
 
A generalised machine learning model based on multi-nomial logistic 

regression and frequency features for rolling bearing fault 

classification 
 

Amirmasoud Kiakojouri 

National Centre for Advanced Tribology at Southampton (nCATS), School of 

Engineering, University of Southampton, SO17 1BJ, Southampton, UK. 

E-mail: Amirmasoud.kiakojouri@soton.ac.uk 

 

Zudi Lu 

Southampton Statistical Sciences Research Institute (S3RI), School of Mathematical 

Sciences, University of Southampton, SO17 1BJ, Southampton, UK. 
 

Patrick Mirring 

Schaeffler Technologies AG & Co. KG, Georg-Schaefer-Str. 30, 97421 Schweinfurt, 

Germany. 

 

Honor Powrie 

GE Aviation, School Lane, Chandlers Ford, SO53 4YG, UK. 
 

Ling Wang 

National Centre for Advanced Tribology at Southampton (nCATS), School of 

Engineering, University of Southampton, SO17 1BJ, Southampton, UK. 

 

Abstract 

Intelligent fault classification of rolling element bearings (REBs) using machine 

learning (ML) techniques increases the reliability of industrial assets. One of the main 

issues associated with ML model development is the lack of training data and most 

importantly the ability of models to be used for applications without specific training data, 

i.e., generalization capability of models. This study investigates the feasibility of using 

multinomial logistic regression (MLR) as generalised ML models for rolling element 

bearing fault classification without the requirement of training data for new bearing 

designs and varied machine operations. This has been achieved by using bearing 

characteristic frequencies (BCFs) as inputs to the MLR models extracted by a newly 

developed hybrid method. The new method combines cepstrum pre-whitening (CPW) 

and full-band enveloping , which can effectively identify the BCFs in vibration data from 

various machines. This paper presents the methods of the feature extraction and the 

development of generalised ML models for REBs based on data from EU Clean Sky2 

I2BS project1. This model is then validated by data from Case Western Reserve 

University (CWRU) and US Society for Machinery Failure Prevention Technology 

(MFPT) available in the public domain without further training.  

 
1 An EU Clean Sky 2 project ‘Integrated Intelligent Bearing Systems’ collaborated between 

Schaeffler Technologies and the University of Southampton. Safran Aero Engines was the topic 

manager for this project.  
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1. Introduction 

In modern rotating machinery, rolling element bearings (REBs) are one of the 

most critical components since they are often subjected to harsh operating conditions, 

such as high loads, high speeds, and high temperature in aero-engines. Over time, faults 

develop in bearings, leading to increased clearance, friction torque, overheating, etc. thus 

their performance drops [1]. Fault diagnosis plays a significant role in identifying faulty 

bearings and components in complex machinery as well as finding causes and 

relationships between monitoring data and the health of REBs. While engineers with vast 

knowledge and skills carry out majority of diagnosis on-site, health monitoring based on 

sensors and effective signal processing techniques can, not only reduce the dependence 

on engineers on-site measurements, but also significanly increase the diagnosis accuracy 

in real time, thus reduce maintenance cost and increase machine reliability and useful life. 

With the help of machine learning (ML) techniques and artificial intelligence (AI), fault 

diagnosis can be futher automated without relying on human intervention [2].  

By employing suitable features extracted from signals, a ML method, such as 

artificial neural networks (ANNs), multi-nomial logistic regression (MLR), and support 

vector machines (SVMs) [3], can be used for fault diagnosis by conducting a pattern 

recognition task. The effectiveness of bearing fault diagnosis is found to be heavily 

influenced by the quality of features extracted from bearing vibration signals [4], [5]. For 

example, time-domain statistical features such as mean, root mean square (rms), kurtonsis 

and skewness data, are one of the mostly used input features for ML model development 

for bearing fault diagnosis. Since many factors such as changing in working conditions, 

noise in the surrounding environment, and unexpected compound failures in the machine 

can change the distribution of the features, thus significantly affect the effectiveness of 

fault diaganosis. It remains the biggest challenge to achieve high-accuracy bearing fault 

diagnosis in real industrial applications [6]. One of the challenges in bearing fault 

diagnosis using ML methods is the lack of training data from real engineering 

applications. Current ML based fault diagnosis approaches rely on data collected from 

same machine under same operating conditions for model training, validataion and testing 

[7], which sgnificantly limts the application of ML for bearing fault diagnosis in real-

world applications. Developing ML models with generalisation funcationality, e.g. 

models trained by laboratory data can be directly used for real applications without further 

training, will make a revolutionary change in this field. 

In an REB with a fault in one or more of its components, e.g. the outer race (OR), 

inner race (IR) or rolling elements, shocks are generated as a result of the localised fault, 

which excites high-frequency resonances of the entire structure containing the bearing 

including the vibration sensor. These shocks cause periodic impulsive features appearing 

in time-domain vibration signals, as well as the corresponding bearing characteristic 

frequencies (BCFs1) in their frequency spectra. While BCFs, if detected, are extremely 

powerful in fault diagnosis, they typically contain relatively low vibration energy 

comparing with other sources of vibrations in a machine, especially when the local fault 

 
1 BCFs include ballpass frequency outer race (BPFO), ballpass frequency inner race (BPFI), ball 

spin frequency (BSF), and fundamental train frequency (FTF) 
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is at its early stage. High-Frequency Resonance Technique (HFRT), also known as 

envelope analysis, is one of the well-known techniques to detect BCFs [8]. However, 

HFRT has a fatal issue that limits its application as it requires accurately determining a 

suitable band filter around a resonance frequency. This is extremely challenging as the 

best suitable filter can change instantenously depending on machine operation [9]. To 

tackle this issue, several signal processing techniques have been developed, such as 

wavelet transforms (WTs), empirical mode decomposition (EMD), spectral kurtosis (SK), 

CPW, active noise cancelation (ANC) [10], [11], which all have some issues 

unfortunately [12]. In this study, the new developed hybrid technique based on the 

cepstrum pre-whitening (CPW) and full band envelope is used to extract BCFs from 

envelope spectra [12] as features for ML model development for REB fault classification.  

In literature, many ML methods have been used for REB fault classification, and 

selecting an appropriate ML algorithm is also paramount. MLR as a statistical model can 

analyse a large number of samples based on their probability distribution that have been 

widely used to solve multiclass problems by evaluating the significance of each input 

feature. Moreover, it can achieve better accuracy than ANN and SVM without 

hyperparameter optimization or kernel function selection in similar situations [13], [14]. 

Therefore, MLR has been chosen for REB fault classification in this study. 

Next section introduces the method of BCFs extraction, the mathematical concept 

of MLR and the architecture of the proposed model. Section 3. introduces the 

experimental datasets used for training and testing of the model for bearing fault 

classification. In section 4. , the proposed model is trained by experimental data obtained 

in I2BS subscale tests and then its generalisation capability is tested by CWRU and MFPT 

datasets in literature. The effectiveness of the input features using the novel hybrid 

method is compared with that using time-domain statistical features. Section 5. presents 

the conclusions of this study. 

2. Methodology 

2.1. Feature extraction 

In this research, BCFs have been chosen as input features for the intelligent fault 

classification model. Actual values of BCFs usually differ from the theoretical values due 

to uncontrollable slipage occurring in rolling element bearings and minor shaft rotating 

speed fluctuations during machine operation [15]. To accuractely identify BCFs as inputs 

to MLP models, the following steps are taken [12]:  

A. Obtaining shaft orders by dividing the frequency values by shaft rotating speed 

and ploting the bearing vibration amplitude vs order spectra. BCFs will appear as 

shaft orders instead of frequencies in Hz. This reduces the changes in BCFs due 

to potenatial shaft rotaing speed fluctuations. 

B. Find the first harmonic of the actual BCFs based on their theoretical values. For 

instance, to find the actual value of the 1st harmonic of ball pass frequency of 

outer ring (BPFO), the first order of BPFO using theoretical formula is calculated. 

Then, peaks within the order band of (14%)BPFO (the 4 % value is an empirical 

selection based on experience similar to other studies in literature [ref?]) are 

inspected and the maximum amplitude peak is identified as the actual value for 

the first order harmonic of the BPFO. Next, multiply the actual BPFO order by 

two and three as the ‘calculated’ second and third order harmonics of the BPFO 
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respectively to find the actual ones. For the second and third harmonics, peaks in 

the bands of (12 % ) of the second and third calculated order harmonics are 

evaluated and the largest amplitudes are identified as the actual second and third 

order harmonics of  BPFO. 

C. For ball spin frequencys (BSFs), since they may only appear to have even 

harmonics (or both), up to six order harmonics of BSFs are identified following 

the same procedure described above. Then, sumations of adjacent two harmonics 

are conducted to produce three values that match the three array inputs to MLR. 

D. For ball pass frequencies of inner ring (BPFIs), in addition to its three order 

harmonics, two pairs of its sidebands (SBs) for each of its order harmonics are 

also identified. Smilarly, two pairs of sidebands of BSFs are identified. 

E. All values identified above are extracted features to be used in the input vector for 

the MLR model. As a result, 33 features are extracted from each vibration sample 

for the model development and fault classification. 

2.2. Theoretical background of MLR 

Logistic regression (LR) model is a generalized linear model that uses logistic 

curve modelling to fit the probabilistic occurrence of an event. In this case, the probability 

𝑝 of a binary outcome event is related to a set of explanatory variables in the form of 

Equation 1. 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑛(
𝑝

1 − 𝑝
) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛 = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑛

𝑖=1

 Equation 1 

where 𝛽0 is the intercept and 𝛽1, 𝛽2, 𝛽3, … , 𝛽𝑛 are the coefficients corresponding to the 

explanatory variables 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 (i.e. the vibration features in this study) 

respectively [16]. In MLR, with a slight modification for multi-class problems, if there 

are 𝑛 variables with 𝑘 categories or classes, all logits are constructed based on one 

category as the base level. The base level can be taken from any available category. So,the 

𝑘𝑡ℎ class will be used as the base level. Since there is no order, any category may be 

labelled as 𝑘. To find the relationship between an observation's probability to fall into the 

𝑗𝑡ℎ relative to kth category, the MLR model could be written as Equation 2 or Equation 3. 

𝑙𝑜𝑔 [
𝑝𝑗
𝑝𝑘
] = 𝛽𝑗0 + 𝛽𝑗1𝑥1 + 𝛽𝑗2𝑥2 +⋯+ 𝛽𝑗𝑛𝑥𝑛 Equation 2 

𝑝𝑗 = 𝑝𝑘 ∗ 𝑒𝑥𝑝(𝛽𝑗0 + 𝛽𝑗1𝑥1 + 𝛽𝑗2𝑥2 +⋯+ 𝛽𝑗𝑛𝑥𝑛) Equation 3 

Moreover, as shown in Equation 4, the sum of all categories' probabilities equals one.  

𝑝1 + 𝑝2 +⋯+ 𝑝𝑗 +⋯+ 𝑝𝑘 = 1 Equation 4 

Deriving Equation 3 for all of the categories and combining with Equation 4, the 

probability of the category 𝑘 could be obtained using Equation 5. 

𝑝𝑘 =
1

1+∑ exp(𝛽𝑗0+𝛽𝑗1𝑥1+𝛽𝑗2𝑥2+⋯+𝛽𝑗𝑛𝑥𝑛)
𝑘−1
𝑗=1

  Equation 5 
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Using Equation 3 and Equation 5, the probability of each category such as category 𝑗, 
could be written as Equation 6. For training MLR models, maximum likelihood technique 

is used to choose the appropriate 𝛽 parameters for the model [17], with the probability 

for the 𝑗𝑡ℎ category. 

𝑝𝑗 =
𝑒𝑥𝑝(𝛽𝑗0+𝛽𝑗1𝑥1+𝛽𝑗2𝑥2+⋯+𝛽𝑗𝑛𝑥𝑛)

1+∑ 𝑒𝑥𝑝(𝛽𝑗0+𝛽𝑗1𝑥1+𝛽𝑗2𝑥2+⋯+𝛽𝑗𝑛𝑥𝑛)
𝑘−1
𝑗=1

 ; 𝑗 = 1,2,… , 𝑘 − 1  Equation 6 

2.3. MLR model development for REB fault classification 

To develop an MLR model for REB fault classification, vibration data from I2BS 

project [18] has been used to train and validate the model. Once a satisfactory prediction 

is achieved, the model is then tested by data from literature (CWRU [19] and MFPT [20]) 

to check if it can classify faults in different bearing designs under completely different 

test conditions, i.e. its generalisation capability. The model development procedure is 

illustrated in Figure 1.  

During MLR training, the coefficient of each feature is analysed by statistical 

inference to determine its significance. Effective features for the model are selected based 

on their probability value (𝑝_𝑣𝑎𝑙𝑢𝑒). The lower the 𝑝_𝑣𝑎𝑙𝑢𝑒, the more significance the 

feature is for the model.  

 
Figure 1: The procedure of the MLR model 

development. 
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3. The datasets 

Developing an MLR model that can classify faults in completely different REBs 

under different operating conditions requires training and evaluating datasets as well as 

testing datasets. In this study, three datasets from three completely different studies with 

different REB sizes being tested under different load and speed conditions on different 

machines. The model training used dataset from I2BS sub-scale testing, where defects 

have been seeded on bearing components and tested under a wide range of conditions 

[12], [21], [22]. The CWRU dataset in the public domain, which has been widely used 

for REB fault classification in many studies [19], has been used to test the MLR without 

further training. Similarly, the generalisation capability of the MLR model is tested by a 

third set of data from MFPT database [23]. Details of these datasets are given in the 

sections below.  

3.1. I2BS sub-scale dataset 

I2BS experiments were conducted on bearing test data from an EU Clean Sky 2 Joint 

Undertaking under the European Union’s Horizon 2020 research and innovation 

programme. A sub-scale test rig was used to test smart bearings which are 3-point contact 

ball bearings with multiple sensors under simulated aero-engine REB working conditions 

to develop intelligent condition monitoring for REBs [22]. There are 387 vibration signals 

for outer ring (OR) fault, 361 signals for inner ring (IR) fault, and 189 signals for ball 

fault with a sampling rate of 100 kHz in these tests. Table 1 shows the details of the 

bearings, defects and corresponding test conditions selected for this study.  

Table 1: I2BS sub-scale bearing information1 and data details for training 

𝐃𝐩𝐢𝐭𝐜𝐡,mm 𝐃𝐛𝐚𝐥𝐥, mm 𝐙 ∅, deg 𝐟𝐬𝐡𝐚𝐟𝐭, rpm 𝐀𝐱𝐢𝐚𝐥𝐥𝐨𝐚𝐝, kN 𝐃𝐞𝐟𝐞𝐜𝐭𝐝𝐢𝐚𝐦𝐞𝐭𝐞𝐫,mm 

75 9.525 20 15 5000, 10000, 14000 1, 2.5, 9 0.4 

3.2. CWRU dataset 

The CWRU vibration data were collected from a test rig that includes a 1.5 kW 

electrical motor, torque meter, and dynamometer. Drive-end vibration samples of the 

bearing data centre of CWRU have been used to test the MLR bearing fault classification 

model. The bearings used in the motor are deep groove ball bearings. There are 140 

signals for OR fault, 64 signals for OR fault, and 64 signals for ball fault that were 

sampled at 12 kHz and 48 kHz in this experiment [19]. Details of the bearings and the 

test conditions are given in Table 2. 

Table 2: Bearing dimensions and test conditions of CWRU dataset 

𝐃𝐩𝐢𝐭𝐜𝐡,mm 𝐃𝐛𝐚𝐥𝐥,mm 𝐙 ∅, deg 𝐟𝐬𝐡𝐚𝐟𝐭rpm 𝐃𝐞𝐟𝐞𝐜𝐭𝐝𝐢𝐚𝐦𝐞𝐭𝐞𝐫,mm 

44 8.2 9 0 1720 − 1797 0.177, 0.355, 0.533 

3.3. MFPT dataset 

The MFPT dataset was obtained from bearing tests on deep groove bearings with 

defects on the IR and OR under various loads from 0 to 1.34 kN. In this dataset, there are 

39 vibration samples for the OR fault and 21 vibration samples for the IR fault with a 

 
1 Dpitch: Pitch diameter, Dball: Ball diameter, 𝑍: Number of the ball, ∅: Contact angle 



 
7 

sampling rate of 48.828 kHz and 97.656 kHz [23]. The details of the bearings and test 

conditions are shown in Table 3. 

 

Table 3: Bearing dimensions and test condition of the MFPT experiments 

𝐃𝐩𝐢𝐭𝐜𝐡,mm 𝐃𝐛𝐚𝐥𝐥, mm 𝐙 ∅, deg 𝐟𝐬𝐡𝐚𝐟𝐭, rpm 𝐥𝐨𝐚𝐝, kN 

31.62 5.97 8 0 1500 0.22, 0.44, 0.66, 0.88, 1.11, 1.33 

4. REB fault classification using a generalised MLR model 

4.1. Model training 

The I2BS sub-scale dataset has been used to find the optimum coefficients for an 

MLR model using maximum likelihood estimation through training. In this step, feature 

vectors have been analysed by 𝑝_𝑣𝑎𝑙𝑢𝑒𝑠 of the corresponding coefficients. Considering 

𝑝_𝑣𝑎𝑙𝑢𝑒𝑠 ≤ 0.05 (i.e., 95 % of confidence level), three harmonics and a pair of SB for 

all three BCFs are found to be significant features for the fault classification. The training 

results are shown by a confusion matrix in Table 4. As it is seen, all training samples have 

been classified correctly. In other words, the training accuracy is 100 %. 

Table 4: Confusion matrix of the training 

data by I2BS sub-scale dataset 

 OR IR Ball 

OR 387 0 0 

IR 0 361 0 

Ball 0 0 189 

4.2. The generalisation capability of the MLR model 

4.2.1. Tested by CWRU dataset 

To analyse the generalistion capability of the MLR trained by I2BS dataset, it is 

firstly tested by the CWRU dataset. In comparison to the training dataset, CWRU used a 

different REB type and size under completely different working conditions (see details in 

Tables 1&2). The test results are summarised in Table 5. It can be seen that some samples 

have been classified inaccurately and the overall classification accuracy is 82.8%. 

Among the three classes of defects, ball fault samples have more misclassifications, 

where 23 samples of ball faults were classified as OR or IR faults.  

In a comprehensive study on bearing fault classification by Randall et al. using 

the same datasets with  different signal processing techniques as well as  manually 

analyses of the spectra [24], many of the samples were identified as ‘not diagnosable’ due 
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to problems related to the test rig. The CWRU samples were then put into three categories, 

including diagnoseable, partial diagnoseable, and not diagnoseable samples.  

To evaluate the fault diagnosis effectiveness of the MLR model, the results from 

Randall’s study are compared with that achieved in this study. Randall’s study showed 

that 61.1% and 73.5% of the samples are diagnoseable and both diagnosable and partial 

diagnoseable respectively, while the MLR model is able to correctly classify faults of  

82.8% of the samples. Furthermore, when choosing the ‘diagnoseable samples' identified 

by Randall’s work, a 100% accuracy is achieved using the MLR model as shown in Table 

6. 

 

Table 5: Confusion matrix of test results by 

all of the samples of CWRU dataset. 

 OR IR Ball 

OR 127 3 10 

IR 4 54 6 

Ball 13 10 41 

 

Table 6: Confusion matrix of test results by 

diagnoseable samples of CWRU dataset. 
 

 OR IR Ball 

OR 117 0 0 

IR 0 45 0 

Ball 0 0 5 

 

4.2.2. MFPT 

To further test the MLR model, the MFPT dataset is fed to the model. Despite the 

differences between the operating conditions and REB size of this dataset with the 

training data (details are shown in Tables 1&3), all cases have been accurately classified 

(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100%). The confusion matrix of the test results is illustrated in Table 7.  

 

Table 7: Confusion matrix of test results of 

the samples of MFPT dataset. 

 OR IR Ball 

OR 39 0 0 

IR 0 21 0 



 
9 

Ball 0 0 0 

 

4.3. A comparison with using statistical time-domain features  

In order to further evaluate the effectiveness and robustness of the new method, 

especially the BCF features extracted using the novel hybrid method, similar study is 

conducted by using time-domain statistical features as the inputs for MLR training and 

testing . The input vector contains RMS, shape factor, crest factor, impulse factor, margin 

factor, kurtosis, peak to peak, skewness, and rectified skewness [25], [26] similar to many 

other studies. To analyse the effect of operating conditions, shaft speed is added to the 

statistical feature vectors. Analysis of 𝑝_𝑣𝑎𝑙𝑢𝑒 is performed following the same process 

described in 4.1 to determine the most effective features and datasets from CWRU and 

MFPT have then been used to test the model. Table 8 summarises the results. As it is 

clearly shown, while the training accuracy using the statistical features of 98.71 is close 

to that of the BCFs and SBs, the testing accuracties are significantlty lower when using 

the time-domain features.  

Table 8: A comparison of the model accuracies when using the frequency features (BCFs and 

SBs) and statistical time-domain features 

 Statistical features BCFs and SBs 

Training by I2BS sub-scale 98.71 100 

Testing by all CWRU samples 31.34 82.8 

Testing by diagnoseable CWRU samples 34.13 100 

Testing MFPT samples 68.33 100 

5. Conclusion 

An MLR model based on BCFs and SBs features, extracted by a novel hybrid 

method, has been developed for REB fault classification. While the model has been 

trained using the I2BS test data, it can also successfully classify bearing faults in other 

datasets obtained from completely different studies. This is for the first time that an ML 

based model with generalisation capabilities has been developed. 

Ininially, BCFs and SBs are identified from the frequency spectra extracted by a 

new hybrid method based on the CPW and full-band envelope methods. They then are 

used as inputs to train MLR models for REB fault classification. While the model training 

has been conducted using the I2BS test data, and 100% training accuracy is achieved, its 

high generalisation capability has been demonstrated by using two completely different 

datasets from literature, i.e. CWRU and MFPT. Without further training being required, 

the MLR model has achieved 82.8% and 100% classification accuracies for the CWRU 

and MFPT data respectively, which are much higher than those achieved by other studies. 

Comparing with using time-domain statistical input features, the BCFs and SBs extracted 

by the noval hybrid method can achieve far better accuracies for both training and testing, 

i.e. higher generalisation capability of the MLR model. 
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The newly developed MLR model presents a powerful tool that has the potential 

to be used for general REB fault diagnosis without further training, i.e. being used in real 

industrial applications without the requirments for training data. During the development 

of this model, vibration signals have been collected at relatively high sampling rates to 

enable to spectral analysis, which might limit the application of the MLR model 

developed. Further study is being carried out to evaluate the optimum sampling rates for 

bearing fault detection as well as using other ML models for intelligent bearing fault 

detection and diagnosis. 
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