach 0.72 and angle of attack of 2 degrees for these three
different meshes are shown in Fig. 8. From this figure, one
can observe that with a proper mesh topology, the influence
of mesh density the pressure distribution is quite negligible.

8Mesh adaptation

The least-squares residuals of the Euler equations can also
be used as an error indicator for mesh adaptation (Lefebvre
et al. 1993). Using such an approach, the element error is
defined based on the least-squares residuals of the steady
Euler equations:

E = 1

Ωe

Ue

∫

Ωe

[
∂Ni

∂x
A1 + ∂Ni

∂y
A2

]T [
∂Nj

∂x
A1 + ∂Nj

∂y
A2

]
dxdy Ue

(29)

Using this error the elements that need to be refined are
indicated. An automatic mesh adaptation code is included in
OpenFEMflow. Two options are used for mesh refinement.
In the first option, the elements marked for refinement are
divided into three elements. This is done by connecting
each of the three-element nodes to the point at the center

of the element as shown in Fig. 9a. In the second option,
the elements marked for refinement are divided into two
elements. The longest edge of each element is divided into
two parts from the middle point of the edge. This point is
then connected to the third node of the element. In order
to make the mesh conformal, the neighbor element is also
divided into two elements as shown in Fig. 9b.

Figure 10 shows an example of mesh refinement in
OpenFEMflow. The RAE2822 airfoil in Mach 0.73 and
α = 2◦ is considered in this case. Figure 10 shows the
mesh before and after refinement using the type two mesh
refinement method. The initial mesh has 10216 elements
and 5233 nodes, while the adapted mesh has 16262 elements
and 8282 nodes. The Cp distributions over the airfoil for
two different meshes are plotted in Fig. 11.

9 Airfoil optimization

In the first test case, optimization of the NACA0012 airfoil
at M = 0.75 is considered. The optimization is formulated
as follows:

min Cd(X)

X = [CSTi , α] i = 1..10

s.t. Cl − Clt = 0

Cmt − Cm ≤ 0

tmaxinit − tmax ≤ 0

(30)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

x

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

y

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

x

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

y

ba

Fig. 10 a, b Unstructured mesh around RAE2822 airfoil before and after refinement

2541

A. Elham and M. J. L. van Tooren

0 0.2 0.4 0.6 0.8 1

X

-1.5

-1

-0.5

0

0.5

1

1.5
-C

p

Initial Mesh
Adapted Mesh

Fig. 11 Effect of mesh adaptation on airfoil pressure distribution

The airfoil geometry is parametrized using 10 CSTmodes,
5 for each surface. The airfoil lift coefficient is constrained
to be equal to the lift coefficient of the initial airfoil at 2
degrees angle of attack. The airfoil pitching moment is con-
strained to be equal to or larger (less negative value) than
the initial airfoil pitching moment. The airfoil maximum
thickness to chord ratio is also constrained to be equal or
higher than the thickness to chord ratio of the initial air-
foil. The optimization is executed using a mesh with 5233
nodes and 10216 elements, see Fig. 12. The mesh adapta-
tion has not been used during the optimization. The SNOPT
optimization algorithm (Gill et al. 2005) is used as the opti-
mizer. It should be noted that all the optimizations have been
performed using the OpenFEMflow with symbolic analysis.

Table 2 summarizes the results of the optimization.
Figure 13 shows the convergence history of the objective
function. The geometry and the pressure distribution of the
initial and the optimized airfoils are compared in Fig. 14.
Pressure contours for the initial and the optimized airfoils
are shown in Fig. 15.

From Fig. 14b, one can observe that the optimizer
managed to eliminate the shock wave from the upper surface
of the airfoil. This resulted in more than 65% reduction in
the airfoil inviscid drag. The airfoil maximum thickness,
the lift coefficient, and the pitching moment coefficient
remained the same as the initial airfoil.

As the second test case, optimization of the
NACA64A410 airfoil at Mach number of 0.75 is consid-
ered. The same constraints on airfoil lift (at zero degree
angle of attack), pitching moment, and maximum thickness
as the previous case are applied. The same mesh with 10216
elements is used for this optimization as well. The results of
this optimization are shown in Figs. 16 and 17. Similar to
the previous case, the optimizer managed to eliminate the
shock wave from the upper side of the airfoil, while keeping
the airfoil lift, pitching moment, and maximum thickness
the same as the initial airfoil. The inviscid drag of the airfoil
was reduced by more than 68%. Table 3 summarizes the
results of this optimization. Pressure contours for the initial
and the optimized airfoils are shown in Fig. 18.

10 Build-in optimization algorithm

Although SNOPT is a very powerful gradient-based
optimization algorithm, it is not available as an open

-0.5 0 0.5 1 1.5

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Meshba

Fig. 12 a, b Unstructured mesh around NACA0012 airfoil with 10216 elements

2542

Discrete adjoint aerodynamic shape optimization using symbolic analysis with OpenFEMflow

Table 2 Results of NACA0012 airfoil optimization

α [deg] Cl Cd Cm

(
t
c

)
max

Initial 2 0.4202 0.0121 −0.0125 0.12

Optimized 1.73 0.4204 0.0042 −0.0125 0.12

source. To support education, we wrote a build-in gradient-
based optimization algorithm for airfoil shape optimization
in OpenFEMflow. The algorithm solves the following
problem:

min Cd(X)

X = [CSTi , α, s]
s.t. Cl − Clt = 0

Cmt − Cm + s21 = 0

tmaxinit − tmax + s22 = 0

(31)

s1 and s2 are two sack variables used to change the
inequality constraints to equality constraints (more slack
variables can be used if for example more than one
constraint on thickness is defined). The algorithm is based
on solving the (31), where the Newton method is applied to
find the root of the Lagrangian of the optimization problem,
as described in Nocedal and Wright (2006). It results in the
following equation in iteration k:
[∇2

xxLk −AT
k

Ak 0

] [
Sk

λk

]
= −

[∇fk

c

]
(32)

where L is the Lagrangian of the problem, S is the search
direction, and λ is the Lagrange multiplier. The Lagrangian
is defined as:

L(x, λ) = f (x) −
∑

(λc) (33)

5 10 15 20 25

Iteration Number

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 O
bj

ec
tiv

e
F

un
ct

io
n

Fig. 13 Convergence history of NACA0012 airfoil optimization

The Hessian of the Lagrangian (∇2
xxL) is calculated

using the BFGS method (Nocedal and Wright 2006). The
backtracking algorithm is used to find the step length based
on the search direction S.

To verify the build-in algorithm of OpenFEMflow, an
airfoil optimization has been performed using this algorithm
and the outcome is compared to the outcomes of the same
optimization using Matlab FMINCON and SNOPT. The
optimization is performed on RAE2822 airfoil at Mach
number 0.75 and Angle of attack 1 degree. The shape of the
initial and optimized airfoils and the pressure distribution
on them are shown in Fig. 19a and b respectively. From
these figures, it can be observed that the shape and pressure
distribution of the airfoils optimized by all the algorithms
are quite similar. Table 4 summarizes the results. From this
table, one can observe that all the algorithms converged to
the same values of drag. The pitching moment coefficients
are the same in all cases; however, there is a slight difference
in the lift coefficient. Interestingly the optimization time
of the build-in algorithm of OpenFEMflow is lower than
the other two algorithms (it should be noted that only the
lower function call does not mean the lower computational
time, since the convergence time of each airfoil analysis is
different, depending on the shape of the airfoil).

From Table 4, one can observe that the total runtime
of a full airfoil optimization varies between 3 and 7 min.
These results were obtained using a 4.2 GHz Quad-Core
Intel Core i7 processor. Generally each airfoil simulation
may take about 1 min on a single processor if starting from a
no initial solution. During the optimization, the code can be
executed using the solution of the previous iteration, which
reduces the computational time largely. There is also an
option of parallel computing in OpenFEMflow. However,
for a single airfoil simulation with number of nodes about
10000, parallel computing is not necessary and may not
even result in large improvement in computational cost. But
anyhow using this option further reduction in computational
cost can be achieved depending on the number of available
processors and the number of nodes in the mesh.

11 Executing the OpenFEMflow code

The OpenFEMflow code can be downloaded from https://
github.com/mdotubs/OpenFEMflow. The Matlab file,
Start.m should be used to start the CFD simulation and

2543

https://github.com/mdotubs/OpenFEMflow
https://github.com/mdotubs/OpenFEMflow

A. Elham and M. J. L. van Tooren

0 0.2 0.4 0.6 0.8 1
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
Initial
Optimized

X

-1

-0.5

0

0.5

1

1.5

-C
p

Initial
Optimized

ba

Fig. 14 a, b Comparison of the initial and optimized airfoils for NACA0012 airfoil optimization

optimization. At the beginning of this file, the inputs for
analysis are defined. Inputs include, but are not limited to,
the freestream Mach number and angle of attack, the CFL
number, maximum number of iteration, and convergence
criteria. A few settings variables are defined to control
(on-off) the adjoint solution, mesh deformation, and mesh
adaptation as well as plotting the results.

In the second part of the Start.m, the CST control points
for the airfoil shape are defined, in case that an airfoil is
used for simulation and mesh deformation is required. The
CST coefficients are defined in a vector with an arbitrary
dimension. However, an equal number of control points
for the upper and the lower surfaces of the airfoil should
be used. The first half of the vector includes the CST
coefficients for the upper side and the second half includes

the CST coefficients of the lower side of the airfoil. It should
be noted that OpenFEMflow is not only developed for airfoil
simulation but also other cases such as flow in a channel
with a bump, or flow over a cylinder, etc. can be simulated
with OpenFEMflow. In such cases, the mesh deformation
option should be switched off, as it only works for airfoil
shape parameterized using the CST method.

The third part of the Start.m includes a few line codes
for running the OpenFEMflow CFD solver as well as
calculating the airfoil thickness. Then some pieces of codes
are provided to run airfoil shape optimization using SNOPT,
MATLAB FMINCON as well as the build-in SQP algorithm
of OpenFEMflow.

It should be noted that since OpenFEMflow is based on the
Euler method, it does not make sense to use it for subsonic

5.115.005.0-
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

5.115.005.0-
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
ba

Fig. 15 a, b Pressure contours of the initial and optimized airfoils for NACA0012 airfoil optimization

2544

Discrete adjoint aerodynamic shape optimization using symbolic analysis with OpenFEMflow

5 10 15 20 25 30 35 40

Iteration Number

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N

or
m

al
iz

ed
 O

bj
ec

tiv
e

F
un

ct
io

n

Fig. 16 Convergence history of NACA64A410 airfoil optimization

airfoil optimization. As the Euler method is only for an invis-
cid flow, it cannot predict the friction drag of an airfoil, which
is themain drag component of an airfoil in the subsonic regime.
An airfoil optimization in the subsonic regime usually tries
to maximize the region of laminar flow on the airfoil to
minimize the friction drag. Since this ability does not exist
in the Euler method, it does not make sense to use it for
subsonic airfoil optimization. The best ability of the Euler
method is to minimize the wave drag of transonic airfoils, by
eliminating or weakening the shock wave(s) on the airfoil.

12 Conclusions

An open-source adjoint CFD code is presented to support
teaching CFD as well as aerodynamic shape optimization.

The code is based on symbolic analysis to drive the
sensitivity equations. The use of symbolic analysis resulted
in a couple of advantages:

1- Increasing the accuracy of the computations by
computing exact values of element matrices compared
to numerical approximations, which can also result in
better convergence.

2- Automation of code development which can reduce the
possibilities of making errors and bugs in the code.
This also reduces the time and human effort required to
develop a new code.

3- Elimination of the need for reverse AD for computing
the derivatives in discrete adjoint method, which can
result in higher computational efficiency.

It should be mentioned that although running a CFD
code developed based on symbolic analysis could be more
efficient than a similar code based on reverse AD in
computations time and memory requirements, the derivation
of the symbolic equations can be a time-consuming task
with a need for powerful computers. However, this should
be done only once to develop the code and later the code can
be executed with less computational power requirements.
In addition to that, for complex elements, e.g., high-order
nonlinear elements, using the available symbolic analysis
toolboxes may result in prohibitive growth of expressions.
Automatic differentiation can still be a good complementary
option to symbolic analysis for more complex formulation.
However, improving the symbolic analysis toolboxes may
lead to the possibility to symbolically solve much more
complex equations. Code transforming AD is another
approach similar to Symbolic analysis, which creates new
codes with the derivatives, which is more efficient than
reverse AD mode in memory and computational cost. It
is an alternative to symbolic analysis; however, only for

0 0.2 0.4 0.6 0.8 1
-0.04

-0.02

0

0.02

0.04

0.06

0.08
Initial
Optimized

X

-1

-0.5

0

0.5

1

1.5

-C
p

Initial
Optimized

ba

Fig. 17 a, b Comparison of the initial and optimized airfoils for NACA64A410 airfoil optimization

2545

A. Elham and M. J. L. van Tooren

Table 3 Results of NACA64A410 airfoil optimization

α [deg] Cl Cd Cm

(
t
c

)
max

Initial 0 0.6381 0.0160 −0.1709 0.10

Optimized −0.3 0.6381 0.0050 −0.1484 0.10

-0.5 0 0.5 1 1.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.5 0 0.5 1 1.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1ba

Fig. 18 a, b Pressure contours of the initial and optimized airfoils for NACA64A410 airfoil optimization

0 0.2 0.4 0.6 0.8 1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
Initial
OpenFEMflow
FMINCON
SNOPT

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5
Initial
OpenFEMflow
FMINCON
SNOPT

ba

Fig. 19 a, b Comparision of the results of airfoil optimization using different optimization algorithms

2546

Discrete adjoint aerodynamic shape optimization using symbolic analysis with OpenFEMflow

Table 4 Comparison between results of FMINCON and OpenFEMflow build-in algorithms for airfoil optimization

Initial OpenFEMflow FMINCON SQP SNOPT

Cd 0.0159 0.0013 0.0013 0.0013

Cl 0.6008 0.6011 0.6014 0.6008

Cm −0.1386 −0.1386 −0.1385 −0.1386

Iteration 5 5 15

Function call 22 85 37

Wall time (s) 197 596 408

computing the derivatives, while symbolic analysis can be
used for integrating the element matrices, etc.

OpenFEMflow is developed to support educating stu-
dents to develop adjoint finite element code for aerodynamic
and/or structural analysis and optimization. The code is

released as open-source, including the supporting codes to
generate all the symbolic parts. It also includes a simple
built-in SQP optimization algorithm for airfoil optimization.
In addition to that, supporting codes are available to use
MATLAB FMINCON for airfoil optimization.

Appendix

2547

A. Elham and M. J. L. van Tooren2548

Discrete adjoint aerodynamic shape optimization using symbolic analysis with OpenFEMflow 2549

A. Elham and M. J. L. van Tooren

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Replication of results The results presented in this study can be
replicated by using the open source code OpenFEMflow.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

References

Antunes AP, Azevedo JLF (2014) Studies in aerodynamic optimiza-
tion based on genetic algorithms. J Aircr 51(3):1002–1012

Baysal O, Ghayour K (2001) Continuous adjoint sensitivities for
optimization with general cost functionals on unstructured
meshes. AIAA J 39(1):48–55

Brezillon J, Gauger NR (2004) 2D And 3D aerodynamic shape
optimisation using the adjoint approach. Aerosp Sci Technol
8:715–727

Bochev PB, Gunzburger MD (2009) Least-squares finite element
methods. Springer, New York

Carpentieri G, Koren B, van Tooren MJL (2007) Adjoint-based
aerodynamic shape optimization on unstructured meshes. J
Comput Phys 224:267–287

Elham A, La Rocca G, van Tooren MJL (2013) Development and
implementation of an advanced, design-sensitive method for wing
weight estimation. Aerosp Sci Technol 29:100–113

Elham A, van Tooren MJL (2016) Coupled adjoint aerostructural wing
optimization using quasi-three-dimensional aerodynamic analysis.
Struct Multidiscip Optim 54:889–906

Elham A, van Tooren MJL (2014) Weight indexing for wing-shape
multi-objective optimization. AIAA J 52(2):320–337

Farrell PE, Ham DA, Funke S, Rognes M (2012) Automated derivation
of the adjoint of high-level transient finite element programs.
SIAM J Sci Comput 35(4)

Gill P, Murray W, Saunders M (2005) SNOPT: an SQP algorithm
for large-scale constrained optimization. SIAM Rev 47(1):99–
131

Grienwank A, Walther A (2008) Evaluating drivatives, principles and
techniques of algorithmic differentiation. SIAM

Hovland P, Mohammadi B, Bischof C (1998) Automatic differenti-
ation of Navier-Stokes computations, computational methods for
optimal design and control. Boston 265–284

2550

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/

Discrete adjoint aerodynamic shape optimization using symbolic analysis with OpenFEMflow

Jiang BN (1998) The least squares finite element methods, theory and
applications in computational fluid dynamics and electromagnet-
ics. Springer

Jiang BN, Carey GF (1990) Least-squares finite element methods
for compresible euler equations. Int J Numer Methods Fluids
10:557–568

Kenway GKW, Mader CA, He P, Martins JRRA (2019) Effective
adjoint approaches for computational fluid dynamics. Prog Aerosp
Sci 110

Korelc J, Wriggers P (2016) Automation of finite element methods.
Springer

Krishnamoorthy CS (1994) Finite element analysis, theory and
programming, 2nd edn. McGraw Hill Education, New Delhi

Kulfan B (2008) Universal parametric geometry representation
method. J Aircr 45(1):142–158

Lefebvre D, Peraire J, Morgan K (1993) Finite elmenet least squares
solution of the euler equatsions using linear and quadratic
approximations. Int J Comput Fluid Dyn 1:1–23

Mader CA, Martins JRRA, Alonso JJ, van der Weide E (2008)
ADjoint: an approach for the rapid development of discrete adjoint
solvers. AIAA J 46(4):863–873

Mariens J, Elham A, van Tooren MJL (2014) Quasi three-dimensional
aerodynamic solver for multidisciplinary design optimization of
lifting surfaces. J Aircr 51(2):547–558

Martins JRRA, Hwang JT (2013) Review and unification of methods
for computing derivatives of multidisciplinary computational
models. AIAA J 51(11):2582–2598

Nocedal J, Wright S (2006) Numerical optimization. Springer
Palacios F, Economon TD, Wendorf AD, Alonso JJ (2015) Large-

scale aircraft design using SU2. 53rd AIAA Aerospace Sciences
Meeting, Kissimmee, Florida, USA

Reddy JN, Gartling DK (2001) The finite element method in heat
transfer and fluid dynamics. CRC Press, Boca Raton

Sederberg TW, Parry SR (1986) Free-Form Deformation of solid
geometric models. In: Proceedings of SIGGRAPH ’86, computer
graphics, vol 20, pp 151–160

Viviand H (1985) Numerical solutions of two-dimensional reference
test cases, in test cases for inviscid flow field methods AGARD-
AR-211

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

2551

	Discrete adjoint aerodynamic shape optimization using symbolic analysis with OpenFEMflow
	Abstract
	Introduction
	Aerodynamic shape optimization
	Flow modelling and numerical analysis method
	Solving the nonlinear system of equations
	Mesh deformation
	Adjoint method for sensitivity analysis
	Validation
	Mesh adaptation
	Airfoil optimization
	Build-in optimization algorithm
	Executing the OpenFEMflow code
	Conclusions
	Appendix A
	Appendix
	Compliance with ethical standards
	References

