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A B S T R A C T   

The Covid-19 pandemic has highlighted the value of strong surveillance systems in supporting our abilities to 
respond rapidly and effectively in mitigating the impacts of infectious diseases. A cornerstone of such systems is 
basic subnational scale data on populations and their demographics, which enable the scale of outbreaks to be 
assessed, risk to specific groups to be determined and appropriate interventions to be designed. Ongoing 
weaknesses and gaps in such data have however been highlighted by the pandemic. These can include outdated 
or inaccurate census data and a lack of administrative and registry systems to update numbers, particularly in 
low and middle income settings. Efforts to design and implement globally consistent geospatial modelling 
methods for the production of small area demographic data that can be flexibly integrated into health-focussed 
surveillance and information systems have been made, but these often remain based on outdated population data 
or uncertain projections. In recent years, efforts have been made to capitalise on advances in computing power, 
satellite imagery and new forms of digital data to construct methods for estimating small area population dis
tributions across national and regional scales in the absence of full enumeration. These are starting to be used to 
complement more traditional data collection approaches, especially in the delivery of health interventions, but 
barriers remain to their widespread adoption and use in disease surveillance and response. Here an overview of 
these approaches is presented, together with discussion of future directions and needs.   

1. The value of small area demographic data for effective disease 
surveillance 

The Covid-19 pandemic has shone a spotlight on the importance of 
comprehensive, timely and accurate health surveillance and information 
systems for mitigating the impact of infectious diseases. Integrated 
systems that brought together timely data on cases, healthcare uti
lisation and deaths at small area scales, together with reliable data on 
underlying demographics, enabled rapid and accurate identification of 
outbreaks, key risk groups, scales of transmission and spread routes. 
These all facilitated the appropriate design of interventions and miti
gation of impacts. Building such systems in the midst of a pandemic is 
challenging though and requires building upon existing routine systems 
and data collection. The Covid-19 pandemic exposed how many coun
tries did not have such strong systems and underlying data in place 
(Aborode et al., 2021; Ibrahim, 2020). 

Key challenges in disease surveillance and the achievement of ‘pre
cision’ in public health, include the registration of births and deaths and 
tracking disease (Dowell et al., 2016). These are impacted in multiple 
ways by weaknesses in underlying demographic data. In terms of birth 
and death registration, it is hard to know whether a national deworming 
programme for children in one country or a vaccination programme for 

pertussis in another is reducing mortality when less than 5 % of deaths 
are registered. However, even if 100 % of deaths are registered, it re
mains challenging to both implement the programmes and place the 
numbers of deaths in context without reliable multi-temporal, dis
aggregated data on population numbers and distributions, particularly 
when seasonal dynamics are strong and highly mobile population 
groups exist (Bharti et al., 2011; Buckee et al., 2017; Wesolowski et al., 
2017). Careful surveillance can guide public health in a country and 
track disease outbreaks that could spread beyond borders (Dowell et al., 
2016). Improving detection and measurement of the numerator without 
attention to the denominator however risks providing an inaccurate 
picture. Analyses in Namibia showed that improved quantification of 
denominator populations changed malaria incidence measures by more 
than 30 % (Zu Erbach-Schoenberg et al., 2016). Moreover, by pairing 
just a small number of physical autopsies with verbal autopsies on the 
same deaths, the much larger number of verbal autopsies can be cali
brated - but the verbal autopsy data are often drawn from surveys built 
on static and outdated sample frames (Carr-Hill, 2013; Thomson et al., 
2020) and again it remains challenging to place outputs in context in 
settings where denominators are uncertain and populations are mobile. 
The reliance on static and aging figures for denominators leads to the 
common occurrence of 200 % vaccination rates, or incidence measures 
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fluctuating by season where population mobility is high (Cutts et al., 
2021). 

The collection and maintenance of timely and accurate small area 
data on population distributions, demographics and dynamics repre
sents a challenge across the World. In many countries, Covid has 
exposed a lack of registry systems for recording cases and deaths, but 
also a lack of reliable data on denominators. Moreover, Covid itself has 
disrupted the improvement of this situation. Seventy-three percent of 
NSOs had a Population and Housing Census planned in 2020 or 2021 
before the pandemic hit (Contreras-Gonzalez et al., 2020; UNFPA, 
2020a). In the low and lower-middle income group, 68 % of the NSOs 
that were planning a census had to postpone it (United Nations and 
World Bank, 2020). 

The value of small area demographic data remain clear and the 
Covid-19 pandemic demonstrated key applications of modelled geo
spatial datasets. They formed the demographic basis for some of the 
most high profile and influential Covid transmission models used to 
guide policy (Imperial College, 2022; Institute for Health Metrics and 
Evaluation, 2022), and are now built into health information system 
software (University of Oslo, 2022). They were also used in the con
struction of microplans for the delivery of covid vaccines and in reacting 
and assessing responses to outbreak and mitigation measures (e.g. 
GRID3, 2021a; Shepherd et al., 2021). These applications demonstrate a 
growing acceptance and use of modelled population datasets built upon 
geospatial data from satellite imagery, GPS mapping and mobile data to 
fill gaps in small area demographic data availability. Nevertheless, the 
construction of such datasets remains an area of research, with sub
stantial uncertainties remaining and differing inputs and approaches 
leading to large variations in output estimates. 

2. Modelled small area population estimates 

Ideally, every country would have systems such as those in Nordic 
countries, where integrated registries and administrative data collection 
systems enable the production of timely small area data on population 
distributions and demographics, without the need for costly decennial 
national population and housing censuses (UNECE, 2018). While more 
countries move towards developing such systems, many are far behind, 
with the implementation of a national census every ten years still 
remaining a challenge. Even where these are implemented in a robust 
and rigorous way, demographic changes during intercensal periods can 
make the data rapidly outdated, particularly at small area scales where 
changes are harder to forecast. In some countries, registry and admin
istrative systems can fill these gaps, but these can often be incomplete 
and inaccurate, especially in many low income settings. Spatial model
ling approaches that aim to address some of these challenges through 
use of satellite imagery and other geospatial data to capture small area 
changes occurring over relatively short timescales compares to the 
decennial census have therefore become more prominent in recent de
cades (UNFPA, 2020b). 

In the absence of publicly available small area data from census 
where it may be too sensitive to share, or in the absence of consistent 
data between countries and across continents, or in the absence of any 
recent and reliable data at all, spatial modelling approaches aim to fill 
gaps. Since the 1990 s (Tobler et al., 1997), a major focus has been on 
so-called ‘top-down’ disaggregation, whereby large area census data, or 
projections matched to relevant administrative/enumeration bound
aries are disaggregated to grid squares, maintaining counts at original 
units and estimating distributions within these units (Leyk et al., 2019). 
The ongoing global assembly of such unit-based count data (Center for 
International Earth Science Information Network - CIESIN - Columbia 
University, 2018a) has meant that different approaches to disaggrega
tion have been explored and applied over recent years. These have been 
driven by the availability of settlement maps, relevant geospatial 
covariates and computing power among other factors, as well as inten
ded user needs. Some have maintained the simplicity of simply 

spreading available population data equally over a grid, some have 
allocated population counts to mapped settlements, while others have 
built more complex models that use a set of geospatial covariates to try 
and capture variations within settlements and across countries (Leyk 
et al., 2019). 

The variety of ‘top down’ modelling approaches results in differing 
disaggregations of the same aggregate population count data. Using the 
example of the five most westerly provinces of the Democratic Republic 
of the Congo (DRC) that encompass Kinshasa and its surrounding region,  
Fig. 1 highlights how different a selection of commonly used open model 
estimates can be at the scale of health zones. These will in turn result in 
differing surveillance indicators, denominators for health metrics (Nil
sen et al., 2021), and target populations for interventions. Fig. 2a-d 
shows the relative patterns of estimated population distributions in each 
dataset at the grid square scale for Kinshasa and its immediate sur
rounding area with health area boundaries overlaid. While DRC repre
sents an extreme example, having not conducted a national census since 
1984, and the population estimates input to the models are for large 
administrative units, the figures highlight how variations in top-down 
modelling methods can result in substantial differences in predictions. 
An obvious question when presented with such differing estimates of 
population distribution is ‘which is right?’. This is often a challenge to 
assess, as where detailed, recent population data exist, often it is the 
input to the models, leaving a lack of independent data to compare 
against. Studies using detailed census data (Bustos et al., 2020; Chen 
et al., 2020; Fries et al., 2021; Yin et al., 2021), as well as 
cross-validation (Reed et al., 2018; Stevens et al., 2015, 2020) have tried 
to assess how well different models replicate population numbers and 
distributions at the scale of available data, and unsurprisingly those 
more complex models using detailed settlement mapping and range of 
covariates tend to do best. However, multiple trade-offs exist in the 
production of such datasets that depend on aspects such as input data 
availability, geographical extent, temporal range, spatial resolution, 
intended use and user needs. For instance, a more complex model may 
produce more accurate outputs, but the production process can be more 
challenging to communicate to users. A dataset that estimates popula
tion distributions over multiple years will necessarily have to compro
mise on the quality and amount of data for older time periods, and a high 
spatial resolution dataset can be more difficult to process and incorpo
rate into surveillance systems than a coarser scale one. 

A bigger issue than whether one model or another more accurately 
distributes the population counts from administrative unit to grid square 
scale, is the fact that the population counts themselves can be inaccu
rate. The age, scale, type and quality of input population count data 
being disaggregated within top-down models is information that has 
often been poorly communicated, understood and addressed. While 
gridded outputs therefore tend to look similar between countries, there 
can be substantial variations in the accuracy of population estimates. 
The differences between the DRC and nearby Malawi are illustrative, 
with input population count data for DRC coming from uncertain pro
jections from the 1984 census and an average unit size of 12,476 km2, 
while the data for Malawi come from their 2018 census, with an average 
unit size of just 9.4 km2. In these two settings, the choice of modelling 
approach has a significantly larger impact for the DRC where population 
counts for massively larger units are being disaggregated to the same 
size grid squares. Nevertheless, as highlighted above, even in settings 
with high quality regular censuses with data available mapped to small 
units, the processes of migration, displacement, urbanization and het
erogeneous fertility and mortality can make these data quickly outdated 
and are hard to accurately forecast at small area scales (Wilson et al., 
2021), resulting in potentially major impacts on reliable surveillance 
and health metrics (Tatem, 2014). 

The issues outlined above have lead to the rise of census-independent 
small area population estimation methods (Francoise, 1990; Harvey, 
2002; Hillson et al., 2015; Leasure et al., 2020; Wardrop et al., 2018; 
Weber et al., 2018). These ‘bottom-up’ modelling methods typically rely 
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Fig. 1. Maps for the region encompassing the five most westerly provinces of the Democratic Republic of the Congo (Kinshasa, Kongo-Central, Kwango, Kwilu, and 
Mai-Ndombe, as shown in (a)), showing proportions of the total population of the region estimated to be in each health zone for a set of commonly used open gridded 
population datasets: (b) Gridded Population of the World version 4 (GPWv4) (Center for International Earth Science Information Network - CIESIN - Columbia 
University, 2018b), (c) GHS Population grid (Florczyk et al., 2019), (d) Meta Data for Good High resolution population density maps (Meta Data for Good, 2022), (e) 
WorldPop global constrained top down estimates (Bondarenko et al., 2020), (f) WorldPop/GRID3 bottom up population estimates (Boo et al., 2020). 
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Fig. 2. Gridded population estimates from the same datasets as Fig. 1 for Kinshasa and surrounding area in the Democratic Republic of the Congo, with health areas 
overlaid. The extent of the area shown is highlighted in the black box in Fig. 1(a). Each dataset has been displayed using a scale of 20 quantiles within the area shown 
to highlight the inherent population distribution patterns. (a) Gridded Population of the World version 4 (GPWv4) (Center for International Earth Science Infor
mation Network - CIESIN - Columbia University, 2018b), (b) GHS Population grid (Florczyk et al., 2019), (c) Meta Data for Good High resolution population density 
maps (Meta Data for Good, 2022), (d) WorldPop global constrained top down estimates (Bondarenko et al., 2020), (e) WorldPop/GRID3 bottom up population 
estimates (Boo et al., 2020), (f) uncertainty of WorldPop/GRID3 bottom up population estimates, measured as the difference between the upper and lower 95 % 
credible intervals of the posterior prediction divided by the mean of the posterior prediction. 
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on complete counts of population within small defined areas that can 
come from bespoke field surveys, listings from household surveys, or the 
results of rolling or partial censuses. Statistical models are then used to 
link these enumeration data to spatial covariate data, with full coverage 
over the regions of interest to predict population numbers in unsampled 
locations (UNFPA, 2020b; Wardrop et al., 2018). Often these are 
Bayesian models that produce full posterior prediction outputs for each 
grid square, meaning they can be summarised to produce ‘best’ esti
mates, but also measures of uncertainty at differing levels and spatial 
scales. Recent examples include the development of models to estimate 
population counts in areas that could not be enumerated in national 
census efforts in countries such as Burkina Faso, Afghanistan and 
Colombia (Darin et al., 2022; Sanchez-Cespedes et al., 2021; WorldPop, 
2021a). In Zambia, models were developed to make use of household 
listings from recent survey data as training data to construct national 
small area estimates that formed the basis for census planning and 
health intervention delivery (Dooley et al., 2021; GRID3, 2021b; 
WorldPop, 2021b). Moreover, in settings where existing census data are 
outdated, bespoke field surveys were undertaken to obtain recent sam
ple enumeration data for constructing modelled estimates in Nigeria, 
South Sudan and DRC (Leasure et al., 2020; Boo et al., 2022; UNFPA, 
2021). The outputs of the bottom-up modelling efforts in DRC are pre
sented in the same way as those from the multiple top-down models in 
Figs. 1f and 2e, but with the addition of a measure of prediction un
certainty mapped in Fig. 2f (Boo et al., 2022). Given the significantly 
different input data and approach to production of the estimates, it is no 
surprise to see more differences in estimated patterns of population 
distributions in the figures. 

Are the bespoke bottom-up population estimation models producing 
more accurate estimates of small area population numbers than the top- 
down approaches? This is difficult to assess and remains context and 
location-specific, but there is growing evidence and many reasons to 
believe that the estimates are more reliable. While sample sizes are often 
small, building models upon recent enumeration data, rather than linear 
projections from census baselines many decades ago in settings where 
massive changes have occurred provides more confidence in outputs 
(Wardrop et al., 2018). A growing amount of anecdotal and quantitative 
feedback from field teams and national statistical offices on the accuracy 
of estimates adds to statistical evidence from model cross-validation, as 
well as assessments on the use of data in deriving metrics or in health 
delivery campaigns adds to this (Nilsen et al., 2021; Leasure et al., 2020; 
GRID3, 2021b, 2020; Boo et al., 2022; Thomson et al., 2021; Ali et al., 
2020). Moreover, the explicit measurement and communication of un
certainty provides users with quantitative insights on where confidence 
in estimates is higher or lower, taking small area population estimates a 
step forward beyond the opacity of many top-down model outputs 
(Leasure et al., 2020). 

3. The future for small area population data 

Geospatial modelling approaches have made great advances in sup
porting the estimation of population numbers at small area scales. They 
should not be seen however as a replacement for censuses, surveys and 
systems of enumeration. These ensure that people are counted and are 
the source of a wealth of additional data that cannot be accurately 
estimated from models based on satellite imagery and other forms of 
geospatial data. Nevertheless, the challenges that physical enumeration 
of populations poses should be recognised (UNFPA, 2020b). National 
population and housing censuses are typically the largest peace-time 
operations that countries undertake, and the expense, complex logis
tics and disrupting factors, such as conflict or Covid, mean that full 
enumeration is not always possible. This in turn results in a lack of 
reliable and timely data that form a key component of disease surveil
lance systems. Recent years have seen a growing use of modelled pop
ulation data by ministries of health, national statistics offices and 
international agencies, in particular estimates produced from bottom-up 

models (Wardrop et al., 2018). As well as being used for health-related 
applications such as vaccination or bednet distribution campaigns 
(GRID3, 2021b; Ali et al., 2020), the value of these estimates in sup
porting the census process (UNFPA, 2020b) or collection of survey data 
(Thomson et al., 2020, 2017; Qader et al., 2021, 2020) has been shown. 

Many challenges remain to be addressed in capturing accurate 
population numbers at small area scales through both enumeration and 
modelling approaches, but ongoing research points towards potential 
solutions. Multiple innovations in data collection and sample design are 
pushing forward the ability to directly enumerate populations and 
capture data from those that can be hard to reach (Hoogeveen and Pape, 
2020; Tomaselli et al., 2021). These can provide valuable data to com
plement and improve upon traditional approaches to enumeration, as 
well as form the basis for the geospatial modelling efforts that are the 
focus here. Substantial variations in population densities and land uses 
over small spatial scales make accurately estimating and mapping 
populations within urban areas a difficult exercise, but the automated 
ability to accurately map building footprints from recent satellite im
agery is helping to quantify some of this variability (Boo et al., 2022). 
The further processing of these building datasets to map neighbourhood 
types (Jochem et al., 2020) and categorize residential status (Sturrock 
et al., 2018) is supporting refinements to urban population modelling 
(WorldPop and National Population Commission of Nigeria, 2021). 
Moreover, the development of approaches for estimating building 
heights and volumes from satellites (e.g. Esch et al., 2022) presents 
opportunities to account for high rise residential or commercial build
ings in estimation modelling. Geostatistical modelling from GPS-located 
survey data also offer solutions for the small area mapping of population 
demographics to move beyond large area summaries or outdated census 
data (e.g. Alegana et al., 2015). 

The dynamics of urban populations present challenges, with constant 
changes in densities each day, week and season, and urbanization trends 
changing the shape and extent of settlements rapidly. Here again, new 
forms of geospatial digital datasets offer possibilities to capture and 
quantify such changes that would be costly to measure with surveys or 
full enumeration. These include the use of mobile phone call records 
(Bergroth et al., 2022; Deville et al., 2014), satellite-based measures 
(Bharti et al., 2016) and models that integrate multiple forms of spatially 
referenced data (Martin et al., 2015). Subnational changes in population 
distributions induced by migration and displacement have been shown 
to be reliably captured by models driven by mobile phone record data 
(Lai et al., 2019; Bengtsson et al., 2011), and approaches for incorpo
rating such flow data into small area population estimation models 
continue to be explored (Dooley et al., 2020). Improved understanding 
of the processes and dynamics of population changes at small area scales 
in turn offer the potential for improved forecasting (Wilson et al., 2021). 

Ultimately, national statistical offices hold the responsibility for the 
production and maintenance of the official population data that feed 
into disease surveillance and health information systems. Many have 
invested in geospatial, geostatistical and data science skills to capitalise 
on advances in small area population data production. Across low and 
middle income regions, resources for such investment are often limited, 
and therefore challenges exist in abilities to adopt, develop and integrate 
new geospatial methods to complement more traditional enumeration 
approaches. Official population data underlie governance and can be 
highly sensitive since they determine allocations of resources, repre
sentations in parliaments and delivery of services. It is generally insuf
ficient therefore for models developed and implemented elsewhere to be 
handed over to statistical offices. Country ownership and the ability of 
statistical offices to explain and defend methods adopted in the pro
duction of small area population data becomes vital for acceptance and 
use. This will remain a substantial barrier to the use of geospatial 
modelling to complement more traditional data collection, but the ex
amples highlighted above from countries such as Burkina Faso, 
Colombia, Nigeria, DRC, Afghanistan and Zambia show how co- 
development and country ownership are beginning to address these 
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challenges, providing data that can then be used by Ministries of Health 
as an important component of surveillance and healthcare delivery. 

The Covid pandemic has necessitated the acceleration of vaccines 
and treatment development, of the science of disease modelling, and of 
the shape and scale of infectious disease surveillance. The disruption 
that the pandemic has caused to traditional methods of population 
enumeration and the reduced budgets available to undertake such ef
forts will likely also necessitate the accelerated development and 
adoption of modelling approaches to fill gaps. Moreover, increased de
mands for timely and reliable small area denominator data to support 
the needs of expanded and reshaped disease surveillance systems will 
bring extra demands. Geospatial modelling can become an additional 
tool in integrated approaches to the production of small area population 
data. For example, where a survey or new census is being planned, 
modelled estimates can provide a sample frame where previous census- 
based data are outdated, and in turn, the data collected using the new 
frame can be used to improve and update the modelled estimates for 
future use. These complimentary activities offer the possibility of mov
ing towards a kind of ‘living’ census, something that is currently only a 
reality in countries with strong registry-based systems. Having access to 
timely, reliable population data at small area scales that is able to be 
regularly updated should ideally be a goal for the World to work towards 
to ensure appropriate, effective and efficient responses when the next 
outbreak or pandemic arrives. 
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