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Abstract—This paper investigates the power allocation problem
for secure multiple-input single-output transmission with the
injection of artificial noise (AN), in the presence of an unknown
eavesdropper (Eve). Two power allocation schemes, the optimal
adaptive power allocation (OAPA) and suboptimal fixed power
allocation (SFPA) schemes, are proposed to enhance the phys-
ical layer security of the considered system. Since the noise
power at Eve is unknown, both power allocation schemes are
designed for the worst-case scenario in which the noise power
at Eve is assumed to be zero, aiming to minimize the secrecy
outage probability (SOP). To characterize the performance of
the proposed power allocation schemes, approximate closed-
form expressions for average SOP under a preset noise power
level are derived by applying Gauss-Chebyshev quadrature. We
also address the worst-case secrecy outage performance for
the proposed OAPA and SFPA schemes. Our analytical and
numerical results show that, compared with the exhaustive search
method that requires Eve’s prior information, the proposed
OAPA scheme exhibits comparable secrecy outage performance
without Eve’s prior information. Additionally, the SFPA scheme,
also without Eve’s prior information, is capable of achieving
almost the same worst-case SOP as the OAPA scheme, with a
much lower implementation complexity.

Index Terms—Physical layer security, power allocation, artifi-
cial noise, secrecy outage probability.

I. INTRODUCTION

Security issues are of vital importance in wireless trans-
missions since a large amount of confidential information is
transferred over the open medium. Traditionally, cryptographic
technologies implemented at upper layer are employed for
achieving communication confidentiality against eavesdrop-
ping attacks, based on the assumption that eavesdroppers
have limited computational resources. However, with the rapid
development of computation techniques, these cryptographic
methods are not information-theoretically secure. As a com-
plementary approach, physical layer security (PLS) has been
envisioned as a promising technique by smartly exploiting
the intrinsic randomness of the communications media. In the
pioneering work of Wyner on PLS [1], it was proved that
perfect secrecy could be ensured provided that the wiretap
channel is the degraded version of the main channel, and the
secrecy capacity was characterized. The secrecy capacity of
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the scalar Gaussian wiretap channel was analyzed in [2]. This
result was generalized to the wireless fading channel in [3],
[4].

Owing to spatial degrees of freedom and diversity gains,
multiantenna techniques have been considered as an efficient
solution for combating channel fading and increasing channel
capacity, and also have great potential to improve wireless
PLS [5]–[13]. In [5], the secure secondary transmission was
investigated in multiantenna cognitive radio networks, and
new closed-form expressions for the exact and asymptotic
secrecy outage probability (SOP) were derived. In [6], the
effect of phase noise on the downlink SWIPT in secure
massive multiple-input-multiple-output (MIMO) systems was
investigated. In [7], the authors exploited the potential benefits
of machine learning in selecting the optimal transmit antenna
that maximizes the secrecy performance of a MIMO-multiple-
eavesdropper (MIMOME) wiretap system. In [8], the secret-
key agreement over MIMO quasi-static fading channels was
studied. Additionally, the PLS of multiantenna transmission
aided by intelligent reflecting surface (IRS) was addressed in
[9]–[11]. Secrecy outage performance analyses were carried
out for MIMO relaying systems in [12], [13].

To ensure the existence of a nonzero secrecy rate when
the channel quality of the wiretap link is superior to that of
the legitimate link, Goel and Negi [14] proposed to employ
artificial noise (AN) to improve PLS. Inspired by the work
[14], a numerous body of works have studied AN assisted
schemes for PLS [15]–[22]. In [15], a robust information
and AN precoding scheme was designed for a multiple-
input-single-output (MISO) cognitive system with unknown
eavesdroppers. PLS for full-duplex multiantenna systems was
studied in [16]–[19], wherein the legitimate transceiver si-
multaneously emits AN to interfere with the eavesdropper
while transmitting confidential information. In [20], two PLS
techniques were proposed for millimeter-wave (mmWave)
vehicular communication systems, and both techniques utilize
large antenna arrays to confuse potential eavesdroppers with
sensitive receivers. In [21], PLS in multiantenna relay wiretap
networks was investigated, where all eavesdroppers in the
network are randomly distributed following three independent
Poisson point processes. In [22], a joint beamforming and jam-
ming secure transmission scheme was investigated for an IRS
assisted MISO wiretap system without the eavesdropper’s CSI.
In [23], He and Yener even proved that secure communication
is possible regardless of the location or channel states of the
eavesdropper.

In AN-assisted schemes, characterizing the power allocation
between the AN and the information signals is one of the
major challenges. In the existing literature, two different power



2

allocation schemes, namely, adaptive power allocation and
non-adaptive (or fixed) power allocation, have been proposed
(e.g., [24]–[29]). In the non-adaptive power allocation scheme,
the power allocation factor (PAF) is fixed for all the in-
stantaneous channel realizations. However, in this scheme,
it is usually difficult to obtain further insights due to the
complicated closed-form expression of SOP, which results in
that the optimal PAFs can only be achieved via an exhaustive
search method. Zhou and McKay [24] analyzed the secrecy
performance and designed the power allocation scheme over
fast fading channels. In [25], AN-assisted optimal cognitive
beamforming schemes were proposed, in which the power
allocation is optimized to maximize the achievable ergodic
secrecy rate. For adaptive power allocation, the PAF is adap-
tively chosen based on the instantaneous CSI of the legitimate
channel. In [26]–[29], the power allocation was optimized by
minimizing the SOP under a given realization of the channel
between the legitimate transceiver in a MISO wiretap channel.
In the aforementioned works, the eavesdroppers’ channel state
distribution information (CSDI) is required for optimizing the
power allocation. However, since eavesdroppers may remain
silent in practice, it is challenging to obtain statistical infor-
mation in real wiretap scenarios.

Motivated by these observations, this paper investigates the
secure transmission in a multiantenna wiretap system with
an unknown eavesdropper. We optimize the power allocation
without any prior information of the eavesdropper, and further
conduct the secrecy outage performance analysis on this
basis. Part of our work was presented at the Globecom 2020
conference [30]. However, the work [30] only investigated
the scenario where the noise power σ2

e at the eavesdropper is
assumed to be zero. To address a more practical case, in this
paper, we conduct the secrecy outage performance analysis of
the proposed power allocation schemes under a preset noise
power level σ2

e at the eavesdropper, and we also carefully
examine the influence of σ2

e on the secrecy performance
using simulation results. Moreover, the instantaneous secrecy
outage performance is also addressed in this paper. The main
contributions of our paper are summarized as follows.

• We propose an optimal adaptive power allocation (OAPA)
to minimize the SOP of the proposed system coexisting
with an unknown eavesdropper. In the OAPA, the optimal
PAF is adaptively adjusted to the instantaneous CSI of
the main channel, and it is updated in real-time. We also
propose a suboptimal fixed power allocation (SFPA) to
reduce the implementation complexity. In the SFPA, the
optimal PAF is designed off-line based on the CSDI of the
main channel, and it remains fixed during transmissions.
We provide the closed-form solutions to the optimal
PAFs for both schemes, which are independent of the
eavesdropper’s prior information.

• For the proposed OAPA and SFPA schemes, we derive
the approximate closed-form expressions of the average
SOP with a preset noise power level at the eavesdrop-
per by leveraging the Gauss-Chebyshev quadrature. In
order to address the special case in which the average
receive signal-to-noise ratio (SNR) at the eavesdropper

is relatively high, we also analyze the secrecy outage
performance in the worst-case scenario where the noise
power at the eavesdropper is zero.

• We provide new insights into secure transmission designs.
Without the eavesdropper’s prior information, we reveal
that for the OAPA, more power should be allocated to the
AN to achieve a lower SOP for a larger maximal achiev-
able instantaneous SNR at the legitimate receiver. For the
SFPA, the optimal PAF is determined by the maximum
achievable average SNR at the legitimate receiver and the
number of antennas at the transmitter.

• Compared with the exhaustive search method, which
requires Eve’s prior information, we confirm that the
OAPA achieves the lowest worst-case SOP, and the SFPA
achieves a near-optimal secrecy performance, in terms of
worst-case SOP, with the lowest complexity.

The rest of this paper is organized as follows. Section II
presents the system model. In Section III, both the OAPA
and SFPA schemes are designed. In Section IV, the closed-
form expressions for the average SOP and worst-case SOP
are derived under the proposed OAPA and SFPA schemes,
respectively. Numerical results are provided in Section V,
followed by conclusions in Section VI.

Throughout this paper, the following notation conventions
are adopted. The boldface uppercase and lowercase letters
denote matrices and vectors, respectively.

(
K
k

)
= K!

(K−k)!k!

is the binomial coefficient. (·)H is the conjugate transpose
operation, while (·)−1 and ‖ · ‖F denote the inverse oper-
ator and Frobenius norm of a matrix, respectively. fX(·),
FX(·) and RX(·) denote the probability density function
(PDF), cumulative distribution function (CDF) and comple-
mentary cumulative distribution function (CCDF) of random
variable (RV) X , respectively. Pr(·) denotes the probability
operator. CN (µ, σ2) denotes the circularly symmetric com-
plex Gaussian distribution with mean µ and variance σ2.
Γ(α) =

∫∞
0
xα−1 exp (−x)dx denotes the Gamma function,

and Γ(α, x) =
∫∞
x
tα−1 exp (−t)dt is the upper incomplete

Gamma function. E[·] denotes the expectation operator, and
In is the n× n identity matrix, while [x]+ , max{0, x}.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider secure communication between a transmitter
(Alice) and a receiver (Bob) in the presence of a multi-antenna
eavesdropper (Eve). We assume that Bob is equipped with a
single antenna, while Alice and Eve have Nt and Ne antennas,
respectively. Let h ∈ C1×Nt and G ∈ CNe×Nt denote the
channels from Alice to Bob and Alice to Eve, respectively. All
the wireless links are assumed to be independently Rayleigh
fading, where the channel gains are modeled as the zero-mean
complex Gaussian RVs. Each entry of h and G has a variance
of 1/λB and 1/λE , respectively. Considering an unknown
eavesdropper, we assume that the prior information of Eve,
such as G, Ne and λE , are unavailable for all the nodes in
the network1.

1Notably, the eavesdropper’s prior information is employed to conduct the
secrecy outage performance analysis in Section IV, but not used for the secure
transmission designs. This common assumption has been widely adopted in
the literature concerning on PLS, e.g., [15], [22]
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Since Eve is unknown, the AN-aided secure scheme of
[14] is employed to guarantee the security for Alice. Alice
transmits an information-bearing signal u with E[|u|2] = 1 in
conjunction with an (Nt−1)×1 AN vector v to impair Eve’s
channel. Accordingly, the transmit signal of Alice is

x =
√
φPwu+

√
(1− φ)PWv, (1)

where P denotes the total transmit power at Alice, φ∈(0, 1]
is the PAF which represents the fraction of transmit power
allocated to u, w = hH

/
‖h‖ is the precoding vector of

the information-bearing signal, and W ∈ CNt×(Nt−1) is the
precoding matrix of the jamming signal which lies in the null
space of hH. Thus, W̃ = [w W ] forms an orthogonal basis
of CNt . Since Alice does not know G, the transmit power
allocated to the AN is distributed equally to each entry of
v. That is, all the entries of v are independently identically
distributed (i.i.d) complex RVs obeying CN

(
0, 1

Nt−1

)
.

Consequently, the instantaneous SNRs at Bob and Eve can
be respectively written as

ΓB =
φP

σ2
B

‖h‖2, (2)

ΓE =φP g̃H

(
(1− φ)P

Nt − 1
G̃G̃H + σ2

EINe

)−1

g̃, (3)

where g̃ = Gw and G̃ = GW , while σ2
B and σ2

E are the
channel noise variances at Bob and Eve, respectively. Hence,
the channel capacities of the main link and wiretap link are
given respectively by CB =log2(1 + ΓB) and CE =log2(1 +
ΓE), and the instantaneous secrecy capacity in the considered
wiretap system can be expressed as [31]

CS = [CB − CE ]+. (4)

For notational convenience, we define γ̄B , P
σ2
B

and γ̄E ,
P
σ2
E

as the maximum average transmit SNRs to Bob and Eve,

respectively. We also define X , ‖h‖2 as the power gain of
the main channel.

To avoid undesired transmissions that incur capacity out-
ages, we adopt the on-off transmission scheme proposed in
[32], in which Alice does not transmit when CB < RS .
Utilizing the well-known Wyner’s wiretap encoding scheme,
Alice transmits the codewords and confidential information at
constant rates RB and RS , respectively. The rate of redundant
information RE = RB−RS reflects the cost of providing a se-
curity guarantee for message transmission against eavesdrop-
ping. For any message transmitted, if Eve’s channel is worse
than Alice’s estimate, i.e., CE < RE , the information leakage
rate for Eve can be arbitrarily small. By contrast, if CE > RE ,
information-theoretic security is compromised, and a secrecy
outage event occurs. To avoid undesired transmissions that in-
cur capacity outages, we invoke the secrecy outage formulation
introduced in [33], in which a secrecy outage event is defined
as O(RB , RS) := {CE > RB −RS |message transmission}
conditioned upon a message actually being transmitted.

In this paper, the value of RB is chosen dynamically such
that RB = CB within an infinite blocklength assumption,
which has been extensively adopted in the works concerning

on PLS, e.g., [34], [35]. To avoid undesired secrecy outages,
we have

CB ≥ RS . (5)

Substituting (2) into (5), we have

X ≥ ε− 1

φγ̄B
. (6)

where ε , 2RS . From (6), we know that in order to avoid un-
desired secrecy outages, the following two constraints should
be simultaneously satisfied:

X ≥ ε− 1

γ̄B
, (7)

φ ≥ φmin ,
ε− 1

γ̄BX
. (8)

Constraints (7) and (8) provide lower bounds for the power
gains of the main channel X and the PAF, respectively.

In the on-off transmission scheme, Alice only transmits on
condition that a reliable transmission is guaranteed to avoid
undesired secrecy outages. As such, a reliable transmission
only happens when X is not below a preset threshold µ;
otherwise, it keeps silent. Based on (7), we set µ = ε−1

γ̄B
without of loss generality. Thus, a secrecy outage event for
a given µ and target secrecy rate RS > 0 is defined as

O(RS) := {CS < RS |X ≥ µ} . (9)

Also, the SOP can be formulated as

Pout = Pr (CS < RS |X ≥ µ ) . (10)

In the following, we will focus our attention on the outage-
optimal power allocation schemes. On this basis, we will
further conduct the secrecy outage performance analysis.

III. OUTAGE-OPTIMAL POWER ALLOCATION

We optimize the PAF for the purpose of minimizing the
SOP. Traditionally, this optimization can be formulated as

φ? = arg min
φmin≤φ≤1

Pout. (11)

To solve this optimization problem, intuitively, the closed-
form expression for the SOP as the function of the PAF
should first be derived, and then the derivative of the derived
SOP with respect to (w.r.t.) the PAF is taken to obtain the
optimal solution. However, the analytical expression for the
SOP is typically cumbersome, and a closed-form solution for
the optimal PAF may be intractable. Moreover, the closed-form
expression for Pout may require Eve’s prior information.

In order to tackle this troublesome problem, our approach
is to minimize the possibility of each secrecy outage event
instead of the SOP. Observing from (9), we find that to avoid
the secrecy outage event O(RS) as much as possible, we can
maximize the instantaneous secrecy capacity CS by optimizing
the PAF. Substituting (2) and (3) into (4), we have

CS= log2

 1 + φγ̄B‖h‖2

1 + φγ̄E g̃H
(

(1−φ)γ̄E
Nt−1 G̃G̃H+INe

)−1

g̃

. (12)
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CS of (12) involves Eve’s prior information which is unknown.
Therefore, it is still intractable to find the optimal PAF with
an unknown eavesdropper.

Since the noise level at Eve is also unknown, it is reason-
able to consider the worst-case scenario to guarantee secure
transmission, where the channel noise at Eve is zero [24], [25].
With this worst-case assumption, (12) can be simplified as

ĈS = log2

 1 + φγ̄BX

1 + φ(Nt−1)
1−φ g̃H

(
G̃G̃H

)−1
g̃

 . (13)

ĈS still contains Eve’s prior information. In order to optimize
the PAF for minimizing the SOP, we make a transformation to
remove the influence of Eve’s prior information in the worst-
case scenario in the following subsection.

A. Optimal adaptive power allocation

Substituting (13) into (9), we have

O(RS) :=

{
log2

(
1 + φγ̄BX

1 + φ(Nt−1)
1−φ Y

)
< Rs

∣∣∣∣X ≥ µ
}
. (14)

After some algebraic manipulations, the secrecy outage event
(14) can be reformulated as

O(RS) := {ω(φ) < Y |X ≥ µ} , (15)

where ω(φ) = (1−ε+φγ̄BX)(1−φ)
ε(Nt−1)φ and Y , g̃H

(
G̃G̃H

)−1
g̃.

As shown in (15), ω(φ) involves the instantaneous CSI h,
which is the prior knowledge at Alice, and Y contains the CSI
between Alice and Eve but it is independent of φ. Based on this
observation, for the case of unknown Eve’s prior information,
the optimal PAF φ? of the proposed OAPA scheme is attained
by solving the following optimization

φ? = arg max
φmin≤φ≤1

ω(φ). (16)

Since ∂2ω(φ)
∂φ2 = − 2(ε−1)

ε(Nt−1)φ3 < 0, ω(φ) is a concave function.
Hence, we can calculate the first derivative of ω(φ) w.r.t. φ
and set it to zero to obtain the optimal φ?, which is given as

φ? =

{ √
ε−1
γ̄BX

, X ≥ µ,
∅, X < µ.

(17)

Note that when X < µ, the PAF is φ? = ∅, and this signifies
that the message transmission is suspended in order to avoid
an undesired capacity outage.

Remark 1: Conditioning on Eve’s instantaneous CSI is
absent in (17), and the OAPA scheme guarantees the optimal
performance, in terms of SOP, in the worst-case scenario
whether Eve’s prior information is known or not.

Remark 2: The result of (17) reveals that φ? is deter-
mined by the maximum achievable instantaneous SNR at Bob
Γ̃B = γ̄B‖h‖2 and the target secrecy rate RS . Under the
condition that reliable transmission is guaranteed, larger Γ̃B or
smaller RS decreases φ?. In other words, when Γ̃B increases
or RS decreases, more power should be allocated to the AN
for minimizing the SOP.

Remark 2 provides insightful guidelines for power allo-
cation design in the absence of Eve’s prior information. The
legitimate link h can be obtained for Alice through the channel
estimation by legitimate node Bob, while the unknown G is
not required. Therefore, our proposed OAPA scheme, which
adaptively adjusts the PAF based on the instantaneous CSIs
of legitimate links, can be effectively applied to the practical
networks in the passive eavesdropping environment to achieve
optimal performance.

B. Suboptimal fixed power allocation

The optimal PAF of the OAPA scheme needs to be adjusted
whenever the channel h changes, which imposes excessive
computational complexity. To reduce the computational load,
we propose a SFPA scheme. According to the law of large
numbers, for sufficiently large Nt and in the limit case, Nt →
∞, ΓB of (2) can be re-expressed as

lim
Nt→∞

ΓB =
φγ̄BNt
λB

. (18)

By substituting (13) and (18) into (9), the secrecy outage event
(9) can be reformulated as

Õ(RS) := {θ(φ) < Y |X ≥ µ} , (19)

where θ(φ) =
(

1− ε+ φγ̄BNt
λB

)
1−φ

εφ(Nt−1) . A similar proce-
dure as the derivation of (17) can be followed to obtain the
optimal PAF φ?∞ of the SFPA scheme that minimizes the SOP,
when X ≥ µ

φ?∞ =

{ √
ε−1

Γ̄BNt
, Γ̄B ≥ ε−1

Nt
,

1, Γ̄B < ε−1
Nt

,
(20)

where Γ̄B = γ̄Bλ
−1
B represents the maximum achievable

average SNR at Bob. Similarly, when X < µ, the message
transmission is suspended.

Remark 3: The results of (20) indicate that the optimal
PAF φ?∞ is independent of Eve’s prior information. φ?∞ is
determined by Γ̄B , Nt and RS . If Γ̄B ≥ ε−1

Nt
holds, increasing

Γ̄B and/or Nt decreases φ?∞, while a smaller RS leads to a
smaller φ?∞. That is, when Γ̄B and/or Nt increase or when
RS decreases, more power should be allocated to the AN for
minimizing the SOP. When Γ̄B is less than a threshold, pure
beamforming would be a more preferable choice.

Since the instantaneous CSIs of legitimate links vary rapidly
in fast fading environments, the application of the OAPA
scheme is limited in such situations owning to its implemen-
tation complexity. It is worth noting that the parameters Γ̄B ,
Nt, and RS can be readily obtained at Alice. Hence, the
proposed SFPA scheme provides a simple and efficient way
for power allocation design. As will be demonstrated in the
numerical results, the SFPA scheme achieves a near-optimal
secrecy outage performance in the worst-case scenario.

IV. SECRECY OUTAGE PERFORMANCE ANALYSIS

In this section, the closed-form expressions for SOP in the
considered wiretap systems using the proposed OAPA and
SFPA schemes are derived.
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Ψ1 =
λNtB

Γ(Nt)

Ne∑
m=1

Ne−m∑
n=0

(
Nt−1
n

)
Γ̄1−m
E

(m− 1)!(Nt − 1)nεm+n−1

×
∫ ∞
µ

(√
γ̄Bx

)m−1(√
γ̄Bx−

√
ε− 1

)m+2n−1
exp

(
−
√
γ̄Bx
(√

γ̄Bx−
√
ε−1
)

εΓ̄E
− λBx

)
(

1 +

(√
γ̄Bx−

√
ε−1
)2

(Nt−1)ε

)Nt−1
xNt−1dx

︸ ︷︷ ︸
O1

, (26)

A. Optimal adaptive power allocation

Our proposed power allocation schemes are performed in
the worst-case scenario. However, the channel noise at Eve
σ2
E always exists. For an unknown σ2

E , Alice is still able to
perform the AN-aided secure transmission scheme, but in this
case, Alice is unable to calculate the true secrecy performance
metrics. To address a more practical case, we first proceed
to conduct the secrecy outage performance analysis of the
proposed power allocation schemes under a preset σ2

E value.
1) Secrecy outage performance under a preset σ2

E value:
First, we analyze the SOP over each X , which is referred to
as the average SOP. Substituting (12) and (17) into (10), the
expression for the average SOP for the OAPA scheme P oout is
derived as

P oout= Pr

1 +
√

(ε− 1)γ̄BX

1 +
√

ε−1
γ̄BX

γ̄E Ỹ
< ε

∣∣∣∣X ≥ µ
 , (21)

where Ỹ = g̃H
(
ΘG̃G̃H + INe

)−1
g̃ with Θ ,

(
1−
√

ε−1
γ̄BX

)
γ̄E

Nt−1 .
Using the total probability theorem and after some algebraic
manipulations, P oout is further derived as

P oout=

Pr

(
1+
√

(ε−1)γ̄BX

1+
√

ε−1
γ̄BX

γ̄E Ỹ
< ε,X ≥ µ

)
Pr(X ≥ µ)

=

Ψ1︷ ︸︸ ︷
Pr

(√
γ̄BX

(√
γ̄BX −

√
ε−1

)
εγ̄E

< Ỹ ,X ≥ µ

)
Pr(X ≥ µ)

, (22)

Since the quantity Ỹ is equivalent to the signal-to-interference
ratio (SIR) of an Ne-branch MMSE diversity combiner with
Nt − 1 interferers, the CCDF of Ỹ is obtained from [36,
Eq.(11)] as

RỸ (y) =

Ne∑
m=1

Ne−m∑
n=0

(
Nt−1
n

)
λm−1
E Θn

(m− 1)!

ym+n−1 exp (−λEy)

(1 + Θy)Nt−1
.

(23)

Since X follows a Gamma distribution with the parameters
Nt and 1/λB , the PDF and CDF of X can be respectively

expressed as

fX(x) =
λNtB

Γ(Nt)
xNt−1 exp(−λBx), (24)

FX(x) =1−
Nt−1∑
k=0

λkBx
k

k!
exp (−λBx) . (25)

Substituting (23), (24) and (25) into (22), Ψ1 can be derived
as (26) shown at the top of this page, where Γ̄E = γ̄Eλ

−1
E

represents the maximum average received SNR at Eve.
Due to the complicated integral term involved, it is in-

tractable to derive an accurate analytical expression for Ψ1. To
tackle this problem, we give an approximate expression with
an arbitrarily small error by invoking the truncation method.
To proceed, the integral term in O1 is recast as

T (x) = H1(x)H2(x)H3(x), (27)

where

H1(x) =

(√
γ̄Bx−

√
ε− 1

)2n(
1 +

(√
γ̄Bx−

√
ε−1
)2

(Nt−1)ε

)Nt−1
, (28)

H2(x) = exp (−λBx)xNt−1, (29)

H3(x) =
(√
γ̄Bx

(√
γ̄Bx−

√
ε− 1

))m−1

× exp

(
−
√
γ̄Bx

(√
γ̄Bx−

√
ε− 1

)
εΓ̄E

)
. (30)

We have the following Proposition 1.
Proposition 1: T (x) is strictly decreasing for

x ∈ [A, ∞), where A = max{x∗, xo, x#} with

x∗ =

(√
εn(Nt−1)
Nt−1−n +

√
ε−1

)2

γ̄B
, xo = Nt−1

λB
and

x# =
ε(1+2Γ̄E(m−1))−1

2γ̄B
+
√
ε−1
√
ε−1+4εΓ̄E(m−1)

2γ̄B
.

Proof: See Appendix A.
Combining Proposition 1 with lim

x→∞
T (x) = 0, we con-

clude that there exists a sufficiently large Φ1 > max{A,µ}
which makes the approximate error

∫∞
Φ1
T (x)dx ≈ 0. By

truncating the infinite integral w.r.t. Φ1, the expression for O1

is approximately given as

O1 ≈
∫ Φ1

µ

T (x)dx. (31)

The integral (31) is still mathematically intractable, and we use
Gaussian-Chebyshev quadrature [37] to find an approximation
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f(µ) =

Nt−1∑
k=0

Ne−1∑
m=0

(
Nt−1
m

)
τm(µ)

(1 + τ(µ))Nt−1

λkBµ
k exp

(
− λBµ

)
k!

−
Nt−1∑
k=0

Ak

k!

(
Ne−1∑
m=0

2k∑
n=0

(
Nt − 1

m

)(
2k

n

)
(Nt − 1)B2k−nCn

×
π
(
Φ2 −

√
τ(µ)

)
T

T∑
t=1

√
1− ν2

t s
2m+n+1
t

(
1 + s2

t

)−Nt
exp

(
−A(B + Cst)

2
)
−
Ne−1∑
m=1

2k∑
n=0

(
Nt − 1

m

)(
2k

n

)
mB2k−nCn

×
π
(
Φ3 −

√
τ(µ)

)
G

G∑
g=1

√
1− ν2

gs
2m+n−1
g

(
1 + s2

g

)1−Nt
exp

(
−A

(
B + Csg

)2))
. (39)

of O1. Consequently, O1 can be approximated as follows:

O1 ≈
π(Φ1 − µ)

2K

K∑
k=1

√
1− v2

k

(√
γ̄Bsk −

√
ε− 1

)m+2n−1

×
(√
γ̄Bsk

)m−1

(
1 +

(√
γ̄Bsk −

√
ε− 1

)2
(Nt − 1)ε

)1−Nt

× exp

(
−
√
γ̄Bsk

(√
γ̄Bsk −

√
ε− 1

)
εΓ̄E

− λBsk

)
sNt−1
k ,

(32)

where K is a parameter to trade off complexity and accuracy,
νk = cos

(
2k−1
2K π

)
and sk = Φ1−µ

2 (νk + 1) + µ.
For any given values of RS and µ, we can compute the

transmission probability as

Pr(X > µ) =

Nt−1∑
k=0

λkBµ
k

k!
exp(−λBµ) =

Γ(Nt, λSµ)

Γ(Nt)
. (33)

Substituting (32) into (26), we obtain Ψ1. Substituting the
resulting Ψ1 and (33) into (22), the average SOP for the OAPA
scheme can be approximated as follows2

P oout ≈
λNtB

Γ
(
Nt, λBµ

) Ne∑
m=1

Ne−m∑
n=0

(
Nt−1
n

)
Γ̄1−m
E

(m− 1)!(Nt − 1)nεm+n−1

× π(Φ1 − µ)

2K

K∑
k=1

√
1− v2

k

(√
γ̄Bsk −

√
ε− 1

)m+2n−1

×
(√
γ̄Bsk

)m−1

(
1 +

(√
γ̄Bsk −

√
ε− 1

)2
(Nt − 1)ε

)1−Nt

× exp

(
−
√
γ̄Bsk

(√
γ̄Bsk −

√
ε− 1

)
εΓ̄E

− λBsk

)
sNt−1
k .

(34)

The result (34) is too cumbersome to infer further insights.
The optimal PAF of the OAPA scheme is adjusted according to
the instantaneous channel between the legitimate transceiver.
Therefore, it is reasonable to address the secrecy outage
performance under each X . We define the probability of
secrecy outage under each X as the instantaneous SOP (ISOP).

2Notably, (34) is the approximation of the exact SOP, and the approximate
error mainly arises from the truncation point Φ1 and K, which is selected to
trade off complexity and accuracy. When the values of K and Φ1 are large,
the accuracy is high, while imposing a high computation complexity.

When X ≥ µ is satisfied, the ISOP can be derived as

P ioout = Pr

1 +
√

(ε− 1)γ̄BX

1 +
√

ε−1
γ̄BX

γ̄E Ỹ
< ε


= Pr

(√
γ̄BX

(√
γ̄BX −

√
ε− 1

)
εγ̄E

< Ỹ

)
. (35)

Resorting to (23), P ioout can readily be expressed as

P ioout =

Ne∑
m=1

Ne−m∑
n=0

(
Nt−1
n

)(√
γ̄BX −

√
ε− 1

)m+2n−1

(m− 1)!εm+n−1
(
Γ̄E
)m−1

(Nt − 1)n

×

(√
γ̄BX

)m−1
exp

(
−
√
γ̄BX

(√
γ̄BX−

√
ε−1
)

εΓ̄E

)
(

1 +

(√
γ̄BX−

√
ε−1
)2

(Nt−1)ε

)Nt−1
. (36)

As σ2
e → 0, we have

lim
σ2
e→0

P ioout =

Ne−1∑
n=0

(Nt−1
n )
(√

γ̄BX−
√
ε−1
)2n

εn(Nt−1)n(
1 +

(√
γ̄BX−

√
ε−1
)2

(Nt−1)ε

)Nt−1

(a)
=

Ne−1∑
n=0

(Nt−1
n )
(√

γ̄BX−
√
ε−1
)2n

εn(Nt−1)n

Nt−1∑
n=0

(Nt−1
n )
(√

γ̄BX−
√
ε−1
)2n

εn(Nt−1)n

, (37)

where (a) follows the binomial theorem. From (37), we have
the following remark.

Remark 4: If σ2
E = 0, Eve can eliminate the AN trans-

mitted by Alice, and the ISOP is always one when Eve is
equipped with no fewer antennas than Alice.

2) Secrecy outage performance in worst-case scenario: To
characterize the secrecy outage performance when the average
transmit SNR at Eve is relatively high, i.e., σ2

E → 0, we derive
the approximate expression for the average SOP for the worst-
case scenario in the following theorem.

Theorem 1: The average SOP for the OAPA scheme in the
worst-case scenario can be approximated as

P o,wout ≈
Γ(Nt)

Γ(Nt, λSµ)
f(µ), (38)

where f(µ) is defined in (39) at the top of this page.
In (39), A = λB

γ̄B
, B =

√
ε−1, C =

√
ε (Nt−1),

and τ(µ) ,
(
√
γ̄Bµ−

√
ε−1)

2

ε(Nt−1) , while T and G are the pa-
rameters for the complexity and accuracy tradeoff, νt =
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cos
(

2t−1
2T π

)
, st =

Φ2−
√
τ(µ)

2 (νt + 1) +
√
τ(µ), νg =

cos
(

2g−1
2G π

)
, sg =

Φ3−
√
τ(µ)

2 (νg + 1) +
√
τ(µ), and Φ3 >

max
{√

2m+n+1
2Nt−2m−n−1 ,

√
τ(µ)

}
. Φ2 and Φ3 are the truncation

points.
Proof: See Appendix B.

B. Suboptimal fixed power allocation

We now derive the closed-form expression of the average
SOP for the SFPA scheme.

1) Secrecy outage performance under a preset σE value:
When Γ̄B ≥ ε−1

Nt
holds, substituting (2), (3), (12) and (20)

into (10) leads to the average SOP of the SFPA scheme

P sout = Pr

(
1 + φ̃γ̄BX

1 + φ̃γ̄EZ̃
< ε

∣∣∣∣X > µ

)
, (40)

where φ̃ =
√

ε−1
Γ̄BNt

and Z̃ = g̃H
(
ΛG̃G̃H + INe

)−1
g̃ with

Λ ,

(
1−φ̃
)
γ̄E

Nt−1 . With the aid of the total probability formula
and resorting to (33), P sout is further derived as

P sout =
Pr
(
µ < X < `1 + `3Z̃

)
Pr(X > µ)

=
Γ(Nt)

Γ(Nt, λBµ)

∫ ∞
ξ

∫ `1+`3z

µ

fX(x)dxfZ̃(z)dz︸ ︷︷ ︸
Ξ3

, (41)

where `l = ε−1

φ̃γ̄B
, `3 = εγ̄E

γ̄B
and ξ = max

{
µ−`1
`3

, 0
}

. As
shown in (41), to obtain the closed-form expression for the
Ξ3, we need to characterize the CDF of the positive random
variable Z̃. The CCDF of Z̃ is given by [36, eq. (11)]

RZ̃(z)=

Ne∑
m=1

Ne−m∑
n=0

(
Nt−1
n

)
λm−1
E Λn

(m− 1)!

zm+n−1 exp (−λEz)
(1 + Λz)Nt−1

.

(42)

Resorting to (25) and binomial series expansion, Ξ3 can be
calculated as (43) given in the bottom of this page. Utilizing
[38, eq. (2.33.10)], we have

Q1 = RZ̃(ξ) exp(−λB`3ξ)

− λB`3
∫ ∞
ξ

RZ̃(z) exp(−λB`3z)dz︸ ︷︷ ︸
G1

. (44)

Substituting RZ̃(z) into G1, we arrive at

G1 =

Ne∑
m=1

Ne−m∑
n=0

(
Nt−1
n

)
λm−1
E Λn−Nt+1

(m− 1)!

×
∫ ∞
ξ

zm+n−1 exp (−(λE + λB`3)z)(
Λ−1 + z

)Nt−1
dz. (45)

Applying the binomial series expansion to (45) and utilizing
[38], we arrive at

G1 =

Ne∑
m=1

Ne−m∑
n=0

κ∑
q=0

(−1)κ+q
(
Nt−1
n

)(
κ
q

)
λm−1
E Λ2+q−m−Nt

(m− 1)!

×
∫ ∞
ξ

exp (−(λE + λB`3)z)(
Λ−1 + z

)Nt−1−q dz

=

Ne∑
m=1

Ne−m∑
n=0

κ∑
q=0

(−1)κ+q
(
Nt−1
n

)(
κ
q

)
λm−1
E Λ2+q−m−Nt

(m− 1)!
Ω(q),

(46)

where κ , m+ n− 1 and

Ω(q) , exp

(
λE + `3λB

Λ

)(
λE + `3λB

)Nt−2−q

× Γ
(
2 + q −Nt,

(
Λ−1 + ξ

)(
λE + `3λB

))
. (47)

In a similar way, Q2 can be derived as

Q2 = RZ̃(ξ) exp
(
− λB`3ξ

)(
`1 + `3ξ

)k
+ k`3

∫ ∞
ξ

RZ̃(z)
(
`1 + `3z

)k−1
exp

(
− λB`3z

)
dz︸ ︷︷ ︸

∆3

− λB`3
∫ ∞
ξ

RZ̃(z)
(
`1 + `3z

)k
exp

(
− λB`3z

)
dz︸ ︷︷ ︸

∆4

. (48)

Substituting RZ̃(z) into ∆3 and using binomial series expan-
sion, ∆3 can be computed as

∆3 =

Ne∑
m=1

Ne−m∑
n=0

(
Nt−1
n

)
λm−1
E Λn−Nt+1

(m− 1)!

k−1∑
l=0

(
k − 1

l

)
× `k−1−l

1 `l3

∫ ∞
ξ

zζ exp (−(λE + λB`3)z)(
Λ−1 + z

)Nt−1
dz, (49)

where ζ , m + n + l − 1. Applying the binomial series

Ξ3 =

Nt−1∑
k=0

Ne∑
m=1

Ne−m∑
n=0

λkBµ
k exp(−λBµ)

(
Nt−1
n

)
λm−1
E

k!(m− 1)!

Λnξm+n−1 exp(−λEξ)
(1 + Λξ)Nt−1

− exp(−λB`1)

×
∫ ∞
ξ

exp(−λB`3z)fZ̃(z)dz︸ ︷︷ ︸
Q1

−
Nt−1∑
k=1

λkB exp(−λB`1)

k!

∫ ∞
ξ

(`1 + `3z)
k exp(−λB`3z)fZ̃(z)dz︸ ︷︷ ︸
Q2

. (43)
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expansion to (49) and with the aid of [38], we arrive at

∆3 =

Ne∑
m=1

Ne−m∑
n=0

(
Nt−1
n

)
λm−1
E Λn−Nt+1

(m− 1)!

k−1∑
l=0

(
k − 1

l

)
`k−1−l
1

× `l3
ζ∑
q=0

(−1)ζ+q
(
ζ

q

)
Λq−ζ

∫ ∞
ξ

exp (−(λE + λB`3)z)

(Λ−1 + z)Nt−1−q dz

=

Ne∑
m=1

Ne−m∑
n=0

k−1∑
l=0

ζ∑
q=0

(
Nt−1
n

)(
k−1
l

)(
ζ
q

)
λm−1
E Λ2+q−Nt−m−l

(m− 1)!

× (−1)ζ+q`k−1−l
1 `l3Ω(q). (50)

Similarly, ∆4 can be derived as

∆4 =

Ne∑
m=1

Ne−m∑
n=0

k∑
l=0

ζ∑
q=0

(
Nt−1
n

)(
k
l

)(
ζ
q

)
λm−1
E Λ2+q−Nt−m−l

(m− 1)!

× (−1)ζ+q`k−l1 `l3Ω(q). (51)

Substituting (46) into (44), we obtain Q1. Substituting (50)
and (51) into (48), we obtain Q2. By substituting the obtained
Q1 and Q2 into (43), and combining with (41), the closed-
form expression for the average SOP of the SFPA scheme P sout
under Γ̄B ≥ ε−1

Nt−1 can be finally approximated as (52) shown
at the bottom of this page.

On the other hand, when Γ̄B ≤ ε−1
Nt

holds, by substituting
(12) and (20) into (10), the SOP of the SFPA scheme can be
simplified as

P sout = Pr

(
1 + γ̄BX

1 + γ̄EU
< ε

∣∣∣∣X > µ

)
= Pr

(
X <

γ̄EεU + ε− 1

γ̄B

∣∣∣∣X > µ

)

=

Ξ4︷ ︸︸ ︷
Pr(µ < X < `3U + `4)

Pr(X > µ)
, (53)

where `4 = ε−1
γ̄B

and U = ‖g‖2. Since the positive random
variable U follows a Gamma distribution with the parameters
Ne and 1

λE
, similar to (24), the PDF of U can be explicitly

expressed as

fU (u) =
λNeE

Γ(Ne)
uNe−1 exp

(
− λEu

)
. (54)

Substituting (25) and (54) into Ξ4, we have

Ξ4 =

∫ ∞
η

∫ `3u+`4

µ

fX(x)dxfU (u)du

=

Nt−1∑
k=0

Ne−1∑
l=0

λlEλ
k
Bµ

kηl

k!l!
exp (−(λEη + λBµ))

−
λNeE exp (−λB`4)

Γ(Ne)

Nt−1∑
k=0

k∑
m=0

λkB
k!

(
k

m

)
`k−m4

× `m3
∫ ∞
η

uNe−1+m exp (−(λB`3 + λE)u) du︸ ︷︷ ︸
Ξ5

, (55)

where η = µ−`4
`3

. Resorting to [38, eq. (3.351.2)], the SOP
of the SFPA scheme P sout under Γ̄B ≤ ε−1

Nt−1 can be finally
derived as

P sout =
Γ(Nt)

Γ(Nt, λSµ)

(
Nt−1∑
k=0

Ne−1∑
l=0

exp (−(λEη + λBµ))

× λlEλ
k
Bµ

kηl

k!l!
−
λNeE exp (−λB`4)

Γ(Ne)

Nt−1∑
k=0

k∑
m=0

λkB
k!

(
k

m

)

× `m3 `
k−m
4

ηNe+m
Γ
(
Ne +m, (Ne +m− 1)(λB`3 + λE)

))
. (56)

2) Secrecy outage performance in worst-case scenario: In
the worst-case scenario and under Γ̄B ≥ ε−1

Nt
, by substituting

(2), (3) and (20) into (10), the SOP of the SFPA scheme is
derived as

P s,wout = Pr

 1 + φ̃γ̄BX

1 + φ̃(Nt−1)

(1−φ̃)
Y
< ε |X > µ


= Pr (X < `1 + `2Y |X > µ ) , (57)

where `2 = ε(Nt−1)

γ̄B(1−φ̃)
. According to the total probability

formula and recalling (33), P s,wout is further derived as

P s,wout =
Pr (µ < X < `1 + `2Y )

Pr(X > µ)

=
Γ(Nt)

Γ(Nt, λBµ)

∫ ∞
ϕ

∫ `1+`2y

µ

fX(x)dxfY (y)dy︸ ︷︷ ︸
Ξ2

. (58)

P sout ≈
Γ(Nt)

Γ(Nt, λBµ)

(
Nt−1∑
k=0

Ne∑
m=1

Ne−m∑
n=0

λkBµ
k exp(−λBµ)

(
Nt−1
n

)
λm−1
E

k!(m− 1)!

Λnξm+n−1 exp(−λEξ)
(1 + Λξ)Nt−1

− exp(−λB`1)

×
(
RZ̃(ξ) exp(−λB`3ξ)− λB`3

Ne∑
m=1

Ne−m∑
n=0

κ∑
q=0

(−1)κ+q
(
Nt−1
n

)(
κ
q

)
λm−1
E Λ2+q−m−Nt

(m− 1)!
Ω(q)

)
−

Nt−1∑
k=1

λkB exp(−λB`1)

k!

(
RZ̃(ξ) exp(−λB`3ξ)(`1 + `3ξ)

k + k`3

Ne∑
m=1

Ne−m∑
n=0

k−1∑
l=0

ζ∑
q=0

(
Nt−1
n

)(
k−1
l

)(
ζ
q

)
λm−1
E Λ2+q−Nt−m−l

(m− 1)!

− λB`3
Ne∑
m=1

Ne−m∑
n=0

k∑
l=0

ζ∑
q=0

(
Nt−1
n

)(
k
l

)(
ζ
q

)
λm−1
E Λ2+q−Nt−m−l

(m− 1)!
(−1)ζ+q`k−l1 `l3Ω(q)

))
. (52)
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P s,wout ≈
Γ(Nt)

Γ(Nt, λBµ)

(
Nt−1∑
k=0

Ne−1∑
m=0

λkBµ
k exp(−λBµ)

k!

(
Nt−1
m

)
ϕm

(1 + ϕ)Nt−1
−
Nt−1∑
k=0

λkB
k!

k∑
p=0

(
k

p

)
`k−p1 `p2 exp(−λB`1)

×
(Ne−1∑

m=0

(
Nt − 1

m

)
(Nt − 1)

m+p∑
q=0

(
m+ p

q

)
(−1)m+p+q exp(λB`2)(λB`2)−1−q+NtΓ

(
1 + q −Nt, λB`2(1 + ϕ)

)
−
Ne−1∑
m=1

(
Nt − 1

m

)
m

υ∑
q=0

(
υ

q

)
(−1)υ+q(λB`2)−2−q+Nt exp(λB`2)Γ

(
2 + q −Nt, λB`2(1 + ϕ)

)))
. (63)

Substituting (24) and (25) into Ξ2, we have

Ξ2 =

Nt−1∑
k=0

Ne−1∑
m=0

λkBµ
k exp(− µ)

k!

(
Nt−1
m

)
ϕm

(1 + ϕ)Nt−1

−
Nt−1∑
k=0

λkB exp(−λB`1)

k!

×
∫ ∞
ϕ

(`1 + `2y)k exp(−λB`2y)fY (y)dy︸ ︷︷ ︸
O

. (59)

Substituting (74) of Appendix B into O, we have

O =

k∑
p=0

(
k

p

)
`k−p1 `p2

(
Ne−1∑
m=0

(
Nt − 1

m

)
(Nt − 1)

×
∫ ∞
ϕ

ym+p exp(−λB`2y)

(1 + y)Nt
dy︸ ︷︷ ︸

∆1

−
Ne−1∑
m=1

(
Nt − 1

m

)
m

×
∫ ∞
ϕ

ym+p−1 exp(−λB`2y)

(1 + y)Nt−1
dy︸ ︷︷ ︸

∆2

)
. (60)

Applying the binomial series expansion to ∆1 and using [38],
we arrive at

∆1 =

m+p∑
q=0

(
m+ p

q

)
(−1)m+p+q

∫ ∞
ϕ

exp(−λB`2y)

(1 + y)Nt−q
dy

=

m+p∑
q=0

(
m+ p

q

)
(−1)m+p+q exp(λB`2)(λB`2)−1−q+Nt

× Γ(1 + q −Nt, λB`2(1 + ϕ)). (61)

Similarly, ∆2 can be derived as

∆2 =

υ∑
q=0

(
υ

q

)
(−1)υ+q

∫ ∞
ϕ

exp(−λB`2y)

(1 + y)Nt−q−1
dy

=

υ∑
q=0

(
υ

q

)
(−1)υ+q(λB`2)−2−q+Nt

× exp(λB`2)Γ(2 + q −Nt, λB`2(1 + ϕ)). (62)

By combining (59), (60), (61) and (62), the SOP of the
SFPA scheme in the worst-case scenario P s,wout under the
condition Γ̄B ≥ ε−1

Nt−1 can be finally approximated as (63)
shown at the top of this page.

When Γ̄B < ε−1
Nt

, φ?∞ = 1, and the average SOP of the
SFPA scheme in the worst-case scenario is always one.

V. NUMERICAL RESULTS

In this section, we present numerical results for validating
the derived expressions for the secrecy outage performance
analysis for our two proposed schemes. Without loss of
generality, we set the channel parameters as λB = λE = 1,
the average receive noise power at Bob is σ2

B = 0 dBm,
the threshold secrecy rate is RS = 1 bits/s/Hz. We also
compare the performance of the proposed schemes with the
exhaustive search method based fixed power allocation scheme
developed in [25] as the benchmark, which is simply denoted
as the exhaustive search. This exhaustive search based scheme
provides a lower bound for the OAPA scheme, in terms of
ISOP, and for the SFPA scheme, in terms of average SOP, but
it relies on Eve’s prior information.

A. Secrecy outage performance under a preset σE value

Fig. 1 plots the average SOP performance as the functions of
the total transmit power P for three different power allocation
schemes with Ne = 2, the noise power level at Eve σ2

E =
5 dBm, and two different values of Nt. Fig. 1 confirm that the
analytical results match closely with the simulation results,
which validates the accuracy of our derivations. As expected,
the exhaustive search scheme outperforms the OAPA and
SFPA, because it requires Eve’s prior information, including
Eve’s statistical information λE , the noise power level σ2

E

and the number of antennas at Eve Ne. Also, as expected,
the average SOP becomes smaller as Nt or P increases,
which confirms the fact that either adding more antennas or
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Fig. 1: Average SOP versus P for three schemes with σ2
E =

5 dBm, Ne = 2 and two different Nt values.
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increasing total transmit power improves security performance.
Observe that for sufficiently large P , the performance of our
OAPA approaches that of the exhaustive search.

In Fig. 2, we illustrate the average SOP performance versus
the maximum achievable average SNR at Eve Γ̄E , given Nt=
6, P =1 dBm and two different Ne values. It can be seen that
the average SOP increases as Γ̄E increases, and it reaches the
ceiling value when Γ̄E > 10 dB. It can also be observed that
the performance gaps between the different schemes become
negligible when Γ̄E ≥ 2 dB. Moreover, it is worth pointing
out that the average SOP of our OAPA scheme is actually
slightly lower than that of the exhaustive search when Γ̄E is
sufficiently large. This confirms our analysis that the OAPA
scheme guarantees its optimality in the worst-case scenario
even though it requires no Eve’s prior information.
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Fig. 2: Average SOP versus Γ̄E for three schemes with Nt =
6, P = 1 dBm and two different Ne values.

Fig. 3 depicts the optimal PAFs as the functions of P
for the three schemes, given Nt = 4, Ne = 2 and two
different values of Eve’s channel noise variance σ2

E , under
h = [1.0887 − j0.1005 − 0.0187 − j0.2694 0.1665 +
j0.2963 0.4973+ j0.7164]. As discussed previously, Alice only
transmits when the condition X < µ is satisfied; otherwise, it
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Fig. 3: Optimal PAF versus P for three schemes with Nt = 4,
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Fig. 4: ISOP versus P for three schemes with Nt = 4, Ne = 2
and two different values of σ2

E .

remains silent. Observe that at the beginning when P is very
small, the optimal PAF is equal to one for the exhaustive search
or is nearly one for the other schemes. The reason is that the
current transmit power P is insufficiently large to support the
target RS , so that the full or almost full power is allocated to
the information signal to guarantee a reliable link to Bob. As
P increases further, the optimal PAF reduces, which indicates
that a larger fraction of power is shifted to AN in order to
confuse Eve. Evidently, the optimal PAFs for the OAPA and
SFPA schemes are independent of Eve’s prior information σ2

E .
The optimal PAF for the exhaustive search increases with σ2

E ,
which indicates that a large fraction of power is allocated to the
information signal when Eve’s SNR is relatively low. Under
the identical conditions, the corresponding ISOPs versus P are
plotted in Fig. 4. It is seen that the exhaustive search achieves
the best performance gain in terms of ISOP. It can also be seen
that the performance gap between the exhaustive search and
the OAPA is indistinguishable when σ2

E is sufficiently small.
Under the same channel settings, we plot the optimal PAF

versus γ̄E with two different values of RS in Fig. 5. It is seen
that the difference in the optimal PAF between the OAPA and
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Fig. 5: Optimal PAF versus γ̄E for three schemes with Nt = 4,
Ne = 2, P = 10 dB and two different values of RS .
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the exhaustive search becomes small as γ̄E increases, and for
sufficiently large γ̄E , the two schemes become indistinguish-
able. Since the exhaustive search method provides a lower
bound for the OAPA scheme, in terms of ISOP, it can be
seen that the OAPA scheme also guarantees the optimality, in
terms of ISOP, in the worst-case scenario. Moreover, unlike
the exhaustive search, our OAPA does not require Eves prior
information. It is also seen that the optimal PAF increases as
RS increases, and the reason is that more power is allocated
to the information signal to support a larger RS . This confirms
our Remarks 2 and 3.

B. Secrecy outage performance in worst-case scenario

Fig. 6 depicts the average SOP performance as the functions
of P for the three schemes given Ne = 2 and two values of Nt.
From Fig. 6, it can be seen that the analytical results closely
match the simulation results. Observe that our OAPA scheme
outperforms the exhaustive search, even though it does not
require Eve’s prior information. Recalling (15) and (16), we
can confirm that the optimal PAF of our OAPA scheme (φ?)
satisfies ω

(
φ?
)
≥ ω

(
α?
)
, where α? is the optimal PAF for

the exhaustive search, thereby leading to a smaller probability
of secrecy outage event for the OAPA case. Observe also that
there is only a very slight performance degradation for the
proposed SFPA scheme compared with the exhaustive search.
It is worth recalling that the SFPA does not require Eve’s prior
information, whilst the exhaustive search needs Eve’s prior
information, including λE , Ne, and σ2

e , for implementation.
Therefore, our SFPA offers a simpler and better alternative to
the exhaustive search in the worst-case scenario.

Fig. 7 shows the average SOP performance versus Ne for
the three schemes given P = 10 dBm and two different values
of Nt. Again it can be seen that our OAPA outperforms the
exhaustive search. Furthermore, the performance of the SFPA
is very close to that of the exhaustive search. Under the same
system settings, the optimal PAFs for the exhaustive search
and the SFPA are also depicted in Fig. 8. As expected, φ?∞
is independent of Ne, but it can be seen that increasing Ne
leads to a decrease in the value of the optimal PAF α? for the

-5 0 5 10 15

 P (dBm)

10
-3

10
-2

10
-1

10
0

A
v

er
ag

e 
S

O
P

OAPA (proposed), Analytical

SFPA (proposed), Analytical

Exhaustive search, Analytical

OAPA (proposed), Simulation

SFPA (proposed), Simulation

Exhaustive search, Simulation

6.5 7 7.5
0.08

0.1

0.12

8.6 8.8 9 9.2 9.4
0.16

0.18

0.2

0.22

Fig. 6: Average SOP versus P for three schemes with Ne = 2
and two different values of Nt.
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Fig. 7: Average SOP versus Ne for three schemes with P =
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exhaustive search. The maximum difference between α? and
φ?∞ at Ne = 2 does not exceed 0.05. These observations sug-
gest that our SFPA scheme can achieve near-optimal secrecy
performance. It can be also seen that increasing Nt leads to a
decrease in the value of φ?∞.
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Fig. 8: Optimal PAF versus Ne for two schemes with P =
10 dBm and two different values of Nt.

VI. CONCLUSIONS

The power allocation between the information signal and the
AN has been optimized for a MISO system in the presence
of an unknown eavesdropper. Without requiring Eve’s prior
information, the OAPA and SFPA schemes have been pro-
posed, for which explicit solutions to the optimal PAF have
been derived to minimize the SOP in the worst-case scenario.
Given a preset noise power level at Eve, approximate closed-
form expressions for the average SOP have been derived
by applying the Gauss-Chebyshev quadrature. We have also
addressed the worst-case secrecy outage performance for the
proposed OAPA and SFPA schemes. Simulation results have
been presented to corroborate the accuracy of our theoretical
derivations. From the results, it has been shown that, even
without Eve’s prior information, the OAPA scheme is capable
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of achieving a comparable secrecy outage performance to that
of the exhaustive search method. It has also been shown that
the OAPA scheme achieves a slightly lower worst-case SOP
than the exhaustive search method. Additionally, the SFPA
scheme can achieve almost the same worst-case SOP as the
OAPA scheme, while its implementation complexity is greatly
reduced.

APPENDIX

A. Proof of Proposition 1

Proof: Using the variable substitution t =
√
γ̄Bx −√

ε− 1 in H1(x) of (28), where t ∈ [0, ∞), we have

H1(t) =
t2n(

1 + t2

(Nt−1)ε

)Nt−1
. (64)

By calculating the derivation of H1(t) and setting it to zero, it
can be seen that H1(t) has the unique maximum at the point

t∗ =
√

εn(Nt−1)
Nt−1−n . Solving the following equation√

εn(Nt − 1)

Nt − 1− n
=
√
γ̄Bx∗ −

√
ε− 1, (65)

yields

x∗ =

(√
εn(Nt−1)
Nt−1−n +

√
ε− 1

)2

γ̄B
. (66)

The derivation of H2(x) is given by

dH2(x)

dx
= exp (−λBx)xNt−2 (Nt − 1− λBx) , (67)

where x ∈ [µ, ∞). Setting it to zero yields the unique
maximum point xo = Nt−1

λB
of H2(x).

By using the variable substitution s =
√
γ̄Bx

(√
γ̄Bx −√

ε− 1
)

in H3(x) of (30), where s ∈ [0, ∞), we obtain
H3(s), which has a similar form as H2(x). Using the result for
H2(x), H3(s) has the unique maximum at s# = εΓ̄E(m−1).
Solving the following equation√

γ̄Bx#
(√

γ̄Bx# −
√
ε− 1

)
= εΓ̄E(m− 1) (68)

yields

x# =
ε
(
1 + 2Γ̄E(m− 1)

)
− 1

2γ̄B

+

√
ε− 1

√
ε− 1 + 4εΓ̄E(m− 1)

2γ̄B
(69)

It is readily to see that H1(x), H2(x) and H3(x) are
strictly decreasing for x ∈ [x∗, ∞), x ∈ [xo, ∞) and
x ∈ [x#, ∞), respectively. We conclude that T (x) =
H1(x)H2(x)H3(x) is strictly decreasing for x ∈ [A, ∞) with
A = max{x∗, xo, x#}. This completes the proof.

B. Proof of Theorem 1

Proof: Substituting (2), (3), (13) and (17) into (10), and
after some algebraic manipulations, the expression of the SOP
for the OAPA scheme in the worst-case scenario is derived as

P o,wout = Pr

 1 +
√

ε−1
γ̄BX

γ̄BX

1 +

√
ε−1
γ̄BX

(Nt−1)

1−
√

ε−1
γ̄BX

Y

< ε

∣∣∣∣∣X ≥ µ


= Pr

(
X <

(√
ε− 1 +

√
Y ε(Nt − 1)

)2
γ̄B

∣∣∣X ≥ µ), (70)

where Y = g̃H
(
G̃G̃H

)−1
g̃. According to the total probability

formula, P o,wout is further derived as

P o,wout =
Pr
(
µ < X <

(√
ε−1+

√
Y ε(Nt−1)

)2

γ̄B

)
Pr(X > µ)

=

Ξ1︷ ︸︸ ︷∫ ∞
τ(µ)

∫ (√ε−1+
√
yε(Nt−1)

)2
/γ̄B

µ

fX(x)dxfY (y)dy

Pr(X > µ)
. (71)

With the aid of (24) and (25), Ξ1 can be derived as

Ξ1 =

∫ ∞
τ(µ)

Nt−1∑
k=0

λkBµ
k

k!
exp (−λBµ) fY (y)dy

−
∫ ∞
τ(µ)

Nt−1∑
k=0

(
A(B + C

√
y)2
)k

k!

× exp
(
−A
(
B + C

√
y
)2)

fY (y)dy. (72)

The CDF and PDF of Y can respectively be obtained as [36,
eq. 11]

FY (y) = 1−
Ne−1∑
m=0

(
Nt−1
m

)
ym

(1 + y)Nt−1
, (73)

fY (y) =

Ne−1∑
m=0

(
Nt−1
m

)
(Nt − 1)ym

(1 + y)Nt
−
Ne−1∑
m=1

(
Nt−1
m

)
mym−1

(1 + y)Nt−1
.

(74)

Substituting the CDF of Y (73) into (72), Ξ1 can be further
derived as

Ξ1 =

Nt−1∑
k=0

Ne−1∑
m=0

(λB)kµk exp
(
− λBµ

)
k!

(
Nt−1
m

)
τm(µ)

(1 + τ(µ))Nt−1
−

Nt−1∑
k=0

Ak

k!

∫ ∞
τ(µ)

(
B+C

√
y
)2k

exp
(
−A
(
B+C

√
y
)2)

fY (y)dy︸ ︷︷ ︸
Ξ2

.

(75)
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Substituting the PDF of Y (74) into the integral Ξ2 in (75),
we have

Ξ2 =

Ne−1∑
m=0

2k∑
n=0

(
Nt − 1

m

)(
2k

n

)
(Nt − 1)B2k−nCn

×
∫ ∞
τ(µ)

ym+n
2 (1 + y)−Nt exp

(
−A

(
B + C

√
y
)2)

dy︸ ︷︷ ︸
L1

−
Ne−1∑
m=1

2k∑
n=0

(
Nt − 1

m

)(
2k

n

)
mB2k−nCn

×
∫ ∞
τ(µ)

ym+n
2−1(1 + y)1−Nt exp

(
−A
(
B + C

√
y
)2)

dy︸ ︷︷ ︸
L2

.

(76)

We now proceed to derive L1 and L2, respectively.
Utilizing the variable substitution t =

√
y, L1 can be

expressed as

L1 =2

∫ ∞
√
τ(µ)

t2m+n+1(1 + t2)−Nt exp
(
−A(B + Ct)2

)
dt.

(77)

Although the expression (77) is intractable to solve directly,
we can derive an approximate expression with an arbitrarily
small error by invoking the truncation method.

Referring to Proposition 1, it is readily to see that
the integral term M1(t) = t2m+n+1(1 + t2)−Nt in (77)

is strictly decreasing within
[√

2m+n+1
2Nt−2m−n−1 , ∞

)
, and

M2(t) = exp
(
− A(B + Ct)2

)
is strictly decreasing within

[0, ∞). Therefore, M1(t)M2(t) is strictly decreasing within[√
2m+n+1

2Nt−2m−n−1 , ∞
)

. Consequently, there exists a suffi-

ciently large Φ2 > max

{√
2m+n+1

2Nt−2m−n−1 ,
√
τ(µ)

}
that

makes the approximate error
∫∞

Φ2
T (x)dx ≈ 0, and L1 can

be approximated as

L1≈2

∫ Φ2

√
τ(µ)

t2m+n+1
(
1 + t2

)−Nt
exp

(
−A(B + Ct)2

)
dt.

(78)

Since it is still challenging to obtain the closed-from expres-
sions for L1, we use Gaussian-Chebyshev quadrature [37] to
further find an approximation of (78) as follows:

L1 ≈
π
(
Φ2 −

√
τ(µ)

)
T

T∑
k=1

√
1− ν2

t s
2m+n+1
t (1 + s2

t )
−Nt

× exp
(
−A(B + Cst)

2
)
. (79)

Following a similar way, we can truncate the infinite integral
L2 w.r.t. Φ3 > max

{√
2m+n−1

2Nt−2m−n−1 ,
√
τ(µ)

}
to approxi-

mate it as

L2 = 2

∫ ∞
√
τ(µ)

t2m+n−1(1 + t2)1−Nt exp
(
−A(B + Csk)2

)
dt

≈ 2

∫ Φ3

√
τ(µ)

t2m+n−1(1 + t2)1−Nt exp
(
−A(B + Csk)2

)
dt

≈
π
(
Φ3 −

√
τ(µ)

)
G

G∑
g=1

√
1− ν2

gs
2m+n−1
g

(
1 + s2

g

)1−Nt
× exp

(
−A(B + Csg)

2
)
. (80)

Substituting (75), (76), (79) and (80) into (71), we obtain
the approximate closed-form expression of the SOP for the
OAPA scheme in the worst-case scenario as given in (38).
This completes the proof.
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